WorldWideScience

Sample records for diagnostic nuclear medicine

  1. Exposure from diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.; Isac, R.

    2002-01-01

    According to our last national study on population exposures from natural and artificial sources of ionizing radiation, 16% of overall annual collective effective dose represent the contribution of diagnostic medical exposures. Of this value, 92% is due to diagnostic X-ray examinations and only 8% arise from diagnostic nuclear medicine procedures. This small contribution to collective dose is mainly the result of their lower frequency compared to that of the X-ray examinations, doses delivered to patients being, on average, ten times higher. The purpose of this review was to reassess the population exposure from in vivo diagnostic nuclear medicine procedures and to evaluate the temporal trends of diagnostic usage of radiopharmaceuticals in Romania. The current survey is the third one conducted in the last decade. As in the previous ones (1990 and 1995), the contribution of the Radiation Hygiene Laboratories Network of the Ministry of Health and Family in collecting data from nuclear medicine departments in hospitals was very important

  2. [Costing nuclear medicine diagnostic procedures].

    Science.gov (United States)

    Markou, Pavlos

    2005-01-01

    To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges.

  3. Evaluation of radiation protection in nuclear medicine diagnostic procedures

    International Nuclear Information System (INIS)

    Mohammed, Ezzeldien Mohammed Nour

    2013-05-01

    This study conducted to evaluate the radiation protection in nuclear medicine diagnostic procedures in four nuclear medicine departments in Sudan. The evaluated procedures followed in these departments were in accordance with the standards, International Recommendations and code of practice for radiation protection in nuclear medicine. The evolution included the optimum design for diagnostic nuclear medicine departments, dealing with radioactive sources, quality assurance and quality control, training and responsibilities for radiation worker taking into account economic factors in Sudan. Evaluation of radiation protection procedures in diagnostic investigations was carried out by taken direct measurements of dose rate and the contamination level in some areas where radiation sources, radiation workers and public are involved. Designated questionnaires covered thirteen areas of radiation protection based on inspection check list for nuclear medicine prepared by the International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine (AAPM) were used in the evaluation. This questionnaire has been Filled by Radiation Protection Officer (RPO), nuclear medicine technologist, nuclear medicine specialist in the nuclear medicine departments. Four hospitals, two governmental hospital and two private hospitals, have been assisted, the assessment shows that although the diagnostic nuclear medicine department in Sudan are not applying a fully safety and radiation protection procedures, but the level of radiation dose and the contamination level were found within acceptable limits. The private hospital D scored the higher level of protection (85.25%) while the governmental hospital C scored the lower level of protection (59.02%). Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a proper radiation protection

  4. In vivo diagnostic nuclear medicine. Pediatric experience

    International Nuclear Information System (INIS)

    Goetz, W.A.; Hendee, W.R.; Gilday, D.L.

    1983-01-01

    The use of radiopharmaceuticals for diagnostic tests in children is increasing and interest in these is evidenced by the addition of scientific sessions devoted to pediatric medicine at annual meetings of The Society of Nuclear Medicine and by the increase in the literature on pediatric dosimetry. Data presented in this paper describe the actual pediatric nuclear medicine experience from 26 nationally representative U.S. hospitals and provide an overview of the pediatric procedures being performed the types of radiopharmaceuticals being used, and the activity levels being administered

  5. Nuclear medicine in bone diagnostics

    International Nuclear Information System (INIS)

    Feine, U.; Mueller-Schauenburg, W.

    1985-01-01

    This book on nuclear medicine in bone diagnostics and other complementary imaging methods is composed out of the 51 presentations of the 2nd Tuebinger bone symposium held on the 11th and 12th January 1985; it gives an overview of newer methods of nuclear medicine and other imaging methods such as magnetic-resonance tomography and sonography. While the 1st Tuebinger Symposium in January 1981 dealt with the clinical application of classical bone scintigraphy and the possibilities of the results of differential diagnosis, the present book is concerned with indications, alternative radiopharmaceuticals for skeleton scintigraphy and other techniques. The intention is to give a survey of the developments made over the last few years. (orig./MG) [de

  6. Diagnostic nuclear medicine. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schiepers, C.

    2006-01-01

    The field of nuclear medicine is undergoing rapid expansion, and is evolving into diagnostic molecular imaging. During recent years, dual-modality imaging with PET/CT has gained acceptance and this is currently the fastest-growing technique for oncological imaging applications. The glucose analogue FDG has held its place in diagnostic oncology, assessment of myocardial viability and diagnosis of neuro-degenerative disorders. Peptides have become even more important as imaging agents. The accuracy of hepatobiliary scintigraphy has been enhanced by cholecystokinin. The use of ACE inhibitors in the evaluation of renovascular hypertension has become the standard in renography. New instrumentation has led to faster scanners, and computer development to better image processing software. Automatic processing is more common, and standardization of protocols can be accomplished easily. The field of gene imaging has progressed, although routine clinical applications are not yet available. The present text, supplemented with many detailed and informative illustrations, represents an adjunct to the standard knowledge of diagnostic nuclear medicine and provides both the student and the professional with an overview of developments during the past decade. (orig.)

  7. Overview of radiation protection programme in nuclear medicine facility for diagnostic procedures

    International Nuclear Information System (INIS)

    Ahmed, Ezzeldein Mohammed Nour Mohammed

    2015-02-01

    This project was conducted to review Radiation Protection Program in Nuclear Medicine facility for diagnostic procedures which will provide guide for meeting the standard and regulatory requirements in diagnostic nuclear medicine. The main objective of this project is to keep dose to staff, patient and public as low as reasonably achievable (ALARA). The specific objectives were to review the Radiation Protection Program (RPP) in diagnostic nuclear medicine and to make some recommendation for improving the level of radiation protection in diagnostic nuclear medicine that will help to control normal exposure and prevent or mitigate potential exposure. The methodology used is review of various documents. The review showed that if the Radiation Protection Program is inadequate it leads to unjustified exposure to radiation. Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a qualified Radiation Protection Officer (RPO) should be appointed to lay down and oversee a radiation protection in the nuclear medicine department. The RPO must be given the full authority and the adequate time to enable him to perform his duties effectively. (au)

  8. Diagnostic interventions in nuclear medicine

    International Nuclear Information System (INIS)

    Thrall, J.H.; Swanson, D.P.

    1989-01-01

    Diagnostic interventions in nuclear medicine may be defined as the coadministration of a nonradioactive drug or application of a physical stimulus or physiologic maneuver to enhance the diagnostic utility of a nuclear medicine test. The rationale for each interventional maneuver follows from the physiology or metabolism of the particular organ or organ system under evaluation. Diagnostic inference is drawn from the pattern of change in the biodistribution of the tracer in response to the intervention-induced change in metabolism or function. In current practice, the most commonly performed interventional maneuvers are aimed at studies of the heart, genitourinary system, hepatobiliary system, and gastrointestinal tract. The single most commonly performed interventional study in the United States is the stress Thallium-201 myocardial perfusion scan aimed at the diagnosis of coronary artery disease. The stress portion of the study is accomplished with dynamic leg exercise on a treadmill and is aimed at increasing myocardial oxygen demands. Areas of myocardium distal to hemodynamically significant lesions in the coronary arteries become ischemic at peak stress due to the inability of the stenotic vessel to respond to the oxygen demand/blood flow needs of the myocardium. Ischemic areas are readily recognized as photopenic defects on scans obtained immediately after exercise, with normalization upon delayed imaging. Diuresis renography is aimed at the differential diagnosis of hydroureteronephrosis. By challenging the urinary tract collecting structures with an augmented urine flow, dilated, unobstructed systems can be differentiated from systems with significant mechanical obstruction. 137 references

  9. Imaging nuclear medicine techniques for diagnostic evaluation of arterial hypertension

    International Nuclear Information System (INIS)

    Eisenberg, B.M.; Linss, G.

    1989-01-01

    Arterial hypertension may be caused by a malfunction of organs and in turn may lead to secondary organic lesions. Modern diagnostic nuclear medicine is applied for function studies in order to detect or exclude secondary hypertension and functional or perfusion disturbances due to hypertension, or to assess and follow up hemodynamic conditions and cardiac functions prior to and during therapy. The article presents a survey of imaging diagnostic nuclear medicine techniques for the eamination of the heart, the brain, the kidneys and endocrine glands in patients with arterial hypertension, discussing the methods with a view to obtainable information, limits of detection, and indications. (orig.) [de

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low compared with the potential benefits. Nuclear medicine diagnostic ...

  11. Radiation protection problems by diagnostic procedures of pediatric nuclear medicine

    International Nuclear Information System (INIS)

    Kletter, K.

    1994-01-01

    Special dosimetry considerations are necessary in the application of radiopharmaceuticals in pediatric nuclear medicine. The influence of differences in irradiation geometry and biokinetic parameters on the radiation dose in children and adults is discussed. Assuming an equal activity concentration, both factors lead rather to a reduced radiation dose than an increased radiation burden in children compared to adults. However, the same radiation dose in children and adults may lead to a different detriment. This is explained by differences in life expectancy and radiation sensitivity for both groups. From special formulas an age dependent reduction factor can be calculated for the application of radiopharmaceuticals in pediatric nuclear medicine. Radiation exposure to hospital staff and parents from children, undergoing nuclear medicine diagnostic or therapeutic procedures, is low. (author)

  12. Radiological impact of diagnostic nuclear medicine technology on the Quebec population (patients and workers) in 1989

    International Nuclear Information System (INIS)

    Renaud, L.; Blanchette, J.

    1992-01-01

    Using the results of a six month survey on the doses received by non-monitored hospital workers from diagnostic nuclear medicine patients (DNMP) in three hospitals and published statistics on Quebec's workers and hospitals, an evaluation of the radiological impact of DNMP has been calculated on the Quebec's population. In 1989, diagnostic nuclear medicine gave an average of 6.4 mSv/act or a total of 2,800 sv-man. The diagnostic nuclear medicine technologists' community received 0.4 Sv-man and the non-monitored hospital workers 1.7 Sv-man from the DNMP in the same year. (author)

  13. Nuclear medicine

    International Nuclear Information System (INIS)

    Chamberlain, M.J.

    1986-01-01

    Despite an aggressive, competitive diagnostic radiology department, the University Hospital, London, Ontario has seen a decline of 11% total (in vivo and in the laboratory) in the nuclear medicine workload between 1982 and 1985. The decline of in vivo work alone was 24%. This trend has already been noted in the U.S.. Nuclear medicine is no longer 'a large volume prosperous specialty of wide diagnostic application'

  14. Preliminary results of the analysis of the administered activities in diagnostic studies of nuclear medicine

    International Nuclear Information System (INIS)

    Lopez Bejerano, G.; Sed, L.J.

    2001-01-01

    The worldwide use of Nuclear Medicine diagnostic procedures and the tendency to its increment, infers an important exposure of the population to ionising radiation; it has motivated that the IAEA in the International Basic Safety Standards (BSS), emits recommendations for the establishment of guidance levels of activities administered to the patients in diagnostic procedures. Taking into account the above-mentioned and that in Cuba there exist 20 departments of Nuclear Medicine that in the majority possess equipment with more than 20 years of operation, which influences directly the medical exposure. A survey was designed and applied in 10 of these departments. The survey evaluates the compliance with the BSS requirements, and specifically, the activities administered to the patients in Nuclear Medicine diagnostic procedures are analysed. In the present work the obtained preliminary results of the statistical analysis carried out on the activity values used in Nuclear Medicine departments are presented, and comparisons made for a proposal of guidance levels for the national practice, which is compared with those recommended internationally. (author)

  15. Recent applications of nuclear medicine in diagnostics: II part

    Directory of Open Access Journals (Sweden)

    Giorgio Treglia

    2013-04-01

    Full Text Available Introduction: Positron-emission tomography (PET and single photon emission computed tomography (SPECT are effective diagnostic imaging tools in several clinical settings. The aim of this article (the second of a 2-part series is to examine some of the more recent applications of nuclear medicine imaging techniques, particularly in the fields of neurology, cardiology, and infection/inflammation. Discussion: A review of the literature reveals that in the field of neurology nuclear medicine techniques are most widely used to investigate cognitive deficits and dementia (particularly those associated with Alzheimer disease, epilepsy, and movement disorders. In cardiology, SPECT and PET also play important roles in the work-up of patients with coronary artery disease, providing accurate information on the state of the myocardium (perfusion, metabolism, and innervation. White blood cell scintigraphy and FDG-PET are widely used to investigate many infectious/inflammatory processes. In each of these areas, the review discusses the use of recently developed radiopharmaceuticals, the growth of tomographic nuclear medicine techniques, and the ways in which these advances are improving molecular imaging of biologic processes at the cellular level.

  16. Recent applications of nuclear medicine in diagnostics (I part

    Directory of Open Access Journals (Sweden)

    Giorgio Treglia

    2013-04-01

    Full Text Available Introduction: Aim of this review is to describe the recent applications of nuclear medicine techniques in diagnostics, particularly in oncology. Materials and methods: We reviewed scientific literature data searching for the current role of tomographic nuclear medicine techniques (SPECTand PET in oncology and summarized the main applications of these techniques. Results: Nuclear medicine techniques have a key role in oncology allowing early diagnosis of many tumours, an accurate staging of disease and evalutation of treatment response. Hybrid SPECT/CT and PET/CT imaging systems now provide metabolic and functional information from SPECTor PETcombined with the high spatial resolution and anatomic information of CT. The most frequent applications of SPECT/CT in oncology concern thyroid tumours, neuroendocrine tumours, bone metastases and lymph node mapping. Furthermore the evaluation of many tumours may benefit from PET/CT imaging. Discussion: The recent development of new radiopharmaceuticals and the growth of hybrid tomographic devices, such as SPECT/CT and PET/CT, now permits molecular imaging of biologic processes at the cellular level to improve both the diagnosis and treatment of many tumours.

  17. Radiation protection for the parent and child in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    Mountford, P.J.

    1991-01-01

    Administration of a radiopharmaceutical to a parent or child for diagnostic purposes will result in certain specific radiation hazards, yet it can yield information vital to patient management. These hazards have been cited as a reason for the reluctance of some referring clinicians and, indeed, nuclear medicine practitioners to exploit paediatric radiopharmaceutical investigations (Piepsz et al. 1991). Ignorance of these hazards has the following consequences. Firstly, a valuable diagnostic procedure could be denied to a parent or child patient without justification, thereby compromising their management. Secondly, inappropriate recommendations could result in either excessive restrictions or an unnecessarily high radiation dose to a patient's family and to hospital staff. All members of a nuclear medicine service should be familiar with these radiation risks in order to provide appropriate guidance and to dispel any unwarranted fears. (orig.)

  18. Pediatric radiation exposure from diagnostic nuclear medicine examinations in Tehran

    International Nuclear Information System (INIS)

    Neshandar Asli, I.; Tabeie, F.

    2005-01-01

    As a part of a nationwide survey to estimate population exposure to radiation from diagnostic nuclear medicine in Iran, this paper presents the pediatric population radiation exposure due to nuclear medicine examinations in Tehran. Patients and methods: the effective dose equivalent, H E , was used to calculate the collective effective dose in pediatric patients undergoing nuclear medicine procedures, and the corresponding data were obtained from thirty out of thirty seven active nuclear medicine departments in Tehran. Results: annually about 5.26% of nuclear medicine examinations were performed on patients under 15 years of age in Tehran. The most frequent was renal examinations (38.2%), followed y thyroid (27.4%) and bone (26.7%). The annual collective H E for patients under 15 was 19.03 human-Sv, which contributed 3.96% to the collective H E for all patients. The contribution of renal, bone and thyroid examinations to the pediatric collective H E were 24.6% 48.8% and 13.5% respectively. The mean effective dose equivalent per pediatric patient was 3.75 mSv.Conclusion: Among the three most frequent examinations, the bone with a relative frequency of 27.4% constituted 48.8% of the collective H E , which was the highest absorbed dose per examination. The mean effective dose per examination for patients younger than 15 years was 67.9% of the adults

  19. Radiation dose to the pediatric population of Slovak Republic from diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Ftacnikova, S.; Fueriova, A.

    1996-01-01

    The increased number of in vitro diagnostic nuclear medicine examinations has created the need for more precise determination of radiation dose to the population, specially to the children. A questionnaire survey has been performed on all nuclear medicine facilities in Slovak Republic through 1982 to 1994 with a special attention to pediatric patients in 1994. The information obtained was about the age distribution, number of different types of examinations, radiopharmaceuticals used and the value of mean administered radioactivity per exam. These data were used to evaluate the mean effective dose per exam and per capita, the collective effective dose for special type of examinations, for different radiopharmaceuticals and for radionuclides used in diagnostic procedures. In calculations we used the best available biokinetic models of the distribution of radiopharmaceuticals in organs as a function of age. The results show that the Slovak Republic appeared favorable in comparison to other countries in the judicious use of diagnostic nuclear medicine procedures performed on pediatric population. (author)

  20. Nuclear Medicine and Application of Nuclear Techniques in Medicine

    International Nuclear Information System (INIS)

    Wiharto, Kunto

    1996-01-01

    The use of nuclear techniques medicine covers not only nuclear medicine and radiology in strict sense but also determination of body mineral content by neutron activation analysis and x-ray fluorescence technique either in vitro or in vivo, application of radioisotopes as tracers in pharmacology and biochemistry, etc. This paper describes the ideal tracer in nuclear medicine, functional and morphological imaging, clinical aspect and radiation protection in nuclear medicine. Nuclear technique offers facilities and chances related to research activities and services in medicine. The development of diagnostic as well as therapeutic methods using monoclonal antibodies labeled with radioisotope will undoubtedly play an important role in the disease control

  1. Radiation protection for the parent and child in diagnostic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Mountford, P.J. (Kent and Canterbury Hospital (UK). Dept. of Nuclear Medicine)

    1991-12-01

    Administration of a radiopharmaceutical to a parent or child for diagnostic purposes will result in certain specific radiation hazards, yet it can yield information vital to patient management. These hazards have been cited as a reason for the reluctance of some referring clinicians and, indeed, nuclear medicine practitioners to exploit paediatric radiopharmaceutical investigations (Piepsz et al. 1991). Ignorance of these hazards has the following consequences. Firstly, a valuable diagnostic procedure could be denied to a parent or child patient without justification, thereby compromising their management. Secondly, inappropriate recommendations could result in either excessive restrictions or an unnecessarily high radiation dose to a patient's family and to hospital staff. All members of a nuclear medicine service should be familiar with these radiation risks in order to provide appropriate guidance and to dispel any unwarranted fears. (orig.).

  2. Nuclear medicine

    International Nuclear Information System (INIS)

    Kand, Purushottam

    2012-01-01

    Nuclear medicine is a specialized area of radiology that uses very small amounts of radioactive materials to examine organ function and structure. Nuclear medicine is older than CT, ultrasound and MRI. It was first used in patients over 60-70 years ago. Today it is an established medical specialty and offers procedures that are essential in many medical specialities like nephrology, pediatrics, cardiology, psychiatry, endocrinology and oncology. Nuclear medicine refers to medicine (a pharmaceutical) that is attached to a small quantity of radioactive material (a radioisotope). This combination is called a radiopharmaceutical. There are many radiopharmaceuticals like DTPA, DMSA, HIDA, MIBI and MDP available to study different parts of the body like kidneys, heart and bones etc. Nuclear medicine uses radiation coming from inside a patient's body where as conventional radiology exposes patients to radiation from outside the body. Thus nuclear imaging study is a physiological imaging, whereas diagnostic radiology is anatomical imaging. It combines many different disciplines like chemistry, physics mathematics, computer technology, and medicine. It helps in diagnosis and to treat abnormalities very early in the progression of a disease. The information provides a quick and accurate diagnosis of wide range of conditions and diseases in a person of any age. These tests are painless and most scans expose patients to only minimal and safe amounts of radiation. The amount of radiation received from a nuclear medicine procedure is comparable to, or often many times less than, that of a diagnostic X-ray. Nuclear medicine provides an effective means of examining whether some tissues/organs are functioning properly. Therapy using nuclear medicine in an effective, safe and relatively inexpensive way of controlling and in some cases eliminating, conditions such as overactive thyroid, thyroid cancer and arthritis. Nuclear medicine imaging is unique because it provides doctors with

  3. Diagnostic system for the nuclear medicine with baby cyclotron

    International Nuclear Information System (INIS)

    Kashihara, Masao; Wakasa, Shyuichiro

    1982-01-01

    The system of cyclotron nuclear medicine consists of ''RI-production by using the cyclotron'', ''production of radio-pharmaceuticals labeled with RI'', ''positron tomography''. On the other hand, Ultra compact cyclotron (Baby cyclotron) itself, RI production technique and positron tomography have been rapidly developed and advanced. We think that these three functions must be balance in the development in order to spread this system into the routine work in the hospital. However, since the technology of the synthesis for the labeled compounds is not so developed so far, more advance can be strongly expected. In this report, construction of the cyclotron nuclear medicine, utility for the practical use of RI produced by using the cyclotron, technique of RI production, and the studies on automated and efficient productions of radio-pharmaceuticals labeled with short-lived positron emitters for medical diagnostic use are described. (author)

  4. Nuclear medicine in Ghana

    International Nuclear Information System (INIS)

    Affram, R.K.; Kyere, K.; Amuasi, J.

    1991-01-01

    The background to the introduction and application of radioisotopes in medicine culminating in the establishment of the nuclear Medicine Unit at the Korle Bu Teaching Hospital, Ghana, has been examined. The Unit has been involved in important clinical researches since early 1970s but routine application in patient management has not always been possible because of cost per test and lack of continuous availability of convertible currency for the purchase of radioisotopes which are not presently produced by the National Nuclear Research Institute at Kwabenya. The capabilities and potentials of the Unit are highlighted and a comparison of Nuclear Medicine techniques to other medical diagnostic and imaging methods have been made. There is no organised instruction in the principles of medical imaging and diagnostic methods at both undergraduate and postgraduate levels in Korle Bu Teaching Hospital which has not promoted the use of Nuclear Medicine techniques. The development of a comprehensive medical diagnostic and imaging services is urgently needed. (author). 18 refs., 3 tabs

  5. Carcinogenic risk in diagnostic nuclear medicine: biological and epidemiological considerations

    International Nuclear Information System (INIS)

    Overbeek, F.; Pauwels, E.K.J.; Broerse, J.J.

    1994-01-01

    During the last decade new data have become available on the mechanism of carcinogenesis and on cancer induction by ionizing radiation. This review concentrates on these two items in relation to the use of radiopharmaceuticals in diagnostic nuclear medicine. On the basis of reports of expert committees, the concept of radiation risk is elucidated for high and low doses. Mortality risk factors due to ionizing radiation are put in perspective to other risks. The extra risk for patients who undergo a scintigraphic examination for fatal cancer is very small and is of the order of 1.4 x 10 -4 . It is most unlikely that this figure can even be verified by actual measurement since the majority of nuclear medicine patients will die of other causes before the radiogenic cancer manifests itself. (orig.)

  6. French diagnostic reference levels in diagnostic radiology, computed tomography and nuclear medicine: 2004-2008 Review

    International Nuclear Information System (INIS)

    Roch, P.; Aubert, B.

    2013-01-01

    After 5 y of collecting data on diagnostic reference levels (DRLs), the Nuclear Safety and Radiation Protection French Inst. (IRSN) presents the analyses of this data. The analyses of the collected data for radiology, computed tomography (CT) and nuclear medicine allow IRSN to estimate the level of regulatory application by health professionals and the representativeness of current DRL in terms of relevant examinations, dosimetric quantities, numerical values and patient morphologies. Since 2004, the involvement of professionals has highly increased, especially in nuclear medicine, followed by CT and then by radiology. Analyses show some discordance between regulatory examinations and clinical practice. Some of the dosimetric quantities used for the DRL setting are insufficient or not relevant enough, and some numerical values should also be reviewed. On the basis of these findings, IRSN formulates recommendations to update regulatory DRL with current and relevant examination lists, dosimetric quantities and numerical values. (authors)

  7. Recent history of nuclear medicine

    International Nuclear Information System (INIS)

    Potchen, E.J.; Gift, D.A.

    1988-01-01

    Diagnostic nuclear medicine's recent history is characterized both by significant change and by growing participation in efforts to quantify the impact of nuclear medicine procedures on clinical judgment and patient management, as well as to develop methods for studying the efficacy of diagnostic procedures in general. The replacement of many nuclear medicine procedures that at one time were considered essential standards of clinical care by newer, more efficient and effective modalities has been complimented by the continued development of increasingly sophisticated applications of scintigraphic tracer methods

  8. The radiopharmaceuticals in nuclear medicine diagnostic procedures and the problem of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Ftacnikova, S [Inst. of Preventive and Clinical Medicine, 83301 Bratislava (Slovakia)

    1996-12-31

    In this paper equivalent dose from Auger electron emitters was reevaluated. The presented approach represents a practical step toward the estimation of equivalent dose for incorporated Auger electron emitters, an aspects that has not been given adequate consideration so far. Given the widespread use of this class of radionuclides in nuclear medicine and in biomedical research, the formalism and practical calculation presented here may be of value to assessing the risk associated with this radionuclides (in diagnostic nuclear medicine procedures), as well as predicting their therapeutic efficiency. (J.K.) 2 tabs., 11 refs.

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations is ... risk is very low compared with the potential benefits. Nuclear medicine diagnostic procedures have been used for ...

  10. Renal diagnostic nuclear medicine procedures in progressive systemic scleroderma (PSS)

    Energy Technology Data Exchange (ETDEWEB)

    Ammari, B.; Hotze, A.; Gruenwald, F.; Biersack, H.J.; Blitz, H.; Kuester, W.; Kreysel, H.W.

    1989-02-01

    The involvement of kidneys in progressive systemic scleroderma (PSS) is one of the most frequent causes of death in this disease. Using clinical criteria and laboratory tests only the frequency of kidney involvement would be clearly underestimated. Invasive diagnostic procedures such as biopsy and angiography can not be applied in those patients. Nuclear medicine techniques (hippurate clearance, DMSA-scan), however, offer non invasive and sensitive methods in the diagnosis of renal involvement in PSS patients. In our study 46 of 76 patients (60%) revealed pathologic findings. The mentioned diagnostic techniques show a high sensitivity and are in agreement with pathological findings described in PSS.

  11. Renal diagnostic nuclear medicine procedures in progressive systemic scleroderma (PSS)

    International Nuclear Information System (INIS)

    Ammari, B.; Hotze, A.; Gruenwald, F.; Biersack, H.J.; Blitz, H.; Kuester, W.; Kreysel, H.W.

    1989-01-01

    The involvement of kidneys in progressive systemic scleroderma (PSS) is one of the most frequent causes of death in this disease. Using clinical criteria and laboratory tests only the frequency of kidney involvement would be clearly underestimated. Invasive diagnostic procedures such as biopsy and angiography can not be applied in those patients. Nuclear medicine techniques (hippurate clearance, DMSA-scan), however, offer non invasive and sensitive methods in the diagnosis of renal involvement in PSS patients. In our study 46 of 76 patients (60%) revealed pathologic findings. The mentioned diagnostic techniques show a high sensitivity and are in agreement with pathological findings described in PSS. (orig.) [de

  12. Practical nuclear medicine

    CERN Document Server

    Gemmell, Howard G; Sharp, Peter F

    2006-01-01

    Nuclear medicine plays a crucial role in patient care, and this book is an essential guide for all practitioners to the many techniques that inform clinical management. The first part covers the scientific basis of nuclear medicine, the rest of the book deals with clinical applications. Diagnostic imaging has an increasingly important role in patient management and, despite advances in other modalities (functional MRI and spiral CT), nuclear medicine continues to make its unique contribution by its ability to demonstrate physiological function. This book is also expanded by covering areas of d

  13. Nuclear medicine. 1 part. Manual

    International Nuclear Information System (INIS)

    Shlygina, O.E.; Borisenko, A.R.

    2006-01-01

    Current manual is urged to give wide-scale readers a submission on a key principles and methods of nuclear medicine, and it opportunities and restrictions in diagnostics and treatment of different diseases. Nuclear medicine is differing first of all by combination of diverse knowledge fields: special knowledge of a doctor, knowledge of physical processes bases, related with radiation, grounds of radiopharmaceutics, dosimetry. In the base of the book the 5th edition of 'Nuclear medicine' manual in 2 parts of German authors - Schicha, G.; Schober, O. is applied. In the book publishing the stuff of the Institute of Nuclear Physics of the National Nuclear Center of Republic of Kazakhstan has been worked. Modifications undergo practically all chapters: especially the second one, forth and sixth was enlarged. The 1 part of the book was published due to support of IAEA within the Technical cooperation project 'Implementation of Nuclear Medicine and Biophysics Center' (KAZ/6/007). The manual second part - devoted to applications of nuclear medicine methods for diagnostics and treatment - will be published in 2007

  14. Effective doses in diagnostic nuclear medicine in Brazil: Possibilities of optimisation

    International Nuclear Information System (INIS)

    Veslasques de Oliveira, S. M.; Tauhata, L.; Lipsztein, J. L.; Boasquevisque, E. M.

    2006-01-01

    With the aim of analysing protection of patient in diagnostic nuclear medicine, this study present data collected from sixteen nuclear medicine public and private institutions in three regions of the country, namely Northeast, Southeast and South regions 26,782 patients protocols were analysed, 24,371 adults and 2,411 children and teen-ages. Myocardial perfusion and bone imaging were responsible, respectively, for 53% and 23% of all diagnostic procedures. For 3.010 adults with age and weight registered, 96% had more than 40 years and mean weight was (69.9±14.1) kg for both genders. Due to similarities in physical characteristics between Brazilian adults patients and ICRP Reference Man, effective doses were estimated using ICRP conversion factors. For adults, the ratio mean activities per mean weigh was higher for female than male for the majority of procedures. For children and teen-ages, this ratio was higher for younger ages. Protocols should consider mean corporal weight for female and activities may be reduced accordingly. For children and teen-ages, effective doses may be reduced for younger ages. High absolved doses in bone surfaces of children due to 67Ga citrate imaging and bone scintigraphies should be investigated. (Author)

  15. Nuclear medicine

    International Nuclear Information System (INIS)

    Blanquet, Paul; Blanc, Daniel.

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions [fr

  16. Integrating cardiology for nuclear medicine physicians. A guide to nuclear medicine physicians

    International Nuclear Information System (INIS)

    Movahed, Assad; Gnanasegaran, Gopinath; Buscombe, John R.; Hall, Margaret

    2009-01-01

    Nuclear cardiology is no longer a medical discipline residing solely in nuclear medicine. This is the first book to recognize this fact by integrating in-depth information from both the clinical cardiology and nuclear cardiology literature, and acknowledging cardiovascular medicine as the fundamental knowledge base needed for the practice of nuclear cardiology. The book is designed to increase the practitioner's knowledge of cardiovascular medicine, thereby enhancing the quality of interpretations through improved accuracy and clinical relevance.The text is divided into four sections covering all major topics in cardiology and nuclear cardiology: -Basic Sciences and Cardiovascular Diseases; -Conventional Diagnostic Modalities; -Nuclear Cardiology; -Management of Cardiovascular Diseases. (orig.)

  17. Diagnostic reference activities for nuclear medicine procedures in Australia and New Zealand

    International Nuclear Information System (INIS)

    Smart, R.C.; Towson, J.E.

    2000-01-01

    In July 1998 a survey of diagnostic nuclear medicine procedures in Australia and New Zealand was undertaken on behalf of the Australian and New Zealand Society of Nuclear Medicine (ANZSNM) and the Australasian Radiation Protection Society (ARPS) in order to establish diagnostic reference activities. A total of 96 responses were received representing 154 practices, comprising 45 public hospital departments, 21 private hospital departments, 87 private practices and 1 unspecified practice. The survey requested the usual activities administered for a standard adult, the method used to determine the activity for children and the minimum activities used for paediatric patients. Data was obtained for 80 different imaging procedures and for 17 non-imaging tracer studies. For those procedures for which information was available from 10 or more practices, 68 in total, the reference activity was calculated as the 75th percentile of the distribution of activities. The Most Common Activity, the Reference Activity, together with the effective dose in both male and female patients, is tabulated for all these procedures. Copyright (2000) Australasian Radiation Protection Society Inc

  18. Nuclear medicine

    International Nuclear Information System (INIS)

    Sibille, L.; Nalda, E.; Collombier, L.; Kotzki, P.O.; Boudousq, V.

    2011-01-01

    Nuclear medicine is a medical specialty using the properties of radioactivity. Radioactive markers associated with vectors are used as a tracer or radiopharmaceutical for diagnostic purposes and/or therapy. Since its birth more than half a century ago, it has become essential in the care of many patients, particularly in oncology. After some definitions, this paper presents the main nuclear techniques - imaging for diagnostic, radiopharmaceuticals as therapeutic agents, intra-operative detection, technique of radioimmunoassay - and the future of this field. (authors)

  19. Imaging nuclear medicine techniques for diagnostic evaluation of arterial hypertension. Bildgebende nuklearmedizinische Diagnostik bei arterieller Hypertonie

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, B M; Linss, G

    1989-01-01

    Arterial hypertension may be caused by a malfunction of organs and in turn may lead to secondary organic lesions. Modern diagnostic nuclear medicine is applied for function studies in order to detect or exclude secondary hypertension and functional or perfusion disturbances due to hypertension, or to assess and follow up hemodynamic conditions and cardiac functions prior to and during therapy. The article presents a survey of imaging diagnostic nuclear medicine techniques for the eamination of the heart, the brain, the kidneys and endocrine glands in patients with arterial hypertension, discussing the methods with a view to obtainable information, limits of detection, and indications. (orig.).

  20. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... stage, often before symptoms occur or before abnormalities can be detected with other diagnostic tests. Nuclear medicine ... nuclear medicine exam, there are several things you can do to prepare. First, you may be asked ...

  1. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  2. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  3. Activities of radiopharmaceuticals administered for diagnostic and therapeutic procedures in nuclear medicine in Argentina: results of a national survey

    International Nuclear Information System (INIS)

    Bomben, Ana M.; Chiliutti, Claudia A.

    2004-01-01

    Nuclear medicine in Argentine is carried out at 292 centres, distributed all over the country, mainly concentrated in the capital cities of the provinces. With the purpose of knowing the activity levels of radiopharmaceuticals that were administered to patients for diagnostic and therapeutic procedures in nuclear medicine, a national survey was conducted, during 2001 and 2002. This survey was answered voluntarily by 107 centres. Sixty-four percent of the participants centres are equipped with SPECT system while the other centres have a gamma camera or scintiscanner. There were 37 nuclear medicine procedures, chosen among those most frequently performed, were included in the survey. In those diagnostic procedures were included tests for: bone, brain, thyroid, kidney, liver, lung and cardiovascular system; and also activities administered for some therapeutic procedures. The nuclear medicine physicians reported the different radiopharmaceutical activities administered to typical adult patients. In this paper are presented the average radiopharmaceutical activity administered for each of the diagnostic and therapeutic procedures included in the survey and the range and distribution of values. In order to place these data in a frame of reference, these average values were compared to the guidance levels for diagnostic procedures in nuclear medicine mentioned at the Safety Series no. 115. From this comparison it was noticed that the activities administered in the 40% of the diagnostic procedures included in the survey were between ±30% of the reference values. For those nuclear medicine procedures that could not be compared with the above mentioned guidance levels, the comparison was made with values published by UNSCEAR or standards recommended by international bodies. As a result of this study, it is important to point out the need to continue the gathering of data in a wider scale survey to increase the knowledge about national trends. It is also essential to widely

  4. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth.

  5. Fundamentals of nuclear medicine

    International Nuclear Information System (INIS)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth

  6. Pediatric nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base

  7. Pediatric nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk is very low ...

  9. A concise guide to nuclear medicine

    CERN Document Server

    Elgazzar, Abdelhamid H

    2011-01-01

    Nuclear medicine is an important component of modern medicine. This easy-to-use book is designed to acquaint readers with the basic principles of nuclear medicine, the instrumentation used, the gamut of procedures available, and the basis for selecting specific diagnostic or therapeutic procedures and interpreting results. After an introductory chapter on the history, technical basis, and scope of nuclear medicine, a series of chapters are devoted to the application of nuclear medicine techniques in the different body systems. In addition, the use of nuclear medicine methods within oncology is

  10. Involvement of WHO in the improvement of nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Souchkevitch, G.N.

    1986-01-01

    The World Health Organization's programme on nuclear medicine deals with the organization of nuclear medicine services, the training of personnel, the efficacy and efficiency of nuclear medicine, and quality assurance in nuclear medicine, instrumentation and radiopharmaceuticals. An analysis of the present situation in diagnostic imaging shows that new techniques and especially ultrasonography (US) may successfully compete with nuclear medicine. WHO is therefore concerned to stimulate objective evaluations of the appropriate role of each diagnostic imaging technology and to make relevant recommendations. In diagnostic nuclear medicine, the following main objectives are included in the WHO strategy: to restrict diagnostic nuclear medicine to those diseases where it cannot be substituted by other less costly and complicated methods; to decrease the cost of diagnostic procedures; and to prevent radiation hazard to patients, personnel and the public from the expanded use of radiopharmaceuticals. In the developing world this strategy may be carried out in two stages: (1) implementation of US in diagnostic services and the initiation of a comparative study of the diagnostic value of US and nuclear medicine imaging techniques in common diseases; (2) working out appropriate recommendations on a rational approach in imaging diagnostics and substitution of nuclear medicine by US in appropriate areas. The Intercomparison Study on Quality Performance of Nuclear Medicine Imaging Devices, established by WHO jointly with the International Atomic Energy Agency, and the organization of training workshops are examples of a successful approach to quality improvement in nuclear medicine in developing countries. (author)

  11. Computed tomography, nuclear medicine, ultrasound. Advanced diagnostic imaging for problematic areas in paediatric otolaryngology

    International Nuclear Information System (INIS)

    Noyek, A.M.; Friedberg, J.; Fitz, C.R.; Greyson, N.D.; Gilday, D.; Ash, J.; Miskin, M.; Rothberg, R.

    1982-01-01

    This presentation considers the diagnostic role of three major advanced imaging modalities in paediatric otolaryngology: computed tomography, nuclear medicine and ultrasound. These techniques allow for both more specific diagnosis, and for more precise understanding of the natural history of diagnoses already rendered. (Auth.)

  12. Efficacy of clinical diagnostic procedures utilized in nuclear medicine. Nine month progress report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This study is designed to determine the efficacy of nuclear medicine procedures in clinical practice. Several methods of determining efficacy will be evaluated to determine those most suitable. Nuclear medicine methods will be confined to the study of lung diseases by pulmonary perfusion and ventilation. In addition to evaluating the above methods data will be obtained to determine the sensitivity, specificity, predictive value and efficiency of the test under consideration. These values, corrected for prevalence of the disease processes under consideration will then be compared to the values obtained by the MACRO and MICRO methods and will help to bound the clinical reliability of the diagnostic method depending on the degree to which the several methods trend together. Depending on the practicality of these two methods, in addition to the determination of efficacy, cost effectiveness factors and benefit-risk estimates which are used to apply to radiation effects will be determined for nuclear medicine studies of the brain, bone, heart, liver and thyroid subsequently. The measurement techniques will then be utilized to establish guidelines for the most useful applications of the given procedure so that clinicians will be able to obtain a pretest estimate of the utility of the nuclear medicine test.

  13. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Chougule, Arun

    2014-01-01

    The branch of medical science that utilizes the nuclear properties of the radioactivity and stable nuclides to make diagnostic evaluation of anatomical and/or physiological conditions of the body and provide therapy with unsealed radioactive sources is called Nuclear Medicine (NM). The use of unsealed radionuclides in medicine is increasing throughout the world for diagnosis and treatment. As per UNSCEAR report more than 6 million nuclear medicine procedures are conducted in a year. However we know that radiation is double edged sword and if not used carefully will be harmful to patient as well as staff and therefore a nuclear medicine procedure should be undertaken only after proper justification and optimization. Nuclear medicine procedures are different than the X-ray diagnostic procedures as in NM, radioisotope is administered to patient and patient becomes radioactive. The NM staff is involved in unpacking radioactive material, activity measurements, storage of sources, internal transports of sources, preparation of radiopharmaceuticals, administration of radiopharmaceutical, examination of the patient, care of the radioactive patient, handling of radioactive waste and therefore receives radiation dose. This talk will discuss the various steps for radiation safety of patient, staff and public during Nuclear Medicine procedures so as to implementing the ALARA concept. (author)

  14. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    International Nuclear Information System (INIS)

    2001-01-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  15. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  16. Radiation protection for innovative diagnostic and therapeutic approaches in nuclear medicine

    International Nuclear Information System (INIS)

    Aubert, B.; Chatal, J.F.

    2006-01-01

    A real technological revolution has deeply modified the field of application and perspectives of nuclear medicine, and nuclear oncology in particular, during the past 5 years. Diagnostic applications such as positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) have had a significant impact on the diagnostic strategy adopted by medical oncologists, with the addition of invaluable functional data to already available anatomical data provided by conventional imaging modalities. Numerous other 18 F-labeled tracers currently under clinical evaluation have been developed to study various tumor functions (tumor proliferation, hypoxia, hemo-therapy-induced apoptosis, etc.). These tracers may have a considerable impact on therapeutic strategies. Other positron-emitting radionuclides, such as copper-64, iodine-124, and yttrium-86 (whose respective half-lives are 12.7 hours, 4.2 days. and 14.7 hours) will soon be available for certain clinical indications, such as immuno-PET (with monoclonal antibodies or antibody fragments used as carriers) or pretreatment dosimetry, which cannot be performed with fluorine-18 due its short half-life. As far as therapeutic applications are concerned, the use of internal radiotherapy, which has been restricted to thyroid cancer for a long time, was recently extended to other cancers as new carriers, such as monoclonal antibodies (radioimmunotherapy) or peptides (radio-peptide therapy), new targeting methods (pre-targeting), and new radionuclides, especially alpha particle emitters (alpha therapy), became available. These technological advances require that specific radiation safety regulations be implemented to protect nuclear medicine personnel, patients' close relatives, and the environment. Most current regulations concern diagnostic applications with technetium-99m and therapeutic applications with iodine-131. Regulations pertaining to the clinical use of 18 F-FDG were recently enacted (2001). Regarding exposure nuclear

  17. Coordination compounds in nuclear medicine

    International Nuclear Information System (INIS)

    Jurisson, S.; Berning, D.; Wei Jia; Dangshe Ma

    1993-01-01

    Radiopharmaceuticals, drugs containing a radionuclide, are used routinely in nuclear medicine departments for the diagnosis of disease and are under investigation for use in the treatment of disease. Nuclear medicine takes advantage of both the nuclear properties of the radionuclide and the pharmacological properties of the radiopharmaceutical. Herein lies the real strength of nuclear medicine, the ability to monitor biochemical and physiological functions in vivo. This review discusses the coordination chemistry that forms the basis for nuclear medicine applications of the FDA-approved radiopharmaceuticals that are in clinical use, and of the most promising diagnostic and therapeutic radiopharmaceuticals that are in various stages of development. 232 refs

  18. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    International Nuclear Information System (INIS)

    Lepej, L.; Messingerova, M.

    1995-01-01

    In this paper the values of mean effective dose equivalents per unit activity (H E/1Bq ) were used for the calculation of mean effective dose equivalents for one examination (H E ). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S ER ) and global collective effective dose equivalent for department for all radiopharmaceuticals (S E ) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H E and S E during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H min ) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H min from all examinations - patient's radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs

  19. Monte Carlo techniques in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Zaidi, H.

    2002-01-01

    Monte Carlo techniques have become one of the most popular tools in different areas of medical radiation physics following the development and subsequent implementation of powerful computing systems for clinical use. In particular, they have been extensively applied to simulate processes involving random behaviour and to quantify physical parameters that are difficult or even impossible to calculate analytically or to determine by experimental measurements. The use of the Monte Carlo method to simulate radiation transport turned out to be the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides. There is broad consensus in accepting that the earliest Monte Carlo calculations in medical radiation physics were made in the area of nuclear medicine, where the technique was used for dosimetry modelling and computations. Formalism and data based on Monte Carlo calculations, developed by the Medical Internal Radiation Dose (MIRD) committee of the Society of Nuclear Medicine, were published in a series of supplements to the Journal of Nuclear Medicine, the first one being released in 1968. Some of these pamphlets made extensive use of Monte Carlo calculations to derive specific absorbed fractions for electron and photon sources uniformly distributed in organs of mathematical phantoms. Interest in Monte Carlo-based dose calculations with β-emitters has been revived with the application of radiolabelled monoclonal antibodies to radioimmunotherapy. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the medical physics

  20. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that ... outweighs any risk. To learn more about nuclear medicine, visit Radiology Info dot org. Thank you for your ... of Use | Links | Site Map Copyright © 2018 Radiological Society of ...

  1. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Lepej, L; Messingerova, M [F.D. Rosvelt Hospital, Banska Bystrica (Slovakia). Dept. of Nuclear Medicine; Ftacnikova, S [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    In this paper the values of mean effective dose equivalents per unit activity (H{sub E/1Bq}) were used for the calculation of mean effective dose equivalents for one examination (H{sub E}). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S{sub ER}) and global collective effective dose equivalent for department for all radiopharmaceuticals (S{sub E}) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H{sub E} and S{sub E} during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H{sub min}) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H{sub min} from all examinations - patient`s radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs.

  2. Diagnosis of liver lesions in nuclear medicine

    International Nuclear Information System (INIS)

    Krause, T.; Juengling, F.

    2003-01-01

    With the introduction of new imaging protocols for ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI), the importance of conventional nuclear medicine diagnostic procedures has changed fundamentally. With the introduction of positron emission tomography (PET) into routine diagnostics, the assessment of tissue-specific function adds on to the modern, morphological imaging procedures and in principle allows for differentiating benign from malignant lesions. The actual clinical value of nuclear medicine procedures for the diagnostic workup of focal liver lesions is discussed. (orig.) [de

  3. Nuclear medicine

    International Nuclear Information System (INIS)

    Reichelt, H.G.

    1980-01-01

    Nuclear medicine as a complex diagnostical method is used mainly to detect functional organic disorders, to locate disorders and for radioimmunologic assays (RIA) in vitro. In surgery, its indication range comprises the thyroid (in vivo and in vitro), liver and bile ducts, skeletal and joint diseases, disorders of the cerebro-spinal liquor system and the urologic disorders. In the early detection of tumors, the search for metastases and tumor after-care, scintiscanning and the tumor marcher method (CEA) can be of great practical advantage, but the value of myocardial sciritiscanning in cardiac respectively coronary disorders is restricted. The paper is also concerned with the radiation doses in nuclear medicine. (orig.) [de

  4. Radiation exposure in diagnostic medicine

    International Nuclear Information System (INIS)

    Haehnel, S.; Michalczak, H.; Reinoehl-Kompa, S.

    1995-01-01

    This volume includes the manuscripts of the papers read at the conference as well as a summary and assessment of its results. The scientific discussions were centred upon the following issues: - International surveys and comparisons of rdiation exposures in diagnostic radiology and nuclear medicine, frequency of the individual diagnostic procedures and age distribution of patients examined; - policies and regulations for the radiation protection of patients, charcteristic dosimetric values and practical usefulness of the effective dose concept during medical examinations; - assessments of the relative benefits and risks and measures to reduce the radiation exposure in the light of quality assurance aspects. The main objective of this conference not only was to evaluate the risks from diagnostic radiology and nuclear medicine but also to encourgage a critical analysis and adjustment of examination routines followed in everyday practice. Among the measures recommended were quality assurance, maintenace of international standards, development of guidelines, introduction of standard doses, improved training and professional education of personnel as well as surveys and analyses of certain examination procedures associated with substantial radiation exposure. (orig./MG) [de

  5. Current role of the radiographers in imaging diagnostics, nuclear medicine and radiotherapy in modern departments

    International Nuclear Information System (INIS)

    Karidova, S.; Velkova, K.; Panamska, K.; Petkova, K.

    2006-01-01

    Full text: In the communication we set out to focus the attention of the medical staff and the public on the place and the constantly growing role (relative burden) of the radiographers in imaging diagnostics, nuclear medicine and radiotherapy in the field of modern medicine. The advanced radiographers level and rapid development of the contemporary equipment and apparatuses used in imaging diagnostics, nuclear medicine and radiotherapy, as well as the methods of their utilization, presuppose very good and constantly improving theoretical and practical training of the imaging technician. The radiographer fulfills responsible tasks under the guidance of the physician or independently and bears specific responsibilities. Having mastered the fundamentals of radiation protection, the imaging technician protects both himself and the patient from the impact of ionizing radiation. To be able to fulfill his/her constantly increasing duties and obligations, the imaging radiographer has acquired wide knowledge of general education subjects, subjects of general medicine and special subjects. The radiographer has a good knowledge of Latin and a modern foreign language, and he is also computer literate so as to be able to cope with the widely spread visualizing methods. The radiographer acquires additional post-graduate training to work in narrowly specialized fields as well as to improve his/her qualifications

  6. Diagnostic reference activities for nuclear medicine in Australia and New Zealand

    International Nuclear Information System (INIS)

    Towson, J.E.; Smart, R.C.

    2001-01-01

    Nuclear medicine centres in Australia and New Zealand were surveyed in 1998 on behalf of the Australian and New Zealand Society of Nuclear Medicine (ANZSNM) and the Australasian Radiation Protection Society (ARPS) in order to establish diagnostic reference levels. A survey form was mailed to all centres, requesting information on the usual radiopharmaceutical activity administered to a standard adult patient and how the activity is calculated for children. The overall response rate was 89.5%. Data was obtained for 80 imaging procedures and 17 non-imaging tracer studies. For the 68 procedures for which data was available from 10 or more centres, the Most Common Activity and the Reference Activity were found from the mode and 75 th percentile of the distribution of activities. A follow-up survey of the 8 hospital centres specialising in pediatric nuclear medicine in Australia was conducted in 1999-2000. Data on the maximum and minimum administered activities (A max and A min ) was obtained for 43 pediatric imaging procedures. A max values were significantly less than the Reference Activities determined for adults. The median values of A max and A min are recommended as Pediatric Reference Activities. The effective dose from the Reference Activities was calculated for adults (male and female) and children. The survey results are available on the ANZSNM and ARPS web sites at http://www.anzsnm.org.au and http://www.arps.org.au. (author)

  7. Experimental nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Dormehl, I C [Nuclear Development Corp. of South Africa (Pty.) Ltd., Pelindaba, Pretoria. Inst. of Life Sciences; Du Plessis, M; Jacobs, D J

    1983-07-01

    Exciting investigative research, widening the dimensions of conventional nuclear medicine, is being conducted in Pretoria where the development and evaluation of new radiopharmaceuticals in particular is attracting international attention. Additional to this, the development of new diagnostic techniques involving sophisticated data processing, is helping to place South Africa firmly in the front line of nuclear medical progress.

  8. Complementary alternative medicine and nuclear medicine

    International Nuclear Information System (INIS)

    Werneke, Ursula; McCready, V.Ralph

    2004-01-01

    Complementary alternative medicines (CAMs), including food supplements, are taken widely by patients, especially those with cancer. Others take CAMs hoping to improve fitness or prevent disease. Physicians (and patients) may not be aware of the potential side-effects and interactions of CAMs with conventional treatment. Likewise, their known physiological effects could interfere with radiopharmaceutical kinetics, producing abnormal treatment responses and diagnostic results. Nuclear medicine physicians are encouraged to question patients on their intake of CAMs when taking their history prior to radionuclide therapy or diagnosis. The potential effect of CAMs should be considered when unexpected therapeutic or diagnostic results are found. (orig.)

  9. The design of diagnostic imaging and nuclear medicine facilities in a major new teaching hospital

    International Nuclear Information System (INIS)

    Causer, D.A.

    2010-01-01

    Full text: The design of the layout and radiation shielding for diagnostic imaging and nuclear medicine facilities in a modern teaching hospital requires the collaboration of persons from a number of professions including architects, engineers, radiologists, nuclear medicine physi cians, medical imaging technologists and medical physicists. This paper discusses the design of such facilities, including PET/CT and T-131 ablation therapy suites for a major new tertiary hospital in Perth. The importance of involving physicists on the planning team from the earliest stages of the design process is stressed, design plans presented, and some of the problems which may present themselves and their solutions are illustrated.

  10. The development of nuclear medicine in Slovenia and Ljubljana; half a century of nuclear medicine in Slovenia

    International Nuclear Information System (INIS)

    Slavec, Zvonka Zupanic; Gaberscek, Simona; Slavec, Ksenija

    2012-01-01

    Nuclear medicine began to be developed in the USA after 1938 when radionuclides were introduced into medicine and in Europe after radionuclides began to be produced at the Harwell reactor (England, 1947). Slovenia began its first investigations in the 1950s. This article describes the development of nuclear medicine in Slovenia and Ljubljana. The first nuclear medicine interventions were performed in Slovenia at the Internal Clinic in Ljubljana in the period 1954–1959. In 1954, Dr Jože Satler started using radioactive iodine for thyroid investigations. In the same year, Dr Bojan Varl, who is considered the pioneer of nuclear medicine in Slovenia, began systematically introducing nuclear medicine. The first radioisotope laboratories were established in January 1960 at the Institute of Oncology and at the Internal Clinic. Under the direction of Dr. Varl, the laboratory at the Internal Clinic developed gradually and in 1973 became the Clinic for Nuclear Medicine with departments for in vivo and in vitro diagnostics and for the treatment of inpatients and outpatients at the thyroid department. The Clinic for Nuclear Medicine became a teaching unit of the Medical Faculty and developed its own post-graduate programme – the first student enrolled in 1972. In the 1960s, radioisotope laboratories opened in the general hospitals of Slovenj Gradec and Celje, and in the 1970s also in Maribor, Izola and Šempeter pri Novi Gorici. Nowadays, nuclear medicine units are modernly equipped and the staff is trained in morphological, functional and laboratory diagnostics in clinical medicine. They also work on the treatment of cancer, increased thyroid function and other diseases

  11. The state of the art in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    Scott, A.M.; University of Melbourne, VIC

    2001-01-01

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been an dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  12. Hand Dose in Nuclear Medicine Staff Members

    International Nuclear Information System (INIS)

    Taha, T.M.; Shahein, A.Y.; Hassan, R.

    2009-01-01

    Measurement of the hand dose during preparation and injection of radiopharmaceuticals is useful in the assessment of the extremity doses received by nuclear medicine personnel. Hand radiation doses to the occupational workers that handling 99m Tc-labeled compounds, 131 I for diagnostic in nuclear medicine were measured by thermoluminescence dosimetry. A convenient method is to use a TLD ring dosimeter for measuring doses of the diagnostic units of different nuclear medicine facilities . Their doses were reported in millisieverts that accumulated in 4 weeks. The radiation doses to the hands of nuclear medicine staff at the hospitals under study were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y) because all of these workers are on rotation and do not constantly handle radioactivity throughout the year

  13. Official Program and Abstracts of the 15. Meeting of the Latin-American Association of Biology and Nuclear Medicine Societies (ALASBIMN 97); Iberoamerican Congress of Nuclear Medicine

    International Nuclear Information System (INIS)

    1997-01-01

    This issue contains 117 abstracts of lectures and poster sessions of the 15th Meeting of the Latin-American Association of Biology and Nuclear Medicine Societies (ALASBIMN 97) and Iberoamerican Congress of Nuclear Medicine, held in Lima, Peru, from 26 to 30 October 1997. The key subjects addressed are nuclear medicine and diagnostic techniques on brain, liver, lungs, heart, osteo-articular, cardiology, oncology, endocrinology, radiopharmaceuticals, medical physics, SPECT and their applications in diagnostic medicine. (APC)

  14. Triggering radiation alarm at security checks. Patients should be informed even after diagnostic nuclear medicine procedures.

    Science.gov (United States)

    Palumbo, Barbara; Neumann, Irmgard; Havlik, Ernst; Palumbo, Renato; Sinzinger, Helmut

    2009-01-01

    During the last few years an increasing number of nuclear medicine patients in various countries evoked a radiation alarm after therapeutic or diagnostic procedures, and even after passive exposure. A prospective calculation of activity retention in the patient's body is difficult due to extremely high variation of uptake and kinetics. Furthermore, different sensitivities and distances of the detectors make a prospective calculation even more difficult. In this article a number of cases are being reported, related problems are discussed and the surprisingly very limited literature reviewed. In order to minimize problems after eventually triggering alarms, we strongly recommend that each patient receives a certificate providing personal data, tracer, dose, half-life of the radionuclide, type and date of procedure applied as well as the nuclear medicine unit to contact for further information. Furthermore, a closer cooperation and exchange of information between the authorities and local nuclear medicine societies, would be welcome.

  15. Interventional studies in nuclear medicine

    International Nuclear Information System (INIS)

    Saha, G.B.; Swanson, D.P.; Hladik, W.B. III

    1987-01-01

    Pharmacological interventions in nuclear medicine studies have been in practice for a long time. The triiodothyronine (T/sub 3/) suppression, Thyroid-stimulating hormone (TSH) stimulation, and perchlorate discharge tests are common examples of well-established diagnostic interventional studies. In recent years, pharmacologic and physiologic interventions in other nuclear medicine procedures have drawn considerable attention. The primary purpose of these interventions is to augment, complement or, more often, differentiate the information obtained from conventional nuclear medicine diagnostic studies. Pharmacologic interventions involve the administration of a specific drug before, during, or after the administration of radiopharmaceutical for a given study. The change in information due to intervention of the drug offers clues to differentiating various disease conditions. These changes can be brought about by physiologic interventions also, e.g., exercise in radionuclide ventriculography. In the latter interventions, the physiologic function of an organ is enhanced or decreased by physical maneuvers, and the changes observed can be used to differentiate various disease conditions

  16. Report: dosimetry of diagnostic exams in nuclear medicine

    International Nuclear Information System (INIS)

    Touzery, C.; Aubert, B.; Caselles, O.; Gardin, I.; Guilhem, M.Th.; Laffont, S.; Lisbona, A.

    2002-01-01

    A compilation about dosimetry of diagnosis explorations in nuclear medicine is presented in this issue. Dosimetry tables of the different radiopharmaceuticals used in nuclear medicine give indications on absorbed and efficient doses according the patients age from one year to adult age. The doses received by a fetus during a lung scintigraphy realized for the pregnant woman susceptible to suffer of pulmonary emboli is presented. A table of efficient doses for the infants until the age of six months for the principal scintigraphy explorations realized in nuclear medicine are given. A chapter of theoretical headlines is devoted to dosimetry and the calculations methods of absorbed and efficient doses in function of patients age. A short chapter concerns the recommendations to explore nursing mothers by scintigraphy. A last chapter treats the efficient doses received during explorations using ionizing radiations in radiology and their place in annual natural irradiation scale. (N.C.)

  17. Collective dose estimation in Portuguese population due to medical exams of diagnostic radiology and nuclear medicine

    International Nuclear Information System (INIS)

    Teles, Pedro; Vaz, Pedro; Paulo, Graciano; Santos, Joana; Pascoal, Ana; Lanca, Isabel; Matela, Nuno; Sousa, Patrick; Carvoeiras, Pedro; Parafita, Rui; Simaozinho, Paula

    2013-01-01

    In order to assess the exposure of the Portuguese population to ionizing radiation due to medical examinations of diagnostic radiology and nuclear medicine, a working group, consisting of 40 institutions, public and private, was created to evaluation the coletive dose in the Portuguese population in 2010. This work was conducted in collaboration with the Dose Datamed European consortium, which aims to assess the exposure of the European population to ionizing radiation due to 20 diagnostic radiology examinations most frequent in Europe (the 'TOP 20') and nuclear medicine examinations. We obtained an average value of collective dose of ≈ 1 mSv/caput, which puts Portugal in the category of countries medium to high exposure to Europe. We hope that this work can be a starting point to bridge the persistent lack of studies in the areas referred to in Portugal, and to enable the characterization periodic exposure of the Portuguese population to ionizing radiation in the context of medical applications

  18. Risk estimation in association with diagnostic techniques in the nuclear medicine service of the Camaguey Ciego de Avila Territory

    International Nuclear Information System (INIS)

    Barrerras, C.A.; Brigido, F.O.; Naranjo, L.A.; Lasserra, S.O.; Hernandez Garcia, J.

    1999-01-01

    The nuclear medicine service at the Maria Curie Oncological Hospital, Camaguey, has experience of over three decades in using radiofarmaceutical imaging agents for diagnosis. Although the clinical risk associated with these techniques is negligible, it is necessary to evaluate the effective dose administered to the patient due to the introduction of radioactive substances into the body. The study of the dose administered to the patient provides useful data for evaluating the detriment associated with this medical practice, its subsequently optimization and consequently, for minimizing the stochastic effects on the patient. The aim of our paper is to study the collective effective dose administered by nuclear medicine service to Camaguey and Ciego de Avila population from 1995 to 1998 and the relative contribution to the total annual effective collective dose of the different diagnostic examinations. The studies were conducted on the basis of statistics from nuclear medicine examinations given to a population of 1102353 inhabitants since 1995. The results show that the nuclear medicine techniques of neck examinations with 1168.8 Sv man (1.11 Sv/expl), thyroid explorations with 119.6 Sv man (55.5 mSv/expl) and iodide uptake with 113.7 Sv man (14.0 mSv/expl) are the main techniques implicated in the relative contribution to the total annual effective collective dose of 1419.5 Sv man. The risk estimation in association with diagnostic techniques in the nuclear medicine service studied is globally low (total detriment: 103.6 as a result of 16232 explorations), similar to other published data

  19. Diagnostic and therapeutic capabilities of modern nuclear medicine

    International Nuclear Information System (INIS)

    Lee Myung-Chul, M.D

    2007-01-01

    Full text: Nuclear medicine activity began to expand in the latter half of 1970 in worldwide. In 1980, many countries experienced a rapid increase in the number of medical facilities with nuclear medicine modalities. Nuclear imagining procedures serve as effective diagnostic tools due to their unique ability to provide information that is function-specific and to gather detailed information from radiological exams and other treatment methods. In-vivo studies using SPECT and PET modalities have shown a trend of significant increase throughout the past two decades. Looking at the nuclear neurologic application, there is a rapid increase in last decade. Brain perfusion SPECT and brain PET were making it the most commonly and the most widely performed nuclear neuroimaging study. Since 1990s, conventional nuclear cardiology studies (MUGA and single pass study) declined in number. But myocardial SPECT only increased dramatically using thallium and Tc-99m-MIBI. MIBG imaging plays a prominent role in diagnosing pheochromocytomas/paragangliomas (including nonfunctional paragangliomas) and neuroblastomas. It may be regarded as a first-choice imaging technique, as it presents a wide range of clinical advantages in both the diagnosis and follow-up of these tumors. Regarding to the radioisotope treatment, only radioiodine therapy was used more clinically. But recently, some new treatment is being tried, for example Ho-166 and rhenium-188. I-131 MIBG therapy is an effective treatment for several neural crest tumors, with can be delivered safely, even in children, provided that the bone marrow is free of tumor cells. I-131 MIBG therapy is probably the best palliative treatment for patients with advanced disease, as the invasiveness and toxicity of this therapy compare favorably with that of chemotherapy, immunotherapy and external beam radiotherapy. In general, PET has been primarily used to evaluate ischemic heart disease and to perform diagnostic imaging of malignant tumor

  20. Nuclear medicine. La medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Blanquet, P; Blanc, D

    1976-01-01

    The applications of radioisotopes in medical diagnostics are briefly reviewed. Each organ system is considered and the Nuclear medicine procedures pertinent to that system are discussed. This includes, the principle of the test, the detector and the radiopharmaceutical used, the procedure followed and the clinical results obtained. The various types of radiation detectors presently employed in Nuclear Medicine are surveyed, including scanners, gamma cameras, positron cameras and procedures for obtaining tomographic presentation of radionuclide distributions.

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the most useful information needed to make a diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, ...

  2. Value measurement of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Potchen, E.J.; Harris, G.I.; Schonbein, W.R.; Rashford, N.J.

    1977-01-01

    The difficulty in measuring the benefit component for cost/benefit analysis of diagnostic procedures in medicine is portrayed as a complex issue relating the objective of intent to a classification of types of decisions a physician must make in evaluating a patient's problem. Ultimately, it seems desirable to develop measuring instruments such as attitude measurement tools by which the relative value of alternative diagnostic procedures could be measured in terms of what they contribute to diminishing the patient's personal perception of disease. Even without this idealized objective, it is reasonable to assume that diagnostic tests which do not contain information, defined as a change in the randomness of a state of knowledge, could not be expected to ultimately benefit the patient. Thus diagnostic information should provide a rational direction for the physician to modify the course of the patient's illness. Since information can be measured as a change in randomness of a knowledge state, we can determine the information content of a specific nuclear medicine procedure when faced with an array of diagnostic problems. These measurements remain to be made for clinical nuclear medicine procedures and are currently under study

  3. Nuclear Medicine Engineering

    International Nuclear Information System (INIS)

    Mateescu, Gheorghe; Craciunescu, Teddy

    2000-01-01

    'An image is more valuable than a thousand words' - this is the thought that underlies the authors' vision about the field of nuclear medicine. The monograph starts with a review of some theoretical and engineering notions that grounds the field of nuclear medicine: nuclear radiation, interaction of radiation with matter, radiation detection and measurement, numerical analysis. Products and methods needed for the implementation of diagnostic and research procedures in nuclear medicine are presented: radioisotopes and radiopharmaceuticals, equipment for in-vitro (radioimmunoassay, liquid scintillation counting) and in-vivo investigations (thyroid uptake, renography, dynamic studies, imaging). A special attention is focused on medical imaging theory and practice as a source of clinical information (morphological and functional). The large variety of parameters, components, biological structures and specific properties of live matter determines the practical use of three-dimensional tomographic techniques based on diverse physical principles: single-photon emission, positron emission, X-rays transmission, nuclear magnetic resonance, ultrasounds transmission and reflection, electrical impedance measurement. The fundamental reconstruction algorithms i.e., algorithms based on the projection theorem and Fourier filtering, algebraic reconstruction techniques and the algorithms based on statistical principles: maximum entropy, maximum likelihood, Monte Carlo algorithms, are depicted in details. A method based on the use of the measured point spread function is suggested. Some classical but often used techniques like linear scintigraphy and Anger gamma camera imaging are also presented together with some image enhancement techniques like Wiener filtering and blind deconvolution. The topic of the book is illustrated with some clinical samples obtained with nuclear medicine devices developed in the Nuclear Medicine Laboratory of the National Institute of Nuclear Physics and

  4. Nuclear medicine - the condition and prospects

    International Nuclear Information System (INIS)

    Zaredinov, D.A.; Altaeva, B.M.

    2004-01-01

    Full text: The nuclear medicine has rather strongly determined the place in clinical and diagnostic practice. Statistical researches show, that, even despite of the certain successes in treatment of many diseases, rather high death rate at cardiovascular, oncological and many other diseases. The urgency of clinical tasks connected with a state of health of the population puts before nuclear medicine a (task) on development and introduction of new methods of diagnostics and therapy. The nuclear medicine is characterized by some number of diagnostic and therapeutic methods which application frequently does not have other alternative. The methods of visualization used in nuclear medicine, are full informative, exact and have ability to reveal structurally functional changes of bodies and fabrics practically at a cellular level. To present time diagnostic radiopharmacy (Ph) wed practically in all clinical areas of medicine. In world practice steady growth of increase of manufacture as diagnostic and radiotherapeutic RP was planned. The even greater (reduction) of potential risk one and of conditions by which development of nuclear medicine in the near future is defined is at realization of the procedures connected to application of radioactive preparations and reduction of beam loadings on the patient. An important point in the clinic-diagnostic field is replacement the RP on short-lived and ultra short-lived. Among examples of such transition it is necessary to name replacement 131 I in diagnostic application on 123 I, and also active introduction PET. It is possible to call essentially new direction of development of technologies of the directed transport the open radioactive isotopes and RP to pathology changed bodies or organisms demanding realization of diagnostic procedures or selective beam therapy. However, despite of huge potential opportunities of the domestic nuclear industry, even such old method as the radiotherapy I-131 - is used by iodine in our country

  5. Staff and patient absorbed doses due to diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Tabei, F.; Neshandar Asli, I.; Aghamiri, S.M.; Arbabi, K.

    2004-01-01

    Background: annual patient effective dose equivalent can be considered as a quantitative physical parameter describing the activities performed in each nuclear medicine department. annual staff dose equivalent could be also considered as a parameter describing the amount of radiation risk for performing the activities. We calculated the staff to patient dose equivalent ratio to be used as a physical parameter for quantification of ALARA law in nuclear medicine department. Materials and methods: as a part of nationwide study, this paper reports the staff and patient absorbed dose equivalents from diagnostic nuclear medicine examinations performed in four nuclear medicine department during 1999-2002. The type and frequency of examinations in each department were determined directly from hospital medical reports. Staff absorbed doses equivalents were calculated from regular personal dosimeter reports. Results: the total number of examinations increased by 16.7 % during these years. Annual patient collective dose equivalent increased about 13.0 % and the mean effective dose equivalent per exam was 3.61 ± 0.07 mSv. Annual total staff absorbed dose equivalent (total of 24 radiation workers) in four departments increased from 40.45 mSv to 47.81 mSv during four years that indicates an increase of about 20.6 %. The average of annual ratios of staff to patient effective dose equivalents in four departments were 1.83 x 10 -3 , 1.04 x 10 -3 , 3.28 x 10 -3 and 3.24 x 10 -3 , respectively, within a range of 0.9 x 10 -3 - 4.17 x 10 -3 . The mean value of ratios in four years was about 2.24 x 10 -3 ± 1.09 x 10 -3 that indicates the staff dose of about two 1000 th of patient dose. Conclusion: The mean value of ratios in four years was about 1.89 x 10 -3 ± 0.95 x 10 -3 indicating the staff dose of about one 1000 th of the patient dose. The staff to patient absorbed dose equivalent ratio could be used as a quantitative parameter for describing ALARA law in radiation protection and

  6. Nuclear medicine applications: Summary of Panel 4

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1988-01-01

    Nuclear medicine is currently facing a desperate shortage of organic and inorganic chemists and nuclear pharmacists who also have advanced training in nuclear and radiochemistry. Ironically, this shortfall is occurring in the face of rapid growth and technological advances which have made the practice of nuclear medicine an integral part of the modern health care system. This shortage threatens to limit the availability of radiopharmaceuticals required in routine hospital procedures and to impede the development of new diagnostic and therapeutic agents. To redress this need and prevent a similar shortfall in the future, this panel recommends immediate action and a long-term commitment to the following: educating the public on the benefits of nuclear medicine; informing undergraduate and graduate chemistry students about career opportunities in nuclear medicine; offering upper level courses in nuclear and radiochemistry (including laboratory) in universities; establishing training centers and fellowships at the postgraduate level for specialized education in the aspects of nuclear and radiochemistry required by the nuclear medicine profession. 1 tab

  7. Nuclear medicine resources manual

    International Nuclear Information System (INIS)

    2006-02-01

    Over the past decade many IAEA programmes have significantly enhanced the capabilities of numerous Member States in the field of nuclear medicine. Functional imaging using nuclear medicine procedures has become an indispensable tool for the diagnosis, treatment planning and management of patients. However, due to the heterogeneous growth and development of nuclear medicine in the IAEA's Member States, the operating standards of practice vary considerably from country to country and region to region. This publication is the result of the work of over 30 international professionals who have assisted the IAEA in the process of standardization and harmonization. This manual sets out the prerequisites for the establishment of a nuclear medicine service, including basic infrastructure, suitable premises, reliable supply of electricity, maintenance of a steady temperature, dust exclusion for gamma cameras and radiopharmacy dispensaries. It offers clear guidance on human resources and training needs for medical doctors, technologists, radiopharmaceutical scientists, physicists and specialist nurses in the practice of nuclear medicine. The manual describes the requirements for safe preparation and quality control of radiopharmaceuticals. In addition, it contains essential requirements for maintenance of facilities and instruments, for radiation hygiene and for optimization of nuclear medicine operational performance with the use of working clinical protocols. The result is a comprehensive guide at an international level that contains practical suggestions based on the experience of professionals around the globe. This publication will be of interest to nuclear medicine physicians, radiologists, medical educationalists, diagnostic centre managers, medical physicists, medical technologists, radiopharmacists, specialist nurses, clinical scientists and those engaged in quality assurance and control systems in public health in both developed and developing countries

  8. Protection of the patient in nuclear medicine

    International Nuclear Information System (INIS)

    1987-01-01

    In ICRP Publication 52, the 'Protection of the Patient in Nuclear Medicine', is concerned with exposures of patients resulting from the administration of radiopharmaceuticals for diagnostic, therapeutic and research purposes. The report includes guidelines for nuclear medicine physicians, radiologists, medical physicists and technologists on the factors that influence absorbed doses to patients from different types of nuclear medicine examinations. Other topics in the report include education and training, estimates of absorbed dose, design of facilities, instrumentation, quality assurance and control and preparation, quality assurance and control of radiopharmaceuticals. (U.K.)

  9. Radiation levels in nuclear diagnostic examinations

    International Nuclear Information System (INIS)

    Vermeulen, A.M.T.I.

    1987-01-01

    To estimate the risks for a pregnant radiological worker, radiation level measurements are executed for common nuclear diagnostic techniques. These measurements are combined with the time which the radiologic worker is present during the performance of the diagnostic techniques. It is concluded that a radiologic worker is receiving less than 5 mSv during pregnancy. This is the case with in vivo determination in a department of nuclear medicine with common diagnostic techniques. Reduction of radiation doses during pregnancy is possible by reduction of heart function examinations, skeletal examinations and brain scans. 1 figure; 13 tabs

  10. Radiation doses to patients from nuclear medicine examinations

    International Nuclear Information System (INIS)

    Boehm, K.; Boehmova, I.

    2014-01-01

    Public Health Authority of the Slovak Republic, Bratislava The exposure of the population to ionizing radiation is rising rapidly, nearly exclusively due to increasing medical use of radiation, including diagnostic methods of nuclear medicine. In 2012 Public health authority of the Slovak republic (PHA SR) performed a survey about the population exposure from nuclear medicine procedures. The primary objectives of this survey were to assess the frequency of different nuclear medicine procedures, determine the average activities administered by nuclear medicine procedures and compare them with the national diagnostic reference levels and determine the annual collective effective dose to the Slovak population from nuclear medicine. The effective dose calculation was based on the methodology of the ICRP32, ICRP80 and ICRP106. In Slovak republic are 11 nuclear medicine departments. The collected data of activities administered by different procedures correspond to 100 % of nuclear medicine departments. The total number of procedures included in the study was 36 250. The most commonly performed procedure was bone scintigraphy (35.9%), followed by lung perfusion and ventilation scintigraphy (17.0%), static and dynamic renal scintigraphy (13.0%), whole-body positron emission tomography of tumors with PET radiopharmaceuticals (11.6%), myocardial perfusion (8.8%), thyroid scintigraphy (6.2%), parathyroid scintigraphy (2.1%), scintigraphy of tumors (2.1%), scintigraphy of the liver and spleen (0.8%), brain perfusion (0.7%) and examination of the gastrointestinal system (0.3%). (authors)

  11. Some aspects of the development of nuclear medicine in the USSR

    International Nuclear Information System (INIS)

    Kasatkin, Yu.N.

    1989-01-01

    Principle directions of the development of nuclear medicine in the USSR are presented.Some problems, which solution affects the state of nuclear medicine in the country are discussed. Problems of technical equipment of nuclear-diagnostic investigations are considered. Measures, directed to improvement of proffesional traing of specialists dealing with nuclear medicine are planned

  12. Radioisotopes in nuclear medicine

    International Nuclear Information System (INIS)

    Samuel, A.M.

    2002-01-01

    Full text: A number of advances in diverse fields of science and technology and the fruitful synchronization of many a new development to address the issues related to health care in terms of prognosis and diagnosis resulted in the availability of host of modern diagnostic tools in medicine. Nuclear medicine, a unique discipline in medicine is one such development, which during the last four decades has seen exponential growth. The unique contribution of this specialty is the ability to examine the dynamic state of every organ of the body with the help of radioactive tracers. This tracer application in nuclear medicine to monitor the biological molecules that participate in the dynamic state of body constituents has led to a whole new approach to biology and medicine. No other technique has the same level of sensitivity and specificity as obtained in radiotracer technique in the study of in-situ chemistry of body organs. As modem medicine becomes oriented towards molecules rather than organs, nuclear medicine will be in the forefront and will become an integral part of a curative process for regular and routine application. Advances in nuclear medicine will proceed along two principal lines: (i) the development of improved sensitive detectors of radiation, powerful and interpretable data processing, image analysis and display techniques, and (ii) the production of exotic and new but useful radiopharmaceuticals. All these aspects are dealt with in detail in this talk

  13. Establishment of national diagnostic reference level for renal doses in nuclear medicine departments at Khartoum-Sudan

    International Nuclear Information System (INIS)

    Alameen, Suhaib; Hamid, Alhadi; Rushdi, M. A. H.

    2016-01-01

    In this work we established a diagnostic reference level (DRL) for patient dose focusing on the investigation of activity to the kidneys during(99mTc-DTPA) kidney scan, selected two department nuclear medicine in main hospitals in Khartoum state. The DRLs is an investigational level used to identify unusually high radiation doses for common diagnostic medical in Nuclear Medicine procedures and suggested action levels above which a facility should review its methods and determine if acceptable image quality can be achieved at lower doses. The high specific activity of 99mTc makes it suitable as a first pass agent, for multiple or sequential studies, 99mTc diethylenetriaminepentaacetic acid (DTPA) is preferred to 99mTc-pertechnetate. Patients who had been prepared for the kidney scan 99mTc- DTPA were divided to three groups. The first group received dose less than 5 mCi, are represent (27.03%) from all patients, second group received dose 5 to 5.5 mCi are represent(66.67%) and the third group received dose from 5.6 to 6.2 mCi are represent (6.31%) from all patients 99mTc-DTPA. And according to the IAEA recommendation for adult doses(5-10mCi) this study show that about 93.1% of the sample examines by dose less than 5.5 mCi. The results presented will serve as a baseline data needed for deriving reference doses for renal examinations for nuclear medicine departments in Sudan.(Author)

  14. Nuclear medicine

    International Nuclear Information System (INIS)

    James, A.E. Jr.; Squire, L.F.

    1977-01-01

    The book presents a number of fundamental imaging principles in nuclear medicine. The fact that low radiation doses are sufficient for the study of normal and changed physiological functions of the body is an important advancement brought about by nuclear medicine. The possibility of quantitative investigations of organs and organ regions and of an assessment of their function as compared to normal values is a fascinating new diagnostic dimension. The possibility of comparing the findings with other pathological findings and of course control in the same patient lead to a dynamic continuity with many research possibilities not even recognized until now. The limits of nuclear scanning methods are presented by the imprecise structural information of the images. When scintiscans are compared with X-ray images or contrast angiography, the great difference in the imaging of anatomical details is clearly seen. But although the present pictures are not optimal, they are a great improvement on the pictures that were considered clinically valuable a few years ago. (orig./AJ) [de

  15. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... or before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts ... relatively low and the benefit of an accurate diagnosis far outweighs any risk. To learn more about ...

  16. Use of diagnostic radionuclides in medicine

    International Nuclear Information System (INIS)

    Early, R.J.

    1996-01-01

    The purpose of this paper is to follow the course of historical development in the use of radiopharmaceuticals as a diagnostic tool in nuclear medicine. This course has been a series of plateaus and growth spurts throughout its history. This article is designed to identify the different phases of the development of nuclear medicine, pointing out the events which most shaped its history along the way. Those events included such things as the discovery of radioactivity, the development of the cyclotron and nuclear reactor as a method of producing high specific activity radioactive material, the development of imaging equipment such as the rectilinear scanner, scintillation camera, PET and SPECT, the application of computers, and the discovery of 99 m Tc and the development of associated kits designed to image many organs and processes in human body. (author). 9 Refs., 11 Figs., 2 tabs

  17. A glance at the history of nuclear medicine

    International Nuclear Information System (INIS)

    Carlsson, S.

    1995-01-01

    The development of nuclear medicine has resulted in several effective routine methods in diagnosis and therapy. There is an ongoing discussion about the future of the activity based on the fast development of ultrasound, CT and MR. In such discussions, it is often forgotten that nuclear medicine is also a dynamic diagnostic tool under continuous progress. As seen from this historical review, nuclear medicine has grown from quite simple in vitro tests to very advanced methods to image organ function. This is the result of the development of radiopharmaceuticals and instrumentation. Today, development is moving towards what is called receptor scintigraphy, i.e., the use of radiopharmaceuticals which are very specific to certain diseases, for instance, tumours. Even at present there is no other method to determine the regional myocardial blood flow both at stress and at rest, than myocardial scintigraphy. Nuclear medicine will remain an important diagnostic tool as long as it employs people with engagement and interest. Such people will also guarantee that the hospital management will supply the activity with funds for the necessary investments. (orig.)

  18. Monte Carlo simulation in nuclear medicine

    International Nuclear Information System (INIS)

    Morel, Ch.

    2007-01-01

    The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)

  19. Extracts from IAEA's Resources Manual in Nuclear Medicine. Part-3: Establishing Nuclear Medicine Services

    International Nuclear Information System (INIS)

    2003-01-01

    In the past, consideration was given to the categories of nuclear medicine ranging from simple imaging or in-vitro laboratories, to more complex departments performing a full range of in-vitro and in-vivo procedures that are also involved in advanced clinical services, training programmes, research and development. In developing countries, nuclear medicine historically has often been an offshoot of pathology, radiology or radiotherapy services. These origins are currently changing as less radioimmunoassay is performed and fully-fledged, independent departments of nuclear medicine are being set up. The trend appears to be that all assays (radioassay or ELISA) are done in a biochemistry laboratory whereas nuclear medicine departments are involved largely in diagnostic procedures, radionuclide therapy and non-imaging in-vitro tests. The level of nuclear medicine services is categorized according to three levels of need: Level 1: Only one gamma camera is needed for imaging purposes. The radiopharmaceutical supply, physics and radiation protection services are contracted outside the centre. Other requirements include a receptionist and general secretarial assistance. A single imaging room connected to a shared reporting room should be sufficient, with a staff of one nuclear medicine physician and one technologist, with back-up. This level is appropriate for a small private practice. Level 2: This is suitable for a general hospital where there are multiple imaging rooms where in-vitro and other non-imaging studies would generally be performed as well as radionuclide therapy. Level 3: his is appropriate for an academic institution where there is a need for a comprehensive clinical nuclear medicine service, human resource development and research programmes. Radionuclide therapy for in-patients and outpatients is provided

  20. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that are ... However, because the amount of radiotracer used is small, the level of radiation exposure is relatively low ...

  1. Nuclear Medicine

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  2. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndrirangu, T.T.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. The tracer is introduced into the body of the patient through several routes (oral, intravenous, percutaneous, intradermally, inhalation, intracapsular etc) and s/he becomes the source of radiation. Early diagnosis of diseases coupled with associated timely therapeutic intervention will lead to better prognosis. In a country with an estimated population of 42 million in 2017, Kenya has only two (2) nuclear medicine facilities (units) that is Kenyatta National Hospital - Public facility and Aga Khan University Hospital which is a Private facility. Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels. Kenya does not manufacture radiopharmaceuticals. We therefore have to import them from abroad and this makes them quite expensive, and the process demanding. There is no local training in nuclear medicine and staff have to be sent abroad for training, making this quite expensive and cumbersome and the IAEA has been complimenting in this area. With concerted effort by all stakeholders at the individual, national and international level, it is possible for Kenya to effectively sustain clinical nuclear medicine service not only as a diagnostic tool in many disease entities, but also play an increasingly important role in therapy

  3. Present diagnostic strategies for acute pulmonary thromboembolism. Results of a questionnaire in a retrospective trial conducted by the Respiratory Nuclear Medicine Working Group of the Japanese Society of Nuclear Medicine

    International Nuclear Information System (INIS)

    Kawamoto, Masami; Inoue, Tomio; Honda, Norinari; Suga, Kazuyoshi; Imai, Teruhiko

    2002-01-01

    The aim of this study is to re-evaluate and clarify the diagnostic role of ventilation/perfusion lung scintigraphy in Japan, now that single-detector-row helical CT and multidetector-row CT are available in clinical practice. The Respiratory Nuclear Medicine Working Group of the Japanese Society of Nuclear Medicine distributed a questionnaire to institutions in Japan equipped with scintillation cameras as of September 2001. Of 1,222 institutions, 239 returned effective answers (19.6%). The most frequent combination for initial diagnosis of acute pulmonary thromboembolism was chest radiography, perfusion lung scintigraphy, and contrast-enhanced CT (111 institutions, 46.4%). The questionnaire revealed that the validity and usage of perfusion lung scintigraphy and those of contrast-enhanced CT were equivalent in the present clinical situation. On the other hand, the diagnostic value of ventilation lung scintigraphy in suspected pulmonary thromboembolism has not been established in Japan. Even though contrast-enhanced CT is widely used in Japan, perfusion lung scintigraphy is still required to determine disease severity and monitor its progress. (author)

  4. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  5. Post-graduate training in imaging diagnostics, nuclear medicine and radiotherapy for radiographers

    International Nuclear Information System (INIS)

    Petkova, E.; Velkova, K.; Shangova, M.; Karidova, S.

    2006-01-01

    Full text: The application of new technologies in imaging diagnostics, as well as the use of digital processing and storing of information, has increased the quality and scope of imaging diagnostics. The potentials of therapeutic methods connected with imaging diagnostics and nuclear medicine, interventional therapeutic procedures (dilatation, embolism, stent, etc.), basins with radio-pharmaceuticals, etc., are constantly increasing. The constant training of radiographers in working with the new, advanced image-diagnostic equipment has become an established international practice in the process of training the human resources of the imaging-diagnostic departments and centers. Objectives: 1. Investigating the potentials of post-graduate training for monitoring the dynamics in the development of the principles, methods and techniques in imaging diagnostics; 2. The attitude of radiographers towards post-graduate training. Systematic approach and critical analysis of published data and mathematical-statistical methods with regard to the need of post-graduate training. The processed data of the survey on the necessity for post-graduate training conducted among 3rd year students in the last 3 years - 75 % consider post-graduate training mandatory, 11% deem it necessary, and 14% have no opinion on the issue; and among the working radiographers in the last 3 years the results are as follows: mandatory - 91%, necessary - 7%, no opinion - 2%. The improvement and advances in imaging diagnostic equipment and apparatuses have considerably outstripped the professional training of radiographers. The key word in the race for knowledge is constant learning and training, which can successfully be achieved within the framework of post-graduate training

  6. Nuclear medicine and its radiological protection in China

    International Nuclear Information System (INIS)

    Wu, J.

    2001-01-01

    The China Society of Nuclear Medicine was established on 27 May 1980. Since then, nuclear medicine in clinical diagnosis and therapy has been developed rapidly in China. So far there are more than 4000 members of the Society, and more than 350 sets of SPECT and 12 sets of PET have been installed and are busily running in clinic nowadays and about 1 million patients with different types of diseases have obtained nuclear medicine imaging examinations per year. Concerning the nuclear medicine therapy, a lot of patients with many types of diseases obtained benefit from radioisotope therapy. Accordingly, several Policies and Regulations have been enacted by the Government for the radiological protection. Furthermore, a special book titled 'Standardization in Diagnostic and Therapeutic Nuclear Medicine' has been promulgated in June, 1997 by the Health Administration of People's Republic of China, and this book is distributed to almost every nuclear medicine physician and technician in China for their reference in routine nuclear medicine work or research. In this book three parts of the contents are covered: Policies and Regulations for the radiological protection, basic knowledge and clinical nuclear medicine applications. (author)

  7. Role of nuclear medicine in imaging companion animals

    International Nuclear Information System (INIS)

    Currie, Geoffrey M.; Wheat, Janelle M.

    2005-01-01

    The role of equine nuclear medicine in Australia has been previously described in this journal and more recently, Lyall et al. provided a general overview of demographics of veterinary nuclear medicine departments in Australia. Lyall et al. discuss the main clinical applications of nuclear medicine scintigraphy in companion animals; dogs and cats. The aim of this article is to discuss in brief the applications of commonly performed nuclear medicine procedures in humans with respect to veterinary applications. More detailed discussion will also be offered for investigation of pathologies unique to veterinary nuclear medicine or which are more common in animals than humans. Companion animals are living longer today due to advances in both veterinary and human medicine. The problem is, like humans, longevity brings higher incidence of old age morbidity. As a pet owner, one might be initially motivated to extend life expectancy which is followed by the realisation that one also demands quality of life for pets. Early detection through advanced diagnostic tools, like nuclear medicine scintigraphy, allows greater efficacy in veterinary disease. There are limited veterinary nuclear medicine facilities in Australia due to cost and demand. Not surprisingly then, the growth of veterinary nuclear medicine in Australia, and overseas, has been integrally coupled to evaluation of race horses. While these facilities are generally specifically designed for race horses, racing greyhounds, lame family horses and companion animals are being investigated more frequently. In the USA, the American College of Veterinary Radiology (ACVC) is very active clinically and in research. The ACVC journal, Journal of Veterinary Radiology and Ultrasound, is published quarterly and includes a Nuclear Medicine section. Within the ACVR is the Society of Veterinary Nuclear Medicine. Proliferation of veterinary nuclear medicine centres in the USA has been associated with insurance and lifestyle changes

  8. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of ...

  9. Patient dose assessment in different diagnostic procedures in nuclear medicine

    International Nuclear Information System (INIS)

    Sena, E. de; Bejar, M.J.; Berenguer, R.; Ruano, R.; Tamayo, P.

    2001-01-01

    Effective doses have been estimated for 314 patients under diagnostic procedures in a Nuclear Medicine Department using data reported in ICRP-80 and RIDIC (Radiation Internal Dose Information Center). Data on administered activity, radiopharmaceutical and administration route, age and sex of the patients have been collected. Doses in the most exposed critical organ for every protocol, doses in uterus, doses in fetus versus the stage of pregnancy (in case the female patient was pregnant) and doses for nursing infants have been also estimated. Ga-67 studies give the highest effective doses per protocol followed by cardiac SPECT procedures using Tl-201 chloride. Ga-67 studies also give the highest absorbed doses in uterus. Due to not administering different activities, depending on height and weight of adults, women receive doses about 20% higher than men. This would be a practice to modify in the future in order to optimise doses. (author)

  10. Patient dose assessment in different diagnostic procedures in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Sena, E de; Bejar, M J; Berenguer, R [Servicio de Radiofisica y Proteccion Radiologica, Salamanca (Spain); Ruano, R; Tamayo, P [Servicio de Medicina Nuclear, Hospital Universitario de Salamanca (Spain)

    2001-03-01

    Effective doses have been estimated for 314 patients under diagnostic procedures in a Nuclear Medicine Department using data reported in ICRP-80 and RIDIC (Radiation Internal Dose Information Center). Data on administered activity, radiopharmaceutical and administration route, age and sex of the patients have been collected. Doses in the most exposed critical organ for every protocol, doses in uterus, doses in fetus versus the stage of pregnancy (in case the female patient was pregnant) and doses for nursing infants have been also estimated. Ga-67 studies give the highest effective doses per protocol followed by cardiac SPECT procedures using Tl-201 chloride. Ga-67 studies also give the highest absorbed doses in uterus. Due to not administering different activities, depending on height and weight of adults, women receive doses about 20% higher than men. This would be a practice to modify in the future in order to optimise doses. (author)

  11. Knowledge Management in Nuclear Medicine

    International Nuclear Information System (INIS)

    Abaza, A.

    2017-01-01

    The last two decades have seen a significant increase in the demand for medical radiation services following the introduction of new techniques and technologies that has led to major improvements in the diagnosis and treatment of human diseases. The diagnostic and therapeutic applications of nuclear medicine techniques play a pivotal role in the management of these diseases, improving the quality of life of patients by means of an early diagnosis allowing opportune and proper therapy. On the other hand, inappropriate or unskilled use of these technologies can result in potential health hazards for patients and staff. So, there is a need to control and minimize these health risks and to maximize the benefits of radiation in medicine. The present study aims to discuss the role of nuclear medicine technology knowledge and scales in improving the management of patients, and raising the awareness and knowledge of nuclear medicine staff regarding the use of nuclear medicine facilities. The practical experience knowledge of nuclear medicine staff in 50 medical centers was reviewed through normal visiting and compared with the IAEA Published documents information. This review shows that the nuclear medicine staff has good technology knowledge and scales during managing patients as compared to IAEA Published information regarding the radiation protection measures and regulation. The outcome of the study reveals that competent authority can improve radiation safety in medical settings by developing and facilitating the implementation of scientific evidence-based policies and recommendations covering nuclear medicine technology focusing in the public health aspects and considering the risks and benefits of the use of radiation in health care. It could be concluded that concerted and coordinated efforts are required to improve radiation safety, quality and sustain ability of health systems

  12. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  13. The role of general nuclear medicine in breast cancer

    International Nuclear Information System (INIS)

    Greene, Lacey R; Wilkinson, Deborah

    2015-01-01

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer

  14. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... other diagnostic tests. Nuclear medicine imaging procedures use small amounts of radioactive materials – called radiotracers – that are typically injected into the bloodstream, inhaled or swallowed. The radiotracer travels through the area being examined and gives off energy in the ...

  15. Internal dosimetry in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Carrera Magarino, F.; Salgado Garcia, C.; Ruiz Manzano, P.; Rivas Ballarin, M. A.; Jimenez Hefernan, A.; Sanchez Segovia, J.

    2011-01-01

    The Department of Radio Physics and Radiation Protection, University Hospital Lozano Blesa Zaragoza presented a calculus textbook to estimate patient doses in diagnostic nuclear medicine. In this paper present an updated referred Book of calculation.

  16. Diagnostic and therapeutic perspectives in nuclear medicine: radiolabelled biomolecules

    International Nuclear Information System (INIS)

    Ferro F, G.; Murphy, C.A. de; Pedraza L, M.; Melendez A, L.

    2003-01-01

    From their beginning, the radiopharmaceuticals chemistry has gone to the study of the molecular chemistry. The radiopharmaceuticals are only in their capacity to detect such specific biochemical places as the receivers and the enzymes. With the recent obtaining of the complete structural sequence of the genome, it doesn't fit doubt of the importance that they have acquired the molecular images for the study from the genetic information to the alterations phenotypic in the chemistry of the human body. So, the future of the diagnostic and therapeutic nuclear medicine, practically is based in the study of protein fragments, peptide structures and chains of DNA radiolabelled for the study of the metabolism In vivo. These investigations represent a substantial change in those paradigms of the pharmaceutical development, when using the own organic capacities as source of medications, instead of considering to the organism like a simple assay tube where molecules act, like they are most of the traditional medications. The investigation of new techniques to design complex stable of Tc-99m, Re-188, Lu-177, Y-90 and Dy-166/Ho-l66 with biomolecules that don't alter the specificity and in general the molecular properties of the same ones. it is a topic of world interest in the environment of the radiopharmaceutical chemistry. In this work some achievements and perspectives are presented on those main diagnostic and therapeutic radiopharmaceuticals of third generation. (Author)

  17. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  18. Basics of radiobiology and nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.; Hadjidekova, V.; Georgieva, R.

    2002-01-01

    The authors successively reveal the topics of the biological impact of radiation (radiobiology) and the diagnostic and the therapeutic application of radiopharmaceuticals (nuclear medicine). Data on the influence of radiation on subcellular, cellular, tissue and organ level are given, on early and late radiation changes, as well. Indication for the application of the different radionuclide methods in the diagnosis of the diseases in the endocrinology, nephrology, cardiology, gastroenterology, haematology of lungs, bones, tumors are pointed out and the main trends of the growing therapeutical use of nuclear medicine are presented. The aim is to teach students the nuclear medicine methods in the complex investigation of the patients, his preliminary preparation and the biological impact of radiation and its risk. Self assessment test for students are proposed and a literature for further reading

  19. [Effectiveness of conventional diagnostic radiology and nuclear medicine in the treatment of pain from bone metastases].

    Science.gov (United States)

    Genovese, Eugenio Annibale; Mallardo, Vania; Vaccaro, Andrea; Santagata, Mario; Raucci, Antonio; D'Agosto, Gianfranco; Fontanarosa, Antonio; Schillirò, Francesco

    2013-01-01

    Bone is one of the most common metastasis sites from solid tumors. Bone pain due to metastatic neoplastic growth is due to tumor infiltration and expansion of bone membranes. Treatment of acute and chronic pain represents one of the greatest problems in clinical oncology, requiring a multidisciplinary approach. This review focuses on the effectiveness of conventional diagnostic radiology and nuclear medicine for the detection, management and treatment of pain from bone metastasis.

  20. Evaluation of diagnostic procedures in nuclear medicine services of Pernambuco and Alagoas states - Brazil

    International Nuclear Information System (INIS)

    Silva, Ricardo Braz F. da; Hazin, Clovis A.

    2011-01-01

    The medical use of ionizing radiation contributes significantly to population exposure to radiation. This study aimed to evaluate the diagnostic procedures carried out in nuclear medicine (SMN) in Pernambuco and Alagoas in order to gather data to subsidize the proposal of reference levels for nuclear medicine in Brazil. Data were collected of the SMN in Pernambuco and Alagoas in the period of 2005 to 2009, according by UNSCEAR. The study used data from IBGE. The results showed that the total number of examinations in the period 2005 to 2009 was 34.828 in Pernambuco and 27.700 in Alagoas, corresponding to 6.966 and 5.540 average annual examinations in Pernambuco and Alagoas, respectively. The total number of examinations performed in both states in 2009 was twice the number carried out in 2005. Scintigraphy is the cardiovascular examination most performed in both states, followed by bone scintigraphy. Tc-99m is the radionuclide used most often, followed by I-131. The number of tests using Tc-99m in 2009 doubled when compared with the examinations performed in 2005. The results indicate that there has been a significant increase in the number of examinations in MN, and that females outnumber males, as far as the use of this diagnostic resource is concerned. The study of the activities of the radionuclides administered to patients in the states of Pernambuco and Alagoas showed that they are high when compared to the values recommended by the IAEA in its Safety Report Series Document No. 40. (author)

  1. Nuclear medicine training and practice in the Czech Republic

    International Nuclear Information System (INIS)

    Kaminek, Milan; Koranda, Pavel

    2014-01-01

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  2. Nuclear medicine training and practice in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kaminek, Milan; Koranda, Pavel [University Hospital Olomouc, Department of Nuclear Medicine, Olomouc (Czech Republic)

    2014-08-15

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  3. Highlights Lecture of the European Association of Nuclear Medicine and the World Federation of Nuclear Medicine and Biology Congress, Berlin 1998. Where next and how?

    International Nuclear Information System (INIS)

    Britton, K.E.

    1998-01-01

    Nuclear medicine benefits not only the people of developed countries but also those who are in developing or deteriorating countries. The combination of diagnostic imaging, tissue characterisation, function measurement and targeted therapy is powerful and cost-effective. This congress provides a sample of nuclear medicine's contribution to the world. (orig.)

  4. Radiation exposure of nuclear medicine procedures in Germany

    International Nuclear Information System (INIS)

    Hacker, M.

    2005-01-01

    Nuclear Medicine procedures offer the possibility to detect abnormalities on the basis of physiological and metabolic changes and to treat a growing number of diseases in human beings. However, the use of radiopharmaceuticals for nuclear medicine examinations causes a significant component of the total radiation exposure of populations. In Germany it is an essential task of the Federal Office for Radiation Protection to determinate and assess radiation exposure of the population due to nuclear medicine diagnostics and therapy. An important input for this task is the frequency of nuclear-medical examinations with application of ionising radiation and the radiation exposure of patients related to the various procedures. Additional implementation of age- and gender-specific data today allows more exact risk stratification in focusing on different subgroups of patients. Moreover, the collective effective dose as well as the per caput effective dose of the German population may be estimated and compared with earlier collected data or foreign countries. These data reveal where the indication should be questioned particularly critically and if the dose for the various examinations can be reduced and, thus, contribute to the definition of diagnostic reference levels for nuclear medicine procedures in Germany with the aim of both a sufficient image quality and a minimum of radiation exposure. Exceeding the high- as well as the low-values requires documentation and explanation. (orig.)

  5. Czechoslovak nuclear medicine, development and present state

    Energy Technology Data Exchange (ETDEWEB)

    Hupka, S [Ustav Klinickej Onkologie, Bratislava (Czechoslovakia)

    1981-01-01

    The growth is described of nuclear medicine departments and units in Czechoslovakia in the past 25 years of the existence of the Czechoslovak Society for Nuclear Medicine and Radiation Hygiene, the numbers of personnel and their qualifications. While only three nuclear medicine units were involved in the use of radioisotopes for diagnostic and therapeutic purposes in the 1950's, 29 specialized departments and 15 laboratories are now in existence with a staff of 299 medical doctors and other university graduates and 365 technicians and nurses. They operate all possible instruments, from simple detector devices via gamma cameras to computer tomographs. Briefly, the involvement of the Society is described in coordinated research programs, both with institutions in the country and with the other CMEA countries and IAEA.

  6. Abstracts of the European Association of Nuclear Medicine congress, 26-30 August 1995, Brussels, Belgium

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The issue contains 888 abstracts of lectures and poster sessions of the European Association of Nuclear Medicine Congress held in Brussels, Belgium, from August 26 to 30, 1995. The key subjects adressed are diagnostic nuclear medicine techniques, especially scintiscanning, SPET and PET and their applications in diagnostic medicine. There is an alphabetic index of author names. (vhe) [de

  7. 32. Days of the Nuclear Medicine: Summaries of the lectures and posters

    International Nuclear Information System (INIS)

    1995-09-01

    The publication has been set up as a abstracts of the conference dealing with nuclear medicine problems. The book consists of the sections: (1) Introduction lectures; (2) Radionuclide diagnostic methods in the oncology; (3) Miscellaneous; (4) Device techniques and physical problems in nuclear medicine; (5) The problems of radiation protection in nuclear medicine; (6) Special programme of the SZP; (7) Poster section

  8. General Nuclear Medicine

    Science.gov (United States)

    ... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  9. Quality control test solutions for diagnostic radiology, nuclear medicine and health physics with PTW equipment

    International Nuclear Information System (INIS)

    Froescher, Olga

    2007-01-01

    Complete test of publication follows. In 1922 PTW-Freiburg was founded to produce and market a revolutionary new electromechanical component for measuring very small electrical charges. Today PTW is the specialist and one of the global market leaders for manufacturing and supplying high-quality products in diagnostic radiology, nuclear medicine, radiation therapy and health physics. The quality control of X-ray images is influenced by a number of parameters. To maintain a consistent performance of X-ray installations, quality checks have to be conducted regularly. PTW offers a variety of diagnostic test tools for different X-ray devices, and therefore to reduce patient exposure and costs for X-ray departments. PTW's 'Code of Practice' defines in an easy and compact way how to perform quality control measurements on different diagnostic X-ray installations. The necessary equipment for measuring main parameters as well as acceptable limits are mentioned accordingly. The 'Code of Practice' bases on actual standards.

  10. [In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    International Nuclear Information System (INIS)

    1989-01-01

    The overall goals of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation in human lymphocytes. We are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides

  11. Nuclear medicine

    International Nuclear Information System (INIS)

    Lentle, B.C.

    1986-01-01

    Several growth areas for nuclear medicine were defined. Among them were: cardiac nuclear medicine, neuro-psychiatric nuclear medicine, and cancer diagnosis through direct tumor imaging. A powerful new tool, Positron Emission Tomography (PET) was lauded as the impetus for new developments in nuclear medicine. The political environment (funding, degree of autonomy) was discussed, as were the economic and scientific environments

  12. Nuclear radiation and its role in general nuclear medicine

    International Nuclear Information System (INIS)

    Kempaiah, A.; Ravi, C.

    2012-01-01

    Radiation is really nothing more than the emission of energy through space, as well as through physical objects. Nuclear radiations are emitted due to decay of nuclei of radioactive materials and damage cells and the DNA inside them through its ionizing effect. That causes melanoma and other cancers. Nuclear radiation has a number of beneficial uses especially in medical field with low levels of radioactive compounds, better than X-rays. There are some 440 nuclear reactors worldwide, people around will be under the effect of radiation. In nuclear medicine (medical imaging) small amount of radioactive materials were used to diagnose and determine the severity of or treat a variety of disease, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body it is painless and cost-effective techniques and provides information about both structure and function. Nuclear medicine diagnostic procedures called Gamma camera, single photon emission computed tomography (SPECT) and positron emission tomography (PET) were discussed in this paper. (author)

  13. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  14. Mongolia and nuclear medicine development

    International Nuclear Information System (INIS)

    Onkhuudai, P.; Gonchigsuren, D.

    2007-01-01

    -188, Member of ARCCNM, The IAEA has assisted Mongolia upgrading the Nuclear Medicine Diagnostic , Laboratory at the First State Central Hospital through the TC projects , (MON/6/004, MON/6/005, MON/6/006, MON/6/009). In the future, to be have updated and advanced technology of Nuclear Medicine we aim to introduce Molecular Based Diagnostics and PET-CT scanner in Mongolia. (author)

  15. Nuclear Medicine Image Display. Chapter 14

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, H. [Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna (Austria)

    2014-12-15

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  16. Nuclear Medicine Image Display. Chapter 14

    International Nuclear Information System (INIS)

    Bergmann, H.

    2014-01-01

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  17. Nuclear medicine and the pregnant patient

    International Nuclear Information System (INIS)

    Collins, L.

    1988-01-01

    Estimates of the risks of exposing an embryo or fetus to radiation are discussed. Recommendations are made about the policies a nuclear medicine department should develop for handling cases of accidental irradiation of an embryo or fetus. The choices available where a known pregnancy is involved and diagnostic radiology is required are outlined. Only necessary examinations should be performed and care taken to avoid or minimise irradiation of the fetus. The nuclear medicine physician must be prepared to make (and defend if necessary) an informed decision on whether to proceed with an examination and must also be in a position to discuss the risks with anxious parents

  18. Nuclear Medicine in a developing country

    International Nuclear Information System (INIS)

    Wenzel, K.S. von; Rubow, S.M.; Ellmann, A.; Ghoorun, S.

    2002-01-01

    Namibia is a country with 1,8 million inhabitants, of whom the majority has limited access to first world facilities. Nevertheless, medical services of high standard are offered. A Nuclear Medicine Department was established at Windhoek Central Hospital in 1982. A nuclear physician, two nuclear medicine radiographers and a nursing sister staff the department. Equipment includes a Siemens Orbiter and an Elscint Apex SPX Helix gamma camera. Radiopharmaceuticals are obtained from suppliers in South Africa. Investigations performed include musculoskeletal, liver, hepatobiliary, thyroid, renal studies, ventilation perfusion lung scans as well as the following Nuclear Cardiology studies: Gated blood pool scans, Tc-99m pyrophosphate hot spot scans, Tl-201 myocardial perfusion studies, Tc-99m MIBI myocardial perfusion studies and Tl-201 rest-redistribution studies. Problems experienced at the Windhoek Nuclear Medicine department include: Lack of funding and high cost of equipment and radiopharmaceuticals, lack of understanding of Nuclear Medicine by the hospital management and health administrators, and difficulties in procuring short-lived radiopharmaceuticals. Furthermore, the absence of company representatives and spare parts in Namibia leads to loss of time whenever equipment needs to be repaired. Working as the only nuclear medicine physician in a country also poses major problems. Careful management of resources and information drives have helped to sustain the Nuclear Medicine service despite economic problems in the country. Installation of a tele-link between the department in Windhoek Hospital and Tygerberg Hospital in South Africa has greatly assisted to overcome the problem of isolation and lack of back up from fellow specialists. The IAEA has equipped both departments with Hermes workstations (Nuclear Diagnostics) and a tele-link is maintained via modem. The current software provided with the Hermes system is ideally suited to processing of data such as gated

  19. Ocular organ dose assessment of nuclear medicine workers handling diagnostic radionuclides

    International Nuclear Information System (INIS)

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2017-01-01

    The dose distribution in the ocular organs of nuclear medicine workers during the handling of diagnostic radionuclides was assessed via simulation in virtual space. The cornea and lenses received the highest dose, and the dose distribution tended to be proportional to the gamma-ray energy emitted from the radiation source being handled. Moreover, calculations on the dose-reduction effects of eye-wear protectors for the eyes of the workers showed that the effects were inversely proportional to the emitted gamma-ray energy, with the dose-reduction effect decreasing in the order of "2"0"1Tl, "1"2"3I, "9"9mTc, "6"7Ga, "1"1"1In and "1"8F. Among the considered sources, the dose-reduction effect was significant for sources that emit relatively less energy, namely "1"2"3I, "2"0"1Tl and "9"9mTc, while it was lower for the remaining sources, namely "1"8F, "1"1"1In and "6"7Ga. (authors)

  20. Trends of radiation dose to the Slovak population from diagnostic nuclear medicine examinations during the period from 1985 to 1995

    International Nuclear Information System (INIS)

    Ftacnikova, S.; Ragan, P.

    1998-01-01

    A mathematical formalism was used to evaluate the radiation dose to population from radiodiagnostic procedures. Data for the calculation were obtained from questionnaires sent to the 12 Slovak hospitals which involve nuclear medicine departments. The mean effective dose for a procedure was determined by multiplying the administered radioactivity by the effective dose per unit of applied radiopharmaceutical activity; the latter value was taken from the literature. The values of the collective effective dose, total number of examinations, mean effective dose per examination and per capita and the number of examinations in 1000 inhabitants are tabulated for the 1985-1995 period. A favorable decreasing trend in the mean effective dose per examination after 1991 was observed. This was mainly due to the replacement of 131 I labelled compounds by 99m Tc radiopharmaceuticals. An overview of nuclear medicine diagnostic practice for pediatric and adult patients is also presented. The number of diagnostic procedures per 1000 inhabitants is significantly lower than in the most developed countries, and this unfavorable trend is continuing so far. (P.A.)

  1. Basic Physics for Nuclear Medicine. Chapter 1

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, E. B. [Department of Medical Physics, McGill University, Montreal (Canada); Kesner, A. L. [Division of Human Health, International Atomic Energy Agency, Vienna (Austria); Soni, P. S. [Medical Cyclotron Facility, Board of Radiation and Isotope Technology, Bhabha Atomic Research Centre, Mumbai (India)

    2014-12-15

    The technologies used in nuclear medicine for diagnostic imaging have evolved over the last century, starting with Röntgen’s discovery of X rays and Becquerel’s discovery of natural radioactivity. Each decade has brought innovation in the form of new equipment, techniques, radiopharmaceuticals, advances in radionuclide production and, ultimately, better patient care. All such technologies have been developed and can only be practised safely with a clear understanding of the behaviour and principles of radiation sources and radiation detection. These central concepts of basic radiation physics and nuclear physics are described in this chapter and should provide the requisite knowledge for a more in depth understanding of the modern nuclear medicine technology discussed in subsequent chapters.

  2. Prospects in nuclear medicine

    International Nuclear Information System (INIS)

    Pink, V.; Johannsen, B.; Muenze, R.

    1990-01-01

    In nuclear medicine, a sequence of revolutioning research up to the simple and efficient application in routine has always then taken place when in an interdisciplinary teamwork new radiochemical tracers and/or new instrumentation had become available. At present we are at the beginning of a phase that means to be in-vivo-biochemistry, the targets of which are molecular interactions in the form of enzymatic reactions, ligand-receptor interactions or immunological reactions. The possibility to use positron-emitting radionuclides of bioelements in biomolecules or drugs to measure their distribution in the living organism by positron-emission tomography (PET) is gaining admittance into the pretentious themes of main directions of medical research. Diagnostic routine application of biochemically oriented nuclear medicine methods are predominantly expected from the transmission of knowledge in PET research to the larger appliable emission tomography with gamma-emitting tracers (SPECT). (author)

  3. Nuclear medicine. 4. new rev. and enl. ed.

    International Nuclear Information System (INIS)

    Kuwert, T.; Gruenwald, F.; Haberkorn, U.; Krause, T.

    2008-01-01

    The book on nuclear medicine is devided in three chapters: fundamentals, diagnostics and therapy. The topics within these chapters are the following: 1) fundamentals: molecular imaging; radiation physics, measuring technology and quality control; dosimetry and radiation effects; radiation protection, radiopharmaceutical chemistry; immonoassays and quality control. 2) diagnostics: endocrine organs; oncology; heart, vascular system and blood vessels; brain, lungs, skelton, kidneys, gastrointestine tract; infections; hematology. 3) radiotherapy; radiosynoviorothese; palliative bone pain therapy; radioimmunotherapy; 1 31I-MIBG therapy; therapy with receptor affine peptides; specific nuclear medical therapies

  4. Nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The area of nuclear medicine, the development of artificially produced radioactive isotopes for medical applications, is relatively recent. Among the subjects covered in a lengthy discussion are the following: history of development; impact of nuclear medicine; understanding the most effective use of radioisotopes; most significant uses of nuclear medicine radioimmunoassays; description of equipment designed for use in the field of nuclear medicine (counters, scanning system, display systems, gamma camera); description of radioisotopes used and their purposes; quality control. Numerous historical photographs are included. 52 refs

  5. Nuclear medicine environmental discharge measurement. Final report

    International Nuclear Information System (INIS)

    Gesell, T.F.; Prichard, H.M.; Davis, E.M.; Pirtle, O.L.; DiPietro, W.

    1975-06-01

    The discharge of most man-made radioactive materials to the environment is controlled by Federal, State or local regulatory agencies. Exceptions to this control include the radioactive wastes eliminated by individuals who have undergone diagnostic or therapeutic nuclear medicine procedures. The purpose of this study is to estimate the amount of radioactivity released to the environment via the nuclear medicine pathway for a single sewage drainage basin and to measure the amounts discharged to the environment. The report is organized into a review of previous studies, scope of work, facility data, environmental measurements and estimates of population exposure

  6. Thirty years from now: future physics contributions in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Dale L [School of Physics and Faculty of Health Sciences, University of Sydney, Sydney, 2006 (Australia); Department of Nuclear Medicine, Royal North Shore Hospital, St. Leonards, NSW 2065 (Australia)

    2014-05-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist’s perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of ‘Molecular Imaging’ in the next three decades. The author sees a shift away from ‘traditional’ roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  7. Thirty years from now: future physics contributions in nuclear medicine

    International Nuclear Information System (INIS)

    Bailey, Dale L

    2014-01-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist’s perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of ‘Molecular Imaging’ in the next three decades. The author sees a shift away from ‘traditional’ roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  8. A literature review of the cost-effectiveness of nuclear medicine

    International Nuclear Information System (INIS)

    Carter, J.

    1995-01-01

    Nuclear medicine is a medical speciality that uses tiny quantities of radioactivity to produce diagnostic images. It also has a role in therapy for some thyroid diseases and certain tumours. Surveys have shown that nuclear medicine procedures are used significantly less in the UK than in many other countries in Europe. One reason may be that there is inadequate information about the clinical utility of these techniques, particularly their cost-effectiveness in clinical management. To establish what evidence was currently available about the cost-effectiveness of nuclear medicine, the British Nuclear Medicine Society commissioned a worldwide literature review in diseases of the heart, kidney, lung, bone, brain, bowel and thyroid. This volume summarises the findings of the independent study and gives details of the background, clinical utility and limitations of the different nuclear medicine procedures used in the diagnosis and treatment of each disease reviewed. (author)

  9. Magnetic resonance vs. computerized tomography, ultrasonic examinations and nuclear medicine

    International Nuclear Information System (INIS)

    Bruna, J.

    1985-01-01

    A symposium on magnetic resonance in nuclear medicine was held from 23rd to 27th January, 1985 in Munich and Garmisch-Partenkirchen. Discussed were suitable methods, the use of contrast media, the evaluation of results, the application of nuclear magnetic resonance in examining various body organs, and the latest apparatus. NMR achievements in medicine were compared to those by other diagnostic methods. (M.D.)

  10. Regulatory and administrative requirements for practice of nuclear medicine in India

    International Nuclear Information System (INIS)

    Tandon, Pankaj

    1998-01-01

    In order to ensure safety of the patients, staff and public in the practice of nuclear medicine, including in-vivo diagnostic investigations, radionuclide therapy and in research using unsealed radioactive substances a number of administrative and regulatory procedures are adopted. The salient features of regulatory and administrative requirements for practice of nuclear medicine in India are discussed

  11. Nuclear medicine in gynecologic oncology: Recent practice

    International Nuclear Information System (INIS)

    Lamki, L.M.

    1987-01-01

    Nuclear medicine tests tell more about the physiological function of an organ that about its anatomy. This is in contrast to several other modalities in current use in the field of diagnostic imaging. Some of these newer modalities, such as computerized tomography (CT), offer a better resolution of the anatomy of the organ being examined. This has caused physicians to drift away from certain nuclear medicine tests, specifically those that focus primarily on the anatomy. When CT scanning is available, for instance, it is no longer advisable to perform a scintigraphic brain scan in search of metastasis;CT scanning is more accurate overall and more likely than a nuclear study to result in a specific diagnosis. In certain cases of diffuse cortical infections like herpes encephalitis, however, a scintiscan is still superior to a CT scan. Today's practice of nuclear medicine in gynecologic oncology may be divided into the three categories - (1) time-tested function-oriented scintiscans, (2) innovations of established nuclear tests, and (3) newer pathophysiological scintistudies. The author discusses here, briefly, each of these categories, giving three examples of each

  12. Management of radioactive waste generated in nuclear medicine; Gestion de los residuos radiactivos generados en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz Perez, P.

    2015-07-01

    Nuclear medicine is a clinical specialty in which radioactive material is used in non-encapsulated form, for the diagnosis and treatment of patients. Nuclear medicine involves administering to a patient a radioactive substance, usually liquid, both diagnostic and therapeutic purposes. This process generates solid radioactive waste (syringes, vials, gloves) and liquid (mainly the patient's urine). (Author)

  13. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    International Nuclear Information System (INIS)

    1990-01-01

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens

  14. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses ... limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging ... the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  19. Internal dosimetry in nuclear medicine procedures; Dosimetria interna por procedimientos en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Carrera Magarino, F.; Salgado Garcia, C.; Ruiz Manzano, P.; Rivas Ballarin, M. A.; Jimenez Hefernan, A.; Sanchez Segovia, J.

    2011-07-01

    The Department of Radio Physics and Radiation Protection, University Hospital Lozano Blesa Zaragoza presented a calculus textbook to estimate patient doses in diagnostic nuclear medicine. In this paper present an updated version referred Book of calculation.

  20. Estimated collective effective dose to the population from nuclear medicine examinations in Slovenia

    International Nuclear Information System (INIS)

    Skrk, Damijan; Zontar, Dejan

    2013-01-01

    A national survey of patient exposure from nuclear medicine diagnostic procedures was performed by Slovenian Radiation Protection Administration in order to estimate their contribution to the collective effective dose to the population of Slovenia. A set of 36 examinations with the highest contributions to the collective effective dose was identified. Data about frequencies and average administered activities of radioisotopes used for those examinations were collected from all nuclear medicine departments in Slovenia. A collective effective dose to the population and an effective dose per capita were estimated from the collected data using dose conversion factors. The total collective effective dose to the population from nuclear medicine diagnostic procedures in 2011 was estimated to 102 manSv, giving an effective dose per capita of 0.05 mSv. The comparison of results of this study with studies performed in other countries indicates that the nuclear medicine providers in Slovenia are well aware of the importance of patient protection measures and of optimisation of procedures

  1. The quality of 99mTc-radiopharmaceuticals - a basic requirement in the diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    Ivanova, S.; Popsavova, H.; Kostadinova, I.

    2011-01-01

    Development and application of new high quality radiopharmaceuticals (RP) are of a great significance for the development in nuclear medicine. The high quality of the radiopharmaceuticals has a major influence on the accuracy of nuclear medical examinations. Therefore, a good knowledge and application if various control methods, is essential. Radiochemical impurities affect the quality of RP most significantly and they can appear at every stage of the preparation. The aim of this review is to present the literature information concerning the quality of the most commonly used radiopharmaceuticals, labeled with 99m Tc, and all requirements for them, i.e. radiochemical, radionuclide and chemical purity. This is well-known fact that metastable isotope of Technetium is golden standard for diagnostics in nuclear medicine. Research shows that about 80% of approx. 25 million nuclear medical studies a year are performed with this radionuclide. According to the European Pharmacopoeia and to the leaflets provided with the kits, radiochemical purity must exceed 95%. The main radiochemical impurities in 99m Tc-radiopharmaceuticals are free pertechnetate ( 99m TcO 4 - ), whose presence causes accumulation of RP in the thyroid gland, stomach, gastrointestinal tract, or the salivary glands, leading to a wrong diagnosis, and reduced hydrolyzed technetium, which causes visualization of the reticulo-endothelial system. This paper contains information about the authors' experience with analyses of the radiochemical purity of the two most commonly used radiopharmaceuticals in Bulgaria - for bone and renal scintigraphy (MDA and DTPA). An Instant Thin-Layer Chromatography (ITLC) is used for this purpose. It is concluded that the high quality of the applied 99m Tc-radiopharmaceuticals can be guaranteed only with both selection of renowned manufactures, recognized by EU, and a routine daily control of the labeling and generator eluate, meeting all requirements of the manufacturer and

  2. Justification of the hybrid nuclear medicine examinations

    International Nuclear Information System (INIS)

    Garcheva-Tsacheva, Marina B.

    2015-01-01

    The annual frequency of nuclear medicine examinations is increasing worldwide. This is partly a consequence of the recently introduced single photon emission tomography, combined with computed tomography, and positron emission tomography, combined with computed tomography, techniques, which combine functional, metabolic and morphological information important for the diagnosis of many diseases. However, since the effective radiation dose is the sum of the dose of two components, the hybrid examinations result in increased patient exposure. Accordingly, their justification becomes mandatory. It starts with their clinical importance-the opportunity to resolve a clinical problem decisive for patients' management. Knowledge of the indications, contraindications and the examinations' limitations is the responsibility of the nuclear medicine physician, as well as the choice of the most adequate examination and protocol. In conclusion, the cost and the accessibility of the examinations should not be the principal consideration as opposed to the diagnostic value and the exposure. Flexible protocols and algorithms should be used for hybrid nuclear medicine examinations. (authors)

  3. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  4. Nuclear medicine. 4. new rev. and enl. ed.; Nuklearmedizin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwert, T. [Universitaetsklinikum Erlangen (Germany). Nuklearmedizinische Klinik; Gruenwald, F. [Klinikum der Johann-Wolfgang-Goethe-Univ., Frankfurt (Germany). Klinik fuer Nuklearmedizin; Haberkorn, U. [Universitaetsklinikum Heidelberg (Germany). Abt. Nuklearmedizin; Krause, T. (eds.) [Universitaetsklinik Bern (Switzerland). Dept. Radiologie, Neuroradiologie und Nuklearmedizin

    2008-07-01

    The book on nuclear medicine is devided in three chapters: fundamentals, diagnostics and therapy. The topics within these chapters are the following: 1) fundamentals: molecular imaging; radiation physics, measuring technology and quality control; dosimetry and radiation effects; radiation protection, radiopharmaceutical chemistry; immonoassays and quality control. 2) diagnostics: endocrine organs; oncology; heart, vascular system and blood vessels; brain, lungs, skelton, kidneys, gastrointestine tract; infections; hematology. 3) radiotherapy; radiosynoviorothese; palliative bone pain therapy; radioimmunotherapy; {sup 1}31I-MIBG therapy; therapy with receptor affine peptides; specific nuclear medical therapies.

  5. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  6. ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.

    Science.gov (United States)

    Guiberteau, Milton J; Graham, Michael M

    2011-06-01

    The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training.

  7. Pulmonary applications of nuclear medicine

    International Nuclear Information System (INIS)

    Kramer, E.L.; Divgi, C.R.

    1991-01-01

    Nuclear medicine techniques have a long history in pulmonary medicine, one that has been continually changing and growing. Even longstanding methods, such as perfusion scanning for embolic disease or for pretherapy pulmonary function evaluation, have largely withstood the test of recent careful scrutiny. Not only have these techniques remained an important part of the diagnostic armamentarium, but we have learned how to use them more effectively. Furthermore, because of technical advances, we are in a phase of expanding roles for nuclear imaging. Gallium citrate scanning for the mediastinal staging and follow-up of lymphoma has been recognized as a valuable adjunct to the anatomic information provided by CT and MRI. With the growth of PET technology in areas that have been explored in a limited fashion until now, such as noncardiogenic pulmonary edema and lung carcinoma, evaluation and management of these patients may substantially improve. Finally, in the field of radiolabeled monoclonal antibodies, attention is now being turned to both the diagnostic and the therapeutic problems presented by lung carcinoma. As radiolabeling methods are refined and as new and better antibodies are developed, radioimmunodetection and therapy in lung carcinoma may begin to make inroads on this common and hard to control disease.157 references

  8. Concerning nuclear medicine services. Notes on the practical situation in 1977

    International Nuclear Information System (INIS)

    Ducassou, Dominique.

    1977-01-01

    Nuclear medicine presents a certain number of teething problems, which are analysed here. An attempt is made first to estimate the worthwhileness or utility/cost ratio of a nuclear medicine service by determining firstly the expenses involved and secondly the services rendered. Problems connected with the running of nuclear medicine services are then discussed: civil and penal responsibility of the nuclear practitioner in relation to the human administration of radioactive preparations for diagnostic or therapeutic purposes; limited availability of scintillation cameras (1 for 500,000 inhabitants, a number considered hopelessly inadequate at the present time); organisation of premises; training of personnel (nuclear doctors, radiopharmacists, paramedical staff, technical staff). Finally the problems encountered in applying the nomenclature are dealt with [fr

  9. Procedures, activities and doses in nuclear medicine cycle in Brazil

    International Nuclear Information System (INIS)

    Oliveira, Silvia Maria Velasques de

    2005-01-01

    With the aim of characterizing nuclear medicine procedures performed in Brazil, activities of radiopharmaceuticals used and effective doses to patients, data was collected from nuclear medicine institutions in three regions of the country, namely the Southeast, the Northeast and the South regions, representing public hospitals, university hospitals, private and philanthropic institutions with low, medium and high levels of consumption of radiopharmaceuticals. The three chosen regions are responsible for 92% of radiopharmaceutical consumption and imaging equipment in the country. Accordingly, it was requested of some participating institutions to fulfill manually from individual patients data, to record gender, age, weight, height and activities used, for each type of exam as well as the equipment used. In others, the researcher collected data personally. Per institution, nuclear medicine diagnostic procedures ranged from 700 to 13,000 per year, most of which are myocardial and bone imaging procedures, and imaging equipment ranged, from 1 to 8 machines, one or two head SPECT's (hybrid or not). 26.782 patients protocols were analysed, 24.371 adults and 2.411 children and teenagers. For adult patients, differences were observed in the amount of activities used in diagnostic procedures between public and private institutions, with lower average activities used in public institutions. Activities administered to children and their effective doses were difficult to evaluate due to the incompleteness of individual records. Appropriate individual patient records could be adopted without affecting hospitals routine and contributing for a comprehensive evaluation of the radiation protection of nuclear medicine patients. Data from 8.881 workers were analysed, 346 working at nuclear medicine institutions. For monitored workers and measurably exposed workers in nuclear medicine, the values 2.3 mSv and 5.4 mSv, respectively, for effective annual doses are greater than data

  10. Analysis of data relative to the update of diagnostic reference levels in radiology and nuclear medicine. 2011-2012 review

    International Nuclear Information System (INIS)

    2014-01-01

    Applying the Order of 24 October 2011 on diagnostic reference levels, departments of radiology and nuclear medicine must send a sample of 'patient' dosimetric data to the IRSN each year. The results of the analysis of dosimetric data performed between the 1 January 2011 and the 31 December 2012 presented in this report should enable the authority to define the needs for updating regulations. Professional involvement in DRLs improved globally over the 2011-2012 period but is heterogeneous according to the imaging area considered. The participation of conventional radiology professionals is still low, with less than 30% against over 75% in CT and 85% in nuclear medicine. Data collection in pediatrics, considering all the fields of medical imaging, remains extremely limited. This shows almost no dose assessment for children by imaging departments, and has the effect of not allowing authorities to provide professionals with DRLs representative of pediatric practices. The analysis of radiology doses and nuclear medicine administered activities by IRSN shows an overall decrease of statistical indicators on which DRLs are indexed. These results lead to proposals for updating reference values for a large number of examinations. In addition to the analysis of data collected for examinations currently mentioned in regulatory texts, IRSN recommends to update DRLs in a more general way by changing the strategy for collecting and updating pediatric DRLs, by including interventional radiology - specialty in which the radiation protection presents a major challenge - by introducing a more ambitious indicator than the 75. percentile in conventional radiology and nuclear medicine - the 25. percentile statistical indicator, and by taking into account new technologies inducing additional exposures to the patient as CT-scan associated with the PET. (authors)

  11. New trends and possibilities in nuclear medicine

    International Nuclear Information System (INIS)

    Schmidt, H.A.E.; Csernay, L.

    1988-01-01

    The abstracts of this book mainly deal with the results of scientific work in diagnostic nuclear medicine, radiobiology, dosimetry, medical physics, radiopharmacology and biochemistry. Clinical and experimental data are presented within the fields of endocrinology, cardiology, pulmonology, gastroenterology, neurology, nephrology, osteology, hematology and oncology (- even including diagnostic and therapeutic aspects of labelled monoclonal antibodies). Basic information about instrumentation (PET, SPECT, NMR), artificial intelligence and qualitiy control is given. Separate abstracts are prepared for 189 papers. (TRV) With 363 figs., 143 tabs

  12. Nuclear medicine imaging in clinical practice: Current applications and future trends

    International Nuclear Information System (INIS)

    Galli, G.; Maini, C.L.

    1985-01-01

    The following conclusions can be drawn: 1) Even though developments in data digitalization enable also other imaging techniques to extract functional information, it is likely that nuclear medicine will keep and possibly increase its key role for functional studies requiring quantitative data analyses. This statement is true at present and it will probably remain true for a long time to come. 2) Nuclear medicine is and will remain an important clinical tool also for morphological or morphodynamic studies in selected situations. Of course the integration of nuclear medicine studies with other diagnostic procedures is highly desirable. The highest clinical yield of multi-test diagnostic protocols will be anyway obtained by the wisest physician as sophysticated technology is no substitution for intelligent clinical judgment. 3) The development of new radiopharmaceuticals with well characterized biokinetic features allowing precise tissue characterization opens new frontiers to be exploited by nuclear medicine centers equipped with conventional technology (digital gammacameras, SPECT). 4) Positron emission tomography is the most important new development of nuclear medicine imaging. Not only PET has already shown its enormous possibilities for physiological and pathophysiological studies, but the clinical relevance of selected applications has been proved. More experience is however needed to assess systematically the whole impact of PET studies in clinical practice and to perform dependable cost/benefit studies. 5) Among all other imaging techniques NMR is the closest to nuclear medicine because of a strict ''compatibility of aptitudes, training and methodology'' (4). Accordingly future improvements of both methods will be better achieved if they could be integrated and the results compared with the same institutions

  13. Doses from nuclear medicine examinations: A 25-year follow-up study

    International Nuclear Information System (INIS)

    Kairemo, K.J.A.; Korpela, H.

    2001-01-01

    New radiopharmaceuticals have been introduced in nuclear medicine examinations, and on the other hand, the amount of many routine nuclear medicine procedures have been replaced with clinical methods utilising non-ionisating radiation (ultrasonography, MRI). To clarify the situation in Finland, a country wide survey on the use of radiopharmaceuticals in diagnostics and therapy was made in 1975, 1982, 1989, 1994, 1997 and will be made in 2000. A questionnaire was sent to all hospitals and institutes using unsealed sources in both diagnostic and therapeutic nuclear medicine procedures. For each procedure, the pharmaceutical used, the number of procedures and the typical administered activities were recorded. The collective effective doses from nuclear medicine examinations were calculated according to the ICRP formulae similarly for each survey. In Finland, in each of these years, more than 50,000 procedures in more than 30 different laboratories were performed. Significant changes in collective doses were observed: for example, the collective dose from I-131 was 350 manSv in 1975, and 20 manSv in 1997. In 1975, 68% (n=23967) of collective dose originated from I-131, whereas in 1997 the percentage of I-131 in collective dose was 10 % (n=1118). In 1994 and 1997, the use of the three radionuclides (Tc-99m, I-131 and Tl-201) accounted for 96% and 95% of the collective effective dose. Our results indicate that the collective effective dose from nuclear medicine examinations has decreased in last 25 years. National surveys form the basis when setting reference levels for typical nuclear medicine examinations. By introducing reference levels based on national practice it is possible to even decrease the collective effective dose. (author)

  14. Analysis of the activities of radiopharmaceuticals and the radiation burden to the Slovak population in 1992-1993 from nuclear medicine diagnostic examinations

    International Nuclear Information System (INIS)

    Ftacnikova, S.; Fulop, M.

    1995-01-01

    By means of questionnaires sent out to all nuclear medicine departments in Slovakia, the authors assessed the mean values and the range of activities of radiopharmaceuticals administered during diagnostic examinations in nuclear medicine, and calculated the overall effective dose and effective dose per radiodiagnostic examination in 1992 and 1993. The mean values of activities are comparable with activities administered in the Czech Republic, in western European countries and the USA. The values of the overall effective dose and the mean effective dose per examination in 1992 were 110.7 Sv and 3.98 mSv, the corresponding values in 1993 were 101.5 Sv and 3.45 mSv. These values are comparable with those in developed countries. (author) 6 tabs., 1 fig., 13 refs

  15. The future of nuclear medicine; El futuro de la medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, J. L.

    2003-07-01

    Nuclear Medicine (NM) is dedicated to medical applications of molecules labeled with radionuclides. The NM diagnostic images can surpass or complement other diagnostic imaging techniques in some clinical situations. The clinical usefulness of Positron Emission Tomography is more and more evident, especially in Oncology. PET-TAC and PET{sub N}MR hybrid images after new chances in diagnosis and Radiotherapy planning and new relations between the radiological specialties. Radio guided surgery and radionuclide therapy are other development techniques of the NM. (Author) 11 refs.

  16. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  17. Nuclear Medicine in Turkey

    International Nuclear Information System (INIS)

    Durak, H.

    2001-01-01

    Nuclear Medicine is a medical specialty that uses radionuclides for the diagnosis and treatment of diseases and it is one of the most important peaceful applications of nuclear sciences. Nuclear Medicine has a short history both in Turkey and in the world. The first use of I-131 for the treatment of thyrotoxicosis in Turkey was in 1958 at the Istanbul University Cerrahpasa Medical School. In 1962, Radiobiological Institute in Ankara University Medical School was established equipped with well-type counters, radiometers, scalers, external counters and a rectilinear scanner. In 1965, multi-probe external detection systems, color dot scanners and in 1967, anger scintillation camera had arrived. In 1962, wet lab procedures and organ scanning, in 1965 color dot scanning, dynamic studies (blood flow - renograms) and in 1967 analogue scintillation camera and dynamic camera studies have started. In 1974, nuclear medicine was established as independent medical specialty. Nuclear medicine departments have started to get established in 1978. In 1974, The Turkish Society of Nuclear Medicine (TSNM) was established with 10 members. The first president of TSNM was Prof. Dr. Yavuz Renda. Now, in the year 2000, TSNM has 349 members. Turkish Society of Nuclear Medicine is a member of European Association of Nuclear Medicine (EANM), World Federation of Nuclear Medicine and Biology (WFNMB) and WFNMB Asia-Oceania. Since 1974, TSNM has organized 13 national Nuclear Medicine congresses, 4 international Nuclear Oncology congresses and 13 nuclear medicine symposiums. In 1-5 October 2000, 'The VII th Asia and Oceania Congress of Nuclear Medicine and Biology' was held in Istanbul, Turkey. Since 1992, Turkish Journal of Nuclear Medicine is published quarterly and it is the official publication of TSNM. There are a total of 112 Nuclear Medicine centers in Turkey. There are 146 gamma cameras. (52 Siemens, 35 GE, 16 Elscint, 14 Toshiba, 10 Sopha, 12 MIE, 8 Philips, 9 Others) Two cyclotrons are

  18. Requirements of radiation protection and safety for nuclear medicine services

    International Nuclear Information System (INIS)

    1989-01-01

    The requirements of radiation protection and safety for nuclear medicine services are established. The norms is applied to activities related to the radiopharmaceuticals for therapeutics and 'in vivo' diagnostics purposes. (M.C.K.) [pt

  19. Fundamentals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Alazraki, N.P.; Mishkin, F.S.

    1984-01-01

    This guidebook for clinical nuclear medicine is written as a description of how nuclear medicine procedures should be used by clinicians in evaluating their patients. It is designed to assist medical students and physicians in becoming acquainted with nuclear medicine techniques for detecting and evaluating most common disorders. The material provides an introduction to, not a textbook of, nuclear medicine. Each chapter is devoted to a particular organ system or topic relevant to the risks and benefits involved in nuclear medicine studies. The emphasis is on presenting the rationales for ordering the various clinical imaging procedures performed in most nuclear medicine departments. Where appropriate, alternative imaging modalities including ultrasound, computed tomography imaging, and radiographic special procedures are discussed. Comparative data between nuclear medicine imaging and other modalities are presented to help guide the practicing clinician in the selection of the most appropriate procedure for a given problem.

  20. Dementia and rural nuclear medicine

    International Nuclear Information System (INIS)

    Cowell, S.F.; Davison, A.; Logan-Sinclair, P.; Sturt University, Dubbo, NSW; Greenough, R.

    2003-01-01

    Full text: The rapid increase in dementia is directly related to the growing number of aged people in developed countries, such as Australia. This increase heightens the need for accurate dementia diagnosis to ensure treatment resources are appropriately allocated. However, current diagnostic methods are unable to determine specific dementia types limiting the effectiveness of many care plans. The lack of specialist resources in rural Australian communities presents nuclear medicine with an opportunity to make a significant impact on the management of this disease. This investigation aimed to identify how SPECT perfusion imaging could maximise its role in the management of dementia in a rural New South Wales setting. The study reviewed all Technetium 99m HMPAO SPECT brain studies over a three-year period. This included a medical record audit, review of all diagnostic imaging reports and an analysis of referral patterns. The results of this study provide compelling evidence that, even in a rural setting, brain SPECT, in conjunction with neuropsychological testing, offers high accuracy in determining the presence and type of dementia. In addition, the study found more than 30% of referrers had no training in SPECT, emphasising the importance of ensuring that brain SPECT reports, in a rural setting, educate and specify to referrers the significance and exact disease type found in the study. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  1. First Central and Eastern European Workshop on Quality control, patient dosimetry and radiation protection in diagnostic and interventional radiology and nuclear medicine

    International Nuclear Information System (INIS)

    National Frederic Joliot-Curie Research Institute for Radiobiology and Radiohygiene

    2007-01-01

    First Central and Eastern European Workshop on Quality Control, Patient Dosimetry and Radiation Protection in Diagnostic and Interventional Radiology and Nuclear Medicine, scientifically supported and accredited as a CPD event for medical physicists by EFOMP, National 'Frederic Joliot-Curie' Research Institute for Radiobiology and Radiohygiene (NRIRR), Budapest, Hungary, April 25-28, 2007. Topics of the meeting included all areas of medical radiation physics except radiation therapy. A unique possibility was realized by inviting four European manufacturers of quality control instrumentation, not only for exhibiting but they also had 45 minutes individual presentations about each manufacturer's product scale and conception. Further sessions dealt with dosimetry, optimization, quality control and testing, radiation protection and standardization, computed tomography and nuclear medicine, in 29 oral presentations and 1 poster of the participants. (S.I.)

  2. Radiochemistry in nuclear medicine. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Samochocka, K.

    1999-01-01

    Radionuclides and radiopharmaceuticals play a kay role in nuclear medicine, both in diagnostics and therapy. Incorporation of radionuclides into biomolecules, and syntheses of radiolabelled compounds of high biological selectivity are a task for radiochemists working in the multidisciplinary field of radiopharmaceutical chemistry. The most commonly used radionuclide, 99m Tc, owes this popularity to its both nearly ideal nuclear properties in respect to medical imaging, and availability from inexpensive radionuclide generators. Also numerous other radionuclides are widely used for medical imaging and therapy. Labelling of biomolecules with radioiodine and various positron emitters is getting increasingly important. This review describes some chemical and radiochemical problems we meet while synthesizing and using 99m Tc-radiopharmaceuticals and radioiodine-labelled biomolecules. Also represented are the recent developments in the design and use of the second generation radiopharmaceuticals based on bifunctional radiochelates. Several principal routes of fast chemical synthesis concerning incorporation of short-lived positron emitters into biomolecules are outlined as well. The search for chemical structures of high biological selectivity, which would be activated by slow neutrons, is related to the method of Neutron Capture Therapy, an interesting option in nuclear medicine. (author)

  3. Estimating the population dose from nuclear medicine examinations towards establishing diagnostic reference levels

    International Nuclear Information System (INIS)

    Niksirat, Fatemeh; Monfared, Ali Shabestani; Deevband, Mohammad Reza; Amiri, Mehrangiz; Gholami, Amir

    2016-01-01

    This study conducted a review on nuclear medicine (NM) services in Mazandaran Province with a view to establish adult diagnostic reference levels (DRLs) and provide updated data on population radiation exposure resulting from diagnostic NM procedures. The data were collected from all centers in all cities of Mazandaran Province in the North of Iran from March 2014 to February 2015. The 75 th percentile of the distribution and the average administered activity (AAA) were calculated and the average effective dose per examination, collective effective dose to the population and annual effective dose per capita were estimated using dose conversion factors. The gathered data were analyzed via SPSS (version 18) software using descriptive statistics. Based on the data of this study, the collective effective dose was 95.628 manSv, leading to a mean effective dose of 0.03 mSv per capita. It was also observed that the myocardial perfusion was the most common procedure (50%). The 75 th percentile of the distribution of administered activity (AA) represents the DRL. The AAA and the 75 th percentile of the distribution of AA are slightly higher than DRL of most European countries. Myocardial perfusion is responsible for most of the collective effective dose and it is better to establish national DRLs for myocardial perfusion and review some DRL values through the participation of NM specialists in the future

  4. Effective collective dose imparted by a medicine nuclear service to Cordoba and Jaen populations

    International Nuclear Information System (INIS)

    Arias, M.C.; Galvez, M.; Torres, M.

    1997-01-01

    The application of diagnostic techniques in nuclear medicine is ever growing as part of clinical daily routine. Although the diagnostic procedures carry a negligible clinical risk, the introduction of radioactive substances into the patient makes it imperative to determine the effective dose to minimize the stochastic effects to the patient thus establishing the collective dose to the community. The aim of our work is to study the collective effective dose imparted by Nuclear Medicine Service during 1997 to Cordoba and Jaen inhabitants (1 448 988). The nuclear medicine techniques of bone exploration with 11 454 mSv-person (4,6 mSv/exploration) and thyroid scintigraphy with 6181 mSv-person (7,0 mSv /exploration) are the main techniques implicated in the relative contribution to the total annual effective collective dose of 35 901.2 mSv-person

  5. Nuclear medicine in psychiatry

    International Nuclear Information System (INIS)

    Lass, P.; Slawek, P.

    2007-01-01

    In the same way that the symptoms between different diseases in psychiatry overlap, functional brain research frequently shows the same pattern of changes across diagnostic borders; on the other hand, many the other tests, e.g. psychological tests, present the same problem as mentioned above; therefore: The psychiatrist seldom applies to an NM specialist to obtain a diagnosis; instead, a nuclear medicine report will rather confirm, or less frequently exclude, the psychiatrist's diagnosis. Ideally, psychiatric patients should be rescanned after the treatment, and changes in perfusion and/or metabolism discussed between psychiatrist and NM specialist. As shown above, there are few practical applications of nuclear medicine due to low specificity and low spatial resolution, although in the aspect of functional imaging it is still superior to CT/MRI, even in their functional modalities. On the other hand, its investigational potential is still growing, as there is no imaging technique in sight which could replace metabolic and receptor studies, and also because the scope of functional imaging in psychiatric diseases is spreading from its traditional applications, like dementia or depression, towards many poorly investigated fields e.g. hypnosis, suicidal behaviour or sleep disorders. (author)

  6. European Association of Nuclear Medicine Congress, 14-18 September 1996, Copenhagen, Denmark. Abstracts

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The European Association of Nuclear Medicine Congress, held from 14-18 September 1996 in Copenhagen, Denmark, was devoted to all aspects of applications of nuclear medicine for diagnostic evaluation and therapy. The scientific programme and all in all 943 abstracts are presented in this issue, 474 abstracts of scientific lectures and 469 abstracts of poster presentations. There also is an author affiliations index. (VHE) [de

  7. Nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S M [Bhabha Atomic Research Centre, Bombay (India). Radiation Medicine Centre

    1967-01-01

    The article deals with the growth of nuclear medicine in India. Radiopharmaceuticals both in elemental form and radiolabelled compounds became commercially available in India in 1961. Objectives and educational efforts of the Radiation Medicine Centre setup in Bombay are mentioned. In vivo tests of nuclear medicine such as imaging procedures, dynamic studies, dilution studies, thyroid function studies, renal function studies, linear function studies, blood flow, and absorption studies are reported. Techniques of radioimmunoassay are also mentioned.

  8. The applications of nuclear techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Zhao Huiyang

    1986-01-01

    There are a great deal of advanced techniques in nuclear medicine imaging, because many recent achivements of nuclear techniques have been applied to medicine in recent years. This paper presents the effects of nuclear techniques in development of nuclear medicine imaging. The first part describes radiopharmaceuticals and nuclear medicine imaging including commonly used 99m Tc labeled agents and cyclotron produced radionuclides for organ imaging. The second part describes nuclear medicine instrucments, including PECT, SPECT, MRI ect.; and discussions on the advantages, disadvantages and present status

  9. PACS in nuclear medicine

    International Nuclear Information System (INIS)

    Kang, Keon Wook

    2000-01-01

    PACS (Picture Archiving and Communication System) is being rapidly spread and installed in many hospitals, but most of the system do not include nuclear medicine field. Although additional costs of hardware for nuclear medicine PACS is low, the complexity in developing viewing software and little market have made the nuclear medicine PACS not popular. Most PACS utilize DICOM 3.0 as standard format, but standard format in nuclear medicine has been Interfile. Interfile should be converted into DICOM format if nuclear images are to be stored and visualized in most PACS. Nowadays, many vendors supply the DICOM option in gamma camera and PET. Several hospitals in Korea have already installed nucler PACS with DICOM, but only the screen captured images are supplied. Software for visualizing pseudo-color with color lookup tables and expressing with volume view should be developed to fulfill the demand of referring physicians and nuclear medicine physicians. PACS is going to integrate not only radiologic images but also endoscopic and pathologic images. Web and PC based PACS is now a trend and is much compatible with nuclear medicine PACS. Most important barrier for nuclear medicine PACS that we encounter is not a technical problem, but indifference of investor such as administrator of hospital or PACS. Now it is time to support and invest for the development of nuclear medicine PACS

  10. Radioprotection in nuclear medicine department of 'Porto Alegre Clinical Hospital'

    International Nuclear Information System (INIS)

    Dias, T.M.; Pinto, A.L.; Bacelar, A.L.; Dytz, A.S.; Bernasiuk, M.E.; Baptista, I.S.

    1996-01-01

    The use of ionizing radiation in medicine allows great benefits. Nuclear Medicine uses ionizing radiation for medical diagnostic, such as: tumor, cancer, and dysfunctions location. However the use of ionizing radiation must be controlled in order to avoid likely biological effects in human beings. In order to extremely minimize that these effects appear, the Medical Physics Department of the Porto Alegre Clinical Hospital has implemented some procedures to assure that handling and use of radioactive material are in a safe way. This preoccupation is considered in all the places of nuclear medicine sector since the moment when the radioactive material is brought into including its manipulation and retirement, the exam process being accompanied. (authors). 4 refs

  11. A manual of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Nuclear medicine is a fast growing specialty. The procedures provide quantitative parameters of organ functions required for modern practice of medicine. With the development of new machines and increased application of computer software, the procedures are under continuous change. Some procedures have become outdated or redundant while new methods have been introduced to enhance the quality of information obtained from a particular application. Although there are a few books published abroad to inform doctors and technical staff about the procedures, a comprehensive source to give quick information about how different test are performed, particularly the new developments and the expected outcome both in normal and abnormal cases has been a long felt need. The physician ordering a Nuclear Medicine test also needs to know what patient preparations are required for optimal results, how to satisfy the queries of the patient particularly in respect of radiation exposure which sometimes can be a major concern of the patient. This manual has been prepared not only to describe technical details of various procedures that are currently practiced in Nuclear Medicine, but also to provide quick information for the doctors and health care personnel on how to inform the patients about the investigation for which they are being referred and how to interpret the results. Since there is no such comprehensive book published yet in Asia including South-East Asia, it is likely to be in great demand in the region. All students of Master Degree, M.D., DRM, DMRIT, M.Sc. (Nuclear Medicine) and technologists already working in various diagnostic centers will likely buy this book. General practitioners and specialists who refer patients for different radioisotope investigations may find this book useful for quick reference. (author)

  12. Nuclear medicine solutions in winter sports problems

    International Nuclear Information System (INIS)

    Hoeflin, F.G.

    2002-01-01

    Full text: The diagnostic workup of acute Winter Sports injuries is done by Conventional X Ray, CT and MRI. Chronic injuries as stress reactions are best investigated by Nuclear Medicine procedures: Snow Boarding: In Snow-Boarding chronic injuries are mostly seen as local increased uptake laterally in the lower third of the Fibula of the front leg together with Tibial increase medially in the other leg. Skiing: Chronic Skiing injuries are less asymmetrical and mostly seen on the apex of the patella. Chronic Feet Problems: A different chronic problem is the reduced blood perfusion in the feet if hard, tightened boots are used for longer time by professional ski instructors and racers. Flow difference between the foot in the boot and the other without boot are dramatic as measured by Nuclear Medicine Procedures and MRI. Pulmonary Embolism: Acute pulmonary embolism caused by thrombi originating at the site of constant pressure on the back rim of ski boots is not uncommon in older skiers (seek and you will find), but never seen in the younger group of Snow-Boarders. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  13. Nuclear Medicine in Pediatric Cardiology.

    Science.gov (United States)

    Milanesi, Ornella; Stellin, Giovanni; Zucchetta, Pietro

    2017-03-01

    Accurate cardiovascular imaging is essential for the successful management of patients with congenital heart disease (CHD). Echocardiography and angiography have been for long time the most important imaging modalities in pediatric cardiology, but nuclear medicine has contributed in many situations to the comprehension of physiological consequences of CHD, quantifying pulmonary blood flow symmetry or right-to-left shunting. In recent times, remarkable improvements in imaging equipments, particularly in multidetector computed tomography and magnetic resonance imaging, have led to the progressive integration of high resolution modalities in the clinical workup of children affected by CHD, reducing the role of diagnostic angiography. Technology has seen a parallel evolution in the field of nuclear medicine, with the advent of hybrid machines, as SPECT/CT and PET/CT scanners. Improved detectors, hugely increased computing power, and new reconstruction algorithms allow for a significant reduction of the injected dose, with a parallel relevant decrease in radiation exposure. Nuclear medicine retains its distinctive capability of exploring at the tissue level many functional aspects of CHD in a safe and reproducible way. The lack of invasiveness, the limited need for sedation, the low radiation burden, and the insensitivity to body habitus variations make nuclear medicine an ideal complement of echocardiography. This is particularly true during the follow-up of patients with CHD, whose increasing survival represent a great medical success and a challenge for the health system in the next decades. Metabolic imaging using 18 FDG PET/CT has expanded its role in the management of infection and inflammation in adult patients, particularly in cardiology. The same expansion is observed in pediatric cardiology, with an increasing rate of studies on the use of FDG PET for the evaluation of children with vasculitis, suspected valvular infection or infected prosthetic devices. The

  14. Quality Assessment of Research Articles in Nuclear Medicine Using STARD and QUADAS-2 Tools

    International Nuclear Information System (INIS)

    Roysri, Krisana; Chotipanich, Chanisa; Laopaiboon, Vallop; Khiewyoo, Jiraporn

    2014-01-01

    Diagnostic nuclear medicine is being increasingly employed in clinical practice with the advent of new technologies and radiopharmaceuticals. The report of the prevalence of a certain disease is important for assessing the quality of that article. Therefore, this study was performed to evaluate the quality of published nuclear medicine articles and determine the frequency of reporting the prevalence of studied diseases. We used Standards for Reporting of Diagnostic Accuracy (STARD) and Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklists for evaluating the quality of articles published in five nuclear medicine journals with the highest impact factors in 2012. The articles were retrieved from Scopus database and were selected and assessed independently by two nuclear medicine physicians. Decision concerning equivocal data was made by consensus between the reviewers. The average STARD score was approximately 17 points, and the highest score was 17.19±2.38 obtained by the European Journal of Nuclear Medicine. QUADAS-2 tool showed that all journals had low bias regarding study population. The Journal of Nuclear Medicine had the highest score in terms of index test, reference standard, and time interval. Lack of clarity regarding the index test, reference standard, and time interval was frequently observed in all journals including Clinical Nuclear Medicine, in which 64% of the studies were unclear regarding the index test. Journal of Nuclear Cardiology had the highest number of articles with appropriate reference standard (83.3%), though it had the lowest frequency of reporting disease prevalence (zero reports). All five journals had the same STARD score, while index test, reference standard, and time interval were very unclear according to QUADAS-2 tool. Unfortunately, data were too limited to determine which journal had the lowest risk of bias. In fact, it is the author's responsibility to provide details of research methodology so that the

  15. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  16. Medical imaging. From nuclear medicine to neuro-sciences

    International Nuclear Information System (INIS)

    2003-03-01

    Nuclear medicine and functional imaging were born of the CEA's ambition to promote and develop nuclear applications in the fields of biology and health. Nuclear medicine is based on the use of radioactive isotopes for diagnostic and therapeutic purposes. It could never have developed so rapidly without the progress made in atomic and nuclear physics. One major breakthrough was the discovery of artificial radioelements by Irene and Frederic Joliot in 1934, when a short-lived radioactive isotope was created for the first time ever. Whether natural or synthetic, isotopes possess the same chemical properties as their non-radioactive counterparts. The only difference is that they are unstable and this instability causes disintegration, leading to radiation emission. All we need are suitable detection tools to keep track of them. 'The discovery of artificial radioelements is at the root of the most advanced medical imaging techniques'. The notion of tracer dates back to 1913. Invented by George de Hevesy, it lies at the root of nuclear medicine. By discovering how to produce radioactive isotopes, Irene and Frederic Joliot provided biology researchers with nuclear tools of unrivalled efficiency. Today, nuclear medicine and functional imaging are the only techniques capable of giving us extremely precise information about living organisms in a non-traumatic manner and without upsetting their balance. Positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) are the main imaging techniques used at the CEA in its neuro-imaging research activities. These techniques are now developing rapidly and becoming increasingly important not only in the neuroscience world, but also for innovative therapies and cancer treatment. (authors)

  17. Role of nuclear medicine in ischemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, Kohei; Nishimura, Tsunehiko; Uehara, Toshiisa; Naito, Hiroaki; Omine, Hiromi; Kozuka, Takahiro [National Cardiovascular Center, Suita, Osaka (Japan)

    1982-08-01

    With the progress in gamma camera and computer system, nuclear medicine has been applied for diagnostic tool in ischemic heart disease. There are two devices for cardiac images; (1) Radionuclide angiocardiography (RNA) by in vivo sup(99m)Tc-RBC labeling (2) Myocardial imaging by /sup 201/Tlcl. RNA can evaluate the kinesis of wall motion of left ventricle with gated pool scan and also detect reserve of cardiac function with exercise study. Myocardial imaging at rest can identify myocardial necrosis and the imaging in exercise can detect myocardial ischemia. The elaborateness and reproducibility of cardiac image in nuclear medicine will play the great role to evaluate clinical stage of ischemic heart disease by not only imaging but also functional diagnosis.

  18. Nuclear medicine in Tunisia : current status and prospects

    International Nuclear Information System (INIS)

    Hammami, Hatem

    2013-01-01

    Nuclear medicine is concerned with the utilisation of radioactivity in vivo or in vitro for diagnostic or therapeutic purposes. In Tunisia, there are four public departments of nuclear medicine and seven private clinics. 50% of the population is localized in the north, which justifies the existence of 7 public and private departments of nuclear medicine with nine gamma cameras in this region. In the south, there are 30 pour cent of the population that goes to Sfax and 20 pour cent to Sousse where we count two departments with gamma cameras in public services and one in the private sector. The nuclear medicine services in the public sector have 4 SPECT / CT. Siemens is the leading provider of gamma cameras and occupies 73 pour cent of market share, subsequently ranks SMV (13 pour cent) and (GE and GAEDE) have the same proportion of the market share (7 pour cent). For radio-protected rooms, there is a single center with a single chamber from four public services. On the other hand, there are 2/7 private centers that are equipped with five radio-protected electrically rooms. Concerning the human resources, there are 26 doctors and 24 technicians in the public sector. The private sector has 6 doctors and 12 technicians. In 2012, there has been 22000 examinations (diagnostic and therapeutic procedures) in which 14,600 in nuclear medicine departments of public hospitals. Bone scintigraphy ranks first, with a relative frequency of 40-80 pour cent thereafter ranks renal scintigraphy (10-15 pour cent) and then the thyroid scintigraphy (8-12 pour cent). The waiting period is a major problem, especially in the public sector. Taking as an example, for the therapy of thyroid, injection of 100 mCi of I-131 requires a period of waiting more than six months and waiting more than three months for the bone scan. The second problem for patient with cancer is the distance, there are 11 centers concentrated in 3 coastal cities and none in the inner areas of the country, no regional

  19. Metallic radionuclides: applications in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Weiner, R.E.; Thakur, M.L.

    1995-01-01

    Nuclear Medicine is a medical modality that utilizes radioactivity (radiopharmaceutical) to diagnose and treat disease. Radiopharmaceuticals contain a component which directs the radionuclide to the desire physiological target. For diagnostic applications, these nuclides must emit a γ ray that can penetrate the body and can be detected externally while for therapeutic purposes nuclides are preferred that emit β particles and deliver highly localized tissue damage. 67 Ga citrate is employed to detect chronic occult abscesses, Hodgkin's and non-Hodgkin's lymphomas, lung cancer, hepatoma and melanoma and localizes in these tissues utilizing iron-binding proteins. 201 Thallous chloride, a potassium analogue, used to diagnosis coronary artery disease, is incorporated in muscle tissue via the Na + -K + -ATPase. 111 In labeled autologous white blood cells, used for the diagnosis of acute infections and inflammations, takes advantage of the white cell's role in fighting infections. 111 In is incorporated in other radiopharmaceuticals e.g. polyclonal IgG, OncoScint CR/OV, OctreoScan and Myoscint by coupling diethylenetriaminepentaacetic acid, a chelate, covalently to these molecules. OncoScint CR/OV and Myoscint localize by antigen-antibody interactions while OctreoScan is taken up by malignant cells in a receptor based process. Polyclonal IgG may share some localization characteristics with 67 Ga. 89 Sr, a pure β emitter, is used for palliation of bone pain due to metastatic bone lesions. Bone salts [Ca(PO) 4 ] are increased in these lesions and this radionuclide is taken up similarly to Ca 2+ . 186 Re and 153 Sm bound to polydentate phosphonate chelates are used similarly and follow the phosphate pathway in lesion incorporation. (orig.)

  20. Nuclear medicine board review. Questions and answers for self-assessment. 2. ed.

    International Nuclear Information System (INIS)

    Goldfarb, C.R.; Ongseng, F.; Zuckier, L.S.; Karam, M.; Cooper, J.A.

    2007-01-01

    This book provides thorough preparation for certification examinations by the American Board of Radiology (Nuclear Medicine section and Special Competency), the American Board of Nuclear Medicine, and the America Board of Nuclear Cardiology. More than 1,780 questions test the reader's knowledge of the diagnostic and therapeutic uses of radionuclides, single-photon applications, and positron emission tomography (PET). Features: - A convenient question and answer format, in which questions appear on the left and answers on the right, allowing the reader to rapidly quiz and review. - New chapters addressing the emergence of PET/CT. - Measurements provided in both American standard and SI metric units. Ideal for board exam preparation, this concise text is an up-to-date question and answer review for the most important topics in nuclear medicine. (orig.)

  1. Nuclear medicine for treatment of thyroid diseases. Diagnostic evaluation and imaging of the intrathyroid metabolism

    International Nuclear Information System (INIS)

    Maul, F.D.

    1996-01-01

    The diagnostic interest of nuclear medicine is focussed on the imaging and quantification of intrathyroidal iodine metabolism. Most frequently the various forms of autonomy will be investigated by functional scintigraphy. Cold nodules and the differential diagnosis of Graves disease are further indications. In the case of a sufficient iodine uptake hyperthyroidism can be treated by 1311. Severe hyperthyroidism requires a medical pretreatment before radioiodine therapy. A rigid age limit for radioiodine therapy is not necessary. Pregnancy and the suspicion of malignancy are contraindications of a radioiodine therapy. The after-treatment depends on the nature of the treated hyperthyroidism and the posttreatment result. If a focal autonomy could be eliminated a sufficient amount of iodine should be supplied. To prevent the development of hypothyroidism clinical and thyroid hormon controls, and if necessary a substitution with thyroxin is necessary. (orig.) [de

  2. Nuclear medicine and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso de Lima, J.J. [Dept. de Biofisica e Proc. de Imagem, IBILI - Faculdade de Medicina, Coimbra (Portugal)

    1996-06-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new `allies` of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  3. Nuclear medicine and mathematics

    International Nuclear Information System (INIS)

    Pedroso de Lima, J.J.

    1996-01-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  4. 6th world congress of Nuclear Medicine and Biology, October 23-28, 1994, Sydney, Australia. Abstracts

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The supplement presents 962 abstracts of papers or posters presented at the 6th World Congress of Nuclear Medicine and Biology, held from 23-28 October 1994 in Sydney, Australia. The key subjects of the conference are diagnostic nuclear medicine, with emphasis on scintiscanning, SPET and PET in all fields of medicine. There is an alphabetical author index to facilitate retrieval of individual papers [de

  5. Education in nuclear physics, medical physics and radiation protection in medicine and veterinary medicine

    International Nuclear Information System (INIS)

    Popovic, D.; Djuric, G.; Andric, S.

    2001-01-01

    Education in Nuclear Physics, Medical Physics and Radiation Protection in medicine and veterinary medicine studies on Belgrade University is an integral part of the curriculum, incorporated in different courses of graduate and post-graduate studies. During graduate studies students get basic elements of Nuclear Physics through Physics and/or Biophysics courses in the 1 st year, while basic knowledge in Medical Physics and Radiation Protection is implemented in the courses of Radiology, Physical Therapy, Radiation Hygiene, Diagnostic Radiology and Radiation Therapy in the 4 th or 5 th year. Postgraduate studies offer MSc degree in Radiology, Physical Therapy, while courses in Nuclear Physics, Nuclear Instrumentation, Radiation Protection and Radiology are core or optional. On the Faculty of Veterinary Medicine graduated students may continue their professional education and obtain specialization degree in Radiology, Physical Therapy or Radiation Protection. On the Faculty of Medicine there are specialization degrees in Medical Nuclear Physics. Still, a closer analysis reveals a number of problems both from methodological and cognitive point of view. They are related mostly to graduate students ability to apply their knowledge in practise and with the qualifications of the educators, as those engaged in graduate studies lack basic knowledge in biological and medical sciences, while those engaged in post graduate studies mostly lack basic education in physics. Therefore, a reformed curricula resulting from much closer collaboration among educators, universities and professional societies at the national level should be considered. (author)

  6. [A scintillating specialty. Excerpts from the history of nuclear medicine in Denmark].

    Science.gov (United States)

    Hess, Søren

    2010-01-01

    Nuclear medicine is among the youngest medical specialties but its history spans more than a century. From the earliest discoveries of radioactivity and the establishment of the novel field of nuclear physics at the turn of the twentieth century and via the developments in radiochemistry set in motion by George de Hevesy from his base in Copenhagen to the specialty of today offering a multitude of diagnostic procedures. The present work is not intended to cover the entire history of nuclear medicine exhaustively but focus on pivotal events in the development of the field with special reference to Denmark.

  7. Quality control of radiopharmaceutical dose calibrators in nuclear medicine unit

    International Nuclear Information System (INIS)

    Oliveira, C.F.M.; Lucindo Junior, C.R.; Lopes Filho, F.J.

    2015-01-01

    As part of the program to ensure quality in nuclear medicine unit, in addition to diagnostic procedures, are evaluated activity meters, which is intended to measure the aliquot of radiation of radionuclides and / or radiopharmaceuticals that are administered to patients undergoing diagnostic investigation and / or therapeutic treatment. The good operating condition of dose calibrators is essential to ensure efficiency, safety and reliability of the measurements, once the lack of accuracy in the responses of these equipments can cause significant errors in the activity administered to the patient and may result in poor quality images resulting in the repetition of examis and interference in the successful treatment of the patient. This study aims to, considering the need for constant evaluation of the functioning of the activity meters and the fact that this issue be part the responsibilities of the professional of radiology, perform quality control testing of these instruments in relation to the most recent norm of National Commission of nuclear Energy (CNEN-NN 3:05) in Brazil, that is also in according to the international standards and reference values established during acceptance testing of these instruments in a nuclear medicine service. For this, was made a review of specific literature and the use of barium, cobalt and cesium to the tests in a nuclear medicine service of the state of Pernambuco in Brazil. The obtained results of the specific tests utilized to verify the correct working of the dose calibrators show coherency with the resolutions of the CNEN-NN 3:05 and are also in agreement with the international standards to that the measurement of activities be made with accurate results and thereby contribute to the proper functioning of nuclear medicine service. (authors)

  8. Risks in production and utilisation of labelled compounds for nuclear medicine. 2. Benefits and risks of utilization of 99mTc generator in nuclear medicine

    International Nuclear Information System (INIS)

    Olteanu-Chiper, D.; Barna, C.; Gard, E.; Negoita, N.

    1999-01-01

    The growth of radioisotope applications in nuclear medicine, imposed the reduction of the radiation effects and so, the reduction of associated risk of these applications. The utilization of radioactive isotopes for investigations in nuclear medicine is conditioned by the chemical behaviour and the means of detection of the emitted radiation on one hand, and by the radiation doses received by the patient, on the other hand. In these conditions, the nuclear medicine uses only the radioisotopes which are short half-time and low radiation energy, but high enough to be detected from the exterior of human body, 99m Tc being the most favourable for utilization in diagnostic purpose. This advantage is increased by the multiple possibilities to obtain different chemical forms with 99m Tc included, which permit the production of a large variety of radiopharmaceutical products, having a specific localization in the human body (organ-targets), thus allowing the diagnosis of numerous diseases. In the work the benefits and risks of the 99m Tc-Generator utilization in the nuclear medicine are shown and the utilization technique in these applications is presented . The 99m Tc-Generator is a compact chromatographic system, with lead shielding, which permits the elution of a sterile, pyrogen-free, injectable sodium pertechnetate solution, from an aluminium chromatographic column which keeps the 99 Mo. The 99m Tc-Generator system ensures the operator protection. The radioactive solution with 99m Tc is obtained in a closed vial, within lead shielding, the irradiation or contamination risks being mostly reduced. The utilization of 99m Tc in scintigraphic exam for diagnostic medicine implies a labelling operation with 99m Tc chemically bounded in forms appropriate to the target-organ and than the intravenously injection in doses dependent on the specific scintigraphic investigation or examination. (authors)

  9. Nuclear Medicine week in Colombia

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2003-01-01

    During the week of 6-12 October 2003 the IAEA organized a Research Coordination Meeting on 'Relationship between lower Respiratory Tract Infection, Gastroesophageal reflux and bronchial Asthma in children' at Hospital San Ignacio in Bogota. Besides there were four workshops in Bogota; workshops on Bone infection and Bone scan in Pediatric ortopaedics at Hospital Militar and Fundacion CardioInfantil, a workshop for Nuclear Medicine Technologists and a workshop on Sentinel Lymph Node mapping and Surgical Gamma Probe Application at Institute of Oncology. A nuclear cardiology workshop was organized in Medellin, and finally crowning them all was the 9th Congress of the Colombian Association of Nuclear Medicine at Cali from 10-12 October, 2003; probably the largest and best Colombian nuclear medicine congress every held in the country. A workshop was also organized in Cali for nuclear medicine technologists in conjunction with the Annual Convention. It was a mix of IAEA's Technical Cooperation and Regular Budget activities along with the activities of Colombian Association of Nuclear Medicine, bringing in absolute synergy to galvanize the entire nuclear medicine community of the country. The week saw nuclear medicine scientists from more than 20 IAEA Member States converging on Colombia to spread the message of nuclear medicine, share knowledge and to foster International understanding and friendship among the nuclear medicine people of the world

  10. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  11. Is hybridic positron emission tomography/computerized tomography the only option? The future of nuclear medicine and molecular imaging.

    Science.gov (United States)

    Grammaticos, Philip; Zerva, Cherry; Asteriadis, Ioannis; Trontzos, Christos; Hatziioannou, Kostas

    2007-01-01

    As we all know, Nuclear Medicine is the medical science using nuclear radiation for diagnosis, treatment and research. Nuclear Medicine, in contrast to Radiology, makes use of unsealed sources of radiation. Nuclear Medicine a few years ago has partly offered Nuclear Cardiology, the most lucrative of all Nuclear Medicine "children" at that time, to Cardiology. Radiology, has succeeded in being recognized by the European Union Authorities as Clinical Radiology. The word "clinical" offers greater independence to Clinical Radiology and makes it difficult for such a specialty to relinquish any of its equipment i.e. the diagnostic CT scan or the newly developed fast angiography CT, to other specialties. Contrary to Clinical Radiology, Nuclear Medicine being a laboratory specialty in most countries seems to have no right to deny offering, after some period of "proper certified education", its PET camera to Clinical Radiologists. Nuclear Medicine by virtue of its unique diagnostic techniques and treatments, is and should be recognized as a "Clinical Specialty" The interference of other specialties in the fields of Nuclear Medicine is also indicated by the fact that in vitro techniques of Nuclear Medicine are often used by Endocrinologists and Oncologists in their own laboratories. Also in some hospitals the Director of the Radiology Department acts as the Director of Nuclear Medicine Laboratory. Finally at present, Radiologists wish after "proper certified education", to be on equal terms in charge of the new hybridic equipment, the PET/CT scanner. If that is followed to happen, Nuclear Medicine will be in a difficult position losing at least part of PET and consequently should ask for help from its "Overlords and Protectors" i.e. the National and the European Societies of Nuclear Medicine and the Society of Nuclear Medicine of the United States of America. Radiology as a specialty participating om equal terms with the PET camera will then include the study of: a) "open

  12. Artificial intelligence as a diagnostic adjunct in cardiovascular nuclear imaging

    International Nuclear Information System (INIS)

    Duncan, J.S.

    1988-01-01

    The radiologist and/or nuclear medicine physician is literally bombarded with information from today's diagnostic imaging technologies. As a consequence of this, whereas a decade ago the emphasis in medical image analysis was on improving the extraction of diagnostic information by developing and using more sophisticated imaging modalities, today those working on the development of medical imaging technology are struggling to find ways to handle all gathered information effectively. This chapter gives an introduction to the area of artificial intelligence, with an emphasis on the research ongoing in cardiovascular nuclear imaging. This chapter has reviewed the place of artificial intelligence in cardiovascular nuclear imaging. It is intended to provide a general sense of this new and emerging field, an insight into some of its specific methodologies and applications, and a closer look at the several AI approaches currently being applied in cardiovascular nuclear imaging

  13. Nuclear medicine and radiologic imaging in sports injuries

    Energy Technology Data Exchange (ETDEWEB)

    Glaudermans, Andor W.J.M. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium); Gielen, Jan L.M.A. [Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Radiology; Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Sports Medicine; Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Medicine; Zwerver, Johannes (ed.) [Groningen Univ. (Netherlands). Center for Sports Medicine

    2015-10-01

    This comprehensive book describes in detail how nuclear medicine and radiology can meet the needs of the sports medicine physician by assisting in precise diagnosis, clarification of pathophysiology, imaging of treatment outcome and monitoring of rehabilitation. Individual sections focus on nuclear medicine and radiologic imaging of injuries to the head and face, spine, chest, shoulder, elbow and forearm, wrist and hand, pelvic region, knee, lower leg, ankle and foot. The pathophysiology of sports injuries frequently encountered in different regions of the body is described from the perspective of each specialty, and the potential diagnostic and management benefits offered by the new hybrid imaging modalities - SPECT/CT, PET/CT, and PET/MRI - are explained. In addition, a range of basic and general issues are addressed, including imaging of the injuries characteristic of specific sports. It is hoped that this book will promote interdisciplinary awareness and communication and improve the management of injured recreational or elite athletes.

  14. Nuclear medicine and radiologic imaging in sports injuries

    International Nuclear Information System (INIS)

    Glaudermans, Andor W.J.M.; Gielen, Jan L.M.A.; Antwerp Univ. Hospital, Edegem; Antwerp Univ. Hospital, Edegem; Zwerver, Johannes

    2015-01-01

    This comprehensive book describes in detail how nuclear medicine and radiology can meet the needs of the sports medicine physician by assisting in precise diagnosis, clarification of pathophysiology, imaging of treatment outcome and monitoring of rehabilitation. Individual sections focus on nuclear medicine and radiologic imaging of injuries to the head and face, spine, chest, shoulder, elbow and forearm, wrist and hand, pelvic region, knee, lower leg, ankle and foot. The pathophysiology of sports injuries frequently encountered in different regions of the body is described from the perspective of each specialty, and the potential diagnostic and management benefits offered by the new hybrid imaging modalities - SPECT/CT, PET/CT, and PET/MRI - are explained. In addition, a range of basic and general issues are addressed, including imaging of the injuries characteristic of specific sports. It is hoped that this book will promote interdisciplinary awareness and communication and improve the management of injured recreational or elite athletes.

  15. 3. Congress of the SA Society of nuclear medicine: Technetium-99m technology

    International Nuclear Information System (INIS)

    Beyers, M.

    1988-08-01

    The Atomic Energy Corporation of SA Limited have been engaged in the manufacture of radioisotopes since 1967, shortly after the SAFARI-1 reactor at Pelindaba was commissioned. Since then the use of radioisotopes in South Africa has grown rapidly and at present 95% of the in vivo diagnostic radioisotopes (radiopharmaceuticals) utilized in nuclear medicine are manufactured locally. Because radioisotopes are applied mainly in sophisticated chemically or mechanically processed forms, production requires not only a skilled production team, but also the appropriate facilities for the manufacture of high-quality products which comply with the necessary safety standards. Compliance with such standards is especially important for the routine production of radiopharmaceuticals for use in nuclear medicine. Over the past 20 years technetium-99m has achieved a dominant position among the diagnostic tools in modern nuclear medicine.The scope of nuclear medicine is expanding continuously and its future lies primarily in the development of new organspecific technetium-99m radiodiagnostic agents. Many improvements and changes have been made to Tc-99m generators, the major source of Tc-99m, since they were introduced to nuclear medicine in the late 1950's. The new Peltek-F sterile Tc-99m generator developed by the Isotope Production Centre is a symbol of progress made. In order to commemorate the launching of the new Peltek-F technetium-99m generator during August 1988 it was decided to publish six papers that were presented at the Third Congress of the Society of Nuclear Medicine held at Bloemfontein during the period 15 - 17 August 1988 by members of the Isotope Production Centre. This will serve as a useful reference on various aspects of technetium-99m technology and will stimulate the use of this product as well as new research in this field

  16. Collective dose estimation in Portuguese population due to medical exams of diagnostic radiology and nuclear medicine; Estimativa da dose coletiva na populacao portuguesa devido a exames medicos de radiologia de diagnostico e de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Pedro; Vaz, Pedro [Instituto Tecnologico e Nuclear, Sacavem (Portugal). Instituto Superior Tecnico; Sousa, M. Carmen de [Instituto Portugues de Oncologia de Coimbra (Portugal); Paulo, Graciano; Santos, Joana [Escola Superior de Tecnologia da Saude de Coimbra (Portugal); Pascoal, Ana [Kings College Hospital, London (United Kingdom). Kings Health Partners; Cardoso, Gabriela; Santos, Ana isabel [Hospital Garcia de Orta, Almada (Portugal); Lanca, Isabel [Administracao Regional de Saude, Coimbra (Portugal); Matela, Nuno [Universidade de Lisboa (Portugal). Fac. de Ciencias. Instituto de Biofisica e Engenharia Biomedica; Janeiro, Luis [Escola superior de Saude da Cruz Vermelha Portuguesa, Lisboa (Portugal); Sousa, Patrick [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa (Portugal); Carvoeiras, Pedro; Parafita, Rui [Medical Consult, SA, Lisboa (Portugal); Simaozinho, Paula [Administracao Regional de Saude, Faro (Portugal)

    2013-11-01

    In order to assess the exposure of the Portuguese population to ionizing radiation due to medical examinations of diagnostic radiology and nuclear medicine, a working group, consisting of 40 institutions, public and private, was created to evaluation the coletive dose in the Portuguese population in 2010. This work was conducted in collaboration with the Dose Datamed European consortium, which aims to assess the exposure of the European population to ionizing radiation due to 20 diagnostic radiology examinations most frequent in Europe (the 'TOP 20') and nuclear medicine examinations. We obtained an average value of collective dose of Almost-Equal-To 1 mSv/caput, which puts Portugal in the category of countries medium to high exposure to Europe. We hope that this work can be a starting point to bridge the persistent lack of studies in the areas referred to in Portugal, and to enable the characterization periodic exposure of the Portuguese population to ionizing radiation in the context of medical applications.

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... interventions. Children's (pediatric) nuclear medicine refers to imaging examinations done in babies, young children and teenagers. Nuclear ... nuclear medicine procedure work? With ordinary x-ray examinations, an image is made by passing x-rays ...

  18. Radiological protection of patients in nuclear medicine

    International Nuclear Information System (INIS)

    Harding, L.K.

    2001-01-01

    The key factor in medical exposure is justification, that is ensuring that the benefit exceeds the risk. Nuclear medicine studies are comparable in cost to more sophisticated radiological tests such as ultrasound, computed tomography or magnetic resonance. Radiation doses are similar from X ray and nuclear medicine procedures. Having justified exposures the next step is optimization, namely using a radiation dose as low as is reasonably practicable. Diagnostic reference levels may be set nationally or locally such that the balance of diagnostic quality and radiation burden is optimized. In therapy the aim is to achieve a therapeutic dose while keeping the dose to non-target tissues as low as reasonably practicable. Variations in activities may be required for overweight patients, those in severe pain, those with certain conditions and in the case of tomography. Any woman who has missed a period should be assumed to be pregnant; there should be notices to patients emphasizing this. Following the administration of longer lived pharmaceuticals it is important to avoid pregnancy for a time such that the dose to a foetus will not exceed 1 mGy. A similar situation applies to a child who is being breastfed when a mother receives a radiopharmaceutical. In the case of children undergoing investigations the activity needs to be reduced to maintain the same count density as in adults. With the administration of an incorrect pharmaceutical an attempt should be made to enhance excretion, and the referring doctor and the patient should be informed. Extravasation usually requires no action. Positron emission tomography results in higher doses both to staff and patients. Research should use subjects over the age of 50, and avoid anyone who is pregnant or is a child. Nuclear medicine procedures result in a very small loss in life expectancy compared with other common risks. (author)

  19. Safety assessment of nuclear medicine practice using the Risk Matrix Method

    International Nuclear Information System (INIS)

    Cruz, Dumenigo; Cruz, Yoanis; Soler, Karen; Guerrero, Mayka

    2013-01-01

    This paper presents the main results from the application of the methodology of Risk Matrices in a hypothetical service / department of the Nuclear medicine that realize metabolic radiotherapy treatment and diagnostic studies with 131 I and 99 m Tc and 18 F. We could identify major equipment failures and human errors that could potentially lead to a accident in practice. For each analyzed initiating events evaluated the frequency of occurrence, identified key existing defenses to avoid the accident and assessed the potential consequences of an accident if this comes to fruition. With this methodology we could identify which accident sequences increased risk and to propose means to reduce the risk in such cases. As a result of this work was developed the 'RMA Nuclear Medicine' computer tools that will apply this methodology in nuclear medicine services that need to do similar risk assessments

  20. Nuclear Medicine in Diagnosis of Prosthetic Valve Endocarditis: An Update

    Science.gov (United States)

    Musso, Maria; Petrosillo, Nicola

    2015-01-01

    Over the past decades cardiovascular disease management has been substantially improved by the increasing introduction of medical devices as prosthetic valves. The yearly rate of infective endocarditis (IE) in patient with a prosthetic valve is approximately 3 cases per 1,000 patients. The fatality rate of prosthetic valve endocarditis (PVE) remains stable over the years, in part due to the aging of the population. The diagnostic value of echocardiography in diagnosis is operator-dependent and its sensitivity can decrease in presence of intracardiac devices and valvular prosthesis. The modified Duke criteria are considered the gold standard for diagnosing IE; their sensibility is 80%, but in clinical practice their diagnostic accuracy in PVE is lower, resulting inconclusively in nearly 30% of cases. In the last years, these new imaging modalities have gained an increasing attention because they make it possible to diagnose an IE earlier than the structural alterations occurring. Several studies have been conducted in order to assess the diagnostic accuracy of various nuclear medicine techniques in diagnosis of PVE. We performed a review of the literature to assess the available evidence on the role of nuclear medicine techniques in the diagnosis of PVE. PMID:25695043

  1. Availability of oncological nuclear medicine in the regions of Slovakia

    International Nuclear Information System (INIS)

    Lepej, J.; Kaliska, L.

    2004-01-01

    Full text: Nuclear medicine (NM) imaging technology, alone and in combination with other imaging modalities, provides clinically significant and useful information in the staging and treatment of the oncological diseases. The main objective of our study was to find out and present the situation vis-a-vis nuclear medicine facilities in the Central European country that soon becomes the new member of EU. For the purposes statistical data of WHO, Slovak Republic (SR) and nuclear medicine department (NMD) were evaluated for the period 1995-2001. Comparison with Czech Republic (CR) was done because of almost similar occurrence of the malignant diseases in these two republics that were a one country till separation in 1993. First nuclear medicine department in Czechoslovakia was established about 55 years ago. Comparing to CR the expenditures on health care per capita in SR is only 67% of CR. The number of gamma cameras, physicians and number of investigations are far from good standard of CR. The number NM departments are significantly low and growth of only 29% compared to CR is alarming. The one main reason is inadequate financial support to the health care and high debts of hospitals running nuclear medicine facilities. Providing radiology departments with new CT and MRI scanners is another reason of less nuclear medicine facilities. During the last five years, though the number of gamma cameras increased by 10%, but the number of investigations did not rise accordingly. Because of bad management of health care services in Slovakia, the latest facilities availability is greatly delayed. However, the exception is the installation of a new PET scanner in 2001. Of late, sentinel lymph node detection was started only with the help of IAEA. Data shows that most of the nuclear medicine centers are around the state capital. It is imperative to have sufficient diagnostic and therapeutic facilities in each region so as to make these available to patients living away from the

  2. Metallic radionuclides: Applications in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Werner, R.E.; Thakur, M. L.

    1997-01-01

    Nuclear Medicine is a medical modality that utilizes radioactivity (radiopharmaceutical) to diagnose and treat disease. Radiopharmaceuticals contain a component which directs the radionuclide to the desire physiological target. For diagnostic applications, these nuclides must emit a gamma ray that can penetrate the body and can be detected externally while for therapeutic purposes nuclides are preferred that emit beta particles and deliver highly localized tissue damage. sup 6 sup 7 Ga citrate is employed to detect chronic occult abscesses, Hodgkin's and non-Hodgkin's lymphomas, lung cancer, hepatoma and melanoma and localizes in these tissues utilizing iron-binding proteins. sup 2 sup 0 sup 1 Thallous chloride, a potassium analogue, used to diagnosis coronary artery disease, is incorporated in muscle tissue via the Na sup + -K sup + -ATPase. sup 1 sup 1 sup 1 In labeled autologous white blood cells, used for the diagnosis of acute infections and inflammations, takes advantage of the white cell's role in fighting infections. sup 1 sup 1 sup 1 In is incorporated in other radiopharmaceuticals e.g. polyclonal IgG, OncoScint CR/OV, OctreoScan and Myoscint by coupling diethylenetriaminepentaacetic acid, a chelate, covalently to these molecules. OncoScint CR/OV and Myoscint localize by antigen-antibody interactions while OctreoScan is taken up by malignant cells in a receptor based process. Polyclonal IgG may share some localization characteristics with sup 6 sup 7 Ga. sup 8 sup 9 Sr, a pure beta emitter, is used for palliation of bone pain due to metastatic bone lesions. Bone salts [Ca(PO) sub 4] are increased in these lesions and this radionuclide is taken up similarly to Ca sup 2 sup +. sup 1 sup 8 sup 6 Re and sup 1 sup 5 sup 3 Sm bound to polydentate phosphonate chelates are used similarly and follow the phosphate pathway in lesion incorporation. (author)

  3. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  4. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  5. What is the purpose of emission computed tomography in nuclear medicine

    International Nuclear Information System (INIS)

    Phelps, M.E.

    1977-01-01

    ECT is a mathematical and physical concept, an instrument, a radionuclide tracer technique, a research procedure and it is certainly both an old (Kuhl began his work in the late fifties) and a new concept. It also has great and unique potential as a diagnostic technique. It is interesting that the basic principles of medical CT were exemplified and developed in Nuclear Medicine by Kuhl and coworkers and the concept of ''physiologic or function tomography'' provides a technique to advance the original charter of Nuclear Medicine in the use of radionuclides for the measure of metabolism and physiologic function

  6. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  7. European Association of Nuclear Medicine congress. Abstracts

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    To assess the exact place of nuclear medicine studies in the clinical environment in consensus with clinicians and radiologists will probably be our most important task during the coming year. Our society cannot afford unnecessary duplication of diagnostic tests but neither should our patients suffer from the failure to use procedures which could change the outcome of their illness or avoid unnecessary pain and costs because of ignorance, or even worse, self defence by larger and thus stronger pressure groups. Defeatism is as inappropriate as remaining in the splendid isolation of our professional and scientific organisations. There is no place for excessive humbleness either, most of the unnecessary procedures performed in modern medicine lie within the domain of other specialists. It is our duty to participate as actors in the thorough reappraisal of the medical, social and economic context of our activity in the interst of our field and our patients. By confronting our ideas and knowledge with those of others, by using our inventiveness to transfer important results from research laboratories to clinical practice and vice versa, by concentrating on the essential rather than pursuing all possible directions, we will be able to influence positively the future of nuclear medicine. There is no better way to develop our speciality than by understanding the clinical issues, by being able to communicate with our clinical partners and by performing common studies on the clinical impact, cost-efficiency and cost-benefit of nuclear medicine procedures. (orig./AJ)

  8. Assessment of endocrine disorders of the hypothalamic-pituitary axis by nuclear medicine techniques

    International Nuclear Information System (INIS)

    Schmidt, M.; Theissen, P.; Dietlein, M.; Schicha, H.; Jackenhoevel, F.; Krone, W.

    2002-01-01

    The following article reviews nuclear medicine techniques which can be used for assessment of endocrine disorders of the hypothalamic-pituitary axis. For planar and SPECT imaging somatostatin-receptor- and dopamine-D2-receptor-scintigraphy are the most widely distributed techniques. These nuclear medicine techniques may be indicated in selected cases to answer differential diagnostic problems. They can be helpful to search for presence and localization of receptor positive tissue. Furthermore they can detect metastasis in the rare cases of a pituitary carcinoma. Scintigraphy with Gallium-67 is suitable for further diagnostic evaluation in suspected hypophysitis. Other SPECT radiopharmaca do not have relevant clinical significance. F-18-FDG as PET radiopharmacon is not ideal because obvious pituitary adenomas could not be visualized. Other PET radiopharmaca including C-11-methionine, C-11-tyrosine, F-18-fluoroethylspiperone, C-11-methylspiperone, and C-11-raclopride are available in specialized centers only. Overall indications for nuclear medicine in studies for the assessment of endocrine disorders of the hypothalamic-pituitary-axis are rare. Original studies often report only about a small number of patients. According to the authors' opinion the relevance of nuclear medicine in studies of clinically important endocrinologic fields, e. g. localization of small ACTH-producing pituitary adenomas, tumor localization in ectopic ACTH syndrome, localization of recurrent pituitary tissue, assessment of small incidentalomas, can not be definitely given yet. (orig.) [de

  9. Report on the 31st annual meeting of the Society of Nuclear Medicine (SNM), June 4-8, 1984, Los Angeles, USA

    International Nuclear Information System (INIS)

    Pfannenstiel, P.

    1984-01-01

    As the meeting of the Society of Nuclear Medicine ''SNM '84'' in Los Angeles made clear, the future of nuclear medicine lies in regional functional diagnostics in vivo, and biochemistry will in future play a dominating past in nuclear medicine, the more since all life is based on biochemical process which it is not so far possible to investigate in vivo except by means of nuclear medicine. The hopes for wider PET uses seem unrealistic. But at the PET principle is increasingly being transterred to SPECT - 'not looking for cold spots, but for function' - nuclear medicine will perhaps gain a new independent significance and nuclear medicine is badly in need of a new upswing. To achieve this goal it must emerge from its (self-inflicted) isolation and seek interdisciplinary cooperation again. For other fields can learn from nuclear medicine, and nuclear medicine can learn a lot from other fields. Following quite an impetuous development at the beginning of the 70s, nuclear medicine has now entered its 'period of maturity'. It is characterized by perfect apparatuses and a wide range of differentiated substances for radiodiagnosis offering many new possibilities of examination. The new methods are by no means 'mature' yet. If the position of nuclear medicine as a young diagnostical discipline is to be strengthened it must be repared to jettison methods that have become obsolete or for which alternative processes have been found and break interesting new ground. (orig./MG) [de

  10. Nuclear medicine in the management of the AIDS patient

    International Nuclear Information System (INIS)

    Kramer, E.L.; Sanger, J.J.

    1990-01-01

    For the medical diagnostic imaging specialist in general, and for the nuclear medicine physician specifically, the AIDS epidemic has generated an enormous demand to develop a means of making early diagnoses of the complications of AIDS. For the most part this has meant the early detection, and when possible, the characterization of the opportunistic infections and neoplasms that are a major source of morbidity and mortality for the AIDS patient. Detection of opportunistic infections has been helpful in reclassifying HIV-seropositive patients as having AIDS. This paper reports on nuclear medicine used to evaluate the efficacy and the complications of treatment in human immunodeficiency virus infection. Most recently, functional brain imaging has been used for the diagnosis and follow-up of the AIDS dementia complex

  11. Integration of PACS and HIS info the workflow of a nuclear medicine department. Experience in Regensburg

    International Nuclear Information System (INIS)

    Maenner, P.; Fuchs, E.; Marienhagen, J.; Schoenberger, J.; Eilles, C.; Tege, B.; Reicherzer, H.G.; Kurz, M.; Boerner, W.

    2006-01-01

    Aim: the development of new diagnostic techniques and the implementation of a modern quality control management system requires the continuous adaptation of existing data processing tools to the nuclear medicine diagnostic workflow. Furthermore, PACS connected to HIS facilitates and enhances the transfer of data and pictures, and satisfies the legal requirements for data retention as regulated by law. Therefore, the aim of this work is to present the architecture, structure and results of such a system newly installed in a department of nuclear medicine. Methods: initially, the nuclear medicine workflow was carefully analyzed and each step was correlated to the corresponding module. The standard SAP R/3 and IS-H / IS-H*med based software used for patient administration at the University of Regensburg Hospital was adapted to the needs of the Nuclear Medicine Department. The networking of the imaging systems was done by integration of a PACS. Finally, the PACS was connected to the HIS to allow the attachment of images to the medical report. Results, conclusion: by connecting the HIS to the nuclear medicine PACS, the workflow was significantly improved. The data management sequence starting at the reception desk, continuing through the nuclear medical examination, to the physician's final written and image report is clearly structured. Although high demands exist on technical support and administration the integration of PACS and HIS into the nuclear medicine workflow leads to enhanced efficiency and reduction in hospital costs. Patient and data management are considerably improved in this way. (orig.)

  12. Radiation and Radionuclides in Medicine: A Brief Overview of Nuclear Medicine and Radiotherapy

    International Nuclear Information System (INIS)

    Jawerth, Nicole

    2014-01-01

    In the past two centuries, the field of medicine has seen unprecedented advances. Alongside discoveries like the smallpox vaccine and antibiotics, the discovery of radiation and radionuclides for use in medicine has led to more diverse and effective prevention, diagnostic and treatment options for many health conditions. Diseases like cancer that were once considered unmanageable and fatal can now be diagnosed earlier and treated more effectively using nuclear techniques, giving patients a fighting chance and, for many, a significant chance for a cure. These methods are more important than ever as high-mortality diseases like cancer or cardiovascular diseases are on the rise and are among the leading health threats globally. The IAEA has worked for over 50 years to promote the use of nuclear techniques in medicine by collaborating with its Member States and other organizations through projects, programmes and agreements. The Agency’s aim is to help build Member States’ capacities in this field in order to support the provision of high-quality health care worldwide, particularly in developing countries

  13. Radiation, ionization, and detection in nuclear medicine

    International Nuclear Information System (INIS)

    Gupta, Tapan K.

    2013-01-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  14. Radiation, ionization, and detection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tapan K. [Radiation Monitoring Devices Research, Nuclear Medicine, Watertown, MA (United States)

    2013-08-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  15. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Leme, P.R.

    1983-01-01

    The following topics are discussed: objectives of the quality control in nuclear medicine; the necessity of the quality control in nuclear medicine; guidelines and recommendations. An appendix is given concerning the guidelines for the quality control and instrumentation in nuclear medicine. (M.A.) [pt

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ ... Nuclear medicine scans are typically used to ...

  17. Nuclear Medicine Practice in Kenya

    International Nuclear Information System (INIS)

    Ndirangu, T.D.

    2017-01-01

    Nuclear medicine is a medical specialty that relies on the use of nuclear technology in the diagnosis and treatment (therapy) of diseases. Nuclear medicine uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body, tissue or cell. This uptake is then imaged by the use of detectors mounted in gamma cameras or PET (positron emission tomography) devices.. Unlike other radiation applications for medical use, nuclear medicine uses open (unsealed) sources of radiation. In a country with an estimated population of 48 million in 2017, Kenya has only two (2) nuclear medicine facilities (units). Being a relatively new medical discipline in Kenya, several measures have been taken by the clinical nuclear medicine team to create awareness at various levels

  18. Proceedings of the forty third annual conference of Society of Nuclear Medicine India: empowering modern medicine with molecular nuclear medicine

    International Nuclear Information System (INIS)

    2011-01-01

    Theme of the 43rd Annual Conference of the Society of Nuclear Medicine India is 'empowering modem medicine with molecular nuclear medicine'. Keeping the theme in mind, the scientific committee has arranged an attractive and comprehensive program for both physicians and scientists reflecting the multimodality background of Nuclear Medicine and Metabolic Imaging. During this meeting the present status and future prospects of Nuclear medicine are discussed at length by esteemed faculty in dedicated symposia and interesting featured sessions which are immensely facilitate in educating the participants. Nuclear Medicine has come a long way since the first applications of radioiodine in the diagnosis of thyroid disease. The specialty of nuclear medicine in India is growing very rapidly. Technology continues to push the field in new directions and open new pathways for providing optimal care to patients. It is indeed an exciting time in the world of imaging and in the field of nuclear medicine. Innovative techniques in hardware and software offer advantages for enhanced accuracy. New imaging agents, equipment, and software will provide us with new opportunities to improve current practices and to introduce new technology into the clinical protocols. Papers relevant to INIS are indexed separately

  19. Diagnostic and therapeutic perspectives in nuclear medicine: radiolabelled biomolecules; Perspectivas diagnosticas y terapeuticas en medicina nuclear: biomoleculas radiomarcadas

    Energy Technology Data Exchange (ETDEWEB)

    Ferro F, G. [Gerencia de Aplicaciones Nucleares en la Salud. ININ, 11801 Mexico D.F. (Mexico); Murphy, C.A. de; Pedraza L, M. [Departamento de Medicina Nuclear. Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico D.F. (Mexico); Melendez A, L. [Facultad de Medicina, UAEM, 50000 Toluca, Estado de Mexico (Mexico)

    2003-07-01

    From their beginning, the radiopharmaceuticals chemistry has gone to the study of the molecular chemistry. The radiopharmaceuticals are only in their capacity to detect such specific biochemical places as the receivers and the enzymes. With the recent obtaining of the complete structural sequence of the genome, it doesn't fit doubt of the importance that they have acquired the molecular images for the study from the genetic information to the alterations phenotypic in the chemistry of the human body. So, the future of the diagnostic and therapeutic nuclear medicine, practically is based in the study of protein fragments, peptide structures and chains of DNA radiolabelled for the study of the metabolism In vivo. These investigations represent a substantial change in those paradigms of the pharmaceutical development, when using the own organic capacities as source of medications, instead of considering to the organism like a simple assay tube where molecules act, like they are most of the traditional medications. The investigation of new techniques to design complex stable of Tc-99m, Re-188, Lu-177, Y-90 and Dy-166/Ho-l66 with biomolecules that don't alter the specificity and in general the molecular properties of the same ones. it is a topic of world interest in the environment of the radiopharmaceutical chemistry. In this work some achievements and perspectives are presented on those main diagnostic and therapeutic radiopharmaceuticals of third generation. (Author)

  20. Diagnostic and therapeutic perspectives in nuclear medicine: radiolabelled biomolecules; Perspectivas diagnosticas y terapeuticas en medicina nuclear: biomoleculas radiomarcadas

    Energy Technology Data Exchange (ETDEWEB)

    Ferro F, G [Gerencia de Aplicaciones Nucleares en la Salud. ININ, 11801 Mexico D.F. (Mexico); Murphy, C.A. de; Pedraza L, M [Departamento de Medicina Nuclear. Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico D.F. (Mexico); Melendez A, L [Facultad de Medicina, UAEM, 50000 Toluca, Estado de Mexico (Mexico)

    2003-07-01

    From their beginning, the radiopharmaceuticals chemistry has gone to the study of the molecular chemistry. The radiopharmaceuticals are only in their capacity to detect such specific biochemical places as the receivers and the enzymes. With the recent obtaining of the complete structural sequence of the genome, it doesn't fit doubt of the importance that they have acquired the molecular images for the study from the genetic information to the alterations phenotypic in the chemistry of the human body. So, the future of the diagnostic and therapeutic nuclear medicine, practically is based in the study of protein fragments, peptide structures and chains of DNA radiolabelled for the study of the metabolism In vivo. These investigations represent a substantial change in those paradigms of the pharmaceutical development, when using the own organic capacities as source of medications, instead of considering to the organism like a simple assay tube where molecules act, like they are most of the traditional medications. The investigation of new techniques to design complex stable of Tc-99m, Re-188, Lu-177, Y-90 and Dy-166/Ho-l66 with biomolecules that don't alter the specificity and in general the molecular properties of the same ones. it is a topic of world interest in the environment of the radiopharmaceutical chemistry. In this work some achievements and perspectives are presented on those main diagnostic and therapeutic radiopharmaceuticals of third generation. (Author)

  1. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  2. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine

    International Nuclear Information System (INIS)

    Kelsey, K.T.

    1991-01-01

    The overall goal of our research was to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we studied hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second and third years was on measurements of: (1) chromosome aberrations in patients imaged with thallium-201; (2) mutant frequencies in patients imaged with technetium-99; (3) mutant frequencies in nuclear medicine technicians and physical therapists; and (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The completed work has been published and is described below in more detail

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Children's (Pediatric) Nuclear Medicine? What are some common uses of the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is ...

  4. Scintigraphic examinations during pregnancy and in breast-feeding women: a survey of Belgian nuclear medicine physician's attitudes

    International Nuclear Information System (INIS)

    Tondeur, M.; Ham, H.; Sand, A.

    2003-01-01

    Radiation protection is of major importance in pregnant and breast feeding women. This work was undertaken to assess the practices of Belgian nuclear medicine physicians towards performing diagnostic tests during pregnancy and in breast feeding women. A questionnaire was sent to 201 Belgian nuclear medicine physicians; 82 answers (41 %) were received. 51 % of the responding physicians agree to perform lung perfusion scan during pregnancy provided a reduced dose is administered, 33% refuse to perform it during first three months and 24% refuse to perform it for pregnancies older than three months. For the Tc-99m ventilation scan 79% and 66% refuse to perform it before and after first three months. Better agreement was observed for other Tc-99m scintigraphies or tests using other radionuclides. In breast feeding women 89% agree to perform Tc-99m tests provided a breast feeding break; however, the duration of this break appears variable. The need for obtaining a written informed consent appears controversial. Given the variability of the attitudes of nuclear medicine physicians, official guidelines for nuclear medicine diagnostic tests during pregnancy is needed. (authors)

  5. Estimate of the Effective Dose Equivalent to the Cypriot Population due to Diagnostic Nuclear Medicine Procedures in the Public Sector

    Energy Technology Data Exchange (ETDEWEB)

    Christofides, S [Medical Physics Department, Nicosia General Hospital (Cyprus)

    1994-12-31

    The Effective Dose Equivalent (EDE) to the Cypriot population due to Diagnostic Nuclear Medicine procedures has been estimated from data published by the Government of Cyprus, in its Health and Hospital Statistics Series for the years 1990, 1991, and 1992. The average EDE per patient was estimated to be 3,09, 3,75 and 4,01 microSievert for 1990, 1991 and 1992 respectively, while the per caput EDE was estimated to be 11,75, 15,16 and 17,09 microSieverts for 1990, 1991 and 1992 respectively, from the procedures in the public sector. (author). 11 refs, 4 tabs.

  6. Estimate of the Effective Dose Equivalent to the Cypriot Population due to Diagnostic Nuclear Medicine Procedures in the Public Sector

    International Nuclear Information System (INIS)

    Christofides, S.

    1994-01-01

    The Effective Dose Equivalent (EDE) to the Cypriot population due to Diagnostic Nuclear Medicine procedures has been estimated from data published by the Government of Cyprus, in its Health and Hospital Statistics Series for the years 1990, 1991, and 1992. The average EDE per patient was estimated to be 3,09, 3,75 and 4,01 microSievert for 1990, 1991 and 1992 respectively, while the per caput EDE was estimated to be 11,75, 15,16 and 17,09 microSieverts for 1990, 1991 and 1992 respectively, from the procedures in the public sector. (author)

  7. Future possibilities in pulmonary nuclear medicine

    International Nuclear Information System (INIS)

    Atkins, H.L.

    1984-01-01

    A number of recent developments in the field of nuclear medicine are of significance for future progress in the diagnosis of lung diseases. These developments have occurred in instrumentation and radiopharmaceuticals and have not necessarily been directed toward pulmonary problems. Nevertheless, they may improve the ability to diagnose pulmonary embolism and to recognize pulmonary dysfunction other than that involving ventilation and perfusion. Along with new instrumentation and tracers, one will almost certainly see continued refinement of present techniques and diagnostic criteria which will lead to improved accuracy in interpretation of standard studies

  8. Evolution of modern nuclear medicine tumor-imaging diagnostics in clinical oncology

    International Nuclear Information System (INIS)

    Piperkova, E.

    2000-01-01

    The evolution of current nuclear medicine diagnostic is closely related to the technical progress in imaging equipment development, and application of radiopharmaceuticals (Rphs) with a different tumor-uptake mechanism. It is the aim of the study to present groups of tumor-imaging Rphs differing by tumor uptake mechanisms, used in clinical oncology. The obtained results are described, and compared with the ones reported by other researchers. Sensitivity and specificity of Rphs for cardio-scintigraphy with 99m Tc - MIBI and 201 Tl are relatively high, amounting to 93.7% and 60% respectively, in the various tumors. These indicators depend on the stage, location, histopathology, level of malignancy and biological activity of the neoplasm. 99m Tc - MIBI scintigraphy is endowed with considerable diagnostic potential for assaying multiple drug resistance (MDR), and is also a good criterion for its elimination following anti-MDR therapy. The obtained results show that radioimmunoscintigraphy (RIS) using different radiolabeled monoclonal antibodies (MoAb) have high sensitivity and specificity respectively: 86% and 80% in ovarian carcinoma with B72.3 antiTAG; 68.6% and 92.5% in colorectal carcinoma with B73.2 antiTAG, antiCEA, antiCA 19-9; 92% and 83% in breast cancer with antiCEA, 86.8% and 67-69% in malignant melanoma with 225.28s. Receptor scintigraphy may reach up to 86% sensitivity and 100% specificity in tumors saturated with somatostatin receptors. Positron emission tomography (PET) with 18F-FDG enhances the metabolic activity of tumor cells, and attains tumor-detecting rate amounting to 97%. Tumor imaging evolution characterized by the introduction and practical implementation of different Rphs, visualizing the functional and biochemical activity of tumor cells in the primary neoplasm, sentinel lymph nodes and distant metastases. radiolabelling of a variety of new biochemical substances, including DNA and RNA, drugs and lysosomes contributes to a successful imaging

  9. White paper of nuclear medicine

    International Nuclear Information System (INIS)

    2012-10-01

    This document aims at proposing a synthetic presentation of nuclear medicine in France (definition, strengths and weaknesses, key figures about practices and the profession, stakes for years to come), a description of the corresponding education (speciality definition, abilities and responsibilities, diploma content, proposition by the European Society of Radiology and by the CNIPI, demography of the profession), and an overview of characteristics of nuclear medicine (radio-pharmacy, medical physics, paramedical personnel in nuclear medicine, hybrid imagery, therapy, relationships with industries of nuclear medicine, relationships with health authorities)

  10. Study of nuclear medicine practices in Portugal from an internal dosimetry perspective

    International Nuclear Information System (INIS)

    Bento, J.; Teles, P.; Neves, M.; Santos, A. I.; Cardoso, G.; Barreto, A.; Alves, F.; Guerreiro, C.; Rodrigues, A.; Santos, J. A. M.; Capelo, C.; Parafita, R.; Martins, B.

    2012-01-01

    Nuclear medicine practices involve the handling of a wide range of pharmaceuticals labelled with different radionuclides, for diagnostic and therapeutic purposes. This work intends to evaluate the potential risks of internal contamination of nuclear medicine staff in several Portuguese nuclear medicine services and to conclude about the requirement of a routine internal monitoring. A methodology proposed by the International Atomic Energy Agency (IAEA), providing a set of criteria to determine the need, or not, for an internal monitoring programme, was applied. The evaluation of the risk of internal contaminations in a given set of working conditions is based on the type and amount of radionuclides being handled, as well as the safety conditions with which they are manipulated. The application of the IAEA criteria showed that 73.1 % of all the workers included in this study should be integrated in a routine monitoring programme for internal contaminations; more specifically, 100 % of workers performing radioimmunoassay techniques should be monitored. This study suggests that a routine monitoring programme for internal exposures should be implemented in Portugal for most nuclear medicine workers. (authors)

  11. Radiation exposure and dosimetry in transplant patients due to Nuclear Medicine studies

    International Nuclear Information System (INIS)

    El-Maghraby, T. A. F.; Cairo Univ., Cairo; Camps, J. A. J.; Geleyns, J.; Pauwels, E. K. J.

    2000-01-01

    Organ transplantation is now an accepted method of therapy for treating patients with end stage failure of kidneys, liver, heart or lung. Nuclear Medicine may provide functional data and semi-quantitative parameters. However, one serious factor that hampers the use of nuclear medicine procedures in transplant patients is the general clinical concern about radiation exposure to the patient. This lead the researcher to discuss the effective doses and radiation dosimetry associated with radionuclide procedures used in the management and follow-up of transplant patients. A simple way to place the risk associated with Nuclear Medicine studies in an appropriate context is to compare the dose with that received from more familiar source of exposure such as from a diagnostic X-ray procedure. The radiation dose for the different radiopharmaceuticals used to study transplant organ function ranges between 0.1 and 5.3 mSv which is comparable to X-ray procedures with the exception of 201 Tl and 111 In-antimyosin. Thus Nuclear Medicine studies do not bear a higher radiation risk than the often used X-ray studies in transplant patients

  12. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, F.X.

    2007-01-01

    A number of organisations are involved in the field of nuclear medicine education. These include International Atomic Energy Agency (IAEA), World Federation of Nuclear Medicine and Biology (WFNMB), Asia-Oceania Federation of Nuclear Medicine and Biology (AOFNMB), Society of Nuclear Medicine (SNM in USA), European Association of Nuclear Medicine (EANM). Some Universities also have M.Sc courses in Nuclear Medicine. In the Asian Region, an Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was formed in 2000, initiated by China, Japan and Korea, with the main aim of fostering the spread of Nuclear Medicine in Asia. The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. The Aims of ASNM are: to foster Education in Nuclear Medicine among the Asian countries, particularly the less developed regions; to promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies; to assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes; and to work towards awarding of diplomas or degrees in association with recognised universities by distance learning and practical attachments, with examinations. There are 10 to 12 teaching faculty members from each country comprising of physicists, radio pharmacists as well as nuclear medicine physicians. From this list of potential teaching experts, the Vice-Deans and Dean of ASNM would then decide on the 2 appropriate teaching faculty member for a given assignment or a course in a specific country. The educational scheme could be in conjunction with the ARCCNM or with the local participating countries and their nuclear medicine organisations, or it could be a one-off training course in a given country. This teaching faculty is purely voluntary with no major expenses paid by the ASNM; a token contribution could be

  13. Procedures, activities and doses in nuclear medicine cycle in Brazil; Procedimentos, atividades e doses no ciclo da medicina nuclear no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Silvia Maria Velasques de

    2005-07-01

    With the aim of characterizing nuclear medicine procedures performed in Brazil, activities of radiopharmaceuticals used and effective doses to patients, data was collected from nuclear medicine institutions in three regions of the country, namely the Southeast, the Northeast and the South regions, representing public hospitals, university hospitals, private and philanthropic institutions with low, medium and high levels of consumption of radiopharmaceuticals. The three chosen regions are responsible for 92% of radiopharmaceutical consumption and imaging equipment in the country. Accordingly, it was requested of some participating institutions to fulfill manually from individual patients data, to record gender, age, weight, height and activities used, for each type of exam as well as the equipment used. In others, the researcher collected data personally. Per institution, nuclear medicine diagnostic procedures ranged from 700 to 13,000 per year, most of which are myocardial and bone imaging procedures, and imaging equipment ranged, from 1 to 8 machines, one or two head SPECT's (hybrid or not). 26.782 patients protocols were analysed, 24.371 adults and 2.411 children and teenagers. For adult patients, differences were observed in the amount of activities used in diagnostic procedures between public and private institutions, with lower average activities used in public institutions. Activities administered to children and their effective doses were difficult to evaluate due to the incompleteness of individual records. Appropriate individual patient records could be adopted without affecting hospitals routine and contributing for a comprehensive evaluation of the radiation protection of nuclear medicine patients. Data from 8.881 workers were analysed, 346 working at nuclear medicine institutions. For monitored workers and measurably exposed workers in nuclear medicine, the values 2.3 mSv and 5.4 mSv, respectively, for effective annual doses are greater than data

  14. Abstracts of the 1st croatian international congress of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Main scientific topics of the Congress were: diagnostic and therapeutical procedures in nuclear medicine, thyroid gland - diagnosis and therapy, instrumentation and imaging in nuclear medicine, radiopharmaceuticals, and radiation protection and radiobiology. The papers (52 oral presentations, 25 posters, 13 invited lectures, 22 technologist papers) were presented and discussed through ten sessions: (1) cardiology, (2) Tumour receptors, (3) Thyroid I, (4) Thyroid II, (5) Nephrology and bone (6) Radiation protection (7) Oncology and brain, (8) Posters I, (9) Physics and chemistry, and (10) Posters II. The authors of the papers were mainly from Croatia, but also from Slovenia, Austria, Germany, UK, France, USA, Bulgaria and some other countries.

  15. Abstracts of the 1st croatian international congress of nuclear medicine

    International Nuclear Information System (INIS)

    1994-10-01

    Main scientific topics of the Congress were: diagnostic and therapeutical procedures in nuclear medicine, thyroid gland - diagnosis and therapy, instrumentation and imaging in nuclear medicine, radiopharmaceuticals, and radiation protection and radiobiology. The papers (52 oral presentations, 25 posters, 13 invited lectures, 22 technologist papers) were presented and discussed through ten sessions: 1) cardiology, 2) Tumour receptors, 3) Thyroid I, 4) Thyroid II, 5) Nephrology and bone 6) Radiation protection 7) Oncology and brain, 8) Posters I, 9) Physics and chemistry, and 10) Posters II. The authors of the papers were mainly from Croatia, but also from Slovenia, Austria, Germany, UK, France, USA, Bulgaria and some other countries

  16. Unintentional exposure to radiation during pregnancy from nuclear medical diagnostic procedures

    International Nuclear Information System (INIS)

    Moka, D.

    2005-01-01

    The administration of radiopharmaceuticals during pregnancy is contraindicated due to a lack of vital indications. However, if prenatal exposure to radiation should occur in the framework of a nuclear medical diagnostic procedure then fortunately no longterm side-effects would normally be expected. Radiation damage in the preimplantation phase leads to early abortion. However, if the further course of pregnancy remains uncomplicated then no subsequent side-effects need be expected. On a conservative estimate, it would require doses exceeding 50 mGy to cause radiation damage within the uterus after the preimplantation phase. However, the standard radioactivities applied for diagnostic purposes in nuclear medicine, can be obtained with doses of less than 20 mGy. On the basis of current knowledge, therefore, there is no reason to terminate pregnancy on medical grounds after diagnostic exposure to radiopharmaceuticals. (orig.)

  17. Nuclear medicine in the management of the aids patient

    International Nuclear Information System (INIS)

    Kramer, E.L.; Sanger, J.J.

    1995-01-01

    For the medical diagnostic imaging specialist in general, and for the nuclear medicine physician specifically, the AIDS epidemic has generated an enormous demand to develop a means of making early diagnoses of the complications of AIDS. For the most part this has meant the early detection, and when possible, the characterization of the opportunistic infections and neoplasms that are a major source of morbidity and mortality for the AIDS patient. Detection of opportunistic infections has been helpful in reclassifying HIV-seropositive patients as having AIDS. This paper reports on nuclear medicine used to evaluate the efficacy and the complications of treatment in human immunodeficiency virus infection. Most recently, functional brain imaging has been used for the diagnosis and follow-up of the AIDS dementia complex. (author). 77 refs., 8 figs

  18. TH-AB-206-00: Challenges and Opportunities for Nuclear Medicine Theranostics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describes preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.

  19. TH-AB-206-00: Challenges and Opportunities for Nuclear Medicine Theranostics

    International Nuclear Information System (INIS)

    2016-01-01

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describes preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.

  20. The medical physicist in a nuclear medicine department

    International Nuclear Information System (INIS)

    Trujillo Z, F.E.; Gomez A, E.

    2007-01-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  1. Digital Nuclear Medicine

    International Nuclear Information System (INIS)

    Erickson, J.J.; Rollo, F.D.

    1982-01-01

    This book is meant ''to provide the most comprehensive presentation of the technical as well as clincial aspects of computerized nuclear medicine''. It covers basic applications, and advice on acquisition and quality control of nuclear medicine computer systems. The book evolved from a series of lectures given by the contributors during the computer preceptorship program at their institution, Vanderbilt University in Nashville

  2. WE-D-213-00: Preparing for the ABR Diagnostic and Nuclear Medicine Physics Exams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics

  3. WE-D-213-00: Preparing for the ABR Diagnostic and Nuclear Medicine Physics Exams

    International Nuclear Information System (INIS)

    2015-01-01

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. In many centers, nuclear medicine images can ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... child is taking as well as vitamins and herbal supplements and if he or she has any ... What are the limitations of Children's (Pediatric) Nuclear Medicine? Nuclear medicine procedures can be time consuming. It ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging ... at birth) or that develop during childhood. Physicians use nuclear medicine imaging to evaluate organ systems, including ...

  7. Handbooks in radiology: Nuclear medicine

    International Nuclear Information System (INIS)

    Datz, F.L.

    1988-01-01

    This series of handbooks covers the basic facts, major concepts and highlights in seven radiological subspecialties. ''Nuclear Medicine'' is a review of the principles, procedures and clinical applications that every radiology resident and practicing general radiologist should know about nuclear medicine. Presented in an outline format it covers all of the organ systems that are imaged by nuclear medicine

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Tell your doctor about your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  10. Nuclear analytical techniques in medicine

    International Nuclear Information System (INIS)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future

  11. Nuclear analytical techniques in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.

  12. Nuclear Medicine Annual, 1989

    International Nuclear Information System (INIS)

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  14. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Comar, C.L.; Wentworth, R.A.

    1974-01-01

    A brief review is presented of the expanding horizons of nuclear medicine, the equipment necessary for a nuclear medicine laboratory is listed, and the value of this relatively new field to the veterinary clinician is indicated. Although clinical applications to veterinary medicine have not kept pace with those of human medicine, many advances have been made, particularly in the use of in vitro techniques. Areas for expanded applications should include competitive protein binding and other in vitro procedures, particularly in connection with metabolic profile studies. Indicated also is more intensive application by the veterinarian of imaging procedures, which have been found to be of such great value to the physician. (U.S.)

  15. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Corstens, F.

    1989-01-01

    Aspects of radiation protection in nuclear medicine and the role of the Dutch Society for Nuclear Medicine in these are discussed. With an effective dose-equivalence of averaged 3 mSv per year per nuclear medical examination and about 200.000 examinations per year in the Netherlands, nuclear medicine contributes only to a small degree to the total averaged radiation dose by medical treating. Nevertheless from the beginning, besides to protection of environment and personnel, much attention has been spent by nuclear physicians to dose reduction with patients. Replacing of relatively long living radionuclides like 131 I by short living radionuclides like 99m Tc is an example. In her education and acknowledgement policy the Dutch Society for Nuclear Medicine spends much attention to aspects of radiation reduction. (author). 3 tabs

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear medicine imaging to ...

  17. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  18. Evaluations of Molecular Nuclear Medicine in pediatric urgencies

    International Nuclear Information System (INIS)

    Martinez-Duncker R, C.

    2000-01-01

    Several diagnostic procedures of Molecular Nuclear Medicine are considered in first choice in clinical evaluation of patients with different illnesses. So, the gammagraphy is the diagnostic form more sensitive to detect alterations of the perfusion on organs and systems such as bones, heart, brain, lungs or kidneys. Also is possible to identify, localize, evaluate the activity of inflammatory processes such as cellulitis, arthritis, osteomyelitis, the abscesses and several primary or metastatic tumours before each other diagnostic technique. In this work is treated about the importance of treatments with radioactive materials have been an important reappearance in last years since with the present capacity to localize specifically intracellular processes (for example, synthesis of DNA) new gateways are opened to research which in coming years would be of great utility. (Author)

  19. Radiation protection in nuclear medicine; Strahlenschutz in der Nuklearmedizin

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, Michael [Universitaetsklinikum Wuerzburg (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2017-07-01

    Nuclear medicine operates with open radioactive substances in diagnostics and therapeutics. Diagnostic methods (as scintiscanning, SPECT, PET/CT) use so called radioactive tracer isotopes, their chemical exchange with stable isotopes is bound to metabolic processes. Beta or alpha emitting substances are used for therapeutic purposes. The 3D activity distribution is calculated using libraries and weighting factors recommended by ICRP based on phantom measurements. The contribution summarizes possible exposures of the medical personnel and radiation hygienic measures for personnel and patients' relatives. Further issues are the recommended threshold value measurements and the radioactive waste disposal.

  20. Nuclear medicine in emergency

    International Nuclear Information System (INIS)

    Mansi, L.; Rambaldi, P.F.; Cuccurullo, V.; Varetto, T.

    2005-01-01

    The role of a procedure depends not only on its own capabilities but also on a cost/effective comparison with alternative technique giving similar information. Starting from the definition of emergency as a sudden unexpected occurrence demanding immediate action, the role of nuclear medicine (NM) is difficult to identify if it is not possible to respond 24h a day, 365 days a year, to clinical demands. To justify a 24 h NM service it is necessary to reaffirm the role in diagnosis of pulmonary embolism in the spiral CT era, to spread knowledge of the capabilities of nuclear cardiology in reliability diagnosis myocardial infraction (better defining admission and discharge to/from the emergency department), to increase the number of indications. Radionuclide technique could be used as first line, alternative, complementary procedures in a diagnostic tree taking into account not only the diagnosis but also the connections with prognosis and therapy in evaluating cerebral pathologies, acute inflammation/infection, transplants, bleeding, trauma, skeletal, hepatobiliary, renal and endocrine emergencies, acute scrotal pain

  1. Training in nuclear medicine: Based on the recommendations of IAEA/WHO Seminar, 8-12 August 1988, Vienna, Austria

    International Nuclear Information System (INIS)

    1992-01-01

    Nuclear Medicine is defined as a clinical specialty that utilizes the radionuclides for diagnosis, therapy and medical research. The radionuclides are used as unsealed sources of radioactivity. The diagnostic applications include both in vivo and in vitro uses of radioisotopes. There is hardly any medical research which does not use radioactive compounds. Only clinical research is considered within the purview of nuclear medicine. The Recommendations of IAEA/WHO seminar reviewed the needs of training in nuclear medicine mainly for the physicians with special emphasis on the needs of the developing countries

  2. Training in nuclear medicine: Based on the recommendations of IAEA/WHO Seminar, 8-12 August 1988, Vienna, Austria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Nuclear Medicine is defined as a clinical specialty that utilizes the radionuclides for diagnosis, therapy and medical research. The radionuclides are used as unsealed sources of radioactivity. The diagnostic applications include both in vivo and in vitro uses of radioisotopes. There is hardly any medical research which does not use radioactive compounds. Only clinical research is considered within the purview of nuclear medicine. The Recommendations of IAEA/WHO seminar reviewed the needs of training in nuclear medicine mainly for the physicians with special emphasis on the needs of the developing countries

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... resume his/her normal activities after the nuclear medicine scan. If the child has been sedated, you will receive specific instructions ... usually mild. Nevertheless, you should inform the nuclear medicine personnel of any allergies your child may have or other problems that may have ...

  4. Eigenimage filtering of nuclear medicine image sequences

    International Nuclear Information System (INIS)

    Windham, J.P.; Froelich, J.W.; Abd-Allah, M.

    1985-01-01

    In many nuclear medicine imaging sequences the localization of radioactivity in organs other than the target organ interferes with imaging of the desired anatomical structure or physiological process. A filtering technique has been developed which suppresses the interfering process while enhancing the desired process. This technique requires the identification of temporal sequential signatures for both the interfering and desired processes. These signatures are placed in the form of signature vectors. Signature matrices, M/sub D/ and M/sub U/, are formed by taking the outer product expansion of the temporal signature vectors for the desired and interfering processes respectively. By using the transformation from the simultaneous diagonalization of these two signature matrices a weighting vector is obtained. The technique is shown to maximize the projection of the desired process while minimizing the interfering process based upon an extension of Rayleigh's Principle. The technique is demonstrated for first pass renal and cardiac flow studies. This filter offers a potential for simplifying and extending the accuracy of diagnostic nuclear medicine procedures

  5. Lifetime attributable risk as an alternative to effective dose to describe the risk of cancer for patients in diagnostic and therapeutic nuclear medicine

    Science.gov (United States)

    Andersson, Martin; Eckerman, Keith; Mattsson, Sören

    2017-12-01

    The aim of this study is to implement lifetime attributable risk (LAR) predictions of cancer for patients of various age and gender, undergoing diagnostic investigations or treatments in nuclear medicine and to compare the outcome with a population risk estimate using effective dose and the International Commission on Radiological Protection risk coefficients. The radiation induced risk of cancer occurrence (incidence) or death from four nuclear medicine procedures are estimated for both male and female between 0 and 120 years. Estimations of cancer risk are performed using recommended administered activities for two diagnostic (18F-FDG and 99mTc-phosphonate complex) and two therapeutic (131I-iodide and 223Ra-dichloride) radiopharmaceuticals to illustrate the use of cancer risk estimations in nuclear medicine. For 18F-FDG, the cancer incidence for a male of 5, 25, 50 and 75 years at exposure is 0.0021, 0.0010, 0.0008 and 0.0003, respectively. For 99mTc phosphonates complex the corresponding values are 0.000 59, 0.000 34, 0.000 27 and 0.000 13, respectively. For an 131I-iodide treatment with 3.7 GBq and 1% uptake 24 h after administration, the cancer incidence for a male of 25, 50 and 75 years at exposure is 0.041, 0.029 and 0.012, respectively. For 223Ra-dichloride with an administration of 21.9 MBq the cancer incidence for a male of 25, 50 and 75 years is 0.31, 0.21 and 0.09, respectively. The LAR estimations are more suitable in health care situations involving individual patients or specific groups of patients than the health detriment based on effective dose, which represents a population average. The detriment consideration in effective dose adjusts the cancer incidence for suffering of non-lethal cancers while LAR predicts morbidity (incidence) or mortality (cancer). The advantages of these LARs are that they are gender and age specific, allowing risk estimations for specific patients or subgroups thus better representing individuals in health care

  6. Radionuclides for nuclear medicine: a nuclear physicists' view

    Czech Academy of Sciences Publication Activity Database

    Cantone, M.; Haddad, F.; Harissopoulos, S.; Jensen, M.; Jokinen, A.; Koster, U.; Lebeda, Ondřej; Ponsard, B.; Ratzinger, U.; Stora, T.; Tarkanyi, F.; Van Duppen, P.

    2013-01-01

    Roč. 40, 2 Supplement (2013), S257-S257 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] Institutional support: RVO:61389005 Keywords : nuclear physics for medicine * EANM * medical radionuclides Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  7. Comprehensive Auditing in Nuclear Medicine Through the International Atomic Energy Agency Quality Management Audits in Nuclear Medicine (QUANUM) Program. Part 1: the QUANUM Program and Methodology.

    Science.gov (United States)

    Dondi, Maurizio; Torres, Leonel; Marengo, Mario; Massardo, Teresa; Mishani, Eyal; Van Zyl Ellmann, Annare; Solanki, Kishor; Bischof Delaloye, Angelika; Lobato, Enrique Estrada; Miller, Rodolfo Nunez; Paez, Diana; Pascual, Thomas

    2017-11-01

    An effective management system that integrates quality management is essential for a modern nuclear medicine practice. The Nuclear Medicine and Diagnostic Imaging Section of the International Atomic Energy Agency (IAEA) has the mission of supporting nuclear medicine practice in low- and middle-income countries and of helping them introduce it in their health-care system, when not yet present. The experience gathered over several years has shown diversified levels of development and varying degrees of quality of practice, among others because of limited professional networking and limited or no opportunities for exchange of experiences. Those findings triggered the development of a program named Quality Management Audits in Nuclear Medicine (QUANUM), aimed at improving the standards of NM practice in low- and middle-income countries to internationally accepted standards through the introduction of a culture of quality management and systematic auditing programs. QUANUM takes into account the diversity of nuclear medicine services around the world and multidisciplinary contributions to the practice. Those contributions include clinical, technical, radiopharmaceutical, and medical physics procedures. Aspects of radiation safety and patient protection are also integral to the process. Such an approach ensures consistency in providing safe services of superior quality to patients. The level of conformance is assessed using standards based on publications of the IAEA and the International Commission on Radiological Protection, and guidelines from scientific societies such as Society of Nuclear Medicine and Molecular Imaging (SNMMI) and European Association of Nuclear Medicine (EANM). Following QUANUM guidelines and by means of a specific assessment tool developed by the IAEA, auditors, both internal and external, will be able to evaluate the level of conformance. Nonconformances will then be prioritized and recommendations will be provided during an exit briefing. The

  8. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  9. Developments in nuclear medicine

    International Nuclear Information System (INIS)

    Elias, H.

    1977-01-01

    The article reports on the first international meeting about radiopharmaceutical chemistry in the Brookhaven National Laboratory, Long Island/USA, from 21st to 24th September, 1976. The meeting report is preceded by the explanation of the terms 'radiopharmaceutical chemistry' and 'nuclear medicine' and a brief survey of the history. The interdisciplinary connection of the spheres of nuclear physics, nuclear chemistry, biochemistry, nuclear medicine, and data processing is also briefly shown. This is necessary before radiodiagnosis can be made for a patient. (RB) [de

  10. Nuclear medicine in developing nations

    International Nuclear Information System (INIS)

    Nofal, M.M.

    1985-01-01

    Agency activities in nuclear medicine are directed towards effectively applying techniques to the diagnosis and management of patients attending nuclear medicine units in about 60 developing countries. A corollary purpose is to use these techniques in investigations related to control of parasitic diseases distinctive to some of these countries. Through such efforts, the aim is to improve health standards through better diagnosis, and to achieve a better understanding of disease processes as well as their prevention and management. Among general trends observed for the region: Clinical nuclear medicine; Radiopharmaceuticals; Monoclonal antibodies; Radioimmunoassay (RIA); Nuclear imaging

  11. Nuclear medicine technology for diagnosisof neuroendocrine tumors

    Directory of Open Access Journals (Sweden)

    D. V. Ryzhkova

    2013-01-01

    Full Text Available This article is the review of issues of the literature for the past 10 years and is dedicated to the analysis of the radiopharmaceuticals and efficacy of the novel nuclear medicine technologies for the diagnosis, staging and prognosis of neuroendocrine tumors. Diagnostic efficacy of a scintigraphy and a positron emission tomography for detection of gastroenteropancreatic and lung carcinoid, medullary thyroid cancer, pheochromocytoma and haraganglioma and choice of radiopharmaceuticals were demonstrated by the results of the clinical studies. The causes of false positive and falce negative results were specified.

  12. Nuclear medicine diagnostic experience for 25 patients with parathyroid disease accompanied elevated serum PTH level

    International Nuclear Information System (INIS)

    Su Li; Huang Chenggang; Niu Wenqiang; Wu Liwen

    2010-01-01

    Objective: To explore nuclear medicine diagnostic method for parathyroid disease accompanied elevated serum parathyroid hormone (PTH) level. Methods: The images of 25 patients with parathyroid disease were obtained by SPECT 99 Tc m -MIBI double-phase parathyroid imaging and 99 Tc m -methylene diphosphonate ( 99 Tc m -MDP) whole-body static bone imaging. All subject were measured serum PTH, calcium, phosphorus and alkaline phosphatase. Results: (1) Serum PTH level increased to varying degrees in patients with primary hyperparathyroidism (PHPT), secondary hyperparathyroidism (SHPT). (2) PHPT and SHPT showed significant change before and after surgery (t=6.24 and t=6.85, P 99 Tc m -MIBI were above 90%. (4) Whole-body bone imaging results of SHPT patients showed complex and diverse caused by high background, increased uptakes mainly. 99 Tc m -MIBI dual-phase parathyroid imaging showed hyperparathyroidism in varying degree, up to 56% or more. Conclusion: Determination of serum PTH combined SPECT for parathyroid and whole-body bone imaging showed high clinical value in diagnosis and treatment of parathyroid disease. (authors)

  13. New aspects regarding to radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Shabestani Monfared, A.; Amiri, M.

    2002-01-01

    Introduction and objectives: The society has been concerned about nuclear energy usage and nuclear environment pollution for ages. The necessity of using radiation and its applications in modern life especially in medicine is undeniable. Some interesting properties such as the potential for non-destructive tests, detection simplicity, and penetrability into substances and having reactions with them cause radiation to be known as a useful tool for peace purposes. Nuclear weapons' experiments (1945-1973) and nuclear accidents in Three-Mile Island in USA, Goiania in Brazil and Chernobyl in Ukraine Republic have enhanced man's worries towards nuclear radiation and radioactivity in environment, and founding associations and groups which are against nuclear energy, such as green peace society, can be related with above mentioned concerns. Today, nuclear medicine has rapidly been developed so that in some cases plays a unique role in diagnosis but unfortunately in spite of diagnostic and therapeutic advantages, the term N UCLEAR c an induce worries in patients and society. In this article, base on new documents we intend to show that this worries has no scientific basis. Material and Methods: To produce a realistic view, regarding to radiation protection we used several ways such as natural origin of radiation, high natural background radiation areas' data non-linear dose-effect model, risk versus benefit, use of arbitrary unit for measurement of radiation, radio adaptive response and radiation hormesis. Discussion and conclusion: Harmful effects of radiation on biologic systems has obviously been shown, but most of related documents are based on receiving high doses in nuclear and atomic accidents and explosions and radiation protection regulations are based on this observations. So, it sometimes causes patients are afraid of low doses of radiation in medical diagnostic procedures so that some of them even resist against performing this procedures. Thus, being aware of

  14. Current situation of the facilities, equipments and human resources in nuclear medicine in Argentina

    International Nuclear Information System (INIS)

    Chiliutti, Claudia A.

    2008-01-01

    The current situation of nuclear medicine in Argentina, taking into account the facilities, their equipment and human resources available is presented in this paper. A review and analysis of the equipment, including technical characteristics and a survey of the professionals and technicians of the area, was carried out. In Argentina, there are 266 centers of nuclear medicine distributed all over the country. The operating licenses are granted by the Nuclear Regulatory Authority (Autoridad Regulatoria Nuclear - ARN). Forty four percent of the installed equipment are SPECT of 1 or 2 heads and 39,4 % are gamma camera. Besides, there are eleven PET operating in Argentina. There are 416 nuclear medicine physicians with individual permit for diagnostic purposes and 50% of them has also individual permit for treatment purposes. With the purpose of analyzing the regional distribution of the available resources in nuclear medicine, the country was divided into 7 geographical regions: City of Buenos Aires, Province of Buenos Aires, Pampa, Cuyo, Northeast, Northwest and Patagonia. From the analysis of the gathered information it is possible to conclude that the nuclear medicine equipment as well as the personnel present an irregular distribution, with a major concentration in the City of Buenos Aires and Province of Buenos Aires. The Northeast region presents the lowest number of Nuclear Medicine centers and the Patagonia region has the lowest number of medicine nuclear physicians with individual permits. The number of SPECT and gamma cameras is 7,3 per million of inhabitants. The information about the available resources in nuclear medicine presented in this paper and its comparison with the international information available provide elements for a better planning of the future activities in the area not only for the operators but also from the regulatory point of view. (author)

  15. Radioiodination and Bio evaluation of Some Cardiovascular Drugs for Nuclear Medicine Application

    International Nuclear Information System (INIS)

    El-Sharawy, D.M.M.

    2013-01-01

    Nuclear medicine specialists use safe, painless, and cost-effective techniques to image the body and treat disease. Nuclear medicine imaging is unique, because it provides doctors with information about both structure and function. It is a way to gather medical information that would otherwise be unavailable, require surgery, or necessitate more expensive diagnostic tests. Today, nuclear medicine offers procedures that are essential in many medical specialties, from pediatrics to cardiology to psychiatry. Radiopharmacy is the science that deals largely with the preparation, compounding, Quality Control (QC), and dispensing of radiopharmaceuticals and radioisotopes for human use. Radio pharmacists are the personnel who perform these functions at large hospitals or medical centers. They are involved in manufacturing cold kits and in developing new agents and procedures. In this thesis it was studied the labeling of Deltiazem , Nefidipine and Valsartan with iodine -125 via an electrophilic substitution reaction. The biological distribution of these tracers were studied and was found the possibility of their use in cardiovascular disorders.

  16. A retrospective analysis of the cost/benefit ratio for two nuclear medicine procedures performed with /sup 99m/Tc-radiopharmaceuticals

    International Nuclear Information System (INIS)

    Mariani, G.; Rosa, C.; Raciti, M.; Giganti, M.; Fatigante, L.; Giraldi, C.; Consoli, E.; Parenti, G.

    1986-01-01

    Technetium-99m is at present the most widely utilized radionuclide for in-vivo diagnostic nuclear medicine, either in the form of pertechnetate ion (as it is directly eluted from the generator column) or, more frequently, as a label for a number of molecules to which technetium-99m is attached to form radiopharmaceuticals characterized by a more or less selective accumulation in some organs or structures of the body. The impact of technetium-99m on the development of clinical nuclear medicine has reutilized with increasing frequency in diagnostic nuclear medicine, that is, whole-body skeletal scan and first-pass cerebral angioscintigraphy. These two procedures are, in fact, of great value, especially in the follow-up of two large categories of patients, namely cancer patients and patients with atherosclerotic cerebro-vascular disease

  17. New radionuclide generator systems for use in nuclear medicine

    International Nuclear Information System (INIS)

    Atcher, R.W.

    1979-01-01

    A current emphasis in nuclear medicine is to better match the physical lifetime of the radionuclides used in vivo for diagnosis and treatment to the biological lifetime of the diagnostic procedure or to minimize radiation dose to areas other than those to be treated. In many cases the biological lifetime is on the order of minutes. Since the direct production of radionuclides with half lives of minutes requires the user to be near a suitable reactor or accelerator, this study was undertaken to produce short-lived radionuclides indirectly. If a long-lived radionuclide decays into a short-lived radionuclide, quick separation of the daughter activity from the parent enables the user to have a short-lived daughter while freeing him from the constraint of proximity to a cyclotron. Systems where a short-lived daughter is separated from a long-lived parent are called radionuclide generators. Two generator systems were developed for use in nuclear medicine, one in diagnostic work and the other for therapeutic work. The yield and breakthrough characteristics were within the limits required to minimize unnecessary radiation exposure in patients. Two parent radionuclides were produced using 4 He beams available from medium energy cyclotrons. The yield was high enough to produce generators that would be useful in clinical applications

  18. Extremity exposure in nuclear medicine: Preliminary results of a European study

    International Nuclear Information System (INIS)

    Merce, M. S.; Ruiz, N.; Barth, I.; Carnicer, A.; Donadille, L.; Ferrari, P.; Fulop, M.; Ginjaume, M.; Gualdrini, G.; Krim, S.; Mariotti, F.; Ortega, X.; Rimpler, A.; Vanhavere, F.; Baechler, S.

    2011-01-01

    The Work Package 4 of the ORAMED project, a collaborative project (2008-11) supported by the European Commission within its seventh Framework Programme, is concerned with the optimisation of the extremity dosimetry of medical staff in nuclear medicine. To evaluate the extremity doses and dose distributions across the hands of medical staff working in nuclear medicine departments, an extensive measurement programme has been started in 32 nuclear medicine departments in Europe. This was done using a standard protocol recording all relevant information for radiation exposure, i.e. radiation protection devices and tools. This study shows the preliminary results obtained for this measurement campaign. For diagnostic purposes, the two most-used radionuclides were considered: 99m Tc) and 18 F. For therapeutic treatments, Zevalin R and DOTATOC (both labelled with 90 Y) were chosen. Large variations of doses were observed across the hands depending on different parameters. Furthermore, this study highlights the importance of the positioning of the extremity dosemeter for a correct estimate of the maximum skin doses. (authors)

  19. Practical radiation protection in hospitals. A view at the nuclear medicine departement of the University Hospital of Cologne

    International Nuclear Information System (INIS)

    Sudbrock, Ferdinand

    2011-01-01

    Radiation protection plays a predominant role in nuclear medicine departments as they are installations dealing with open radioactive substances. Many experts in radiation protection who are not directly involved in nuclear medicine may only have a vague insight into the daily routine of such installations. This contribution would like to give an impression by making a virtual tour through the nuclear medicine department of the University Hospital of Cologne - a department that covers a large part of the ability spectrum of this discipline. This tour will show some specialities concerning radiation protection in diagnostic and therapeutic procedures. (orig.)

  20. Radiation risk to patients from nuclear medicine procedures in Cuba

    International Nuclear Information System (INIS)

    Brigido, O.; Montalván, A.; Barreras, A.; Hernández, J.

    2015-01-01

    Man-made radiation exposure to the Cuban population predominantly results from the medical use of ionizing radiation. It was therefore the aim of the present study, to provide public health information concerning diagnostic nuclear medicine procedures carried out in Camagüey and Ciego de Ávila provinces between 2000 and 2005. Population radiation dose estimation due to administration of radiopharmaceuticals in Camagüey and Ciego de Ávila provinces was carried out using Medical Internal Radiation Dose scheme (MIRD). Data were gathered on the type of radiopharmaceuticals used, the administered activity, the numbers of each kind of examination, and the age and sex of the patients involved during the period 2000 – 2005. The average annual frequency of examinations was estimated to be 3.34 per 1000 population. The results show that imaging nuclear medicine techniques of thyroid and bone explorations with 13.3 and 12.9%, respectively and iodide uptake with 50% are the main techniques implicated in the relative contribution to the total annual effective collective dose which averaged 95 man⋅Sv for the studied period. Radiation risks for the Camagüey-Ciego de Avila population caused by nuclear medicine examinations in the period studied were calculated: the total number of fatal and non-fatal cancers was 34.2 and the number of serious hereditary disturbance was 7.4 as a result of 24139 nuclear medicine procedures, corresponding a total detriment of 1.72 per 1000 examination. (authors)

  1. Evolution of nuclear medicine: a historical perspective

    International Nuclear Information System (INIS)

    Ahmed, A.; Kamal, S.

    1996-01-01

    The field Nuclear Medicine has Completed its 100 yeas in 1996. Nuclear medicine began with physics, expanded into chemistry and instrumentation, and then greatly influenced various fields of medicine. The chronology of the events that formulated the present status of nuclear medicine involves some of the great pioneers of yesterday like Becquerel, Curie, Joliot, Hevesy, Anger, Berson and Yallow. The field of nuclear medicine has been regarded as the bridge builder between various aspects of health care and within next 20 years, nuclear medicine enters a new age of certainty, in which surgery, radiation and chemotherapy will only be used when a benefit in certain to result from the treatment. (author)

  2. Dose rate received by Pernambuco population due to nuclear medicine exams between 2000-2004

    International Nuclear Information System (INIS)

    Araujo, A.R.; Khoury, H.J.

    2008-01-01

    This study aims to evaluate the diagnostic procedures using in Nuclear medicine of the State of Pernambuco, a state located in northeastern Brazil, from 2000 to 2004 in order to provide subsidies to establish the reference levels in Brazil

  3. Development of departmental standard for traceability of measured activity for 131I therapy capsules used in nuclear medicine

    International Nuclear Information System (INIS)

    Ravichandran, Ramamoorthy; Binukumar, J.P.

    2011-01-01

    International Basic Safety Standards (International Atomic Energy Agency, IAEA) provide guidance levels for diagnostic procedures in nuclear medicine indicating the maximum usual activity for various diagnostic tests in terms of activities of injected radioactive formulations. An accuracy of ± 10% in the activities of administered radio-pharmaceuticals is being recommended, for expected outcome in diagnostic and therapeutic nuclear medicine procedures. It is recommended that the long-term stability of isotope calibrators used in nuclear medicine is to be checked periodically for their performance using a long-lived check source, such as 137 Cs, of suitable activity. In view of the un-availability of such a radioactive source, we tried to develop methods to maintain traceability of these instruments, for certifying measured activities for human use. Two re-entrant chambers ((HDR 1000 and Selectron Source Dosimetry System (SSDS)) with 125 I and 192 Ir calibration factors in the Department of Radiotherapy were used to measure Iodine-131 ( 131 I) therapy capsules to establish traceability to Mark V isotope calibrator of the Department of Nuclear Medicine. Special nylon jigs were fabricated to keep 131 I capsule holder in position. Measured activities in all the chambers showed good agreement. The accuracy of SSDS chamber in measuring 192 Ir activities in the last 5 years was within 0.5%, validating its role as departmental standard for measuring activity. The above method is adopted because mean energies of 131 I and 192 Ir are comparable. (author)

  4. Nuclear medicine tomorrow

    International Nuclear Information System (INIS)

    Marko, A.M.

    1986-04-01

    The purpose of this Workshop was to discuss and promote future nuclear medicine applications. Atomic Energy of Canada Limited (AECL) is determined to assist in this role. A major aim of this gathering was to form an interface that was meaningful, representative of the two entities, and above all, on-going. In the opening address, given by Mr. J. Donnelly, President of AECL, this strong commitment was emphasized. In the individual sessions, AECL participants outlined R and D programs and unique expertise that promised to be of interest to members of the nuclear medicine community. The latter group, in turn, described what they saw as some problems and needs of nuclear medicine, especially in the near future. These Proceedings comprise the record of the formal presentations. Additionally, a system of reporting by rapporteurs insured a summary of informal discussions at the sessions and brought to focus pertinent conclusions of the workshop attendees

  5. The Basic Principles in Assessment and Selection of Reference Doses: Considerations in Nuclear Medicine (invited paper)

    International Nuclear Information System (INIS)

    Mattsson, S.; Jacobsson, L.; Vestergren, E.

    1998-01-01

    The possible ways to optimise the relation between diagnostic information and patient absorbed dose differ between nuclear medicine and X ray imaging. In nuclear medicine, very little has been done to find an optimal dosage of radiopharmaceuticals. Current nuclear medicine methods are discussed in the light of the recent ICRP Publications and the new EU Patient Directive. The paper also discusses how reference levels for administered activity may be derived from patient studies. In order to eliminate the most inappropriate choices (too low or too high activities), knowledge of the current statistical distribution of administered activities may be helpful. Different methods to estimate the amount of activity that should be administered to children of various body sizes to guarantee the same image quality as for adults are also discussed. Examples of current activity levels for common nuclear medicine procedures, indicating the state of the practice, are given. (author)

  6. Introductory physics of nuclear medicine. Third edition

    International Nuclear Information System (INIS)

    Chandra, R.

    1987-01-01

    The new third edition includes essential details and many examples and problems taken from the routine practice of nuclear medicine. Basic principles and underlying concepts are explained, although it is assumed that the reader has some current use as a bone densitometer. For resident physicians in nuclear medicine, residents in pathology, radiology, and internal medicine, and students of nuclear medicine technology, the third edition offers a simplified and reliable approach to the physics and basic sciences of nuclear medicine

  7. Technetium in chemistry and nuclear medicine

    International Nuclear Information System (INIS)

    Deutsch, E.; Nicolini, M.; Wagner, H.N.

    1983-01-01

    This volume explores the potential of technetium radiopharmaceuticals in clinical nuclear medicine. The authors examine the capabilities of synthetic inorganic chemists to synthesize technetium radiopharmaceuticals and the specific requirements of the nuclear medicine practitioner. Sections cover the chemistry of technetium, the production of radiopharmaceuticals labeled with technetium, and the use of technetium radiopharmaceuticals in nuclear medicine

  8. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... you about nuclear medicine. Nuclear medicine offers the potential to identify disease in its earliest stage, often ... may be asked to wear a gown as well. Tell your doctor if there is any possibility ...

  9. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji Rajendran, a radiation ... more about nuclear medicine, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  10. Evaluation of maximum absorbed dose for accompanying patients in nuclear medicine establishments; Avaliacao da dose maxima absorvida por acompanhantes de pacientes em servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Geovanna; Amaral, Ademir; Hazin, Clivis A. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear; Lima, Ricardo A.; Nogueira, Maria S. [Centro Regional de Ciencias Nucleares (CRCN), Recife, PE (Brazil); Lopes, Ferdinand [Centro de Medicina Nuclear de Pernambuco (CEMUPE), Recife, PE (Brazil); Guimaraes, Maria Ines C.C. [Sao Paulo Univ., SP (Brazil). Centro de Medicina Nuclear

    2001-07-01

    In nuclear medicine, radioisotopes are bound to various pharmaceuticals for use in diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public (especially persons accompanying patients) must consider this exposure. In this study, thermoluminescent dosimeters were given to various persons who were accompanying patients in two nuclear medicine departments in Recife, Pernambuco State, Brazil. Exposure results are given, and issues regarding exposure conditions and times for members of the public in these departments are discussed. (author)

  11. Assessment of suspected infection of hip or knee endoprosthesis by nuclear medicine techniques

    International Nuclear Information System (INIS)

    Schmidt, M.; Dietlein, M.; Schicha, H.; Delank, K.S.

    2007-01-01

    Complications after hip endoprosthesis operation occur with a frequency of 1-2 % after primary operation and with 3-5 % after revision arthroplasty and are even more frequent after knee arthroplasty. The differentiation between aseptic loosening and bacterial infection is very important. In aseptic loosening a one-step revision is usually possible. In case of bacterial infection, all foreign material has to be removed first to allow cure from the infection. After healing and absence of bacteria a follow-up operation is possible with insertion of a new prosthesis. Diagnosis and therapy of a painful hip or knee endoprosthesis are difficult, because patient history, clinical examination, laboratory results including microbiological investigation of puncture material and results of radiological examinations may all be inconclusive. Quite a number of nuclear medicine procedures have been published in the past to help in the differentiation between aseptic loosening and bacterial infection of a painful hip or knee endoprosthesis. No single method can be regarded as excellent and without disadvantages. In the international literature the combined leucocyte-marrow imaging has been propageted as superior technique. In Germany, combined leucocyte-marrow imaging is not available in the published form. Moreover, this technique is time consuming, cost intensive and requires direct work with blood. Therefore, infection imaging with labelled antibodies or labelled fragments of antibodies may be regarded as the method of choice for most nuclear medicine physicians. With semiquantitative evaluation a comparative diagnostic accuracy may be achieved. 18 F-FDG-PET is not able to differentiate reliably between abacterial polyethylene abrasion and septic inflammation. However, with pattern recognition of the distribution of 18 F-FDG around a hip prosthesis an approach with clinically acceptable results has been published. A normal 18 F-FDG-PET can reliably exclude an infection

  12. SPECT/CT co-registration of nuclear medicine studies and technologists: challenges and victories

    International Nuclear Information System (INIS)

    Cameron, P.J.

    2002-01-01

    Full text: A dual modality SPECT/CT gamma camera was installed in the Department of Nuclear Medicine at Fremantle Hospital, WA in 2000. The challenges were satisfying the requirements of the Radiological Advisory Council of WA with respect to room modifications and presence of a radiographer during CT acquisitions and once installation was complete, learning to operate the camera in dual modality mode. The victories are making CT/SPECT acquisitions a simple and routine procedure and the impact of the co-registered studies in both diagnostic and therapeutic applications in our practice. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  13. Single-purpose nuclear medicine instruments

    International Nuclear Information System (INIS)

    Boucek, J.

    Nuclear medicine requires the most up-to-date specialized technical facilities. The paper underlines the factor of reliability in purpose-designed equipment used for basic examinations. The possibility is also discussed of the automation of standard nuclear medicine instruments

  14. U Y 105 standard use of non sealed radioactive sources in nuclear medicine: approve for Industry energy and Mining Ministry 28/6/2002 Resolution

    International Nuclear Information System (INIS)

    2002-01-01

    Establish minimal requirements radiological safety for use non sealed radioactive sources in nuclear medicine.The present standard is used in operation or nuclear medicine practices using non sealed radioactive sources with diagnostic and therapeutic purposes in vivo and in vitro

  15. Attitudes of Kuwaiti public towards the radiation risks of nuclear medicine diagnositic procedures

    International Nuclear Information System (INIS)

    Elgazzar, AH; Al-Ghani, HE; Collier, BD; Al-Saeedi, F; Al-Shammari, J; Mahmoud, AM; Omar, A

    2004-01-01

    Public perception of radiation risks of diagnostic imaging procedures differs from that of professionals working in the field. The perception probably varies among societies and may vary within the same society. The objective of this study is to determine the public perception in Kuwait represented by patients referred for nuclear medicine diagnostic studies. With the assistance of Arabic speaking investigators, 239 patients (139 males and 100 females) with a mean age of 37 years (Range of 15 to 90 years) completed a questionnaire about their opinion of radiation fear from the nuclear medicine procedures as well as their education, income, ability to speak English and foreign travel experience. Radiation phobia was measured by asking the patient to to the statement 'Radiation from nuclear medicine examination is likely to harm my body' by one of 5 choices, 1 strongly agree, 2 somewhat agree, 3 uncertain, 4 somewhat disagree, 5 strongly disagree. Responses 1 and 2 were classified as radiation phobia. Pearson correlation coefficient and logistic regression analysis were used for data analysis. Forty four percent of patients had radiation phobia. Only education significantly correlated with radiation phobia. Income, ability to speak English, age, gender or travel experience did not show significant correlation. Our study indicates that radiation phobia is common and is probably widespread throughout the society. Patient education should emphasize radiation benefits and actual risks and include the entire community. (authors)

  16. Nuclear medicine

    International Nuclear Information System (INIS)

    Casier, Ph.; Lepage, B.

    1998-01-01

    Except for dedicated devices for mobile nuclear cardiology for instance, the market is set on variable angulation dual heads cameras. These cameras are suited for all general applications and their cost effectiveness is optimized. Now, all major companies have such a camera in their of products. But, the big question in nuclear medicine is about the future of coincidence imaging for the monitoring of treatments in oncology. Many companies are focused on WIP assessments to find out the right crustal thickness to perform both high energy FDG procedures and low energy Tc procedures, with the same SPECT camera. The classic thickness is 3/8''. Assessments are made with 1/2'', 5/8'' or 3/4'' crystals. If FDG procedures proved to be of great interest in oncology, it may lead to the design of a dedicated SPECT camera with a 1'' crustal. Due to the short half of FDG, it may be the dawning of slip ring technology. (e.g. Varicam from Elscint). The three small heads camera market seems to be depressed. Will the new three large heads camera unveiled by Picker, reverse that trend? The last important topic in nuclear medicine is the emergence of new flat digital detectors to get rid of the old bulky ones. Digirad is the first company to manufacture a commercial product based on that technology. Bichron, Siemens and General Electric are working on that development, too. But that technology is very expensive and the market for digital detection in nuclear medicine is not as large as the market in digital detection in radiology. (author)

  17. Cardiovascular nuclear medicine and MRI

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Wall, E.E. van der

    1992-01-01

    This book is based on a meeting of the Working Group on Nuclear Cardiology, which held March 22-23,1991 under the auspices of the European Society of Cardiology and the Interuniversity Cardiology Institute of the Netherlands, and on the Second International Symposium on Computer Applications in Nuclear Medicine and Cardiac Magnetic Resonance Imaging, which was held March 20-22,1991 in Rotterdam, the Netherlands. It covers almost every aspect of quantitative cardio-vascular nuclear medicine and magnetic resonance imaging. The main topics are: single photon emission computed tomography (technical aspects); new development in cardiovascular nuclear medicine; advances in cardiovascular imaging; cardiovascular clinical applications; and cardiac magnetic resonance imaging. (A.S.). refs.; figs.; tabs

  18. Quality policy at nuclear medicine services

    International Nuclear Information System (INIS)

    Gil Martinez, Eduardo Manuel; Jimenez, Tomas

    2007-01-01

    In the present text we comment about a Quality Policy model to establish in a Nuclear Medicine Service. The need for a strict control in every process that take place in a Nuclear Medicine Service, requires of an exact planification in terms of Quality Policy, specific to the real needs of every Service. Quality Policy must be a live Policy, with capability of changes and must be known for every workers in a Nuclear Medicine Service. Although the 'model' showed in this text is concret for a specific Service type, it must be extrapolated to any Nuclear Medicine Service with the necessary changes (au)

  19. Highlights of the Annual Congress of the European Association of Nuclear Medicine, Istanbul, 2005: the incremental value of nuclear medicine for patient management and care

    Energy Technology Data Exchange (ETDEWEB)

    Cuocolo, Alberto; Acampa, Wanda; Varrone, Andrea; Salvatore, Marco [University of Naples Federico II, Department of Biomorphological and Functional Sciences, Napoli (Italy); Institute of Biostructures and Bioimages of the National Council of Research, Naples (Italy)

    2006-03-15

    The 2005 Annual Congress of the European Association of Nuclear Medicine (EANM) took place in Istanbul on October 15-19, under the chairmanship of Professor Hatice Durak. The programme was of excellent quality and represented a further step towards the achievement of a standardized EANM congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success: there were more than 4,000 participants, and 1,670 abstracts were received. Of these, 1,399 were accepted for oral or poster presentations, with a rejection rate of 16.2%. The original investigations presented were related to different areas of nuclear medicine, and addressed particularly advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well-established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, nephrology, and infection and inflammation. It is noteworthy that a number of studies presented at this congress focussed on the quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, and identified when nuclear medicine procedures achieved clinical effectiveness for patient care and management. These and many other studies presented at the congress demonstrate once more the crucial role that nuclear medicine has to play in contemporary medicine. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress proceedings book, published as volume 32, supplement 1 of the Eur J Nucl Med Mol Imaging in September 2005. (orig.)

  20. Nuclear medicine. Basic knowledge and clinical applications. 6. rev. and upd. ed.

    International Nuclear Information System (INIS)

    Schicha, H.; Schober, O.

    2007-01-01

    The development of imaging techniques like SPECT, SPECT-CT, PET, PET-CT and MRT has advanced rapidly during the past few years, especially in the case of hybrid technology. These techniques have become indispensable in diagnosis, differential diagnosis, therapy follow-up and prevention. This 6th revised and edited version of 'Nuclear Medicine' takes account of these developments. The general section presents fundamentals of physics, radiopharmaceutical chemistry, measuring techniques, nuclear medical examination techniques, and dosimetry. The special section presents detailed descriptions of all relevant nuclear medical techniques by organ systems and clinical pictures. There are many examples and scintiscans of organs to train the diagnostic eye and give a link to clinical practice. This successful textbook presents complex subject matter in a clear and intelligible way. It addresses newcomers and expert doctors that require training in nuclear medical methods. It has also become a standard textbook in university medicine studies and in the training of radiological assistants. (orig.)

  1. Nuclear medicine in China

    International Nuclear Information System (INIS)

    Wang, Shihchen; Liu, Xiujie

    1986-01-01

    Since China first applied isotopes to medical research in 1956, over 800 hospitals and research institutions with 4000 staff have taken up nuclear technology. So far, over 120 important biologically active materials have been measured by radioimmunoassay in China, and 44 types of RIA kit have been supplied commercially. More than 50,000 cases of hyperthyroidism have been treated satisfactorily with 131 I. Radionuclide imaging of practically all organs and systems of the human body has been performed, and adrenal imaging and nuclear cardiology have become routine clinical practice in several large hospitals. The thyroid iodine uptake test, renogram tracing and cardiac function studies with a cardiac probe are also commonly used in most Chinese hospitals. The active principles of more than 60 medicinal herbs have been labelled with isotopes in order to study the drug metabolism and mechanism of action. Through the use of labelled neurotransmitters or deoxyglucose, RIA, radioreceptor assay and autoradiography, Chinese researchers have made remarkable achievements in the study of the scientific basis of acupuncture analgesia. In 1980 the Chinese Society of Nuclear Medicine was founded, and since 1981 the Chinese Journal of Nuclear Medicine has been published. Although nuclear medicine in China has already made some progress, when compared with advanced countries, much progress is still to be made. It is hoped that international scientific exchange will be strengthened in the future. (author)

  2. Organ dose assessment of nuclear medicine practitioners using L-block shielding device for handing diagnostic radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Se Sik; Kim, Jung Hoon [Dep. of Radiological Science, College of Health Science, Catholic University of Pusan, Busan (Korea, Republic of); Cho, Yong In [Dept. of Diagnostic Radiology, Dongnam Institute of Radiological and Medical Science, Busan (Korea, Republic of)

    2017-03-15

    In the case of nuclear medicine practitioners in medical institutions, a wide range of exposure dose to individual workers can be found, depending on the type of source, the amount of radioactivity, and the use of shielding devices in handling radioactive isotopes. In this regard, this study evaluated the organ dose on practitioners as well as the dose reduction effect of the L-block shielding device in handling the diagnostic radiation source through the simulation based on the Monte Carlo method. As a result, the distribution of organ dose was found to be higher as the position of the radiation source was closer to the handling position of a practitioner, and the effective dose distribution was different according to the ICRP tissue weight. Furthermore, the dose reduction effect according to the L-block thickness tended to decrease, which showed the exponential distribution, as the shielding thickness increased. The dose reduction effect according to each radiation source showed a low shielding effect in proportion to the emitted gamma ray energy level.

  3. Essentials of nuclear medicine imaging

    CERN Document Server

    Mettler, Fred A. Jr

    2012-01-01

    Essentials of Nuclear Medicine Imaging, by Drs. Fred A Mettler and Milton J Guiberteau, provides the practical and comprehensive guidance you need to master key nuclear imaging techniques. From physics, instrumentation, quality control, and legal requirements to hot topics such as sodium fluoride, radiopharmaceuticals, and recommended pediatric administered doses and guidelines, this sixth edition covers the fundamentals and recent developments in the practice of nuclear medicine.

  4. Nuclear Medicine in Surgical Oncology

    International Nuclear Information System (INIS)

    Ndirangu, D.T.

    2009-01-01

    Defines nuclear medicine as a branch that utilizes nuclear technology for diagnosis and treatment of diseases.The principles of nuclear medicine are; it uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body or tissue. it is imaged by use the use of detectors mounted in gamma cameras or PET (Position emission tomography) devices

  5. Regulatory problems in nuclear medicine

    International Nuclear Information System (INIS)

    Vandergrift, J.F.

    1987-01-01

    Governmental involvement in the practice of medicine has increased sharply within the past few years. The impact on health care has, for the most part, been in terms of financial interactions between health care facilities and federally funded health services programs. One might say that this type of governmental involvement has indirect impact on the medical and/or technical decisions in the practice of nuclear medicine. In other areas, however, governmental policies and regulations have had a more direct and fundamental impact on nuclear medicine than on any other medical specialty. Without an understanding and acceptance of this situation, the practice of nuclear medicine can be very frustrating. This chapter is thus written in the hope that potential frustration can be reduced or eliminated

  6. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  7. Development of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Tang Ganghua

    2002-01-01

    The basic theory of molecular nuclear medicine is briefly introduced. The hot areas of molecular nuclear medicine including metabolic imaging and blood flow imaging, radioimmunoimaging and radioimmunotherapy, radioreceptor imaging and receptor-radioligand therapy, and imaging gene expression and gene radiation therapy are emphatically described

  8. The production of radionuclides for nuclear medicine from a compact, low-energy accelerator system.

    Science.gov (United States)

    Webster, William D; Parks, Geoffrey T; Titov, Dmitry; Beasley, Paul

    2014-05-01

    The field of nuclear medicine is reliant on radionuclides for medical imaging procedures and radioimmunotherapy (RIT). The recent shut-downs of key radionuclide producers have highlighted the fragility of the current radionuclide supply network, however. To ensure that nuclear medicine can continue to grow, adding new diagnostic and therapy options to healthcare, novel and reliable production methods are required. Siemens are developing a low-energy, high-current - up to 10 MeV and 1 mA respectively - accelerator. The capability of this low-cost, compact system for radionuclide production, for use in nuclear medicine procedures, has been considered. The production of three medically important radionuclides - (89)Zr, (64)Cu, and (103)Pd - has been considered, via the (89)Y(p,n), (64)Ni(p,n) and (103)Rh(p,n) reactions, respectively. Theoretical cross-sections were generated using TALYS and compared to experimental data available from EXFOR. Stopping power values generated by SRIM have been used, with the TALYS-generated excitation functions, to calculate potential yields and isotopic purity in different irradiation regimes. The TALYS excitation functions were found to have a good agreement with the experimental data available from the EXFOR database. It was found that both (89)Zr and (64)Cu could be produced with high isotopic purity (over 99%), with activity yields suitable for medical diagnostics and therapy, at a proton energy of 10MeV. At 10MeV, the irradiation of (103)Rh produced appreciable quantities of (102)Pd, reducing the isotopic purity. A reduction in beam energy to 9.5MeV increased the radioisotopic purity to 99% with only a small reduction in activity yield. This work demonstrates that the low-energy, compact accelerator system under development by Siemens would be capable of providing sufficient quantities of (89)Zr, (64)Cu, and (103)Pd for use in medical diagnostics and therapy. It is suggested that the system could be used to produce many other

  9. Promoting nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Ganatra, R.; Nofal, M.

    1986-01-01

    After a short review of the applications of nuclear medicine in diagnosis and treatment of diseases or in medical research the ways and the means of IAEA's support in helping developing countries to set up nuclear medicine capabilities in their hospitals are described. Some trends and new directions in the field of nuclear medicine and the problems related to the implementation of these techniques in developing countries are presented

  10. Activity based costing of diagnostic procedures at a nuclear medicine center of a tertiary care hospital.

    Science.gov (United States)

    Hada, Mahesh Singh; Chakravarty, Abhijit; Mukherjee, Partha

    2014-10-01

    Escalating health care expenses pose a new challenge to the health care environment of becoming more cost-effective. There is an urgent need for more accurate data on the costs of health care procedures. Demographic changes, changing morbidity profile, and the rising impact of noncommunicable diseases are emphasizing the role of nuclear medicine (NM) in the future health care environment. However, the impact of emerging disease load and stagnant resource availability needs to be balanced by a strategic drive towards optimal utilization of available healthcare resources. The aim was to ascertain the cost of diagnostic procedures conducted at the NM Department of a tertiary health care facility by employing activity based costing (ABC) method. A descriptive cross-sectional study was carried out over a period of 1 year. ABC methodology was utilized for ascertaining unit cost of different diagnostic procedures and such costs were compared with prevalent market rates for estimating cost effectiveness of the department being studied. The cost per unit procedure for various procedures varied from Rs. 869 (USD 14.48) for a thyroid scan to Rs. 11230 (USD 187.16) for a meta-iodo-benzyl-guanidine (MIBG) scan, the most cost-effective investigations being the stress thallium, technetium-99 m myocardial perfusion imaging (MPI) and MIBG scan. The costs obtained from this study were observed to be competitive when compared to prevalent market rates. ABC methodology provides precise costing inputs and should be used for all future costing studies in NM Departments.

  11. Activity based costing of diagnostic procedures at a nuclear medicine center of a tertiary care hospital

    International Nuclear Information System (INIS)

    Hada, Mahesh Singh; Chakravarty, Abhijit; Mukherjee, Partha

    2014-01-01

    Escalating health care expenses pose a new challenge to the health care environment of becoming more cost-effective. There is an urgent need for more accurate data on the costs of health care procedures. Demographic changes, changing morbidity profile, and the rising impact of noncommunicable diseases are emphasizing the role of nuclear medicine (NM) in the future health care environment. However, the impact of emerging disease load and stagnant resource availability needs to be balanced by a strategic drive towards optimal utilization of available healthcare resources. The aim was to ascertain the cost of diagnostic procedures conducted at the NM Department of a tertiary health care facility by employing activity based costing (ABC) method. A descriptive cross-sectional study was carried out over a period of 1 year. ABC methodology was utilized for ascertaining unit cost of different diagnostic procedures and such costs were compared with prevalent market rates for estimating cost effectiveness of the department being studied. The cost per unit procedure for various procedures varied from Rs. 869 (USD 14.48) for a thyroid scan to Rs. 11230 (USD 187.16) for a meta-iodo-benzyl-guanidine (MIBG) scan, the most cost-effective investigations being the stress thallium, technetium-99 m myocardial perfusion imaging (MPI) and MIBG scan. The costs obtained from this study were observed to be competitive when compared to prevalent market rates. ABC methodology provides precise costing inputs and should be used for all future costing studies in NM Departments

  12. Diagnostic imaging in internal medicine

    International Nuclear Information System (INIS)

    Eisenberg, R.L.

    1985-01-01

    This book examines medical diagnostic techniques. Topics considered include biological considerations in the approach to clinical medicines; infectious diseases; disorders of the heart; disorders of the vascular system; disorders of the respiratory system; diseases of the kidneys and urinary tract; disorders of the alimentary tract; disorders of the hepatobiliary system and pancreas; disorders of the hematopoietic system; disorders of bone and bone mineralization; disorders of the joints, connective tissues, and striated muscles; disorders of the nervous system; miscellaneous disorders; and procedures in diagnostic imaging

  13. Radiation hazards in the nuclear medicine

    International Nuclear Information System (INIS)

    Roo, M.J.K. de

    1981-01-01

    After a survey of the actual situation of nuclear medicine in Belgium, the evolution of nuclear medicine is studied with regard to quantitative aspects (tracerquantities, number of radioisotopic explorations, number of certified doctors) and qualitative aspects (use of short living isotopes emitting low energy radiation, introduction of in vitro tests). Taking these data into consideration, the exposure of nuclear medicine staff by external or internal radiation is evaluated. From this study it appears that the radiation exposure of the personnel of nuclear medicine departments remains low if proper manipulation methods and simple protective devices are used and if there is an efficient collaboration with an active health physics department or radiation control organism. (author)

  14. Quality management system in Nuclear Medicine

    International Nuclear Information System (INIS)

    Peña Tornet, Adela; Torres Aroche, Leonel A.

    2016-01-01

    Establishing Management Systems (QMS) in services Nuclear Medicine (NM) is a prerequisite for optimizing the efficacy and safety of diagnostic and therapeutic procedures of this specialty and increase steadily the quality of the services provide patients. Several international organizations such as the IAEA and scientific specialty societies (SNM, EBNM, etc) and national bodies stimulate and enhance their introduction; in our country is also a requirement of the National Nuclear Safety Centre (CNSN). Are presented in this paper, the main experiences of our country related to the implementation of QMS and developed tools for achieving this goal, such as: The QNUMED automated web environment for managing indicators and documentation format digital; b) The development of prototypes and models for the implementation of the documentation system; d) requirements applying QUANUM in conducting audits of quality management in local services including QUANUM T ool tool; and f) human resource development issues in Quality Management. (author)

  15. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  16. Handbook of nuclear medicine practice in developing countries

    International Nuclear Information System (INIS)

    1992-01-01

    This ''Handbook of Nuclear Medicine Practices in the Developing Countries'' is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country

  17. Proceedings of 2nd Korea-China Congress of Nuclear Medicine and the Korean Society Nuclear Medicine Spring Meeting 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This proceedings contains articles of 2nd Korea-China Congress of Nuclear Medicine and 2000 spring meeting of the Korean Society Nuclear Medicine. It was held on May 17-19, 2000 in Seoul, Korean. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, oncology, radiopharmacy and biology, nuclear cardiology, nuclear cardiology: physics and instrumentation and so on. (Yi, J. H.)

  18. Study of dose levels absorbed by members of the public in the nuclear medicine departments

    International Nuclear Information System (INIS)

    Cabral, Geovanna Oliveira de Mello

    2001-03-01

    In nuclear Medicine, radioisotopes are bound to various compounds (called radiopharmaceuticals) for use in various diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public, especially persons accompanying patients, must consider, this exposure. In Brazil, the Comissao Nacional de Energia Nuclear (CNEN) establishes that, in nuclear medicine departments, the patients and persons accompanying should be separated each other. However, this rule is not always followed due to many factors such as physical and emotional conditions of patients. In this context, the aim of this study was the investigation of dose levels, which the persons accompanying patients are exposed to. For monitoring, thermoluminescent dosimeters were employed. The dosimeters were given to 380 persons who were accompanying patients in nuclear medicine departments. Exposure results were lower than 1 mSv. On the basis of CNEN rules, issues regarding stay conditions for members of the public in these departments are discussed. (author)

  19. Radiation dose to technologists per nuclear medicine examination and estimation of annual dose.

    Science.gov (United States)

    Bayram, Tuncay; Yilmaz, A Hakan; Demir, Mustafa; Sonmez, Bircan

    2011-03-01

    Conventional diagnostic nuclear medicine applications have been continuously increasing in most nuclear medicine departments in Turkey, but to our knowledge no one has studied the doses to technologists who perform nuclear medicine procedures. Most nuclear medicine laboratories do not have separate control rooms for technologists, who are quite close to the patient during data acquisition. Technologists must therefore stay behind lead shields while performing their task if they are to reduce the radiation dose received. The aim of this study was to determine external radiation doses to technologists during nuclear medicine procedures with and without a lead shield. Another aim was to investigate the occupational annual external radiation doses to Turkish technologists. This study used a Geiger-Müller detector to measure dose rates to technologists at various distances from patients (0.25, 0.50, 1, and 2 m and behind a lead shield) and determined the average time spent by technologists at these distances. Deep-dose equivalents to technologists were obtained. The following conventional nuclear medicine procedures were considered: thyroid scintigraphy performed using (99m)Tc pertechnetate, whole-body bone scanning performed using (99m)Tc-methylene diphosphonate, myocardial perfusion scanning performed using (99m)Tc-methoxyisobutyl isonitrile, and (201)Tl (thallous chloride) and renal scanning performed using (99m)Tc-dimercaptosuccinic acid. The measured deep-dose equivalent to technologists per procedure was within the range of 0.13 ± 0.05 to 0.43 ± 0.17 μSv using a lead shield and 0.21 ± 0.07 to 1.01 ± 0.46 μSv without a lead shield. Also, the annual individual dose to a technologist performing only a particular scintigraphic procedure throughout a year was estimated. For a total of 95 clinical cases (71 patients), effective external radiation doses to technologists were found to be within the permissible levels. This study showed that a 2-mm lead shield

  20. Influence of the radio-tracer used in diagnostic nuclear medicine upon the dose at the nucleus of cellular localisation

    International Nuclear Information System (INIS)

    Gardin, I.; Faraggi, M.; Stievenart, J.L; Le Guludec, D.; Bok, B.

    1997-01-01

    In the classical dosimetry one supposes a uniform distribution of the radio-pharmaceuticals at the source organ level as well as a homogeneous distribution of the absorbed dose. This hypotheses are not always verified in biology, and the influence of the tracer localisation on the dose delivered at the cellular nucleus has been studied. The average dose delivered by the electron emission of different radio-isotopes used in diagnosis has been calculated by taking into account the radioactivity localized upon the target cell (Dself), and upon the neighbouring cells (Dcross). Nuclear, cytoplasmic and membranous localizations of the tracer were simulated for different cellular sizes. In the particular case of 99m Tc and cells of nuclear radius about 4 μm and cellular radios about 8 μ, Dcross is independent of the intra-cellular localisation of the tracer. On the contrary, for a nuclear localisation Dself is 52 and 157 times more important than for the cytoplasmic and membranous localisation, respectively. The dose at the cellular nucleus due to electron emission of 99m Tc is under-estimated by a factor 2.6 by classical dosimetry when the radioactivity is nuclear. On the contrary, the classical model over-estimates by a factor 1.2 the dose at nucleus for cytoplasmic and membranous localizations. This study shows that the dose delivered at cellular nucleus by the electron emissions of 99m Tc depends on the localisation of the tracer. The modelling proposed allows a better evaluation of the radiobiological hazards related to the administration of radiopharmaceuticals in diagnostic nuclear medicine

  1. Handbook of nuclear medicine practice in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This ``Handbook of Nuclear Medicine Practices in the Developing Countries`` is meant primarily for those, who intend to install and practice nuclear medicine in a developing country. By and large, the conventional Textbooks of nuclear medicine do note cater to the special problems and needs of these countries. The Handbook is not trying to replace these textbooks, but supplement them with special information and guidance, necessary for making nuclear medicine cost-effective and useful in a hospital of a developing country. It is written mostly by those, who have made success in their careers in nuclear medicine, in one of these countries. One way to describe this Handbook will be that it represents the ways, in which, nuclear medicine is practised in the developing countries, described by those, who have a long and authentic experience of practising nuclear medicine in a developing country Figs, tabs

  2. Links between nuclear medicine and radiopharmacy

    International Nuclear Information System (INIS)

    Pelegrin, M.; Francois-Joubert, A.; Chassel, M.L.; Desruet, M.D.; Bolot, C.; Lao, S.

    2010-01-01

    Radiopharmaceuticals are nowadays under the responsibility of the radio-pharmacist because of their medicinal product status. Radiopharmacy belongs to the hospital pharmacy department, nevertheless, interactions with nuclear medicine department are important: rooms are included or located near nuclear medicine departments in order to respect radiation protection rules, more over staff, a part of the material and some activities are shared between the two departments. Consequently, it seems essential to formalize links between the radiopharmacy and the nuclear medicine department, setting the goals to avoid conflicts and to ensure patients' security. Modalities chosen for this formalization will depend on the establishment's organization. (authors)

  3. Aligning the Economic Value of Companion Diagnostics and Stratified Medicines

    Directory of Open Access Journals (Sweden)

    Edward D. Blair

    2012-11-01

    Full Text Available The twin forces of payors seeking fair pricing and the rising costs of developing new medicines has driven a closer relationship between pharmaceutical companies and diagnostics companies, because stratified medicines, guided by companion diagnostics, offer better commercial, as well as clinical, outcomes. Stratified medicines have created clinical success and provided rapid product approvals, particularly in oncology, and indeed have changed the dynamic between drug and diagnostic developers. The commercial payback for such partnerships offered by stratified medicines has been less well articulated, but this has shifted as the benefits in risk management, pricing and value creation for all stakeholders become clearer. In this larger healthcare setting, stratified medicine provides both physicians and patients with greater insight on the disease and provides rationale for providers to understand cost-effectiveness of treatment. This article considers how the economic value of stratified medicine relationships can be recognized and translated into better outcomes for all healthcare stakeholders.

  4. Metabolic radiopharmaceutical therapy in nuclear medicine

    International Nuclear Information System (INIS)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-01-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  5. PREFACE: International Conference on Image Optimisation in Nuclear Medicine (OptiNM)

    Science.gov (United States)

    Christofides, Stelios; Parpottas, Yiannis

    2011-09-01

    Conference logo The International Conference on Image Optimisation in Nuclear Medicine was held at the Atlantica Aeneas Resort in Ayia Napa, Cyprus between 23-26 March 2011. It was organised in the framework of the research project "Optimising Diagnostic Value in SPECT Myocardial Perfusion Imaging" (YΓΕΙΑ/ΔYΓΕΙΑ/0308/11), funded by the Cyprus Research Promotion Foundation and the European Regional Development Fund, to present the highlights of the project, discuss the progress and results, and define future related goals. The aim of this International Conference was to concentrate on image optimization approaches in Nuclear Medicine. Experts in the field of nuclear medicine presented their latest research results, exchanged experiences and set future goals for image optimisation while balancing patient dose and diagnostic value. The conference was jointly organized by the Frederick Research Centre in Cyprus, the Department of Medical and Public Health Services of the Cyprus Ministry of Health, the Biomedical Research Foundation in Cyprus and the AGH University of Science and Technology in Poland. It was supported by the Cyprus Association of Medical Physics and Biomedical Engineering, and the Cyprus Society of Nuclear Medicine. The conference was held under the auspices of the European Federation of Organisations for Medical Physics and the European Association of Nuclear Medicine. The conference scientific programme covered several important topics such as functional imaging; image optimization; quantification for diagnosis; justification; simulations; patient dosimetry, staff exposures and radiation risks; quality assurance and clinical audit; education, training and radiation protection culture; hybrid systems and image registration; and new and competing technologies. The programme consisted of 13 invited and keynote presentations as well as workshops, round table discussions and a number of scientific sessions. A total of 51 speakers presented their

  6. Analysis of data relative to the update of diagnostic reference levels in radiology and nuclear medicine. 2013-2015 review

    International Nuclear Information System (INIS)

    2016-11-01

    Applying the Order of 24 October 2011 on diagnostic reference levels, departments of radiology and nuclear medicine must send a sample of 'patient' dosimetric data to the IRSN each year. The results of the analysis of dosimetric data performed between the 1 January 2013 and the 31 December 2015 presented in this report should enable the authority to define the needs for updating regulation. This assessment takes place in a national and international context particularly rich and active since the last years. More than 20 years after the official introduction of the DRL concept by ICRP and the first regulation requirements at a European level, the good and the bad sides of the DRLs systems implemented by several countries, including France, has shown the necessity of complementary actions regarding some specific practices (pediatrics, interventional radiology). On one hand, from a national point of view, the current collection and analysis system is highly efficient for evaluation of practices in France and for DRL update ability. On the other hand, as an optimization implementation tool, regarding the lack of professionals involvement, the current system should not be considered as fully effective in radiology. However, when the professionals carry out DRL data collection and analysis, optimization actions are implemented for nearly all the cases. During the 2013-2015 period, professionals involvement in DRLs globally improved but is heterogeneous according to the imaging area considered. The participation of conventional radiology professionals is still low, with less than 30% against about 80% in CT and more than 85% in nuclear medicine. From a dosimetric point of view, the national analysis shows an overall decrease of statistical indicators in radiology, computed tomography and nuclear medicine on which DRLs are indexed. These results lead to proposals for updating reference values for a large number of examinations. In addition to the analysis of data collected

  7. Automated system for recording reports in nuclear medicine

    International Nuclear Information System (INIS)

    Machida, Kikuo; Hayashi, Sanshin; Watari, Tsutomu; Akaike, Akira; Oyama, Kazuyuki

    1976-01-01

    In order to overcome the rapid expansion of nuclear medicine as a diagnostic tool, we developed the system called ''Radiological Bunin Report System'' to record the clinical report in nuclear medicine automatically using the Tosbac 40 time sharing system electronic computer and the keymat-editor (DTZ 0008A). The system is composed of three modules, that is, reader, editor and writer. The module of the reader is used to register sentences and terms by which one can easily add to or change the registered dictionary. The module of the editor is used to make an intermediate file of radiological reports. With the aid of a keymateditor a radiologist puts in the necessary sentences and terms usually in the following order: procedure, interpretation, diagnosis, recommendation and doctor's code, thus making the intermediate file. In this procedure error message, if any, may be printed out on terminal typewriter. Finally the module of the writer is used to edit the intermediate file and to make sentences. Having stored several clinical reports, the computer automatically produces as many of the English written reports as one wants by printing order. By this system we are able to save man power in the hospital, and the radiological report is standardized. Furthermore, in view of the rapid progress and change of nuclear medicine, it is very important that a radiologist is able to change and add sentences and terms on a keymat very easily so that the system may be kept up-to-date and valuable. We believe this is one of the most characteristic advantages of the system. (auth.)

  8. Automated system for recording reports in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Machida, K; Hayashi, S; Watari, T; Akaike, A; Oyama, K [Tokyo Univ. (Japan). Faculty of Medicine

    1976-07-01

    In order to overcome the rapid expansion of nuclear medicine as a diagnostic tool, we developed the system called ''Radiological Bunin Report System'' to record the clinical report in nuclear medicine automatically using the Tosbac 40 time sharing system electronic computer and the keymat-editor (DTZ 0008A). The system is composed of three modules, that is, reader, editor and writer. The module of the reader is used to register sentences and terms by which one can easily add to or change the registered dictionary. The module of the editor is used to make an intermediate file of radiological reports. With the aid of a keymateditor a radiologist puts in the necessary sentences and terms usually in the following order: procedure, interpretation, diagnosis, recommendation and doctor's code, thus making the intermediate file. In this procedure error message, if any, may be printed out on terminal typewriter. Finally the module of the writer is used to edit the intermediate file and to make sentences. Having stored several clinical reports, the computer automatically produces as many of the English written reports as one wants by printing order. By this system we are able to save man power in the hospital, and the radiological report is standardized. Furthermore, in view of the rapid progress and change of nuclear medicine, it is very important that a radiologist is able to change and add sentences and terms on a keymat very easily so that the system may be kept up-to-date and valuable. We believe this is one of the most characteristic advantages of the system.

  9. Course on internal dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    2004-01-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine

  10. Analysis of the systems for management of radioactive wastes from nuclear medicine clinics of the city of Recife, Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Lira, Renata Farias de; Lopes, Ferdinand de Jesus; Passos, Robson Silva; Silva, Valeria Cosma Bento da; Belo, Igor Burgo; Santos, Marcus Aurelio Pereira dos

    2009-01-01

    In nuclear medicine compounds marked with radionuclides, called radiopharmaceuticals, for obtention diagnostic information and for diseases treatment. The physicochemical characteristics of the radiopharmaceuticals determine his fixation at target-organ, and the physical characteristics determine the compound application in diagnostic or therapy. The handling of radiopharmaceuticals generates solid, liquid and gas wastes. The presence of these wastes implies in a adequate management according to regulation standards established by the Brazilian Nuclear Energy Commission (CNEN). The objective of safe management of radioactive wastes is to protect the human being and the preservation of the environment, limiting possible radiological impacts for the future generation, and comprehend a set of technical and administrative activities involved in the collection, segregation, handling, conditioning, transportation, storage, control and elimination, or the final deposition. This work intends to verify if the radioactive waste management systems from the nuclear medicine clinics at the city of Recife are conformal with te normative regulations issued by the CNEN. The initial obtained results are used to elaboration of conformal verification spreadsheet and its application in six nuclear medicine clinics at Recife

  11. Where is high technology taking nuclear medicine

    International Nuclear Information System (INIS)

    Veall, N.

    1985-01-01

    The question is posed as to whether high technology in nuclear medicine might lead to the nuclear medicine practitioner possibly finishing up working for the machine rather than the improvement of health care in its widest sense. A brief examination of some pros and cons of high technology nuclear medicine is given. (U.K.)

  12. Nuclear medicine training and practice in Poland

    International Nuclear Information System (INIS)

    Teresinska, Anna; Birkenfeld, Bozena; Krolicki, Leszek; Dziuk, Miroslaw

    2014-01-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  13. Nuclear medicine training and practice in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Teresinska, Anna [Institute of Cardiology, Department of Nuclear Medicine, Warsaw (Poland); Birkenfeld, Bozena [Pomeranian Medical University, Department of Nuclear Medicine, Szczecin (Poland); Krolicki, Leszek [Warsaw Medical University, Department of Nuclear Medicine, Warsaw (Poland); Dziuk, Miroslaw [Military Institute of Medicine, Department of Nuclear Medicine, Warsaw (Poland)

    2014-10-15

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes

  14. State-of-the-art of the installations, equipments and human resources of nuclear medicine in Argentina

    International Nuclear Information System (INIS)

    Chiliutti, Claudia A.

    2004-01-01

    The current situation of nuclear medicine in Argentina, taking into account the facilities, their equipment and human resources available is presented in this paper. A review and analysis of the equipment, including technical characteristics and a survey of the professionals and technicians of the area, was carried out . In Argentina, there are 292 centers of nuclear medicine distributed all over the country. The operating licenses are granted by the Nuclear Regulatory Authority. Forty percent of the installed equipment are SPECT of 1 or 2 heads and 40 % are gamma camera. Besides, there are two PET operating in Argentina. There are 402 nuclear medicine physicians with individual permit for diagnostic purposes and 50% of them has also individual permit for treatment purposes. With the purpose of analyzing the regional distribution of the available resources in nuclear medicine, the country was divided into 7 geographical regions: City of Buenos Aires, Province of Buenos Aires, Pampeana, Cuyo, Northeast, Northwest and Patagonia. From the analysis of the gathered information it is possible to conclude that the nuclear medicine equipment as well as the personnel presents an irregular distribution, with a major concentration in the City of Buenos Aires and Province of Buenos Aires. The Northeast region presents the lowest number of Nuclear Medicine centers and the Patagonia region has the lowest number of nuclear medicine physicians with individual permits. The number of SPECT and gamma cameras is 8,65 per million of inhabitants. The information about the available resources in nuclear medicine presented in this paper and its comparison with the international available information provide elements for a better planning of the future activities in the area not only for the operators but also from the regulatory point of view. (author)

  15. Nuclear medicine at the crossroads

    International Nuclear Information System (INIS)

    Strauss, H.W.

    1996-01-01

    Many nuclear medicine procedures, originally developed more than 20 years ago, are now performed with new radiopharmaceuticals or instruments; it is therefore apposite to reappraise what we are doing and why we are doing it. The clinical utility of nuclear medicine is discussed with reference, by way of example, to gated blood pools scans and myocardial perfusion imaging; the importance of the referred population for the outcome of studies is stressed. Attention is drawn to the likelohood that the detection of ischemia would be enhanced by the administration of nitroglycerin prior to rest thallium injection. Emphasis is also placed on the increasing acceptance of dual-tracer studies. The significance of expression of p-glycoprotein by some tumors for sestamibi imaging is discussed, and advances in respect of fluorodeoxyglucose imaging are reviewed. The final section covers issues relating to the development of new procedures, such as the value of nuclear medicine in the detection and characterization of tissue oxygen levels and the possible future role of nuclear medicine in the management of sleeping and eating disorders. (orig.)

  16. Quality management audits in nuclear medicine practices

    International Nuclear Information System (INIS)

    2008-12-01

    An effective management system that integrates quality management (QM) is essential in modern nuclear medicine departments in Member States. The IAEA, in its Safety Standards Series, has published a Safety Requirement (GS-R-3) and a Safety Guide (GS-G-3.1) on management systems for all facilities. These publications address the application of an integrated management system approach that is applicable to nuclear medicine organizations as well. Quality management systems are maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, and to satisfy its customers. The IAEA has a long history of providing assistance in the field of nuclear medicine to its Member States. Regular quality audits and assessments are essential for modern nuclear medicine departments. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical and medical physics procedures. Aspects of radiation safety and patient protection should also be integral to the process. Such an approach ensures consistency in providing safe, quality and superior services to patients. Increasingly standardized clinical protocol and evidence based medicine is used in nuclear medicine services, and some of these are recommended in numerous IAEA publications, for example, the Nuclear Medicine Resources Manual. Reference should also be made to other IAEA publications such as the IAEA Safety Standards Series, which include the regulations for the safe transport of nuclear material and on waste management as all of these have an impact on the provision of nuclear medicine services. The main objective of this publication is to introduce a routine of conducting an

  17. Nuclear medicine, a proven partnership

    International Nuclear Information System (INIS)

    Henderson, L. A.

    2009-01-01

    Full text:Ultrasonography is the modality of choice for demonstrating many cystic structures within the body. However nuclear medicine is often able to demonstrate functional disturbance where ultrasound and conventional radiography are unsuccessful. A case is presented in which a 16 day old male child presented to nuclear medicine with a right upper quadrant cyst found in ultrasound with exact location equivocal. Determining the location and nature of the cyst was essential to the treatment team for patient management. A hepatobiliary study was performed and evidence of a choledochal cyst was found. In partnership with ultrasound, nuclear medicine was able to identify a possibly malignant structure and consequently patient management was determined.

  18. Nuclear medicine: the Philippine Heart Center experience

    International Nuclear Information System (INIS)

    Cancino, E.L.

    1994-01-01

    The following is a report of a three (3) months on-the-job training in Nuclear Medicine at the Nuclear Medicine Department of the Philippine Heart Center. The hospital has current generation nuclear medicine instruments with data processor and is capable of a full range of in vivo and in vitro procedures. Gamma camera is the principal instrument for imaging in nuclear medicine used in the Philippine Heart Center. Thyroid scanning procedure is being performed with these instruments. Also the cardiovascular procedures, the pulmonary, skeletal, renal and hepatobiliary procedures were being performed with the use of gamma camera. Special emphasis is on nuclear cardiology since the PHC attends primarily to cardiovascular patients. (auth.)

  19. Evaluations of Molecular Nuclear Medicine in pediatric urgencies; Evaluaciones de Medicina Nuclear Molecular en urgencias pediatricas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Duncker R, C [Departamento de Medicina Nuclear Molecular, Hospital Infantil de Mexico, Mexico D.F. (Mexico)

    2000-07-01

    Several diagnostic procedures of Molecular Nuclear Medicine are considered in first choice in clinical evaluation of patients with different illnesses. So, the gammagraphy is the diagnostic form more sensitive to detect alterations of the perfusion on organs and systems such as bones, heart, brain, lungs or kidneys. Also is possible to identify, localize, evaluate the activity of inflammatory processes such as cellulitis, arthritis, osteomyelitis, the abscesses and several primary or metastatic tumours before each other diagnostic technique. In this work is treated about the importance of treatments with radioactive materials have been an important reappearance in last years since with the present capacity to localize specifically intracellular processes (for example, synthesis of DNA) new gateways are opened to research which in coming years would be of great utility. (Author)

  20. Nuclear medicine at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Atkins, H.L.

    1976-01-01

    The Nuclear Medicine Program at the Brookhaven National Laboratory seeks to develop new materials and methods for the investigation of human physiology and disease processes. Some aspects of this research are related to basic research of how radiopharmaceuticals work. Other aspects are directed toward direct applications as diagnostic agents. It is likely that cyclotron-produced positron emitting nuclides will assume greater importance in the next few years. This can be attributed to the ability to label biologically important molecules with high specific activity without affecting biological activity, using 11 C, 13 N, and 15 O. Large quantities of these short-lived nuclides can be administered without excessive radiation dose and newer instrumentation will permit reconstructive axial tomography, providing truly quantitative display of distribution of radioactivity. The 122 Xe- 122 I generator has the potential for looking at rapid dynamic processes. Another generator, the 68 Ge- 68 Ga generator produces a positron emitter for the use of those far removed from cyclotrons. The possibilities for 68 Ga radiopharmaceuticals are as numerous as those for /sup 99m/Tc diagnostic agents

  1. Efficacy of clinical diagnostic procedures utilized in nuclear medicine. Technical progress report, 1 December 1981-30 November 1982

    International Nuclear Information System (INIS)

    Saenger, E.L.

    1982-07-01

    The efficacy of nuclear medicine diagnostic procedures was measured. Three levels of efficacy were defined. However, two different methods of evaluating efficacy itself were first compared. Using two methods, logistic regression and entropy-minimax pattern detection, substantial agreement was found between them in several clinical observations. (1) There are no attributes that indicate that any grouping of symptoms, signs, and laboratory findings is capable of suggesting that a patient does or does not have a pulmonary embolus. (2) The lung scan test is the only reliable method which indicates that a patient may have a pulmonary embolus or does not have a pulmonary embolus. (3) The validity of these conclusions and the ability to apply them widely to ongoing clinical practice is based on the prospective design of the Study which included an appropriate distribution of institutions by type, size, and geographic location. Also, the only judgement samples was that of the referring physician

  2. Practice of nuclear medicine in a developing country

    International Nuclear Information System (INIS)

    Hasan, M.M.; Karim, M.A.; Nahar, N.; Haque, M.M.

    2002-01-01

    For more than a half a century nuclear medicine is contributing in the field of medicine. Still nuclear medicine is not widely available in many countries. Especially in developing countries due to many a reasons nuclear medicine could not flourish in that way. Availability of radioisotope, high cost of instrument and sophistication of the branch are the three main reasons behind. Even the countries where nuclear medicine is functioning for quite a long time, the facilities for proper function are still not adequate. Training of manpower, maintenance of instruments, regular supply of isotopes and kit and cost effectiveness are some of the major problems. We have seen some fast developments in nuclear medicine in last few decades. Development of gamma detecting systems with SPECT, positron emission detector (PET), supported computer technology and introduction of some newer radiopharmaceuticals for functional studies are few of the examples. The developing countries also have a problem to go on parallel with these rapid development of nuclear medicine in other part of the world. In last few decades we have also witnessed development of CT, MRI, Ultrasound and other imaging modalities as our competitor. Specially for developing countries these have posed as a major challenge for nuclear medicine. A better understanding between developed and developing nations is the key point of todays ultimate success in any sector. For real development of nuclear medicine and to give the majority of the people the benefit of nuclear medicine a better and more active co-operation is needed between all the countries. The paper presents the difficulties and some practical problems of practicing nuclear medicine in a developing country. And also appeals for global co-operation to solve the problems for better interest of the subject

  3. Abstracts of the 4. Congress of the Brazilian Society of Biology and Nuclear Medicine

    International Nuclear Information System (INIS)

    1984-01-01

    All the activities about the congress are reported. The whole abstracts of 74 free-topics were presented. The subjects of the free-topics were:quality control in Nuclear Medicine, radiopharmacy and diagnostic techniques (scintiscanning, tomography, incorporation and extraction of radioisotopes and labelled compounds, radioimmunoassay) among other things. (M.A.C.) [pt

  4. Nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    Villadolid, Leland.

    1978-01-01

    This article traces the history of nuclear medicine in the country from the time the first radioisotope laboratory was set up by the Philippine General Hospital about 1955, to the not too satisfactory present facilities acquired by hospitals for diagnosis, treatment and investigation of diseases. It is in research, the investigation of disease that is nuclear medicine's most important area. The Philippine Atomic Energy Commission (PAEC) has pioneered in the conducting of courses in the medical uses of radioisotopes. The local training of nuclear manpower has been continued and updated and foreign fellowships are availed of through the cooperation of IAEA. Quite a number are already trained also in the allied fields that support the practice of nuclear medicine. However the brain drain has seriously affected the number of trained staff of medical units. Discussed and presented is the growth of the medical use of radioisotopes which are locally produced by PAEC. In order to benefit from the full advantage that nuclear medicine can do to a majority of Filipinos, the government should extend its financial support in acquiring such facilities to equip strategic hospitals in the country and support training programs. The Philippine has the expertise to start the expansion but only with adequate provision of funds will our capacity turn into reality. (RTD)

  5. Nuclear tele medicine; Telemedicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, L.; Hernandez, F.; Fernandez, R. [Departamento de Medicina Nuclear, Imagenologia Diagnostica, Xalapa, Veracruz (Mexico)

    2005-07-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  6. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  7. Modern nuclear medicine methods as a topic of biophysics in veterinary training at UVM in Kosice

    International Nuclear Information System (INIS)

    Stanicova, J.; Lohajova, L.

    2004-01-01

    Diagnostic and therapeutic application of ionising radiation is very important in all of branches of medicine including veterinary medicine. In veterinary training at University of Veterinary Medicine in Kosice (UVM), biophysics is a basic subject and it grants physical basis necessary for understanding subsequent subjects such as veterinary surgery, roentgenology, orthopedics. In view of this, traditional methods of radiology such as fluoroscopy, skiagraphy and tomography are explaining. The appearance and application of the theory so called reconstruction of image and also computers led to qualitatively new solutions via the development of modern methods in radiology. Explaining of physical principles, advantages or disadvantages of these new methods is also important in veterinary training although some of them do not use in veterinary practice yet. Two modern methods of nuclear medicine using in diagnostic (SPECT and PET) are discussed bellow. (authors)

  8. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    Science.gov (United States)

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011.

  9. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  10. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Paras, P.

    1978-01-01

    Quality assurance practices must be followed throughout the entire nuclear medicine process, from the initial decision to perform a particular procedure, through the interpretation and reporting of the results. The various parameters that can be defined and measured in each area must be monitored by quality control tests to assure the excellence of the total nuclear medicine process. The presentation will discuss each of the major areas of nuclear medicine quality control and their interaction as a part of the entire system. Quality control testing results and recommendations for measurements of radioactivity distribution will be described with emphasis on imaging equipment and dose calibrating instrumentation. The role of the health physicist in a quality assurance program will be stressed. (author)

  11. Draft report on the national seminar in nuclear medicine

    International Nuclear Information System (INIS)

    1977-01-01

    The proceedings of the seminar on nuclear medicine have been conducted in four main sessions. In the first session a review of the current status of clinical nuclear medicine in India is reviewed. The use of radioisotopes in thyroid function studies, central nervous systems, liver disorders, lung and bone imaging, renal function studies, dynamic function studies, gastroenterology haematology etc. are described. The existing facilities and the future needs for radioimmunoassay and radiotherapy are discussed. In Session 2, the existing facilities in nuclear medicine in different states in India are reviewed. In Session 3, the available resources in nuclear medicine are reviewed. Radiation protection procedures are outlined. Various nuclear instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, for use in nuclear medicine are briefly described. A list of radiopharmaceuticals developed by BARC and in current use, is given. The roles of the physicist, pharmacist and the nuclear medicine technologist in the hospitals having nuclear medicine units, are stressed. The importance of training and education for personnel in nuclear medicine and medical physics is pointed out. (A.K.)

  12. The medical physicist in a nuclear medicine department; El fisico medico en un departamento de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Z, F.E.; Gomez A, E. [Instituto nacional de Cancerologia, 14000 Mexico D.F. (Mexico)

    2007-07-01

    The diagnostic studies and therapeutic treatments carried out in a Nuclear Medicine department make use of radioactive material. For such a reason it becomes necessary to take a strict control in the reception, use and waste that are generated of the typical works inside the department. Also, work related with the quality control of the equipment dedicated to produce images and of those not image formers, need to carry out to guarantee its maximum performance; as well as quality of the diagnostic and of the therapy imparted in patients. Additionally its are needed to make originated works of the individual procedures to patient and of the acquisition of radioactive materials and removal of the waste or radioactive contaminations. Presently work the recommendations of the American College of Radiology (ACR), the European Federation of Organizations for Medical Physics (EFOMP) and of the Mexican Official Standards relating to the functions that should be observed in a Nuclear Medicine Department are exposed. The ACR and the EFOMP, conclude in their recommendations that the medical physicist fulfills with the suitable profile and likewise they describe in detail the actions and functions that he should supervise, to carry out, to document and to inform. (Author)

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... physician who has specialized training in nuclear medicine will interpret the images and send a report to your referring physician. top of page What are the benefits vs. risks? Benefits The information provided by nuclear ...

  14. Hybrid imaging, PET-CT and SPECT-CT: What impact on nuclear medicine education and practice in France?

    International Nuclear Information System (INIS)

    Mundler, O.

    2009-01-01

    To define the policy of our specialty with a consensus opinion, a questionnaire entitled 'hybrid imaging' was sent to practicing nuclear medicine specialist physicians in France to obtain their opinion on the impact of this recent method in training and in the practice of nuclear medicine and on the relations between nuclear medicine specialists and other medical imaging specialists. This questionnaire, written by the office of the French Society of Nuclear Medicine (F.S.N.M.) and molecular imaging, was divided into four parts: Profile and experience in hybrid imaging, Relations with radiologists, Practice of CT scans with hybrid equipment, and the Future of the specialty and of training in nuclear medicine. The response rate was 60%, i.e. 374 completed questionnaires. Overall, the responses were uniform, whatever the respondent's experience, type and place of practice. Regular participation in hybrid imaging practice was the reply provided by the majority of respondents. In terms of relations with radiologists, such contacts existed in over 85% of cases and are considered as being of high quality in over 90% of cases. The vast majority of practitioners believe that hybrid imaging will become the standard. Opinions on the diagnostic use of CT scans are divided, as well as their interpretation by a radiologist, a nuclear medicine specialist or by both. In the opinion of the vast majority, hybrid equipment systems should be managed by nuclear medicine specialists. With regard to the future, nuclear medicine should remain an independent specialty with enhanced training in morphological imaging and a residency training program whose length should be increased to 5 years. (author)

  15. Ninth Argentine congress on biology and nuclear medicine; fourth Southernmost sessions of ALASBIMN (Latin-American Association of Biology and Nuclear Medicine); first Spanish-Argentine congress on nuclear medicine; first Argentine sessions on nuclear cardiology

    International Nuclear Information System (INIS)

    1991-01-01

    This work deals with all the papers presented at the 9. Argentine congress on biology and nuclear medicine; IV Southernmost sessions of ALASBIMN; I Spanish-Argentine congress on nuclear medicine and I Sessions Argentine sessions on nuclear cardiology held in Buenos Aires, Argentina, from October 14 - 18, 1991

  16. Results of a national survey on nuclear medicine procedures

    International Nuclear Information System (INIS)

    Curti, A.R.; Gatica, N.A.; Melis, H.J.

    1998-01-01

    Full text: In 1997, the Nuclear Regulatory Authority of Argentina carried out a compilation of data on radiopharmaceuticals administered to patients in nuclear medicine procedures. Its aim was to get information on the radiopharmaceuticals that are used in different procedures and the activity administered to the patient, to assess the radiation exposure of the population and to contribute to a global survey of medical radiation usage and exposures conducted by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), by sending information of the country. The data compiled were analysed, and for the most frequent procedures, the mean activity administered, the standard deviation, the distribution of the number of procedures for different age groups, sex and radiopharmaceuticals were assessed. The radiation exposure for children and adults was estimated. For the main diagnostic examinations, the results of the survey were compared with specific values published in the Basic Safety Standards of the International Atomic Energy Agency (Safety Series No. 115, 1996). As a conclusion, it may be point out the importance of continuing with the compilation of this kind of information in order to identify emerging trends on the use of nuclear medicine procedures in Argentina and the activity of radiopharmaceuticals administered to the patients. (author) [es

  17. Physical bases of nuclear medicine

    International Nuclear Information System (INIS)

    Isabelle, D.B.; Ducassou, D.

    1975-01-01

    The physical bases of nuclear medicine are outlined in several chapters devoted successively to: atomic and nuclear structures; nuclear reactions; radioactiity laws; a study of different types of disintegration; the interactions of radiations with matter [fr

  18. Children in nuclear medicine

    International Nuclear Information System (INIS)

    Fischer, S.

    2002-01-01

    With each study in paediatric nuclear medicine one must try to reach a high quality standard with a minimum of radiation exposure to the child. This is true for the indication for the study and the interpretation of the results as well as the preparation, the image acquisition, the processing and the documentation. A continuous evaluation of all aspects is necessary to receive optimal, clinically relevant information. In addition it is important that the child keeps nuclear medicine in a good mind, especially when it has to come back for a control study. (orig.) [de

  19. Nuclear medicine training and practice in Turkey.

    Science.gov (United States)

    Ozcan, Zehra; Bozkurt, M Fani; Erbas, Belkıs; Durak, Hatice

    2017-05-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before.

  20. The integral formation of the university technologists in nuclear medicine

    International Nuclear Information System (INIS)

    Tossi, Mirta H.; Chwojnik, Abraham; Otero, Dino

    2003-01-01

    Full text: Nuclear medicine has contributed to notable benefits to the human health from the very beginning. The Radioisotopes techniques, as well as the ionizing radiation used, have evolved providing functional and anatomical information of the patient, through non-invasive methods. With reference to Radiological Protection, the justification of each one of these practices and its perfect execution is intimately related to the benefit provided to the patients. The National Atomic Energy Commission apart from favouring the scientific and technological development, considers indispensable to work thoroughly on the professional training of the prospective technologists. Our over twenty-year experience in organizing and delivering courses of Technologists in Nuclear Medicine, although based on a much simpler program, have allowed the Institute of Nuclear Studies of the Ezeiza Atomic Center to acquire the capacity of developing a program to train highly qualified Technologists in that field. This project represents a step forward of great importance to the graduates qualification, since they will have the endorsement of CNEA and of the Faculty of Medicine of the Maimonides University. These are the three outstanding characteristics agreed on: 1.- General Education, carried out by subjects closely related to the optimisation of the relation Technologist - Patient - Environment and represented by: Radiological Protection and Hospital Security, Psychology, Ethics and Professional Medical Ethics, Nursing, English, Hygiene and Hospital Security and Management of the Quality in Services of Health. 2.- Diagnostic Procedures: planned according to organs, apparatuses or systems which are horizontally crossed by the anatomy, physiology and physiopathology Preparation of the patient, indications, main counter indications, radiopharmaceuticals, mechanisms of incorporation, pathologies, clinical protocols, instrumentation, post radiopharmaceuticals administration imaging

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... radioactive energy that is emitted from the patient's body and converts it into an image. The gamma camera itself does not emit any ... bear denotes child-specific content. Related Articles and Media General Nuclear ... (Pediatric) Nuclear Medicine Videos related ...

  2. Nuclear medicine applications for the diabetic foot

    International Nuclear Information System (INIS)

    Hartshorne, M.F.; Peters, V.

    1987-01-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described

  3. Radioisotopes for nuclear medicine: the future

    International Nuclear Information System (INIS)

    Carr, S.W.

    1998-01-01

    Full text: Nuclear medicine occupies an important niche in the spectrum of medical capability. Since its initial application on a routine basis over 30 years ago its importance has continued to grow. For example, it is expected that over 430,000 Australians will have a nuclear medicine procedure in 1998. Current procedures using nuclear medicine are mainly concerned with diagnosis of oncology, cardiology and neurology. The main radioisotope used in nuclear medicine is Tc 99m, which is produced by a 'so called' Mo-Tc 99m generator. Other isotopes which currently find routine use are Ga-67, Th-201 and I-131. The selective uptakes by particular organs or structures is facilitated by the use of 'cold kits' which after the chemistry of the radioisotope many of the recent advances have been concerned with increasing the selectivity for a particular organ structure. Several of these new agents show increased selectivity using antibody a peptide recognition units

  4. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  5. Fetal dose in radiology, nuclear medicine and radiotherapy; Dosis fetal en radiodiagnostico, medicina nuclear y radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, F. J.; Martinez, L. C.; Candela, C.

    2015-07-01

    Sometimes irradiation of the fetus in the mother's womb is inevitable in the field of diagnostic radiology, nuclear medicine and radiotherapy, either through ignorance a priori status of this pregnancy, either because for clinical reasons it is necessary to perform the radiological study or treatment. In the first cases, know the dose at which it has exposed the fetus is essential when assessing the associated risk, while in the second it is when assessing the justification of the test. (Author)

  6. Recent trend of diagnostic radiology

    International Nuclear Information System (INIS)

    Kim, S.Y.; Kim, H.K.

    1979-01-01

    Present status and recent trend of diagnostic radiology have been reviewed. The interrelationships and Characteristics of various fields of radiology such as computed tomography, X-ray radiology, and nuclear medicine were discussed. The mevit of computed tomography and the promising use of short lived, accelerator produced radionuclides, and radiotherapy in nuclear medicine were emphasized. (author)

  7. Nuclear medicine training and practice in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Zehra [Ege University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey); Bozkurt, M. Fani; Erbas, Belkis [Hacettepe University School of Medicine, Department of Nuclear Medicine, Ankara (Turkey); Durak, Hatice [Dokuz Eyluel University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey)

    2017-05-15

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  8. Nuclear medicine training and practice in Turkey

    International Nuclear Information System (INIS)

    Ozcan, Zehra; Bozkurt, M. Fani; Erbas, Belkis; Durak, Hatice

    2017-01-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  9. The situation of chinese nuclear medicine technologists and strategy in future

    International Nuclear Information System (INIS)

    Zhang Yongxue

    2001-01-01

    Nuclear medicine technologists is an important part of nuclear medicine professionals, and play an important role in the progress of nuclear medicine. The professional quality of nuclear medicine technologists must adapt to the development of nuclear medicine. There is a relatively great gap between China mainland and developed countries in the field of nuclear medicine. In future, it is urgent to improve the professional quality and the educational level of nuclear medicine technologists

  10. In Vitro Evaluation of Molecular Tumor Targets in Nuclear Medicine: Immunohistochemistry Is One Option, but Under Which Conditions?

    Science.gov (United States)

    Reubi, Jean Claude

    2017-12-01

    The identification of new molecular targets for diagnostic and therapeutic applications using in vitro methods is an important challenge in nuclear medicine. One such method is immunohistochemistry, increasingly popular because it is easy to perform. This review presents the case for conducting receptor immunohistochemistry to evaluate potential molecular targets in human tumor tissue sections. The focus is on the immunohistochemistry of G-protein-coupled receptors, one of the largest families of cell surface proteins, representing a major class of drug targets and thus playing an important role in nuclear medicine. This review identifies common pitfalls and challenges and provides guidelines on performing such immunohistochemical studies. An appropriate validation of the target is a prerequisite for developing robust and informative new molecular probes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Computers for use in nuclear medicine

    International Nuclear Information System (INIS)

    Surova, H.

    1991-01-01

    Brief information is presented on computers for nuclear medicine that are currently available on the market. The treatment is based on print material by various manufacturers and commercial organizations and on the publication ''Nuclear Medicine Computers - A Personal Comparison Chart'' of May 1991, issued by the Reilly Publishing Company. (Z.S.)

  12. Nuclear tele medicine

    International Nuclear Information System (INIS)

    Vargas, L.; Hernandez, F.; Fernandez, R.

    2005-01-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  13. Current Status of The Korean Society of Nuclear Medicine

    International Nuclear Information System (INIS)

    Koh, Chang Soon

    1977-01-01

    As the application of nuclear medicine to clinics became generalized and it held an important position, the Korean Society of Nuclear Medicine was founded in 1961, and today it has become known as one of the oldest nuclear medicine societies not only to Asian nations but also to other advanced countries all over the world. Now it has 100 or so regular members composed of students of each medicine filed unlike other medical societies. Only nuclear medicine research workers are eligible for its membership. The Korean Society of Nuclear Medicine holds its regular general meeting and symposium twice per annom respectively in addition to occasional group gatherings and provincial lectures on nuclear medicine. With an eye to exchanging information on symposium, research and know-how, KSNM issued its initial magazine in 1967. Every year two editions are published. Year after year the contents of treatises are getting elevated with researches on each field including the early study on morphology-greatly improved both in quality and quantity. Of late, a minute and fixed quantity of various matters by dynamical research and radioimmunoassay of every kind has become visibly active. In particular, since KSNM, unlike other local societies, keeps close and frequent contact with the nuclear medicine researchers of world-wide fame, monographs by eminent scholars of the world are carried in its magazine now internationally and well received in foreign countries. Now the magazine has been improved to such an extent that foreign authors quote its contents. KSNM invited many a foreign scholar with a view to exchanging the knowledge of nuclear medicine. Sponsored by nuclear energy institute, the nuclear medicine symposium held in Seoul in October of 1966 was a success with Dr. Wagner participating, a great scholar of world wide fame: It was the first international symposium ever held in Korea, and the Korea Japan symposium held in Seoul 1971 was attended by all distinguished nuclear

  14. Digital filtering in nuclear medicine

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, S.

    1982-01-01

    Digital filtering is a powerful mathematical technique in computer analysis of nuclear medicine studies. The basic concepts of object-domain and frequency-domain filtering are presented in simple, largely nonmathemaical terms. Computational methods are described using both the Fourier transform and convolution techniques. The frequency response is described and used to represent the behavior of several classes of filters. These concepts are illustrated with examples drawn from a variety of important applications in nuclear medicine

  15. The state of the art of nuclear medicine in 1980

    International Nuclear Information System (INIS)

    Tamat, S.R.

    1982-01-01

    The second congress of World Federation of Nuclear Medicine and Biology proved that nuclear medicine is returning to physiology. Around 1951, when motorized detector was introduced and when GM tube was replaced by scintillation crystal detector, physiologic nuclear medicine moved to anatomic nuclear medicine. Since 1970, when research on cardiology developed, nuclear medicine has been returning to physiology. Since 1963 Kuhl has been doing research on quantitative tomography which develops to emission computerized tomography emphasizing the physiological aspects of medicine. The recent contribution of nuclear medicine to medical science is the concept that human body is a unity of dynamic structure consisting of millions of cubes moving physio-chemically. (RUW)

  16. Cost Implications of Value-Based Pricing for Companion Diagnostic Tests in Precision Medicine.

    Science.gov (United States)

    Zaric, Gregory S

    2016-07-01

    Many interpretations of personalized medicine, also referred to as precision medicine, include discussions of companion diagnostic tests that allow drugs to be targeted to those individuals who are most likely to benefit or that allow treatment to be designed in a way such that individuals who are unlikely to benefit do not receive treatment. Many authors have commented on the clinical and competitive implications of companion diagnostics, but there has been relatively little formal analysis of the cost implications of companion diagnostics, although cost reduction is often cited as a significant benefit of precision medicine. We investigate the potential impact on costs of precision medicine implemented through the use of companion diagnostics. We develop a framework in which the costs of companion diagnostic tests are determined by considerations of profit maximization and cost effectiveness. We analyze four scenarios that are defined by the incremental cost-effectiveness ratio of the new drug in the absence of a companion diagnostic test. We find that, in most scenarios, precision medicine strategies based on companion diagnostics should be expected to lead to increases in costs in the short term and that costs would fall only in a limited number of situations.

  17. The developments and applications of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Fang Shengwei; Xi Wang; Zhang Hong

    2009-01-01

    Molecular nuclear medicine including PET and SPECT is one of the most important parts of the molecular imaging. The combinations of molecular unclear medicine with CT, MRI, ultrasound or optical imaging and synthesis of multimodality radiopharmaceuticals are the major trends of the development of nuclear medicine. Molecular nuclear medicine has more and more and more important value on the monitoring of response to biology involved gene therapy or stem cell therapy and the developments of new drug. (authors)

  18. Recommendations to reduce hand exposure for standard nuclear medicine procedures

    International Nuclear Information System (INIS)

    Sans-Merce, M.; Ruiz, N.; Barth, I.; Carnicer, A.; Donadille, L.; Ferrari, P.; Fulop, M.; Ginjaume, M.; Gualdrini, G.; Krim, S.; Mariotti, F.; Ortega, X.; Rimpler, A.; Vanhavere, F.; Baechler, S.

    2011-01-01

    The optimization of the extremity dosimetry of medical staff in nuclear medicine was the aim of the Work Package 4 (WP4) of the ORAMED project, a Collaborative Project (2008–2011) supported by the European Commission within its 7th Framework Programme. Hand doses and dose distributions across the hands of medical staff working in nuclear medicine departments were evaluated through an extensive measurement program involving 32 hospitals in Europe and 139 monitored workers. The study included the most frequently used radionuclides, 99m Tc- and 18 F-labelled radiopharmaceuticals for diagnostic and 90 Y-labelled Zevalin ® and DOTATOC for therapy. Furthermore, Monte Carlo simulations were performed in different predefined scenarios to evaluate separately the efficacy of different radiation protection measures by comparing hand dose distributions according to various parameters. The present work gives recommendations based on results obtained with both measurements and simulations. This results in nine practical recommendations regarding the positioning of the dosemeters for an appropriate skin dose monitoring and the best protection means to reduce the personnel exposure.

  19. TH-AB-206-02: Nuclear Medicine Theronostics: Wave of the Future; Pre-Clinical and Clinical Opportunities

    International Nuclear Information System (INIS)

    Delpassand, E.

    2016-01-01

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describes preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.

  20. TH-AB-206-02: Nuclear Medicine Theronostics: Wave of the Future; Pre-Clinical and Clinical Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Delpassand, E. [Excel Diagnostic & Nuclear Oncology Center, Houston, TX (United States)

    2016-06-15

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describes preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.

  1. Breast cancer. Nuclear medicine in diagnosis and therapeutic options

    International Nuclear Information System (INIS)

    Bombardieri, E.; Bonadonna, G.; Gianni, L.

    2008-01-01

    Brings up-to-date nuclear medical knowledge in breast cancer. Includes vital information on advances in the field of diagnosis. Supplies data on the development of some new modalities. Offers a general overview of the available tools for breast cancer treatment. There can never be enough material in the public domain about cancers, and particularly breast cancer. This book adds much to the literature. It provides general information on breast cancer management and considers all new methods of diagnosis and therapy. It focuses on nuclear medicine modalities by comparing their results with other diagnostic and therapeutic approaches. The coverage provides readers with up-to-date knowledge on breast cancer as well as information on the advances in the field of diagnosis. It also details data on the development of some new modalities and provides a general overview of the available tools for breast cancer treatment. In sum, it is a hugely useful text that performs a dual function. Not only does it provide practitioners of all descriptions with a vital overview of the current state of play in breast cancer treatment, but it also lays out in a beautifully structured way the latest diagnostic methodologies. (orig.)

  2. Distribution of nuclear medicine service in Brazil

    International Nuclear Information System (INIS)

    Silva, Ana Carolina Costa da; Duarte, Alessandro; Santos, Bianca Maciel dos

    2011-01-01

    The Brazil does not posses a good distribution of nuclear medicine service por all his territory. This paper shows the difference among country regions as far the number of clinics of nuclear medicine as is concerning, and also doctors licensed in the area and radioprotection supervisors, both licensed by the Brazilian Nuclear Energy Commission (CNEN)

  3. Computers in nuclear medicine: introductory concepts

    International Nuclear Information System (INIS)

    Weber, D.A.

    1978-01-01

    Computers play an important role in image and data processing in nuclear medicine. Applications extend from relatively simple mathematical processing of in vitro specimen assays to more sophisticated image reconstruction procedures for emission tomography. The basic concepts and terminology associated with computer applications in image and data processing in nuclear medicine are presented here

  4. Nuclear medicine imaging. An encyclopedic dictionary

    International Nuclear Information System (INIS)

    Thie, Joseph A.

    2012-01-01

    The rapidly growing and somewhat complex area of nuclear medicine imaging receives only limited attention in broad-based medical dictionaries. This encyclopedic dictionary is intended to fill the gap. More than 400 entries of between one and three paragraphs are included, defining and carefully explaining terms in an appropriate degree of detail. The dictionary encompasses concepts used in planar, SPECT, and PET imaging protocols and covers both scanner operations and popular data analysis approaches. In spite of the mathematical complexities in the acquisition and analysis of images, the explanations given are kept simple and easy to understand; in addition, many helpful concrete examples are provided. Nuclear Medicine Imaging: An Encyclopedic Dictionary will be ideal for those who wish to obtain a rapid grasp of a concept beyond a definition of a few words but do not want to resort to a time-consuming search of the reference literature. The almost tutorial-like style accommodates the needs of students, nuclear medicine technologists, and varieties of other medical professionals who interface with specialists within nuclear medicine.

  5. Quality control of nuclear medicine instruments, 1991

    International Nuclear Information System (INIS)

    1996-12-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of 'Quality Control of Nuclear Medicine Instruments', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems

  6. Quality control of nuclear medicine instruments 1991

    International Nuclear Information System (INIS)

    1991-05-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of ''Quality Control of Nuclear Medicine Instruments'', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems. Figs and tabs

  7. Radiopharmaceutical prescription in nuclear medicine departments

    International Nuclear Information System (INIS)

    Biechlin-Chassel, M.L.; Lao, S.; Bolot, C.; Francois-Joubert, A.

    2010-01-01

    In France, radiopharmaceutical prescription is often discussed depending to which juridical structure the nuclear medicine department is belonging. According to current regulation, this prescription is an obligation in a department linked to hospital with a pharmacy department inside. But situation remains unclear for independent nuclear medicine departments where physicians are not constrained to prescribe radiopharmaceuticals. However, as radiographers and nurses are only authorized to realize theirs acts in front of a medical prescription, one prescription must be realized. Nowadays, computerized prescription tools have been developed but only for radiopharmaceutical drugs and not for medical acts. In the aim to achieve a safer patient care, the prescription regulation may be applied whatever differences between nuclear medicines departments. (authors)

  8. 22. French language symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1981-01-01

    The 80 papers presented in summary form at the Congress are given. These papers cover three main topics: broncho-pulmonary investigation with radioaerosols; role of nuclear medicine in pharmacokinetics; role of Nuclear Medicine in metabolic investigations [fr

  9. The 3rd Sino-Japan nuclear medicine conference

    International Nuclear Information System (INIS)

    1999-01-01

    The 3rd Sino-Japan Nuclear Medicine Conference was hold on May 11-13, 1999 in Xi'an of China by Chinese Society of Nuclear Medicine, Japanese Society of Nuclear Medicine, Chinese Medicine Association and Japan-China Medicine Association. 62 articles were published in the proceeding of the conference. The contents of the articles include development and application of the radioisotopes (such as Tc-99, I-125, I-131, F-18, In-111, Tl-201, Ga-67, Sm-153, Re-188) and its radiopharmaceuticals, but application also include radiotherapy and diagnosis in the oncology and pathology by SPECT and PET

  10. Report on the second Congress of the Russian nuclear medicine society and on International conference Current problems of nuclear medicine and radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lishmanov, Yu.B.; Chernov, V.I.

    2001-01-01

    Information on the work of Second Congress of Russian Nuclear Medicine Society and International Conference - Current problems of nuclear medicine and radiopharmaceuticals, - held in Obninsk in October, 2000, is adduced. Reports presented in the conference are dedicated to various aspects of application of radionuclide methods to cardiology, angiology, oncology, surgery, hematology, endocrinology, pediatrics and neurology. Problems in the development of radiopharmaceutical, training and skill advancement of experts, dosimetry and radiation safety in nuclear medicine were discussed. Congress considered the organizational problems in Russian nuclear medicine [ru

  11. Noble gases in nuclear medicine

    International Nuclear Information System (INIS)

    Calderon, M.; Burdine, J.A.

    1973-01-01

    Radioactive noble gases have made a significant contribution to diagnostic nuclear medicine. In the area of regional assessment of pulmonary function, 133 Xe has had its greatest clinical impact. Following a breath of 133 Xe gas, pulmonary ventilation can be measured using a scintillation camera or other appropriate radiation detector. If 133 Xe dissolved in saline is injected intravenously, both pulmonary capillary perfusion and ventilation can be measured since 90 percent of the highly insoluble xenon escapes into the alveoli during the first passage through the lungs. Radionuclide pulmonary function tests provide the first qualitative means of assessing lung ventilation and blood flow on a regional basis, and have recently been extended to include quantification of various parameters of lung function by means of a small computer interfaced to the scintillation camera. 133 Xe is also used in the measurement of organ blood flow following injection into a vessel leading into an organ such as the brain, heart kidneys, or muscles

  12. A DICOM based PACS for nuclear medicine

    International Nuclear Information System (INIS)

    Lassmann, M.; Reiners, C.

    2002-01-01

    The installation of a radiology information system (RIS) connected to a hospital information system (HIS) and a picture archiving and communications system (PACS) seems mandatory for a nuclear medicine department in order to guarantee a high patient throughput. With these systems a fast transmission of reports, images to the in- and out-patients' wards and private practitioners is realized. Therefore, since April 2000, at the department of nuclear medicine of the university of Wuerzburg a completely DICOM based PACS has been implemented in addition to the RIS. With this system a DICOM based workflow is realized throughout the department of nuclear medicine for reporting and archiving. The PACS is connected to six gamma-cameras, a PET scanner, a bone densitometry system and an ultrasound device. The volume of image data archived per month is 4 GByte. Patient demographics are provided to the modalities via DICOM-Worklist. With these PACS components a department specific archive purely based on DICOM can be realized. During the installation process problems occurred mainly because of the complex DICOM standard for nuclear medicine. Related to that is the problem that most of the software implementations still contain bugs or are not adapted to the needs of a nuclear medicine department (particularly for PET). A communication software for the distribution of nuclear medicine reports and images based on techniques used for the worldwide web is currently tested. (orig.) [de

  13. Computer applications in nuclear medicine

    International Nuclear Information System (INIS)

    Lancaster, J.L.; Lasher, J.C.; Blumhardt, R.

    1987-01-01

    Digital computers were introduced to nuclear medicine research as an imaging modality in the mid-1960s. Widespread use of imaging computers (scintigraphic computers) was not seen in nuclear medicine clinics until the mid-1970s. For the user, the ability to acquire scintigraphic images into the computer for quantitative purposes, with accurate selection of regions of interest (ROIs), promised almost endless computational capabilities. Investigators quickly developed many new methods for quantitating the distribution patterns of radiopharmaceuticals within the body both spatially and temporally. The computer was used to acquire data on practically every organ that could be imaged by means of gamma cameras or rectilinear scanners. Methods of image processing borrowed from other disciplines were applied to scintigraphic computer images in an attempt to improve image quality. Image processing in nuclear medicine has evolved into a relatively extensive set of tasks that can be called on by the user to provide additional clinical information rather than to improve image quality. Digital computers are utilized in nuclear medicine departments for nonimaging applications also, Patient scheduling, archiving, radiopharmaceutical inventory, radioimmunoassay (RIA), and health physics are just a few of the areas in which the digital computer has proven helpful. The computer is useful in any area in which a large quantity of data needs to be accurately managed, especially over a long period of time

  14. Pulmonary explorations in nuclear medicine

    International Nuclear Information System (INIS)

    Beck, C.

    1987-01-01

    Ten years ago specialists in Nuclear Medicine from the South of France formed an Association called ACOMEN. The objectives were to create a permanent exchange of ideas between members and a close collaboration with physicians. The group objectives have led to a combination of efforts on the behalf of each one to clarify our techniques for physicians having recourse to this speciality as well as the various categories of students passing through the Nuclear Medicine Departments. Different groups within the ACOMEN were assigned to specific subjects. Each group was in charge of building the framework of a certain topic, which was then illustrated by selected documents contributed by all members. A slide collection, complete with an explanatory booklet is the final result of this collaboration. Thus anyone concerned in any way, with nuclear medicine, is able to quickly become familiar with the techniques of the speciality, to be aware of its possibilities and its limitations and to update his hnowledge. One realizes that the first theme selected was not the easiest; pulmonary radionuclide explorations are, as everyone knows, variable and even personalized. However, the choice was deliberate. The difficulty should stimulate those responsible for the other themes as well as the people working with them. There is already a slide collection available to anyone who wishes to learn about the use of nuclear medicine in the diagnosis of respiratory diseases [fr

  15. Quality control in nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2007-01-01

    Nuclear medicine comprises diagnosis and therapy of the diseases with radiopharmaceuticals. The ambition of all specialists in our country is their activity to reach European standards. In this connection, a Commission for external audit was formed to evaluate the quality of work in the centers of nuclear medicine. This Commission create a long-lasting programme based on the objective European criteria and the national standard of nuclear medicine, having in mind to increase quality of the work and the expert evaluation of activity in every center. The program comprises measures for quality control of instrumentation, radiopharmaceuticals, performed investigations, obtained results and the whole organization from the receiving of the isotopes to the results of the patients. The ambition is most of the centers to fulfill the requirements. As a conclusion it could be said that not only the quality of everyday nuclear medicine work is enough to increase the prestige of the specialty. It is also necessary we to have understanding expert and financial support from corresponding institutions, incl. Ministry of health for a delivery of a new, contemporary instrumentation with new possibilities. Thus it would be possible Bulgarian patients to reach the high technology apparatuses for an early functional diagnosis of the diseases and optimal treatment, which possibility have the patients from the developed countries. (author)

  16. Radiation exposure of workers in nuclear medicine

    International Nuclear Information System (INIS)

    Bujnova, A.

    2008-01-01

    Nuclear medicine is an interdisciplinary department that deals with diagnosis and therapy using open sources. Therefore workers in nuclear medicine are in daily contact with ionizing radiation and thus it is essential to monitor a radiation load. Each work must therefore carry out monitoring of workers. It monitors compliance with the radiation limits set by law, allows an early detection of deviations from normal operation and to demonstrate whether the radiation protection at the workplace is optimized. This work describes the principles of monitoring of workers in nuclear medicine and monitoring methods for personal dosimetry. In the next section the author specifically deals with personal dosimetry at the Department of Nuclear Medicine St. Elizabeth Cancer Institute, Bratislava (KNM-Ba-OUSA). The main part of the work is to evaluate the results of a one-year monitoring of radiation workers KNM-Ba-OUSA. (author)

  17. Lessons from other areas of medical imaging - nuclear medicine

    International Nuclear Information System (INIS)

    McCready, V.R.

    1981-01-01

    Ultrasound and nuclear medicine are similar in that they both have been developed for clinical use in the past decade. Unlike X-ray techniques the success or failure of ultrasound and nuclear medicine depend more upon both the operator and the method of display. Since both ultrasound and nuclear medicine use relatively complicated methods of gathering and displaying information some of the lessons learnt during the development of nuclear medicine can be equally applied to ultrasound techniques. (Auth.)

  18. Diagnostic ultrasound use in physiotherapy, emergency medicine, and anaesthesiology

    Energy Technology Data Exchange (ETDEWEB)

    McKiernan, Sharmaine [School of Health Sciences, University of Newcastle, Callagham, NSW 2308 (Australia)], E-mail: sharmaine.mckiernan@newcastle.edu.au; Chiarelli, Pauline; Warren-Forward, Helen [School of Health Sciences, University of Newcastle, Callagham, NSW 2308 (Australia)

    2010-05-15

    Background: Diagnostic ultrasound is traditionally and extensively used within the radiology department. However in recent years its use has expanded outside this traditional area into health professions such as physiotherapy, emergency medicine and anaesthesiology. Purpose: The radiology community needs to be aware of the expansion of use of diagnostic ultrasound. This article starts this exploration in the health professions mentioned, however it is acknowledged that diagnostic ultrasound use goes beyond what is covered in this article. As diagnostic ultrasound is a user dependant modality and the outcome of an examination is largely influenced by the skill and experience of the operator, the radiology community should take a guiding role in its use, training and protocol development for health professionals. Method: This article explores the literature on the use of diagnostic ultrasound within physiotherapy, emergency medicine and anaesthesiology. Literature was searched for on the databases Medline, Cinahl and Embase. Results: Diagnostic ultrasound is being used in health professions such as physiotherapy, where it is being used to provide biofeedback to patients on contraction of abdominal and pelvic floor muscles; emergency medicine, for the investigation of free fluid within the abdomen of a trauma patient and anaesthesiology, for the placement of catheters and nerve blocks. Conclusion: As members of the radiology community are considered experts in the field, they need to take the lead to guide and mentor the other health professionals who are now using the modality. To be able to achieve this they must have an understanding of what these professions are using the modality for.

  19. Diagnostic ultrasound use in physiotherapy, emergency medicine, and anaesthesiology

    International Nuclear Information System (INIS)

    McKiernan, Sharmaine; Chiarelli, Pauline; Warren-Forward, Helen

    2010-01-01

    Background: Diagnostic ultrasound is traditionally and extensively used within the radiology department. However in recent years its use has expanded outside this traditional area into health professions such as physiotherapy, emergency medicine and anaesthesiology. Purpose: The radiology community needs to be aware of the expansion of use of diagnostic ultrasound. This article starts this exploration in the health professions mentioned, however it is acknowledged that diagnostic ultrasound use goes beyond what is covered in this article. As diagnostic ultrasound is a user dependant modality and the outcome of an examination is largely influenced by the skill and experience of the operator, the radiology community should take a guiding role in its use, training and protocol development for health professionals. Method: This article explores the literature on the use of diagnostic ultrasound within physiotherapy, emergency medicine and anaesthesiology. Literature was searched for on the databases Medline, Cinahl and Embase. Results: Diagnostic ultrasound is being used in health professions such as physiotherapy, where it is being used to provide biofeedback to patients on contraction of abdominal and pelvic floor muscles; emergency medicine, for the investigation of free fluid within the abdomen of a trauma patient and anaesthesiology, for the placement of catheters and nerve blocks. Conclusion: As members of the radiology community are considered experts in the field, they need to take the lead to guide and mentor the other health professionals who are now using the modality. To be able to achieve this they must have an understanding of what these professions are using the modality for.

  20. The current uses of radiation in medicine

    International Nuclear Information System (INIS)

    Shrimpton, P.C.

    2001-01-01

    Ionizing radiation is firmly established as an essential tool for diagnosis and therapy in medicine, although patterns of use vary widely around the world. Diagnostic examinations are conducted mainly with X rays (diagnostic radiology) and less commonly by administering radiopharmaceuticals to patients (nuclear medicine). Radiotherapy is mostly carried out using external beams of radiation (teletherapy), although some patients receive direct applications of sealed radionuclide sources (brachytherapy) or therapeutic administrations of radiopharmaceuticals. Global data from the United Nations Scientific Committee on the Effects of Atomic Radiation indicate an annual total of about 2500 million diagnostic radiological examinations in 1996: 78% involving medical X rays (at a mean rate of 330 per 1000 world population), 21% involving dental X rays (mean rate 90 per 1000) and only 1% involving nuclear medicine (mean rate 5.6 per 1000). Over 90% of the estimated annual total of about 5.5 million complete courses of radiation treatment are conducted by teletherapy or brachytherapy, with mean rates of 0.8 and 0.07 per 1000 world population, respectively; radiopharmaceuticals are used in only 7% of all treatments (mean rate 0.065 per 1000). Over three quarters of all diagnostic procedures and over half of all treatments occur in developed countries, which collectively represent only one quarter of the world population. The general global trend is for increasing numbers of procedures. The paper discusses the current uses of radiation in medicine, including diagnostic radiology, diagnostic nuclear medicine and radiotherapy. (author)

  1. Nuclear Medicine Techniques in Haematological Research: Our Experience

    International Nuclear Information System (INIS)

    Maktouf, C.; Bounemra, A. B.; Elbedoui, J.; Bchir, F.; Louzir, H.; Karoui, M.; Dellagi, K.

    2007-01-01

    Abstract Nuclear diagnostic techniques have revolutionized medicine in its different specialties, among them hematology. This is, by the more relevant routine procedures of diagnostic as well as by future trends in this field, in-vivo research and clinical applications at the biochemical level. We report a part of our experience by the use in vitro and in vivo established nuclear medicine techniques, in evaluating hematological disease for clinical research that will lead to the basic research. The first study is megaloblastic anemia in which we report a prospective study from Tunisia, northern Africa, of 478 patients with megaloblastic anemia recruited over three years period. Etiologic investigation using cobalamin and folates measurements and the Schilling test revealed that folate deficiency was very uncommon and that 95% of patients had cobalamin deficiency that was the consequence of pernicious anemia (PA) in 87%. Patients with PA had a median age at presentation of 45.5 years with 21.5% of cases occurring in patients younger than 30 years. Patients less than 20 years old should be specifically investigated for genetic defect in cobalamin absorption. In the second study, the red cell mass was determined following labeling the red blood cells with either sodium radiochromate (51Cr) and the measurement of Plasma Volume is based on dilution of the injected radioiodine (125I)-labeled human serum albumin in the blood circulation (2,3). It is important to make this differentiation, thus our patients will fulfilled the criteria of the Polycythemia Vera Study Group, and therefore we will be able to evaluate serum VEGF levels in patients with Polycythemia Vera, secondary polycythemia and idiopatic polycythemia in an attempt to investigate the involvement and significance of this cytokine in these haematological disorders.

  2. Knowledge acquisition for nuclear power plant unit diagnostic system

    International Nuclear Information System (INIS)

    Li Xiaodong; Xi Shuren

    2003-01-01

    The process of acquiring knowledge and building a knowledge base is critical to realize fault diagnostic system at unit level in a nuclear power plant. It directly determines whether the diagnostic system can be applied eventually in a commercial plant. A means to acquire knowledge and its procedures was presented in this paper for fault diagnostic system in a nuclear power plant. The work can be carried out step by step and it is feasible in a commercial nuclear power plant. The knowledge base of the fault diagnostic system for a nuclear power plant can be built after the staff finish the tasks according to the framework presented in this paper

  3. Research and career opportunities for chemists in nuclear medicine

    International Nuclear Information System (INIS)

    Welch, M.J.

    1989-01-01

    Two recent publications [Training Requirements for Chemists in Nuclear Medicine, Nuclear Industry, and Related Areas: Report of a Workshop National Academy Press, Washington, D.C., 1988, and Report of the Society of Nuclear Medicine Manpower Committee, Journal of Nuclear Medicine, January, 1989] have emphasized the opportunities for Chemists in Nuclear Medicine. These opportunities exist in Medical Centers, the Radiopharmaceutical Drug Industry as well as the Ethical Drug Industry of particular importance of the need for organic and inorganic chemists with knowledge and experience in radiochemistry to develop and prepare the radiopharmaceuticals needed for the Nuclear Medicine community. The number of positions available at present and anticipated in the future will be compared and the number of training programs listed. Examples of the types of opportunities in this area will be given

  4. Nuclear Medicine on the net

    International Nuclear Information System (INIS)

    Graney, K.; Lin, P.C.; Chu, J.; Sathiakumur, C.

    2003-01-01

    Full text: To gain insight into Internet usage as a potential means of communicating with clinicians. Method: 200 clinicians within the South Western Sydney Health Area were surveyed by mail. Questionnaire details included Internet access, frequency of access, interest in department web site, suitability of content and interest in electronic bookings. The total response rate was 37% (74/200). General Practitioners comprised 46% of the respondents, and specialists 54%. All respondents had access to the Internet (44% from home only, 8% from work, 48% from both locations), with 57% accessing the Web daily. There was a high overall interest by respondents in accessing a Nuclear medicine web site, particularly for information and results, but a relative reluctance to consider electronic bookings. The following table outlines the respondents in detail. Our results indicate that a Nuclear Medicine web site has the potential to be an effective means of communicating with clinicians. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  5. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  6. Checklists for quality assurance and audit in nuclear medicine

    International Nuclear Information System (INIS)

    Williams, E.D.; Harding, L.K.; McKillop, J.H.

    1989-01-01

    A series of checklists are given which aim to provide some guidance to staff in determining whether their working procedures in nuclear medicine are likely to produce a good service and avoid mistakes. The checklists relate to the special equipment used in nuclear medicine departments, radiopharmaceuticals, nuclear medicine staff, services to medical and other hospital staff and finally the service to patients. The checklists are relevant to an average nuclear medicine department performing less than 2000 imaging studies per year. (U.K.)

  7. Highlights of articles published in annals of nuclear medicine 2016

    International Nuclear Information System (INIS)

    Jadvar, Hossein

    2017-01-01

    This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging. (orig.)

  8. Highlights of articles published in annals of nuclear medicine 2016

    Energy Technology Data Exchange (ETDEWEB)

    Jadvar, Hossein [University of Southern California, Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, Los Angeles, CA (United States)

    2017-10-15

    This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging. (orig.)

  9. Advance in study of intelligent diagnostic method for nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Gang; Yang Li

    2008-01-01

    The advance of research on the application of three types of intelligent diagnostic approach based on neural network (ANN), fuzzy logic and expert system to the operation status monitoring and fault diagnosis of nuclear power plant (NPP) was reviewed. The research status and characters on status monitoring and fault diagnosis approaches based on neural network, fuzzy logic and expert system for nuclear power plant were analyzed. The development trend of applied research on intelligent diagnostic approaches for nuclear power plant was explored. The analysis results show that the research achievements on intelligent diagnostic approaches based on fuzzy logic and expert system for nuclear power plant are not much relatively. The research of intelligent diagnostic approaches for nuclear power plant concentrate on the aspect of operation status monitoring and fault diagnosis based on neural networks for nuclear power plant. The advancing tendency of intelligent diagnostic approaches for nuclear power plant is the combination of various intelligent diagnostic approaches, the combination of neural network diagnostic approaches and other diagnostic approaches as well as multiple neural network diagnostic approaches. (authors)

  10. Quality assurance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Soni, P.S.

    1998-01-01

    Quality assurance in nuclear medicine refers collectively to all aspects of a nuclear medicine programme that may contribute directly or indirectly to the quality of the results obtained. For examples, patients scheduling; preparation and dispensing of radiopharmaceutical; the protection of patients, staff and the general public against radiation hazards and accidents caused by faulty instruments; methodology, data interpretation and record keeping

  11. Mentoring and the Nuclear Medicine Technologist.

    Science.gov (United States)

    Burrell, Lance

    2018-06-08

    The goal of this article is to give an overview of mentoring for nuclear medicine technologists (NMT). Mentoring is an integral part of the training and practice in the field of nuclear medicine technology. There is a great need for NMTs to continue involvement in mentorship so that we can develop and maintain the talent and leadership that the field needs. In this article, definitions of mentorship will be provided. Then, how mentoring can work; including different methods and techniques will be covered. Next, the benefits of mentoring will be discussed. Finally, advice for improved application will be presented. Throughout, this article will discuss how mentoring applies to the NMT. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Nuclear techniques in medicine

    International Nuclear Information System (INIS)

    Basson, J.K.

    1984-01-01

    The use of nuclear techniques in medicine has, also in South Africa, increased enormously, especially as regards diagnosis and reseach. In 1983 in vivo tests with radioisotopes were carried out and also in vitro tests, mainly by radioimmunoassay. Therapy with open and sealed radioactive sources was concentrated mainly on cancer treatments. In 1983 NUCOR supported 83 research projects in the life sciences. Imaging of organs or tissues in the body with nuclear techniques has developed into the most important application of nuclear medicine, with the development of even more specific labelled compounds as the main objective. Radioimmunoassay is at an exciting watershed, now that labelled monoclonal antibodies with high specificity for early diagnosis (also in cancer) and even localised radiotherapy have become available. The establishment of the 200 MeV open-sector cyclotron by the National Accelerator Centre also for medical purposes will, in addition to the large-scale production of the protonrich isotopes, also make a substantial contribution to radiotherapy with nuclear particles such as neutrons, protons and helium-3

  13. Nuclear medicine and imaging research: instrumentation and quantitative methods of evaluation. Comprehensive progress report, January 1, 1980-January 14, 1983

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.C.

    1982-07-01

    Progress is reported for the period January 1980 through January 1983 in the following project areas: (1) imaging systems in nuclear medicine and image evaluation; and (2) methodology for quantitative evaluation of diagnostic performance

  14. Nuclear Medicine Imaging Devices. Chapter 11

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, M. A.; Frey, E. C. [Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD (United States)

    2014-12-15

    Imaging forms an important part of nuclear medicine and a number of different imaging devices have been developed. This chapter describes the principles and technological characteristics of the main imaging devices used in nuclear medicine. The two major categories are gamma camera systems and positron emission tomography (PET) systems. The former are used to image γ rays emitted by any nuclide, while the latter exploit the directional correlation between annihilation photons emitted by positron decay. The first section of this chapter discusses the principal components of gamma cameras and how they are used to form 2-D planar images as well as 3-D tomographic images (single photon emission computed tomography (SPECT)). The second section describes related instrumentation that has been optimized for PET data acquisition. A major advance in nuclear medicine was achieved with the introduction of multi-modality imaging systems including SPECT/computed tomography (CT) and PET/CT. In these systems, the CT images can be used to provide an anatomical context for the functional nuclear medicine images and allow for attenuation compensation. The third section in this chapter provides a discussion of the principles of these devices.

  15. 1. A brief history of nuclear medicine

    International Nuclear Information System (INIS)

    Dienstbier, Z.

    1989-01-01

    The milestones of history of nuclear medicine are dealt with. A brief account is given of the history of nuclear medicine abroad, and a more in-depth treatment is devoted to Czechoslovakia, where the beginning of this branch of science dates to 1951. (Z.S.)

  16. Bringing cancer care closer to home: Mauritania opens first nuclear medicine centre

    International Nuclear Information System (INIS)

    Omar, Yusuf

    2015-01-01

    The opening of the Islamic Republic of Mauritania’s first ever nuclear medicine centre with IAEA support in late 2014 will lead to improved access to modern diagnostics and treatment, as well as lower costs. The new facility is part of the country’s National Oncology Centre, which opened in 2010, with support from the IAEA. The centres offer comprehensive services in diagnosing, treating and managing cancer and other diseases in Mauritania and the surrounding region.

  17. Diagnostic Imaging Workshop

    International Nuclear Information System (INIS)

    Sociedad Argentina de Fisica Medica

    2012-01-01

    The American Association of Physicist in Medicine (AAPM), the International Organization for Medical Physics (IOMP) and the Argentina Society of Medical Physics (SAFIM) was organized the Diagnostic Imaging Workshop 2012, in the city of Buenos Aires, Argentina. This workshop was an oriented training and scientific exchange between professionals and technicians who work in medical physics, especially in the areas of diagnostic imaging, nuclear medicine and radiotherapy, with special emphasis on the use of multimodal imaging for radiation treatment, planning as well of quality assurance associates.

  18. Development of dose calibrators Tandem systems and establishment of beta dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Cecatti, Sonia Garcia Pereira

    2004-01-01

    A quality control program at Nuclear Medicine Services includes the checking of all equipment used for diagnostics and treatment, and the individual monitoring of the workers occupationally exposed to ionizing radiations. In this work the main quality control tests were performed with three dose calibrators using standard radiation sources of 57 Co, 133 Ba, 137 Cs and 60 Co. Tandem systems of dose calibrators were established and characterized using four cylindrical absorbers of different materials for an additional quality control test in Nuclear Medicine. The main utility of this new test is the possibility of impurity detection in radiopharmaceuticals, when the ratio of the measurements with different absorbers is different from that obtained at the laboratory in ideal conditions. The dosimetric characteristics of three types of CaS0 4 :Dy + Teflon pellets were studied for an appropriate choice of the material to be used for individual monitoring of workers. The thermoluminescent detectors were irradiated using beta sources of 90 Sr+ 90 Y, 204 TI, 147 Pm, 153 Sm and 32 P. A wrist badge for beta individual monitoring was developed for workers that handle beta radiopharmaceuticals in Nuclear Medicine Services. (author)

  19. Nuclear medicine in the countries of Latin America

    International Nuclear Information System (INIS)

    Touya, Eh.

    1987-01-01

    The role of nuclear medicine in protection of health in Latin America states is shown. Nuclear medicine methods are applied in Latin America countries for diagnosis of coronary disease, cancer, malfunctioning of separate organs and transplants, kidney transplants in particular. The present situation in protection of health in the region is evaluated. It is emphasized that nuclear medicine should play its role in the course of public health improvement in those countries

  20. Case assessments for nuclear medicine registrars

    International Nuclear Information System (INIS)

    Farlow, D.

    1994-01-01

    Westmead Hospital set some of the recent nuclear medicine cases for registrar training. These case assessments have been completed by the registrars and he thought it might be interesting for the general nuclear medicine community to attempt the cases themselves and compare their answers with the model reports and patient follow-ups. Edited versions of two cases and model answers are presented. 35 refs

  1. Imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Giussani, Augusto; Hoeschen, Christoph

    2013-01-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  2. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  3. Optimization of the radioprotection for nuclear medicine services

    International Nuclear Information System (INIS)

    Lira, Renata F. de; Filho, Joao A.; Santos, Luiz A.P.; Lima, Fernando Roberto de Andrade; Vieira, Jose W.

    2013-01-01

    Nuclear medicine (NM) is a medical specialty which uses small amounts of radioactive material combined with drugs, to make either therapeutic treatments or form diagnostic images of the organ and tissue. Follow the nuclear regulations any activity involving ionizing radiation should be justified and it must have their procedures of work to be optimized. Thus, the aim of the study is to determine the need and the importance of optimization of radiation protection in NM services and reduce occupationally exposed individuals (OEI) doses in order to avoid possible contamination or accidents and reduce the costs of protection. Optimization for a NM service that makes use of ionizing radiation can be performed using different techniques such as the expanded cost-benefit analysis. Such technique introduces one or two attributes associated to the detriment cost, Y, and the protection costs, X. This work was conducted in the year 2011, where it was analyzed data of 56 employees from 2002 to 2010. The value of the cost of protection was R$ 147.645,95, including accessories, courses, training and maintenance costs. On the other hand, the cost of the expense ranged from R$ 1.065.750, 00 up to R$ 28.890.351, 00 and the parameter responsible for this variation is the collective dose. The increasing of these dose values causes the increasing of the total costs, and one can conclude that there really is an importance of applying the optimization technique to improve the safety of OEI at the nuclear medicine service and reducing costs of protection. (author)

  4. Nuclear medicine statistics

    International Nuclear Information System (INIS)

    Martin, P.M.

    1977-01-01

    Numerical description of medical and biologic phenomena is proliferating. Laboratory studies on patients now yield measurements of at least a dozen indices, each with its own normal limits. Within nuclear medicine, numerical analysis as well as numerical measurement and the use of computers are becoming more common. While the digital computer has proved to be a valuable tool for measurment and analysis of imaging and radioimmunoassay data, it has created more work in that users now ask for more detailed calculations and for indices that measure the reliability of quantified observations. The following material is presented with the intention of providing a straight-forward methodology to determine values for some useful parameters and to estimate the errors involved. The process used is that of asking relevant questions and then providing answers by illustrations. It is hoped that this will help the reader avoid an error of the third kind, that is, the error of statistical misrepresentation or inadvertent deception. This occurs most frequently in cases where the right answer is found to the wrong question. The purposes of this chapter are: (1) to provide some relevant statistical theory, using a terminology suitable for the nuclear medicine field; (2) to demonstrate the application of a number of statistical methods to the kinds of data commonly encountered in nuclear medicine; (3) to provide a framework to assist the experimenter in choosing the method and the questions most suitable for the experiment at hand; and (4) to present a simple approach for a quantitative quality control program for scintillation cameras and other radiation detectors

  5. Computers. A perspective on their usefulness in nuclear medicine

    International Nuclear Information System (INIS)

    Loken, M.K.; Williams, L.E.; Ponto, R.A.; Ganatra, R.D.; Raikar, U.; Samuel, A.M.

    1977-01-01

    To date, many symposia have been held on computer applications in nuclear medicine. Despite all of these efforts, an appraisal of the true utility of computers in the day-to-day practice of nuclear medicine is yet to be achieved. Now that the technology of data storage and processing in nuclear medicine has reached a high degree of sophistication, as evidenced by many reports in the literature, the time has come to develop a perspective on the proper place of computers in nuclear medicine practice. The paper summarizes various uses of a dedicated computer (Nuclear Data Med II) at our two institutions and comments on its clinical utility. (author)

  6. Nuclear Medicine in Diagnosis and Therapy of Bone and Joint Diseases

    International Nuclear Information System (INIS)

    Riccabona, G.

    1999-01-01

    Concerning bone and joint diseases therapy of rheumatic synovitis (radiosynoviorthesis) was introduced in 1952 before clinically relevant diagnostic procedures were developed. Radionuclides of Sr and later on 99mTc phosphonates then started the wide use of bone scintigraphy since > 30 years. The diagnostic methods have an excellent sensitivity for detection of local abnormalities of bone metabolism, the specificity of such studies, however, is low. Modifications of the technique (3-phase-bone-scintigraphy, pinhole collimators, ROI-technique), increasing knowledge of pathological scan patterns and introduction of other radionuclide studies (67Ga, 201Tl, inflammation scans with 99mTc-leukocytes or 99mTc-HIG) as well as 18FDG-PET have increased the specificity significantly in recent years and improvements of imaging systems (SPECT) also increased the accuracy of diagnostic methods in diseases of bone and joints. Therapy of such diseases has made considerable progress: inflamed, swollen joints can effectively be treated with 90Y-, 186Re, 169Er-colloids or with 165Dy-particles by radiosynoviorthesis. Severe pain due to disseminated bone metastases of cancer or polyarthritis can be controlled by radionuclide therapy with 89Sr, 153Sm-EDTMP, 186Re- or 188Re-HEDP and possibly 117mSn-DTPA with an acceptable risk of myelodepression. Possibilities, technical details and limitations of radionuclide applications for diagnostic and therapeutic purposes must be considered if optimal benefit for individual patients should be achieved. Overall Nuclear Medicine can become an essential element in management of bone and joint diseases. The relationship of Nuclear Medicine to bone and joint pathology is peculiar: In 1952 treatment of rheumatic synovitis by radiosynoviorthesis with 198Au Colloid was started by Fellinger and Schmid before diagnostic approaches to bone pathology existed. Bone scintigraphy was introduced only in 1961 using 85Sr but obviously the unfavourable radiation

  7. Development of nuclear medicine techniques - radiation protection issues for patients; Evolution des techniques en medecine nucleaire - Enjeux de radioprotection pour les patients

    Energy Technology Data Exchange (ETDEWEB)

    Marchandise, Xavier [Faculte de Medecine de Lille, F-59045 Lille Cedex (France)

    2011-07-15

    Nuclear medicine uses radioactive isotopes for diagnostic or therapeutic purposes. The radiation protection culture is now well-anchored in the training of nuclear medicine specialists in France and must remain at the highest possible level. However, practices change and the immediate medical - or even media - interest in new equipment and new tracers must not obscure the fundamentals of patient radiation protection. Particular vigilance is today required with regard to two aspects: - children; - the corresponding computed tomography. (author)

  8. Control flow of radiopharmaceuticals in nuclear medicine by means of an E-service; Control flujo de radiofarmacos en medicine nuclear por medio de un E-servicio

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Martin, L.; Gonzalez de Mingo, M. A.; Fragua Redondo, J. A.; Martinez Ortega, J.; Gutierrez Camunas, S.; Redondo Miguel, A. B.

    2013-07-01

    The almost generalized use of single-dose Nuclear Medicine for performing diagnostic tests or treatments, and the consequent complexity that accompanies its management, has resulted in the need to control the flow of material radioisotopic tools. An e-service is designed to manage the flow of radiopharmaceuticals and control its use and spending. This control does not only affect the efficiency in the use and cost of material, but in the radioactive waste associated with the non-use and waste reduction and a more effective organization of the Department. (Author)

  9. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  10. Beijing nuclear medicine survey 2005: general information

    International Nuclear Information System (INIS)

    Geng Jianhua; Si Hongwei; Chen Shengzu

    2008-01-01

    Objective: To evaluate the status of nuclear medicine department in Beijing area. Methods: Staff, equipment and clinical applications of nuclear medicine departments in Beijing area during 2005 were evaluated by postal questionnaires. Results: Thirty nuclear medicine departments responded to our survey. In these departments, 321 staff, 141 doctors, 122 technicians, 7 physicists, 22 nurses and 29 other staff were employed; and 41 large imaging equipments, 37 SPECT, 3 PET, 1 PET-CT were equipped. During 2005, 88135 radionuclide imaging (84734 for SPECT, 3401 for PET), 462246 radioimmunoassay and 2228 radionuclide therapies (the most for Graves' disease, the second for thyroid cancer, the third for bone metastasis) were performed. For only 41.5% and 22.0% equipments the daily quality control (QC) and weekly QC were conducted. Conclusions Staff, equipments and activities of nuclear medicine department in Beijing were in a considerable scale, but did not balance among hospitals. Most departments should increase the number of physicists and the equipment QC procedures to improve the image quality. (authors)

  11. Course on internal dosimetry in nuclear medicine; Curso de dosimetria interna en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine.

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are ...

  13. Survey of the use of nuclear medicine in New Zealand in 1993

    International Nuclear Information System (INIS)

    Smyth, V.G.; Laban, J.A.

    1997-01-01

    Full text: The National Radiation Laboratory (NRL) has surveyed the use of radioactive materials in medicine each decade since 1966. The purpose of this is to monitor trends and estimate the radiation dose to the population from this modality. Each of the nuclear medicine facilities in New Zealand was surveyed. The data provided consisted of total numbers of each type of procedure has increased by nearly 10 per cent in 10 years. Bone scans have nearly doubled in frequency, and form just under half of all diagnostic procedures, compared to 30 per cent in 1983. There has been an eightfold increase in the number of cardiac studies. Renal and lung studies are up, but liver tests and brain scans are down.The 1983 survey noted that the activities administered in New Zealand were high compared to those in other countries. Since then, a reasonable international consensus has formed over 'reference doses' for each standard procedure. There are incorporated in the NRL Code of Safe Practice and compliance is good. While in some countries there is a considerably greater frequency of nuclear medicine procedures, this survey indicates that overall practice in New Zealand is similar to many industrialized countries

  14. Challenges for nuclear medicine in the 1990s

    International Nuclear Information System (INIS)

    Ell, P.J.

    1992-01-01

    This article discusses the problems facing nuclear medicine in the coming decade and outlines the areas in which new developments or expansion can be expected. The questions considered include legislative requirements, the need to educate the public and the medical profession on the strengths of nuclear medicine, approaches to cost-benefit analysis, and development of new technologies and new radiopharmaceuticals. There is also an evaluation of expansion in nuclear medicine using both existing methodology and new methodologies. (author)

  15. Reliability and limitation of various diagnostic methods including nuclear medicine in myocardial disease

    International Nuclear Information System (INIS)

    Tokuyasu, Yoshiki; Kusakabe, Kiyoko; Yamazaki, Toshio

    1981-01-01

    Electrocardiography (ECG), echocardiography, nuclear method, cardiac catheterization, left ventriculography and endomyocardial biopsy (biopsy) were performed in 40 cases of cardiomyopathy (CM), 9 of endocardial fibroelastosis and 19 of specific heart muscle disease, and the usefulness and limitation of each method was comparatively estimated. In CM, various methods including biopsy were performed. The 40 patients were classified into 3 groups, i.e., hypertrophic (17), dilated (20) and non-hypertrophic.non-dilated (3) on the basis of left ventricular ejection fraction and hypertrophy of the ventricular wall. The hypertrophic group was divided into 4 subgroups: 9 septal, 4 apical, 2 posterior and 2 anterior. The nuclear study is useful in assessing the site of the abnormal ventricular thickening, perfusion defect and ventricular function. Echocardiography is most useful in detecting asymmetric septal hypertrophy. The biopsy gives the sole diagnostic clue, especially in non-hypertrophic.non-dilated cardiomyopathy. ECG is useful in all cases but correlation with the site of disproportional hypertrophy was not obtained. (J.P.N.)

  16. Specification and acceptance testing of nuclear medicine equipment

    International Nuclear Information System (INIS)

    Wegst, A.V.; Erickson, J.J.

    1984-01-01

    The purchase of nuclear medicine equipment is of prime importance in the operation of a clinical service. Failure to properly evaluate the potential uses of the instrumentation and the various operational characteristics of the equipment can often result in the purchase of inappropriate or inferior instruments. The magnitude of the purchase in terms of time and financial investments make it imperative that the purchase be approached in a systematic manner. Consideration of both the intended clinical functions and personnel requirements is important. It is necessary also to evaluate the ability of the equipment vendor to support the instrumentation after the purchase has been completed and the equipment installed in the clinical site. The desired specifications of the instrument characteristics should be stated in terms that can be verified by acceptance testing. The complexity of modern instrumentation and the sensitivity of it to the environment require the buyer to take into account the potential problems of controlling the temperature, humidity, and electrical power of the installation site. If properly and systematically approached, the purchase of new nuclear medicine instrumentation can result in the acquisition of a powerful diagnostic tool which will have a useful lifetime of many years. If not so approached, it may result in the expenditure of a large amount of money and personnel time without the concomitant return in useful clinical service. (author)

  17. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Kaul, A.

    1986-01-01

    'Quality Assurance in Nuclear Medicine' is the title of the English language original that has been translated into German. The manual very extensively deals with quality control of nuclear medical equipment. Tests are explained for checking radioactivity measuring devices, manual and automatic in-vitro sample measuring systems, in-vivo measuring systems with single or multiple detectors, rectlinear scanners, and gamma cameras, including the phantoms required for the methods. Other chapters discuss the quality control of radiopharmaceuticals, or the quality assurance in data recording and evaluation of results. Helpful comments on the organisation of quality assurance programms are given. The book is intended as a practical guide for introducing quality assurance principles in nuclear medicine in the Federal Republic of Germany. With 13 figs., 22 tabs [de

  18. Safety assessment of nuclear medicine practice using the Risk Matrix Method; Evaluaciones de seguridad de la practica de medicina nuclear utilizando el metodo de Matrices de Riesgo

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Dumenigo; Cruz, Yoanis; Soler, Karen, E-mail: cruz@orasen.co.cu [Centro Nacional de Seguridad Nuclear (CNSN), La Habana (Cuba); Guerrero, Mayka, E-mail: mayka@infomed.sld.cu [Centro de investigaciones Medico Quirurgicas (CIMEQ), La Habana (Cuba)

    2013-10-01

    This paper presents the main results from the application of the methodology of Risk Matrices in a hypothetical service / department of the Nuclear medicine that realize metabolic radiotherapy treatment and diagnostic studies with {sup 131}I and {sup 99} m Tc and {sup 18}F. We could identify major equipment failures and human errors that could potentially lead to a accident in practice. For each analyzed initiating events evaluated the frequency of occurrence, identified key existing defenses to avoid the accident and assessed the potential consequences of an accident if this comes to fruition. With this methodology we could identify which accident sequences increased risk and to propose means to reduce the risk in such cases. As a result of this work was developed the 'RMA Nuclear Medicine' computer tools that will apply this methodology in nuclear medicine services that need to do similar risk assessments.

  19. The practice of nuclear medicine in the Philippines

    International Nuclear Information System (INIS)

    San Luis, T.O.L.

    1996-01-01

    The advent of nuclear medicine in the early 1940's came with the use of radioiodine in the study of thyroid physiology and eventual treatment of hyperthyroidism. Instrumentation to detect radionuclides introduced into the human body, and the production of various radiopharmaceuticals as tracers or as therapy agents provided the impetus for the rapid development of nuclear medicine as a distinct specialty. In the Philippines, nuclear medicine formally began in 1956 with the establishment of the Radioisotope Laboratory at the Philippine General Hospital. Acquisition of nuclear instrumentation by various institutions, training of medical staff and personnel, sourcing of radiopharmaceuticals proceeded thereafter

  20. Materials of All-Polish Symposium Nuclear Techniques in Industry, Medicine, Agriculture and Environment Protection

    International Nuclear Information System (INIS)

    1998-01-01

    The All-Polish Symposium Nuclear Techniques in Industry, Medicine, Agriculture and Environment Protection is cyclic (in 3 year period) conference being a broad review of state of art and development of all nuclear branches cooperated with industry and other branches of national economy and public life in Poland. The conference has been divided in one plenary session and 8 problem sessions as follow: Radiation technologies of flue gas purification; radiation technologies in food and cosmetic industry; application of nuclear techniques in environmental studies and earth science; radiometric methods in material engineering; isotope tracers in biological studies and medical diagnostics; radiometric industrial measuring systems; radiation detectors and device; nuclear methods in cultural objects examination. The poster section as well as small exhibition have been also organised

  1. Key formal and legal aspects of acquiring radiopharmaceuticals used in nuclear medicine departments

    International Nuclear Information System (INIS)

    Kapuscinski, J.

    2007-01-01

    The article presents the key both Polish and EU legal regulation concerning terms and conditions of acquiring radiopharmaceuticals, i.e. isotope labelled compounds used for diagnostic and/ therapeutic purposes in nuclear medicine departments. The emphasis was put on the requirements regarding provision of the medicaments' safety in broad meaning of the term, which are important factors in providing patients' safety. Legal acts discussed in the article remain valid as of May 2007. (author)

  2. Guidelines for patient information in nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    This guide for patients information in nuclear medicine is organised in the following manner: what is a medical examination in nuclear medicine, the preparation and the duration of the examination, the possible risks and the radiation doses, pregnancy, delayed menstruation and nursing and what to do after the examination. (N.C.)

  3. Nuclear medicine and related radionuclide applications in developing countries

    International Nuclear Information System (INIS)

    1986-01-01

    The Symposium presentations were divided into sessions devoted to the following topics: Radioimmunoassay and related techniques (4 papers and 4 poster presentations); Radionuclide applications in the diagnosis of parasitic diseases (7 papers and 2 posters); Instrumentation (6 papers and 4 posters); Clinical nuclear medicine: liver, bones, thyroid, cardiovascular system, lungs, kidneys, brain (23 papers and 15 posters); Organization of nuclear medicine services in the developing countries (9 papers and 5 posters); Training in nuclear medicine (4 papers) and the panel discussion. Future of Nuclear Medicine in the developing countries. A separate abstract was prepared for each of these papers and posters

  4. Assessment of Patient Exposure in Nuclear Medicine (invited paper)

    International Nuclear Information System (INIS)

    Reiners, C.; Lassmann, M.

    1998-01-01

    The radiation exposure of a patient in diagnostic nuclear medicine is influenced by different factors, which may be separated into direct and indirect determinants of exposure. The radiation burden is directly related to the radionuclide used (beta, gamma radiation, energy of radiation, physical half-life) and the activity used. In addition, the radiation exposure is strongly influenced by the type of radiolabelled compound (radiopharmaceutical) and its metabolic behaviour. The metabolism of a radio-pharmaceutical, however, depends not only on the general principles of its biodistribution but also on individual parameters of its biokinetics (i.e. patient's age, sex, weight, organ uptake and excretion). Optimisation in radiation protection requires a careful selection of activity, radionuclide and radiopharmaceutical compound for a patient. The radiation exposure of a patient may be influenced considerably by disturbance factors which can be controlled by means of quality assurance measures. Concerning the radiopharmaceutical, radiochemical and chemical impurities have to be ruled out before administration. Activity meters and gamma cameras must be checked by appropriate quality control procedures. The check of the gamma cameras includes background, efficiency, uniformity, linearity and resolution and has to be an integral part of a routine quality control programme in a nuclear medicine department. (author)

  5. Introduction to nuclear medicine

    International Nuclear Information System (INIS)

    Denhartog, P.; Wilmot, D.M.

    1987-01-01

    In this chapter, the fundamentals of nuclear medicine, the advantages and disadvantages of this modality (compared with radiography and ultrasound), and some of the areas in diagnosis and treatment in which it has found widest acceptance will be discussed. Nuclear medicine procedures can be broadly categorized into three groups: in vivo imaging, usually requiring the injection of an organ-specific radiopharmaceutical; in vitro procedures, in which the radioactive agent is mixed with the patient's blood in a test tube; and in vivo nonimaging procedures, in which the patient receives the radiopharmaceutical (intravenously or orally) after which a measurement of the amount appearing in a particular biological specimen (blood, urine, stool) is performed. In vivo imaging procedures will be the principal topics of this chapter

  6. Quality Management Audits in Nuclear Medicine Practices. 2. Ed

    International Nuclear Information System (INIS)

    2015-01-01

    Quality management systems are essential and should be maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, satisfy its customers and improve professionalism. The quality management (QM) audit methodology in nuclear medicine practice, introduced in this publication, is designed to be applied to a variety of economic circumstances. A key outcome is a culture of reviewing all processes of the clinical service for continuous improvement in nuclear medicine practice. Regular quality audits and assessments are vital for modern nuclear medicine services. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical, medical physics and radiation safety procedures

  7. Patient preparation for nuclear medicine studies

    International Nuclear Information System (INIS)

    Stathis, V.J.; Cantrell, D.W.; Cantrell, T.J.

    1987-01-01

    In this chapter are described methods of patient preparation that can favorably affect the outcome of nuclear medicine studies in specific situations. Some of these practices may be considered essential to the success of the nuclear medicine procedure, whereas others may be thought of simply as a means of obtaining more valid or reliable information. Regardless of relative importance, each of the preparatory methods discussed can contribute to the quality of the respective study and can serve as a means of maximizing the value of nuclear medicine procedures. The specific patient preparation techniques discussed in this chapter may not be readily applicable to every practice setting or situation. These or similar procedures can be used or modified as necessary. It is important, however, that when new protocols are developed, the rationale and theoretical basis of each technique be considered

  8. The state of the art in nuclear medicine

    International Nuclear Information System (INIS)

    Scott, A.M.

    1999-01-01

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been a dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  9. Metabolic radiopharmaceutical therapy in nuclear medicine; Terapia metabolica mediante radiofarmacos en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-08-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  10. Study of dose levels absorbed by members of the public in the nuclear medicine departments; Estudo dos niveis de dose em individuos do publico nos servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Geovanna Oliveira de Mello

    2001-03-01

    In nuclear Medicine, radioisotopes are bound to various compounds (called radiopharmaceuticals) for use in various diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public, especially persons accompanying patients, must consider, this exposure. In Brazil, the Comissao Nacional de Energia Nuclear (CNEN) establishes that, in nuclear medicine departments, the patients and persons accompanying should be separated each other. However, this rule is not always followed due to many factors such as physical and emotional conditions of patients. In this context, the aim of this study was the investigation of dose levels, which the persons accompanying patients are exposed to. For monitoring, thermoluminescent dosimeters were employed. The dosimeters were given to 380 persons who were accompanying patients in nuclear medicine departments. Exposure results were lower than 1 mSv. On the basis of CNEN rules, issues regarding stay conditions for members of the public in these departments are discussed. (author)

  11. Synthesis, evaluation and application of radioiodine labeled compounds in nuclear medicine

    International Nuclear Information System (INIS)

    Ahmed, M. O. M.

    2006-01-01

    This study reviews synthesis, evaluation,diagnostic and therapeutic applications of iodine radiopharmaceutical especially with 13I I and 123 I in contemporary nuclear medicine. It is well Known that iodine is used in thyroid diagnostic and therapy with sodium iodide and played an important role in diagnostic procedures using single photon emission tomography (SPECT). The study covers the general chemistry of iodine, physical properties, biological role of iodine, general uses of iodine compounds , production and decay schemes of 131 I, 125 I and 123 I in the first chapter. Preparation of radioiodine labeled compounds, quality control of radiopharmaceuticals and safety of radioiodination are dealt with in detail in two chapters. These were followed by chapters dealing in length with the chemistry, preparation, quality control, pharmacokinetics and radiation dosimetry of some iodine radiopharmaceuticals, and then current trends in diagnostic and therapeutic applications of iodine radiopharmaceuticals particularly 131 / 123 I-MIBG and 123 I-IMP. We found that the iodine radiopharmaceuticals are considered amongst principal indicators in single photon emission tomography (SPECT), and 131 / 123 I-MIBG and 123 I-IMP appear to be appropriate diagnostic and therapeutic agents for variety of diseases.(Author)

  12. Nuclear medicine research: an evaluation of the ERDA program

    International Nuclear Information System (INIS)

    1976-08-01

    Legislation which established the Energy Research and Development Administration (ERDA) January 19, 1975, stipulated that this new agency should be responsible for all activities previously assigned to the Atomic Energy Commission (AEC) and not specifically assigned to other agencies. Such activities included the nuclear medicine research program of the AEC Division of Biomedical and Environmental Research (DBER). To determine whether continuation of this program under the broader ERDA mission of energy-related research was in fact appropriate, a special task force was appointed in January 1975 by Dr. James L. Liverman, the director of DBER. This task force, comprised of established scientists knowledgeable about issues related to nuclear medicine either currently or in the past, was charged specifically to assess the historical impact of the AEC/ERDA nuclear medicine program on the development of nuclear medicine, the current status of this program, and its future role within the structure of ERDA. The specific recommendations, in brief form, are as follows: the federal government should continue to support the medical application of nuclear technology; ERDA should retain primary responsibility for support and management of federal nuclear medicine research programs; and management and emphasis of the ERDA nuclear medicine program require modification in certain areas, which are set forth

  13. Determination of the presence of molybdenum-99 in the technetium-99m solutions used at the nuclear medicine services of Recife, Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Sena, Thiago G. de; Souza, Fernanda R. de L.; Lopes Filho, Ferdinand de J.; Vieira, Jose W.; Lima, Fernando R. de A.

    2009-01-01

    The main objective of this work is to calculate the percentage of 99 Mo in the eluates of the 99 mTc used at the nuclear medicine services localized at the Recife city, Pernambuco, Brazil. At the present moment three nuclear medicine services were evaluated verifying the 99 Mo in the eluates of 99 mTc, and in two services, the contamination were superior to the limits stipulated by the international organism adopted as reference in this work. The work follows in other nuclear medicine institutions evaluating and orienting the professionals on these quality control not only for the optimization of the patient dose, but also for the improvement of the image to be used for the diagnostic

  14. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This proceedings contains articles of 2001 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 16-17, 2001 in Seoul, Korea. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, Nuclear cardiology, General nuclear medicine. (Yi, J. H.)

  15. XXIVth days of nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    Abstracts are presented of papers submitted to the 24th Days of Nuclear Medicine held in Opava, Czechoslovakia between Oct 9 and 11, 1985. The conference proceeded in three sessions, namely nuclear pediatrics, miscellaneous and technicians' session. The publication also contains abstracts of posters. (L.O.)

  16. Textbook of respiratory medicine

    International Nuclear Information System (INIS)

    Murray, J.F.; Nadel, J.

    1987-01-01

    This book presents a clinical reference of respiratory medicine. It also details basic science aspects of pulmonary physiology and describes recently developed, sophisticated diagnostic tools and therapeutic methods. It also covers anatomy, physiology, pharmacology, and pathology; microbiologic, radiologic, nuclear medicine, and biopsy methods for diagnosis

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to identify disease in ...

  18. Internal dose assessment in nuclear medicine: fetal doses due to radiopharmaceutical administration to the mother

    International Nuclear Information System (INIS)

    Rojo, Ana M.; Michelin, Severino C.

    2004-01-01

    The objective of this publication is to present a guideline for the dose assessment through a comprehensive introduction of knowledge on ionizing radiation, radiation protection during pregnancy and fetal dosimetry for physician and other professionals involved in nuclear medicine practices. It contains tables with recommended dose estimates at all stages of pregnancy for many radiopharmaceuticals. Compounds for which some information was available regarding placental crossover are shown in shaded rows. It includes the most common diagnostic and therapy practices in nuclear medicine considering the four radioactive isotopes selected: 99m Tc, 131 I, 201 Tl and 67 Ga. There is a special case included, it is when conception occurs after the iodine has been administered. In almost every case, the diagnostic benefit to the mother outweighs the risk of any irradiation of the fetus. However, there is one situation in which severe fetal injury can be incurred from administering a radiopharmaceutical to the mother, and that is use of iodine-131 therapy for ablation of the thyroid in cases of hyperthyroidism or carcinoma. Radioactive iodine readily crosses the placenta and concentrates in the fetal thyroid, where, because of its small organ mass, high radiation doses are received. (author)

  19. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  20. Nanotechnology and nuclear medicine; research and preclinical applications.

    Science.gov (United States)

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  1. Regulation and quality in nuclear medicine 2 october 1998

    International Nuclear Information System (INIS)

    Kouchner, B.; Huriet, C.; Le Deaut, J.Y.

    1999-01-01

    The aim of this meeting is to examine how the regulations are liable to decrease the patient taking charge. The problem of the public information and opinion in the nuclear medicine domain is also presented. The nineteen presentations are proposed in 2 sessions. The first one deals with the state of the art of the nuclear medicine in France (techniques and regulations). The second one deals with the environment of the nuclear medicine (irradiation limits, public opinion, doctors and medicine quality). (A.L.B.)

  2. Neutron use in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; May, R.; Moss, R. [HFR-Unit, European Commission, IAM, Petten (Netherlands); Askienazy, S. [Departement Central de Medicine Nucleaire et Biophysique, Saint Antoine Hospital, Paris (France); Hildebrand, J. [Neurology Department, Erasmus Hospital, Brussels (Belgium)

    1999-07-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  3. Neutron use in nuclear medicine

    International Nuclear Information System (INIS)

    Guidez, J.; May, R.; Moss, R.; Askienazy, S.; Hildebrand, J.

    1999-01-01

    Neutrons produced by research reactors are being used in nuclear medicine and other medical applications in several ways. The High Flux Reactor (HFR) based in Petten (The Netherlands), owned by the European Commission, has been working increasingly in this field of health care for the European citizen. On the basis of this experience, a survey has been carried out on the main possibilities of neutrons used in nuclear medicine. The most important and most well known is the production of radioisotopes for diagnosis and therapy. Ten million patients receive nuclear medicine in Europe each year, with more than 8 million made with the products issued from research reactors. The survey of the market and the techniques (cyclotron, PET) shows that this market will continue to increase in the future. The direct use of reactors in medicine is actually made by the Boron Neutron capture Therapy (BNCT) for the treatment of glioblastoma, which kills about 15.000 people in Europe each year. For this promising technique, HFR is the most advanced for experimental possibilities and treatment studies. Medical research is also made in other promising fields: the use beam tubes for characterizing of prostheses and bio-medical materials, alpha-immuno therapy products, new types of radioisotopes, new types of illness to be treated by BNCT, etc. (author)

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the procedure? How does the nuclear medicine procedure work? What does the equipment look like? How is the procedure performed? What will my child experience during and after the procedure? How should ...

  5. U Y 105 standard use of non sealed radioactive sources in nuclear medicine: approve for Industry energy and Mining Ministry 28/6/2002 Resolution; Norma UY 105 uso de fuentes radiactivas no selladas en Medicina Nuclear: Aprobada por Resolucion del Ministro de Industria Energia y Mineria de 28/6/2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-28

    Establish minimal requirements radiological safety for use non sealed radioactive sources in nuclear medicine.The present standard is used in operation or nuclear medicine practices using non sealed radioactive sources with diagnostic and therapeutic purposes in vivo and in vitro.

  6. Highlights of the 6th world congress of nuclear medicine and biology

    Energy Technology Data Exchange (ETDEWEB)

    Ell, P.J. [Inst. of Nuclear Medicine, University Coll. London Medical School, London (United Kingdom)

    1995-02-01

    The article summarizes the most interesting medical aspects of the 6th World Congress of Nuclear Medicine and Biology, addressing recent developments in the fields of scintiscanning, SPET and PET, oncology, neurology, psychiatry, in the diagnostic evaluation of the cardiovascular system, and new radiopharmaceuticals. (VHE) [Deutsch] Der Artikel gibt einen Ueberblick ueber medizinische Aspekte des 6. Weltkongresses der Nuklearmedizin und -biologie. Aktuelle Entwicklungen bei Szintigraphie, SPET und PET in Onkologie, Neurologie, Psychiatrie, Herz und Kreislauf sowie weitere neue Entwicklungen bei Radiopharmazeutika werden referiert. (VHE)

  7. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  8. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, Felix X.

    2004-01-01

    The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. Aims of ASNM: 1. To foster Education in Nuclear Medicine among the Asian countries, particularly the less developed ones. 2. To promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies. 3. To assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes. 4. To work towards awarding of diplomas or degrees in association with recognized universities by distance learning and practical attachments, with examinations. The ASNM works toward a formal training courses leading to the award of a certificate in the long term. The most fundamental job of the ASNM remains the transfer of knowledge from the more developed countries to the less developed ones in the Asian region. The ASNM could award credit hours to the participants of training courses conducted in the various countries and conduct electronic courses and examinations. CME programmes may also be conducted as part of the regular ARCCNM meetings and the ASNM will award CME credit points for such activities

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... kidneys and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to help diagnose and evaluate: urinary blockage in the kidney. backflow of urine from ...

  11. Tomography in nuclear medicine

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana

    1999-01-01

    This book is a contribution to the training and diffusion of the tomography method image diagnosis in nuclear medicine, which principal purpose is the information to professionals and technical personnel, specially for the spanish speaking staff

  12. Molecular methods in nuclear medicine therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2001-01-01

    Nuclear medicine has traditionally contributed to molecular oncology by allowing noninvasive monitoring of tumor metabolism, growth and genetic changes, thereby providing a basis for appropriate biology-based treatment planning. However, NM techniques are now being applied as an active therapeutic tool in novel molecular approaches for cancer treatment. Such areas include research on cancer therapy with radiolabeled ligands or oligonucleotides, and utilization of synergism between NM radiotherapy and gene transfer techniques. Here we will focus on novel aspects of nuclear medicine therapy

  13. Nuclear medicine installations supervisors interactive course (CD-ROM)

    International Nuclear Information System (INIS)

    Williart, A.; Shaw, M.; Tellez, M.

    2000-01-01

    The professionals who work as Nuclear Medicine Installations Supervisors need a suitable training. This training must be based on the guidelines of the C.S.N. (the Spanish Agency for Nuclear Safety). The traditional training courses must comply with a set of requirements, that not always is possible to get: They are given in a settled place. They are developed during a time, more or less lengthy. This time is pre-established. However, the persons willing to follow these courses have some difficulties with the place and the time. Many of them do not live near the places where the courses are given, in general in big cities, while there are Nuclear Medicine Installations scattered through all Spain. Moreover in some occasions they have not available time to attend the courses. Many times, faced with so many obstacles, the option is not to do the suitable training course. In order to solve this kind of problems we offer an Interactive Training Course (supported by CD-ROM). The course contents are based on Spanish Regulations and on the Safety Guide, established by C.S.N., for approval Radioactive Installations Supervisors Training Courses. This guide includes General Topics for Radioactive Installations and Specific Subjects for Nuclear Medicine. (General topics) Basic knowledge on the fundamental concepts on the action and nature of Ionizing Radiations, their risks and preventions. The ionizing radiations. Biological effects of ionizing radiations. Radiological protection. Legislation on radioactive installations. (Specific Subjects) Knowledge on the radiological risks associated to the proper techniques in the specific field of application. In our case the specific field is Nuclear Medicine Installations, where the radioactive sources are used for diagnostic or for therapy. Specific legal and administrative aspects. Non-encapsulated radioactive sources. Associated radiological risks to the use of non-encapsulated sources. Installations design. Operative procedures

  14. Radiochemistry and its application to nuclear medicine

    International Nuclear Information System (INIS)

    Welch, J.J.

    1990-01-01

    The role of the radiochemist in Nuclear Medicine has increased since the early 1960's. At that time the first medical 99 Mo/ 99m /Tc generator was developed at Brookhaven National Laboratory and the first hospital based cyclotron installed at Washington University. Radiochemists have been involved in both the development and application of generator and accelerator based radiopharmaceuticals. The development of oxygen-15, nitrogen 13, carbon-11 and fluorine-18 simple compound and synthetic precursors will be discussed. In recent years new high current accelerators have been proposed from Nuclear Medicine isotope production. Generator produced radiopharmaceuticals continue to play a major role in Nuclear Medicine. Problems in the development of targetry to produce parent nuclides as well as challenges in generator development will be described

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... diagnoses. In addition, manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and ... nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations ... diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... result, imaging may be done immediately, a few hours later, or even a few days after your ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. ... Physicians use nuclear medicine imaging to evaluate organ systems, including the: kidneys and bladder. bones. liver and ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... beforehand, especially if sedation is to be used. Most nuclear medicine exams will involve an injection in ... PET/CT, SPECT/CT and PET/MR) are most often used in children with cancer, epilepsy and ...