Regge trajectories and Hagedorn behavior: Hadronic realizations of dynamical dark matter
Dienes, Keith R.; Huang, Fei; Su, Shufang; Thomas, Brooks
2017-11-01
Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are balanced against their cosmological abundances. In this talk, we study the properties of a hitherto-unexplored class of DDM ensembles in which the ensemble constituents are the "hadronic" resonances associated with the confining phase of a strongly-coupled dark sector. Such ensembles exhibit masses lying along Regge trajectories and Hagedorn-like densities of states that grow exponentially with mass. We investigate the applicable constraints on such dark-"hadronic" DDM ensembles and find that these constraints permit a broad range of mass and confinement scales for these ensembles. We also find that the distribution of the total present-day abundance across the ensemble is highly correlated with the values of these scales. This talk reports on research originally presented in Ref. [1].
2003-01-01
Rolf Hagedorn, who introduced the concept that hadronic matter has a melting point, died on March 9 2003. After studies in Göttingen he came to CERN in Geneva in 1954 as an accelerator theorist. He joined the CERN Theory Group after its transfer in 1957 from Copenhagen to Geneva and he was a senior physicist in the Division when he retired in 1984. He continued his research after retirement, and up to very recently he made pertinent contributions in developments in the field of relativistic heavy ion collisions. As an accelerator physicist he developed the theoretical predictions for the particle spectra initially observed when the CERN PS first began operation, which was important for the optimisation of secondary beams. He then developed the statistical theory of meson production in considerable detail up to very high energies. It was a consequence of these studies that he found that one should expect a limiting temperature in hadronic collisions, the Hagedorn temperature. This picture has had a major im...
Deconstructing the little Hagedorn holography
International Nuclear Information System (INIS)
Barbon, Jose L.F.; Fuertes, Carlos A.; Rabinovici, Eliezer
2007-01-01
We study aspects of the thermodynamics of Little String Theory, using its geometrical definition in critical ten-dimensional string theory. We find that bulk radiation effects tend to screen the Hagedorn behaviour of the theory, in contrast to the behaviour in the AdS system background. The resulting density of states of the system, when stable, is described by a seven-dimensional nonrelativistic gas. This requires modifications of the holographic Little Hagedorn picture. Using deconstructions we suggest such modifications. The model is embedded into a system which has an ultraviolet fixed point with an AdS description. We investigate the thermodynamical properties of these UV completed models. It is found that the Hagedorn regime survives in a finite band of superheated states that eventually decay into the plasma phase of the conformal field theory that serves as UV regulator. This is manifested in a first-order phase transition that is driven by radiative corrections
Phase diagram of dilute cosmic matter
Iwata, Yoritaka
2011-10-01
Enhancement of nuclear pasta formation due to multi-nucleus simultaneous collision is presented based on time-dependent density functional calculations with periodic boundary condition. This calculation corresponds to the situation with density lower than the known low-density existence limit of the nuclear pasta phase. In order to evaluate the contribution from three-nucleus simultaneous collisions inside the cosmic matter, the possibility of multi-nucleus simultaneous collisions is examined by a systematic Monte-Carlo calculation, and the mean free path of a nucleus is obtained. Consequently the low-density existence limit of the nuclear pasta phase is formed to be lower than believed up to now.
Phase diagram of dilute cosmic matter
International Nuclear Information System (INIS)
Yoritaka, Iwata
2011-01-01
Enhancement of nuclear pasta formation due to multi-nucleus simultaneous collision is presented based on time-dependent density functional calculations with periodic boundary condition. This calculation corresponds to the situation with density lower than the known low-density existence limit of the nuclear pasta phase. In order to evaluate the contribution from three-nucleus simultaneous collisions inside the cosmic matter, the possibility of multi-nucleus simultaneous collisions is examined by a systematic Monte-Carlo calculation, and the mean free path of a nucleus is obtained. Consequently the low-density existence limit of the nuclear pasta phase is formed to be lower than believed up to now. (author)
Music and Science: Tribute to Rolf Hagedorn
Jacob, Maurice
2016-01-01
I present here Rolf Hagedorn as a man, and present his achievements as a physicist. He has made several very important contributions: to particle and nuclear fields of research: The Hagedorn Temperature and the Statistical Bootstrap Model are concepts that are here to stay, and which have stimulated much further research. But Rolf Hagedorn is also a wonderful person and, saying that, does not require a specialist.
J/$\\psi$ suppression in the Mott-Hagedorn resonance gas
Blaschke, David B
2004-01-01
We describe matter formed in ultrarelativistic heavy ion collisions within a generalized Hagedorn resonance gas model where hadrons have a vanishing width below the Hagedorn temperature T//H and a Hagedorn spectrum-like width above T//H. Such an approach not only eliminates the divergence of the thermodynamic functions above T//H, but it is able to successfully describe the lattice quantum chromodynamics (QCD) data on the energy density. It also allows to explain the absence of heavy resonance contributions in the fit of the experimentally measured particle ratios at SPS and RHIC energies. We present an application of the approach to the description of the NA50 experiment which suggests that the anomalous suppression of J/psi production may be explained by the increase of the effective number of degrees of freedom at the Hagedorn temperature.
The QCD Phase Diagram: Large Nc, Quarkyonic Matter and the Triple Point
International Nuclear Information System (INIS)
McLerran, L.
2010-01-01
I discuss the phase diagram of QCD in the large N c limit. Qarkyonic Matter is described. The properties of QCD matter as measured in the abundance of produced particles are shown to be consistent with this phase diagram. A possible triple point of Hadronic Matter, Deconfined Matter and Quarkyonic Matter is shown to explain various behaviors of ratios of particle abundances seen in CERN fixed target experiments. (author)
Hagedorn temperature and physics of black holes
International Nuclear Information System (INIS)
Zakharov, V.I.; Mertens, Thomas G.; Verschelde, Henri
2016-01-01
A mini-review devoted to some implications of the Hagedorn temperature for black hole physics. The existence of a limiting temperature is a generic feature of string models. The Hagedorn temperature was introduced first in the context of hadronic physics. Nowadays, the emphasis is shifted to fundamental strings which might be a necessary ingredient to obtain a consistent theory of black holes. The point is that, in field theory, the local temperature close to the horizon could be arbitrarily high, and this observation is difficult to reconcile with the finiteness of the entropy of black holes. After preliminary remarks, we review our recent attempt to evaluate the entropy of large black holes in terms of fundamental strings. We also speculate on implications for dynamics of large-N_c gauge theories arising within holographic models
Chemical equilibration due to heavy Hagedorn states
International Nuclear Information System (INIS)
Greiner, C; Koch-Steinheimer, P; Liu, F M; Shovkovy, I A; Stoecker, H
2005-01-01
A scenario of heavy resonances, called massive Hagedorn states, is proposed which exhibits a fast (t ∼ 1 fm/c) chemical equilibration of (strange) baryons and anti-baryons at the QCD critical temperature T c . For relativistic heavy ion collisions this scenario predicts that hadronization is followed by a brief expansion phase during which the equilibration rate is higher than the expansion rate, so that baryons and antibaryons reach chemical equilibrium before chemical freeze-out occurs
Second Hagedorn temperature and glueball formation
International Nuclear Information System (INIS)
Dias de Deus, J.; Pimenta, M.
1984-09-01
We argue that confinement involving higher representations of SU(N) in singlet Ranti R bound states may occur at higher Hagedorn temperatures. The simplest possibility corresponds to the case when the binding potential is proportional to the quadratic Casimir Csub(R). The lowest Hagedorn temperature Tsub(H1) is the temperature for qanti q meson formation. The next, Tsub(H2), is the temperature for glueball hadronization. Higher representation Ranti R bound states are not likely to occur. The second Hagedorn temperature, separating the physics of hadrons from the physics of QCD plasma, plays the role of the deconfining temperature. Simple effective potential estimates give Tsub(H2)/Tsub(H1)approx.=(Csub(A)/Csub(F))sup(1/2)=3/2, in SU(3), with Tsub(H2)=395 MeV and Tsub(H1)=210 MeV, and for the glueball spin-averaged mass, μsub(G)=1370 MeV. Glueballs, in comparison with normal hadrons, are produced with larger psub(T) and larger multiplicities. (orig.)
Dark-matter bound states from Feynman diagrams
Petraki, K.; Postma, M.; Wiechers, M.
2015-01-01
If dark matter couples directly to a light force mediator, then it may form bound states in the early universe and in the non-relativistic environment of haloes today. In this work, we establish a field-theoretic framework for the computation of bound-state formation cross-sections, de-excitation
Directory of Open Access Journals (Sweden)
Roger Beaver
2010-09-01
Full Text Available Taxonomic confusion among the afrotropical scolytine genera Hapalogenius Hagedorn, Hylesinopsis Eggers and Rhopalopselion Hagedorn, and their synonyms is discussed with especial reference to the catalogues of Wood and Bright (1992, and Alonso-Zarazaga and Lyal (2009. A key is given to separate the three genera recognised, and the species considered to be included in each genus are listed. Hylesinopsis is resurrected from synonymy with Hapalogenius, and shown not to be closely related to it. Chilodendron Schedl is considered to be a synonym of Hylesinopsis and not of Xylechinus Chapuis. The following new synonymy is proposed at specific level: Hapalogenius africanus (Eggers (= Hapalogenius lesnei Eggers, = Metahylesinus brincki Schedl; Hapalogenius fuscipennis (Chapuis (= Hapalogenius bimaculatus Eggers; Hapalogenius oblongus (Eggers (= Metahylesinus striatus Schedl; Hylesinopsis fasciata (Hagedorn (= Kissophagus punctatus Eggers; Phrixosoma niger Eggers (= Hapalogenius niger Schedl. The following species are returned to Hylesinopsis from Hapalogenius to which they were transferred by Alonso-Zarazaga and Lyal (2009: Hylesinopsis alluaudi (Lepesme, H. angolensis (Schedl, H. arabiae (Schedl, H. atra (Nunberg, H. confusa (Eggers, H. decellei (Nunberg, H. dubia Eggers, H. emarginata (Nunberg, H. fasciata (Hagedorn, H. ficus (Schedl, H. granulata (Lepesme, H. hirsuta (Schedl, H. joveri (Schedl, H. pauliani (Lepesme, H. punctata (Eggers, H. saudiarabiae (Schedl. The following new combination is given: Hylesinopsis leprosula (Browne from Cryphalus Erichson. New distributional records are given for some species.
Effect of a background electric field on the Hagedorn temperature
International Nuclear Information System (INIS)
Ferrer, E.J.; Incera, V. de la; Fradkin, E.S.
1990-07-01
We compute the one-loop free energy of the open neutral string gas in a constant electromagnetic background. Starting from this result we show that the Hagedorn temperature of this hot string gas depends on the background electric field. The larger the electric field, the lower the Hagedorn temperature is. (author). 13 refs
Phase diagram of dilute nuclear matter: Unconventional pairing and the BCS-BEC crossover
Energy Technology Data Exchange (ETDEWEB)
Stein, Martin; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik
2013-07-01
We report on a comprehensive study of the phase structure of cold, dilute nuclear matter featuring a {sup 3}S{sub 1}-{sup 3}D{sub 1} condensate at non-zero isospin asymmetry, within wide ranges of temperatures and densities. We find a rich phase diagram comprising three superfluid phases, namely a LOFF phase, the ordinary BCS phase, and a heterogeneous, phase-separated BCS phase, with associated crossovers from the latter two phases to a homogeneous or phase-separated Bose-Einstein condensate of deuterons. The phase diagram contains two tri-critical points (one a Lifshitz point), which may degenerate into a single tetra-critical point for some degree of isospin asymmetry.
Missing baryonic resonances in the Hagedorn spectrum
Energy Technology Data Exchange (ETDEWEB)
Man Lo, Pok [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); GSI, Extreme Matter Institute EMMI, Darmstadt (Germany); Marczenko, Michal; Sasaki, Chihiro [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Redlich, Krzysztof [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); GSI, Extreme Matter Institute EMMI, Darmstadt (Germany); Duke University, Department of Physics, Durham, NC (United States)
2016-08-15
The hadronic medium of QCD is modeled as a gas of point-like hadrons, with its composition determined by the Hagedorn mass spectrum. The spectrum consists of a discrete and a continuous part. The former is determined by the experimentally confirmed resonances tabulated by the Particle Data Group (PDG), while the latter can be extracted from the existing lattice data. This formulation of the hadron resonance gas (HRG) provides a transparent framework to relate the fluctuation of conserved charges as calculated in the lattice QCD approach to the particle content of the medium. A comparison of the two approaches shows that the equation of state is well described by the standard HRG model, which includes only a discrete spectrum of known hadrons. The corresponding description in the strange sector, however, shows clear discrepancies, thus a continuous spectrum is added to incorporate the effect of missing resonances. We propose a method to extract the strange-baryon spectrum from the lattice data. The result is consistent with the trend set by the unconfirmed strange baryons resonances listed by the PDG, suggesting that most of the missing interaction strength for the strange baryons reside in the S = 1 sector. This scenario is also supported by recent lattice calculations, and might be important in the energy region covered by the NICA accelerator in Dubna, where in the heavy-ion collisions, baryons are the dominating degrees of freedom in the final state. (orig.)
Matching the Hagedorn temperature in AdS/CFT correspondence
International Nuclear Information System (INIS)
Harmark, Troels; Orselli, Marta
2006-01-01
We match the Hagedorn/deconfinement temperature of planar N=4 super Yang-Mills (SYM) on RxS 3 to the Hagedorn temperature of string theory on AdS 5 xS 5 . The match is done in a near-critical region where both gauge theory and string theory are weakly coupled. The near-critical region is near a point with zero temperature and critical chemical potential. On the gauge-theory side we are taking a decoupling limit found in Ref. 7 in which the physics of planar N=4 SYM is given exactly by the ferromagnetic XXX 1/2 Heisenberg spin chain. We find moreover a general relation between the Hagedorn/deconfinement temperature and the thermodynamics of the Heisenberg spin chain and we use this to compute it in two distinct regimes. On the string-theory side, we identify the dual limit for which the string tension and string coupling go to zero. This limit is taken of string theory on a maximally supersymmetric pp-wave background with a flat direction, obtained from a Penrose limit of AdS 5 xS 5 . We compute the Hagedorn temperature of the string theory and find agreement with the Hagedorn/deconfinement temperature computed on the gauge-theory side
Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.
Thermal duality and Hagedorn transition from p-adic strings.
Biswas, Tirthabir; Cembranos, Jose A R; Kapusta, Joseph I
2010-01-15
We develop the finite temperature theory of p-adic string models. We find that the thermal properties of these nonlocal field theories can be interpreted either as contributions of standard thermal modes with energies proportional to the temperature, or inverse thermal modes with energies proportional to the inverse of the temperature, leading to a thermal duality at leading order (genus one) analogous to the well-known T duality of string theory. The p-adic strings also recover the asymptotic limits (high and low temperature) for arbitrary genus that purely stringy calculations have yielded. We also discuss our findings surrounding the nature of the Hagedorn transition.
On the Impact of Layout Quality to Understanding UML Diagrams: Size Matters
DEFF Research Database (Denmark)
Störrle, Harald
2014-01-01
Practical experience suggests that usage and understanding of UML diagrams is greatly affected by the quality of their layout. While existing research failed to provide conclusive evidence in support of this hypothesis, our own previous work provided substantial evidence to this effect. When...
Energy Technology Data Exchange (ETDEWEB)
Mekjian, Aram [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy
2016-10-18
The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.
Hagedorn Behavior of Little String Theories from string corrections to NS5-branes
DEFF Research Database (Denmark)
Harmark, Troels; Obers, N. A.
2000-01-01
We examine the Hagedorn behavior of little string theory using its conjectured duality with near-horizon NS5-branes. In particular, by studying the string-corrected NS5-brane supergravity solution, it is shown that tree-level corrections to the temperature vanish, while the leading one-loop string...... correction generates the correct temperature dependence of the entropy near the Hagedorn temperature. Finally, the Hagedorn behavior of ODp-brane theories, which are deformed versions of little string theory, is considered via their supergravity duals....
Deconfinement and the Hagedorn transition in string theory.
Chaudhuri, S
2001-03-05
We introduce a new definition of the thermal partition function in string theory. With this new definition, the thermal partition functions of all of the string theories obey thermal duality relations with self-dual Hagedorn temperature beta(2)(H) = 4pi(2)alpha('). A beta-->beta(2)(H)/beta transformation maps the type I theory into a new string theory (type I) with thermal D p-branes, spatial hypersurfaces supporting a p-dimensional finite temperature non-Abelian Higgs-gauge theory for p< or =9. We demonstrate a continuous phase transition in the behavior of the static heavy quark-antiquark potential for small separations r(2)(*)
Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology.
Nayeri, Ali; Brandenberger, Robert H; Vafa, Cumrun
2006-07-14
We study the generation of cosmological perturbations during the Hagedorn phase of string gas cosmology. Using tools of string thermodynamics we provide indications that it may be possible to obtain a nearly scale-invariant spectrum of cosmological fluctuations on scales which are of cosmological interest today. In our cosmological scenario, the early Hagedorn phase of string gas cosmology goes over smoothly into the radiation-dominated phase of standard cosmology, without having a period of cosmological inflation.
International Nuclear Information System (INIS)
Minakata, Hisakazu; Nunokawa, Hiroshi
2003-01-01
We introduce a 'CP trajectory diagram in bi-probability space' as a powerful tool for a pictorial representation of the genuine CP and the matter effects in neutrino oscillations. The existence of correlated ambiguity in the determination of CP-violating phase δ and the sign of Δm 13 2 is uncovered. The principles of tuning the beam energy for a given baseline distance are proposed to resolve the ambiguity and to maximize the CP-odd effect. We finally point out, quite contrary to what is usually believed, that the ambiguity may be resolved with ∼50% chance in the super-JHF experiment despite its relatively short baseline of 300 km
Diagramas de energía, fuerza y materia = Diagrams of energy, force and matter
Directory of Open Access Journals (Sweden)
Josep Maria Montaner
2013-10-01
Full Text Available ResumenEn este ensayo se va a tratar sobre arquitectura a partir de la definición de forma como “estructura esencial e interna, como construcción del espacio y de la materia”. Para ello, podemos establecer, como punto de partida, que el proceso de la arquitectura va de la energía, las fuerzas y la materia hacia la forma. Por tanto, teorizar sobre la forma en arquitectura nos lleva a reflexionar sobre tres fenómenos previos a su configuración: la energía, las fuerzas y la materia. Para seguir estos procesos físicos es útil remitirse al pensamiento postestructuralista de Gilles Deleuze y Félix Guattari, especialmente a su texto Mil Mesetas. Capitalismo y esquizofrenia (1980 y a conceptos como “rizoma” y “agenciamiento” y, sobre todo, utilizar la herramienta interpretativa y creativa del “diagrama”.Palabras claveenergía, fuerza, materia, forma, Deleuze, GuattariAbstractThis essay will deal on architecture from the defi nition of form as "critical and internal structure as construction of space and matter." For that, we can establish, as a starting point, that the process of architecture goes from energy, forces and matter to form. Thus, theorizing about form in architecture leads us to refl ect on three prior phenomena to its confi guration: energy, forces and matter. To follow these physical processes is useful to refer the poststructuralist thought´s Gilles Deleuze and Felix Guattari, especially his text A Thousand Plateaus. Capitalism and Schizophrenia (1980 and concepts such as "rhizome" and "assemblage" and, above all, to use the creative and interpretative tool of "diagramme".Key wordsenergy, force, matter, form, Deleuze, Guattari
2015-01-01
This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma - announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gázdzicki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and t...
The Hagedorn temperature in a decoupled sector of AdS/CFT
International Nuclear Information System (INIS)
Harmark, T.; Kristjansson, K.; Orselli, M.
2007-01-01
We match the Hagedorn/deconfinement temperature of planar N=4 super Yang-Mills (SYM) on R x S 3 to the Hagedorn temperature of string theory on Ads 5 x S 5 . The match is done in a near-critical region where both gauge theory and string theory are weakly coupled. On the gauge theory side we are taking a decoupling limit in which the physics of planar N=4 SYM is given exactly by the ferromagnetic XXX 1/2 Heisenberg spin chain. We find moreover a general relation between the Hagedorn/deconfinement temperature and the thermodynamics of the Heisenberg spin chain. On the string theory side, we identify the dual limit which is taken of string theory on a maximally symmetric pp-wave background with a flat direction, obtained from a Penrose limit of Ads 5 x S 5 . We compute the Hagedorn temperature of the string theory and find agreement with the Hagedorn/deconfinement temperature computed on the gauge theory side. Finally, we discuss a modified decoupling limit in which planar N=4 SYM reduces to the XXX 1/2 Heisenberg spin chain with an external magnetic field. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Critical point in the phase diagram of primordial quark-gluon matter from black hole physics
Critelli, Renato; Noronha, Jorge; Noronha-Hostler, Jacquelyn; Portillo, Israel; Ratti, Claudia; Rougemont, Romulo
2017-11-01
Strongly interacting matter undergoes a crossover phase transition at high temperatures T ˜1012 K and zero net-baryon density. A fundamental question in the theory of strong interactions, QCD, is whether a hot and dense system of quarks and gluons displays critical phenomena when doped with more quarks than antiquarks, where net-baryon number fluctuations diverge. Recent lattice QCD work indicates that such a critical point can only occur in the baryon dense regime of the theory, which defies a description from first principles calculations. Here we use the holographic gauge/gravity correspondence to map the fluctuations of baryon charge in the dense quark-gluon liquid onto a numerically tractable gravitational problem involving the charge fluctuations of holographic black holes. This approach quantitatively reproduces ab initio results for the lowest order moments of the baryon fluctuations and makes predictions for the higher-order baryon susceptibilities and also for the location of the critical point, which is found to be within the reach of heavy-ion collision experiments.
Rahmaniar, Andinisa; Rusnayati, Heni; Sutiadi, Asep
2017-05-01
While solving physics problem particularly in force matter, it is needed to have the ability of constructing free body diagrams which can help students to analyse every force which acts on an object, the length of its vector and the naming of its force. Mix method was used to explain the result without any special treatment to participants. The participants were high school students in first grade totals 35 students. The purpose of this study is to identify students' ability level of constructing free body diagrams in solving restricted and structured response items. Considering of two types of test, every student would be classified into four levels ability of constructing free body diagrams which is every level has different characteristic and some students were interviewed while solving test in order to know how students solve the problem. The result showed students' ability of constructing free body diagrams on restricted response items about 34.86% included in no evidence of level, 24.11% inadequate level, 29.14% needs improvement level and 4.0% adequate level. On structured response items is about 16.59% included no evidence of level, 23.99% inadequate level, 36% needs improvement level, and 13.71% adequate level. Researcher found that students who constructed free body diagrams first and constructed free body diagrams correctly were more successful in solving restricted and structured response items.
The Hagedorn Spectrum and the Dual Resonance Model: An Old Love Affair
Veneziano, Gabriele
2016-01-01
In this contribution I recall how people working in the late 1960s on the dual resonance model came to the surprising discovery of a Hagedorn-like spectrum, and why they should not have been surprised. I will then turn to discussing the Hagedorn spectrum from a string theory viewpoint (which adds a huge degeneracy to the exponential spectrum). Finally, I will discuss how all this can be reinterpreted in the new incarnation of string theory through the properties of quantum black holes.
Brane-antibrane systems at finite temperature and phase transition near the Hagedorn temperature
International Nuclear Information System (INIS)
Hotta, Kenji
2002-01-01
In order to study the thermodynamic properties of brane-antibrane systems, we compute the finite temperature effective potential of tachyon T in this system on the basis of boundary string field theory. At low temperature, the minimum of the potential shifts towards T=0 as the temperature increases. In the D9-anti-D9 case, the sign of the coefficient of vertical bar T vertical bar 2 term of the potential changes slightly below the Hagedorn temperature. This means that a phase transition occurs near the Hagedorn temperature. On the other hand, the coefficient is kept negative in the Dp-anti-Dp case with p≤8, and thus a phase transition does not occur. This leads us to the conclusion that only a D9-anti-D9 pair and no other (lower dimensional) brane-antibrane pairs are created near the Hagedorn temperature. We also discuss a phase transition in NS9B-anti-NS9B case as a model of the Hagedorn transition of closed strings. (author)
Gonzalez-Mestres, Luis
2016-11-01
The development of the statistical bootstrap model for hadrons, quarks and nuclear matter occurred during the 1960s and the 1970s in a period of exceptional theoretical creativity. And if the transition from hadrons to quarks and gluons as fundamental particles was then operated, a transition from standard particles to preons and from the standard space-time to a spinorial one may now be necessary, including related pre-Big Bang scenarios. We present here a brief historical analysis of the scientific problematic of the 1960s in Particle Physics and of its evolution until the end of the 1970s, including cosmological issues. Particular attention is devoted to the exceptional role of Rolf Hagedorn and to the progress of the statistical boostrap model until the experimental search for the quark-gluon plasma started being considered. In parallel, we simultaneously expose recent results and ideas concerning Particle Physics and in Cosmology, an discuss current open questions. Assuming preons to be constituents of the physical vacuum and the standard particles excitations of this vacuum (the superbradyon hypothesis we introduced in 1995), together with a spinorial space-time (SST), a new kind of Regge trajectories is expected to arise where the angular momentum spacing will be of 1/2 instead of 1. Standard particles can lie on such Regge trajectories inside associated internal symmetry multiplets, and the preonic vacuum structure can generate a new approach to Quantum Field Theory. As superbradyons are superluminal preons, some of the vacuum excitations can have critical speeds larger than the speed of light c, but the cosmological evolution selects by itself the particles with the smallest critical speed (the speed of light). In the new Particle Physics and Cosmology emerging from the pattern thus developed, Hagedornlike temperatures will naturally be present. As new space, time, momentum and energy scales are expected to be generated by the preonic vacuum dynamics, the
Ward, Robin E.; Wandersee, James
2000-01-01
Students must understand key concepts through reasoning, searching out related concepts, and making connections within multiple systems to learn science. The Roundhouse diagram was developed to be a concise, holistic, graphic representation of a science topic, process, or activity. Includes sample Roundhouse diagrams, a diagram checklist, and…
The Hagedorn spectrum, nuclear level densities and first order phase transitions
International Nuclear Information System (INIS)
Moretto, Luciano G.; Larsen, A. C.; Guttormsen, M.; Siem, S.
2015-01-01
An exponential mass spectrum, like the Hagedorn spectrum, with slope 1/T H was interpreted as fixing an upper limiting temperature T H that the system can achieve. However, thermodynamically, such spectrum indicates a 1 st order phase transition at a fixed temperature T H . A much lower energy example is the log linear level nuclear density below the neutron binding energy that prevails throughout the nuclear chart. We show that, for non-magic nuclei, such linearity implies a 1 st order phase transition from the pairing superfluid to an ideal gas of quasi particles
The Hagedorn spectrum, nuclear level densities and first order phase transitions
Energy Technology Data Exchange (ETDEWEB)
Moretto, Luciano G., E-mail: lgmoretto@lbl.gov [Department of Chemistry, University of California, Berkeley, Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720 (United States); Larsen, A. C.; Guttormsen, M.; Siem, S. [Department of Physics, University of Oslo, N-0316 Oslo (Norway)
2015-10-15
An exponential mass spectrum, like the Hagedorn spectrum, with slope 1/T{sub H} was interpreted as fixing an upper limiting temperature T{sub H} that the system can achieve. However, thermodynamically, such spectrum indicates a 1{sup st} order phase transition at a fixed temperature T{sub H}. A much lower energy example is the log linear level nuclear density below the neutron binding energy that prevails throughout the nuclear chart. We show that, for non-magic nuclei, such linearity implies a 1{sup st} order phase transition from the pairing superfluid to an ideal gas of quasi particles.
Colwell, Morris A
1976-01-01
Electronic Diagrams is a ready reference and general guide to systems and circuit planning and in the preparation of diagrams for both newcomers and the more experienced. This book presents guidelines and logical procedures that the reader can follow and then be equipped to tackle large complex diagrams by recognition of characteristic 'building blocks' or 'black boxes'. The goal is to break down many of the barriers that often seem to deter students and laymen in learning the art of electronics, especially when they take up electronics as a spare time occupation. This text is comprised of nin
Closed-String Tachyons and the Hagedorn Transition in AdS Space
Barbón, José L F
2002-01-01
We discuss some aspects of the behaviour of a string gas at the Hagedorn temperature from a Euclidean point of view. Using AdS space as an infrared regulator, the Hagedorn tachyon can be effectively quasi-localized and its dynamics controled by a finite energetic balance. We propose that the off-shell RG flow matches to an Euclidean AdS black hole geometry in a generalization of the string/black-hole correspondence principle. The final stage of the RG flow can be interpreted semiclassically as the growth of a cool black hole in a hotter radiation bath. The end-point of the condensation is the large Euclidan AdS black hole, and the part of spacetime behind the horizon has been removed. In the flat-space limit, holography is manifest by the system creating its own transverse screen at infinity. This leads to an argument, based on the energetics of the system, explaining why the non-supersymmetric type 0A string theory decays into the supersymmetric type IIB vacuum. We also suggest a notion of `boundary entropy'...
DEFF Research Database (Denmark)
Hod, Moshe; Mathiesen, Elisabeth R; Jovanovič, Lois
2014-01-01
OBJECTIVE: This randomized controlled trial aimed to compare the efficacy and safety of insulin detemir (IDet) with neutral protamine Hagedorn (NPH), both with insulin aspart, in pregnant women with type 1 diabetes. The perinatal and obstetric pregnancy outcomes are presented. METHODS: Subjects w...
Directory of Open Access Journals (Sweden)
Rafelski Johann
2016-01-01
Full Text Available These remarks open the one-day session “50 years of Hagedorn’s Temperature and the Statistical Bootstrap Model”. These developments set the path at CERN towards the discovery of Quark-Gluon Plasma in the year 2000.
Oostrom, V. van
2004-01-01
We introduce the unifying notion of delimiting diagram. Hitherto unrelated results such as: Minimality of the internal needed strategy for orthogonal first-order term rewriting systems, maximality of the limit strategy for orthogonal higher-order pattern rewrite systems (with maximality of the
The hot Hagedorn Universe. Presented at the ICFNP2015 meeting, August 2015
Directory of Open Access Journals (Sweden)
Rafelski Johann
2016-01-01
Full Text Available In the context of the half-centenary of Hagedorn temperature and the statistical bootstrap model (SBM we present a short account of how these insights coincided with the establishment of the hot big-bang model (BBM and helped resolve some of the early philosophical difficulties. We then turn attention to the present day context and show the dominance of strong interaction quark and gluon degrees of freedom in the early stage, helping to characterize the properties of the hot Universe. We focus attention on the current experimental insights about cosmic microwave background (CMB temperature fluctuation, and develop a much improved understanding of the neutrino freeze-out, in this way paving the path to the opening of a direct connection of quark-gluon plasma (QGP physics in the early Universe with the QCD-lattice, and the study of the properties of QGP formed in the laboratory.
Properties of hadronic matter near the phase transition
Energy Technology Data Exchange (ETDEWEB)
Noronha-Hostler, Jacquelyn
2010-12-08
According to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M{approx}2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are ''missing'' hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these ''missing'' Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. We show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X anti X pairs (where X=p, K, {lambda}, or {omega}) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, {eta}/s, of hadronic matter near T{sub c} that is close to 1/(4/{pi}). We show how the measured particle ratios can be used to provide non-trivial information about T{sub c} of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the ''missing'' Hagedorn states
Properties of hadronic matter near the phase transition
International Nuclear Information System (INIS)
Noronha-Hostler, Jacquelyn
2010-01-01
According to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M∼2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are ''missing'' hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these ''missing'' Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. We show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X anti X pairs (where X=p, K, Λ, or Ω) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, η/s, of hadronic matter near T c that is close to 1/(4/π). We show how the measured particle ratios can be used to provide non-trivial information about T c of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the ''missing'' Hagedorn states creates a dependence of the thermal fits on the Hagedorn temperature, T H , and leads to a
The Hagedorn temperature and open QCD-string tachyons in pure N=1 super-Yang-Mills
International Nuclear Information System (INIS)
Armoni, Adi; Hollowood, Timothy J.
2008-01-01
We consider large-N confining gauge theories with a Hagedorn density of states. In such theories the potential between a pair of colour-singlet sources may diverge at a critical distance r c =1/T H . We consider, in particular, pure N=1 super-Yang-Mills theory and argue that when a domain wall and an anti-domain wall are brought to a distance near r c the interaction potential is better described by an 'open QCD-string channel'. We interpret the divergence of the potential in terms of a tachyonic mode and relate its mass to the Hagedorn temperature. Finally we relate our result to a theorem of Kutasov and Seiberg and argue that the presence of an open string tachyonic mode in the annulus amplitude implies an exponential density of states in the UV of the closed string channel
Causal Diagrams for Empirical Research
Pearl, Judea
1994-01-01
The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subject-matter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifiying causal effects from non-experimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in ter...
From State Diagram to Class Diagram
DEFF Research Database (Denmark)
Borch, Ole; Madsen, Per Printz
2009-01-01
UML class diagram and Java source code are interrelated and Java code is a kind of interchange format. Working with UML state diagram in CASE tools, a corresponding xml file is maintained. Designing state diagrams is mostly performed manually using design patterns and coding templates - a time...... consuming process. This article demonstrates how to compile such a diagram into Java code and later, by reverse engineering, produce a class diagram. The process from state diagram via intermediate SAX parsed xml file to Apache Velocity generated Java code is described. The result is a fast reproducible...
On zero-point energy, stability and Hagedorn behavior of Type IIB strings on pp-waves
International Nuclear Information System (INIS)
Bigazzi, F.; Cotrone, A.L.
2003-06-01
Type IIB strings on many pp-wave backgrounds, supported either by 5-form or 3-form fluxes, have negative light-cone zero-point energy. This raises the question of their stability and poses possible problems in the definition of their thermodynamic properties. After having pointed out the correct way of calculating the zero-point energy, an issue not fully discussed in literature, we show that these Type IIB strings are classically stable and have well defined thermal properties, exhibiting a Hagedorn behavior. (author)
Viral pathogenesis in diagrams
National Research Council Canada - National Science Library
Tremblay, Michel; Berthiaume, Laurent; Ackermann, Hans-Wolfgang
2001-01-01
.... The 268 diagrams in Viral Pathogenesis in Diagrams were selected from over 800 diagrams of English and French virological literature, including one derived from a famous drawing by Leonardo da Vinci...
DEFF Research Database (Denmark)
Duijm, Nijs Jan
2008-01-01
Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....
Introduction to Feynman diagrams
Bilenky, Samoil Mikhelevich
1974-01-01
Introduction to Feynman Diagrams provides Feynman diagram techniques and methods for calculating quantities measured experimentally. The book discusses topics Feynman diagrams intended for experimental physicists. Topics presented include methods for calculating the matrix elements (by perturbation theory) and the basic rules for constructing Feynman diagrams; techniques for calculating cross sections and polarizations; processes in which both leptons and hadrons take part; and the electromagnetic and weak form factors of nucleons. Experimental physicists and graduate students of physics will
DEFF Research Database (Denmark)
Duijm, Nijs Jan
2007-01-01
Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk...... analysis with operational safety management....
Directory of Open Access Journals (Sweden)
Susanna Bisogni
2018-01-01
Full Text Available The cosmological model is at present not tested between the redshift of the farthest observed supernovae (z ~ 1.4 and that of the Cosmic Microwave Background (z ~ 1,100. Here we introduce a new method to measure the cosmological parameters: we show that quasars can be used as “standard candles” by employing the non-linear relation between their intrinsic UV and X-ray emission as an absolute distance indicator. We built a sample of ~1,900 quasars with available UV and X-ray observations, and produced a Hubble Diagram up to z ~ 5. The analysis of the quasar Hubble Diagram, when used in combination with supernovae, provides robust constraints on the matter and energy content in the cosmos. The application of this method to forthcoming, larger quasar samples, will also provide tight constraints on the dark energy equation of state and its possible evolution with time.
Directory of Open Access Journals (Sweden)
Sergievskiy Maxim
2018-01-01
Full Text Available Most of object-oriented development technologies rely on the use of the universal modeling language UML; class diagrams play a very important role in the design process play, used to build a software system model. Modern CASE tools, which are the basic tools for object-oriented development, can’t be used to optimize UML diagrams. In this manuscript we will explain how, based on the use of design patterns and anti-patterns, class diagrams could be verified and optimized. Certain transformations can be carried out automatically; in other cases, potential inefficiencies will be indicated and recommendations given. This study also discusses additional CASE tools for validating and optimizing of UML class diagrams. For this purpose, a plugin has been developed that analyzes an XMI file containing a description of class diagrams.
Hockney, Roger
1987-01-01
Algorithmic phase diagrams are a neat and compact representation of the results of comparing the execution time of several algorithms for the solution of the same problem. As an example, the recent results are shown of Gannon and Van Rosendale on the solution of multiple tridiagonal systems of equations in the form of such diagrams. The act of preparing these diagrams has revealed an unexpectedly complex relationship between the best algorithm and the number and size of the tridiagonal systems, which was not evident from the algebraic formulae in the original paper. Even so, for a particular computer, one diagram suffices to predict the best algorithm for all problems that are likely to be encountered the prediction being read directly from the diagram without complex calculation.
Phase Diagrams of Strongly Interacting Theories
DEFF Research Database (Denmark)
Sannino, Francesco
2010-01-01
We summarize the phase diagrams of SU, SO and Sp gauge theories as function of the number of flavors, colors, and matter representation as well as the ones of phenomenologically relevant chiral gauge theories such as the Bars-Yankielowicz and the generalized Georgi-Glashow models. We finally report...
[Identification of meridian-acupoint diagrams and meridian diagrams].
Shen, Wei-hong
2008-08-01
In acu-moxibustion literature, there are two kinds of diagrams, meridian-acupoint diagrams and meridian diagrams. Because they are very similar in outline, and people now have seldom seen the typical ancient meridian diagrams, meridian-acupoint diagrams have been being incorrectly considered to be the meridian diagrams for a long time. It results in confusion in acu-moxibustion academia. The present paper stresses its importance in academic research and introduces some methods for identifying them correctly. The key points for identification of meridian-acupoint diagrams and meridian diagrams are: the legend of diagrams and the drawing style of the ancient charts. In addition, the author makes a detailed explanation about some acu-moxibustion charts which are easily confused. In order to distinguish meridian-acupoint diagrams and meridian diagrams correctly, he or she shoulnd understand the diagrams' intrinsic information as much as possible and make a comprehensive analysis about them.
Diagrams of natural deductions
Energy Technology Data Exchange (ETDEWEB)
Popov, S V
1982-01-01
The concept of natural deductions was investigated by the author in his analysis of the complexity of deductions in propositional computations (1975). Here some natural deduction systems are considered, and an analytical procedure proposed which results in a deduction diagram for each system. Each diagram takes the form of an orientated, charge graph, features of which can be used to establish the equivalence of classes of deductions. For each of the natural deduction systems considered, a system of equivalent transformation schemes is derived, which is complete with respect to the given definition of equivalence. 2 references.
Permsuwan, Unchalee; Chaiyakunapruk, Nathorn; Dilokthornsakul, Piyameth; Thavorn, Kednapa; Saokaew, Surasak
2016-06-01
Even though Insulin glargine (IGlar) has been available and used in other countries for more than a decade, it has not been adopted into Thai national formulary. This study aimed to evaluate the long-term cost effectiveness of IGlar versus neutral protamine Hagedorn (NPH) insulin in type 2 diabetes from the perspective of Thai Health Care System. A validated computer simulation model (the IMS CORE Diabetes Model) was used to estimate the long-term projection of costs and clinical outcomes. The model was populated with published characteristics of Thai patients with type 2 diabetes. Baseline risk factors were obtained from Thai cohort studies, while relative risk reduction was derived from a meta-analysis study conducted by the Canadian Agency for Drugs and Technology in Health. Only direct costs were taken into account. Costs of diabetes management and complications were obtained from hospital databases in Thailand. Both costs and outcomes were discounted at 3 % per annum and presented in US dollars in terms of 2014 dollar value. Incremental cost-effectiveness ratio (ICER) was calculated. One-way and probabilistic sensitivity analyses were also performed. IGlar is associated with a slight gain in quality-adjusted life years (0.488 QALYs), an additional life expectancy (0.677 life years), and an incremental cost of THB119,543 (US$3522.19) compared with NPH insulin. The ICERs were THB244,915/QALY (US$7216.12/QALY) and THB176,525/life-year gained (LYG) (US$5201.09/LYG). The ICER was sensitive to discount rates and IGlar cost. At the acceptable willingness to pay of THB160,000/QALY (US$4714.20/QALY), the probability that IGlar was cost effective was less than 20 %. Compared to treatment with NPH insulin, treatment with IGlar in type 2 diabetes patients who had uncontrolled blood glucose with oral anti-diabetic drugs did not represent good value for money at the acceptable threshold in Thailand.
Czech Academy of Sciences Publication Activity Database
Markl, Martin
2002-01-01
Roč. 69, - (2002), s. 161-180 ISSN 0009-725X. [Winter School "Geometry and Physics" /21./. Srní, 13.01.2001-20.01.2001] R&D Projects: GA ČR GA201/99/0675 Keywords : colored operad%cofibrant model%homotopy diagram Subject RIV: BA - General Mathematics
Rosengrant, David
2011-01-01
Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists. These representations include: pictures, free-body diagrams, energy bar charts, electrical circuits, and, more recently, computer simulations and…
Equational binary decision diagrams
J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)
2000-01-01
textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and
Lindenbergh, R.C.
2002-01-01
The classic Voronoi diagram of a configuration of distinct points in the plane associates to each point that part of the plane that is closer to the point than to any other point in the configuration. In this thesis we no longer require all points to be distinct. After the introduction in
DEFF Research Database (Denmark)
Øhrstrøm, Peter
2011-01-01
Some very good arguments can be given in favor of the Augustinean wisdom, according to which it is impossible to provide a satisfactory definition of the concept of time. However, even in the absence of a proper definition, it is possible to deal with conceptual problems regarding time. It can...... be done in terms of analogies and metaphors. In particular, it is attractive to make use of Peirce's diagrams by means of which various kinds of conceptual experimentation can be carried out. This paper investigates how Peircean diagrams can be used within the study of time. In particular, we discuss 1......) the topological properties of time, 2) the implicative structure in tense logic, 3) the notions of open future and branching time models, and finally 4) tenselogical alternatives to branching time models....
International Nuclear Information System (INIS)
McCauley, T.M.; Eskinazi, M.; Henson, L.L.
1989-01-01
This paper discusses the changes in electrical document requirements that occur when construction is complete and a generating station starts commercial operation. The needs of operations and maintenance (O and M) personnel are analyzed and contrasted with those of construction to illustrate areas in which the construction documents (drawings, diagrams, and databases) are difficult to use for work at an operating station. The paper discusses the O and M electrical documents that the Arizona Nuclear Power Project (ANPP) believes are most beneficial for the three operating units at Palo Verde; these are control wiring diagrams and an associated document cross-reference list. The benefits offered by these new, station O and M-oriented documents are weighted against the cost of their creation and their impact on drawing maintenance
Energy Technology Data Exchange (ETDEWEB)
Wilms, R Scott [Los Alamos National Laboratory; Carlson, Bryan [Los Alamos National Laboratory; Coons, James [Los Alamos National Laboratory; Kubic, William [Los Alamos National Laboratory
2008-01-01
This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.
Feynman diagram drawing made easy
International Nuclear Information System (INIS)
Baillargeon, M.
1997-01-01
We present a drawing package optimised for Feynman diagrams. These can be constructed interactively with a mouse-driven graphical interface or from a script file, more suitable to work with a diagram generator. It provides most features encountered in Feynman diagrams and allows to modify every part of a diagram after its creation. Special attention has been paid to obtain a high quality printout as easily as possible. This package is written in Tcl/Tk and in C. (orig.)
Ring diagrams and phase transitions
International Nuclear Information System (INIS)
Takahashi, K.
1986-01-01
Ring diagrams at finite temperatures carry most infrared-singular parts among Feynman diagrams. Their effect to effective potentials are in general so significant that one must incorporate them as well as 1-loop diagrams. The author expresses these circumstances in some examples of supercooled phase transitions
Automation of Feynman diagram evaluations
International Nuclear Information System (INIS)
Tentyukov, M.N.
1998-01-01
A C-program DIANA (DIagram ANAlyser) for the automation of Feynman diagram evaluations is presented. It consists of two parts: the analyzer of diagrams and the interpreter of a special text manipulating language. This language can be used to create a source code for analytical or numerical evaluations and to keep the control of the process in general
Condensed elementary particle matter
International Nuclear Information System (INIS)
Kajantie, K.
1996-01-01
Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)
Brandhuber, Andreas; Travaglini, Gabriele
2006-01-01
Over the past two years, the use of on-shell techniques has deepened our understanding of the S-matrix of gauge theories and led to the calculation of many new scattering amplitudes. In these notes we review a particular on-shell method developed recently, the quantum MHV diagrams, and discuss applications to one-loop amplitudes. Furthermore, we briefly discuss the application of D-dimensional generalised unitarity to the calculation of scattering amplitudes in non-supersymmetric Yang-Mills.
International Nuclear Information System (INIS)
Csaki, Csaba; Grossman, Yuval; Tanedo, Philip; Tsai, Yuhsin
2011-01-01
We present an analysis of the loop-induced magnetic dipole operator in the Randall-Sundrum model of a warped extra dimension with anarchic bulk fermions and an IR brane-localized Higgs. These operators are finite at one-loop order and we explicitly calculate the branching ratio for μ→eγ using the mixed position/momentum space formalism. The particular bound on the anarchic Yukawa and Kaluza-Klein (KK) scales can depend on the flavor structure of the anarchic matrices. It is possible for a generic model to either be ruled out or unaffected by these bounds without any fine-tuning. We quantify how these models realize this surprising behavior. We also review tree-level lepton flavor bounds in these models and show that these are on the verge of tension with the μ→eγ bounds from typical models with a 3 TeV Kaluza-Klein scale. Further, we illuminate the nature of the one-loop finiteness of these diagrams and show how to accurately determine the degree of divergence of a five-dimensional loop diagram using both the five-dimensional and KK formalism. This power counting can be obfuscated in the four-dimensional Kaluza-Klein formalism and we explicitly point out subtleties that ensure that the two formalisms agree. Finally, we remark on the existence of a perturbative regime in which these one-loop results give the dominant contribution.
Directory of Open Access Journals (Sweden)
Andrias Meisyal Yuwantoko
2017-03-01
Full Text Available Sebuah diagram urutan dibuat berdasarkan alur yang ada pada deskripsi kasus penggunaan. Alur tersebut dire- presentasikan dalam bentuk interaksi antara aktor dan sistem. Pemeriksaan rancangan diagram urutan perlu dilakukan untuk mengetahui ketidaksesuaian urutan alur kasus penggunaan dengan urutan pesan yang dikirimkan oleh objek-objek pada diagram urutan. Rancangan diagram yang sesuai merupakan kunci ketepatan (correctness implementasi perangkat lunak. Namun, pemeriksaan ketidaksesuaian masih dilakukan secara manual. Hal ini menjadi masalah apabila sebuah proyek perangkat lunak memiliki banyak rancangan diagram dan sumber daya manusia tidak mencukupi. Pemeriksaan membutuhkan waktu yang lama dan memiliki dampak pada waktu pengembangan perangkat lunak. Penelitian ini mengusulkan pembuatan kakas bantu untuk mendeteksi ketidaksesuaian diagram urutan dengan diagram kasus penggunaan. Ketidaksesuaian dilihat dari kemiripan semantik kalimat antara alur pada deskripsi kasus penggunaan dan triplet. Dari hasil pembuatan kakas bantu, kakas bantu yang dibuat dapat mendeteksi ketidaksesuaian diagram urutan dengan diagram kasus penggunaan. Kakas bantu ini diharapkan tidak hanya membantu pemeriksaan rancangan diagram akan tetapi mempercepat waktu pengembangan perangkat lunak.
International Nuclear Information System (INIS)
Mohan, A.; Soni, N.C.; Moorthy, V.K.
1979-01-01
Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)
Drawing Euler Diagrams with Circles
Stapleton, Gem; Zhang, Leishi; Howse, John; Rodgers, Peter
2010-01-01
Euler diagrams are a popular and intuitive visualization tool which are used in a wide variety of application areas, including biological and medical data analysis. As with other data visualization methods, such as graphs, bar charts, or pie charts, the automated generation of an Euler diagram from a suitable data set would be advantageous, removing the burden of manual data analysis and the subsequent task of drawing an appropriate diagram. Various methods have emerged that automatically dra...
Feynman diagrams without Feynman parameters
International Nuclear Information System (INIS)
Mendels, E.
1978-01-01
Dimensionally regularized Feynman diagrams are represented by means of products of k-functions. The infinite part of these diagrams is found very easily, also if they are overlapping, and the separation of the several kinds of divergences comes out quite naturally. Ward identities are proven in a transparent way. Series expansions in terms of the external momenta and their inner products are possible
Diagram Techniques in Group Theory
Stedman, Geoffrey E.
2009-09-01
Preface; 1. Elementary examples; 2. Angular momentum coupling diagram techniques; 3. Extension to compact simple phase groups; 4. Symmetric and unitary groups; 5. Lie groups and Lie algebras; 6. Polarisation dependence of multiphoton processes; 7. Quantum field theoretic diagram techniques for atomic systems; 8. Applications; Appendix; References; Indexes.
Contingency diagrams as teaching tools
Mattaini, Mark A.
1995-01-01
Contingency diagrams are particularly effective teaching tools, because they provide a means for students to view the complexities of contingency networks present in natural and laboratory settings while displaying the elementary processes that constitute those networks. This paper sketches recent developments in this visualization technology and illustrates approaches for using contingency diagrams in teaching.
Impact decision support diagrams
Boslough, Mark
2014-10-01
One way to frame the job of planetary defense is to “find the optimal approach for finding the optimal approach” to NEO mitigation. This requires a framework for defining in advance what should be done under various circumstances. The two-dimensional action matrix from the recent NRC report “Defending Planet Earth” can be generalized to a notional “Impact Decision Support Diagram” by extending it into a third dimension. The NRC action matrix incorporated two important axes: size and time-to-impact, but probability of impact is also critical (it is part of the definitions of both the Torino and Palermo scales). Uncertainty has been neglected, but is also crucial. It can be incorporated by subsuming it into the NEO size axis by redefining size to be three standard deviations greater than the best estimate, thereby providing a built-in conservative margin. The independent variable is time-to-impact, which is known with high precision. The other two axes are both quantitative assessments of uncertainty and are both time dependent. Thus, the diagram is entirely an expression of uncertainty. The true impact probability is either one or zero, and the true size does not change. The domain contains information about the current uncertainty, which changes with time (as opposed to reality, which does not change).
Genus Ranges of Chord Diagrams.
Burns, Jonathan; Jonoska, Nataša; Saito, Masahico
2015-04-01
A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.
Quest for the QCD phase diagram in extreme environments
Energy Technology Data Exchange (ETDEWEB)
Fukushima, Kenji, E-mail: fuku@rk.phys.keio.ac.jp [Keio University, Department of Physics (Japan)
2013-03-15
We review the state-of-the-art status of the research on the phase diagram of QCD matter out of quarks and gluons. Our discussions particularly include the extreme environments such as the high temperature, the high baryon density, and the strong magnetic field.
Para-equilibrium phase diagrams
International Nuclear Information System (INIS)
Pelton, Arthur D.; Koukkari, Pertti; Pajarre, Risto; Eriksson, Gunnar
2014-01-01
Highlights: • A rapidly cooled system may attain a state of para-equilibrium. • In this state rapidly diffusing elements reach equilibrium but others are immobile. • Application of the Phase Rule to para-equilibrium phase diagrams is discussed. • A general algorithm to calculate para-equilibrium phase diagrams is described. - Abstract: If an initially homogeneous system at high temperature is rapidly cooled, a temporary para-equilibrium state may result in which rapidly diffusing elements have reached equilibrium but more slowly diffusing elements have remained essentially immobile. The best known example occurs when homogeneous austenite is quenched. A para-equilibrium phase assemblage may be calculated thermodynamically by Gibbs free energy minimization under the constraint that the ratios of the slowly diffusing elements are the same in all phases. Several examples of calculated para-equilibrium phase diagram sections are presented and the application of the Phase Rule is discussed. Although the rules governing the geometry of these diagrams may appear at first to be somewhat different from those for full equilibrium phase diagrams, it is shown that in fact they obey exactly the same rules with the following provision. Since the molar ratios of non-diffusing elements are the same in all phases at para-equilibrium, these ratios act, as far as the geometry of the diagram is concerned, like “potential” variables (such as T, pressure or chemical potentials) rather than like “normal” composition variables which need not be the same in all phases. A general algorithm to calculate para-equilibrium phase diagrams is presented. In the limit, if a para-equilibrium calculation is performed under the constraint that no elements diffuse, then the resultant phase diagram shows the single phase with the minimum Gibbs free energy at any point on the diagram; such calculations are of interest in physical vapor deposition when deposition is so rapid that phase
Phase diagram of nuclear 'pasta' and its uncertainties in supernova cores
International Nuclear Information System (INIS)
Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu
2008-01-01
We examine the model dependence of the phase diagram of inhomogeneous nulcear matter in supernova cores using the quantum molecular dynamics (QMD). Inhomogeneous matter includes crystallized matter with nonspherical nuclei--''pasta'' phases--and the liquid-gas phase-separating nuclear matter. Major differences between the phase diagrams of the QMD models can be explained by the energy of pure neutron matter at low densities and the saturation density of asymmetric nuclear matter. We show the density dependence of the symmetry energy is also useful to understand uncertainties of the phase diagram. We point out that, for typical nuclear models, the mass fraction of the pasta phases in the later stage of the collapsing cores is higher than 10-20%
Wind Diagrams in Medieval Iceland
DEFF Research Database (Denmark)
Kedwards, Dale
2014-01-01
This article presents a study of the sole wind diagram that survives from medieval Iceland, preserved in the encyclopaedic miscellany in Copenhagen's Arnamagnæan Institute with the shelf mark AM 732b 4to (c. 1300-25). It examines the wind diagram and its accompanying text, an excerpt on the winds...... from Isidore of Seville's Etymologies. It also examines the perimeter of winds on two medieval Icelandic world maps, and the visual traditions from which they draw....
Phase diagrams of the elements
International Nuclear Information System (INIS)
Young, D.A.
1975-01-01
A summary of the pressure-temperature phase diagrams of the elements is presented, with graphs of the experimentally determined solid-solid phase boundaries and melting curves. Comments, including theoretical discussion, are provided for each diagram. The crystal structure of each solid phase is identified and discussed. This work is aimed at encouraging further experimental and theoretical research on phase transitions in the elements
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...
Phase transition to QGP matter : confined vs deconfined matter
Maire, Antonin
2015-01-01
Simplified phase diagram of the nuclear phase transition, from the regular hadronic matter to the QGP phase. The sketch is meant to describe the transition foreseen along the temperature axis, at low baryochemical potential, µB.
New detectors for powders diagrams
International Nuclear Information System (INIS)
Convert, P.
1975-01-01
During the last few years, all the classical neutron diffractometers for powders have used one or maybe a few counters. So, it takes a long time to obtain a diagram which causes many disadvantages: 1) very long experiments: one or two days (or flux on the sample about 10 6 n/cm 2 /a); 2) necessity of big samples: many cm 3 ; 3) necessity of having the whole diagram before changing anything in the experiment: magnetic field, temperature, quality of the sample; 4) necessity of having collimators of a few times ten minutes to obtain correct statistics in the diagram. Because of these disadvantages, several attempts have been made to speed up the experimental procedure such as using more counters, the detection of neutrons on a resistive wire, etc. In Grenoble, new position-sensitive detectors have been constructed using a digital technique
International Nuclear Information System (INIS)
Heras, Daniel de las; Schmidt, Matthias
2015-01-01
We give a full account of a recently proposed theory that explicitly relates the bulk phase diagram of a binary colloidal mixture to its phase stacking phenomenology under gravity (de las Heras and Schmidt 2013 Soft Matter 9 8636). As we demonstrate, the full set of possible phase stacking sequences in sedimentation-diffusion equilibrium originates from straight lines (sedimentation paths) in the chemical potential representation of the bulk phase diagram. From the analysis of various standard topologies of bulk phase diagrams, we conclude that the corresponding sedimentation stacking diagrams can be very rich, even more so when finite sample height is taken into account. We apply the theory to obtain the stacking diagram of a mixture of nonadsorbing polymers and colloids. We also present a catalog of generic phase diagrams in the plane of chemical potentials in order to facilitate the practical application of our concept, which also generalizes to multi-component mixtures. (paper)
Multi-currency Influence Diagrams
DEFF Research Database (Denmark)
Nielsen, Søren Holbech; Nielsen, Thomas Dyhre; Jensen, Finn V.
2007-01-01
When using the influence diagrams framework for solving a decision problem with several different quantitative utilities, the traditional approach has been to convert the utilities into one common currency. This conversion is carried out using a tacit transformation, under the assumption...... that the converted problem is equivalent to the original one. In this paper we present an extension of the influence diagram framework. The extension allows for these decision problems to be modelled in their original form. We present an algorithm that, given a linear conversion function between the currencies...
Diagrams for symmetric product orbifolds
International Nuclear Information System (INIS)
Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.
2009-01-01
We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.
International Nuclear Information System (INIS)
Smondyrev, M.A.
1985-01-01
The perturbation theory for the polaron energy is systematically treated on the diagrammatic basis. Feynman diagrams being constructed allow to calculate the polaron energy up to the third order in powers of the coupling constant. Similar calculations are performed for the average number of virtual phonons
Algorithmic approach to diagram techniques
International Nuclear Information System (INIS)
Ponticopoulos, L.
1980-10-01
An algorithmic approach to diagram techniques of elementary particles is proposed. The definition and axiomatics of the theory of algorithms are presented, followed by the list of instructions of an algorithm formalizing the construction of graphs and the assignment of mathematical objects to them. (T.A.)
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...
The Butterfly Diagram Internal Structure
International Nuclear Information System (INIS)
Ternullo, Maurizio
2013-01-01
A time-latitude diagram, where the spotgroup area is taken into account, is presented for cycles 12 through 23. The results show that the spotted area is concentrated in few, small portions ( k nots ) of the Butterfly Diagram (BD). The BD may be described as a cluster of knots. Knots are distributed in the butterfly wings in a seemingly randomly way. A knot may appear at either lower or higher latitudes than previous ones, in spite of the prevalent tendency to appear at lower and lower latitudes. Accordingly, the spotted area centroid, far from continuously drifting equatorward, drifts poleward or remains stationary in any hemisphere for significant fractions (≈ 1/3) of the cycle total duration. In a relevant number of semicycles, knots seem to form two roughly parallel, oblique c hains , separated by an underspotted band. This picture suggests that two (or more) ''activity streams'' approach the equator at a rate higher than the spot zone as a whole.
Causal diagrams in systems epidemiology
Directory of Open Access Journals (Sweden)
Joffe Michael
2012-03-01
Full Text Available Abstract Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s. Transmitted causes ("causes of causes" tend not to be systematically analysed. The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties. The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets. Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback.
Causal diagrams in systems epidemiology.
Joffe, Michael; Gambhir, Manoj; Chadeau-Hyam, Marc; Vineis, Paolo
2012-03-19
Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s). Transmitted causes ("causes of causes") tend not to be systematically analysed.The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties.The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets.Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback.
Scheil-Gulliver Constituent Diagrams
Pelton, Arthur D.; Eriksson, Gunnar; Bale, Christopher W.
2017-06-01
During solidification of alloys, conditions often approach those of Scheil-Gulliver cooling in which it is assumed that solid phases, once precipitated, remain unchanged. That is, they no longer react with the liquid or with each other. In the case of equilibrium solidification, equilibrium phase diagrams provide a valuable means of visualizing the effects of composition changes upon the final microstructure. In the present study, we propose for the first time the concept of Scheil-Gulliver constituent diagrams which play the same role as that in the case of Scheil-Gulliver cooling. It is shown how these diagrams can be calculated and plotted by the currently available thermodynamic database computing systems that combine Gibbs energy minimization software with large databases of optimized thermodynamic properties of solutions and compounds. Examples calculated using the FactSage system are presented for the Al-Li and Al-Mg-Zn systems, and for the Au-Bi-Sb-Pb system and its binary and ternary subsystems.
Using Affinity Diagrams to Evaluate Interactive Prototypes
DEFF Research Database (Denmark)
Lucero, Andrés
2015-01-01
our particular use of affinity diagramming in prototype evaluations. We reflect on a decade’s experience using affinity diagramming across a number of projects, both in industry and academia. Our affinity diagramming process in interaction design has been tailored and consists of four stages: creating...
Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams
Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde
2013-01-01
This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…
Diagram Size vs. Layout Flaws: Understanding Quality Factors of UML Diagrams
DEFF Research Database (Denmark)
Störrle, Harald
2016-01-01
, though, is our third goal of extending our analysis aspects of diagram quality. Method: We improve our definition of diagram size and add a (provisional) definition of diagram quality as the number of topographic layout flaws. We apply these metrics on 60 diagrams of the five most commonly used types...... of UML diagram. We carefully analyze the structure of our diagram samples to ensure representativeness. We correlate diagram size and layout quality with modeler performance data obtained in previous experiments. The data set is the largest of its kind (n-156). Results: We replicate earlier findings......, and extend them to two new diagram types. We provide an improved definition of diagram size, and provide a definition of topographic layout quality, which is one more step towards a comprehensive definition of diagram quality as such. Both metrics are shown to be objectively applicable. We quantify...
Voronoi Diagrams Without Bounding Boxes
Sang, E. T. K.
2015-10-01
We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010) and Nerbonne et al (2011).
Multi-currency Influence Diagrams
DEFF Research Database (Denmark)
Nielsen, Søren Holbech; Nielsen, Thomas Dyhre; Jensen, Finn Verner
2004-01-01
Solution of decision problems, which involve utilities of several currencies, have traditionally required the problems to be converted into decision problems involving utilities of only one currency. This conversion are carried out using a tacit transformation, under the assumption...... that the converted problem is equivalent to the original one. In this paper we present an extension of the Influence Diagram framework, which allows for these decision problems to be modelled in their original form. We present an algorithm that, given a conversion function between the currencies, discovers...
Phase diagrams for surface alloys
DEFF Research Database (Denmark)
Christensen, Asbjørn; Ruban, Andrei; Stoltze, Per
1997-01-01
We discuss surface alloy phases and their stability based on surface phase diagrams constructed from the surface energy as a function of the surface composition. We show that in the simplest cases of pseudomorphic overlayers there are four generic classes of systems, characterized by the sign...... is based on density-functional calculations using the coherent-potential approximation and on effective-medium theory. We give self-consistent density-functional results for the segregation energy and surface mixing energy for all combinations of the transition and noble metals. Finally we discuss...
Lattice investigations of the QCD phase diagram
International Nuclear Information System (INIS)
Guenther, Jana
2016-01-01
To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.
Lattice investigations of the QCD phase diagram
Energy Technology Data Exchange (ETDEWEB)
Guenther, Jana
2016-12-15
To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.
Diagrams benefit symbolic problem-solving.
Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R
2017-06-01
The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.
Disconnected Diagrams in Lattice QCD
Gambhir, Arjun Singh
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called "disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
Disconnected Diagrams in Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)
2017-08-01
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
Energy Technology Data Exchange (ETDEWEB)
Herrmann, Enrico [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)
2016-11-22
We study on-shell diagrams for gravity theories with any number of supersymmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only dlog-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in http://dx.doi.org/10.1007/JHEP06(2015)202.
Phase diagram of ammonium nitrate
International Nuclear Information System (INIS)
Dunuwille, Mihindra; Yoo, Choong-Shik
2013-01-01
Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N 2 , N 2 O, and H 2 O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV ′ transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C
VORONOI DIAGRAMS WITHOUT BOUNDING BOXES
Directory of Open Access Journals (Sweden)
E. T. K. Sang
2015-10-01
Full Text Available We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010 and Nerbonne et al (2011.
Anatomy of geodesic Witten diagrams
Energy Technology Data Exchange (ETDEWEB)
Chen, Heng-Yu; Kuo, En-Jui [Department of Physics and Center for Theoretical Sciences, National Taiwan University,Taipei 10617, Taiwan (China); Kyono, Hideki [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)
2017-05-12
We revisit the so-called “Geodesic Witten Diagrams” (GWDs) https://www.doi.org/10.1007/JHEP01(2016)146, proposed to be the holographic dual configuration of scalar conformal partial waves, from the perspectives of CFT operator product expansions. To this end, we explicitly consider three point GWDs which are natural building blocks of all possible four point GWDs, discuss their gluing procedure through integration over spectral parameter, and this leads us to a direct identification with the integral representation of CFT conformal partial waves. As a main application of this general construction, we consider the holographic dual of the conformal partial waves for external primary operators with spins. Moreover, we consider the closely related “split representation” for the bulk to bulk spinning propagator, to demonstrate how ordinary scalar Witten diagram with arbitrary spin exchange, can be systematically decomposed into scalar GWDs. We also discuss how to generalize to spinning cases.
Stereo 3D spatial phase diagrams
Energy Technology Data Exchange (ETDEWEB)
Kang, Jinwu, E-mail: kangjw@tsinghua.edu.cn; Liu, Baicheng, E-mail: liubc@tsinghua.edu.cn
2016-07-15
Phase diagrams serve as the fundamental guidance in materials science and engineering. Binary P-T-X (pressure–temperature–composition) and multi-component phase diagrams are of complex spatial geometry, which brings difficulty for understanding. The authors constructed 3D stereo binary P-T-X, typical ternary and some quaternary phase diagrams. A phase diagram construction algorithm based on the calculated phase reaction data in PandaT was developed. And the 3D stereo phase diagram of Al-Cu-Mg ternary system is presented. These phase diagrams can be illustrated by wireframe, surface, solid or their mixture, isotherms and isopleths can be generated. All of these can be displayed by the three typical display ways: electronic shutter, polarization and anaglyph (for example red-cyan glasses). Especially, they can be printed out with 3D stereo effect on paper, and watched by the aid of anaglyph glasses, which makes 3D stereo book of phase diagrams come to reality. Compared with the traditional illustration way, the front of phase diagrams protrude from the screen and the back stretches far behind of the screen under 3D stereo display, the spatial structure can be clearly and immediately perceived. These 3D stereo phase diagrams are useful in teaching and research. - Highlights: • Stereo 3D phase diagram database was constructed, including binary P-T-X, ternary, some quaternary and real ternary systems. • The phase diagrams can be watched by active shutter or polarized or anaglyph glasses. • The print phase diagrams retains 3D stereo effect which can be achieved by the aid of anaglyph glasses.
Selected topics on the nonrelativistic diagram technique
International Nuclear Information System (INIS)
Blokhintsev, L.D.; Narodetskij, I.M.
1983-01-01
The construction of the diagrams describing various processes in the four-particle systems is considered. It is shown that these diagrams, in particular the diagrams corresponding to the simple mechanisms often used in nuclear and atomic reaction theory, are readily obtained from the Faddeev-Yakubovsky equations. The covariant four-dimensional formalism of nonrelativistic Feynman graphs and its connection to the three-dimensional graph technique are briefly discussed
Stage line diagram: An age-conditional reference diagram for tracking development
Buuren, S. van; Ooms, J.C.L.
2009-01-01
This paper presents a method for calculating stage line diagrams, a novel type of reference diagram useful for tracking developmental processes over time. Potential fields of applications include: dentistry (tooth eruption), oncology (tumor grading, cancer staging), virology (HIV infection and
Stage line diagram: an age-conditional reference diagram for tracking development.
Van Buuren, S.; Ooms, J.C.L.
2009-01-01
This paper presents a method for calculating stage line diagrams, a novel type of reference diagram useful for tracking developmental processes over time. Potential fields of applications include: dentistry (tooth eruption), oncology (tumor grading, cancer staging), virology (HIV infection and
Electrodynamic metaphors: communicating particle physics with Feynman diagrams
Directory of Open Access Journals (Sweden)
Pietroni Massimo
2002-03-01
Full Text Available The aim of this project is to communicate the basic laws of particle physics with Feynman diagrams - visual tools which represent elementary particle processes. They were originally developed as a code to be used by physicists and are still used today for calculations and elaborations of theoretical nature. The technical and mathematical rules of Feynman diagrams are obviously the exclusive concern of physicists, but on a pictorial level they can help to popularize many concepts, ranging from matter and the antimatter; the creation, destruction and transformation of particles; the role of ‘virtual’ particles in interactions; the conservation laws, symmetries, etc. Unlike the metaphors often used to describe the microcosm, these graphic representations provide an unequivocal translation of the physical content of the underlying quantum theory. As such they are perfect metaphors, not misleading constructions. A brief introduction on Feynman diagrams will be followed by the practical realization of this project, which will be carried out with the help of an experiment based on three-dimensional manipulable objects. The Feynman rules are expressed in terms of mechanical constraints on the possible conjuctions among the various elements of the experiment. The final part of the project will present the results of this experiment, which has been conducted among high-school students.
CERPHASE: Computer-generated phase diagrams
International Nuclear Information System (INIS)
Ruys, A.J.; Sorrell, C.C.; Scott, F.H.
1990-01-01
CERPHASE is a collection of computer programs written in the programming language basic and developed for the purpose of teaching the principles of phase diagram generation from the ideal solution model of thermodynamics. Two approaches are used in the generation of the phase diagrams: freezing point depression and minimization of the free energy of mixing. Binary and ternary phase diagrams can be generated as can diagrams containing the ideal solution parameters used to generate the actual phase diagrams. Since the diagrams generated utilize the ideal solution model, data input required from the operator is minimal: only the heat of fusion and melting point of each component. CERPHASE is menu-driven and user-friendly, containing simple instructions in the form of screen prompts as well as a HELP file to guide the operator. A second purpose of CERPHASE is in the prediction of phase diagrams in systems for which no experimentally determined phase diagrams are available, enabling the estimation of suitable firing or sintering temperatures for otherwise unknown systems. Since CERPHASE utilizes ideal solution theory, there are certain limitations imposed on the types of systems that can be predicted reliably. 6 refs., 13 refs
How design guides learning from matrix diagrams
van der Meij, Jan; Amelsvoort, Marije; Anjewierden, Anjo
2017-01-01
Compared to text, diagrams are superior in their ability to structure and summarize information and to show relations between concepts and ideas. Perceptual cues, like arrows, are expected to improve the retention of diagrams by guiding the learner towards important elements or showing a preferred
Diagram of state of stiff amphiphilic macromolecules
Markov, Vladimir A.; Vasilevskaya, Valentina V.; Khalatur, Pavel G.; ten Brinke, Gerrit; Khokhlov, Alexei R.
2007-01-01
We studied coil-globule transitions in stiff-chain amphiphilic macromolecules via computer modeling and constructed phase diagrams for such molecules in terms of solvent quality and persistence length. We showed that the shape of the phase diagram essentially depends on the macromolecule degree of
Compact flow diagrams for state sequences
Buchin, Kevin; Buchin, Maike; Gudmundsson, Joachim; Horton, Michael; Sijben, Stef
2017-01-01
We introduce the concept of using a flow diagram to compactly represent the segmentation of a large number of state sequences according to a set of criteria. We argue that this flow diagram representation gives an intuitive summary that allows the user to detect patterns within the segmentations. In
Compact flow diagrams for state sequences
Buchin, K.A.; Buchin, M.E.; Gudmundsson, J.; Horton, M.J.; Sijben, S.
2016-01-01
We introduce the concept of compactly representing a large number of state sequences, e.g., sequences of activities, as a flow diagram. We argue that the flow diagram representation gives an intuitive summary that allows the user to detect patterns among large sets of state sequences. Simplified,
How Design Guides Learning from Matrix Diagrams
van der Meij, Jan; van Amelsvoort, Marije; Anjewierden, Anjo
2017-01-01
Compared to text, diagrams are superior in their ability to structure and summarize information and to show relations between concepts and ideas. Perceptual cues, like arrows, are expected to improve the retention of diagrams by guiding the learner towards important elements or showing a preferred reading sequence. In our experiment, we analyzed…
Phase diagram of ammonium nitrate
Energy Technology Data Exchange (ETDEWEB)
Dunuwille, Mihindra; Yoo, Choong-Shik, E-mail: csyoo@wsu.edu [Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, Washington 99164 (United States)
2013-12-07
Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.
De Forcrand, Philippe; Forcrand, Philippe de; Philipsen, Owe
2006-01-01
We summarize our recent results on the phase diagram of QCD with N_f=2+1 quark flavors, as a function of temperature T and quark chemical potential \\mu. Using staggered fermions, lattices with temporal extent N_t=4, and the exact RHMC algorithm, we first determine the critical line in the quark mass plane (m_{u,d},m_s) where the finite temperature transition at \\mu=0 is second order. We confirm that the physical point lies on the crossover side of this line. Our data are consistent with a tricritical point at (m_{u,d},m_s) = (0,\\sim 500) MeV. Then, using an imaginary chemical potential, we determine in which direction this second-order line moves as the chemical potential is turned on. Contrary to standard expectations, we find that the region of first-order transitions shrinks in the presence of a chemical potential, which is inconsistent with the presence of a QCD critical point at small chemical potential. The emphasis is put on clarifying the translation of our results from lattice to physical units, and ...
Operations space diagram for ECRH and ECCD
International Nuclear Information System (INIS)
Bindslev, Henrik
2004-01-01
A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates, the parameter range in which it is possible to achieve a given task (e.g. O-mode current drive for stabilizing a neoclassical tearing mode) appears as a region. With also the Greenwald density limit shown, this diagram condenses the information on operational possibilities, facilitating the overview required at the design phase. At the operations phase it may also prove useful in setting up experimental scenarios by showing operational possibilities, avoiding the need for survey type ray-tracing at the initial planning stages. The diagram may also serve the purpose of communicating operational possibilities to non-experts. JET and ITER like plasmas are used, but the method is generic. (author)
Operations space diagram for ECRH and ECCD
DEFF Research Database (Denmark)
Bindslev, H.
2004-01-01
at the design phase. At the operations phase it may also prove useful in setting up experimental scenarios by showing operational possibilities, avoiding the need for survey type ray-tracing at the initial planning stages. The diagram may also serve the purpose of communicating operational possibilities to non......A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates......, the parameter range in which it is possible to achieve a given task (e.g. O-mode current drive for stabilizing a neoclassical tearing mode) appears as a region. With also the Greenwald density limit shown, this diagram condenses the information on operational possibilities, facilitating the overview required...
Matter and Interactions: a particle physics perspective
Organtini, Giovanni
2011-01-01
In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics ...
Near threshold expansion of Feynman diagrams
International Nuclear Information System (INIS)
Mendels, E.
2005-01-01
The near threshold expansion of Feynman diagrams is derived from their configuration space representation, by performing all x integrations. The general scalar Feynman diagram is considered, with an arbitrary number of external momenta, an arbitrary number of internal lines and an arbitrary number of loops, in n dimensions and all masses may be different. The expansions are considered both below and above threshold. Rules, giving real and imaginary part, are derived. Unitarity of a sunset diagram with I internal lines is checked in a direct way by showing that its imaginary part is equal to the phase space integral of I particles
Between Analogue and Digital Diagrams
Directory of Open Access Journals (Sweden)
Zoltan Bun
2012-10-01
Full Text Available This essay is about the interstitial. About how the diagram, as a method of design, has lead fromthe analogue deconstruction of the eighties to the digital processes of the turn of the millennium.Specifically, the main topic of the text is the interpretation and the critique of folding (as a diagramin the beginning of the nineties. It is necessary then to unfold its relationship with immediatelypreceding and following architectural trends, that is to say we have to look both backwards andforwards by about a decade. The question is the context of folding, the exchange of the analogueworld for the digital. To understand the process it is easier to investigate from the fields of artand culture, rather than from the intentionally perplicated1 thoughts of Gilles Deleuze. Both fieldsare relevant here because they can similarly be used as the yardstick against which the era itselfit measured. The cultural scene of the eighties and nineties, including performing arts, movies,literature and philosophy, is a wide milieu of architecture. Architecture responds parallel to itsera; it reacts to it, and changes with it and within it. Architecture is a medium, it has always beena medium, yet the relations are transformed. That’s not to say that technical progress, for exampleusing CAD-software and CNC-s, has led to the digital thinking of certain movements ofarchitecture, (it is at most an indirect tool. But the ‘up-to-dateness’ of the discipline, however,a kind of non-servile reading of an ‘applied culture’ or ‘used philosophy’2 could be the key.(We might recall here, parenthetically, the fortunes of the artistic in contemporary mass society.The proliferation of museums, the magnification of the figure of the artist, the existence of amassive consumption of printed and televised artistic images, the widespread appetite for informationabout the arts, all reflect, of course, an increasingly leisured society, but also relateprecisely to the fact
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chiral thermodynamics of nuclear matter
International Nuclear Information System (INIS)
Fiorilla, Salvatore
2012-01-01
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Czech Academy of Sciences Publication Activity Database
Kuchin, A. G.; Prokhnenko, O.; Arnold, Zdeněk; Kamarád, Jiří; Ritter, C.; Isnard, O.; Ivasechko, V.; Drulis, H.; Teplykh, A. E.; Khrabrov, V. I.; Medvedeva, I. V.; Lapina, T.P.
2007-01-01
Roč. 71, č. 11 (2007), s. 1615-1616 ISSN 1062-8738 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetic phase diagram * hydrides * neutron diffraction * pressure effect Subject RIV: BM - Solid Matter Physics ; Magnetism
Voronoi diagram and microstructure of weldment
Energy Technology Data Exchange (ETDEWEB)
Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of)
2015-01-15
Voronoi diagram, one of the well-known space decomposition algorithms has been applied to express the microstructure of a weldment for the first time due to the superficial analogy between a Voronoi cell and a metal's grain. The area of the Voronoi cells can be controlled by location and the number of the seed points. This can be correlated to the grain size in the microstructure and the number of nuclei formed. The feasibility of representing coarse and fine grain structures were tested through Voronoi diagrams and it is applied to expression of cross-sectional bead shape of a typical laser welding. As result, it successfully described coarsened grain size of heat affected zone and columnar crystals in fusion zone. Although Voronoi diagram showed potential as a microstructure prediction tool through this feasible trial but direct correlation control variable of Voronoi diagram to solidification process parameter is still remained as further works.
Covariant diagrams for one-loop matching
International Nuclear Information System (INIS)
Zhang, Zhengkang
2016-10-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
A novel decision diagrams extension method
International Nuclear Information System (INIS)
Li, Shumin; Si, Shubin; Dui, Hongyan; Cai, Zhiqiang; Sun, Shudong
2014-01-01
Binary decision diagram (BDD) is a graph-based representation of Boolean functions. It is a directed acyclic graph (DAG) based on Shannon's decomposition. Multi-state multi-valued decision diagram (MMDD) is a natural extension of BDD for the symbolic representation and manipulation of the multi-valued logic functions. This paper proposes a decision diagram extension method based on original BDD/MMDD while the scale of a reliability system is extended. Following a discussion of decomposition and physical meaning of BDD and MMDD, the modeling method of BDD/MMDD based on original BDD/MMDD is introduced. Three case studies are implemented to demonstrate the presented methods. Compared with traditional BDD and MMDD generation methods, the decision diagrams extension method is more computationally efficient as shown through the running time
Covariant diagrams for one-loop matching
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhengkang [Michigan Center for Theoretical Physics (MCTP), University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Deutsches Elektronen-Synchrotron (DESY),Notkestraße 85, 22607 Hamburg (Germany)
2017-05-30
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariant diagrams for one-loop matching
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-10-15
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariant diagrams for one-loop matching
International Nuclear Information System (INIS)
Zhang, Zhengkang
2017-01-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Compatible growth models and stand density diagrams
International Nuclear Information System (INIS)
Smith, N.J.; Brand, D.G.
1988-01-01
This paper discusses a stand average growth model based on the self-thinning rule developed and used to generate stand density diagrams. Procedures involved in testing are described and results are included
Lattice and Phase Diagram in QCD
International Nuclear Information System (INIS)
Lombardo, Maria Paola
2008-01-01
Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.
Finding and Accessing Diagrams in Biomedical Publications
Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael
2012-01-01
Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar...
Ferroelectric Phase Diagram of PVDF:PMMA
Li, Mengyuan; Stingelin, Natalie; Michels, Jasper J.; Spijkman, Mark-Jan; Asadi, Kamal; Feldman, Kirill; Blom, Paul W. M.; de Leeuw, Dago M.
2012-01-01
We have investigated the ferroelectric phase diagram of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA). The binary nonequilibrium temperature composition diagram was determined and melting of alpha- and beta-phase PVDF was identified. Ferroelectric beta-PVDF:PMMA blend films were made by melting, ice quenching, and subsequent annealing above the glass transition temperature of PMMA, close to the melting temperature of PVDF. Addition of PMMA suppresses the crystallizatio...
CERN. Geneva
2013-01-01
For decades the central theoretical tool for computing scattering amplitudes has been the Feynman diagram. However, Feynman diagrams are just too slow, even on fast computers, to be able to go beyond the leading order in QCD, for complicated events with many jets of hadrons in the final state. Such events are produced copiously at the LHC, and constitute formidable backgrounds to many searches for new physics. Over the past few years, alternative methods that go beyond ...
The application of diagrams in architectural design
Directory of Open Access Journals (Sweden)
Dulić Olivera
2014-01-01
Full Text Available Diagrams in architecture represent the visualization of the thinking process, or selective abstraction of concepts or ideas translated into the form of drawings. In addition, they provide insight into the way of thinking about and in architecture, thus creating a balance between the visual and the conceptual. The subject of research presented in this paper are diagrams as a specific kind of architectural representation, and possibilities and importance of their application in the design process. Diagrams are almost old as architecture itself, and they are an element of some of the most important studies of architecture during all periods of history - which results in a large number of different definitions of diagrams, but also very different conceptualizations of their features, functions and applications. The diagrams become part of contemporary architectural discourse during the eighties and nineties of the twentieth century, especially through the work of architects like Bernard Tschumi, Peter Eisenman, Rem Koolhaas, SANAA and others. The use of diagrams in the design process allows unification of some of the essential aspects of the profession: architectural representation and design process, as well as the question of the concept of architectural and urban design at a time of rapid changes at all levels of contemporary society. The aim of the research is the analysis of the diagram as a specific medium for processing large amounts of information that the architect should consider and incorporate into the architectural work. On that basis, it is assumed that an architectural diagram allows the creator the identification and analysis of specific elements or ideas of physical form, thereby constantly maintaining concept of the integrity of the architectural work.
Atomic energy levels and Grotrian diagrams
Bashkin, Stanley
1975-01-01
Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.
An Introduction to Binary Decision Diagrams
DEFF Research Database (Denmark)
Andersen, Henrik Reif
1996-01-01
This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996.......This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996....
Gluing Ladder Feynman Diagrams into Fishnets
International Nuclear Information System (INIS)
Basso, Benjamin; Dixon, Lance J.; Stanford University, CA; University of California, Santa Barbara, CA
2017-01-01
We use integrability at weak coupling to compute fishnet diagrams for four-point correlation functions in planar Φ "4 theory. Our results are always multilinear combinations of ladder integrals, which are in turn built out of classical polylogarithms. The Steinmann relations provide a powerful constraint on such linear combinations, which leads to a natural conjecture for any fishnet diagram as the determinant of a matrix of ladder integrals.
Random Young diagrams in a Rectangular Box
DEFF Research Database (Denmark)
Beltoft, Dan; Boutillier, Cédric; Enriquez, Nathanaël
We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape.......We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape....
Reading fitness landscape diagrams through HSAB concepts
Energy Technology Data Exchange (ETDEWEB)
Vigneresse, Jean-Louis, E-mail: jean-louis.vigneresse@univ-lorraine.fr
2014-10-31
Highlights: • Qualitative information from HSAB descriptors. • 2D–3D diagrams using chemical descriptors (χ, η, ω, α) and principles (MHP, mEP, mPP). • Estimate of the energy exchange during reaction paths. • Examples from complex systems (geochemistry). - Abstract: Fitness landscapes are conceived as range of mountains, with local peaks and valleys. In terms of potential, such topographic variations indicate places of local instability or stability. The chemical potential, or electronegativity, its value changed of sign, carries similar information. In addition to chemical descriptors defined through hard-soft acid-base (HSAB) concepts and computed through density functional theory (DFT), the principles that rule chemical reactions allow the design of such landscape diagrams. The simplest diagram uses electrophilicity and hardness as coordinates. It allows examining the influence of maximum hardness or minimum electrophilicity principles. A third dimension is introduced within such a diagram by mapping the topography of electronegativity, polarizability or charge exchange. Introducing charge exchange during chemical reactions, or mapping a third parameter (f.i. polarizability) reinforces the information carried by a simple binary diagram. Examples of such diagrams are provided, using data from Earth Sciences, simple oxides or ligands.
The amplituhedron from momentum twistor diagrams
International Nuclear Information System (INIS)
Bai, Yuntao; He, Song
2015-01-01
We propose a new diagrammatic formulation of the all-loop scattering amplitudes/Wilson loops in planar N=4 SYM, dubbed the “momentum-twistor diagrams”. These are on-shell-diagrams obtained by gluing trivalent black and white vertices in momentum twistor space, which, in the reduced diagram case, are known to be related to diagrams in the original twistor space. The new diagrams are manifestly Yangian invariant, and they naturally represent factorization and forward-limit contributions in the all-loop BCFW recursion relations in momentum twistor space, in a fashion that is completely different from those in momentum space. We show how to construct and evaluate momentum-twistor diagrams, and how to use them to obtain tree-level amplitudes and loop-level integrands; in particular the latter involve isolated bubble-structures for loop variables arising from forward limits, or the entangled removal of particles. From each diagram, the generalized “boundary measurement” directly gives the C, D matrices, thus a cell in the amplituhedron associated with the amplitude, and we expect that our diagrammatic representations of the amplitude provide triangulations of the amplituhedron. To demonstrate the computational power of the formalism, we give explicit results for general two-loop integrands, and the cells of the amplituhedron for two-loop MHV amplitudes.
Asymptotic laws for random knot diagrams
Chapman, Harrison
2017-06-01
We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and pulling them uniformly from among sets of a given number of vertices n, as first established in recent work with Cantarella and Mastin. The knot diagram model is an exciting new model which captures both the random geometry of space curve models of knotting as well as the ease of computing invariants from diagrams. We prove that unknot diagrams are asymptotically exponentially rare, an analogue of Sumners and Whittington’s landmark result for self-avoiding polygons. Our proof uses the same key idea: we first show that knot diagrams obey a pattern theorem, which describes their fractal structure. We examine how quickly this behavior occurs in practice. As a consequence, almost all diagrams are asymmetric, simplifying sampling from this model. We conclude with experimental data on knotting in this model. This model of random knotting is similar to those studied by Diao et al, and Dunfield et al.
Directory of Open Access Journals (Sweden)
Laszlo A. Marosi
2013-01-01
Full Text Available We present a new redshift (RS versus photon travel time ( test including 171 supernovae RS data points. We extended the Hubble diagram to a range of z = 0,0141–8.1 in the hope that at high RSs, the fitting of the calculated RS/ diagrams to the observed RS data would, as predicted by different cosmological models, set constraints on alternative cosmological models. The Lambda cold dark matter (ΛCDM, the static universe model, and the case for a slowly expanding flat universe (SEU are considered. We show that on the basis of the Hubble diagram test, the static and the slowly expanding models are favored.
Regularization dependence on phase diagram in Nambu–Jona-Lasinio model
International Nuclear Information System (INIS)
Kohyama, H.; Kimura, D.; Inagaki, T.
2015-01-01
We study the regularization dependence on meson properties and the phase diagram of quark matter by using the two flavor Nambu–Jona-Lasinio model. The model also has the parameter dependence in each regularization, so we explicitly give the model parameters for some sets of the input observables, then investigate its effect on the phase diagram. We find that the location or the existence of the critical end point highly depends on the regularization methods and the model parameters. Then we think that regularization and parameters are carefully considered when one investigates the QCD critical end point in the effective model studies
From MIPS to Vicsek: A comprehensive phase diagram for self-propelled rods
Shi, Xiaqing
Self-propelled rods interacting by volume exclusion is one of the simplest active matter systems. Despite years of effort, no comprehensive picture of their phase diagram is available. Furthermore, results on explicit rods are so far largely disconnected from those obtained on the relatively better understood cases of motility induced phase separation (MIPS) of (usually) isotropic active particles, and from our current knowledge of Vicsek-style aligning point particles. In this talk, I will present a complete phase diagram of a generic model of self-propelled rods and show how it is connected to both MIPS and Vicsek worlds.
The Semiotic Structure of Geometry Diagrams: How Textbook Diagrams Convey Meaning
Dimmel, Justin K.; Herbst, Patricio G.
2015-01-01
Geometry diagrams use the visual features of specific drawn objects to convey meaning about generic mathematical entities. We examine the semiotic structure of these visual features in two parts. One, we conduct a semiotic inquiry to conceptualize geometry diagrams as mathematical texts that comprise choices from different semiotic systems. Two,…
Phase diagram of the mean field model of simplicial gravity
International Nuclear Information System (INIS)
Bialas, P.; Burda, Z.; Johnston, D.
1999-01-01
We discuss the phase diagram of the balls in boxes model, with a varying number of boxes. The model can be regarded as a mean-field model of simplicial gravity. We analyse in detail the case of weights of the form p(q) = q -β , which correspond to the measure term introduced in the simplicial quantum gravity simulations. The system has two phases: elongated (fluid) and crumpled. For β ε (2, ∞) the transition between these two phases is first-order, while for β ε (1, 2) it is continuous. The transition becomes softer when β approaches unity and eventually disappears at β = 1. We then generalise the discussion to an arbitrary set of weights. Finally, we show that if one introduces an additional kinematic bound on the average density of balls per box then a new condensed phase appears in the phase diagram. It bears some similarity to the crinkled phase of simplicial gravity discussed recently in models of gravity interacting with matter fields
Fishbone Diagrams: Organize Reading Content with a "Bare Bones" Strategy
Clary, Renee; Wandersee, James
2010-01-01
Fishbone diagrams, also known as Ishikawa diagrams or cause-and-effect diagrams, are one of the many problem-solving tools created by Dr. Kaoru Ishikawa, a University of Tokyo professor. Part of the brilliance of Ishikawa's idea resides in the simplicity and practicality of the diagram's basic model--a fish's skeleton. This article describes how…
Visualizing Metrics on Areas of Interest in Software Architecture Diagrams
Byelas, Heorhiy; Telea, Alexandru; Eades, P; Ertl, T; Shen, HW
2009-01-01
We present a new method for the combined visualization of software architecture diagrams, Such as UML class diagrams or component diagrams, and software metrics defined on groups of diagram elements. Our method extends an existing rendering technique for the so-called areas of interest in system
Phase diagram of classical electronic bilayers
International Nuclear Information System (INIS)
Ranganathan, S; Johnson, R E
2006-01-01
Extensive molecular dynamics calculations have been performed on classical, symmetric electronic bilayers at various values of the coupling strength Γ and interlayer separation d to delineate its phase diagram in the Γ-d plane. We studied the diffusion, the amplitude of the main peak of the intralayer static structure factor and the peak positions of the intralayer pair correlation function with the aim of defining equivalent signatures of freezing and constructing the resulting phase diagram. It is found that for Γ greater than 75, crystalline structures exist for a certain range of interlayer separations, while liquid phases are favoured at smaller and larger d. It is seen that there is good agreement between our phase diagram and previously published ones
Phase diagram of classical electronic bilayers
Energy Technology Data Exchange (ETDEWEB)
Ranganathan, S [Department of Physics, Royal Military College of Canada, Kingston, Ontario K7K 7B4 (Canada); Johnson, R E [Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, Ontario K7K 7B4 (Canada)
2006-04-28
Extensive molecular dynamics calculations have been performed on classical, symmetric electronic bilayers at various values of the coupling strength {gamma} and interlayer separation d to delineate its phase diagram in the {gamma}-d plane. We studied the diffusion, the amplitude of the main peak of the intralayer static structure factor and the peak positions of the intralayer pair correlation function with the aim of defining equivalent signatures of freezing and constructing the resulting phase diagram. It is found that for {gamma} greater than 75, crystalline structures exist for a certain range of interlayer separations, while liquid phases are favoured at smaller and larger d. It is seen that there is good agreement between our phase diagram and previously published ones.
The Butterfly diagram leopard skin pattern
Ternullo, Maurizio
2011-08-01
A time-latitude diagram where spotgroups are given proportional relevance to their area is presented. The diagram reveals that the spotted area distribution is higly dishomogeneous, most of it being concentrated in few, small portions (``knots'') of the Butterfly Diagram; because of this structure, the BD may be properly described as a cluster of knots. The description, assuming that spots scatter around the ``spot mean latitude'' steadily drifting equatorward, is challenged. Indeed, spots cluster around at as many latitudes as knots; a knot may appear at either lower or higher latitudes than previous ones, in a seemingly random way; accordingly, the spot mean latitude abruptly drifts equatorward or even poleward at any knot activation, in spite of any smoothing procedure. Preliminary analyses suggest that the activity splits, in any hemisphere, into two or more distinct ``activity waves'', drifting equatorward at a rate higher than the spot zone as a whole.
Phase diagrams of diluted transverse Ising nanowire
Energy Technology Data Exchange (ETDEWEB)
Bouhou, S.; Essaoudi, I. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Ainane, A., E-mail: ainane@pks.mpg.de [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Saber, M. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Ahuja, R. [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Dujardin, F. [Laboratoire de Chimie et Physique des Milieux Complexes (LCPMC), Institut de Chimie, Physique et Matériaux (ICPM), 1 Bd. Arago, 57070 Metz (France)
2013-06-15
In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J{sub cs} exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given.
Phase diagrams of diluted transverse Ising nanowire
International Nuclear Information System (INIS)
Bouhou, S.; Essaoudi, I.; Ainane, A.; Saber, M.; Ahuja, R.; Dujardin, F.
2013-01-01
In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J cs exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given
Repair of Partly Misspecified Causal Diagrams.
Oates, Chris J; Kasza, Jessica; Simpson, Julie A; Forbes, Andrew B
2017-07-01
Errors in causal diagrams elicited from experts can lead to the omission of important confounding variables from adjustment sets and render causal inferences invalid. In this report, a novel method is presented that repairs a misspecified causal diagram through the addition of edges. These edges are determined using a data-driven approach designed to provide improved statistical efficiency relative to de novo structure learning methods. Our main assumption is that the expert is "directionally informed," meaning that "false" edges provided by the expert would not create cycles if added to the "true" causal diagram. The overall procedure is cast as a preprocessing technique that is agnostic to subsequent causal inferences. Results based on simulated data and data derived from an observational cohort illustrate the potential for data-assisted elicitation in epidemiologic applications. See video abstract at, http://links.lww.com/EDE/B208.
A Critical Appraisal of the "Day" Diagram
Roberts, Andrew P.; Tauxe, Lisa; Heslop, David; Zhao, Xiang; Jiang, Zhaoxia
2018-04-01
The "Day" diagram (Day et al., 1977, https://doi.org/10.1016/0031-9201(77)90108-X) is used widely to make inferences about the domain state of magnetic mineral assemblages. Based on theoretical and empirical arguments, the Day diagram is demarcated into stable "single domain" (SD), "pseudo single domain" ("PSD"), and "multidomain" (MD) zones. It is straightforward to make the necessary measurements for a sample and to plot results within the "domain state" framework based on the boundaries defined by Day et al. (1977, https://doi.org/10.1016/0031-9201(77)90108-X). We discuss 10 issues that limit Day diagram interpretation, including (1) magnetic mineralogy, (2) the associated magnetocrystalline anisotropy type, (3) mineral stoichiometry, (4) stress state, (5) surface oxidation, (6) magnetostatic interactions, (7) particle shape, (8) thermal relaxation, (9) magnetic particle mixtures, and (10) definitional/measurement issues. In most studies, these variables are unknowns and cannot be controlled for, so that hysteresis parameters for single bulk samples are nonunique and any data point in a Day diagram could result from infinite combinations of relevant variables. From this critical appraisal, we argue that the Day diagram is fundamentally ambiguous for domain state diagnosis. Widespread use of the Day diagram has also contributed significantly to prevalent but questionable views, including underrecognition of the importance of stable SD particles in the geological record and reinforcement of the unhelpful PSD concept and of its geological importance. Adoption of approaches that enable correct domain state diagnosis should be an urgent priority for component-specific understanding of magnetic mineral assemblages and for quantitative rock magnetic interpretation.
Formal Analysis Of Use Case Diagrams
Directory of Open Access Journals (Sweden)
Radosław Klimek
2010-01-01
Full Text Available Use case diagrams play an important role in modeling with UML. Careful modeling is crucialin obtaining a correct and efficient system architecture. The paper refers to the formalanalysis of the use case diagrams. A formal model of use cases is proposed and its constructionfor typical relationships between use cases is described. Two methods of formal analysis andverification are presented. The first one based on a states’ exploration represents a modelchecking approach. The second one refers to the symbolic reasoning using formal methodsof temporal logic. Simple but representative example of the use case scenario verification isdiscussed.
International Nuclear Information System (INIS)
Abulkhaev, V.L.; Ganiev, I.N.
1994-01-01
By means of thermal differential analysis, X-ray and microstructural analysis the state diagram of Pr-Bi system was studied. Following intermetallic compounds were defined in the system: Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 , Pr Bi, PrBi 2 , Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 and PrBi 2 . The data analysis on Ln-Bi diagram allowed to determine the regularity of change of properties of intermetallic compounds in the line of rare earth elements of cerium subgroup.
Fusion Diagrams in the - and - Systems
Asadov, M. M.; Akhmedova, N. A.
2014-10-01
A calculation model of the Gibbs energy of ternary oxide compounds from the binary components was used. Thermodynamic properties of -- ternary systems in the condensed state were calculated. Thermodynamic data of binary and ternary compounds were used to determine the stable sections. The probability of reactions between the corresponding components in the -- system was estimated. Fusibility diagrams of systems - and - were studied by physical-chemical analysis. The isothermal section of the phase diagram of -- at 298 K is built, as well as the projection of the liquid surface of --.
Enumeration of diagonally colored Young diagrams
Gyenge, Ádám
2015-01-01
In this note we give a new proof of a closed formula for the multivariable generating series of diagonally colored Young diagrams. This series also describes the Euler characteristics of certain Nakajima quiver varieties. Our proof is a direct combinatorial argument, based on Andrews' work on generalized Frobenius partitions. We also obtain representations of these series in some particular cases as infinite products.
Partial chord diagrams and matrix models
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Fuji, Hiroyuki; Manabe, Masahide
In this article, the enumeration of partial chord diagrams is discussed via matrix model techniques. In addition to the basic data such as the number of backbones and chords, we also consider the Euler characteristic, the backbone spectrum, the boundary point spectrum, and the boundary length spe...
Characteristic Dynkin diagrams and W algebras
International Nuclear Information System (INIS)
Ragoucy, E.
1993-01-01
We present a classification of characteristic Dynkin diagrams for the A N , B N , C N and D N algebras. This classification is related to the classification of W(G, K) algebras arising from non-abelian Toda models, and we argue that it can give new insight on the structure of W algebras. (orig.)
Diagram of a LEP superconducting cavity
1991-01-01
This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.
Extended sequence diagram for human system interaction
International Nuclear Information System (INIS)
Hwang, Jong Rok; Choi, Sun Woo; Ko, Hee Ran; Kim, Jong Hyun
2012-01-01
Unified Modeling Language (UML) is a modeling language in the field of object oriented software engineering. The sequence diagram is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a message sequence chart. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. This paper proposes the Extended Sequence Diagram (ESD), which is capable of depicting human system interaction for nuclear power plants, as well as cognitive process of operators analysis. In the conventional sequence diagram, there is a limit to only identify the activities of human and systems interactions. The ESD is extended to describe operators' cognitive process in more detail. The ESD is expected to be used as a task analysis method for describing human system interaction. The ESD can also present key steps causing abnormal operations or failures and diverse human errors based on cognitive condition
Kelp diagrams : Point set membership visualization
Dinkla, K.; Kreveld, van M.J.; Speckmann, B.; Westenberg, M.A.
2012-01-01
We present Kelp Diagrams, a novel method to depict set relations over points, i.e., elements with predefined positions. Our method creates schematic drawings and has been designed to take aesthetic quality, efficiency, and effectiveness into account. This is achieved by a routing algorithm, which
Mixed wasted integrated program: Logic diagram
International Nuclear Information System (INIS)
Mayberry, J.; Stelle, S.; O'Brien, M.; Rudin, M.; Ferguson, J.; McFee, J.
1994-01-01
The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development's Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR)
Spin wave Feynman diagram vertex computation package
Price, Alexander; Javernick, Philip; Datta, Trinanjan
Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.
Phase diagram distortion from traffic parameter averaging.
Stipdonk, H. Toorenburg, J. van & Postema, M.
2010-01-01
Motorway traffic congestion is a major bottleneck for economic growth. Therefore, research of traffic behaviour is carried out in many countries. Although well describing the undersaturated free flow phase as an almost straight line in a (k,q)-phase diagram, congested traffic observations and
A Generalized Wave Diagram for Moving Sources
Alt, Robert; Wiley, Sam
2004-12-01
Many introductory physics texts1-5 accompany the discussion of the Doppler effect and the formation of shock waves with diagrams illustrating the effect of a source moving through an elastic medium. Typically these diagrams consist of a series of equally spaced dots, representing the location of the source at different times. These are surrounded by a series of successively smaller circles representing wave fronts (see Fig. 1). While such a diagram provides a clear illustration of the shock wave produced by a source moving at a speed greater than the wave speed, and also the resultant pattern when the source speed is less than the wave speed (the Doppler effect), the texts do not often show the details of the construction. As a result, the key connection between the relative distance traveled by the source and the distance traveled by the wave is not explicitly made. In this paper we describe an approach emphasizing this connection that we have found to be a useful classroom supplement to the usual text presentation. As shown in Fig. 2 and Fig. 3, the Doppler effect and the shock wave can be illustrated by diagrams generated by the construction that follows.
Planar quark diagrams and binary spin processes
International Nuclear Information System (INIS)
Grigoryan, A.A.; Ivanov, N.Ya.
1986-01-01
Contributions of planar diagrams to the binary scattering processes are analyzed. The analysis is based on the predictions of quark-gluon picture of strong interactions for the coupling of reggeons with quarks as well as on the SU(6)-classification of hadrons. The dependence of contributions of nonplanar corrections on spins and quark composition of interacting particles is discussed
Phase diagram of spiking neural networks.
Seyed-Allaei, Hamed
2015-01-01
In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters - excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli.
Muonium and the Breit-Rabi diagram
International Nuclear Information System (INIS)
Cox, S.F.J.
1984-01-01
This chapter introduces the study of muonium, as opposed to that of unbound muons. The properties and behaviour of muonium are compared and contrasted with those of hydrogen and of positronium. The special significance of muonium in atomic and molecular physics is explained, and its utility as a lightweight or radioactive isotope of hydrogen in solid state physics and chemistry illustrated. The identification of atomic muonium by means of its ground state magnetic properties is described with reference to the Breit-Rabi diagram. This diagram is invaluable for interpreting or predicting MuSR observations, both in transverse and longitudinal magnetic fields, so its construction and properties are explained in some detail. The precession signals observed in transverse-field MuSR correspond to transitions allowed between the energy levels in this diagram; particular attention is paid to the spectra characteristic of the high and low field regimes. The different states of muonium observed in dielectric, semiconducting and metallic materials are introduced. The influence of the host medium on the spectral parameters, hyperfine interaction and linewidth, is considered both for atomic muonium and for muonium which is chemically bound in paramagnetic molecules, for which the Breit-Rabi diagram also applies. (orig.)
The classification of diagrams in perturbation theory
International Nuclear Information System (INIS)
Phillips, D.R.; Afnan, I.R.
1995-01-01
The derivation of scattering equations connecting the amplitudes obtained from diagrammatic expansions is of interest in many branches of physics. One method for deriving such equations is the classification-of-diagrams technique of Taylor. However, as we shall explain in this paper, there are certain points of Taylor's method which require clarification. First, it is not clear whether Taylor's original method is equivlant to the simpler classification-of-diagrams scheme used by Thomas, Rinat, Afnan, and Blankleider (TRAB). Second, when the Taylor method is applied to certain problems in a time-dependent perturbation theory it leads to the over-counting of some diagrams. This paper first restates Taylor's method, in the process uncovering reasons why certain diagrams might be double-counted in the Taylor method. In then explores how far Taylor's method is equivalent to the simpler TRAB method. Finally, it examines precisely why the double-counting occurs in Taylor's method and derives corrections which compensate for this double-counting. copyright 1995 Academic Press, Inc
Influence diagram in evaluating the subjective judgment
International Nuclear Information System (INIS)
Hong, Y.
1997-01-01
The author developed the idea of the subjective influence diagrams to evaluate subjective judgment. The subjective judgment of a stake holder is a primary decision making proposition. It involves a basic decision process an the individual attitude of the stake holder for his decision purpose. The subjective judgment dominates the some final decisions. A complex decision process may include the subjective judgment. An influence diagram framework is a simplest tool for analyzing subjective judgment process. In the framework, the characters of influence diagrams generate the describing the analyzing, and the evaluating of the subjective judgment. The relationship between the information and the decision, such as independent character between them, is the main issue. Then utility function is the calculating tool to evaluation, the stake holder can make optimal decision. Through the analysis about the decision process and relationship, the building process of the influence diagram identically describes the subjective judgment. Some examples are given to explain the property of subjective judgment and the analysis process
International Nuclear Information System (INIS)
Kaler, J.B.
1988-01-01
The evolution of various types of stars along the H-R diagram is discussed. Star birth and youth is addressed, and the events that occur due to core contraction, shell burning, and double-shell burning are described. The evolutionary courses of planetary nebulae, white dwarfs, and supernovas are examined
The Keynesian Diagram: A Cross to Bear?
Fleck, Juergen
In elementary economics courses students are often introduced to the basic concepts of macroeconomics through very simplified static models, and the concept of a macroeconomic equilibrium is generally explained with the help of an aggregate demand/aggregate supply (AD/AS) model and an income/expenditure model (via the Keynesian cross diagram).…
Magnetic phase diagram of a nanocone
International Nuclear Information System (INIS)
Suarez, O; Vargas, P; Escrig, J; Landeros, P; Albir, D; Laroze, D
2008-01-01
In this work we analyze the magnetic properties of truncated conical nanoparticles. Based on the continuous magnetic model we find expressions for the total energy in three different magnetic configurations. Finally, we calculate the magnetic phase diagram as function of the geometrical parameters.
Magnetic phase diagram of a nanocone
Energy Technology Data Exchange (ETDEWEB)
Suarez, O; Vargas, P [Departamento de Fisica, Universidad Tecnica Federico Santa MarIa, P. O. Box 110-V, Valparaiso (Chile); Escrig, J; Landeros, P; Albir, D [Universidad de Santiago de Chile, Depatamento de Fisica, Casilla 307, Correo 2, Santiago (Chile); Laroze, D [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, P. O. Box 4059, Valparaiso (Chile)], E-mail: omar.suarez@postgrado.usm.cl
2008-11-01
In this work we analyze the magnetic properties of truncated conical nanoparticles. Based on the continuous magnetic model we find expressions for the total energy in three different magnetic configurations. Finally, we calculate the magnetic phase diagram as function of the geometrical parameters.
Solution space diagram in conflict detection scenarios
Rahman, S.M.A.; Borst, C.; Mulder, M.; Van Paassen, M.M.
2015-01-01
This research investigates the use of Solution Space Diagram (SSD) as a measure of sector complexity and also as a predictor of performance and workload, focusing on the scenarios regarding Air Traffic Controller (ATCO)’s ability to detect future conflicts. A human-in-the-loop experiment with
Quark matter revisited with non-extensive MIT bag model
Energy Technology Data Exchange (ETDEWEB)
Cardoso, Pedro H.G.; Nunes da Silva, Tiago; Menezes, Debora P. [Universidade Federal de Santa Catarina, Departamento de Fisica, CFM, Florianopolis (Brazil); Deppman, Airton [Instituto de Fisica da Universidade de Sao Paulo, Sao Paulo (Brazil)
2017-10-15
In this work we revisit the MIT bag model to describe quark matter within both the usual Fermi-Dirac and the Tsallis statistics. We verify the effects of the non-additivity of the latter by analysing two different pictures: the first order phase transition of the QCD phase diagram and stellar matter properties. While the QCD phase diagram is visually affected by the Tsallis statistics, the resulting effects on quark star macroscopic properties are barely noticed. (orig.)
Quarks and gluons in the phase diagram of quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Welzbacher, Christian Andreas
2016-07-14
In this dissertation we study the phase diagram of strongly interacting matter by approaching the theory of quantum chromodynamics in the functional approach of Dyson-Schwinger equations. With these quantum (field) equations of motions we calculate the non-perturbative quark propagator within the Matsubara formalism. We built up on previous works and extend the so-called truncation scheme, which is necessary to render the infinite tower of Dyson-Schwinger equations finite and study phase transitions of chiral symmetry and the confinement/deconfinement transition. In the first part of this thesis we discuss general aspects of quantum chromodynamics and introduce the Dyson-Schwinger equations in general and present the quark Dyson-Schwinger equation together with its counterpart for the gluon. The Bethe-Salpeter equation is introduced which is necessary to perform two-body bound state calculations. A view on the phase diagram of quantum chromodynamics is given, including the discussion of order parameter for chiral symmetry and confinement. Here we also discuss the dependence of the phase structure on the masses of the quarks. In the following we present the truncation and our results for an unquenched N{sub f} = 2+1 calculation and compare it to previous studies. We highlight some complementary details for the quark and gluon propagator and discus the resulting phase diagram, which is in agreement with previous work. Results for an equivalent of the Columbia plot and the critical surface are discussed. A systematically improved truncation, where the charm quark as a dynamical quark flavour is added, will be presented in Ch. 4. An important aspect in this investigation is the proper adjustment of the scales. This is done by matching vacuum properties of the relevant pseudoscalar mesons separately for N{sub f} = 2+1 and N f = 2+1+1 via a solution of the Bethe-Salpeter equation. A comparison of the resulting N{sub f} = 2+1 and N{sub f} = 2+1+1 phase diagram indicates
Phase diagram of an extended Agassi model
García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.
2018-05-01
Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.
Magnetic phase diagram of UNi.sub.2./sub.Si.sub.2./sub. under pressure
Czech Academy of Sciences Publication Activity Database
Syshchenko, O.; Khmelevski, S.; Diviš, M.; Sechovský, V.; Honda, F.; Oomi, G.; Andreev, Alexander V.; Kamarád, Jiří; Šebek, Josef; Menovsky, A. A.
2001-01-01
Roč. 304, - (2001), s. 477-482 ISSN 0921-4526 R&D Projects: GA ČR GA106/99/0183 Institutional research plan: CEZ:AV0Z1010914 Keywords : U intermetallics * antiferromagnetism * magnetic phase diagram * electrical resistivity * pressure effects on magnetic phases * axial Ising model Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.663, year: 2001
Kolb, Thomas; Klotsa, Daphne
Active systems are composed of self-propelled (active) particles that locally convert energy into motion and exhibit emergent collective behaviors, such as fish schooling and bird flocking. Most works so far have focused on monodisperse, one-component active systems. However, real systems are heterogeneous, and consist of several active components. We perform molecular dynamics simulations of multi-component active matter systems and report on their emergent behavior. We discuss the phase diagram of dynamic states as well as parameters where we see mixing versus segregation.
Angelo, Joseph A
2011-01-01
Quantifying Matter explains how scientists learned to measure matter and quantify some of its most fascinating and useful properties. It presents many of the most important intellectual achievements and technical developments that led to the scientific interpretation of substance. Complete with full-color photographs, this exciting new volume describes the basic characteristics and properties of matter. Chapters include:. -Exploring the Nature of Matter. -The Origin of Matter. -The Search for Substance. -Quantifying Matter During the Scientific Revolution. -Understanding Matter's Electromagnet
A Critical Appraisal of the `Day' Diagram
Roberts, A. P.; Tauxe, L.; Heslop, D.
2017-12-01
The `Day' diagram [Day et al., 1977; doi:10.1016/0031-9201(77)90108-X] is used widely to infer the mean domain state of magnetic mineral assemblages. The Day plot coordinates are the ratios of the saturation remanent magnetization to saturation magnetization (Mrs/Ms) and the coercivity of remanence to coercivity (Bcr/Bc), as determined from a major hysteresis loop and a backfield demagnetization curve. Based on theoretical and empirical arguments, Day plots are typically demarcated into stable single domain (SD), `pseudosingle domain' (`PSD'), and multidomain (MD) zones. It is a simple task to determine Mrs/Ms and Bcr/Bc for a sample and to assign a mean domain state based on the boundaries defined by Day et al. [1977]. Many other parameters contribute to variability in a Day diagram, including surface oxidation, mineral stoichiometry, stress state, magnetostatic interactions, and mixtures of magnetic particles with different sizes and shapes. Bulk magnetic measurements usually lack detailed independent evidence to constrain each free parameter, which makes the Day diagram fundamentally ambiguous. This raises questions about its usefulness for diagnosing magnetic particle size variations. The Day diagram is also used to make inferences about binary mixing of magnetic particles, where, for example, mixtures of SD and MD particles give rise to a bulk `PSD' response even though the concentration of `PSD' grains could be zero. In our assessment of thousands of hysteresis measurements of geological samples, binary mixing occurs in a tiny number of cases. Ternary, quaternary, and higher order mixing are usually observed. Also, uniaxial SD and MD end-members are nearly always inappropriate for considering mixing because uniaxial SD particles are virtually non-existent in igneous rocks. Thus, use of mixing lines in Day diagrams routinely provides unsatisfactory representations of particle size variations. We critically appraise the Day diagram and argue that its many
E-T phase diagram of an antiferroelectric liquid crystal with re-entrand smectic C* phase
Czech Academy of Sciences Publication Activity Database
Na, Y.-H.; Naruse, Y.; Fukuda, N.; Orihara, H.; Fajar, A.; Hamplová, Věra; Kašpar, Miroslav; Glogarová, Milada
2008-01-01
Roč. 364, č. 1 (2008), s. 13-19 ISSN 0015-0193 Institutional research plan: CEZ:AV0Z10100520 Keywords : phase diagram * liquid crystals * dielectric measurements * electric field Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.562, year: 2008
The mean squared writhe of alternating random knot diagrams
Energy Technology Data Exchange (ETDEWEB)
Diao, Y; Hinson, K [Department of Mathematics and Statistics University of North Carolina at Charlotte, NC 28223 (United States); Ernst, C; Ziegler, U, E-mail: ydiao@uncc.ed [Department of Mathematics and Computer Science, Western Kentucky University, Bowling Green, KY 42101 (United States)
2010-12-10
The writhe of a knot diagram is a simple geometric measure of the complexity of the knot diagram. It plays an important role not only in knot theory itself, but also in various applications of knot theory to fields such as molecular biology and polymer physics. The mean squared writhe of any sample of knot diagrams with n crossings is n when for each diagram at each crossing one of the two strands is chosen as the overpass at random with probability one-half. However, such a diagram is usually not minimal. If we restrict ourselves to a minimal knot diagram, then the choice of which strand is the over- or under-strand at each crossing is no longer independent of the neighboring crossings and a larger mean squared writhe is expected for minimal diagrams. This paper explores the effect on the correlation between the mean squared writhe and the diagrams imposed by the condition that diagrams are minimal by studying the writhe of classes of reduced, alternating knot diagrams. We demonstrate that the behavior of the mean squared writhe heavily depends on the underlying space of diagram templates. In particular this is true when the sample space contains only diagrams of a special structure. When the sample space is large enough to contain not only diagrams of a special type, then the mean squared writhe for n crossing diagrams tends to grow linearly with n, but at a faster rate than n, indicating an intrinsic property of alternating knot diagrams. Studying the mean squared writhe of alternating random knot diagrams also provides some insight into the properties of the diagram generating methods used, which is an important area of study in the applications of random knot theory.
ROLE OF UML SEQUENCE DIAGRAM CONSTRUCTS IN OBJECT LIFECYCLE CONCEPT
Directory of Open Access Journals (Sweden)
Miroslav Grgec
2007-06-01
Full Text Available When modeling systems and using UML concepts, a real system can be viewed in several ways. The RUP (Rational Unified Process defines the "4 + 1 view": 1. Logical view (class diagram (CD, object diagram (OD, sequence diagram (SD, collaboration diagram (COD, state chart diagram (SCD, activity diagram (AD, 2.Process view (use case diagram, CD, OD, SD, COD, SCD, AD, 3. Development view (package diagram, component diagram, 4. Physical view (deployment diagram, and 5. Use case view (use case diagram, OD, SD, COD, SCD, AD which combines the four mentioned above. With sequence diagram constructs we are describing object behavior in scope of one use case and their interaction. Each object in system goes through a so called lifecycle (create, supplement object with data, use object, decommission object. The concept of the object lifecycle is used to understand and formalize the behavior of objects from creation to deletion. With help of sequence diagram concepts our paper will describe the way of interaction modeling between objects through lifeline of each of them, and their importance in software development.
Finding and accessing diagrams in biomedical publications.
Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael
2012-01-01
Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar and line charts by the shape and relative location of the different image elements that make up the charts. With recall and precisions of close to 90% for the detection of relevant figures, we discuss the use of this technology in an existing biomedical image search engine, and outline how it enables new forms of literature queries over biomedical relationships that are represented in these charts.
Interactive Cost Configuration Over Decision Diagrams
DEFF Research Database (Denmark)
Andersen, Henrik Reif; Hadzic, Tarik; Pisinger, David
2010-01-01
interaction online. In particular,binary decision diagrams (BDDs) have been successfully used as a compilation target for product and service configuration. In this paper we discuss how to extend BDD-based configuration to scenarios involving cost functions which express user preferences. We first show...... that an efficient, robust and easy to implement extension is possible if the cost function is additive, and feasible solutions are represented using multi-valued decision diagrams (MDDs). We also discuss the effect on MDD size if the cost function is non-additive or if it is encoded explicitly into MDD. We...... then discuss interactive configuration in the presence of multiple cost functions. We prove that even in its simplest form, multiple-cost configuration is NP-hard in the input MDD. However, for solving two-cost configuration we develop a pseudo-polynomial scheme and a fully polynomial approximation scheme...
Phase diagram for interacting Bose gases
International Nuclear Information System (INIS)
Morawetz, K.; Maennel, M.; Schreiber, M.
2007-01-01
We propose a modified form of the inversion method in terms of a self-energy expansion to access the phase diagram of the Bose-Einstein transition. The dependence of the critical temperature on the interaction parameter is calculated. This is discussed with the help of a condition for Bose-Einstein condensation in interacting systems which follows from the pole of the T matrix in the same way as from the divergence of the medium-dependent scattering length. A many-body approximation consisting of screened ladder diagrams is proposed, which describes the Monte Carlo data more appropriately. The specific results are that a non-self-consistent T matrix leads to a linear coefficient in leading order of 4.7, the screened ladder approximation to 2.3, and the self-consistent T matrix due to the effective mass to a coefficient of 1.3 close to the Monte Carlo data
Geometry Helps to Compare Persistence Diagrams
Energy Technology Data Exchange (ETDEWEB)
Kerber, Michael; Morozov, Dmitriy; Nigmetov, Arnur
2015-11-16
Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a well-studied subject. In contrast, the practical advantages of using geometry for such problems have not been explored. We implement geometric variants of the Hopcroft--Karp algorithm for bottleneck matching (based on previous work by Efrat el al.), and of the auction algorithm by Bertsekas for Wasserstein distance computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query. Our interest in this problem stems from the desire to compute distances between persistence diagrams, a problem that comes up frequently in topological data analysis. We show that our geometric matching algorithms lead to a substantial performance gain, both in running time and in memory consumption, over their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only other implementation available for comparing persistence diagrams.
The geometry of on-shell diagrams
Franco, Sebastián; Galloni, Daniele; Mariotti, Alberto
2014-08-01
The fundamental role of on-shell diagrams in quantum field theory has been recently recognized. On-shell diagrams, or equivalently bipartite graphs, provide a natural bridge connecting gauge theory to powerful mathematical structures such as the Grassmannian. We perform a detailed investigation of the combinatorial and geometric objects associated to these graphs. We mainly focus on their relation to polytopes and toric geometry, the Grassmannian and its stratification. Our work extends the current understanding of these connections along several important fronts, most notably eliminating restrictions imposed by planarity, positivity, reducibility and edge removability. We illustrate our ideas with several explicit examples and introduce concrete methods that considerably simplify computations. We consider it highly likely that the structures unveiled in this article will arise in the on-shell study of scattering amplitudes beyond the planar limit. Our results can be conversely regarded as an expansion in the understanding of the Grassmannian in terms of bipartite graphs.
A dynamical mechanism for the hairpin diagram
International Nuclear Information System (INIS)
Chang Chaohsi; Guo Xinheng; Li Xueqian.
1989-09-01
Based on the non-valence quark-antiquark and gluon constituent structure of mesons we give a reasonable dynamical mechanism which can induce the hairpin diagram without violating the well-observed OZI rule. We calculate the hairpin amplitudes of D deg. → K-bar deg.η and K-bar deg.η' normalized by D deg. → K-bar deg.π deg. and have found that the hairpin diagram can give rise to substantial contribution to the decays where a meson with a SU(3) flavor singlet component is involved in the final state. In this scenario, we also obtain the branching ratio of D deg. → K-bar deg. φ as 0.55% in comparison with the experimental data of 0.83%. (autor). 33 refs, 3 figs
Worldline Green functions for multiloop diagrams
International Nuclear Information System (INIS)
Schmidt, M.G.; Heidelberg Univ.; Schubert, C.
1994-03-01
We propose a multiloop generalization of the Bern-Kosower formalism, based on Strassler's approach of evaluating worldline path integrals by worldline Green functions. Those Green functions are explicitly constructed for the basic two-loop graph, and for a loop with an arbitrary number of propagator insertions. For scalar and abelian gauge theories, the resulting integral representations allow to combine whole classes of Feynman diagrams into compact expressions. (orig.)
Mixed wasted integrated program: Logic diagram
Energy Technology Data Exchange (ETDEWEB)
Mayberry, J.; Stelle, S. [Science Applications International Corp., Idaho Falls, ID (United States); O`Brien, M. [Univ. of Arizona, Tucson, AZ (United States); Rudin, M. [Univ. of Nevada, Las Vegas, NV (United States); Ferguson, J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); McFee, J. [I.T. Corp., Albuquerque, NM (United States)
1994-11-30
The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).
Diagram of the uranium prospection perforation
International Nuclear Information System (INIS)
Perrin, J.
1982-01-01
We call diagrams to the drawn up one continuous of parameters physicists of the formation trimmed by a perforation based on the depth. The method is interesting not only for the putting in evidence of the mineralized levels but also it stops to determine the variations of lithology had by one part to the intrinsic properties of minerals (quartz, clays, carbonates) and to their variation of tenor and by another one, to variations of porosity and permeability of the formation
Simple Lie algebras and Dynkin diagrams
International Nuclear Information System (INIS)
Buccella, F.
1983-01-01
The following theorem is studied: in a simple Lie algebra of rank p there are p positive roots such that all the other n-3p/2 positive roots are linear combinations of them with integer non negative coefficients. Dykin diagrams are built by representing the simple roots with circles and drawing a junction between the roots. Five exceptional algebras are studied, focusing on triple junction algebra, angular momentum algebra, weights of the representation, antisymmetric tensors, and subalgebras
Turbine flow diagram of Paks-1 reactor
International Nuclear Information System (INIS)
Vancso, Tamas
1983-01-01
Computer calculations and programs are presented which inform the operators on the effect projected on the turbine and thermal efficiency of the modification in the flow diagram and in the starting parameters of the power cycle. In the program the expansion line of steam turbine type K-220-44 and the thermo-technical parameters of the elements of the feed-water heater system are determined. Detailed degree calculations for turbine unit of high pressure can be made. (author)
Specialization in i* strategic rationale diagrams
López Cuesta, Lidia; Franch Gutiérrez, Javier; Marco Gómez, Jordi
2012-01-01
ER 2012 Best Student Paper Award The specialization relationship is offered by the i* modeling language through the is-a construct defined over actors (a subactor is-a superactor). Although the overall meaning of this construct is highly intuitive, its semantics when it comes to the fine-grained level of strategic rationale (SR) diagrams is not defined, hampering seriously its appropriate use. In this paper we provide a formal definition of the specialization relationship at the lev...
Refined phase diagram of boron nitride
International Nuclear Information System (INIS)
Solozhenko, V.; Turkevich, V.Z.
1999-01-01
The equilibrium phase diagram of boron nitride thermodynamically calculated by Solozhenko in 1988 has been now refined on the basis of new experimental data on BN melting and extrapolation of heat capacities of BN polymorphs into high-temperature region using the adapted pseudo-Debye model. As compared with the above diagram, the hBN left-reversible cBN equilibrium line is displaced by 60 K toward higher temperatures. The hBN-cBN-L triple point has been calculated to be at 3480 ± 10 K and 5.9 ± 0.1 GPa, while the hBN-L-V triple point is at T = 3400 ± 20 K and p = 400 ± 20 Pa, which indicates that the region of thermodynamic stability of vapor in the BN phase diagram is extremely small. It has been found that the slope of the cBN melting curve is positive whereas the slope of hBN melting curve varies from positive between ambient pressure and 3.4 GPa to negative at higher pressures
The Critical Importance of Russell's Diagram
Gingerich, O.
2013-04-01
The idea of dwarf and giants stars, but not the nomenclature, was first established by Eijnar Hertzsprung in 1905; his first diagrams in support appeared in 1911. In 1913 Henry Norris Russell could demonstrate the effect far more strikingly because he measured the parallaxes of many stars at Cambridge, and could plot absolute magnitude against spectral type for many points. The general concept of dwarf and giant stars was essential in the galactic structure work of Harlow Shapley, Russell's first graduate student. In order to calibrate the period-luminosity relation of Cepheid variables, he was obliged to fall back on statistical parallax using only 11 Cepheids, a very sparse sample. Here the insight provided by the Russell diagram became critical. The presence of yellow K giant stars in globular clusters credentialed his calibration of the period-luminosity relation by showing that the calibrated luminosity of the Cepheids was comparable to the luminosity of the K giants. It is well known that in 1920 Shapley did not believe in the cosmological distances of Heber Curtis' spiral nebulae. It is not so well known that in 1920 Curtis' plot of the period-luminosity relation suggests that he didn't believe it was a physical relation and also he failed to appreciate the significance of the Russell diagram for understanding the large size of the Milky Way.
Asteroseismic Diagram for Subgiants and Red Giants
Energy Technology Data Exchange (ETDEWEB)
Gai, Ning; Tang, Yanke [College of Physics and Electronic information, Dezhou University, Dezhou 253023 (China); Yu, Peng [College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Dou, Xianghua, E-mail: ning_gai@163.com, E-mail: tyk450@163.com [Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou 253023 (China)
2017-02-10
Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.
Colour-magnitude diagram of NGC 5053
Energy Technology Data Exchange (ETDEWEB)
Walker, M F; Pike, C D [California Univ., Santa Cruz (USA). Lick Observatory; McGee, J D
1976-06-01
The colour-magnitude diagram of NGC 5053 has been derived to V = 21.1 from photographic and electronographic observations. The electronographic observations were obtained with an experimental Spectracon image-converter, having photocathode and exit window dimensions of 20 x 30 mm, mounted at the prime-focus of the 120-in. Lick reflector. The photographic observations were obtained with the 20-in. Carnegie astrograph and the 36-in. Crossley reflector. The colour-magnitude diagram resembles that of M92, with the difference that a red horizontal branch is more pronounced than the asymptotic branch in NGC 5053. The topology of the horizontal branch is that of clusters with an intermediate metal content and is thus at variance with the mean period of the RR Lyr stars and the unreddened colour of the subgiant branch read at the magnitude level of the horizontal branch, both of which would indicate an extremely low metal content. If comparison of the colour-magnitude diagrams of NGC 5053 and M92 is valid, then the reddening of NGC 5053 is Esub(B-V) = 0.02 and the apparent distance modulus is m-M = 16.08 +- 0.08.
Random matrix models for phase diagrams
International Nuclear Information System (INIS)
Vanderheyden, B; Jackson, A D
2011-01-01
We describe a random matrix approach that can provide generic and readily soluble mean-field descriptions of the phase diagram for a variety of systems ranging from quantum chromodynamics to high-T c materials. Instead of working from specific models, phase diagrams are constructed by averaging over the ensemble of theories that possesses the relevant symmetries of the problem. Although approximate in nature, this approach has a number of advantages. First, it can be useful in distinguishing generic features from model-dependent details. Second, it can help in understanding the 'minimal' number of symmetry constraints required to reproduce specific phase structures. Third, the robustness of predictions can be checked with respect to variations in the detailed description of the interactions. Finally, near critical points, random matrix models bear strong similarities to Ginsburg-Landau theories with the advantage of additional constraints inherited from the symmetries of the underlying interaction. These constraints can be helpful in ruling out certain topologies in the phase diagram. In this Key Issues Review, we illustrate the basic structure of random matrix models, discuss their strengths and weaknesses, and consider the kinds of system to which they can be applied.
On-shell diagrams for N=8 supergravity amplitudes
Energy Technology Data Exchange (ETDEWEB)
Heslop, Paul; Lipstein, Arthur E. [Department of Mathematical Sciences, Durham University,Lower Mountjoy, Stockton Road, Durham, DH1 3LE (United Kingdom)
2016-06-10
We define recursion relations for N=8 supergravity amplitudes using a generalization of the on-shell diagrams developed for planar N=4 super-Yang-Mills. Although the recursion relations generically give rise to non-planar on-shell diagrams, we show that at tree-level the recursion can be chosen to yield only planar diagrams, the same diagrams occurring in the planar N=4 theory. This implies non-trivial identities for non-planar diagrams as well as interesting relations between the N=4 and N=8 theories. We show that the on-shell diagrams of N=8 supergravity obey equivalence relations analogous to those of N=4 super-Yang-Mills, and we develop a systematic algorithm for reading off Grassmannian integral formulae directly from the on-shell diagrams. We also show that the 1-loop 4-point amplitude of N=8 supergravity can be obtained from on-shell diagrams.
Impact of Diagrams on Recalling Sequential Elements in Expository Texts.
Guri-Rozenblit, Sarah
1988-01-01
Examines the instructional effectiveness of abstract diagrams on recall of sequential relations in social science textbooks. Concludes that diagrams assist significantly the recall of sequential relations in a text and decrease significantly the rate of order mistakes. (RS)
Proof test diagrams for Zerodur glass-ceramic
Tucker, D. S.
1991-01-01
Proof test diagrams for Zerodur glass-ceramics are calculated from available fracture mechanics data. It is shown that the environment has a large effect on minimum time-to-failure as predicted by proof test diagrams.
Triangular Diagrams Teach Steady and Dynamic Behaviour of Catalytic Reactions.
Klusacek, K.; And Others
1989-01-01
Illustrates how triangular diagrams can aid in presenting some of the rather complex transient interactions that occur among gas and surface species during heterogeneous catalytic reactions. The basic equations and numerical examples are described. Classroom use of the triangular diagram is discussed. Several diagrams and graphs are provided. (YP)
Atlas of hot isostatic beryllium powder pressing diagrams
International Nuclear Information System (INIS)
Stoev, P.I.; Papirov, I.I.; Tikhinskij, G.F.; Vasil'ev, A.A.
1995-01-01
Diagrams of hot isotopic pressing (HIP) of beryllium powder with different grain size in a wide range of pressing parameters are built by mathematical modeling methods. The HIP diagrams presented are divided into 3 groups: parametric dependencies D=f(P,T); technological HIP diagrams; compacting mechanisms. The created data bank permits to optimise beryllium powder HIP with changing parameters. 4 refs., 23 figs
Safety-barrier diagrams as a safety management tool
DEFF Research Database (Denmark)
Duijm, Nijs Jan
2009-01-01
Safety-barrier diagrams and “bow-tie” diagrams have become popular methods in risk analysis and safety management. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The latter's relation to other methods such as fault trees and Bayesian...
Developing Tool Support for Problem Diagrams with CPN and VDM++
DEFF Research Database (Denmark)
Tjell, Simon; Lassen, Kristian Bisgaard
2008-01-01
In this paper, we describe ongoing work on the development of tool support for formal description of domains found in Problem Diagrams. The purpose of the tool is to handle the generation of a CPN model based on a collection of Problem Diagrams. The Problem Diagrams are used for representing the ...
A geometric proof of confluence by decreasing diagrams
Klop, J.W.; Oostrom, V. van; Vrijer, R. de
The criterion for confluence using decreasing diagrams is a generalization of several well-known confluence criteria in abstract rewriting, such as the strong confluence lemma. We give a new proof of the decreasing diagram theorem based on a geometric study of in finite reduction diagrams, arising
Students’ learning activities while studying biological process diagrams
Kragten, M.; Admiraal, W.; Rijlaarsdam, G.
2015-01-01
Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students’ learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each
The role of perceptual cues in matrix diagrams
van der Meij, Jan; van Amelsvoort, Marije; Anjewierden, A.
An experiment was conducted to assess whether the design of a matrix diagram influences how people study the diagram and whether this has an effect on recall of the presented information. We compared four versions of a matrix diagram on antisocial personality disorder. It consisted of four header
The role of perceptual cues in matrix diagrams
van der Meij, Jan; Amelsvoort, Marije; Anjewierden, Anjo Allert
2015-01-01
An experiment was conducted to assess whether the design of a matrix diagram influences how people study the diagram and whether this has an effect on recall of the presented information. We compared four versions of a matrix diagram on antisocial personality disorder. It consisted of four header
Stage line diagram: an age-conditional reference diagram for tracking development.
van Buuren, Stef; Ooms, Jeroen C L
2009-05-15
This paper presents a method for calculating stage line diagrams, a novel type of reference diagram useful for tracking developmental processes over time. Potential fields of applications include: dentistry (tooth eruption), oncology (tumor grading, cancer staging), virology (HIV infection and disease staging), psychology (stages of cognitive development), human development (pubertal stages) and chronic diseases (stages of dementia). Transition probabilities between successive stages are modeled as smoothly varying functions of age. Age-conditional references are calculated from the modeled probabilities by the mid-P value. It is possible to eliminate the influence of age by calculating standard deviation scores (SDS). The method is applied to the empirical data to produce reference charts on secondary sexual maturation. The mean of the empirical SDS in the reference population is close to zero, whereas the variance depends on age. The stage line diagram provides quick insight into both status (in SDS) and tempo (in SDS/year) of development of an individual child. Other measures (e.g. height SDS, body mass index SDS) from the same child can be added to the chart. Diagrams for sexual maturation are available as a web application at http://vps.stefvanbuuren.nl/puberty. The stage line diagram expresses status and tempo of discrete changes on a continuous scale. Wider application of these measures scores opens up new analytic possibilities. (c) 2009 John Wiley & Sons, Ltd.
The compressed baryonic matter experiment at FAIR
International Nuclear Information System (INIS)
Senger, Peter
2015-01-01
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental facility
Comprehending 3D Diagrams: Sketching to Support Spatial Reasoning.
Gagnier, Kristin M; Atit, Kinnari; Ormand, Carol J; Shipley, Thomas F
2017-10-01
Science, technology, engineering, and mathematics (STEM) disciplines commonly illustrate 3D relationships in diagrams, yet these are often challenging for students. Failing to understand diagrams can hinder success in STEM because scientific practice requires understanding and creating diagrammatic representations. We explore a new approach to improving student understanding of diagrams that convey 3D relations that is based on students generating their own predictive diagrams. Participants' comprehension of 3D spatial diagrams was measured in a pre- and post-design where students selected the correct 2D slice through 3D geologic block diagrams. Generating sketches that predicated the internal structure of a model led to greater improvement in diagram understanding than visualizing the interior of the model without sketching, or sketching the model without attempting to predict unseen spatial relations. In addition, we found a positive correlation between sketched diagram accuracy and improvement on the diagram comprehension measure. Results suggest that generating a predictive diagram facilitates students' abilities to make inferences about spatial relationships in diagrams. Implications for use of sketching in supporting STEM learning are discussed. Copyright © 2016 Cognitive Science Society, Inc.
Phase diagram of strongly correlated Fermi systems
International Nuclear Information System (INIS)
Zverev, M.V.; Khodel', V.A.; Baldo, M.
2000-01-01
Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru
More on boundary holographic Witten diagrams
Sato, Yoshiki
2018-01-01
In this paper we discuss geodesic Witten diagrams in general holographic conformal field theories with boundary or defect. In boundary or defect conformal field theory, two-point functions are nontrivial and can be decomposed into conformal blocks in two distinct ways; ambient channel decomposition and boundary channel decomposition. In our previous work [A. Karch and Y. Sato, J. High Energy Phys. 09 (2017) 121., 10.1007/JHEP09(2017)121] we only consider two-point functions of same operators. We generalize our previous work to a situation where operators in two-point functions are different. We obtain two distinct decomposition for two-point functions of different operators.
Influence Diagrams for Optimal Maintenance Planning
DEFF Research Database (Denmark)
Friis-Hansen, Andreas
2000-01-01
Over the last two decades Bayesian networks and influence diagrams have received notable attention within the field of artificial intelligence and expert systems. During the last few years the technology has been further developed for problem solving within other engineering fields. The objective...... of this study is to present a conceptual bayesian network model for probabilistic prediction of fatigue crack growth in welded steel tubes. It is shown that despite discretization of the variable domain, the prediction is in good agreement with results obtained by the well-established structural reliability...
Topological phase diagram of superconducting carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Milz, Lars; Marganska-Lyzniak, Magdalena; Grifoni, Milena [Institut I - Theoretische Physik Universitaet Regensburg (Germany)
2016-07-01
The topological superconducting phase diagram of superconducting carbon nanotubes is discussed. Under the assumption of a short-ranged pairing potential, there are two spin-singlet states: an s-wave and an exotic p + ip-wave that are possible because of the special structure of the honeycomb lattice. The consequences for the possible presence of Majorana edge states in carbon nanotubes are addressed. In particular, regions in the magnetic field-chemical potential plane possibly hosting localized Majorana modes are discussed.
Algorithms for Disconnected Diagrams in Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gambhir, Arjun Singh [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Stathopoulos, Andreas [College of William and Mary, Williamsburg, VA (United States); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Yoon, Boram [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gupta, Rajan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Syritsyn, Sergey [Stony Brook Univ., NY (United States)
2016-11-01
Computing disconnected diagrams in Lattice QCD (operator insertion in a quark loop) entails the computationally demanding problem of taking the trace of the all to all quark propagator. We first outline the basic algorithm used to compute a quark loop as well as improvements to this method. Then, we motivate and introduce an algorithm based on the synergy between hierarchical probing and singular value deflation. We present results for the chiral condensate using a 2+1-flavor clover ensemble and compare estimates of the nucleon charges with the basic algorithm.
International Nuclear Information System (INIS)
Mironov, K.E.
1981-01-01
An area of the Pr-P system, adjoining to the Pr ordinate, is plotted up by the DTA method. Presence of P solid solution in Pr is established. Data on thermal stability of PrP, PrP 2 , PrP 5 and PrP 7 are generalized. The diagram of phase transformations in Pr-P system is plotted up proceeding from the whole complex of the data, presented. A supposition is made on a possible formation of solid solutions between the highest polyphosphide and phosphorus [ru
High temperature phase equilibria and phase diagrams
Kuo, Chu-Kun; Yan, Dong-Sheng
2013-01-01
High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature
Applications of zero-suppressed decision diagrams
Sasao, Tsutomu
2014-01-01
A zero-suppressed decision diagram (ZDD) is a data structure to represent objects that typically contain many zeros. Applications include combinatorial problems, such as graphs, circuits, faults, and data mining. This book consists of four chapters on the applications of ZDDs. The first chapter by Alan Mishchenko introduces the ZDD. It compares ZDDs to BDDs, showing why a more compact representation is usually achieved in a ZDD. The focus is on sets of subsets and on sum-of-products (SOP) expressions. Methods to generate all the prime implicants (PIs), and to generate irredundant SOPs are show
Influence diagrams for speed profile optimization
Czech Academy of Sciences Publication Activity Database
Kratochvíl, Václav; Vomlel, Jiří
2017-01-01
Roč. 88, č. 1 (2017), s. 567-586 ISSN 0888-613X R&D Projects: GA ČR(CZ) GA16-12010S Institutional support: RVO:67985556 Keywords : Influence diagrams * Optimal control * Vehicle control Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.845, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kratochvil-0476597.pdf
Twistor diagrams and massless Moeller scattering
International Nuclear Information System (INIS)
Hodges, A.P.
1983-01-01
The theory of twistor diagrams, as devised by Penrose, is intended to lead to a manifestly finite account of scattering amplitudes in quantum field theory. The theory is here extended to a more general type of interaction between massless fields than has hitherto been described. It is applied to the example of first-order massless Moeller scattering in quantum electrodynamics. It is shown that earlier studies of this example have failed to render a correct account, in particular by overlooking an infrared divergency, but that the scattering data can nevertheless be represented within the twistor formalism. (author)
Diagram of Saturn V Launch Vehicle
1971-01-01
This is a good cutaway diagram of the Saturn V launch vehicle showing the three stages, the instrument unit, and the Apollo spacecraft. The chart on the right presents the basic technical data in clear detail. The Saturn V is the largest and most powerful launch vehicle in the United States. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams. Development of the Saturn V was the responsibility of the Marshall Space Flight Center at Huntsville, Alabama, directed by Dr. Wernher von Braun.
On the Impact of Layout Quality to Understanding UML Diagrams: Diagram Type and Expertise
DEFF Research Database (Denmark)
Störrle, Harald
2012-01-01
Practical experience suggests that the use and understanding of UML diagrams is greatly affected by the quality of their layout. In previous work, we have presented evidence supporting this intuition. This contrasts with earlier experiments that yielded weak or inconclusive evidence only. In the ......Practical experience suggests that the use and understanding of UML diagrams is greatly affected by the quality of their layout. In previous work, we have presented evidence supporting this intuition. This contrasts with earlier experiments that yielded weak or inconclusive evidence only...
On the question of calculation methods of phase diagrams
International Nuclear Information System (INIS)
Vasil'ev, M.V.
1983-01-01
The technique of determining interaction parameters of components of binary alloys is suggested. U-Mo and Cu-Al systems are used as example with the aid of experimental state diagrams. It is shown that the search for new regularities is necessary with the aim of analytical description of state diagrams and forecast of the shape of phase equilibria curves in real systems. Optimum combinations of experimental investigations with the aim of reliable determination of supporting points and forecasting possibilities of typical equations can considerably decrease the volume of experimental work when preparing state diagrams, in cases of repeated state diagrams of more reliable state diagrams with the application of more advanced methods of investigation. The translation of state diagrams from geometric to analytical language with the use of typical equations opens up new possibilities for establishing a compact information bank for state diagrams
Directory of Open Access Journals (Sweden)
Einasto J.
2011-06-01
Full Text Available I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic web.
Matter coupled to quantum gravity in group field theory
International Nuclear Information System (INIS)
Ryan, James
2006-01-01
We present an account of a new model incorporating 3d Riemannian quantum gravity and matter at the group field theory level. We outline how the Feynman diagram amplitudes of this model are spin foam amplitudes for gravity coupled to matter fields and discuss some features of the model. To conclude, we describe some related future work
Critical point analysis of phase envelope diagram
Energy Technology Data Exchange (ETDEWEB)
Soetikno, Darmadi; Siagian, Ucok W. R. [Department of Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Kusdiantara, Rudy, E-mail: rkusdiantara@s.itb.ac.id; Puspita, Dila, E-mail: rkusdiantara@s.itb.ac.id; Sidarto, Kuntjoro A., E-mail: rkusdiantara@s.itb.ac.id; Soewono, Edy; Gunawan, Agus Y. [Department of Mathematics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)
2014-03-24
Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.
Critical point analysis of phase envelope diagram
International Nuclear Information System (INIS)
Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy; Puspita, Dila; Sidarto, Kuntjoro A.; Soewono, Edy; Gunawan, Agus Y.
2014-01-01
Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab
Using influence diagrams for data worth analysis
International Nuclear Information System (INIS)
Sharif Heger, A.; White, Janis E.
1997-01-01
Decision-making under uncertainty describes most environmental remediation and waste management problems. Inherent limitations in knowledge concerning contaminants, environmental fate and transport, remedies, and risks force decision-makers to select a course of action based on uncertain and incomplete information. Because uncertainties can be reduced by collecting additional data., uncertainty and sensitivity analysis techniques have received considerable attention. When costs associated with reducing uncertainty are considered in a decision problem, the objective changes; rather than determine what data to collect to reduce overall uncertainty, the goal is to determine what data to collect to best differentiate between possible courses of action or decision alternatives. Environmental restoration and waste management requires cost-effective methods for characterization and monitoring, and these methods must also satisfy regulatory requirements. Characterization and monitoring activities imply that, sooner or later, a decision must be made about collecting new field data. Limited fiscal resources for data collection should be committed only to those data that have the most impact on the decision at lowest possible cost. Applying influence diagrams in combination with data worth analysis produces a method which not only satisfies these requirements but also gives rise to an intuitive representation of complex structures not possible in the more traditional decision tree representation. This paper demonstrates the use of influence diagrams in data worth analysis by applying to a monitor-and-treat problem often encountered in environmental decision problems
Phase Diagram of Spiking Neural Networks
Directory of Open Access Journals (Sweden)
Hamed eSeyed-Allaei
2015-03-01
Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.
Magnetic phase diagrams of UNiGe
International Nuclear Information System (INIS)
Nakotte, H.; Hagmusa, I.H.; Klaasse, J.C.P.; Hagmusa, I.H.; Klaasse, J.C.P.
1997-01-01
UNiGe undergoes two magnetic transitions in zero field. Here, the magnetic diagrams of UNiGe for B parallel b and B parallel c are reported. We performed temperatures scans of the magnetization in static magnetic fields up to 19.5T applied along the b and c axes. For both orientations 3 magnetic phases have been identified in the B-T diagrams. We confirmed the previously reported phase boundaries for B parallel c, and in addition we determined the location of the phase boundaries for B parallel b. We discuss a possible relationship of the two zero-field antiferromagnetic phases (commensurate: T<42K; incommensurate: 42K< T<50K) and the field-induced phase, which, at low temperatures, occurs between 18 and 25T or 4 and 10T for B parallel b or B parallel c, respectively. Finally, we discuss the field dependence of the electronic contribution γ to the specific heat for B parallel c up to 17.5T, and we find that its field dependence is similar to the one found in more itinerant uranium compounds
VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R.
Chen, Hanbo; Boutros, Paul C
2011-01-26
Visualization of orthogonal (disjoint) or overlapping datasets is a common task in bioinformatics. Few tools exist to automate the generation of extensively-customizable, high-resolution Venn and Euler diagrams in the R statistical environment. To fill this gap we introduce VennDiagram, an R package that enables the automated generation of highly-customizable, high-resolution Venn diagrams with up to four sets and Euler diagrams with up to three sets. The VennDiagram package offers the user the ability to customize essentially all aspects of the generated diagrams, including font sizes, label styles and locations, and the overall rotation of the diagram. We have implemented scaled Venn and Euler diagrams, which increase graphical accuracy and visual appeal. Diagrams are generated as high-definition TIFF files, simplifying the process of creating publication-quality figures and easing integration with established analysis pipelines. The VennDiagram package allows the creation of high quality Venn and Euler diagrams in the R statistical environment.
VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R
Directory of Open Access Journals (Sweden)
Boutros Paul C
2011-01-01
Full Text Available Abstract Background Visualization of orthogonal (disjoint or overlapping datasets is a common task in bioinformatics. Few tools exist to automate the generation of extensively-customizable, high-resolution Venn and Euler diagrams in the R statistical environment. To fill this gap we introduce VennDiagram, an R package that enables the automated generation of highly-customizable, high-resolution Venn diagrams with up to four sets and Euler diagrams with up to three sets. Results The VennDiagram package offers the user the ability to customize essentially all aspects of the generated diagrams, including font sizes, label styles and locations, and the overall rotation of the diagram. We have implemented scaled Venn and Euler diagrams, which increase graphical accuracy and visual appeal. Diagrams are generated as high-definition TIFF files, simplifying the process of creating publication-quality figures and easing integration with established analysis pipelines. Conclusions The VennDiagram package allows the creation of high quality Venn and Euler diagrams in the R statistical environment.
Diagrams: A Visual Survey of Graphs, Maps, Charts and Diagrams for the Graphic Designer.
Lockwood, Arthur
Since the ultimate success of any diagram rests in its clarity, it is important that the designer select a method of presentation which will achieve this aim. He should be aware of the various ways in which statistics can be shown diagrammatically, how information can be incorporated in maps, and how events can be plotted in chart or graph form.…
The Diagram as Story: Unfolding the Event-Structure of the Mathematical Diagram
de Freitas, Elizabeth
2012-01-01
This paper explores the role of narrative in decoding diagrams. I focus on two fundamental facets of narrative: (1) the recounting of causally related sequences of events, and (2) the positioning of the narrator through point-of-view and voice. In the first two sections of the paper I discuss philosophical and semiotic frameworks for making sense…
Angelo, Joseph A
2011-01-01
Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S
Hagedorn inflation in string gas cosmology
José Nunes da Silva, Tiago
2010-01-01
Durante o século XX, avanços teóricos e experimentais jogaramuma nova luz sobre o estudo da história e evolução do universo, a Cosmologia. A partir dos trabalhos de Edwin Hubble, a cosmologia moderna pôde ser vista como ciência. Mas foi nas últimas décadas, sobretudo, com o desenvolvimento da cosmologia de precisão e devido a uma melhor compreensão da natureza em seu nível mais fundamental, que a Cosmologia despertou maior interesse científico. Uma das fronteiras da área diz re...
Energy level diagrams for black hole orbits
Levin, Janna
2009-12-01
A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.
Energy level diagrams for black hole orbits
International Nuclear Information System (INIS)
Levin, Janna
2009-01-01
A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.
Database design using entity-relationship diagrams
Bagui, Sikha
2011-01-01
Data, Databases, and the Software Engineering ProcessDataBuilding a DatabaseWhat is the Software Engineering Process?Entity Relationship Diagrams and the Software Engineering Life Cycle Phase 1: Get the Requirements for the Database Phase 2: Specify the Database Phase 3: Design the DatabaseData and Data ModelsFiles, Records, and Data ItemsMoving from 3 × 5 Cards to ComputersDatabase Models The Hierarchical ModelThe Network ModelThe Relational ModelThe Relational Model and Functional DependenciesFundamental Relational DatabaseRelational Database and SetsFunctional
Visualizing Mortality Dynamics in the Lexis Diagram
DEFF Research Database (Denmark)
Rau, Roland; Bohk-Ewald, Christina; Muszynska, Magdalena M
This book visualizes mortality dynamics in the Lexis diagram. While the standard approach of plotting death rates is also covered, the focus in this book is on the depiction of rates of mortality improvement over age and time. This rather novel approach offers a more intuitive understanding...... of the underlying dynamics, enabling readers to better understand whether period- or cohort-effects were instrumental for the development of mortality in a particular country. Besides maps for single countries, the book includes maps on the dynamics of selected causes of death in the United States...... Software to produce these types of surface maps. Readers are encouraged to use the presented tools to visualize other demographic data or any event that can be measured by age and calendar time, allowing them to adapt the methods to their respective research interests. The intended audience is anyone who...
Calculation of superalloy phase diagrams. IV
International Nuclear Information System (INIS)
Kaufman, L.; Nesor, H.
1975-01-01
Explicit descriptions of the Fe--Mo, Fe--W, Fe--Nb, W--Cr and Ti--W binary systems have been developed in line with lattice stability, thermochemical and phase diagram data. These descriptions, along with similar results derived previously, have been employed to calculate isothermal sections in the Cr--Al--Fe, Fe--Mo--Cr, Fe--W--Cr, Ni--Al--Co, Nb--Ti--W, Ti--W--Mo, Cr--W--Mo, Ni--Mo--W, and Ni--W--Ti systems for comparison with experimental results. The effects of carbon impurities on miscibility gap formation in the Ti--W, Nb--Ti--W, Ti--W--Mo and Cr--W--Mo systems are discussed
Logic verification system for power plant sequence diagrams
International Nuclear Information System (INIS)
Fukuda, Mitsuko; Yamada, Naoyuki; Teshima, Toshiaki; Kan, Ken-ichi; Utsunomiya, Mitsugu.
1994-01-01
A logic verification system for sequence diagrams of power plants has been developed. The system's main function is to verify correctness of the logic realized by sequence diagrams for power plant control systems. The verification is based on a symbolic comparison of the logic of the sequence diagrams with the logic of the corresponding IBDs (interlock Block Diagrams) in combination with reference to design knowledge. The developed system points out the sub-circuit which is responsible for any existing mismatches between the IBD logic and the logic realized by the sequence diagrams. Applications to the verification of actual sequence diagrams of power plants confirmed that the developed system is practical and effective. (author)
Graphical matching rules for cardinality based service feature diagrams
Directory of Open Access Journals (Sweden)
Faiza Kanwal
2017-03-01
Full Text Available To provide efficient services to end-users, variability and commonality among the features of the product line is a challenge for industrialist and researchers. Feature modeling provides great services to deal with variability and commonality among the features of product line. Cardinality based service feature diagrams changed the basic framework of service feature diagrams by putting constraints to them, which make service specifications more flexible, but apart from their variation in selection third party services may have to be customizable. Although to control variability, cardinality based service feature diagrams provide high level visual notations. For specifying variability, the use of cardinality based service feature diagrams raises the problem of matching a required feature diagram against the set of provided diagrams.
Oak Ridge National Laboratory Technology Logic Diagram
International Nuclear Information System (INIS)
1993-09-01
The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D ampersand D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D ampersand D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2
Leak before break piping evaluation diagram
International Nuclear Information System (INIS)
Fabi, R.J.; Peck, D.A.
1994-01-01
Traditionally Leak Before Break (LBB) has been applied to the evaluation of piping in existing nuclear plants. This paper presents a simple method for evaluating piping systems for LBB during the design process. This method produces a piping evaluation diagram (PED) which defines the LBB requirements to the piping designer for use during the design process. Several sets of LBB analyses are performed for each different pipe size and material considered in the LBB application. The results of this method are independent of the actual pipe routing. Two complete LBB evaluations are performed to determine the maximum allowable stability load, one evaluation for a low normal operating load, and the other evaluation for a high normal operating load. These normal operating loads span the typical loads for the particular system being evaluated. In developing the allowable loads, the appropriate LBB margins are included in the PED preparation. The resulting LBB solutions are plotted as a set of allowable curves for the maximum design basis load, such is the seismic load versus the normal operating load. Since the required margins are already accounted for in the LBB PED, the piping designer can use the diagram directly with the results of the piping analysis and determine immediately if the current piping arrangement passes LBB. Since the LBB PED is independent of pipe routing, changes to the piping system can be evaluated using the existing PED. For a particular application, all that remains is to confirm that the actual materials and pipe sizes assumed in creating the particular design are built into the plant
Oak Ridge National Laboratory Technology Logic Diagram
International Nuclear Information System (INIS)
1993-09-01
The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D ampersand D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA
Common phase diagram for low-dimensional superconductors
International Nuclear Information System (INIS)
Michalak, Rudi
2003-01-01
A phenomenological phase diagram which has been derived for high-temperature superconductors from NMR Knight-shift measurements of the pseudogap is compared to the phase diagram that is obtained for organic superconductors and spin-ladder superconductors, both low-dimensional systems. This is contrasted to the phase diagram of some Heavy Fermion superconductors, i.e. superconductors not constrained to a low dimensionality
Updating the Nomographical Diagrams for Dimensioning the Beams
Pop Maria T.
2015-01-01
In order to reduce the time period needed for structures design it is strongly recommended to use nomographical diagrams. The base for formation and updating the nomographical diagrams, stands on the charts presented by different technical publications. The updated charts use the same algorithm and calculation elements as the former diagrams in accordance to the latest prescriptions and European standards. The result consists in a chart, having the same properties, similar with the nomogragra...
XLOOPS - a package calculating one- and two-loop diagrams
International Nuclear Information System (INIS)
Bruecher, L.
1997-01-01
A program package for calculating massive one- and two-loop diagrams is introduced. It consists of five parts: - a graphical user interface, - routines for generating diagrams from particle input, - procedures for calculating one-loop integrals both analytically and numerically, - routines for massive two-loop integrals, - programs for numerical integration of two-loop diagrams. Here the graphical user interface and the text interface to Maple are presented. (orig.)
DEFF Research Database (Denmark)
Hasse Jørgensen, Stina
2011-01-01
About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011.......About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011....
... Staying Safe Videos for Educators Search English Español Memory Matters KidsHealth / For Kids / Memory Matters What's in ... of your complex and multitalented brain. What Is Memory? When an event happens, when you learn something, ...
Satake diagrams of affine Kac-Moody algebras
Energy Technology Data Exchange (ETDEWEB)
Tripathy, L K [S B R Government Womens' College, Berhampur, Orissa 760 001 (India); Pati, K C [Department of Physics, Khallikote College, Berhampur, Orissa 760 001 (India)
2006-02-10
Satake diagrams of affine Kac-Moody algebras (untwisted and twisted) are obtained from their Dynkin diagrams. These diagrams give a classification of restricted root systems associated with these algebras. In the case of simple Lie algebras, these root systems and Satake diagrams correspond to symmetric spaces which have recently found many physical applications in quantum integrable systems, quantum transport problems, random matrix theories etc. We hope these types of root systems may have similar applications in theoretical physics in future and may correspond to symmetric spaces analogue of affine Kac-Moody algebras if they exist.
QCD phase diagram : heating or compressing ?
Maire, Antonin
2011-01-01
The sketch tries to address the question of the difference between heating and compressing the baryonic matter in relativistic heavy-ion collisions, i.e. how one can reach in the laboratory "high" temperature at "low" net baryon density (baryon chemical potential) or "low" temperature at "high" net baryon density.
Indian Academy of Sciences (India)
What You See Ain't What. You Got, Resonance, Vol.4,. No.9,1999. Dark Matter. 2. Dark Matter in the Universe. Bikram Phookun and Biman Nath. In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this.
The Compressed Baryonic Matter experiment at FAIR
Directory of Open Access Journals (Sweden)
Höhne Claudia
2018-01-01
Full Text Available The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.
Oak Ridge K-25 Site Technology Logic Diagram. Volume 2, Technology Logic Diagrams
Energy Technology Data Exchange (ETDEWEB)
Fellows, R.L. [ed.
1993-02-26
The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates envirorunental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. This volume, Volume 2, contains logic diagrams with an index. Volume 3 has been divided into two separate volumes to facilitate handling and use.
A Phase Space Diagram for Gravity
Directory of Open Access Journals (Sweden)
Xavier Hernandez
2012-05-01
Full Text Available In modified theories of gravity including a critical acceleration scale a_{0}, a critical length scale r_{M} = (GM/a_{0}^{1/2} will naturally arise with the transition from the Newtonian to the dark matter mimicking regime occurring for systems larger than r_{M}. This adds a second critical scale to gravity, in addition to the one introduced by the criterion v < c of the Schwarzschild radius, r_{S }= 2GM/c^{2}. The distinct dependencies of the two above length scales give rise to non-trivial phenomenology in the (mass, length plane for astrophysical structures, which we explore here. Surprisingly, extrapolation to atomic scales suggests gravity should be at the dark matter mimicking regime there.
Dark energy in six nearby galaxy flows: Synthetic phase diagrams and self-similarity
Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M. J.; Byrd, G. G.
2012-09-01
Outward flows of galaxies are observed around groups of galaxies on spatial scales of about 1 Mpc, and around galaxy clusters on scales of 10 Mpc. Using recent data from the Hubble Space Telescope (HST), we have constructed two synthetic velocity-distance phase diagrams: one for four flows on galaxy-group scales and the other for two flows on cluster scales. It has been shown that, in both cases, the antigravity produced by the cosmic dark-energy background is stronger than the gravity produced by the matter in the outflow volume. The antigravity accelerates the flows and introduces a phase attractor that is common to all scales, corresponding to a linear velocity-distance relation (the local Hubble law). As a result, the bundle of outflow trajectories mostly follow the trajectory of the attractor. A comparison of the two diagrams reveals the universal self-similar nature of the outflows: their gross phase structure in dimensionless variables is essentially independent of their physical spatial scales, which differ by approximately a factor of 10 in the two diagrams.
RNA secondary structure diagrams for very large molecules: RNAfdl
DEFF Research Database (Denmark)
Hecker, Nikolai; Wiegels, Tim; Torda, Andrew E.
2013-01-01
There are many programs that can read the secondary structure of an RNA molecule and draw a diagram, but hardly any that can cope with 10 3 bases. RNAfdl is slow but capable of producing intersection-free diagrams for ribosome-sized structures, has a graphical user interface for adjustments...
Exploring the QCD phase diagram through relativistic heavy ion collisions
Directory of Open Access Journals (Sweden)
Mohanty Bedangadas
2014-03-01
Full Text Available We present a review of the studies related to establishing the QCD phase diagram through high energy nucleus-nucleus collisions. We particularly focus on the experimental results related to the formation of a quark-gluon phase, crossover transition and search for a critical point in the QCD phase diagram.
Modeling cancer registration processes with an enhanced activity diagram.
Lyalin, D; Williams, W
2005-01-01
Adequate instruments are needed to reflect the complexity of routine cancer registry operations properly in a business model. The activity diagram is a key instrument of the Unified Modeling Language (UML) for the modeling of business processes. The authors aim to improve descriptions of processes in cancer registration, as well as in other public health domains, through the enhancements of an activity diagram notation within the standard semantics of UML. The authors introduced the practical approach to enhance a conventional UML activity diagram, complementing it with the following business process concepts: timeline, duration for individual activities, responsibilities for individual activities within swimlanes, and descriptive text. The authors used an enhanced activity diagram for modeling surveillance processes in the cancer registration domain. Specific example illustrates the use of an enhanced activity diagram to visualize a process of linking cancer registry records with external mortality files. Enhanced activity diagram allows for the addition of more business concepts to a single diagram and can improve descriptions of processes in cancer registration, as well as in other domains. Additional features of an enhanced activity diagram allow to advance the visualization of cancer registration processes. That, in turn, promotes the clarification of issues related to the process timeline, responsibilities for particular operations, and collaborations among process participants. Our first experiences in a cancer registry best practices development workshop setting support the usefulness of such an approach.
Spacelike penguin diagram effects in B implies PP decays
International Nuclear Information System (INIS)
Du, D.; Yang, M.; Zhang, D.
1996-01-01
The spacelike penguin diagram contributions to branching ratios and CP asymmetries in charmless decays of B to two pseudoscalar mesons are studied using the next-to-leading order low energy effective Hamiltonian. Both the gluonic penguin and the electroweak penguin diagrams are considered. We find that the effects are significant. copyright 1995 The American Physical Society
Diagram, Gesture, Agency: Theorizing Embodiment in the Mathematics Classroom
de Freitas, Elizabeth; Sinclair, Nathalie
2012-01-01
In this paper, we use the work of philosopher Gilles Chatelet to rethink the gesture/diagram relationship and to explore the ways mathematical agency is constituted through it. We argue for a fundamental philosophical shift to better conceptualize the relationship between gesture and diagram, and suggest that such an approach might open up new…
Drawing Euler Diagrams with Circles: The Theory of Piercings.
Stapleton, Gem; Leishi Zhang; Howse, John; Rodgers, Peter
2011-07-01
Euler diagrams are effective tools for visualizing set intersections. They have a large number of application areas ranging from statistical data analysis to software engineering. However, the automated generation of Euler diagrams has never been easy: given an abstract description of a required Euler diagram, it is computationally expensive to generate the diagram. Moreover, the generated diagrams represent sets by polygons, sometimes with quite irregular shapes that make the diagrams less comprehensible. In this paper, we address these two issues by developing the theory of piercings, where we define single piercing curves and double piercing curves. We prove that if a diagram can be built inductively by successively adding piercing curves under certain constraints, then it can be drawn with circles, which are more esthetically pleasing than arbitrary polygons. The theory of piercings is developed at the abstract level. In addition, we present a Java implementation that, given an inductively pierced abstract description, generates an Euler diagram consisting only of circles within polynomial time.
A comparison of two approaches for solving unconstrained influence diagrams
DEFF Research Database (Denmark)
Ahlmann-Ohlsen, Kristian S.; Jensen, Finn V.; Nielsen, Thomas Dyhre
2009-01-01
Influence diagrams and decision trees represent the two most common frameworks for specifying and solving decision problems. As modeling languages, both of these frameworks require that the decision analyst specifies all possible sequences of observations and decisions (in influence diagrams, thi...
Heuristic Diagrams as a Tool to Teach History of Science
Chamizo, Jose A.
2012-01-01
The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The…
Stability diagram for the forced Kuramoto model.
Childs, Lauren M; Strogatz, Steven H
2008-12-01
We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.
The phase diagram of ammonium nitrate
Chellappa, Raja S.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-01
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH4NO3] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
Cost-effectiveness Analysis with Influence Diagrams.
Arias, M; Díez, F J
2015-01-01
Cost-effectiveness analysis (CEA) is used increasingly in medicine to determine whether the health benefit of an intervention is worth the economic cost. Decision trees, the standard decision modeling technique for non-temporal domains, can only perform CEA for very small problems. To develop a method for CEA in problems involving several dozen variables. We explain how to build influence diagrams (IDs) that explicitly represent cost and effectiveness. We propose an algorithm for evaluating cost-effectiveness IDs directly, i.e., without expanding an equivalent decision tree. The evaluation of an ID returns a set of intervals for the willingness to pay - separated by cost-effectiveness thresholds - and, for each interval, the cost, the effectiveness, and the optimal intervention. The algorithm that evaluates the ID directly is in general much more efficient than the brute-force method, which is in turn more efficient than the expansion of an equivalent decision tree. Using OpenMarkov, an open-source software tool that implements this algorithm, we have been able to perform CEAs on several IDs whose equivalent decision trees contain millions of branches. IDs can perform CEA on large problems that cannot be analyzed with decision trees.
Community detection by graph Voronoi diagrams
Deritei, Dávid; Lázár, Zsolt I.; Papp, István; Járai-Szabó, Ferenc; Sumi, Róbert; Varga, Levente; Ravasz Regan, Erzsébet; Ercsey-Ravasz, Mária
2014-06-01
Accurate and efficient community detection in networks is a key challenge for complex network theory and its applications. The problem is analogous to cluster analysis in data mining, a field rich in metric space-based methods. Common to these methods is a geometric, distance-based definition of clusters or communities. Here we propose a new geometric approach to graph community detection based on graph Voronoi diagrams. Our method serves as proof of principle that the definition of appropriate distance metrics on graphs can bring a rich set of metric space-based clustering methods to network science. We employ a simple edge metric that reflects the intra- or inter-community character of edges, and a graph density-based rule to identify seed nodes of Voronoi cells. Our algorithm outperforms most network community detection methods applicable to large networks on benchmark as well as real-world networks. In addition to offering a computationally efficient alternative for community detection, our method opens new avenues for adapting a wide range of data mining algorithms to complex networks from the class of centroid- and density-based clustering methods.
Nuclear matter physics at NICA
Energy Technology Data Exchange (ETDEWEB)
Senger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)
2016-08-15
The exploration of the QCD phase diagram is one of the most exciting and challenging projects of modern nuclear physics. In particular, the investigation of nuclear matter at high baryon densities offers the opportunity to find characteristic structures such as a first-order phase transition with a region of phase coexistence and a critical endpoint. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. Equally important is the quantitative experimental information on the properties of hadrons in dense matter which may shed light on chiral symmetry restoration and the origin of hadron masses. Worldwide, substantial efforts at the major heavy-ion accelerators are devoted to the clarification of these fundamental questions, and new dedicated experiments are planned at future facilities like CBM at FAIR in Darmstadt and MPD at NICA/JINR in Dubna. In this article the perspectives for MPD at NICA will be discussed. (orig.)
Updating the Nomographical Diagrams for Dimensioning the Beams
Directory of Open Access Journals (Sweden)
Pop Maria T.
2015-12-01
Full Text Available In order to reduce the time period needed for structures design it is strongly recommended to use nomographical diagrams. The base for formation and updating the nomographical diagrams, stands on the charts presented by different technical publications. The updated charts use the same algorithm and calculation elements as the former diagrams in accordance to the latest prescriptions and European standards. The result consists in a chart, having the same properties, similar with the nomogragraphical diagrams already in us. As a general conclusion, even in our days, the nomographical diagrams are very easy to use. Taking into consideration the value of the moment it’s easy to find out the necessary reinforcement area and vice-verse, having the reinforcement area you can find out the capable moment. It still remains a useful opportunity for pre-sizing and designs the reinforced concrete sections.
Analysis of Sequence Diagram Layout in Advanced UML Modelling Tools
Directory of Open Access Journals (Sweden)
Ņikiforova Oksana
2016-05-01
Full Text Available System modelling using Unified Modelling Language (UML is the task that should be solved for software development. The more complex software becomes the higher requirements are stated to demonstrate the system to be developed, especially in its dynamic aspect, which in UML is offered by a sequence diagram. To solve this task, the main attention is devoted to the graphical presentation of the system, where diagram layout plays the central role in information perception. The UML sequence diagram due to its specific structure is selected for a deeper analysis on the elements’ layout. The authors research represents the abilities of modern UML modelling tools to offer automatic layout of the UML sequence diagram and analyse them according to criteria required for the diagram perception.
Efficient computation of clipped Voronoi diagram for mesh generation
Yan, Dongming
2013-04-01
The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method to optimal mesh generation based on the centroidal Voronoi tessellation. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.
Efficient computation of clipped Voronoi diagram for mesh generation
Yan, Dongming; Wang, Wen Ping; Lé vy, Bruno L.; Liu, Yang
2013-01-01
The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method to optimal mesh generation based on the centroidal Voronoi tessellation. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.
Phase diagrams of exceptional and supersymmetric lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Wellegehausen, Bjoern-Hendrik
2012-07-10
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Phase diagrams of exceptional and supersymmetric lattice gauge theories
International Nuclear Information System (INIS)
Wellegehausen, Bjoern-Hendrik
2012-01-01
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G 2 , that has a trivial centre. To investigate G 2 gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
International Nuclear Information System (INIS)
Shiu, Gary; Wang Liantao
2004-01-01
We study the properties and phenomenology of particlelike states originating from D branes whose spatial dimensions are all compactified. They are nonperturbative states in string theory and we refer to them as D matter. In contrast to other nonperturbative objects such as 't Hooft-Polyakov monopoles, D-matter states could have perturbative couplings among themselves and with ordinary matter. The lightest D particle (LDP) could be stable because it is the lightest state carrying certain (integer or discrete) quantum numbers. Depending on the string scale, they could be cold dark matter candidates with properties similar to that of WIMPs or wimpzillas. The spectrum of excited states of D matter exhibits an interesting pattern which could be distinguished from that of Kaluza-Klein modes, winding states, and string resonances. We speculate about possible signatures of D matter from ultrahigh energy cosmic rays and colliders
VennDiagramWeb: a web application for the generation of highly customizable Venn and Euler diagrams.
Lam, Felix; Lalansingh, Christopher M; Babaran, Holly E; Wang, Zhiyuan; Prokopec, Stephenie D; Fox, Natalie S; Boutros, Paul C
2016-10-03
Visualization of data generated by high-throughput, high-dimensionality experiments is rapidly becoming a rate-limiting step in computational biology. There is an ongoing need to quickly develop high-quality visualizations that can be easily customized or incorporated into automated pipelines. This often requires an interface for manual plot modification, rapid cycles of tweaking visualization parameters, and the generation of graphics code. To facilitate this process for the generation of highly-customizable, high-resolution Venn and Euler diagrams, we introduce VennDiagramWeb: a web application for the widely used VennDiagram R package. VennDiagramWeb is hosted at http://venndiagram.res.oicr.on.ca/ . VennDiagramWeb allows real-time modification of Venn and Euler diagrams, with parameter setting through a web interface and immediate visualization of results. It allows customization of essentially all aspects of figures, but also supports integration into computational pipelines via download of R code. Users can upload data and download figures in a range of formats, and there is exhaustive support documentation. VennDiagramWeb allows the easy creation of Venn and Euler diagrams for computational biologists, and indeed many other fields. Its ability to support real-time graphics changes that are linked to downloadable code that can be integrated into automated pipelines will greatly facilitate the improved visualization of complex datasets. For application support please contact Paul.Boutros@oicr.on.ca.
Cromley, Jennifer G.; Bergey, Bradley W.; Fitzhugh, Shannon; Newcombe, Nora; Wills, Theodore W.; Shipley, Thomas F.; Tanaka, Jacqueline C.
2013-01-01
Can students be taught to better comprehend the diagrams in their textbooks? Can such teaching transfer to uninstructed diagrams in the same domain or even in a new domain? What methods work best for these goals? Building on previous research showing positive results compared to control groups in both laboratory studies and short-term…
De Leng, Bas; Gijlers, Hannie
2015-05-01
To examine how collaborative diagramming affects discussion and knowledge construction when learning complex basic science topics in medical education, including its effectiveness in the reformulation phase of problem-based learning. Opinions and perceptions of students (n = 70) and tutors (n = 4) who used collaborative diagramming in tutorial groups were collected with a questionnaire and focus group discussions. A framework derived from the analysis of discourse in computer-supported collaborative leaning was used to construct the questionnaire. Video observations were used during the focus group discussions. Both students and tutors felt that collaborative diagramming positively affected discussion and knowledge construction. Students particularly appreciated that diagrams helped them to structure knowledge, to develop an overview of topics, and stimulated them to find relationships between topics. Tutors emphasized that diagramming increased interaction and enhanced the focus and detail of the discussion. Favourable conditions were the following: working with a shared whiteboard, using a diagram format that facilitated distribution, and applying half filled-in diagrams for non-content expert tutors and\\or for heterogeneous groups with low achieving students. The empirical findings in this study support the findings of earlier more descriptive studies that diagramming in a collaborative setting is valuable for learning complex knowledge in medicine.
International Nuclear Information System (INIS)
Rahmani, A.
1988-12-01
The study of the proton's production differential cross sections, in the collision of relativistic heavy ions, allows to obtain the nuclear-matter temperature and gives information about the nucleons large burst pulses in the nucleus. The chosen thermodynamic model is a generalized approach of the R. Hagedorn model, applied to heavy ions collisions: the nuclear matter is divided in volume elements δV assumed to be in thermal and chemical equilibrium and emitting particles and fragments isotropically, inside their own system. The applied nuclear-matter velocity distribution depended only on the impact parameter and on the relationship between the chemical potential and the temperature. The predictions of this thermodynamic model were compared to the Saturne experimental results, using Diogene detector. The obtained temperature values are similar to those given by D. Hahn and H. Stoker. The proton production cross sections were measured for backward emitting angles. A relationship between the cross sections and the burst pulse distribution in the nuclei was settled [fr
International Nuclear Information System (INIS)
Holt, S. S.; Bennett, C. L.
1995-01-01
These proceedings represent papers presented at the Astrophysics conference in Maryland, organized by NASA Goddard Space Flight Center and the University of Maryland. The topics covered included low mass stars as dark matter, dark matter in galaxies and clusters, cosmic microwave background anisotropy, cold and hot dark matter, and the large scale distribution and motions of galaxies. There were eighty five papers presented. Out of these, 10 have been abstracted for the Energy Science and Technology database
Czech Academy of Sciences Publication Activity Database
Priputen, P.; Černíčková, I.; Lejček, Pavel; Janičkovič, D.; Janovec, J.
2016-01-01
Roč. 37, č. 2 (2016), 130-134 ISSN 1547-7037 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : aluminium alloys * equilibria * experimental phase * intermetallics * isothermal section * phase diagram Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.938, year: 2016
International Nuclear Information System (INIS)
Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.
2008-01-01
One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter
Energy Technology Data Exchange (ETDEWEB)
1993-09-01
The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1. and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on the RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. Remedial action is the focus of Vol. 2, Pt. B, which has been divided into the three necessary subelements of the RA: characterization, RA, and robotics and automation. Each of these sections address general ORNL problems, which are then broken down by problem area/constituents and linked to potential remedial technologies. The diagrams also contain summary information about a technology`s status, its science and technology needs, and its implementation needs.
The Eh-pH Diagram and Its Advances
Directory of Open Access Journals (Sweden)
Hsin-Hsiung Huang
2016-01-01
Full Text Available Since Pourbaix presented Eh versus pH diagrams in his “Atlas of Electrochemical Equilibria in Aqueous Solution”, diagrams have become extremely popular and are now used in almost every scientific area related to aqueous chemistry. Due to advances in personal computers, such diagrams can now show effects not only of Eh and pH, but also of variables, including ligand(s, temperature and pressure. Examples from various fields are illustrated in this paper. Examples include geochemical formation, corrosion and passivation, precipitation and adsorption for water treatment and leaching and metal recovery for hydrometallurgy. Two basic methods were developed to construct an Eh-pH diagram concerning the ligand component(s. The first method calculates and draws a line between two adjacent species based on their given activities. The second method performs equilibrium calculations over an array of points (500 × 800 or higher are preferred, each representing one Eh and one pH value for the whole system, then combines areas of each dominant species for the diagram. These two methods may produce different diagrams. The fundamental theories, illustrated results, comparison and required conditions behind these two methods are presented and discussed in this paper. The Gibbs phase rule equation for an Eh-pH diagram was derived and verified from actual plots. Besides indicating the stability area of water, an Eh-pH diagram normally shows only half of an overall reaction. However, merging two or more related diagrams together reveals more clearly the possibility of the reactions involved. For instance, leaching of Au with cyanide followed by cementing Au with Zn (Merrill-Crowe process can be illustrated by combining Au-CN and Zn-CN diagrams together. A second example of the galvanic conversion of chalcopyrite can be explained by merging S, Fe–S and Cu–Fe–S diagrams. The calculation of an Eh-pH diagram can be extended easily into another dimension, such
International Nuclear Information System (INIS)
Eremenko, V.N.; Velikanova, T.Ya.; Gordijchuk, O.V.
1988-01-01
Results of the X-ray phase, metallographic and high-temperature differential thermal analysis are used for the first time to plot a diagram of the Pr-C system state. Carbides are formed in the system: Pr 2 C 3 with the bcc-structure of the Pu 2 C 3 type and with the period a 0 = 0.85722+-0.00026 within the phase region + 2 C 3 >, a 0 0.86078+-0.00016 nm - within the region 2 C 3 >+α-PrC 2 ; dimorphous PrC 2 : α-PrC 2 with the bct-structure of the CaC 2 type and periods a 0.38517+-0.00011, c 0 = 0.64337+-0.00019 nm; β-PrC 2 with the fcc-structure, probably, of KCN type. Dicarbide melts congruently at 2320 grad. C, forming eutectics with graphite at 2254+-6 grad. C and composition of 71.5% (at.)C. It is polymorphously transformed in the phase region 2 C 3 > + 2 > at 1145+-4 grad. C, and in the region 2 >+C at 1134+-4 grad. C. Sesquicarbide melts incongruently at 1545+-4 grad. C. The eutectic reaction L ↔ + 2 C 3 > occurs at 800+-4 grad. C, the eutectic composition ∼ 15% (at.)C. The temperature of the eutectoid reaction ↔ + 2 C 3 > is 675+-6 grad C. The limiting carbon solubility in β-Pr is about 8 and in α-Pr it is about 5% (at.)
Classical Process diagrams and Service oriented Architecture
Directory of Open Access Journals (Sweden)
Milan Mišovič
2013-01-01
services communicate with each other. The communication can involve either simple data or it could two or more services coordinating some activity. From the above mentioned we can pronounce a brief description of SOA. “SOA is an architectural style for consistency of business process logic and service architecture of the target software.”It is a complex of means for solution of special analysis, design, and integration of enterprise applications based on the use of enterprise services. The service solutions of the classic business process logic are, of course, based on the application of at least seven key principles of SOA (free relations, service contract, autonomy, abstraction, reusing, composition, no states. Key attributes of SOA are verbally described in (Erl, 2006. They are so important that a separate article should be devoted to their nature and formalization. On the other hand, there is also clear that each service solution of business logic should respect the principles published in SOA Manifesto, 2009, which are essentially derived from the key principles of SOA.In many publications there are given the SOA reference models usually composed of several layers (presentation layer, business process layer, composite services layer, application layer giving a meta idea of SOA implementation. Perfect knowledge of the business process logic is a necessary condition for the development of a proper service solution. The different types of business processes should be described in the necessary details and contexts.Interestingly, the SOA paradigm does not provide its own method of finding and describing business processes by giving a layered transparent business process diagram. On the other hand, the methodology provides deep understanding of not only the characteristics of services, but also their functionality and implementation of the key principles of SOA (Erl, 2006.Let us assume that the required process diagrams can be achieved by using some of the advanced
Diagrammatics lectures on selected problems in condensed matter theory
Sadovskii, Michael V
2006-01-01
The introduction of quantum field theory methods has led to a kind of "revolution" in condensed matter theory. This resulted in the increased importance of Feynman diagrams or diagram technique. It has now become imperative for professionals in condensed matter theory to have a thorough knowledge of this method.There are many good books that cover the general aspects of diagrammatic methods. At the same time, there has been a rising need for books that describe calculations and methodical "know how" of specific problems for beginners in graduate and postgraduate courses. This unique collection
Homotopy theory of modules over diagrams of rings
Directory of Open Access Journals (Sweden)
J. P. C. Greenlees
2014-09-01
Full Text Available Given a diagram of rings, one may consider the category of modules over them. We are interested in the homotopy theory of categories of this type: given a suitable diagram of model categories ℳ( (as runs through the diagram, we consider the category of diagrams where the object ( at comes from ℳ(. We develop model structures on such categories of diagrams and Quillen adjunctions that relate categories based on different diagram shapes. Under certain conditions, cellularizations (or right Bousfield localizations of these adjunctions induce Quillen equivalences. As an application we show that a cellularization of a category of modules over a diagram of ring spectra (or differential graded rings is Quillen equivalent to modules over the associated inverse limit of the rings. Another application of the general machinery here is given in work by the authors on algebraic models of rational equivariant spectra. Some of this material originally appeared in the preprint “An algebraic model for rational torus-equivariant stable homotopy theory”, arXiv:1101.2511, but has been generalized here.
Penguin-like diagrams from the standard model
International Nuclear Information System (INIS)
Ping, Chia Swee
2015-01-01
The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated
Penguin-like diagrams from the standard model
Energy Technology Data Exchange (ETDEWEB)
Ping, Chia Swee [High Impact Research, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2015-04-24
The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.
Plotting and Analyzing Data Trends in Ternary Diagrams Made Easy
John, Cédric M.
2004-04-01
Ternary plots are used in many fields of science to characterize a system based on three components. Triangular plotting is thus useful to a broad audience in the Earth sciences and beyond. Unfortunately, it is typically the most expensive commercial software packages that offer the option to plot data in ternary diagrams, and they lack features that are paramount to the geosciences, such as the ability to plot data directly into a standardized diagram and the possibility to analyze temporal and stratigraphic trends within this diagram. To address these issues, δPlot was developed with a strong emphasis on ease of use, community orientation, and availability free of charges. This ``freeware'' supports a fully graphical user interface where data can be imported as text files, or by copying and pasting. A plot is automatically generated, and any standard diagram can be selected for plotting in the background using a simple pull-down menu. Standard diagrams are stored in an external database of PDF files that currently holds some 30 diagrams that deal with different fields of the Earth sciences. Using any drawing software supporting PDF, one can easily produce new standard diagrams to be used with δPlot by simply adding them to the library folder. An independent column of values, commonly stratigraphic depths or ages, can be used to sort the data sets.
Mollier-h,x diagram for moist flue gas
Energy Technology Data Exchange (ETDEWEB)
Mueller, H; Hultsch, T; Suder, M
1984-07-01
Diagrams and formulae are presented for calculation of enthalpy and moisture content of flue gas from brown coal, heating oil, black coal and brown coal briquet combustion. The enthalpy (in kJ/kg) and moisture (g/kg) diagrams were established by computer graphics for pressure 0.1 MPa. A further diagram is provided for enthalpy and flue gas moisture, varying the combustion air supply according to coal dust and to grate firing. These thermodynamic calculations are regarded as significant for assessing methods of flue gas cooling below the moisture dew point and for waste heat recovery. 3 references.
A Three-dimensional Topological Model of Ternary Phase Diagram
International Nuclear Information System (INIS)
Mu, Yingxue; Bao, Hong
2017-01-01
In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)
Research principles and the construction of mnemonic diagrams
Venda, V. F.; Mitkin, A. A.
1973-01-01
Mnemonic diagrams are defined as a variety of information display devices, the essential element of which is conventional graphical presentation of technological or functional-operational links in a controlled system or object. Graphically displaying the operational structure of an object, the interd dependence between different parameters, and the interdependence between indicators and control organs, the mneomonic diagram reduces the load on the operator's memory and facilitates perception and reprocessing of information and decision making, while at the same time playing the role of visual support to the information activity of the operator. The types of mnemonic diagrams are listed.
Ferrian Ilmenites: Investigating the Magnetic Phase Diagram
Lagroix, F.
2007-12-01
The main objective of this study is to investigate the magnetic phase changes within the hematite-ilmenite solid solution, yFeTiO3·(1-y)·Fe2O3. Two sets of synthetic ferrian ilmenites of y-values equal to 0.7, 0.8, 0.9, and 1.0 were available for this study. As currently drawn, the magnetic phase diagram, proposed by Ishikawa et al. [1985, J. Phys. Soc. Jpn. v.54, 312-325], predicts for increasing y values (0.5
An updated Type II supernova Hubble diagram
Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.
2018-03-01
We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25
The phases of isospin-asymmetric matter in the two-flavor NJL model
Energy Technology Data Exchange (ETDEWEB)
Lawley, S. [Special Research Centre for the Subatomic Structure of Matter, University of Adelaide, Adelaide, SA 5005 (Australia) and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: slawley@jlab.org; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)
2006-01-19
We investigate the phase diagram of isospin-asymmetric matter at T=0 in the two-flavor Nambu-Jona-Lasinio model. Our approach describes the single nucleon as a confined quark-diquark state, the saturation properties of nuclear matter at normal densities, and the phase transition to normal or color superconducting quark matter at higher densities. The resulting equation of state of charge-neutral matter and the structure of compact stars are discussed.
Adding Value to Force Diagrams: Representing Relative Force Magnitudes
Wendel, Paul
2011-05-01
Nearly all physics instructors recognize the instructional value of force diagrams, and this journal has published several collections of exercises to improve student skill in this area.1-4 Yet some instructors worry that too few students perceive the conceptual and problem-solving utility of force diagrams,4-6 and over recent years a rich variety of approaches has been proposed to add value to force diagrams. Suggestions include strategies for identifying candidate forces,6,7 emphasizing the distinction between "contact" and "noncontact" forces,5,8 and the use of computer-based tutorials.9,10 Instructors have suggested a variety of conventions for constructing force diagrams, including approaches to arrow placement and orientation2,11-13 and proposed notations for locating forces or marking action-reaction force pairs.8,11,14,15
Heuristic Diagrams as a Tool to Teach History of Science
Chamizo, José A.
2012-05-01
The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The left side originally related in Gowin's Vee with philosophies, theories, models, laws or regularities now agrees with Toulmin's concepts (language, models as representation techniques and application procedures). Mexican science teachers without experience in science education research used the heuristic diagram to learn about the history of chemistry considering also in the left side two different historical times: past and present. Through a semantic differential scale teachers' attitude to the heuristic diagram was evaluated and its usefulness was demonstrated.
Feynman diagrams coupled to three-dimensional quantum gravity
International Nuclear Information System (INIS)
Barrett, John W
2006-01-01
A framework for quantum field theory coupled to three-dimensional quantum gravity is proposed. The coupling with quantum gravity regulates the Feynman diagrams. One recovers the usual Feynman amplitudes in the limit as the cosmological constant tends to zero
Cu–Ni nanoalloy phase diagram – Prediction and experiment
Czech Academy of Sciences Publication Activity Database
Sopoušek, J.; Vřešťál, J.; Pinkas, J.; Brož, P.; Buršík, Jiří; Stýskalík, A.; Škoda, D.; Zobač, O.; Lee, J.
2014-01-01
Roč. 45, June (2014), s. 33-39 ISSN 0364-5916 Institutional support: RVO:68081723 Keywords : nanoalloy * phase diagram * thermodynamic modeling Subject RIV: BJ - Thermodynamics Impact factor: 1.370, year: 2014
Revised Pourbaix diagrams for Copper at 5-150 C
International Nuclear Information System (INIS)
Beverskog, B.; Puigdomenech, I.
1995-10-01
Pourbaix diagrams have been revised. Predominance diagrams for dissolved copper species have also been calculated. Five different total concentrations for dissolved copper have been used in the calculations (from 10 -3 to 10 -9 ). The complete hydrolysis series of copper(I) and (II) have not been included in earlier published Pourbaix diagrams, and these species are covered for the first time in this work. At acidic pH, increasing temperature decreases the immunity area, and therefore, it increases the corrosion of the copper. At alkaline pH-values corrosion also increases with the temperature due to the decrease of both passivity and immunity areas. The calculated diagrams are used as a base for the discussion of the corrosion behaviour of the copper canisters in the Swedish radioactive waste management program. 62 refs, 37 figs, 3 tabs
Solid gas reaction phase diagram under high gas pressure
International Nuclear Information System (INIS)
Ishizaki, K.
1992-01-01
This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values
Angelo, Joseph A
2011-01-01
aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of
Approximation of hadron interactions by Regge diagrams with multipomeron exchange
International Nuclear Information System (INIS)
Barashenkov, V.S.
1988-01-01
A good agreement of hadron diffraction interaction total cross section and their elastic scattering at small angles calculated by summarizing Regge multipomeron exchange diagrams with experiment mentioned by a number of authors results from the fitting of a great variety of the parameters contained in the formulas. The agreement of the other hadron characteristcs with experiment is worse. Distribution of hadron interactions over the number of fragmenting quark-gluon strings calculated by utilizing Regge diagrams is discussed
Algorithms and programs for consequence diagram and fault tree construction
International Nuclear Information System (INIS)
Hollo, E.; Taylor, J.R.
1976-12-01
A presentation of algorithms and programs for consequence diagram and sequential fault tree construction that are intended for reliability and disturbance analysis of large systems. The system to be analyzed must be given as a block diagram formed by mini fault trees of individual system components. The programs were written in LISP programming language and run on a PDP8 computer with 8k words of storage. A description is given of the methods used and of the program construction and working. (author)
Irradiation distribution diagrams and their use for estimating collectable energy
International Nuclear Information System (INIS)
Ronnelid, M.; Karlsson, B.
1997-01-01
A method for summarising annual or seasonal solar irradiation data in irradiation distribution diagrams, including both direct and diffuse irradiation, is outlined. The practical use of irradiation distribution diagrams is discussed in the paper. Examples are given for the calculation of collectable irradiation on flat plate collectors or trough-like concentrators like the compound parabolic concentrator (CPC), and for the calculation of overhang geometries for windows to prevent overheating of buildings. (author)
49 CFR Appendix B to Part 230 - Diagrams and Drawings
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Diagrams and Drawings B Appendix B to Part 230 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... to Part 230—Diagrams and Drawings ER17No99.015 ER17No99.016 ER17No99.017 ER17No99.018 ER17No99.019...
On Hardy's paradox, weak measurements, and multitasking diagrams
International Nuclear Information System (INIS)
Meglicki, Zdzislaw
2011-01-01
We discuss Hardy's paradox and weak measurements by using multitasking diagrams, which are introduced to illustrate the progress of quantum probabilities through the double interferometer system. We explain how Hardy's paradox is avoided and elaborate on the outcome of weak measurements in this context. -- Highlights: → Hardy's paradox explained and eliminated. → Weak measurements: what is really measured? → Multitasking diagrams: introduced and used to discuss quantum mechanical processes.
Creating Royal Australian Navy Standard Operating Procedures using Flow Diagrams
2015-08-01
departments and check the naming and number conventions have been adhered to. They will also coordinate the review process and check that the definitive ...possible. If the performer is a team the composition of the team should be described in the SOP, either as a definition or in the description of a...diagram a video could be used. A hyperlink to a video of the process to follow could be added to the flow diagram or the description section of the
Diagrams of ion stability in radio-frequency mass spectrometry
International Nuclear Information System (INIS)
Sudakov, M.Yu.
1994-01-01
For solving radio-frequency mass spectrometry problems and dynamic ion containment are studied and systematized different ways for constructing the ion stability diagrams. A new universal set of parameters is proposed for diagram construction-angular variables, which are the phase raid of ion oscillational motion during positive and negative values of the supplying voltage. An effective analytical method is proposed for optimization of the parameters of the pulsed supplying voltage, in particular its repetition rate
On the phase diagram of non-spherical nanoparticles
Wautelet, M; Hecq, M
2003-01-01
The phase diagram of nanoparticles is known to be a function of their size. In the literature, this is generally demonstrated for cases where their shape is spherical. Here, it is shown theoretically that the phase diagram of non-spherical particles may be calculated from the spherical case, at the same surface area/volume ratio, both with and without surface segregation, provided the surface tension is considered to be isotropic.
COCCIA, Mario
2017-01-01
Abstract. This study suggests the fishbone diagram for technological analysis. Fishbone diagram (also called Ishikawa diagrams or cause-and-effect diagrams) is a graphical technique to show the several causes of a specific event or phenomenon. In particular, a fishbone diagram (the shape is similar to a fish skeleton) is a common tool used for a cause and effect analysis to identify a complex interplay of causes for a specific problem or event. The fishbone diagram can be a comprehensive theo...
Construction of UML class diagram with Model-Driven Development
Directory of Open Access Journals (Sweden)
Tomasz Górski
2016-03-01
Full Text Available Model transformations play a key role in software development projects based on Model--Driven Development (MDD principles. Transformations allow for automation of repetitive and well-defined steps, thus shortening design time and reducing a number of errors. In the object-oriented approach, the key elements are use cases. They are described, modelled and later designed until executable application code is obtained. The aim of the paper is to present transformation of a model-to-model type, Communication-2-Class, which automates construction of Unified Modelling Language (UML class diagram in the context of the analysis/design model. An UML class diagram is created based on UML communication diagram within use case realization. As a result, a class diagram shows all of the classes involved in the use case realization and the relationships among them. The plug-in which implements Communication-2-Class transformation was implemented in the IBM Rational Software Architect. The article presents the tests results of developed plug-in, which realizes Communication-2-Class transformation, showing capabilities of shortening use case realization’s design time.[b]Keywords[/b]: Model-Driven Development, transformations, Unified Modelling Language, analysis/design model, UML class diagram, UML communication diagram
Vesicle computers: Approximating a Voronoi diagram using Voronoi automata
International Nuclear Information System (INIS)
Adamatzky, Andrew; De Lacy Costello, Ben; Holley, Julian; Gorecki, Jerzy; Bull, Larry
2011-01-01
Highlights: → We model irregular arrangements of vesicles filled with chemical systems. → We examine influence of precipitation threshold on the system's computational potential. → We demonstrate computation of Voronoi diagram and skeleton. - Abstract: Irregular arrangements of vesicles filled with excitable and precipitating chemical systems are imitated by Voronoi automata - finite-state machines defined on a planar Voronoi diagram. Every Voronoi cell takes four states: resting, excited, refractory and precipitate. A resting cell excites if it has at least one neighbour in an excited state. The cell precipitates if the ratio of excited cells in its neighbourhood versus the number of neighbours exceeds a certain threshold. To approximate a Voronoi diagram on Voronoi automata we project a planar set onto the automaton lattice, thus cells corresponding to data-points are excited. Excitation waves propagate across the Voronoi automaton, interact with each other and form precipitate at the points of interaction. The configuration of the precipitate represents the edges of an approximated Voronoi diagram. We discover the relationship between the quality of the Voronoi diagram approximation and the precipitation threshold, and demonstrate the feasibility of our model in approximating Voronoi diagrams of arbitrary-shaped objects and in constructing a skeleton of a planar shape.
Dictionary of terminology of property of matter
International Nuclear Information System (INIS)
1990-06-01
This book is a dictionary of term of property of matter. It indicates the items and way of arrangement which are written by the order ; first in English and then in Korean, and in alphabetical order. It gives descriptions of terms which are complied by directions of government of chosen by idiom and terms in of technical and scientific terms, symbols such as unit and sign and index and appendix which includes how to read mathematical sign, abbreviation of floor plan, terms of floor plan diagram of property of matter and conversion table.
Simple method for evaluating Goldstone diagrams in an angular momentum coupled representation
International Nuclear Information System (INIS)
Kuo, T.T.S.; Shurpin, J.; Tam, K.C.; Osnes, E.; Ellis, P.J.
1981-01-01
A simple and convenient method is derived for evaluating linked Goldstone diagrams in an angular momentum coupled representation. Our method is general, and can be used to evaluate any effective interaction and/or effective operator diagrams for both closed-shell nuclei (vacuum to vacuum linked diagrams) and open-shell nuclei (valence linked diagrams). The techniques of decomposing diagrams into ladder diagrams, cutting open internal lines and cutting off one-body insertions are introduced. These enable us to determine angular momentum factors associated with diagrams in the coupled representation directly, without the need for carrying out complicated angular momentum algebra. A summary of diagram rules is given
International Nuclear Information System (INIS)
Silk, Joseph
2010-01-01
One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.
Rivasseau, Vincent; Fuchs, Jean-Nöel
2017-01-01
This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...
Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.
2017-03-01
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.
Infrared thermography method for fast estimation of phase diagrams
Energy Technology Data Exchange (ETDEWEB)
Palomo Del Barrio, Elena [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Cadoret, Régis [Centre National de la Recherche Scientifique, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Daranlot, Julien [Solvay, Laboratoire du Futur, 178 Av du Dr Schweitzer, 33608 Pessac (France); Achchaq, Fouzia, E-mail: fouzia.achchaq@u-bordeaux.fr [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France)
2016-02-10
Highlights: • Infrared thermography is proposed to determine phase diagrams in record time. • Phase boundaries are detected by means of emissivity changes during heating. • Transition lines are identified by using Singular Value Decomposition techniques. • Different binary systems have been used for validation purposes. - Abstract: Phase change materials (PCM) are widely used today in thermal energy storage applications. Pure PCMs are rarely used because of non adapted melting points. Instead of them, mixtures are preferred. The search of suitable mixtures, preferably eutectics, is often a tedious and time consuming task which requires the determination of phase diagrams. In order to accelerate this screening step, a new method for estimating phase diagrams in record time (1–3 h) has been established and validated. A sample composed by small droplets of mixtures with different compositions (as many as necessary to have a good coverage of the phase diagram) deposited on a flat substrate is first prepared and cooled down to ambient temperature so that all droplets crystallize. The plate is then heated at constant heating rate up to a sufficiently high temperature for melting all the small crystals. The heating process is imaged by using an infrared camera. An appropriate method based on singular values decomposition technique has been developed to analyze the recorded images and to determine the transition lines of the phase diagram. The method has been applied to determine several simple eutectic phase diagrams and the reached results have been validated by comparison with the phase diagrams obtained by Differential Scanning Calorimeter measurements and by thermodynamic modelling.
Reactome diagram viewer: data structures and strategies to boost performance.
Fabregat, Antonio; Sidiropoulos, Konstantinos; Viteri, Guilherme; Marin-Garcia, Pablo; Ping, Peipei; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning
2018-04-01
Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. For web-based pathway visualization, Reactome uses a custom pathway diagram viewer that has been evolved over the past years. Here, we present comprehensive enhancements in usability and performance based on extensive usability testing sessions and technology developments, aiming to optimize the viewer towards the needs of the community. The pathway diagram viewer version 3 achieves consistently better performance, loading and rendering of 97% of the diagrams in Reactome in less than 1 s. Combining the multi-layer html5 canvas strategy with a space partitioning data structure minimizes CPU workload, enabling the introduction of new features that further enhance user experience. Through the use of highly optimized data structures and algorithms, Reactome has boosted the performance and usability of the new pathway diagram viewer, providing a robust, scalable and easy-to-integrate solution to pathway visualization. As graph-based visualization of complex data is a frequent challenge in bioinformatics, many of the individual strategies presented here are applicable to a wide range of web-based bioinformatics resources. Reactome is available online at: https://reactome.org. The diagram viewer is part of the Reactome pathway browser (https://reactome.org/PathwayBrowser/) and also available as a stand-alone widget at: https://reactome.org/dev/diagram/. The source code is freely available at: https://github.com/reactome-pwp/diagram. fabregat@ebi.ac.uk or hhe@ebi.ac.uk. Supplementary data are available at Bioinformatics online.
Heating (Gapless) Color-Flavor Locked Quark Matter
DEFF Research Database (Denmark)
Fukushima, Kenji; Kouvaris, Christoforos; Rajagopal, Krishna
2005-01-01
We explore the phase diagram of neutral quark matter at high baryon density as a function of the temperature T and the strange quark mass Ms. At T=0, there is a sharp distinction between the insulating color-flavor locked (CFL) phase, which occurs where Ms^2/mu 0 and Delta_2->0) cross. Because we...
A Community Based Systems Diagram of Obesity Causes.
Directory of Open Access Journals (Sweden)
Steven Allender
Full Text Available Application of system thinking to the development, implementation and evaluation of childhood obesity prevention efforts represents the cutting edge of community-based prevention. We report on an approach to developing a system oriented community perspective on the causes of obesity.Group model building sessions were conducted in a rural Australian community to address increasing childhood obesity. Stakeholders (n = 12 built a community model that progressed from connection circles to causal loop diagrams using scripts from the system dynamics literature. Participants began this work in identifying change over time in causes and effects of childhood obesity within their community. The initial causal loop diagram was then reviewed and elaborated by 50 community leaders over a full day session.The process created a causal loop diagram representing community perceptions of determinants and causes of obesity. The causal loop diagram can be broken down into four separate domains; social influences; fast food and junk food; participation in sport; and general physical activity.This causal loop diagram can provide the basis for community led planning of a prevention response that engages with multiple levels of existing settings and systems.
Merit exponents and control area diagrams in materials selection
International Nuclear Information System (INIS)
Zander, Johan; Sandstroem, Rolf
2011-01-01
Highlights: → Merit exponents are introduced to generalise the merit indices commonly used in materials selection. → The merit exponents can rank materials in general design situations. → To allow identification of the active merit exponent(s), control area diagrams are used. → Principles for generating the control area diagrams are presented. -- Abstract: Merit indices play a fundamental role in materials selection, since they enable ranking of materials. However, the conventional formulation of merit indices is associated with severe limitations. They are dependent on the explicit solution of the variables in the equations for the constraints from the design criteria. Furthermore, it is not always easy to determine which the controlling merit index is. To enable the ranking of materials in more general design cases, merit exponents are introduced as generalisations of the merit indices. Procedures are presented for how to compute the merit exponents numerically without having to solve equations algebraically. Merit exponents (and indices) are only valid in a certain range of property values. To simplify the identification of the controlling merit exponent, it is suggested that so called control area diagrams are used. These diagrams consist of a number of domains, each showing the active constraints and the controlling merit exponent. It is shown that the merit exponents play a crucial role when the control area diagram (CAD) is set up. The principles in the paper are developed for mechanically loaded components and are illustrated for engineering beams with two or three geometric variables.
Energy Technology Data Exchange (ETDEWEB)
Csernai, L.; Kampert, K. H.
1994-10-15
Precisely one decade ago the GSI (Darmstadt)/LBL (Berkeley) Collaboration at the Berkeley Bevalac reported clear evidence for collective sidewards flow in high energy heavy ion collisions. This milestone observation clearly displayed the compression and heating up of nuclear matter, providing new insights into how the behaviour of nuclear matter changes under very different conditions. This year, evidence for azimuthally asymmetric transverse flow at ten times higher projectile energy (11 GeV per nucleon gold on gold collisions) was presented by the Brookhaven E877 collaboration at the recent European Research Conference on ''Physics of High Energy Heavy Ion Collisions'', held in Helsinki from 17-22 June.
Phase diagram of two-color quark matter at nonzero baryon and isospin density
Czech Academy of Sciences Publication Activity Database
Andersen, J. O.; Brauner, Tomáš
2010-01-01
Roč. 81, č. 9 (2010), 096004/1-096004/14 ISSN 0556-2821 Institutional research plan: CEZ:AV0Z10480505 Keywords : COLOR SUPERCONDUCTIVITY * QUANTUM CHROMODYNAMICS * PERTURBATION-THEORY Subject RIV: BE - Theoretical Physics
Generalized internal multiple imaging (GIMI) using Feynman-like diagrams
Zuberi, M. A. H.
2014-05-19
Single scattering events recorded in surface seismic data do not fully illuminate the subsurface structure, especially if it is complicated. In such cases, multiple internal scatterings (internal multiples) can help improve the illumination. We devise a generalized internal multiple imaging (GIMI) procedure that maps internal multiple energy to their true location with a relatively mild addition to the computational cost. GIMI theory relies heavily on seismic interferometry, which often involves cumbersome algebra, especially when one is dealing with high-order terms in the perturbation series. To make the derivations, and inference of the results easier, we introduce Feynman-like diagrams to represent different terms of the perturbation series (solution to the Lippman–Schwinger equation). The rules we define for the diagrams allow operations like convolution and cross-correlation in the series to be compressed in diagram form. The application of the theory to a double scattering example demonstrates the power of the method.
The limit shape problem for ensembles of Young diagrams
Hora, Akihito
2016-01-01
This book treats ensembles of Young diagrams originating from group-theoretical contexts and investigates what statistical properties are observed there in a large-scale limit. The focus is mainly on analyzing the interesting phenomenon that specific curves appear in the appropriate scaling limit for the profiles of Young diagrams. This problem is regarded as an important origin of recent vital studies on harmonic analysis of huge symmetry structures. As mathematics, an asymptotic theory of representations is developed of the symmetric groups of degree n as n goes to infinity. The framework of rigorous limit theorems (especially the law of large numbers) in probability theory is employed as well as combinatorial analysis of group characters of symmetric groups and applications of Voiculescu's free probability. The central destination here is a clear description of the asymptotic behavior of rescaled profiles of Young diagrams in the Plancherel ensemble from both static and dynamic points of view.
Project Management Plan for the INEL technology logic diagrams
International Nuclear Information System (INIS)
Rudin, M.J.
1992-10-01
This Project Management Plan (PjMP) describes the elements of project planning and control that apply to activities outlined in Technical Task Plan (TTP) ID-121117, ''Technology Logic Diagrams For The INEL.'' The work on this project will be conducted by personnel in EG ampersand G Idaho, Inc.'s Waste Technology Development Program. Technology logic diagrams represent a formal methodology to identify technology gaps or needs within Environmental Restoration/Waste Management Operations, which will focus on Office of Environmental Restoration and Waste Management (EM-50) research and development, demonstration, test, and evaluation efforts throughout the US Department of Energy complex. This PjMP describes the objectives, organization, roles and responsibilities, workscope and processes for implementing and managing the technology logic diagram for the Idaho National Engineering Laboratory project
Unified Phase Diagram for Iron-Based Superconductors.
Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-Feng; Luo, Huiqian; Li, Shiliang
2017-10-13
High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.
Unified Phase Diagram for Iron-Based Superconductors
Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-feng; Luo, Huiqian; Li, Shiliang
2017-10-01
High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.
Generalized internal multiple imaging (GIMI) using Feynman-like diagrams
Zuberi, M. A. H.; Alkhalifah, Tariq Ali
2014-01-01
Single scattering events recorded in surface seismic data do not fully illuminate the subsurface structure, especially if it is complicated. In such cases, multiple internal scatterings (internal multiples) can help improve the illumination. We devise a generalized internal multiple imaging (GIMI) procedure that maps internal multiple energy to their true location with a relatively mild addition to the computational cost. GIMI theory relies heavily on seismic interferometry, which often involves cumbersome algebra, especially when one is dealing with high-order terms in the perturbation series. To make the derivations, and inference of the results easier, we introduce Feynman-like diagrams to represent different terms of the perturbation series (solution to the Lippman–Schwinger equation). The rules we define for the diagrams allow operations like convolution and cross-correlation in the series to be compressed in diagram form. The application of the theory to a double scattering example demonstrates the power of the method.
Electroweak penguin diagrams and two-body B decays
International Nuclear Information System (INIS)
Gronau, M.; Hernandez, O.F.; London, D.; Rosner, J.L.
1995-01-01
We discuss the role of electroweak penguin diagrams in B decays to two light pseudoscalar mesons. We confirm that the extraction of the weak phase α through the isospin analysis involving B→ππ decays is largely unaffected by such operators. However, the methods proposed to obtain weak and strong phases by relating B→ππ, B→πK, and B→K bar K decays through flavor SU(3) will be invalidated if eletroweak penguin diagrams are large. We show that, although the introduction of electroweak penguin contributions introduces no new amplitudes of flavor SU(3), there are a number of ways to experimentally measure the size of such effects. Finally, using SU(3) amplitude relations we present a new way of measuring the weak angle γ which holds even in the presence of electroweak penguin diagrams
Sequence Algebra, Sequence Decision Diagrams and Dynamic Fault Trees
International Nuclear Information System (INIS)
Rauzy, Antoine B.
2011-01-01
A large attention has been focused on the Dynamic Fault Trees in the past few years. By adding new gates to static (regular) Fault Trees, Dynamic Fault Trees aim to take into account dependencies among events. Merle et al. proposed recently an algebraic framework to give a formal interpretation to these gates. In this article, we extend Merle et al.'s work by adopting a slightly different perspective. We introduce Sequence Algebras that can be seen as Algebras of Basic Events, representing failures of non-repairable components. We show how to interpret Dynamic Fault Trees within this framework. Finally, we propose a new data structure to encode sets of sequences of Basic Events: Sequence Decision Diagrams. Sequence Decision Diagrams are very much inspired from Minato's Zero-Suppressed Binary Decision Diagrams. We show that all operations of Sequence Algebras can be performed on this data structure.
How to Draw Energy Level Diagrams in Excitonic Solar Cells.
Zhu, X-Y
2014-07-03
Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.
Basics of introduction to Feynman diagrams and electroweak interactions physics
International Nuclear Information System (INIS)
Bilenky, S.M.; Mikhov, S.G.
1994-01-01
The Feynman diagrams are the main computational method for the evaluation of the matrix elements of different processes. Although it is a perturbative method, its significance is not restricted to perturbation theory only. In this book, the elements of quantum field theory, the Feynman diagram method, the theory of electroweak interactions and other topics are discussed. A number of classical weak and electroweak processes are considered in details. This involves, first of all, the construction of the matrix elements of the process using both the Feynman diagram method (when perturbation theory can be applied) and the invariance principles (when perturbation theory fails). Then the cross sections and the decay probabilities are computed. The text is providing widely used computational techniques and some experimental data. (A.B.). 32 refs., 7 appendix
Re-determination of succinonitrile (SCN) camphor phase diagram
Teng, Jing; Liu, Shan
2006-04-01
Low-melting temperature transparent organic materials have been extensively used to study the pattern formation and microstructure evolution. It proves to be very challenging to accurately determine the phase diagram since there is no viable way to measure the composition microscopically. In this paper, we presented the detailed experimental characterization of the phase diagram of succinonitrile (SCN)-camphor binary system. Differential scanning calorimetry, a ring-heater, and the directional solidification technique have been combined to determine the details of the phase diagram by using the purified materials. The advantages and disadvantages have been discussed for the different experimental techniques. SCN and camphor constitute a simple binary eutectic system with the eutectic composition at 23.6 wt% camphor and eutectic temperature at 37.65 °C. The solidus and the solubility of the SCN base solid solution have been precisely determined for the first time in this binary system.
Phase diagram of supercooled water confined to hydrophilic nanopores
Limmer, David T.; Chandler, David
2012-07-01
We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.
Decorated-box-diagram contributions to Bhabha scattering. Pt. 1
International Nuclear Information System (INIS)
Faeldt, G.; Osland, P.
1994-01-01
We evaluate, in the light-energy limit, s>>vertical stroke tvertical stroke >>m 2 >>λ 2 , the sum of amplitudes corresponding to a class of Feynman diagrams describing two-loop virtual photonic corrections to Bhabha scattering. The diagrams considered are box and crossed-box diagrams with an extra photon decorating one of the fermion lines. The mathematical method employed is that of Mellin transforms. In the eikonal approximation, this sum of two-loop amplitudes has previously been evaluated, and found to be equal to the sum of the box and crossed-box amplitudes, multiplied by the electric form factor of the electron. We obtain a similar factorization, but with the form factor replaced by another expression involving the logarithms log(λ 2 /m 2 ) and log(λ 2 /vertical stroke tvertical stroke ). (orig.)
Anytime decision making based on unconstrained influence diagrams
DEFF Research Database (Denmark)
Luque, Manuel; Nielsen, Thomas Dyhre; Jensen, Finn Verner
2016-01-01
. This paper addresses this problem by proposing an anytime algorithm that at any time provides a qualified recommendation for the first decisions of the problem. The algorithm performs a heuristic-based search in a decision tree representation of the problem. We provide a framework for analyzing......Unconstrained influence diagrams extend the language of influence diagrams to cope with decision problems in which the order of the decisions is unspecified. Thus, when solving an unconstrained influence diagram we not only look for an optimal policy for each decision, but also for a so-called step......-policy specifying the next decision given the observations made so far. However, due to the complexity of the problem, temporal constraints can force the decision maker to act before the solution algorithm has finished, and, in particular, before an optimal policy for the first decision has been computed...
Influence Diagram Use With Respect to Technology Planning and Investment
Levack, Daniel J. H.; DeHoff, Bryan; Rhodes, Russel E.
2009-01-01
Influence diagrams are relatively simple, but powerful, tools for assessing the impact of choices or resource allocations on goals or requirements. They are very general and can be used on a wide range of problems. They can be used for any problem that has defined goals, a set of factors that influence the goals or the other factors, and a set of inputs. Influence diagrams show the relationship among a set of results and the attributes that influence them and the inputs that influence the attributes. If the results are goals or requirements of a program, then the influence diagram can be used to examine how the requirements are affected by changes to technology investment. This paper uses an example to show how to construct and interpret influence diagrams, how to assign weights to the inputs and attributes, how to assign weights to the transfer functions (influences), and how to calculate the resulting influences of the inputs on the results. A study is also presented as an example of how using influence diagrams can help in technology planning and investment. The Space Propulsion Synergy Team (SPST) used this technique to examine the impact of R&D spending on the Life Cycle Cost (LCC) of a space transportation system. The question addressed was the effect on the recurring and the non-recurring portions of LCC of the proportion of R&D resources spent to impact technology objectives versus the proportion spent to impact operational dependability objectives. The goals, attributes, and the inputs were established. All of the linkages (influences) were determined. The weighting of each of the attributes and each of the linkages was determined. Finally the inputs were varied and the impacts on the LCC determined and are presented. The paper discusses how each of these was accomplished both for credibility and as an example for future studies using influence diagrams for technology planning and investment planning.
Indian Academy of Sciences (India)
As if this was not enough, it turns out that if our knowledge of ... are thought to contain dark matter, although the evidences from them are the .... protons, electrons, neutrons ... ratio of protons to neutrons was close to unity then as they were in ...
International Nuclear Information System (INIS)
Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin
2008-01-01
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule Matters - Dinitrogen. A G Samuelson J Jabadurai. Volume 16 Issue 12 ... Author Affiliations. A G Samuelson1 J Jabadurai1. Department of Inroganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.
International Nuclear Information System (INIS)
Mezger, P.G.
1978-01-01
An overview of the formation of our galaxy is presented followed by a summary of recent work in star formation and related topics. Selected discussions are given on interstellar matter including absorption characteristics of dust, the fully ionised component of the ISM and the energy density of lyc-photons in the solar neighbourhood and the diffuse galactic IR radiation
Indian Academy of Sciences (India)
The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide. Over the last twenty years, astronomers have been forced to postulate the presence of large quantities of 'dark matter' to explain their observations. They are ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:
CALPHAD calculation of phase diagrams : a comprehensive guide
Saunders, N; Miodownik, A P
1998-01-01
This monograph acts as a benchmark to current achievements in the field of Computer Coupling of Phase Diagrams and Thermochemistry, often called CALPHAD which is an acronym for Computer CALculation of PHAse Diagrams. It also acts as a guide to both the basic background of the subject area and the cutting edge of the topic, combining comprehensive discussions of the underlying physical principles of the CALPHAD method with detailed descriptions of their application to real complex multi-component materials. Approaches which combine both thermodynamic and kinetic models to interpret non-equilibrium phase transformations are also reviewed.
INFRARED COLOR-COLOR DIAGRAMS FOR AGB STARS
Directory of Open Access Journals (Sweden)
Kyung-Won Suh
2007-09-01
Full Text Available We present infrared color-color diagrams of AGB stars from the observations at near and mid infrared bands. We compile the observations for hundreds of OH/IR stars and carbon stars using the data from the Midcourse Space Experiment (MSX, the two micron sky survey (2MASS, and the IRAS point source catalog (PSC. We compare the observations with the theoretical evolutionary tracks of AGB stars. From the new observational data base and the theoretical evolution tracks, we discuss the meaning of the infrared color-color diagrams at different wavelengths.
Basic principles of Hasse diagram technique in chemistry.
Brüggemann, Rainer; Voigt, Kristina
2008-11-01
Principles of partial order applied to ranking are explained. The Hasse diagram technique (HDT) is the application of partial order theory based on a data matrix. In this paper, HDT is introduced in a stepwise procedure, and some elementary theorems are exemplified. The focus is to show how the multivariate character of a data matrix is realized by HDT and in which cases one should apply other mathematical or statistical methods. Many simple examples illustrate the basic theoretical ideas. Finally, it is shown that HDT is a useful alternative for the evaluation of antifouling agents, which was originally performed by amoeba diagrams.
Phase diagram of the ternary Zr-Ti-Sn system
International Nuclear Information System (INIS)
Arias, D.; Gonzalez Camus, M.
1987-01-01
It is well known that Ti stabilizes the high temperature cubic phase of Zr and that Sn stabilizes the low temperature hexagonal phase of Zr. The effect of Sn on the Zr-Ti diagram has been studied in the present paper. Using high purity metals, nine different alloys have been prepared, with 4-32 at % Ti, 0.7-2.2 at % Sn and Zr till 100%. Resistivity and optical and SEM metallography techniques have been employed. Effect of some impurities have been analyzed. The results are discussed and different isothermic sections of the ternary Zr-Ti-Sn diagram are presented. (Author) [es
Microsoft Visio 2013 business process diagramming and validation
Parker, David
2013-01-01
Microsoft Visio 2013 Business Process Diagramming and Validation provides a comprehensive and practical tutorial including example code and demonstrations for creating validation rules, writing ShapeSheet formulae, and much more.If you are a Microsoft Visio 2013 Professional Edition power user or developer who wants to get to grips with both the essential features of Visio 2013 and the validation rules in this edition, then this book is for you. A working knowledge of Microsoft Visio and optionally .NET for the add-on code is required, though previous knowledge of business process diagramming
International Nuclear Information System (INIS)
Audouze, J.; Tran Thanh Van, J.
1988-01-01
The book begins with the papers devoted to the experimental search of signatures of the dark matter which governs the evolution of the Universe as a whole. A series of contributions describe the presently considered experimental techniques (cryogenic detectors, supraconducting detectors...). A real dialogue concerning these techniques has been instaured between particle physicists and astrophysicists. After the progress report of the particle physicists, the book provides the reader with an updated situation concerning the research in cosmology. The second part of the book is devoted to the analysis of the backgrounds at different energies such as the possible role of the cooling flows in the constitution of massive galactic halos. Any search of dark matter implies necessarily the analysis of the spatial distributions of the large scale structures of the Universe. This report is followed by a series of statistical analyses of these distributions. These analyses concern mainly universes filled up with cold dark matter. The last paper of this third part concerns the search of clustering in the spatial distribution of QSOs. The presence of dark matter should affect the solar neighborhood and related to the existence of galactic haloes. The contributions are devoted to the search of such local dark matter. Primordial nucleosynthesis provides a very powerful tool to set up quite constraining limitations on the overall baryonic density. Even if on takes into account the inhomogeneities in density possibly induced by the Quark-Hadron transition, this baryonic density should be much lower than the overall density deduced from the dynamical models of Universe or the inflationary theories
Directory of Open Access Journals (Sweden)
Petra Hroch
2013-11-01
resistance to neo-liberal diagrams--new cartographies--be understood in intensive, matter-mediated-modulated, non-oppositional, and non-binary modes?
International Nuclear Information System (INIS)
Kim, Jeong Hyeon; Lee, Seung Mu
1989-02-01
This book deals with disposal of waste matter management of soiled waste matter in city with introduction, definition of waste matter, meaning of management of waste matter, management system of waste matter, current condition in the country, collect and transportation of waste matter disposal liquid waste matter, industrial waste matter like plastic, waste gas sludge, pulp and sulfuric acid, recycling technology of waste matter such as recycling system of Black clawson, Monroe and Rome.
Directory of Open Access Journals (Sweden)
N.M. Ghasem
2003-12-01
Full Text Available In this paper, the simulink block diagram is used to solve a model consists of a set of ordinary differential and algebraic equations to control the temperature inside a simple stirred tank heater. The flexibility of simulink block diagram gives students a better understanding of the control systems. The simulink also allows solution of mathematical models and easy visualization of the system variables. A polyethylene fluidized bed reactor is considered as an industrial example and the effect of the Proportional, Integral and Derivative control policy is presented for comparison.
Phase diagram of the disordered Bose-Hubbard model
International Nuclear Information System (INIS)
Gurarie, V.; Pollet, L.; Prokof'ev, N. V.; Svistunov, B. V.; Troyer, M.
2009-01-01
We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling which has been controversial for many years. The theorem of inclusions, proven by Pollet et al. [Phys. Rev. Lett. 103, 140402 (2009)] states that the Bose-glass phase always intervenes between the Mott insulating and superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions between gapped (Mott insulator) and gapless phases (Bose glass). The apparent paradox is resolved through a unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a regular gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate the point. A highly nontrivial overall shape of the phase diagram is revealed with the worm algorithm. The phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in random potentials nearly 50 (!) times larger than the particle half-bandwidth. Finally, we comment on the feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite temperature.
Interpreting Evolutionary Diagrams: When Topology and Process Conflict
Catley, Kefyn M.; Novick, Laura R.; Shade, Courtney K.
2010-01-01
The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships…
The Use of Kruskal-Newton Diagrams for Differential Equations
International Nuclear Information System (INIS)
Fishaleck, T.; White, R.B.
2008-01-01
The method of Kruskal-Newton diagrams for the solution of differential equations with boundary layers is shown to provide rapid intuitive understanding of layer scaling and can result in the conceptual simplification of some problems. The method is illustrated using equations arising in the theory of pattern formation and in plasma physics.
ARBUS: A FORTRAN tool for generating tree structure diagrams
International Nuclear Information System (INIS)
Ferrero, C.; Zanger, M.
1992-02-01
The FORTRAN77 stand-alone code ARBUS has been designed to aid the user by providing a tree structure diagram generating utility for computer programs written in FORTRAN language. This report is intended to describe the main purpose and features of ARBUS and to highlight some additional applications of the code by means of practical test cases. (orig.) [de
Using Photographs and Diagrams to Test Young Children's Mass Thinking
Cheeseman, Jill; McDonough, Andrea
2013-01-01
This paper reports the results of a pencil-and-paper test developed to assess young children's understanding of mass measurement. The innovative element of the test was its use of photographs. We found many children of the 295 6-8 year-old children tested could "read" the photographs and diagrams and recognise the images as…
Phase Stability Diagrams for High Temperature Corrosion Processes
Directory of Open Access Journals (Sweden)
J. J. Ramos-Hernandez
2013-01-01
Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.
Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering
DEFF Research Database (Denmark)
Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng
2007-01-01
Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models...
Generalized balanced power diagrams for 3D representations of polycrystals
DEFF Research Database (Denmark)
Alpers, Andreas; Brieden, Andreas; Gritzmann, Peter
2015-01-01
Characterizing the grain structure of polycrystalline material is an important task in material science. The present paper introduces the concept of generalized balanced power diagrams as a concise alternative to voxelated mappings. Here, each grain is represented by (measured approximations of...
Introducing the Circular Flow Diagram to Business Students
Daraban, Bogdan
2010-01-01
The circular flow of income diagram is a simplified representation of the functioning of a free-market economic system. It illustrates how businesses interact with the other economic participants within the key macroeconomic markets that coordinate the flow of income through the national economy. Therefore, it can provide students of business with…
An automatic system for elaboration of chip breaking diagrams
DEFF Research Database (Denmark)
Andreasen, Jan Lasson; De Chiffre, Leonardo
1998-01-01
A laboratory system for fully automatic elaboration of chip breaking diagrams has been developed and tested. The system is based on automatic chip breaking detection by frequency analysis of cutting forces in connection with programming of a CNC-lathe to scan different feeds, speeds and cutting...
Macroscopic Fundamental Diagram for pedestrian networks : Theory and applications
Hoogendoorn, S.P.; Daamen, W.; Knoop, V.L.; Steenbakkers, Jeroen; Sarvi, Majid
2017-01-01
The Macroscopic Fundamental diagram (MFD) has proven to be a powerful concept in understanding and managing vehicular network dynamics, both from a theoretical angle and from a more application-oriented perspective. In this contribution, we explore the existence and the characteristics of the
Learning about Posterior Probability: Do Diagrams and Elaborative Interrogation Help?
Clinton, Virginia; Alibali, Martha W.; Nathan, Mitchell J.
2016-01-01
To learn from a text, students must make meaningful connections among related ideas in that text. This study examined the effectiveness of two methods of improving connections--elaborative interrogation and diagrams--in written lessons about posterior probability. Undergraduate students (N = 198) read a lesson in one of three questioning…
Continuous cooling transformation diagrams for 6XXX aluminium alloys
International Nuclear Information System (INIS)
Bryantsev, P Yu
2009-01-01
Continuous cooling transformation diagrams of aluminum solid solution decomposition in range of cooling rates 100-1900 deg. C/h were built for some alloys of Al-Mg-Si-Fe system. Influence of cooling rate and chemical composition on temperatures of start and finish of solution decomposition was determined.
Integrating Mathematics and Science: Ecology and Venn Diagrams
Leszczynski, Eliza; Munakata, Mika; Evans, Jessica M.; Pizzigoni, Francesca
2014-01-01
Efforts to integrate mathematics and science have been widely recognized by mathematics and science educators. However, successful integration of these two important school disciplines remains a challenge. In this article, a mathematics and science activity extends the use of Venn diagrams to a life science context and then circles back to a…
Emergence of an urban traffic macroscopic fundamental diagram
DEFF Research Database (Denmark)
Ranjan, Abhishek; Fosgerau, Mogens; Jenelius, Erik
2016-01-01
This paper examines mild conditions under which a macroscopic fundamental diagram (MFD) emerges, relating space-averaged speed to occupancy in some area. These conditions are validated against empirical data. We allow local speedoccupancy relationships and, in particular, require no equilibrating...
Resonant count diagram and solar g mode oscillations
International Nuclear Information System (INIS)
Guenther, D.B.; Demarque, P.
1984-01-01
Evidence is provided to support the hypothesis that, because of the particular frequency separations of the solar g modes, resonant three-wave interactions stimulate only a selected few g modes. A resonant count diagram was obtained by plotting the total number of possible resonant three-wave interactions or a given beat frequency against the inverse of the beat frequency (the beat period), within a given frequency tolerance. The 1 = 1, 2, 3, 4 g modes calculated by Christensen-Dalsgaard, Gough and Morgan (1979) for a standard model of the Sun were used. The diagram has a significant peak at 160 minutes as well as other peaks at longer periods. The g modes that Delache and Scherrer (1983) tentatively identified from the Crimea-Stanford data were also plotted. These modes were found to correspond with the other peaks in the diagram. This coincidence between the observed g modes and the peaks in the resonant count diagram suggest that the observed g modes do owe their observability to resonant three-wave interactions
Quark-diagram analysis of charmed-baryon decays
International Nuclear Information System (INIS)
Kohara, Y.
1991-01-01
The Cabibbo-allowed two-body nonleptonic decays of charmed baryons to a SU(3)-octet (or -decuplet) baryon and a pseudoscalar meson are examined on the basis of the quark-diagram scheme. Some relations among the decay amplitudes or rates of various decay modes are derived. The decays of Ξ c + to a decuplet baryon are forbidden
FF. A package to evaluate one-loop Feynman diagrams
International Nuclear Information System (INIS)
Oldenborgh, G.J. van
1990-09-01
A short description and a user's guide of the FF package are given. This package contains routines to evaluate numerically the scalar one-loop integrals occurring in the evaluation in one-loop Feynman diagrams. The algorithms chosen are numerically stable over most parameter space. (author). 5 refs.; 1 tab
Equations of State and Phase Diagrams of Ammonia
Glasser, Leslie
2009-01-01
We present equations of state relating the phases and a three-dimensional phase diagram for ammonia with its solid, liquid, and vapor phases, based on fitted authentic experimental data and including recent information on the high-pressure solid phases. This presentation follows similar articles on carbon dioxide and water published in this…
Perturbation theory via Feynman diagrams in classical mechanics
Penco, R.; Mauro, D.
2006-01-01
In this paper we show how Feynman diagrams, which are used as a tool to implement perturbation theory in quantum field theory, can be very useful also in classical mechanics, provided we introduce also at the classical level concepts like path integrals and generating functionals.
Approximate Compilation of Constraints into Multivalued Decision Diagrams
DEFF Research Database (Denmark)
Hadzic, Tarik; Hooker, John N.; O’Sullivan, Barry
2008-01-01
We present an incremental refinement algorithm for approximate compilation of constraint satisfaction models into multivalued decision diagrams (MDDs). The algorithm uses a vertex splitting operation that relies on the detection of equivalent paths in the MDD. Although the algorithm is quite gene...
Phase shifts of the paired wings of butterfly diagrams
International Nuclear Information System (INIS)
Li Kejun; Liang Hongfei; Feng Wen
2010-01-01
Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength. (research papers)
Energy Diagram for the Catalytic Decomposition of Hydrogen Peroxide
Tatsuoka, Tomoyuki; Koga, Nobuyoshi
2013-01-01
Drawing a schematic energy diagram for the decomposition of H[subscript 2]O[subscript 2] catalyzed by MnO[subscript 2] through a simple thermometric measurement outlined in this study is intended to integrate students' understanding of thermochemistry and kinetics of chemical reactions. The reaction enthalpy, delta[subscript r]H, is…
Ground state phase diagram of extended attractive Hubbard model
International Nuclear Information System (INIS)
Robaszkiewicz, S.; Chao, K.A.; Micnas, R.
1980-08-01
The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)
Riparian Sediment Delivery Ratio: Stiff Diagrams and Artifical Neural Networks
Various methods are used to estimate sediment transport through riparian buffers and grass jilters with the sediment delivery ratio having been the most widely applied. The U.S. Forest Service developed a sediment delivery ratio using the stiff diagram and a logistic curve to int...
The Effect of Diagrams on Online Reading Processes and Memory
McCrudden, Matthew T.; Magliano, Joseph P.; Schraw, Gregory
2011-01-01
This work examined how adjunct displays influence college readers' moment-by-moment processing of text and the products of reading, using reading time (Experiments 1 & 2), and think-aloud methodologies (Experiment 3). Participants did or did not study a diagram before reading a text. Overall, the reading time data, think-aloud data, and recall…
Advanced quantum theory and its applications through Feynman diagrams
International Nuclear Information System (INIS)
Scadron, M.D.
1979-01-01
The two themes of scattering diagrams and the fundamental forces characterize this book. Transformation theory is developed to review the concepts of nonrelativistic quantum mechanics and to formulate the relativistic Klein-Gordon, Maxwell, and Dirac wave equations for relativistic spin-0, massless spin-1, and spin-1/2 particles, respectively. The language of group theory is used to write relativistic Lorentz transformations in a form similar to ordinary rotations and to describe the important discrete symmetries of C, P, and T. Then quantum mechanics is reformulated in the language of scattering theory, with the momentum-space S matrix replacing the coordinate-space hamiltonian as the central dynamical operator. Nonrelativistic perturbation scattering diagrams are then developed, and simple applications given for nuclear, atomic, and solid-state scattering problems. Next, relativistic scattering diagrams built up from covariant Feynman propagators and vertices in a manner consistent with the CPT theorem are considered. The theory is systematically applied to the lowest-order fundamental electromagnetic, strong, weak, and gravitational interactions. Finally, the use of higher-order Feynman diagrams to explain more detailed aspects of quantum electrodynamics (QED) and strong-interaction elementary-particle physics is surveyed. Throughout, the notion of currents is used to exploit the underlying symmetries and dynamical interactions of the various quantum forces. 258 references, 77 figures, 1 table
Calculation of Fe-B-V ternary phase diagram
Czech Academy of Sciences Publication Activity Database
Homolová, V.; Kroupa, Aleš; Výrostková, A.
2012-01-01
Roč. 520, APR (2012), s. 30-35 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/10/1908 Institutional support: RVO:68081723 Keywords : phase diagram * thermodynamic modelling Subject RIV: BJ - Thermodynamics Impact factor: 2.390, year: 2012
Block diagrams of the radar interface and control unit
Collier, J. W.
1989-01-01
The Interface and Control Unit is the heart of the radar module, which occupies one complex channel of the High-Speed Data Acquisition System of the Goldstone Solar System Radar. Block diagrams of the interface unit are presented as an aid to understanding its operation and interconnections to the rest of the radar module.
A proposed phase equilibrium diagram for Pt-Zr system
International Nuclear Information System (INIS)
Arias, D.E.; Gribaudo, L.
1993-01-01
A revision of the phase diagram of the Pt-Zr system is presented using up to date information from recent publications. The proposed change concerning the invariant transformation in the Pt-rich zone is supported by simplified thermodynamic evaluations. (author). 12 refs., 1 fig
A cautionary tale of interpreting O-C diagrams
DEFF Research Database (Denmark)
Skarka, M.; Liska, J.; Dreveny, R.
2018-01-01
We present a comprehensive study of Z CVn, an RR Lyrae star that shows long-term cyclic variations of its pulsation period. A possible explanation suggested from the shape of the O-C diagram is the light travel-time effect, which we thoroughly examine. We used original photometric and spectroscop...
Phase stabilities at a glance: Stability diagrams of nickel dipnictides
International Nuclear Information System (INIS)
Bachhuber, F.; Rothballer, J.; Weihrich, R.; Söhnel, T.
2013-01-01
In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn 2 (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb 2 , and the NiAs 2 types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB 2 structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases
Stabilization diagrams using operational modal analysis and sliding filters
DEFF Research Database (Denmark)
Olsen, Peter; Juul, Martin Ørum Ørhem; Tarpø, Marius Glindtvad
2017-01-01
This paper presents a filtering technique for doing effective operational modal analysis. The result of the filtering method is construction of stabilization diagram that clearly separates physical poles from spurious noise poles needed for unbiased fitting. A band pass filter is moved slowly over...
Investigating the QCD phase diagram with hadron multiplicities at NICA
Energy Technology Data Exchange (ETDEWEB)
Becattini, F. [Universita di Firenze (Italy); INFN, Firenze (Italy); Stock, R. [Goethe University, Frankfurt am Main (Germany)
2016-08-15
We discuss the potential of the experimental programme at NICA to investigate the QCD phase diagram and particularly the position of the critical line at large baryon-chemical potential with accurate measurements of particle multiplicities. We briefly review the present status and we outline the tasks to be accomplished both theoretically and the experimentally to make hadronic abundances a sensitive probe. (orig.)
Wet granular matter a truly complex fluid
Herminghaus, Stephan
2013-01-01
This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.
Towards a thermodynamics of active matter.
Takatori, S C; Brady, J F
2015-03-01
Self-propulsion allows living systems to display self-organization and unusual phase behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises, however, as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.
International Nuclear Information System (INIS)
Csernai, L.; Kampert, K.H.
1994-01-01
Precisely one decade ago the GSI (Darmstadt)/LBL (Berkeley) Collaboration at the Berkeley Bevalac reported clear evidence for collective sidewards flow in high energy heavy ion collisions. This milestone observation clearly displayed the compression and heating up of nuclear matter, providing new insights into how the behaviour of nuclear matter changes under very different conditions. This year, evidence for azimuthally asymmetric transverse flow at ten times higher projectile energy (11 GeV per nucleon gold on gold collisions) was presented by the Brookhaven E877 collaboration at the recent European Research Conference on ''Physics of High Energy Heavy Ion Collisions'', held in Helsinki from 17-22 June
Single-particle potential from resummed ladder diagrams
International Nuclear Information System (INIS)
Kaiser, N.
2013-01-01
A recent work on the resummation of fermionic in-medium ladder diagrams to all orders is extended by calculating the complex single-particle potential U(p, k f ) + i W(p, k f ) p > k f . The on-shell single-particle potential is constructed by means of a complex-valued in-medium loop that includes corrections from a test particle of momentum vector p added to the filled Fermi sea. The single-particle potential U(k f , k f ) at the Fermi surface as obtained from the resummation of the combined particle and hole ladder diagrams is shown to satisfy the Hugenholtz-Van-Hove theorem. The perturbative contributions at various orders a n in the scattering length are deduced and checked against the known analytical results at order a 1 and a 2 . The limit a → ∞ is studied as a special case and a strong momentum dependence of the real (and imaginary) single-particle potential is found. This feature indicates an instability against a phase transition to a state with an empty shell inside the Fermi sphere such that the density gets reduced by about 5%. The imaginary single-particle potential vanishes linearly at the Fermi surface. For comparison, the same analysis is performed for the resummed particle-particle ladder diagrams alone. In this truncation an instability for hole excitations near the Fermi surface is found at strong coupling. For the set of particle-hole ring diagrams the single-particle potential is calculated as well. Furthermore, the resummation of in-medium ladder diagrams to all orders is studied for a two-dimensional Fermi gas with a short-range two-body contact interaction. (orig.)
Czech Academy of Sciences Publication Activity Database
Potocký, Štěpán; Babchenko, Oleg; Hruška, Karel; Kromka, Alexander
2012-01-01
Roč. 249, č. 12 (2012), s. 2612-2615 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP205/12/0908 Institutional research plan: CEZ:AV0Z10100521 Keywords : C-H-O phase diagram * nanocrystalline diamond * plasma enhanced CVD * Raman spectroscopy * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2012
de Leng, Bas; Gijlers, Aaltje H.
2015-01-01
Aim: To examine how collaborative diagramming affects discussion and knowledge construction when learning complex basic science topics in medical education, including its effectiveness in the reformulation phase of problem-based learning. Methods: Opinions and perceptions of students (n = 70) and
General calculation of the cross section for dark matter annihilations into two photons
Energy Technology Data Exchange (ETDEWEB)
Garcia-Cely, Camilo [Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels (Belgium); Rivera, Andres, E-mail: Camilo.Alfredo.Garcia.Cely@ulb.ac.be, E-mail: afelipe.rivera@udea.edu.co [Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, Medellín (Colombia)
2017-03-01
Assuming that the underlying model satisfies some general requirements such as renormalizability and CP conservation, we calculate the non-relativistic one-loop cross section for any self-conjugate dark matter particle annihilating into two photons. We accomplish this by carefully classifying all possible one-loop diagrams and, from them, reading off the dark matter interactions with the particles running in the loop. Our approach is general and leads to the same results found in the literature for popular dark matter candidates such as the neutralinos of the MSSM, minimal dark matter, inert Higgs and Kaluza-Klein dark matter.
General calculation of the cross section for dark matter annihilations into two photons
International Nuclear Information System (INIS)
Garcia-Cely, Camilo; Rivera, Andres
2017-01-01
Assuming that the underlying model satisfies some general requirements such as renormalizability and CP conservation, we calculate the non-relativistic one-loop cross section for any self-conjugate dark matter particle annihilating into two photons. We accomplish this by carefully classifying all possible one-loop diagrams and, from them, reading off the dark matter interactions with the particles running in the loop. Our approach is general and leads to the same results found in the literature for popular dark matter candidates such as the neutralinos of the MSSM, minimal dark matter, inert Higgs and Kaluza-Klein dark matter.
Directory of Open Access Journals (Sweden)
Holger Pötzsch
2017-02-01
Full Text Available The present contribution maps materialist advances in media studies. Based on the assumption that matter and materiality constitute significant aspects of communication processes and practices, I introduce four fields of inquiry - technology, political economy, ecology, and the body - and argue that these perspectives enable a more comprehensive understanding of the implications of contemporary technologically afforded forms of interaction. The article shows how each perspective can balance apologetic and apocalyptic approaches to the impact of in particular digital technologies, before it demonstrates the applicability of an integrated framework with reference to the techno-politics of NSA surveillance and the counter-practices of WikiLeaks.
DEFF Research Database (Denmark)
Sicart (Vila), Miguel Angel
? In Play Matters, Miguel Sicart argues that to play is to be in the world; playing is a form of understanding what surrounds us and a way of engaging with others. Play goes beyond games; it is a mode of being human. We play games, but we also play with toys, on playgrounds, with technologies and design......, but not necessarily fun. Play can be dangerous, addictive, and destructive. Along the way, Sicart considers playfulness, the capacity to use play outside the context of play; toys, the materialization of play--instruments but also play pals; playgrounds, play spaces that enable all kinds of play; beauty...
Measurement uncertainty of liquid chromatographic analyses visualized by Ishikawa diagrams.
Meyer, Veronika R
2003-09-01
Ishikawa, or cause-and-effect diagrams, help to visualize the parameters that influence a chromatographic analysis. Therefore, they facilitate the set up of the uncertainty budget of the analysis, which can then be expressed in mathematical form. If the uncertainty is calculated as the Gaussian sum of all uncertainty parameters, it is necessary to quantitate them all, a task that is usually not practical. The other possible approach is to use the intermediate precision as a base for the uncertainty calculation. In this case, it is at least necessary to consider the uncertainty of the purity of the reference material in addition to the precision data. The Ishikawa diagram is then very simple, and so is the uncertainty calculation. This advantage is given by the loss of information about the parameters that influence the measurement uncertainty.
Calculating Asteroseismic Diagrams for Solar-Like Oscillations
DEFF Research Database (Denmark)
White, T.R.; Bedding, T.R.; Stello, D.
2011-01-01
With the success of the Kepler and CoRoT missions, the number of stars with detected solar-like oscillations has increased by several orders of magnitude; for the first time we are able to perform large-scale ensemble asteroseismology of these stars. In preparation for this golden age of asterose......With the success of the Kepler and CoRoT missions, the number of stars with detected solar-like oscillations has increased by several orders of magnitude; for the first time we are able to perform large-scale ensemble asteroseismology of these stars. In preparation for this golden age...... of these stars. We investigate the scaling relation between the large frequency separation, Δν, and mean stellar density. Furthermore we present model evolutionary tracks for several asteroseismic diagrams. We have extended the so-called C-D diagram beyond the main sequence to the subgiants and the red giant...
Thermodynamic study of CVD-ZrO2 phase diagrams
International Nuclear Information System (INIS)
Torres-Huerta, A.M.; Vargas-Garcia, J.R.; Dominguez-Crespo, M.A.; Romero-Serrano, J.A.
2009-01-01
Chemical vapor deposition (CVD) of zirconium oxide (ZrO 2 ) from zirconium acetylacetonate Zr(acac) 4 has been thermodynamically investigated using the Gibbs' free energy minimization method and the FACTSAGE program. Thermodynamic data Cp o , ΔH o and S o for Zr(acac) 4 have been estimated using the Meghreblian-Crawford-Parr and Benson methods because they are not available in the literature. The effect of deposition parameters, such as temperature and pressure, on the extension of the region where pure ZrO 2 can be deposited was analyzed. The results are presented as calculated CVD stability diagrams. The phase diagrams showed two zones, one of them corresponds to pure monoclinic phase of ZrO 2 and the other one corresponds to a mix of monoclinic phase of ZrO 2 and graphite carbon.
Bifurcation diagram of a cubic three-parameter autonomous system
Directory of Open Access Journals (Sweden)
Lenka Barakova
2005-07-01
Full Text Available In this paper, we study the cubic three-parameter autonomous planar system $$displaylines{ dot x_1 = k_1 + k_2x_1 - x_1^3 - x_2,cr dot x_2 = k_3 x_1 - x_2, }$$ where $k_2, k_3$ are greater than 0. Our goal is to obtain a bifurcation diagram; i.e., to divide the parameter space into regions within which the system has topologically equivalent phase portraits and to describe how these portraits are transformed at the bifurcation boundaries. Results may be applied to the macroeconomical model IS-LM with Kaldor's assumptions. In this model existence of a stable limit cycles has already been studied (Andronov-Hopf bifurcation. We present the whole bifurcation diagram and among others, we prove existence of more difficult bifurcations and existence of unstable cycles.
Phase diagram Fe-Sn-Sr. New experimental results
International Nuclear Information System (INIS)
Nieva, N; Jimenez, M.J; Gomez, A; Corvalan Moya, C; Arias, D
2012-01-01
Zr-based alloys are widely used in nuclear industry due to their specific characteristics. The information of the phase diagrams of the ternary system Fe-Zr-Sn is scarce. In this work we investigate, in a experimental way, the central and the Fe-Sn binary adjacent regions of the Fe-Sn-Zr Gibbs triangle at the temperature of 800 o C. For the experimental work, a set of seven ternary alloys was designed, produced and examined by different complementary techniques. There were performed two types of heat treatments: one of medium and another of long duration. We present a new proposal for the 800 o C isothermal section. The boundaries of the identified phases and the fields of one, two and three phases are indicated in the diagram
Phase Diagrams of Electrostatically Self-Assembled Amphiplexes
Energy Technology Data Exchange (ETDEWEB)
V Stanic; M Mancuso; W Wong; E DiMasi; H Strey
2011-12-31
We present the phase diagrams of electrostatically self-assembled amphiplexes (ESA) comprised of poly(acrylic acid) (PAA), cetyltrimethylammonium chloride (CTACl), dodecane, pentanol, and water at three different NaCl salt concentrations: 100, 300, and 500 mM. This is the first report of phase diagrams for these quinary complexes. Adding a cosurfactant, we were able to swell the unit cell size of all long-range ordered phases (lamellar, hexagonal, Pm3n, Ia3d) by almost a factor of 2. The added advantage of tuning the unit cell size makes such complexes (especially the bicontinuous phases) attractive for applications in bioseparation, drug delivery, and possibly in oil recovery.
TIME-TEMPERATURE-TRANSFORMATION (TTT) DIAGRAMS FOR FUTURE WASTE COMPOSITIONS
International Nuclear Information System (INIS)
Billings, A.; Edwards, T.
2010-01-01
As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the waste form stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (T g ) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The T g of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP) and in SRNL-STI-2009-00025. Additional phase transformation information exists for other projected compositions, but overall these compositions did not cover composition regions estimated for future waste processing. To develop TTT diagrams for future waste types, the Savannah River National Laboratory (SRNL) fabricated two caches of glass from reagent grade oxides to simulate glass compositions which would be likely processed with and without Al dissolution. These were used for glass transition temperature measurement and TTT diagram development. The glass transition temperatures of both glasses were measured using differential scanning calorimetry (DSC) and were recorded to be 448 C and 452 C. Using the previous TTT diagrams as guidance
Magnetic phase diagram of HoxTm1-x alloys
DEFF Research Database (Denmark)
Sarthour, R.S.; Cowley, R.A.; Ward, R.C.C.
2000-01-01
The magnetic phase diagram of the competing anisotropy system, Ho/Tm, has been determined by neutron-scattering techniques and the results compared with calculations based on a mean-field model. The crystal-field interactions in Ho favor alignment of the magnetic moments in the basal plane whereas......, with long-range order, were identified and the magnetic phase diagram, including a pentacritical point, determined. A mean-field model was used to explain the results and the results are in good agreement with the experimental results....... in Tm they favor alignment along the c axis. Single-crystal alloys were grown with molecular-beam epitaxy techniques in Oxford. The components of the magnetic moment alone the c direction and in the basal plane were determined from the neutron-scattering measurements. Five distinct magnetic phases...
Collapsing cycloidal structures in the magnetic phase diagram of erbium
DEFF Research Database (Denmark)
Jehan, D.A.; McMorrow, D.F.; Simpson, J.A.
1994-01-01
The magnetic structure of Er with a magnetic field applied in the hexagonal basal plane has been studied using a combination of experimental techniques and mean-field modeling. From neutron-scattering and magnetization measurements, phase diagrams are constructed. At temperatures above...... approximately 20 K, the application of a field is found to favor cycloidal structures with modulation wave vectors of q(c) = (6/23)c*, (4/15)c*, and (2/7)c*. For fields above almost-equal-to 40 kOe, the (2/7) structure dominates the phase diagram. From a detailed study of this most stable cycloid, we determine...... how it distorts as the field is increased. In low fields, there is a spin reorientation, so that the plane of the cycloid becomes perpendicular to the applied field, while in larger fields, the cycloid collapses through a series of fanlike structures. At lower temperatures, as the field is increased...
Phase Diagram of the Ethylene Glycol-Dimethylsulfoxide System
Solonina, I. A.; Rodnikova, M. N.; Kiselev, M. R.; Khoroshilov, A. V.; Shirokova, E. V.
2018-05-01
The phase diagram of ethylene glycol (EG)-dimethylsulfoxide (DMSO) system is studied in the temperature range of +25 to -140°C via differential scanning calorimetry. It is established that the EG-DMSO system is characterized by strong overcooling of the liquid phase, a glass transition at -125°C, and the formation of a compound with the composition of DMSO · 2EG. This composition has a melting temperature of -60°C, which is close to those of neighboring eutectics (-75 and -70°C). A drop in the baseline was observed in the temperature range of 8 to -5°C at DMSO concentrations of 5-50 mol %, indicating the existence of a phase separation area in the investigated system. The obtained data is compared to the literature data on the H2O-DMSO phase diagram.
Evaluation of self-interaction parameters from binary phase diagrams
International Nuclear Information System (INIS)
Ellison, T.L.
1977-10-01
The feasibility of calculating Wagner self-interaction parameters from binary phase diagrams was examined. The self-interaction parameters of 22 non-ferrous liquid solutions were calculated utilizing an equation based on the equality of the chemical potentials of a component in two equilibrium phases. Utilization of the equation requires the evaluation of the first and second derivatives of various liquidus and solidus data at infinite dilution of the solute component. Several numerical methods for evaluating the derivatives of tabular data were examined. A method involving power series curve fitting and subsequent differentiation of the power series was found to be the most suitable for the interaction parameter calculations. Comparison of the calculated self-interaction parameters with values obtained from thermodynamic measurements indicates that the Wagner self-interaction parameter can be successfully calculated from binary phase diagrams
Precipitation diagram of calcium carbonate polymorphs: its construction and significance
International Nuclear Information System (INIS)
Kawano, Jun; Shimobayashi, Norimasa; Miyake, Akira; Kitamura, Masao
2009-01-01
In order to interpret the formation mechanism of calcium carbonate polymorphs, we propose and construct a new 'precipitation diagram', which has two variables: the driving force for nucleation and temperature. The precipitation experiments were carried out by mixing calcium chloride and sodium carbonate aqueous solutions. As a result, a calcite-vaterite co-precipitation zone, a vaterite precipitation zone, a vaterite-aragonite co-precipitation zone and an aragonite precipitation zone can be defined. Theoretical considerations suggest that the steady state nucleation theory can explain well the appearance of these four zones, and the first-order importance of the temperature dependency of surface free energy in the nucleation of aragonite. Furthermore, the addition of an impurity will likely result in the change of these energies, and this precipitation diagram gives a new basis for interpreting the nature of the polymorphs precipitated in both inorganic and biological environments.
Phase diagrams of laser-processed nanoparticles of brass
Energy Technology Data Exchange (ETDEWEB)
Kazakevich, P.V. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences 38, Vavilov Street, 119991 Moscow (Russian Federation); Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences 38, Vavilov Street, 119991 Moscow (Russian Federation); Monteverde, F. [Electron Microscopy Unit, Materia Nova, Avenue Copernic 1, B-7000 Mons (Belgium); Wautelet, M. [Condensed Matter Physics, University of Mons-Hainaut, 23, Avenue Maistriau, B-7000 Mons (Belgium)]. E-mail: michel.wautelet@umh.ac.be
2007-07-31
Nanoparticles of brass are prepared by ablation of a brass target in ethanol using radiation of a copper-vapor laser at various laser fluences. The nanoparticles are characterized by TEM and optical spectroscopy. The multipulse laser irradiation leads to formation both the nanoparticles in liquid and well-ordered micro-structures on a surface of a target. It is revealed that both the morphology and absorption spectra of brass nanoparticles depend on presence of the micro-structures. Nanoparticles with the various phase diagrams are formed from a flat brass surface and from the same surface with micro-structures. The results are compared with a model of phase diagrams, in which size and composition effects are taken into account.
"Phase diagrams of Lecithin-based microemulsions containing Sodium Salicylate "
Directory of Open Access Journals (Sweden)
"Aboofazeli R
2000-08-01
Full Text Available Partial phase diagrams were constructed at 25°C to investigate the phase behaviour of systems composed of soybean lecithin, water, sodium salicylate, alcohol and isopropyl myristate. The lecithins used were the commercially available soy bean lecithins, namely E200 and E170 (phosphatidyl choline purities greater than 95% and 68-72% respectively. The cosurfactants employed were n-propanol, 2-propanol and n-butanol and these were used at lecithin/alcohol weight ratios (Km of 1:1 and 1.5:1. At a given Km, the aqueous phase consisted of a 2% w/w sodium salicylate solution. Phase diagrams showed the area of existence of a stable isotropic region along the surfactant/oil axis (i.e., reverse microemulsion area. The extension of the microemulsion domain was influenced by the purity of surfactant, the lecithin/alcohol weight ratios and the kind of the alcohol.
Equivalence Checking of Combinational Circuits using Boolean Expression Diagrams
DEFF Research Database (Denmark)
Hulgaard, Henrik; Williams, Poul Frederick; Andersen, Henrik Reif
1999-01-01
The combinational logic-level equivalence problem is to determine whether two given combinational circuits implement the same Boolean function. This problem arises in a number of CAD applications, for example when checking the correctness of incremental design changes (performed either manually...... or by a design automation tool).This paper introduces a data structure called Boolean Expression Diagrams (BEDs) and two algorithms for transforming a BED into a Reduced Ordered Binary Decision Diagram (OBDD). BEDs are capable of representing any Boolean circuit in linear space and can exploit structural...... similarities between the two circuits that are compared. These properties make BEDs suitable for verifying the equivalence of combinational circuits. BEDs can be seen as an intermediate representation between circuits (which are compact) and OBDDs (which are canonical).Based on a large number of combinational...
Oak Ridge K-25 Site Technology Logic Diagram
Energy Technology Data Exchange (ETDEWEB)
Fellows, R.L. (ed.)
1993-02-26
The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates envirorunental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. This volume, Volume 2, contains logic diagrams with an index. Volume 3 has been divided into two separate volumes to facilitate handling and use.
A Visual Interface Diagram For Mapping Functions In Integrated Products
DEFF Research Database (Denmark)
Ingerslev, Mattias; Oliver Jespersen, Mikkel; Göhler, Simon Moritz
2015-01-01
In product development there is a recognized tendency towards increased functionality for each new product generation. This leads to more integrated and complex products, with the risk of development delays and quality issues as a consequence of lacking overview and transparency. The work described...... of visualizing relations between parts and functions in highly integrated mechanical products. The result is an interface diagram that supports design teams in communication, decision making and design management. The diagram gives the designer an overview of the couplings and dependencies within a product...... in this article has been conducted in collaboration with Novo Nordisk on the insulin injection device FlexTouch® as case product. The FlexTouch® reflects the characteristics of an integrated product with several functions shared between a relatively low number of parts. In this article we present a novel way...
Gravitational lensing of the CMB: A Feynman diagram approach
Directory of Open Access Journals (Sweden)
Elizabeth E. Jenkins
2014-09-01
Full Text Available We develop a Feynman diagram approach to calculating correlations of the Cosmic Microwave Background (CMB in the presence of distortions. As one application, we focus on CMB distortions due to gravitational lensing by Large Scale Structure (LSS. We study the Hu–Okamoto quadratic estimator for extracting lensing from the CMB and derive the noise of the estimator up to O(ϕ4 in the lensing potential ϕ. By identifying the diagrams responsible for the previously noted large O(ϕ4 term, we conclude that the lensing expansion does not break down. The convergence can be significantly improved by a reorganization of the ϕ expansion. Our approach makes it simple to obtain expressions for quadratic estimators based on any CMB channel, including many previously unexplored cases. We briefly discuss other applications to cosmology of this diagrammatic approach, such as distortions of the CMB due to patchy reionization, or due to Faraday rotation from primordial axion fields.
Formal verification of Simulink/Stateflow diagrams a deductive approach
Zhan, Naijun; Zhao, Hengjun
2017-01-01
This book presents a state-of-the-art technique for formal verification of continuous-time Simulink/Stateflow diagrams, featuring an expressive hybrid system modelling language, a powerful specification logic and deduction-based verification approach, and some impressive, realistic case studies. Readers will learn the HCSP/HHL-based deductive method and the use of corresponding tools for formal verification of Simulink/Stateflow diagrams. They will also gain some basic ideas about fundamental elements of formal methods such as formal syntax and semantics, and especially the common techniques applied in formal modelling and verification of hybrid systems. By investigating the successful case studies, readers will realize how to apply the pure theory and techniques to real applications, and hopefully will be inspired to start to use the proposed approach, or even develop their own formal methods in their future work.
Mapping Isobaric Aging onto the Equilibrium Phase Diagram.
Niss, Kristine
2017-09-15
The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.
Oak Ridge K-25 Site Technology Logic Diagram
Energy Technology Data Exchange (ETDEWEB)
Fellows, R.L. (ed.)
1993-02-26
The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This report is part A of Volume 3 concerning characterization, decontamination, and dismantlement.
Diagram representations of charge pumping processes in CMOS transistors
International Nuclear Information System (INIS)
Huang Xinyun; Jiao Guangfan; Cao Wei; Huang Darning; Li Mingfu; Shen Chen
2010-01-01
A diagram representation method is proposed to interpret the complicated charge pumping (CP) processes. The fast and slow traps in CP measurement are defined. Some phenomena such as CP pulse rise/fall time dependence, frequency dependence, the voltage dependence for the fast and slow traps, and the geometric CP component are clearly illustrated at a glance by the diagram representation. For the slow trap CP measurement, there is a transition stage and a steady stage due to the asymmetry of the electron and hole capture, and the CP current is determined by the lower capturing electron or hole component. The method is used to discuss the legitimacy of the newly developed modified charge pumping method. (semiconductor devices)
T- P Phase Diagram of Nitrogen at High Pressures
Algul, G.; Enginer, Y.; Yurtseven, H.
2018-05-01
By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.
Use of S-α diagram for representing tokamak equilibrium
International Nuclear Information System (INIS)
Takahashi, H.; Chance, M.; Kessel, C.; LeBlanc, B.; Manickam, J.; Okabayashi, M.
1991-05-01
A use of the S-α diagram is proposed as a tool for representing the plasma equilibrium with a qualitative characterization of its stability through pattern recognition. The diagram is an effective tool for visually presenting the relationship between the shear and dimensionless pressure gradient of an equilibrium. In the PBX-M tokamak, an H-mode operating regime with high poloidal β and L-mode regime with high toroidal β, obtained using different profile modification techniques, are found to have distinct S-α trajectory patterns. Pellet injection into a plasma in the H-mode regime with high toroidal β, obtained using different profile modification techniques, are found to have distinct S-α trajectory patterns. Pellet injection into a plasma in the H-mode regime results in favorable qualities of both regimes. The β collapse process and ELM event also manifest themselves as characteristic changes in the S-α pattern
Mapping Isobaric Aging onto the Equilibrium Phase Diagram
DEFF Research Database (Denmark)
Niss, Kristine
2017-01-01
The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts...... of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case—challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium...... states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single...
Applications of phase diagrams in metallurgy and ceramics
International Nuclear Information System (INIS)
Carter, G.C.
1978-03-01
The workshop represents an effort to coordinate and reinforce the current efforts on compilation of phase diagrams of alloys and ceramics. Many research groups and individual scientists throughout the world are concerned with phase equilibrium data. Specialized expertise exists in small institutions as well as large laboratories. If this talent can be effecively utilized through a cooperative effort, the needs for such data can be met. The Office of Standard Reference Data, which serves as the program management office for the National Standard Reference Data System, is eager to work with all groups concerned with this problem. Through a cooperative international effort we can carry out a task which has become too large for an individual. Volume 2 presents computational techniques for phase diagram construction
Measurement Uncertainty of Liquid Chromatographic Analyses Visualized by Ishikawa Diagrams
Meyer, Veronika R.
2017-01-01
Ishikawa, or cause-and-effect diagrams, help to visualize the parameters that influence a chromatographic analysis. Therefore, they facilitate the set up of the uncertainty budget of the analysis, which can then be expressed in mathematical form. If the uncertainty is calculated as the Gaussian sum of all uncertainty parameters, it is necessary to quantitate them all, a task that is usually not practical. The other possible approach is to use the intermediate precision as a base for the uncer...
A more accurate HR diagram for the cooler stars
International Nuclear Information System (INIS)
Keenan, P.C.
1978-01-01
The author's objective is to classify the fine structure in the pattern in the luminosity-spectrum domain, and thus to define more precisely the borders of zones which are either occupied or avoided by stars of a given population. It is this pattern which is compared with theoretical evolutionary tracks and it is such a diagram based on the revised MK classification of the recent Atlas of Keenan and McNeil (1976) that is presented. (Auth.)
Experimental Pressure-Volume diagrams of scroll compressors
Picavet, Alain; Ginies, Pierre
2014-01-01
This paper presents the results of tests led with scroll compressors to establish pressure-volume diagrams. Two compressors were thinly instrumented with pressure and displacement sensors so as to follow the whole compression process, from suction to exhaust. A gear coder was set to mark off the closing and opening of gas pockets, and to study the speed variations occurring during a single rotation. These tests help to understand the various phenomena met in a compressor, such as back-flow, o...
Phase diagram for the Kuramoto model with van Hemmen interactions.
Kloumann, Isabel M; Lizarraga, Ian M; Strogatz, Steven H
2014-01-01
We consider a Kuramoto model of coupled oscillators that includes quenched random interactions of the type used by van Hemmen in his model of spin glasses. The phase diagram is obtained analytically for the case of zero noise and a Lorentzian distribution of the oscillators' natural frequencies. Depending on the size of the attractive and random coupling terms, the system displays four states: complete incoherence, partial synchronization, partial antiphase synchronization, and a mix of antiphase and ordinary synchronization.
Phase diagram of a Lennard-Jones solid
International Nuclear Information System (INIS)
Choi, Y.; Ree, T.; Ree, F.H.
1993-01-01
A phase diagram of a Lennard-Jones solid at kT/ε≥0.8 is constructed by our recent perturbation theory. It shows the stability of the face-centered-cubic phase except within a small pressure and temperature domain, where the hexagonal-close packed phase may occur. The theory predicts anharmonic contributions to the Helmholtz free energy (important to the crystal stability) in good agreement with Monte Carlo data
Some remarks on non-planar Feynman diagrams
International Nuclear Information System (INIS)
Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz
2013-12-01
Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.
Do we need Feynman diagrams for higher order perturbation theory?
International Nuclear Information System (INIS)
Jora, Renata
2012-01-01
We compute the two loop and three loop corrections to the beta function for Yang-Mills theories in the background gauge field method and using the background gauge field as the only source. The calculations are based on the separation of the one loop effective potential into zero and positive modes contributions and are entirely analytical. No two or three loop Feynman diagrams are considered in the process.
Towards a Metropolitan Fundamental Diagram Using Travel Survey Data
2016-01-01
Using travel diary data from 2000–2001 and 2010–2012 this research examines fundamental traffic relationships at the metropolitan level. The results of this paper can help to explain the causes of some traffic phenomena. Network average speed by time of day can be explained by trip length and cumulative number of vehicles on the road. A clockwise hysteresis loop is found in the Metropolitan Fundamental Diagram in the morning period and a reverse process happens in the afternoon. PMID:26866913
Irreducible diagrams in Landau-Ginzburg field theory
Energy Technology Data Exchange (ETDEWEB)
Witten, Jr, T A [Michigan Univ., Ann Arbor (USA). Dept. of Psychology
1981-10-19
It is shown that the free energy W of a Landau-Ginzburg-Wilson field theory with O(n) symmetry may be written in terms of the generating function V of diagrams irreducible in both propagator and interaction lines. This generalizes and simplifies a recent result of Des Cloizeaux. The functions W and V are related by a type of Legendre transformation on the bare mass variable.
Chiral symmetry breaking in gauge theories from Reggeon diagram analysis
International Nuclear Information System (INIS)
White, A.R.
1991-01-01
It is argued that reggeon diagrams can be used to study dynamical properties of gauge theories containing a large number of massless fermions. SU(2) gauge theory is studied in detail and it is argued that there is a high energy solution which is analogous to the solution of the massless Schwinger model. A generalized winding-number condensate produces the massless pseudoscalar spectrum associated with chiral symmetry breaking and a ''trivial'' S-Matrix
Studies on the QCD Phase Diagram at SPS and FAIR
International Nuclear Information System (INIS)
Blume, Christoph
2013-01-01
A review of results of the energy scan program at the CERN-SPS by the NA49 experiment is given. Presented are observables related to the search for a critical point in the QCD phase diagram and for the onset of deconfinement. Furthermore, the ongoing experimental program of NA61 at the CRRN-SPS and the plans of the CBM experiment at FAIR are discussed.
Surface terms and radiative corrections to the VVA triangle diagram
International Nuclear Information System (INIS)
Chowdhury, A.M.; McKeon, G.
1986-01-01
The two-loop radiative corrections to the divergence of the axial-vector current are analyzed in the context of spinor electrodynamics. It is found that the arbitrariness that occurs in the relevant Feynman diagrams due to the appearance of surface terms associated with linearly divergent integrals is sufficient to ensure that at two-loop order the Ward identity can be satisfied, irrespective of how the divergences that occur are parametrized. This indicates that the Adler-Bardeen theorem is satisfied
Phase diagram of a modified Lennard-Jones system
International Nuclear Information System (INIS)
Sakagami, Takahiro; Fuchizaki, Kazuhiro
2010-01-01
The well-known Lennard-Jones potential is modified in such a way that it smoothly vanishes at a certain distance. A system whose interparticle interaction is given by such a potential is referred to as a modified Lennard-Jones system, and is served as a standard system describing simple solids and fluids. A phase diagram is determined based on the free energies obtained through thermodynamic integration.
The Exergy of Lift and Aircraft Exergy Flow Diagrams
Paulus, Jr., David; Gaggioli, Richard
2010-01-01
Aside from incidental, auxiliary loads, in level flight the principal load on the aircraft propulsion engine is the power required to provide the continuous lift. To construct an exergy flow diagram for an aircraft – for example, for the purpose of pinpointing inefficiencies and for costing – an expression is needed for the exergy delivered to and by the wings. That is, an expression is needed for the exergy of lift. The purpose of this paper is to present an expression de...
Some remarks on non-planar Feynman diagrams
Energy Technology Data Exchange (ETDEWEB)
Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-12-15
Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.
Maunder's Butterfly Diagram in the 21st Century
Hathaway, David H.
2005-01-01
E. Walter Maunder created his first "Butterfly Diagram" showing the equatorward drift of the sunspot latitudes over the course of each of two solar cycles in 1903. This diagram was constructed from data obtained through the Royal Greenwich Observatory (RGO) starting in 1874. The RGO continued to acquire data up until 1976. Fortunately, the US Air Force (USAF) and the US National Oceanic and Atmospheric Administration (NOAA) have continued to acquire similar data since that time. This combined RGO/USAF/NOAA dataset on sunspot group positions and areas now extends virtually unbroken from the 19th century to the 21st century. The data represented in the Butterfly Diagram contain a wealth of information about solar activity and the solar cycle. Solar activity (as represented by the sunspots) appears at mid-latitudes at the start of each cycle. The bands of activity spread in each hemisphere and then drift toward the equator as the cycle progresses. Although the equator itself tends to be avoided, the spread of activity reaches the equator at about the time of cycle maximum. The cycles overlap at minimum with old cycle spots appearing near the equator while new cycle spots emerge in the mid-latitudes. Large amplitude cycles tend to have activity starting at higher latitudes with the activity spreading to higher latitudes as well. Large amplitude cycles also tend to be preceded by earlier cycles with faster drift rates. These drift rates may be tied to the Sun s meridional circulation - a component in many dynamo theories for the origin of the sunspot cycle. The Butterfly Diagram must be reproduced in any successful dynamo model for the Sun.
Zeros of Wronskians of Hermite polynomials and Young diagrams
Felder, G.; Hemery, A. D.; Veselov, A. P.
2012-12-01
For a certain class of partitions, a simple qualitative relation is observed between the shape of the Young diagram and the pattern of zeros of the Wronskian of the corresponding Hermite polynomials. In the case of the two-term Wronskian W(Hn,Hn+k), we give an explicit formula for the asymptotic shape of the zero set as n→∞. Some empirical asymptotic formulas are given for the zero sets of three-term and four-term Wronskians.
PROCESS DIAGRAMS FOR INSTALLATION OF DRIVEN PILES IN PENETRATED WELLS
Directory of Open Access Journals (Sweden)
Kovalev Vladimir Aleksandrovich
2017-03-01
Full Text Available This article presents the main options of improved and newly devised designs and process diagrams for installation of foundations made of driven, or jack, piles in the penetrated wells with expanded shoe, mainly in weak wet (waterlogged and water-saturated soils. The article presents six options of process diagrams for installation of driven piles in penetrated wells, listing the main procedures: for well-compacted weak soils, for the case when the water ingress is excluded, for the case when it is necessary to increase the load-bearing capacity of pile's bearing face in the waterlogged soils, for the case when the load-bearing capacity of the pile shall be increased both for the end and for the sides, for the case when peat or other biogenous water-saturated soils are present at the bottom of the well, and for the case when there is no contracted zone nor practical possibility to ensure the stability of the walls. The proposed six options of process diagrams for installation of the driven piles in penetrated wells provide expansion of their area of application regarding the soil conditions, increase of load-bearing capacity, and possibility of using jack systems for driving the piles under conditions of dense urban development.
Low-resolution remeshing using the localized restricted voronoi diagram
Yan, Dongming; Bao, Guanbo; Zhang, Xiaopeng; Wonka, Peter
2014-01-01
A big problem in triangular remeshing is to generate meshes when the triangle size approaches the feature size in the mesh. The main obstacle for Centroidal Voronoi Tessellation (CVT)-based remeshing is to compute a suitable Voronoi diagram. In this paper, we introduce the localized restricted Voronoi diagram (LRVD) on mesh surfaces. The LRVD is an extension of the restricted Voronoi diagram (RVD), but it addresses the problem that the RVD can contain Voronoi regions that consist of multiple disjoint surface patches. Our definition ensures that each Voronoi cell in the LRVD is a single connected region. We show that the LRVD is a useful extension to improve several existing mesh-processing techniques, most importantly surface remeshing with a low number of vertices. While the LRVD and RVD are identical in most simple configurations, the LRVD is essential when sampling a mesh with a small number of points and for sampling surface areas that are in close proximity to other surface areas, e.g., nearby sheets. To compute the LRVD, we combine local discrete clustering with a global exact computation. © 1995-2012 IEEE.
A new model of Ishikawa diagram for quality assessment
Liliana, Luca
2016-11-01
The paper presents the results of a study concerning the use of the Ishikawa diagram in analyzing the causes that determine errors in the evaluation of theparts precision in the machine construction field. The studied problem was"errors in the evaluation of partsprecision” and this constitutes the head of the Ishikawa diagram skeleton.All the possible, main and secondary causes that could generate the studied problem were identified. The most known Ishikawa models are 4M, 5M, 6M, the initials being in order: materials, methods, man, machines, mother nature, measurement. The paper shows the potential causes of the studied problem, which were firstly grouped in three categories, as follows: causes that lead to errors in assessing the dimensional accuracy, causes that determine errors in the evaluation of shape and position abnormalities and causes for errors in roughness evaluation. We took into account the main components of parts precision in the machine construction field. For each of the three categories of causes there were distributed potential secondary causes on groups of M (man, methods, machines, materials, environment/ medio ambiente-sp.). We opted for a new model of Ishikawa diagram, resulting from the composition of three fish skeletons corresponding to the main categories of parts accuracy.
Experimental determination of the Ta–Ge phase diagram
Energy Technology Data Exchange (ETDEWEB)
Araújo Pinto da Silva, Antonio Augusto, E-mail: aaaps@ppgem.eel.usp.br [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Coelho, Gilberto Carvalho [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); UniFoa – Centro Universitário de Volta Redonda, Núcleo de Pesquisa, Campus Três Poços, Avenida Paulo Erlei Alves Abrantes, 1325, Bairro Três Poços, 27240-560 Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Suzuki, Paulo Atsushi [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Fiorani, Jean Marc; David, Nicolas; Vilasi, Michel [Université de Lorraine, Institut Jean Lamour, Faculté des Sciences et Technologies, BP 70239, F-54506 Vandoeuvre-lès-Nancy (France)
2013-11-05
Highlights: •Ta–Ge phase diagram propose for the first time. •The phase αTa{sub 5}Ge{sub 3} was not observed in samples investigated in this work. •Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. -- Abstract: In the present work, the Ta–Ge phase diagram has been experimentally studied, considering the inexistence of a Ta–Ge phase diagram in the literature. The samples were prepared via arc melting and characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD). The intermetallics phases βTa{sub 3}Ge, αTa{sub 3}Ge, βTa{sub 5}Ge{sub 3} and TaGe{sub 2} where confirmed in this system. Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. The phases βTa{sub 3}Ge and βTa{sub 5}Ge{sub 3} solidifies congruently while TaGe{sub 2} is formed through a peritectic transformation. The temperature of the Ta-rich eutectic (L ↔ Ta{sub ss} + βTa{sub 3}Ge) was measured by the Pirani-Alterthum method at 2440 °C and the Ge-rich eutectic (L ↔ TaGe{sub 2} + Ge{sub ss}) by DTA at 937 °C.
Calculation of Fe–B–V ternary phase diagram
International Nuclear Information System (INIS)
Homolová, Viera; Kroupa, Aleš; Výrostková, Anna
2012-01-01
Highlights: ► Phase diagram of Fe–B–V system was modelled by CALPHAD method. ► Database for thermodynamic calculations for Fe–B–V system was created. ► The new ternary phase was found in 67Fe–18B–15V [in at.%] alloy. - Abstract: The phase equilibria of the Fe–B–V ternary system are studied experimentally and theoretically in this paper. Phase diagram of the system was modelled by CALPHAD method. Boron was modelled as an interstitial element in the FCC and BCC solid solutions. The calculations of isothermal sections of phase diagram are compared with our experimental results at 903 and 1353 K and with available literature experimental data. New ternary phase (with chemical composition 28Fe32V40B in at.%) was found in 67Fe–18B–15V alloy [in at.%]. Further experimental studies for the determination of exact nature of the ternary phase including crystallographic information are necessary.
Low-resolution remeshing using the localized restricted voronoi diagram
Yan, Dongming
2014-10-01
A big problem in triangular remeshing is to generate meshes when the triangle size approaches the feature size in the mesh. The main obstacle for Centroidal Voronoi Tessellation (CVT)-based remeshing is to compute a suitable Voronoi diagram. In this paper, we introduce the localized restricted Voronoi diagram (LRVD) on mesh surfaces. The LRVD is an extension of the restricted Voronoi diagram (RVD), but it addresses the problem that the RVD can contain Voronoi regions that consist of multiple disjoint surface patches. Our definition ensures that each Voronoi cell in the LRVD is a single connected region. We show that the LRVD is a useful extension to improve several existing mesh-processing techniques, most importantly surface remeshing with a low number of vertices. While the LRVD and RVD are identical in most simple configurations, the LRVD is essential when sampling a mesh with a small number of points and for sampling surface areas that are in close proximity to other surface areas, e.g., nearby sheets. To compute the LRVD, we combine local discrete clustering with a global exact computation. © 1995-2012 IEEE.
Tools for the efficient use of the gas: Combustion diagrams
International Nuclear Information System (INIS)
Amell Andres; Maya Ruben D
1997-01-01
In this work the results of an investigation carried out with the purpose of developing a fundamental tool related to the process of optimization of the combustion are presented: The combustion diagrams with the optimization are looked for using the maximum heat generated in the reaction and to avoid the production of pollutants, product of an incomplete combustion. This is carried out controlling the stability of the flame and the composition of the smoke by means of the adjustment of the ratio air/combustible basically and with a homogeneous mixture. A constant pursuit of the dry smoke allows to determine the presence of pollutants and to establish the combustion type. A valuable tool to establish the conditions in which this process is carried out, this is the combustion diagram; this diagram uses the values of the concentration of O2 and CO2 in the dry smoke, starting from the sampling of the products by an analyzer to determine the composition of these smoke, the percentage of air really used, the air in excess and the combustion type
Interaction diagrams for composite columns exposed to fire
Directory of Open Access Journals (Sweden)
Milanović Milivoje
2014-01-01
Full Text Available The bearing capacity of the cross section of composite column in fire conditions through changes in the interaction diagram 'bending moment-axialforce' were analyzed in this paper. The M-N interaction diagram presents the relationship between the intensities of the bending moment and the axial force as actions on the column cross section, or the relationship between the design value of the plastic resistance to axial compression of the total cross-section Npl, Rd and the design value of the bending moment resistance Mpl, Rd. It is well known that the temperature increase causes decrease of the load-bearing characteristics of the constitutive materials. This effect directly reflects on the reduction of the axial force and the bending moment that could be accepted by the column cross section. Interaction diagrams for three different types of column cross sections for five different maximal temperatures developed during the fire action were defined. For that purpose the software package SAFIR was used. The columns, materials and load characteristics, as well as all other terms and conditions, were taken in accordance with the relevant Eurocodes and the theory of composite columns.
Phase diagram of the ABC model with nonconserving processes
International Nuclear Information System (INIS)
Lederhendler, A; Cohen, O; Mukamel, D
2010-01-01
The three species ABC model of driven particles on a ring is generalized to include vacancies and particle-nonconserving processes. The model exhibits phase separation at high densities. For equal average densities of the three species, it is shown that although the dynamics is local, it obeys detailed balance with respect to a Hamiltonian with long-range interactions, yielding a nonadditive free energy. The phase diagrams of the conserving and nonconserving models, corresponding to the canonical and grand-canonical ensembles, respectively, are calculated in the thermodynamic limit. Both models exhibit a transition from a homogeneous to a phase-separated state, although the phase diagrams are shown to differ from each other. This conforms with the expected inequivalence of ensembles in equilibrium systems with long-range interactions. These results are based on a stability analysis of the homogeneous phase and exact solution of the continuum equations of the models. They are supported by Monte Carlo simulations. This study may serve as a useful starting point for analyzing the phase diagram for unequal densities, where detailed balance is not satisfied and thus a Hamiltonian cannot be defined
The phase diagram of KNO3-KClO3
International Nuclear Information System (INIS)
Zhang Xuejun; Tian Jun; Xu Kangcheng; Gao Yici
2004-01-01
The binary phase diagram of KNO 3 -KClO 3 is studied by means of differential scanning calorimetry (DSC) and high-temperature X-ray diffraction. The limited solid solutions, K(NO 3 ) 1-x (ClO 3 ) x (0 3 ) 1-x (ClO 3 ) x (0.90 3 -based solid solutions and KClO 3 -based solid solutions phase, respectively. For KNO 3 -based solid solutions, KNO 3 ferroelectric phase can be stable from 423 to 223 K as a result of substituting of NO 3 by ClO 3 -radicals. The temperatures for solidus and liquidus have been determined based on limited solid solutions. Two models, Henrian solution and regular solution theory for KNO 3 -based (α) phase and KClO 3 -based (β) phase, respectively, are employed to reproduce solidus and liquidus of the phase diagram. The results are in good agreement with the DSC data. The thermodynamic properties for α and β solid solutions have been derived from an optimization procedure using the experimental data. The calculated phase diagram and optimized thermodynamic parameters are thermodynamically self-consistent
The effective QCD phase diagram and the critical end point
Directory of Open Access Journals (Sweden)
Alejandro Ayala
2015-08-01
Full Text Available We study the QCD phase diagram on the temperature T and quark chemical potential μ plane, modeling the strong interactions with the linear sigma model coupled to quarks. The phase transition line is found from the effective potential at finite T and μ taking into account the plasma screening effects. We find the location of the critical end point (CEP to be (μCEP/Tc,TCEP/Tc∼(1.2,0.8, where Tc is the (pseudocritical temperature for the crossover phase transition at vanishing μ. This location lies within the region found by lattice inspired calculations. The results show that in the linear sigma model, the CEP's location in the phase diagram is expectedly determined solely through chiral symmetry breaking. The same is likely to be true for all other models which do not exhibit confinement, provided the proper treatment of the plasma infrared properties for the description of chiral symmetry restoration is implemented. Similarly, we also expect these corrections to be substantially relevant in the QCD phase diagram.
Magnetic Phase Diagram of α-RuCl3
Sears, Jennifer; Kim, Young-June; Zhao, Yang; Lynn, Jeffrey
The layered honeycomb material α-RuCl3 is thought to possess unusual magnetic interactions including a strong bond-dependent Kitaev term, offering a potential opportunity to study a material near a well understood spin liquid phase. Although this material orders magnetically at low temperatures and is thus not a realization of a Kitaev spin liquid, it does show a broad continuum of magnetic excitations reminiscent of that expected for the spin liquid phase. It has also been proposed that a magnetic field could destabilize the magnetic order in this material and induce a transition into a spin liquid phase. Low temperature magnetization and specific heat measurements in this material have suggested a complex magnetic phase diagram with multiple unidentified magnetic phases present at low temperature. This has provided motivation for our work characterizing the magnetic transitions and phase diagram in α-RuCl3. I will present detailed bulk measurements combined with magnetic neutron diffraction measurements to map out the phase diagram and identify the various phases present.
The phase diagram of water at negative pressures: virtual ices.
Conde, M M; Vega, C; Tribello, G A; Slater, B
2009-07-21
The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.
The colour-magnitude diagram of NGC 5053
International Nuclear Information System (INIS)
Walker, M.F.; Pike, C.D.; McGee, J.D.
1976-01-01
The colour-magnitude diagram of NGC 5053 has been derived to V = 21.1 from photographic and electronographic observations. The electronographic observations were obtained with an experimental Spectracon image-converter, having photocathode and exit window dimensions of 20 x 30 mm, mounted at the prime-focus of the 120-in. Lick reflector. The photographic observations were obtained with the 20-in. Carnegie astrograph and the 36-in. Crossley reflector. The colour-magnitude diagram resembles that of M92, with the difference that a red horizontal branch is more pronounced than the asymptotic branch in NGC 5053. The topology of the horizontal branch is that of clusters with an intermediate metal content and is thus at variance with the mean period of the RR Lyr stars and the unreddened colour of the subgiant branch read at the magnitude level of the horizontal branch, both of which would indicate an extremely low metal content. If comparison of the colour-magnitude diagrams of NGC 5053 and M92 is valid, then the reddening of NGC 5053 is Esub(B-V) = 0.02 and the apparent distance modulus is m-M = 16.08 +- 0.08. (author)
The shape of a strain-based failure assessment diagram
International Nuclear Information System (INIS)
Budden, P.J.; Ainsworth, R.A.
2012-01-01
There have been a number of recent developments of strain-based fracture assessment approaches, including proposals by Budden [Engng Frac Mech 2006;73:537–52] for a strain-based failure assessment diagram (FAD) related to the conventional stress-based FAD. However, recent comparisons with finite element (FE) data have shown that this proposed strain-based FAD can be non-conservative in some cases, particularly for deeper cracks and materials with little strain-hardening capacity. Therefore, this paper re-examines the shape of the strain-based FAD, guided by these FE analyses and some theoretical analysis. On this basis, modified proposals for the shape of the strain-based FAD are given, including simplified and more detailed options in line with the options available for stress-based FADs in existing fitness-for-service procedures. The proposals are then illustrated by a worked example and by comparison with FE data, which demonstrate that the new proposals are generally conservative. - Highlights: ► The strain-based failure assessment diagram approach to fracture is developed. ► The new approach modifies earlier proposals by Budden. ► A new generic Option 1 strain-based failure assessment diagram is proposed. ► Validation based on finite element J data for plates and cylinders is presented. ► The new approach is generally conservative compared with the finite element data.
Phase diagrams of superconducting materials: Metallurgy, fabrication, and applications
International Nuclear Information System (INIS)
Flukiger, R.
1981-01-01
Because a large number of investigations on superconducting material have been made on insufficiently characterized samples, and with temperature phase diagrams which contained serious errors, phase diagrams are studied. It is seen that the variation of critical temperature as a function of chemical composition for a given compound can be used as a supplementary tool in determining composition with greater accuracy. The consequent search for higher critical temperature value in specified materials has led to a new concept in determining high temperature phase diagrams. Most of this paper is devoted to the study of bulk binary, pseudobinary, or ternary superconductors at their equilibrium state. As will be shown in several cases, these data serve as standard values and are of great help in understanding the superconducting behavior in materials produced by non-equilibrium methods, i.e., splat-cooling, thin film preparation by either sputtering, co-evaporation, or CVD, and diffusion processes in multifilamentary composite wires. An example for the departure from thermal equilibrium is the retention of metastable composition by a fast quenching rate
Λ, Σ, and Ξ hyperons in neutron matter
International Nuclear Information System (INIS)
Kohno, M.
2013-01-01
Hyperon single-particle potentials are calculated in pure neutron matter in the framework of the lowest-order Brueckner theory, using two recent baryon–baryon interactions, the SU 6 quark-model potential and the potential derived from the chiral effective field theory. These properties are important for understanding neutron star matter on the basis of underlying baryon–baryon interactions. Because the calculated potential of Σ − is strongly repulsive and that of Ξ − is also repulsive, these hyperons are unlikely to appear in neutron star matter. The Λ potential is attractive enough to appear in high neutron matter as has been commonly expected in microscopic calculations. After showing important contributions of three-nucleon forces in neutron matter, analogous repulsive contributions to the Λ potential from the Σ ⁎ excitation are estimated by evaluating second-order diagrams
Studies of the QCD Phase Diagram with Heavy-Ion Collisions at J-PARC
Sako, Hiroyuki
To clarify phase structures in the QCD phase diagram is an ultimate goal of heavy-ion collision experiments. Studies of internal structures of neutron stars are also one of the most important topics of nuclear physics since the discovery of neutron stars with two-solar mass. For these physics goals, J-PARC heavy-ion project (J-PARC-HI) has been proposed, where extremely dense matter with 5-10 times the normal nuclear density will be created. Heavy-ion beams up to Uranium will be accelerated to 1-19 AGeV/c, with the designed world's highest beam rate of 1011 Hz. The acceleration of such high-rate beams can be realized by a new heavy-ion linac and a new booster ring, in addition to the existing 3-GeV and 50-GeV proton synchrotrons. To study the above physics goals, following physics observables will be measured in extremely high statistics expected in J-PARC-HI. To search for the critical point, high-order event-by-event fluctuations of conserved charges such as a net-baryon number, an electric charge number, and a strangeness number will be measured. To study the chiral symmetry restoration, dilepton spectra from light vector meson decays will be measured. Also, collective flows, particle correlations will be measured to study the equation of state and hyperon-hyperon and hyperon-nucleon interactions related to neutron stars. Strange quark matter (strangelet) and multi-strangeness hypernuclei will be searched for which may be related directly to the matter constituting the neutron star core. In this work, the physics goals, the experimental design, and expected physics results of J-PARC-HI will be discussed.
A LaTeX graphics routine for drawing Feynman diagrams
International Nuclear Information System (INIS)
Levine, M.J.S.
1990-01-01
FEYNMAN is a LaTeX macropackage which allows the user to construct a versatile range of Feynman diagrams within the text of a document. Diagrams of publication quality may be drawn with relative ease and rapidity. (orig.)
Thermodynamic properties of alloys and fusibility diagram of Fe-Ni-Mn system
International Nuclear Information System (INIS)
Danilenko, V.M.; Turkevich, V.Z.
1987-01-01
Thermodynamic calculation of the fusibility diagram of Fe-Ni-Mn system in the subregular solution approximation is performed. The calculated fusibility diagram fits the experimental one in kind and degree
Hidden Scale Invariance in Condensed Matter
DEFF Research Database (Denmark)
Dyre, J. C.
2014-01-01
. This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding...... (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments...
An Application of Mosaic Diagrams to the Visualization of Set Relationships
Luz, Saturnino; Masoodian, Masood
2017-01-01
We present an application of mosaic diagrams to the visualisation of set relations. Venn and Euler diagrams are the best known visual representations of sets and their relationships (intersections, containment or subsets, exclusion or disjointness). In recent years, alternative forms of visualisation have been proposed. Among them, linear diagrams have been shown to compare favourably to Venn and Euler diagrams, in supporting non-interactive assessment of set relationships. Recent studies tha...
van Hecke, Martin
2013-03-01
All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.
Microscopic equation of state calculations: 1. Nuclear matter. 2. Liquid helium 3
International Nuclear Information System (INIS)
Heyer, J.P.
1989-01-01
A new method for calculating the equation of state of extended Fermi systems is proposed and applied to nuclear matter and liquid 3 He. New techniques are developed for summing up the particle-particle (pp) and particle-hole (ph) ring diagrams to all orders in the calculation of the ground state shift ΔE 0 for many-body systems. Analytic expressions for ΔE pp P 0 , the contribution from all of the pp ring diagrams to ΔE 0 , and ΔE ph 0 , the corresponding contribution from all of the ph ring diagrams, have been obtained. It has been shown that the pp ring diagram sum may be written as an integral over frequency, involving the particle-particle Green's function. A similar integral expression is derived for the ph ring diagram sum. Two methods are developed for carrying out the frequency integrations, namely the multipole and transition amplitude methods. These methods have been tested on an exactly-solvable many-fermion model, a modified Lipkin model, and compared. The author has studied the instability of nuclear matter at both zero and finite temperature within the pp ring diagram framework. He has found using the Gogny D1 effective nucleon-nucleon interaction, complex eigenvalues of an RPA-type secular equation are obtained in a well-defined temperature-density region. When complex eigenvalues occur, the thermodynamic potential becomes complex. The possible connection between the occurrence of complex eigenvalues and liquid-gas phase separation is discussed. The pp ring diagrams are also found to lower the compression modulus of nuclear matter. Lastly, the pp ring diagram method is applied to the calculation of the ground state energy of normal and spin-polarized liquid 3 He. We have found a binding energy per particle (BE/A) of 1.45 degree K and 1.79 degree K for the normal and spin-polarized systems, respectively
On the Impact of Diagram Layout: How Are Models Actually Read?
DEFF Research Database (Denmark)
Störrle, Harald; Baltsen, Nick; Christoffersen, Henrik
2014-01-01
This poster presents the latest results from a very large eye tracking study (n=29) that explores how modelers read UML diagrams. We find that various factors like layout quality, modeler experience, and diagram type lead to significant differences in diagram reading strategies. We derive elements...
Experimenting with Automatic Text-to-Diagram Conversion: A Novel Teaching Aid for the Blind People
Mukherjee, Anirban; Garain, Utpal; Biswas, Arindam
2014-01-01
Diagram describing texts are integral part of science and engineering subjects including geometry, physics, engineering drawing, etc. In order to understand such text, one, at first, tries to draw or perceive the underlying diagram. For perception of the blind students such diagrams need to be drawn in some non-visual accessible form like tactile…
Using a Density-Management Diagram to Develop Thinning Schedules for Loblolly Pine Plantations
Thomas J. Dean; V. Clark Baldwin
1993-01-01
A method for developing thinning schedules using a density-management diagram is presented. A density-management diagram is a form of stocking chart based on patterns of natural stand development. The diagram allows rotation diameter and the upper and lower limits of growing stock to be easily transformed into before and after thinning densities. Site height lines on...
Energy Technology Data Exchange (ETDEWEB)
Czejdo, Bogdan [ORNL; Bhattacharya, Sambit [North Carolina Fayetteville State University; Ferragut, Erik M [ORNL
2012-01-01
This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.
Development and Application of a Rubric for Analysis of Novice Students' Laboratory Flow Diagrams
Davidowitz, Bette; Rollnick, Marissa; Fakudze, Cynthia
2005-01-01
The purpose of this study was to develop and apply a scheme for the analysis of flow diagrams. The flow diagrams in question are a schematic representation of written instructions that require students to process the text of their practical manual. It was hoped that an analysis of the flow diagrams would provide insight into students'…
International Nuclear Information System (INIS)
Recker, S.A.; Brunish, W.M.; Mathews, G.J.
1984-01-01
Young star clusters ( 8 yr) in the Magellanic Clouds (MC) can be used to test the current status of the theory of stellar evolution as applied to intermediate and massive stars. The color-magnitude diagram of many young clusters in the MC shows large numbers of stars in both the main sequence and post main sequence evolutionary phases. Using a grid of stellar evolution models, synthetic cluster H-R diagrams are constructed and compared to observed color-magnitude diagrams to determine the age, age spread, and composition for any given cluster. In addition, for those cases where the data is of high quality, detailed comparisons between theory and observation can provide a diagnostic of the accuracy of the stellar evolution models. Initial indications of these comparisons suggest that the theoretical models should be altered to include: a larger value for the mixing length parameter, a larger rate of mass loss during the asymptotic giant branch phase, and possibly convective overshoot during the core burning phases. (Auth.)
The Compressed Baryonic Matter experiment
Directory of Open Access Journals (Sweden)
Seddiki Sélim
2014-04-01
Full Text Available The Compressed Baryonic Matter (CBM experiment is a next-generation fixed-target detector which will operate at the future Facility for Antiproton and Ion Research (FAIR in Darmstadt. The goal of this experiment is to explore the QCD phase diagram in the region of high net baryon densities using high-energy nucleus-nucleus collisions. Its research program includes the study of the equation-of-state of nuclear matter at high baryon densities, the search for the deconfinement and chiral phase transitions and the search for the QCD critical point. The CBM detector is designed to measure both bulk observables with a large acceptance and rare diagnostic probes such as charm particles, multi-strange hyperons, and low mass vector mesons in their di-leptonic decay. The physics program of CBM will be summarized, followed by an overview of the detector concept, a selection of the expected physics performance, and the status of preparation of the experiment.