WorldWideScience

Sample records for diagnostic electron micr

  1. MicrOmega IR: a new infrared hyperspectral imaging microscope or in situ analysis

    Science.gov (United States)

    Vaitua, Leroi; Bibring, Jean-Pierre; Berthé, Michel

    2017-11-01

    MicrOmega IR is an ultra miniaturized Near Infrared hyperspectral microscope for in situ analysis of samples. It is designed to be implemented on board space planetary vehicles (lander and/or rovers). It acquires images of samples typically some 5 mm in width with a spatial sampling of 20 μm. On each pixel, MicrOmega acquires the spectrum in the spectral range 0.9 - 2.6 μm, with a possibility to extend the sensibility up to 4 μm. The spectrum will be measured in up to 300 contiguous spectral channels (600 in the extended range): given the diagnostic spectral features present in this domain, it provides the composition of each spatially resolved constituent. MicrOmega has thus the potential to identify: minerals, such as pyroxene and olivine, ferric oxides, hydrated phases such as phyllosilicates, sulfates and carbonates, ices and organics. The composition of the various phases within a given sample is a critical record of its formation and evolution. Coupled to the mapping information, it provides unique clues to describe the history of the parent body. In particular, the capability to identify hydrated grains and to characterize their adjacent phases has a huge potential in the search for potential bio-relics in Martian samples. This purely non destructive characterization enables further analyses (e.g. through mass spectrometry) to be performed, and/or to contribute to sample selection to return to Earth. MicrOmega IR is coupled to a visible microscope: MicrOmega VIS. Thus, the MicrOmega instrument is developed by an international consortium: IAS (Orsay, France), LESIA (Meudon, France), CBM (Orléans, France), University Of Bern (Bern, Switzerland), IKI (Moscow, Russia). This instrument (MicrOmega IR, MicrOmega VIS and the electronics) is selected for the ESA Exomars mission (launch scheduled for 2013). MicrOmega IR will be used in a reduced spectral range (0.9 - 2.6 μm), due to power, mass and thermal constraints: however, most minerals and other

  2. Electron beam diagnostics study

    International Nuclear Information System (INIS)

    Garganne, P.

    1989-08-01

    This paper summarizes the results of a study on beam diagnostics, using carbon wire scanners and optical transition radiation (DTR) monitors. The main consideration consists in the material selection, taking their thermal properties and their effect on the beam into account [fr

  3. The MicrOmega Investigation Onboard Hayabusa2

    Science.gov (United States)

    Bibring, J.-P.; Hamm, V.; Langevin, Y.; Pilorget, C.; Arondel, A.; Bouzit, M.; Chaigneau, M.; Crane, B.; Darié, A.; Evesque, C.; Hansotte, J.; Gardien, V.; Gonnod, L.; Leclech, J.-C.; Meslier, L.; Redon, T.; Tamiatto, C.; Tosti, S.; Thoores, N.

    2017-07-01

    MicrOmega is a near-IR hyperspectral microscope designed to characterize in situ the texture and composition of the surface materials of the Hayabusa2 target asteroid. MicrOmega is implemented within the MASCOT lander (Ho et al. in Space Sci. Rev., 2016, this issue, doi:10.1007/s11214-016-0251-6). The spectral range (0.99-3.65 μm) and the spectral sampling (20 cm^{-1}) of MicrOmega have been chosen to allow the identification of most potential constituent minerals, ices and organics, within each 25 μm pixel of the 3.2× 3.2 mm2 FOV. Such an unprecedented characterization will (1) enable the identification of most major and minor phases, including the potential organic phases, and ascribe their mineralogical context, as a critical set of clues to decipher the origin and evolution of this primitive body, and (2) provide the ground truth for the orbital measurements as well as a reference for the analyses later performed on returned samples.

  4. Electronic DNA detection and diagnostics

    NARCIS (Netherlands)

    De, Arpita

    2013-01-01

    The Nanopill project is an ambitious undertaking with the objective to develop an early-warning cancer diagnostic pill that is ingested by the patient. The Nanopill collects intestinal fluid as the pill travels down the intestinal tract, and tests for the presence of a free floating hyper-methylated

  5. Longitudinal Diagnostics for Short Electron Beam Bunches

    Energy Technology Data Exchange (ETDEWEB)

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  6. TFTR vertically viewing electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Taylor, G.

    1990-01-01

    The Tokamak Fusion Test Reactor (TFTR) Michelson interferometer has a spectral coverage of 75--540 GHz, allowing measurement of the first four electron cyclotron harmonics. Until recently the instrument has been configured to view the TFTR plasma on the horizontal midplane, primarily in order to measure the electron temperature profile. Electron cyclotron emission (ECE) extraordinary mode spectra from TFTR Supershot plasmas exhibit a pronounced, spectrally narrow feature below the second harmonic. A similar feature is seen with the ECE radiometer diagnostic below the electron cyclotron fundamental frequency in the ordinary mode. Analysis of the ECE spectra indicates the possibility of a non-Maxwellian 40--80 keV tail on the electron distribution in or near the core. During 1990 three vertical views with silicon carbide viewing targets will be installed to provide a direct measurement of the electron energy distribution at major radii of 2.54, 2.78, and 3.09 m with an energy resolution of approximately 20% at 100 keV. To provide the maximum flexibility, the optical components for the vertical views will be remotely controlled to allow the Michelson interferometer to be reconfigured to either the midplane horizontal view or one of the three vertical views between plasma shots

  7. Electron Bernstein wave electron temperature profile diagnostic (invited)

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J.; Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either ''overdense,'' operating at high density relative to the magnetic field (e.g., ω pe >>Omega ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ>2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large k perp . In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼2kG, e >∼10 13 cm -3 and T e ∼10--200eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >>Omega ce

  8. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    Science.gov (United States)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  9. Transverse electron beam diagnostics at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Bayesteh, Shima

    2014-12-15

    The use of high-intensity electron and X-ray pulsed sources allows for the direct observation of atomic motions as they occur. While the production of such high coherent, brilliant, short X-ray pulses requires large-scale and costly accelerator facilities, it is feasible to employ a high-intensity source of electrons by exploiting a more compact design. The Relativistic Electron Gun for Atomic Exploration (REGAE) facility is a small linear accelerator at DESY, Hamburg, equipped with a photocathode radio frequency (RF) gun that produces relativistic ultra-short (<100 fs), low charge (<1 pC) electron bunches of high coherence. By means of time-resolved diffraction experiments, such an electron source can probe ultrafast laser-induced atomic structural changes that occur with a temporal resolution of ∝100 fs. A comprehensive characterization of the electron beam, for every pulse, is of fundamental importance to study the atomic motions with the desired resolution and quality. This thesis reports on the transversal diagnostics of the electron beam with an emphasis on a scintillator-based beam profile monitor. The diagnostics is capable of evaluating the beam parameters such as charge, energy, energy spread and transverse profile, at very low charges and on a shot-to-shot basis. A full characterization of the scintillator's emission, the optical setup and the detector (camera) of the profile monitor is presented, from which an absolute charge calibration of the system is derived. The profile monitor is specially developed to accommodate more applications, such as dark current suppression, overlapping the electron probe and the laser pump within 1 ns accuracy, as well as charge and transverse emittance measurements. For the determination of the transverse emittance two techniques were applied. The first one introduces a new method that exploits a diffraction pattern to measure the emittance, while the second one is based on a version of the Pepper-pot technique. A

  10. Transverse electron beam diagnostics at REGAE

    International Nuclear Information System (INIS)

    Bayesteh, Shima

    2014-12-01

    The use of high-intensity electron and X-ray pulsed sources allows for the direct observation of atomic motions as they occur. While the production of such high coherent, brilliant, short X-ray pulses requires large-scale and costly accelerator facilities, it is feasible to employ a high-intensity source of electrons by exploiting a more compact design. The Relativistic Electron Gun for Atomic Exploration (REGAE) facility is a small linear accelerator at DESY, Hamburg, equipped with a photocathode radio frequency (RF) gun that produces relativistic ultra-short (<100 fs), low charge (<1 pC) electron bunches of high coherence. By means of time-resolved diffraction experiments, such an electron source can probe ultrafast laser-induced atomic structural changes that occur with a temporal resolution of ∝100 fs. A comprehensive characterization of the electron beam, for every pulse, is of fundamental importance to study the atomic motions with the desired resolution and quality. This thesis reports on the transversal diagnostics of the electron beam with an emphasis on a scintillator-based beam profile monitor. The diagnostics is capable of evaluating the beam parameters such as charge, energy, energy spread and transverse profile, at very low charges and on a shot-to-shot basis. A full characterization of the scintillator's emission, the optical setup and the detector (camera) of the profile monitor is presented, from which an absolute charge calibration of the system is derived. The profile monitor is specially developed to accommodate more applications, such as dark current suppression, overlapping the electron probe and the laser pump within 1 ns accuracy, as well as charge and transverse emittance measurements. For the determination of the transverse emittance two techniques were applied. The first one introduces a new method that exploits a diffraction pattern to measure the emittance, while the second one is based on a version of the Pepper-pot technique. A

  11. Electron cloud diagnostics in use at the Los Alamos PSR

    International Nuclear Information System (INIS)

    Macek, R. J.; Browman, A.; Borden, M.; Fitzgerald, D.; Wang, T. S.; Zaugg, T.; Harkay, K.; Rosenberg, R.

    2003-01-01

    A variety of electron cloud diagnostics have been deployed at the Los Alamos Proton Storage Ring (PSR) to detect, measure, and characterize the electron cloud generated in this high intensity, long bunch accumulator ring. These include a version of the ANL-developed retarding field analyzers (RFA) augmented with LANL-developed electronics, a variant of the RFA denoted as the electron sweeping diagnostic (ESD), biased collection plates, and gas pulse measuring devices. The designs and experience with the performance and applicability to PSR are discussed

  12. Development of beam diagnostic devices for characterizing electron guns

    International Nuclear Information System (INIS)

    Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D.; Mishra, R.L.; Sarukte, H.; Waghmare, A.; Thakur, N.; Dixit, K.P.

    2015-01-01

    The electron guns for the DC accelerators and RF Linacs are designed and developed at EBC/APPD/BARC, Kharghar. These electron guns need to be characterized for its design and performance. Two test benches were developed for characterizing the electron guns. Various beam diagnostic devices for measuring beam currents and beam sizes were developed. Conical faraday cup, segmented faraday cup, slit scanning bellows movement arrangement, multi-plate beam size measurement setup, multi- wire beam size measurement setup, Aluminum foil puncture assembly etc. were developed and used. The paper presents the in-house development of various beam diagnostics for characterizing electron guns and their use. (author)

  13. Electron Bunch Length Diagnostic With Coherent Smith-Purcell Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D.C.

    1997-05-12

    The authors have designed a new technique for measuring subpicosecond electron bunch lengths using coherent Smith-Purcell radiation. This new diagnostic technique involves passing the electron beam in close proximity of a grating with a period comparable to the electron bunch length. The emitted Smith-Purcell radiation will have a coherent component whose angular position and distribution are directly related to the electron bunch length and longitudinal profile, respectively. This new diagnostic technique is inherently simple, inexpensive and non-intercepting. The authors show that the new technique is also scaleable to femtosecond regime.

  14. Electron Bunch Length Diagnostic With Coherent Smith-Purcell Radiation

    International Nuclear Information System (INIS)

    Nguyen, D.C.

    1997-01-01

    The authors have designed a new technique for measuring subpicosecond electron bunch lengths using coherent Smith-Purcell radiation. This new diagnostic technique involves passing the electron beam in close proximity of a grating with a period comparable to the electron bunch length. The emitted Smith-Purcell radiation will have a coherent component whose angular position and distribution are directly related to the electron bunch length and longitudinal profile, respectively. This new diagnostic technique is inherently simple, inexpensive and non-intercepting. The authors show that the new technique is also scaleable to femtosecond regime

  15. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Matlis, N.H.; Bakeman, M.; Geddes, C.G.R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G.R.; Schroeder, C.B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W.P.

    2010-01-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  16. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  17. Diagnostic Neural Network Systems for the Electronic Circuits

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Neural Networks is one of the most important artificial intelligent approaches for solving the diagnostic processes. This research concerns with uses the neural networks for diagnosis of the electronic circuits. Modern electronic systems contain both the analog and digital circuits. But, diagnosis of the analog circuits suffers from great complexity due to their nonlinearity. To overcome this problem, the proposed system introduces a diagnostic system that uses the neural network to diagnose both the digital and analog circuits. So, it can face the new requirements for the modern electronic systems. A fault dictionary method was implemented in the system. Experimental results are presented on three electronic systems. They are: artificial kidney, wireless network and personal computer systems. The proposed system has improved the performance of the diagnostic systems when applied for these practical cases

  18. Transition radiation electron beam diagnostic study at ATF

    International Nuclear Information System (INIS)

    Qiu, X.Z.; Wang, X.J.; Batchelor, K.; Ben-Zvi, I.

    1995-01-01

    Recently we have started a program to develop transition radiation based electron beam diagnostics at the Accelerator Test Facility at Brookhaven National Laboratory. In this paper, we will discuss a technique to estimate the lower limit in electron beam divergence measurement with single foil transition radiation and two-foil transition radiation interferometer. Preliminary experimental data from 4.5 MeV electron beam will be presented

  19. Spectroscopic diagnostics of electron-atom collisions

    International Nuclear Information System (INIS)

    Gallagher, A.

    1991-01-01

    Progress from May 1, 1987 to April 30, 1991 is summarized in two Progress Reports that are reproduced in Appendix A, and in attached publications. Since then, we have completed manuscript preparations and publications of earlier observations, while carrying out a high energy-resolution measurement of electron collisional excitations in sodium. The results of the latter experiment have not been prepared for publication, and the manuscript is included as Appendix B. An additional manuscript, describing the unique high-current electron monochromator developed for this experiment, is in preparation and not enclosed. All additional results and conclusions of our work under the contract are now available in four publications that are attached at the back of this report. Consequently, we will elaborate on those only to note that we have achieved our proposed goals, with the full detail proposed but at a slightly slower pace than we had hoped

  20. Time-resolving electron temperature diagnostic for ALCATOR C

    International Nuclear Information System (INIS)

    Fairfax, S.A.

    1984-05-01

    A diagnostic that provides time-resolved central electron temperatures has been designed, built, and tested on the ALCATOR C Tokamak. The diagnostic uses an array of fixed-wavelength x-ray crystal monochromators to sample the x-ray continuum and determine the absolute electron temperature. The resolution and central energy of each channel were chosen to exclude any contributions from impurity line radiation. This document describes the need for such a diagnostic, the design methodology, and the results with typical ALCATOR C plasmas. Sawtooth (m = 1) temperature oscillations were observed after pellet fueling of the plasma. This is the first time that such oscillations have been observed with an x-ray temperature diagnostic

  1. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-01-01

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm 2 and 0.4 pC/(ps mm 2 ), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  2. MicrO: an ontology of phenotypic and metabolic characters, assays, and culture media found in prokaryotic taxonomic descriptions.

    Science.gov (United States)

    Blank, Carrine E; Cui, Hong; Moore, Lisa R; Walls, Ramona L

    2016-01-01

    MicrO is an ontology of microbiological terms, including prokaryotic qualities and processes, material entities (such as cell components), chemical entities (such as microbiological culture media and medium ingredients), and assays. The ontology was built to support the ongoing development of a natural language processing algorithm, MicroPIE (or, Microbial Phenomics Information Extractor). During the MicroPIE design process, we realized there was a need for a prokaryotic ontology which would capture the evolutionary diversity of phenotypes and metabolic processes across the tree of life, capture the diversity of synonyms and information contained in the taxonomic literature, and relate microbiological entities and processes to terms in a large number of other ontologies, most particularly the Gene Ontology (GO), the Phenotypic Quality Ontology (PATO), and the Chemical Entities of Biological Interest (ChEBI). We thus constructed MicrO to be rich in logical axioms and synonyms gathered from the taxonomic literature. MicrO currently has ~14550 classes (~2550 of which are new, the remainder being microbiologically-relevant classes imported from other ontologies), connected by ~24,130 logical axioms (5,446 of which are new), and is available at (http://purl.obolibrary.org/obo/MicrO.owl) and on the project website at https://github.com/carrineblank/MicrO. MicrO has been integrated into the OBO Foundry Library (http://www.obofoundry.org/ontology/micro.html), so that other ontologies can borrow and re-use classes. Term requests and user feedback can be made using MicrO's Issue Tracker in GitHub. We designed MicrO such that it can support the ongoing and future development of algorithms that can leverage the controlled vocabulary and logical inference power provided by the ontology. By connecting microbial classes with large numbers of chemical entities, material entities, biological processes, molecular functions, and qualities using a dense array of logical axioms, we

  3. Spatially and temporally resolved diagnostics for microsecond, intense electron beams

    International Nuclear Information System (INIS)

    Gilgenbach, R.M.; Brake, M.; Horton, L.D.; Bidwell, S.; Lucey, R.F.; Smutek, L.; Tucker, J.E.

    1985-01-01

    Experiments are underway to investigate new diagnostics for electron beams in vacuum and in a plasma background. Measured parameters include temporally resolved beam current profile and beam emittance. These characterizations are being performed during electron beam diode closure experiments (1) and beam-plasma interaction experiments with either of two long-pulse accelerators: MELBA (Michigan Electron Long Beam Accelerator): Voltage = -1 MV, Current = 10 kA, at Pulselength = 0.1 to 1μs (1.4μs) for voltage flat to within +.7% (+.10%). The second accelerator is a long-pulse Febetron with parameters: Voltage = -0.5 MV, Current = 1 kA, and Pulselength = 0.3 s. Two different configurations have been developed which use Cerenkov radiation to detect electron beam current profiles as a function of time. The first uses Cerenkov emission by electrons which impinge axially on a single fiberoptic lightguide enclosed in a lucite tube. Plasma light is blocked by graphite spray or thin foil covering the end of the optical fiber. This diagnostic has the following advantages: 1) The threshold energy for Cerenkov emission effectively discriminates between high energy beam electrons and low energy (3-5 eV) plasma electrons, 2) The small, nonconducting probe introduces a minimal perturbation into the beam-plasma system, 3) Excellent signal to noise ratio is obtained because the fiberoptic signal is directly transmitted to a photomultiplier tube in the Faraday cage, 4) Quantitative data is obtained directly

  4. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  5. Optical beam diagnostics at the Electron Stretcher Accelerator ELSA

    International Nuclear Information System (INIS)

    Zander, Sven

    2013-10-01

    At the ELectron Stretcher Accelerator ELSA, a resonant excitation of the horizontal particle oscillations is used to extract the electrons to the experiments. This so-called resonance extraction influences the properties of the extracted beam. The emittance, as a number of the beam quality, was determined by using synchrotron light monitors. To enable broad investigations of the emittance a system of synchrotron light monitors was set up. This system was used to measure the influence of the extraction method on the emittance. Time resolved measurements were conducted to investigate the development of the emittance during an accelerator cycle. To improve the optical beam diagnostics a new beamline to an external laboratory was constructed. There, a new high resolution synchrotron light monitor was commissioned. In addition, a streak camera has been installed to enable longitudinal diagnostics of the beam profiles. First measurements of the longitudinal charge distribution with a time resolution in the range of a few picoseconds were conducted successfully.

  6. Electron temperature diagnostics in the RFX reversed field pinch experiment

    International Nuclear Information System (INIS)

    Bartiromo, R.; Carraro, L.; Marrelli, L.; Murari, A.; Pasqualotto, R.; Puiatti, M.E.; Scarin, P.; Valisa, M.; Franz, P.; Martin, P.; Zabeo, L.

    2000-01-01

    The paper presents an integrated approach to the problem of electron temperature diagnostics of the plasma in a reversed field pinch. Three different methods, sampling different portions of the electron distribution function, are adopted, namely Thomson scattering, soft X-ray spectroscopy by pulse-height analysis and filtered soft X-ray intensity ratio. A careful analysis of the different sources of systematic errors is performed and a novel statistical approach is adopted to mutually validate the three independent measurements. A satisfactory agreement is obtained over a large range of experimental conditions, indicating that in the plasma core the energy distribution function is well represented by a maxwellian. (author)

  7. Alcator C vertical viewing electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Kato, K.; Hutchinson, I.H.

    1986-03-01

    Electron cyclotron emission measured vertically through the center of a tokamak plasma yields detailed information about the electron velocity distribution. A diagnostic developed for this purpose on Alcator C tokamak uses specialized focusing optics to obtain a well collimated viewing chord, a compact viewing dump made of pyrex or Macor to reduce the effects of wall reflection and depolarization, and a rapid-scan polarizing Michelson interferometer - InSb detector system for the spectrum measurement; all constrained by the limited access and the compact size of Alcator C. Results of diffraction analysis are used to evaluate the theoretical performance of the optical system

  8. UV laser ionization and electron beam diagnostics for plasma lenses

    International Nuclear Information System (INIS)

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated

  9. Spatially and temporally resolved diagnostics for microsecond, intense electron beams

    International Nuclear Information System (INIS)

    Gilgenbach, R.M.; Brake, M.; Horton, L.D.; Bidwell, S.; Lucey, R.F.; Smutek, L.; Tucker, J.E.

    1985-01-01

    Two different configurations have been developed which use Cerenkov radiation to detect electron beam current profiles as a function of time. The first uses Cerenkov emission by electrons which impinge axially on a single fiberoptic lightguide enclosed in a lucite tube. Plasma light is blocked by graphite spray or thin foil covering the end of the optical fiber. This diagnostic has the following advantages: 1) the threshold energy for Cerenkov emission effectively discriminates between high energy beam electrons and low energy (3-5 eV) plasma electrons. 2) The small, nonconducting probe introduces a minimal perturbation into the beam-plasma system. 3) Excellent signal to noise ratio is obtained because the fiberoptic signal is directly transmitted to a photomultiplier tube in the Faraday cage. 4) Quantitative data is obtained directly

  10. Electron beam charge diagnostics for laser plasma accelerators

    Directory of Open Access Journals (Sweden)

    K. Nakamura

    2011-06-01

    Full Text Available A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs. First, a scintillating screen (Lanex was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160  pC/mm^{2} and 0.4  pC/(ps  mm^{2}, respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  11. A diagnostic for electron dynamics in tokamaks. Final report

    International Nuclear Information System (INIS)

    Skiff, F.; Boyd, D.

    1997-12-01

    The diagnostic was installed on TdeV and brought into operation. It was optimized to the extent that time and money permitted. A considerable quantity of data was accumulated and analyzed. Experiments ended in August 1995. The apparatus has been removed from TdeV and returned to the University of Maryland. Each of these activities is detailed here. The diagnostic worked very well. Although the distribution functions behaved in ways that were not anticipated and the refractive losses were sometimes higher than projected, the authors were able to adapt to the unexpected. In the authors' estimation, all of the effects listed above are significant, and warrant further study. The diagnostic is ready for use as a tool to study the physics of current drive and current profile modification. A mechanism for steering the launched beams is desirable to cope with the strong variations in refraction which are seen. Phased array launchers seem attractive for this purpose. Tuning of the length of the waveguide run is important to avoid troublesome reflections (return losses). It may be best to build in this capability in a future system. The perpendicular dynamics of the current driven electrons are invisible to us with the present form of the diagnostic. Simultaneous measurements at fundamental and harmonic frequencies would make perpendicular distribution function measurements possible

  12. Electronics and Algorithms for HOM Based Beam Diagnostics

    Science.gov (United States)

    Frisch, Josef; Baboi, Nicoleta; Eddy, Nathan; Nagaitsev, Sergei; Hensler, Olaf; McCormick, Douglas; May, Justin; Molloy, Stephen; Napoly, Olivier; Paparella, Rita; Petrosyan, Lyudvig; Ross, Marc; Simon, Claire; Smith, Tonee

    2006-11-01

    The signals from the Higher Order Mode (HOM) ports on superconducting cavities can be used as beam position monitors and to do survey structure alignment. A HOM-based diagnostic system has been installed to instrument both couplers on each of the 40 cryogenic accelerating structures in the DESY TTF2 Linac. The electronics uses a single stage down conversion from the 1.7 GHz HOM spectral line to a 20MHz IF which has been digitized. The electronics is based on low cost surface mount components suitable for large scale production. The analysis of the HOM data is based on Singular Value Decomposition. The response of the OM modes is calibrated using conventional BPMs.

  13. Electronic Health Record-Driven Workflow for Diagnostic Radiologists.

    Science.gov (United States)

    Geeslin, Matthew G; Gaskin, Cree M

    2016-01-01

    In most settings, radiologists maintain a high-throughput practice in which efficiency is crucial. The conversion from film-based to digital study interpretation and data storage launched the era of PACS-driven workflow, leading to significant gains in speed. The advent of electronic health records improved radiologists' access to patient data; however, many still find this aspect of workflow to be relatively cumbersome. Nevertheless, the ability to guide a diagnostic interpretation with clinical information, beyond that provided in the examination indication, can add significantly to the specificity of a radiologist's interpretation. Responsibilities of the radiologist include, but are not limited to, protocoling examinations, interpreting studies, chart review, peer review, writing notes, placing orders, and communicating with referring providers. Most of the aforementioned activities are not PACS-centric and require a login to one or more additional applications. Consolidation of these tasks for completion through a single interface can simplify workflow, save time, and potentially reduce the incidence of errors. Here, the authors describe diagnostic radiology workflow that leverages the electronic health record to significantly add to a radiologist's ability to be part of the health care team, provide relevant interpretations, and improve efficiency and quality. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. SOFT: a synthetic synchrotron diagnostic for runaway electrons

    Science.gov (United States)

    Hoppe, M.; Embréus, O.; Tinguely, R. A.; Granetz, R. S.; Stahl, A.; Fülöp, T.

    2018-02-01

    Improved understanding of the dynamics of runaway electrons can be obtained by measurement and interpretation of their synchrotron radiation emission. Models for synchrotron radiation emitted by relativistic electrons are well established, but the question of how various geometric effects—such as magnetic field inhomogeneity and camera placement—influence the synchrotron measurements and their interpretation remains open. In this paper we address this issue by simulating synchrotron images and spectra using the new synthetic synchrotron diagnostic tool SOFT (Synchrotron-detecting Orbit Following Toolkit). We identify the key parameters influencing the synchrotron radiation spot and present scans in those parameters. Using a runaway electron distribution function obtained by Fokker-Planck simulations for parameters from an Alcator C-Mod discharge, we demonstrate that the corresponding synchrotron image is well-reproduced by SOFT simulations, and we explain how it can be understood in terms of the parameter scans. Geometric effects are shown to significantly influence the synchrotron spectrum, and we show that inherent inconsistencies in a simple emission model (i.e. not modeling detection) can lead to incorrect interpretation of the images.

  15. Electronic roentgenographic images in presurgical X-ray diagnostics

    International Nuclear Information System (INIS)

    Haendle, J.; Hohmann, D.; Maass, W.; Siemens A.G., Erlangen

    1981-01-01

    An essential part of radiation exposure in surgery is due to devices and results from the required radiation time interval for continuous X-ray play-back up to the point at which all diagnostically relevant information can be retrieved from the screening image. With single-image storage and short exposure times as well as instant image play-back, this superfluous i.e. redundant radiation can be avoided. The electronic X-ray image is realized by means of a laboratory prototype and evaluated in hospitals. There is a report on clinical results and new technical developments. Remarkable are: the high radiation reduction that could be obtained, the problem - free instant image technique, and especially the advantages of automated exposure in direct film settings. The positive results yield the basis for the product development. (orig./MG) [de

  16. Latest Diagnostic Electronics Development for the PROSCAN Proton Accelerator

    International Nuclear Information System (INIS)

    Duperrex, P.A.; Frei, U.; Gamma, G.; Mueller, U.; Rezzonico, L.

    2004-01-01

    New VME-based diagnostic electronics are being developed for PROSCAN, a proton accelerator for medical application presently under construction at PSI. One new development is a VME-based multi-channel logarithmic amplifier for converting current to voltage (LogIV). The LogIV boards are used for measuring current from the multiple wire (harp) profile monitors. The LogIV calibration method, current dependant bandwidth and temperature stability are presented. Another development is a BPM front end, based on the newest digital receiver techniques. Features of this new system are the remote control of the preamplifier stage and the continuous monitoring of each individual signal overall gain. Characteristics of the developed prototype are given

  17. Relativistic electron kinetic effects on laser diagnostics in burning plasmas

    Science.gov (United States)

    Mirnov, V. V.; Den Hartog, D. J.

    2018-02-01

    Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.

  18. Current profile reconstruction using electron temperature imaging diagnostics

    International Nuclear Information System (INIS)

    Tritz, K.; Stutman, D.; Delgado-Aparicio, L.F.; Finkenthal, M.; Pacella, D.; Kaita, R.; Stratton, B.; Sabbagh, S.

    2004-01-01

    Flux surface shape information can be used to constrain the current profile for reconstruction of the plasma equilibrium. One method of inferring flux surface shape relies on plasma x-ray emission; however, deviations from the flux surfaces due to impurity and density asymmetries complicate the interpretation. Electron isotherm surfaces should correspond well to the plasma flux surfaces, and equilibrium constraint modeling using this isotherm information constrains the current profile. The KFIT code is used to assess the profile uncertainty and to optimize the number, location and SNR required for the Te detectors. As Te imaging detectors we consider tangentially viewing, vertically spaced, linear gas electron multiplier arrays operated in pulse height analysis (PHA) mode and multifoil soft x-ray arrays. Isoflux coordinate sets provided by T e measurements offer a strong constraint on the equilibrium reconstruction in both a stacked horizontal array configuration and a crossed horizontal and vertical beam system, with q 0 determined to within ±4%. The required SNR can be provided with either PHA or multicolor diagnostic techniques, though the multicolor system requires ∼x4 better statistics for comparable final errors

  19. Advanced Electron Beam Diagnostics for the FERMI FEL

    CERN Document Server

    Ferianis, M; D'Auria, G; Di Mitri, S

    2005-01-01

    Fermi is the fourth generation light source currently under design at ELETTRA: based on the Harmonic Generation (HG) scheme it will generate FEL radiation in the 100-10nm range. The successful implementation of the HG scheme calls also for precise knowledge of electron beam emittances and energy spread as well as for very accurate control on the photon to electron interaction, in the Undulator sections. In this paper we present our design for two fundamental Diagnostics foreseen for the new FERMI LINAC: the Beam Position Monitors (BPM) and the Transverse Deflecting cavity set-up. Sensitivity studies on transverse beam displacement effects on global stability of FEL output radiation dictate the ultimate performance to be provided by the BPM system. Due to non negligible longitudinal occupancy of a cavity type BPM, some efforts have been put to study compact cavity BPM configuration. A proper set-up of RF deflecting cavity combined with the vertical ramp foreseen at the end of the LINAC provide a powerful tool ...

  20. Electronic viewbox: An integrated image diagnostic working station

    International Nuclear Information System (INIS)

    Minato, K.; Komori, M.; Hirakawa, A.; Kuwahara, M.; Yonekura, Y.; Torizuka, K.; Brill, A.B.

    1985-01-01

    Recent development in medical imaging technology have been introducing variety of digital images in clinical medicine, and handling these multi-modality digital images in one place is needed for efficient clinical diagnosis. The authors proposed a concept of an integrated image diagnostic working station, in which a physician can look into all clinical images, can select any key image for diagnosis and can read it in detail. A prototype working station named ''Electronic Viewbox'' has been developed for this purpose. It has three distinctive features. 1. The stored images of a patient are shown at a glance. In order to achieve this function, each original image is attached to a small image, where the data are compressed to reserve the essence of the image, and many of these small images are displayed on a CRT screen. This small image is used as an index for picking up a key image in the archived clinical images. 2. The working station is compact enough to be set on a desk. Only two CRTs and a pointing device are assembled. These two CRT screens are used mutually for retrieving key images and for displaying the original images. 3. All operations can be done interactively using cursor and icons

  1. New Electron Cyclotron Emission Diagnostic Based Upon the Electron Bernstein Wave

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Hosea, J.C.; Kaita, R.; Majeski, R.; Taylor, G.

    1999-01-01

    Most magnetically confined plasma devices cannot take advantage of standard Electron Cyclotron Emission (ECE) diagnostics to measure temperature. They either operate at high density relative to their magnetic field or they do not have sufficient density and temperature to reach the blackbody condition. The standard ECE technique measures the electromagnetic waves emanating from the plasma. Here we propose to measure electron Bernstein waves (EBW) to ascertain the local electron temperature in these plasmas. The optical thickness of EBW is extremely high because it is an electrostatic wave with a large k(subscript i). One can reach the blackbody condition with a plasma density approximately equal to 10(superscript 11) cm(superscript -3) and electron temperature approximately equal to 1 eV. This makes it attractive to most plasma devices. One serious issue with using EBW is the wave accessibility. EBW may be accessible by either direct coupling or mode conversion through an extremely narrow layer (approximately 1-2 mm) in low field devices

  2. High-brightness electron beam diagnostics at the ATF

    International Nuclear Information System (INIS)

    Wang, X.J.; Ben-Zvi, I.

    1996-01-01

    The Brookhaven Accelerator Test Facility (ATF) is a dedicated user facility for accelerator physicists. Its design is optimized to explore laser acceleration and coherent radiation production. To characterize the low-emittance, picoseconds long electron beam produced by the ATF's photocathode RF gun, we have installed electron beam profile monitors for transverse emittance measurement, and developed a new technique to measure electron beam pulse length by chirping the electron beam energy. We have also developed a new technique to measure the ps slice emittance of a 10 ps long electron beam. Stripline beam position monitors were installed along the beam to monitor the electron beam position and intensity. A stripline beam position monitor was also used to monitor the timing jitter between the RF system and laser pulses. Transition radiation was used to measure electron beam energy, beam profile and electron beam bunch length

  3. Interferencia de ondas acústicas en la calibración primaria de micrófonos por reciprocidad en campo libre

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2004-01-01

    La calibración primaria de micrófonos se realiza empleando el método de reciprocidad, que implica el uso de tres micrófonos que se miden de dos en dos. Uno de los micrófonos en cada pareja actúa como emisor de ondas acústicas y otro como receptor. Se trata de transductores recíprocos. Este método...... se puede aplicar utilizando un acoplador donde se introducen los micrófonos (calibración en presión) o en un ambiente acústico anecoico (calibración en campo libre). En este último caso, el que nos ocupa, la suposición de que los micrófonos actúan como fuentes sonoras puntuales implica que el efecto...... eliminación de estas reflexiones por filtrado de los resultados de medición en el dominio del tiempo. Adicionalmente se presentan algunas simulaciones numéricas que ilustran el fenómeno....

  4. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    Science.gov (United States)

    Teruya, Alan T [Livermore, CA; Elmer,; John, W [Danville, CA; Palmer, Todd A [State College, PA

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  5. Protection study of a diagnostic system for electron beam at the output of an accelerator

    International Nuclear Information System (INIS)

    Rahmani, Kaouther; Yaacoubi, Imen

    2009-01-01

    The aim of this work is the determination of the conception of a protection system dedicated to protect a diagnostic system in the CNSTN. According to this study, the suitable material for the protection against the electrons in the plexiglas and the supermalloy to protect the future diagnostic system against the magnetic field. (Author)

  6. A diagnostic for electron dynamics in tokamaks. Final report

    International Nuclear Information System (INIS)

    Skiff, F.; Boyd, D.

    1996-12-01

    The diagnostic was installed on TdeV and brought into operation. It was optimized to the extent that time and money permitted. A considerable quantity of data was accumulated and analyzed. Experiments ended in August 1995. The apparatus has been removed from TdeV and returned to the University of Maryland. Each of these activities is detailed in this report

  7. Longitudinal Electron Bunch Diagnostics Using Coherent Transition Radiation

    CERN Document Server

    Mihalcea, Daniel; Happek, Uwe; Regis-Guy Piot, Philippe

    2005-01-01

    The longitudinal charge distribution of electron bunches in the Fermilab A0 photo-injector was determined by using the coherent transition radiation produced by electrons passing through a thin metallic foil. The auto-correlation of the transition radiation signal was measured with a Michelson type interferometer. The response function of the interferometer was determined from measured and simulated power spectra for low electron bunch charge and maximum longitudinal compression. Kramers-Kroning technique was used to determine longitudinal charge distribution. Measurements were performed for electron bunch lengths in the range from 0.3 to 2 ps (rms).

  8. Electron-Beam Produced Air Plasma: Optical and Electrical Diagnostics

    Science.gov (United States)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    High energy electron impact excitation is used to stimulate optical emissions that quantify the measurement of electron beam current. A 100 keV 10-ma electron beam source is used to produce air plasma in a test cell at a pressure between 1 mTorr and 760 Torr. Optical emissions originating from the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm are observed. Details on calibration using signals from an isolated transmission window and a Faraday plate are discussed. Results using this technique and other electrical signal are presented.

  9. Design of a correlation electron cyclotron emission diagnostic for Alcator C-Moda)

    Science.gov (United States)

    Sung, C.; White, A. E.; Irby, J. H.; Leccacorvi, R.; Vieira, R.; Oi, C. Y.; Peebles, W. A.; Nguyen, X.

    2012-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been installed in Alcator C-Mod. In order to measure electron temperature fluctuations, this diagnostic uses a spectral decorrelation technique. Constraints obtained with nonlinear gyrokinetic simulations guided the design of the optical system and receiver. The CECE diagnostic is designed to measure temperature fluctuations which have kθ ≤ 4.8 cm-1 (kθρs < 0.5) using a well-focused beam pattern. Because the CECE diagnostic is a dedicated turbulence diagnostic, the optical system is also flexible, which allows for various collimating lenses and antenna to be used. The system overview and the demonstration of its operability as designed are presented in this paper.

  10. Final Report for 'Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators'

    International Nuclear Information System (INIS)

    Veitzer, Seth A.

    2009-01-01

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  11. High power microwave emission and diagnostics of microsecond electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Gilgenbach, R; Hochman, J M; Jayness, R; Rintamaki, J I; Lau, Y Y; Luginsland, J; Lash, J S [Univ. of Michigan, Ann Arbor, MI (United States). Intense Electron Beam Interaction Lab.; Spencer, T A [Air Force Phillips Lab., Kirtland AFB, NM (United States)

    1997-12-31

    Experiments were performed to generate high power, long-pulse microwaves by the gyrotron mechanism in rectangular cross-section interaction cavities. Long-pulse electron beams are generated by MELBA (Michigan Electron Long Beam Accelerator), which operates with parameters: -0.8 MV, 1-10 kA, and 0.5-1 microsecond pulse length. Microwave power levels are in the megawatt range. Polarization control is being studied by adjustment of the solenoidal magnetic field. Initial results show polarization power ratios up to a factor of 15. Electron beam dynamics (V{sub perp}/V{sub par}) are being measured by radiation darkening on glass plates. Computer modeling utilizes the MAGIC Code for electromagnetic waves and a single electron orbit code that includes a distribution of angles. (author). 4 figs., 4 refs.

  12. Electron ring diagnostics with magnetic probes during roll-out and acceleration

    International Nuclear Information System (INIS)

    Schumacher, U.; Ulrich, M.

    1976-03-01

    Different methods using magnetic field probes to determine the properties of electron rings during their compression, roll-out and acceleration are presented. The results of the measurements of the electron number and the axial velocity and acceleration of the rings, as obtained with the various diagnostic devices, are discussed and compared. (orig.) [de

  13. Improved Temperature Diagnostic for Non-Neutral Plasmas with Single-Electron Resolution

    Science.gov (United States)

    Shanman, Sabrina; Evans, Lenny; Fajans, Joel; Hunter, Eric; Nelson, Cheyenne; Sierra, Carlos; Wurtele, Jonathan

    2016-10-01

    Plasma temperature diagnostics in a Penning-Malmberg trap are essential for reliably obtaining cold, non-neutral plasmas. We have developed a setup for detecting the initial electrons that escape from a trapped pure electron plasma as the confining electrode potential is slowly reduced. The setup minimizes external noise by using a silicon photomultiplier to capture light emitted from an MCP-amplified phosphor screen. To take advantage of this enhanced resolution, we have developed a new plasma temperature diagnostic analysis procedure which takes discrete electron arrival times as input. We have run extensive simulations comparing this new discrete algorithm to our existing exponential fitting algorithm. These simulations are used to explore the behavior of these two temperature diagnostic procedures at low N and at high electronic noise. This work was supported by the DOE DE-FG02-06ER54904, and the NSF 1500538-PHY.

  14. Expert system for fault diagnostic in electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, G

    1984-03-01

    Troubleshooting of electronic devices and highly complex PCBS (printed circuit boards) is an area where expert systems can be used. In addition to the difficulties intrinsic to this area it is also impossible to integrate the amount of knowledge based on experience in a traditional model. 8 references.

  15. Calibration and use cases of the electron cyclotron emission diagnostic at Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Hoefel, Udo; Hirsch, Matthias; Ewert, Karsten; Hartfuss, Hans-Juergen; Laqua, Heinrich Peter; Stange, Torsten; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Collaboration: the W7-X Team

    2016-07-01

    The world's largest stellarator, Wendelstein 7-X (W7-X), is equipped with a 140 GHz electron cyclotron resonance heating (ECRH) system providing up to 5 MW absorbed power in the first operation phase OP1.1. The foreseen X2-heating scenario uses the high absorption of the second harmonic extraordinary electron cyclotron waves, which leads on the other hand to a black body electron cyclotron emission (ECE) being proportional to the local electron temperature. ECE is one of the fundamental operating diagnostics and is planned to yield the electron temperature profile from the very first discharges onwards. Unlike most other ECE diagnostics, the 32 channel ECE radiometer diagnostic (with additional 16 channels with higher radial resolution) at W7-X is absolutely calibrated. It is planned to use this diagnostic for intensive studies on electron heat transport in the upcoming operational phases of W7-X. Simple switch-off experiments for the determination of the energy confinement time should already be possible within the first plasma shots. Due to the high temporal and radial resolution the ECE will be used also to determine the power deposition by modulation of the heating gyrotron. or the localization of a power modulated ECRH to optimize the power deposition. If reasonably equilibrated plasma conditions could be generated in the first operational phase (OP 1.1), first studies on electron thermal diffusivity could also be possible.

  16. Development of terahertz laser diagnostics for electron density measurements.

    Science.gov (United States)

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2008-10-01

    A two color laser interferometer using terahertz laser sources is under development for high performance operation on the large helical device and for future burning plasma experiments such as ITER. Through investigation of terahertz laser sources, we have achieved high power simultaneous oscillations at 57.2 and 47.6 microm of a CH(3)OD laser pumped by a cw 9R(8) CO(2) laser line. The laser wavelength around 50 microm is the optimum value for future fusion devices from the consideration of the beam refraction effect and signal-to-noise ratio for an expected phase shift due to plasma. In this article, recent progress of the terahertz laser diagnostics, especially in mechanical vibration compensation by using a two color laser operation and terahertz laser beam transmission through a dielectric waveguide, will be presented.

  17. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    International Nuclear Information System (INIS)

    Polevoy, J.T.

    1989-06-01

    Experimental measurements of the average axial velocity v parallel of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V p and the beam current I b . V p is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I b is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v parallel and calculations of the corresponding transverse to longitudinal beam velocity ratio α = v perpendicular /v parallel at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical rf interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v parallel and α are determined through the use of a computer code entitled EGUN. EGUN is used to model the cathode and anode regions of the gyrotron and it computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of α at low α, with the expected values from EGUN often falling within the standard errors of the measured values. 10 refs., 29 figs., 2 tabs

  18. Novel non-intercepting diagnostic techniques for low-emittance relativistic electron beams

    International Nuclear Information System (INIS)

    Moran, M.J.; Chang, B.

    1988-01-01

    Relativistic electron beams are being generated with emittances low enough that diffraction radiation can be used for beam diagnostics. Techniques based on diffraction radiation can be used to measure the beam transverse momentum distribution and to measure the transverse spatial distribution. The radiation is intense and can be in the visible spectral region where optical diagnostic techniques can be used to maximum advantage. 4 refs. 3 figs

  19. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    Science.gov (United States)

    Polevoy, Jeffrey Todd

    1989-06-01

    Experimental measurements of the average axial velocity v(sub parallel) of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V(sub p) and the beam current I(sub b). The V(sub p) is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I(sub b) is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v(sub parallel) and calculations of the corresponding transverse to longitudinal beam velocity ratio (alpha) = v(sub perpendicular)/v(sub parallel) at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical RF interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v(sub parallel) and (alpha) are determined through the use of a computer code (EGUN) which is used to model the cathode and anode regions of the gyrotron. It also computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of (alpha) at low (alpha), with the expected values from EGUN often falling within the standard errors of the measured values.

  20. On the possibility of laser diagnostics of anisotropically superheated electrons in magnetic fusion systems

    International Nuclear Information System (INIS)

    Kukushkin, A.B.

    1990-01-01

    The anisotropically superheated electrons (ASE) are known to be generated by a resonance interaction of high-frequency electromagnetic waves with electron plasma. Under definite conditions the ASE energy may essentially exceed (by the order of magnitude or even more) thermal energies of background electron plasma, the ASE distribution in pitch-angle being concentrated around definite directions. This situation is typical for, e.g. electron cyclotron heating of magnetic mirror plasmas (generation of 'sloshing' electrons) and for current drive in tokamaks by means of lower-hybrid or, sometimes, electron cyclotron waves. In this work, an analysis of the possibility of the ASE laser diagnostics is based on the calculations of Thomson scattering of laser radiation by plasma electrons. The model electron velocity distribution functions, which provide qualitative description of the ASE peculiar features, were used in calculations. (author) 4 refs., 1 fig

  1. Diagnostics

    DEFF Research Database (Denmark)

    Donné, A.J.H.; Costley, A.E.; Barnsley, R.

    2007-01-01

    of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems...... on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R......&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. The starting point in the development of diagnostics for ITER is to define the measurement requirements and develop their justification. It is necessary to include all...

  2. Computation of electron cloud diagnostics and mitigation in the main injector

    International Nuclear Information System (INIS)

    Veitzer, S A; Cary, J R; Stoltz, P H; LeBrun, P; Spentzouris, P; Amundson, J F

    2009-01-01

    High-performance computations on Blue Gene/P at Argonne's Leadership Computing Facility have been used to determine phase shifts induced in injected RF diagnostics as a function of electron cloud density in the Main Injector. Inversion of the relationship between electron cloud parameters and induced phase shifts allows us to predict electron cloud density and evolution over many bunch periods. Long time-scale simulations using Blue Gene have allowed us to measure cloud evolution patterns under the influence of beam propagation with realistic physical parameterizations, such as elliptical beam pipe geometry, self-consistent electromagnetic fields, space charge, secondary electron emission, and the application of arbitrary external magnetic fields. Simultaneously, we are able to simulate the use of injected microwave diagnostic signals to measure electron cloud density, and the effectiveness of various mitigation techniques such as surface coating and the application of confining magnetic fields. These simulations provide a baseline for both RF electron cloud diagnostic design and accelerator fabrication in order to measure electron clouds and mitigate the adverse effects of such clouds on beam propagation.

  3. The electron beam diagnostic of the clustered supersonic nitrogen jets

    Science.gov (United States)

    Avtaeva, S. V.; Yakovleva, T. S.; Kalyada, V. V.; Zarvin, A. E.

    2017-11-01

    Axial and radial distributions of the rotational temperature and density of N2 molecules in supersonic nitrogen jets formed with conic nozzles (critical diameters dcr of 0.17 and 0.21 mm) were studied using the electron beam fluorescence technique at stagnation pressures P0 of 0.1-0.6 MPa. A rotational temperature Tr , equaling a gas temperature Tg owing to fast RT relaxation, was obtained using the rotational line relative intensity distribution in (0-1) vibrational band of the N2 first negative system. Gas density profiles in the jets were obtained using the integral intensity of the band. It is found, Tr at the nozzle outlet is of the order of a few tens of Kelvin and at further expansion Tr drops up to 15-20K at distance of (100-200) dcr . The gas temperature and density distributions in the studied supersonic nitrogen jets are not similar to the isentropic distributions. It is shown that the lower is the stagnation pressure the faster the gas density and temperature decrease with distance from the nozzle. Increase in P0 leads to elevating Tg in the jets. A reason for this effect may be cluster formation in the jets. Estimations of cluster mean sizes in the jets using Hagena’s parameter show presence of large clusters (M≥200) at P0 = 0.4-0.6 MPa.

  4. Electron density diagnostics in the 10-100 A interval for a solar flare

    Science.gov (United States)

    Brown, W. A.; Bruner, M. E.; Acton, L. W.; Mason, H. E.

    1986-01-01

    Electron density measurements from spectral-line diagnostics are reported for a solar flare on July 13, 1982, 1627 UT. The spectrogram, covering the 10-95 A interval, contained usable lines of helium-like ions C V, N VI, O VII, and Ne IX which are formed over the temperature interval 0.7-3.5 x 10 to the 6th K. In addition, spectral-line ratios of Si IX, Fe XIV, and Ca XV were compared with new theoretical estimates of their electron density sensitivity to obtain additional electron density diagnostics. An electron density of 3 x 10 to the 10th/cu cm was obtained. The comparison of these results from helium-like and other ions gives confidence in the utility of these tools for solar coronal analysis and will lead to a fuller understanding of the phenomena observed in this flare.

  5. A multislit transverse-emittance diagnostic for space-charge-dominated electron beams

    International Nuclear Information System (INIS)

    Piot, P.; Song, J.; Li, R.

    1997-01-01

    Jefferson Lab is developing a 10 MeV injector to provide an electron beam for a high-power free-electron laser (FEL). To characterize the transverse phase space of the space-charged-dominated beam produced by this injector, the authors designed an interceptive multislit emittance diagnostic. It incorporates an algorithm for phase-space reconstruction and subsequent calculation of the Twiss parameters and emittance for both transverse directions at an update rate exceeding 1 Hz, a speed that will facilitate the transverse-phase-space matching between the injector and the FEL's accelerator that is critical for proper operation. This paper describes issues pertaining to the diagnostic's design. It also discusses the acquisition system, as well as the software algorithm and its implementation in the FEL control system. First results obtained from testing this diagnostic in Jefferson Lab's Injector Test Stand are also included

  6. Electron cyclotron-electron Bernstein wave emission diagnostics for the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Zajac, Jaromír; Preinhaelter, Josef; Urban, Jakub; Žáček, František; Šesták, David; Nanobashvili, S.

    2010-01-01

    Roč. 81, č. 10 (2010), 10D911-10D911 ISSN 0034-6748. [TOPICAL CONFERENCE ON HIGH-TEMPERATURE PLASMA DIAGNOSTICS/18th./. Wildwood, New Jersey, 16.05.2010-20.05.2010] R&D Projects: GA ČR GA202/08/0419 Institutional research plan: CEZ:AV0Z20430508 Keywords : antenna radiation patterns * antennas in plasma * plasma diagnostics * Tokamak Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.598, year: 2010 http://link.aip.org/link/?RSI/81/10D911

  7. Correlation electron cyclotron emission diagnostic and improved calculation of turbulent temperature fluctuation levels on ASDEX Upgrade

    Science.gov (United States)

    Creely, A. J.; Freethy, S. J.; Burke, W. M.; Conway, G. D.; Leccacorvi, R.; Parkin, W. C.; Terry, D. R.; White, A. E.

    2018-05-01

    A newly upgraded correlation electron cyclotron emission (CECE) diagnostic has been installed on the ASDEX Upgrade tokamak and has begun to perform experimental measurements of electron temperature fluctuations. CECE diagnostics measure small amplitude electron temperature fluctuations by correlating closely spaced heterodyne radiometer channels. This upgrade expanded the system from six channels to thirty, allowing simultaneous measurement of fluctuation level radial profiles without repeat discharges, as well as opening up the possibility of measuring radial turbulent correlation lengths. Newly refined statistical techniques have been developed in order to accurately analyze the fluctuation data collected from the CECE system. This paper presents the hardware upgrades for this system and the analysis techniques used to interpret the raw data, as well as measurements of fluctuation spectra and fluctuation level radial profiles.

  8. Balmer line diagnostic of electron heating at collisionless shocks in supernova remnants

    International Nuclear Information System (INIS)

    Rakowski, C.

    2008-01-01

    The mechanism and extent of electron heating at collisionless shocks has recently been under intense investigation. H α Balmer line emission is excited immediately behind the shock front and provides the best diagnostic for the electron to proton temperature ratio at supernova remnant shocks. Two components of emission are produced, a narrow component from electron and proton impact excitation of cold neutrals, and a broad component produced through charge exchange between the cold neutrals and the shock heated protons. Thus the broad and narrow component fluxes reflect the competition between electron and proton impact ionization, electron and proton impact excitation and charge exchange. This diagnostic has led to the discovery of an approximate inverse square relationship between the electron to proton temperature ratio and the shock velocity. In turn, this implies a constant level of electron heating, independent of shock speed above ∼ 450 km/s. In this talk I will present the observational evidence to date. Time permitting, I will introduce how lower-hybrid waves in an extended cosmic ray precursor could explain such a relationship, and how this and other parameters in the H α profile might relate to properties of cosmic rays and magnetic field amplification ahead of the shock. (author)

  9. Research support for plasma diagnostics on Elmo Bumpy Torus: investigation of diamagnetic diagnostics for the electron rings

    International Nuclear Information System (INIS)

    Carpenter, K.H.

    1981-02-01

    Diamagnetic diagnostics for the EBT electron rings are fundamental to the experiment. The diamagnetic flux pickup loops on each cavity output signals proportional to ring perpendicular energy. A data analysis technique is described, which in its simplest form is subtracting 1/4 the signal from each neighboring cavity pickup loop from the central one's, which provides a signal proportional to the energy in a single ring. The calibration factor relating absolute perpendicular energy to diamagnetic signal depends weakly on the geometrical model for the ring. Calculations with a bumpy cylinder MHD equilibrium code give calibration factors in reasonable agreement (20%) to the values obtained using a simple, concentric cylindrical current sheet model. The cylindrical current sheet model is used to show that diamagnetic field components measured external to the plasma require high precision or correlation with other diagnostics in order to fix model parameters. A computer simulation shows an assumption of constant ring thickness and energy density with increasing length (and energy) is compatible to diamagnetic field observations on NBT

  10. Time-dependent electron temperature diagnostics for high-power aluminum z-pinch plasmas

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Mock, R.C.

    1996-08-01

    Time-resolved x-ray pinhole photographs and time-integrated radially-resolved x-ray crystal-spectrometer measurements of azimuthally-symmetric aluminum-wire implosions suggest that the densest phase of the pinch is composed of a hot plasma core surrounded by a cooler plasma halo. The slope of the free-bound x-ray continuum, provides a time-resolved, model-independent diagnostic of the core electron temperature. A simultaneous measurement of the time-resolved K-shell line spectra provides the electron temperature of the spatially averaged plasma. Together, the two diagnostics support a 1-D Radiation-Hydrodynamic model prediction of a plasma whose thermalization on axis produces steep radial gradients in temperature, from temperatures in excess of a kilovolt in the core to below a kilovolt in the surrounding plasma halo

  11. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, B. H.; Kinley, J. S.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  12. Extraordinary mode absorption at the electron cyclotron harmonic frequencies as a Tokamak plasma diagnostic

    International Nuclear Information System (INIS)

    Pachtman, A.

    1986-09-01

    Measurements of Extraordinary mode absorption at the electron cyclotron harmonic frequencies are of unique value in high temperature, high density Tokamak plasma diagnostic applications. An experimental study of Extraordinary mode absorption at the semi-opaque second and third harmonics has been performed on the ALCATOR C Tokamak. A narrow beam of submillimeter laser radiation was used to illuminate the plasma in a horizontal plane, providing a continuous measurement of the one-pass, quasi-perpendicular transmission

  13. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, W. L., E-mail: w.l.rowan@austin.utexas.edu; Houshmandyar, S.; Phillips, P. E.; Austin, M. E. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Beno, J. H.; Ouroua, A. [Center for Electromechanics, The University of Texas at Austin, Austin, Texas 78712 (United States); Hubbard, A. E. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Khodak, A.; Taylor, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.

  14. Diagnostics of microwave assisted electron cyclotron resonance plasma source for surface modification of nylon 6

    Science.gov (United States)

    More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.

    2018-01-01

    Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.

  15. Plasma diagnostics by electron guns and electric field probes on ISEE-1

    International Nuclear Information System (INIS)

    Pedersen, A.

    1982-01-01

    The use of electron guns to control the potential of a satellite with conductive surfaces is discussed with reference to the results of the ISEE-1 satellite experiment. The two electron guns carried by the satellite can emit electrons with energies up to 48 eV, and the emitted electron current has a maximum value of 0.5-1.0 mA. The satellite potential, with or without gun operation, can be measured with reference to one or two spherical electric field probes positioned on booms at a distance of 36 m from the satellite. The probes are biased with a negative current from a high-impedance source to be slightly positive (0.5-1.0 V) relative to the plasma, and the spacecraft is normally several volts more positive and can be further positively charged by operating the electron gun. Plasma diagnostics can be carried out by appropriate sweeps of gun currents and energy of emitted electrons to obtain information about density and characteristic energy of ambient electrons. 9 references

  16. Cherenkov-type diagnostics of fast electrons beams escaping from MCF facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L.; Malinowski, K.; Mirowski, R.; Rabinski, M.; Sadowski, M.J.; Zebrowski, J. [Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland)

    2011-07-01

    The paper presents the feasibility study, the measuring system and the first experimental results of a new method developed for direct detection of high-energy (super-thermal, ripple-born and runaway) electrons generated in magnetic confinement fusion (MCF) facilities. The technique in question is based on registration of the Cherenkov radiation, emitted by energetic electrons, moving through a transparent medium (radiator) with a velocity higher than the velocity of light in this material. The main aim of our studies was to develop a diagnostic technique applicable for measurements of fast electron beams within MCF devices. The IPJ team proposed Cherenkov-type probes because of their high spatial- and temporal-resolutions. The most important results of applications of the presented Cherenkov-type diagnostics have proved that the one- and four-channel versions of the detecting head are useful for studies of the fast (ripple-born and runaway) electrons in different MCF experiments. Experience collected during the described studies allows to introduce some changes in the radiator configuration and to modify the Cherenkov probe design. This document is composed of a paper followed by a poster

  17. In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap

    CERN Document Server

    Amole, C; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C.L.; Charlton, M.; Deller, A.; Evetts, N.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Gutierrez, A.; Hangst, J.S.; Hardy, W.N.; Hayden, M.E.; Isaac, C.A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J.T.K.; Menary, S.; Napoli, S.C.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C.; Robicheaux, F.; Sarid, E.; Silveira, D.M.; So, C.; Stracka, S.; Tharp, T.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.

    2014-01-01

    We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning-Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma's quadrupole mode frequency. The spatially-resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.

  18. Calibration of a two-color soft x-ray diagnostic for electron temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.; McGarry, M. B. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Franz, P. [Consorzio RFX, Padova (Italy); Stephens, H. D. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Pierce College Fort Steilacoom, Lakewood, Washington 98498 (United States)

    2016-11-15

    The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.

  19. Single-shot electro-optic experiments for electron bunch diagnostics at Tsinghua Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Du, Yingchao; Yan, Lixin; Hua, Jianfei; Zhang, Zhen; Zhou, Zheng [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Huang, Wenhui, E-mail: huangwh@mail.tsinghua.edu.cn [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Tang, Chuanxiang [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Li, Ming [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-10-21

    The electro-optic (EO) technique detects the Coulomb electric field distribution of relativistic electron bunches to obtain the associated longitudinal profile. This diagnostic method allows the direct time-resolved single-shot measurement and thus the real-time monitoring of the bunch profile and beam arrival time in a non-destructive way with sub-picosecond temporal resolution. In this paper, we report the measurement of the longitudinal profile of an electron bunch through electro-optic spectral decoding detection, in which the bunch profile is encoded into the spectra of the linearly chirped laser pulse. The experimental setup and measurement results of a 40 MeV electron bunch are presented, with a temporal profile length of 527 fs rms (~1.24 ps FWHM) and a beam arrival time jitter of 471 fs rms. Temporal resolution and future experimental improvement are also discussed.

  20. Opto-electronic DNA chip-based integrated card for clinical diagnostics.

    Science.gov (United States)

    Marchand, Gilles; Broyer, Patrick; Lanet, Véronique; Delattre, Cyril; Foucault, Frédéric; Menou, Lionel; Calvas, Bernard; Roller, Denis; Ginot, Frédéric; Campagnolo, Raymond; Mallard, Frédéric

    2008-02-01

    Clinical diagnostics is one of the most promising applications for microfluidic lab-on-a-chip or lab-on-card systems. DNA chips, which provide multiparametric data, are privileged tools for genomic analysis. However, automation of molecular biology protocol and use of these DNA chips in fully integrated systems remains a great challenge. Simplicity of chip and/or card/instrument interfaces is amongst the most critical issues to be addressed. Indeed, current detection systems for DNA chip reading are often complex, expensive, bulky and even limited in terms of sensitivity or accuracy. Furthermore, for liquid handling in the lab-on-cards, many devices use complex and bulky systems, either to directly manipulate fluids, or to ensure pneumatic or mechanical control of integrated valves. All these drawbacks prevent or limit the use of DNA-chip-based integrated systems, for point-of-care testing or as a routine diagnostics tool. We present here a DNA-chip-based protocol integration on a plastic card for clinical diagnostics applications including: (1) an opto-electronic DNA-chip, (2) fluid handling using electrically activated embedded pyrotechnic microvalves with closing/opening functions. We demonstrate both fluidic and electric packaging of the optoelectronic DNA chip without major alteration of its electronical and biological functionalities, and fluid control using novel electrically activable pyrotechnic microvalves. Finally, we suggest a complete design of a card dedicated to automation of a complex biological protocol with a fully electrical fluid handling and DNA chip reading.

  1. Infrared single shot diagnostics for the longitudinal profile of the electron bunches at FLASH

    International Nuclear Information System (INIS)

    Delsim-Hashemi, Hossein

    2008-09-01

    The longitudinal profile of electron bunches plays an important role in the design of single-pass free electron lasers and future linear e + e - colliders. For the free electron laser FLASH in Hamburg, a longitudinal compression scheme is used which results in an asymmetric longitudinal bunch profile with a 'spike'. This 'spike', which has a very high peak current, is used in a high-gain SASE-FEL process to produce high intensity (about 70 μJ) femtosecond photon pulses in the XUV wavelength range. The required high peak current of the electron bunch is realized by confining a large number of electrons in a width, measured in time units, of few tens of femtosecond, making the diagnostics of such bunches a challenge. Furthermore, the operation of facilities such as FLASH shows that single-shot diagnostics is indispensable. It is intuitive to use a time domain method to measure the electron bunch length. However, when the structures present in the bunch profile fall in the femtoseconds range, this is beyond the resolution of time-resolved methods developed so far. In this thesis, a wavelength-domain technique is described that can fulfill both requirements of single shot and high resolution reaching to the femtoseconds range. The amount of charge that is confined in a typical length of several femtoseconds (FWHM of the spike) can be determined by a novel single-shot spectrometer that resolves the coherent radiation (e.g. coherent transition radiation) in the far-infrared and mid-infrared range. Furthermore the extension of this single-shot spectroscopy to shorter wavelengths reaching the near-infrared, makes it possible to investigate the presence of structures in the bunch profile that might correlate or anti-correlate to the SASE intensity. (orig.)

  2. Infrared single shot diagnostics for the longitudinal profile of the electron bunches at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Delsim-Hashemi, Hossein

    2008-09-15

    The longitudinal profile of electron bunches plays an important role in the design of single-pass free electron lasers and future linear e{sup +}e{sup -} colliders. For the free electron laser FLASH in Hamburg, a longitudinal compression scheme is used which results in an asymmetric longitudinal bunch profile with a 'spike'. This 'spike', which has a very high peak current, is used in a high-gain SASE-FEL process to produce high intensity (about 70 {mu}J) femtosecond photon pulses in the XUV wavelength range. The required high peak current of the electron bunch is realized by confining a large number of electrons in a width, measured in time units, of few tens of femtosecond, making the diagnostics of such bunches a challenge. Furthermore, the operation of facilities such as FLASH shows that single-shot diagnostics is indispensable. It is intuitive to use a time domain method to measure the electron bunch length. However, when the structures present in the bunch profile fall in the femtoseconds range, this is beyond the resolution of time-resolved methods developed so far. In this thesis, a wavelength-domain technique is described that can fulfill both requirements of single shot and high resolution reaching to the femtoseconds range. The amount of charge that is confined in a typical length of several femtoseconds (FWHM of the spike) can be determined by a novel single-shot spectrometer that resolves the coherent radiation (e.g. coherent transition radiation) in the far-infrared and mid-infrared range. Furthermore the extension of this single-shot spectroscopy to shorter wavelengths reaching the near-infrared, makes it possible to investigate the presence of structures in the bunch profile that might correlate or anti-correlate to the SASE intensity. (orig.)

  3. Diagnostic value of different adherence measures using electronic monitoring and virologic failure as reference standards.

    Science.gov (United States)

    Deschamps, Ann E; De Geest, Sabina; Vandamme, Anne-Mieke; Bobbaers, Herman; Peetermans, Willy E; Van Wijngaerden, Eric

    2008-09-01

    Nonadherence to antiretroviral therapy is a substantial problem in HIV and jeopardizes the success of treatment. Accurate measurement of nonadherence is therefore imperative for good clinical management but no gold standard has been agreed on yet. In a single-center prospective study nonadherence was assessed by electronic monitoring: percentage of doses missed and drug holidays and by three self reports: (1) a visual analogue scale (VAS): percentage of overall doses taken; (2) the Swiss HIV Cohort Study Adherence Questionnaire (SHCS-AQ): percentage of overall doses missed and drug holidays and (3) the European HIV Treatment Questionnaire (EHTQ): percentage of doses missed and drug holidays for each antiretroviral drug separately. Virologic failure prospectively assessed during 1 year, and electronic monitoring were used as reference standards. Using virologic failure as reference standard, the best results were for (1) the SHCS-AQ after electronic monitoring (sensitivity, 87.5%; specificity, 78.6%); (2) electronic monitoring (sensitivity, 75%; specificity, 85.6%), and (3) the VAS combined with the SHCS-AQ before electronic monitoring (sensitivity, 87.5%; specificity, 58.6%). The sensitivity of the complex EHTQ was less than 50%. Asking simple questions about doses taken or missed is more sensitive than complex questioning about each drug separately. Combining the VAS with the SHCS-AQ seems a feasible nonadherence measure for daily clinical practice. Self-reports perform better after electronic monitoring: their diagnostic value could be lower when given independently.

  4. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza (Italy); Panasenkov, A. [NRC, Kurchatov Institute, 1, Kurchatov Sq, Moscow 123182 (Russian Federation); Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); INFN-LNL, viale dell’Università n. 2, 35020 Legnaro (Italy); Serianni, G.; Pasqualotto, R. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-11-15

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  5. Electron bunch diagnostics for laser-plasma accelerators, from THz to X-rays

    International Nuclear Information System (INIS)

    Plateau, G.

    2011-10-01

    This thesis presents a series of single-shot non-intrusive diagnostics of key attributes of electron bunches produced by a laser-plasma accelerator (LPA). Three injection mechanisms of the LPA are characterized: channeled and self-guided self-injection, plasma down-ramp injection, and two-beam colliding pulse injection. New diagnostic techniques are successfully demonstrated: up to 8 times higher sensitivity wavefront sensor-based plasma density measurements, strong spatio-temporal coupling of the focused THz pulse is demonstrated using the temporal electric-field cross-correlation (TEX) of a long chirped probe with a short probe and confirms the two-component structure of the bunch observed by electron spectrometry, and normalized transverse emittances as low as 0.1 mm mrad are demonstrated for 0.5 GeV-class beams produced in a capillary-guided LPA by characterizing the betatron radiation emitted by the electrons inside the plasma using a new single-shot X-ray spectroscopy technique. (author)

  6. Measurement of electron density of the plasma in the Tokamak TCABR, through Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Jeronimo, Leonardo Cunha

    2013-01-01

    Over the last few years is remarkable, so increasingly evident the need for a new source of energy for mankind. One promising option is through nuclear fusion, where the plasma produced in the reactor can be converted into electrical energy. Therefore, knowing the characteristics of this plasma is very important to control it and understand it so desirable. One of the diagnostic options is called Thomson scattering . This is considered the most reliable method for the determination of important plasma parameters such as temperature and electron density, and may also help in the study and explanation of various internal mechanisms. The great advantage lies in the tact that they consist of a direct measurement and nonperturbative. But it is a diagnosis whose installation and execution is admittedly complex, limiting it only a few laboratories in the fíeld of fusion for the world. Among the main difficulties, wc can highlight the fact that the scattered signal is very small, thus requiring a large increase of the incident power. Moreover, the external physical conditions can cause mechanical vibrations that eliminate or minimize them as much as possible, is a great challenge, considering the optical micrometrically very sensitive and needs involved in the system. This work describes the entire process of installation and operation of Thomson scattering diagnostic in tokamak TCABR and through this diagnosis, we work on results of electron temperature, to finally be able to calculate the electron density of the plasma. (author)

  7. A new interferometry-based electron density fluctuation diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Kasten, C. P.; Irby, J. H.; Murray, R.; White, A. E.; Pace, D. C.

    2012-10-01

    The two-color interferometry diagnostic on the Alcator C-Mod tokamak has been upgraded to measure fluctuations in the electron density and density gradient for turbulence and transport studies. Diagnostic features and capabilities are described. In differential mode, fast phase demodulation electronics detect the relative phase change between ten adjacent, radially-separated (ΔR = 1.2 cm, adjustable), vertical-viewing chords, which allows for measurement of the line-integrated electron density gradient. The system can be configured to detect the absolute phase shift of each chord by comparison to a local oscillator, measuring the line-integrated density. Each chord is sensitive to density fluctuations with kR < 20.3 cm-1 and is digitized at up to 10 MS/s, resolving aspects of ion temperature gradient-driven modes and other long-wavelength turbulence. Data from C-Mod discharges is presented, including observations of the quasi-coherent mode in enhanced D-alpha H-mode plasmas and the weakly coherent mode in I-mode.

  8. Generation and diagnostics of uncaptured beam in the Fermilab Tevatron and its control by electron lenses

    Directory of Open Access Journals (Sweden)

    Xiao-Long Zhang

    2008-05-01

    Full Text Available In the collider run II, the Tevatron operates with 36 high intensity bunches of 980 GeV protons and antiprotons. Particles not captured by the Tevatron rf system pose a threat since they can quench the superconducting magnets during acceleration or at beam abort. We describe the main mechanisms for the origination of this uncaptured beam, and present measurements of its main parameters by means of a newly developed diagnostics system. The Tevatron electron lens is effectively used in the collider run II operation to remove uncaptured beam and keep its intensity in the abort gaps at a safe level.

  9. Line Shape Modeling for the Diagnostic of the Electron Density in a Corona Discharge

    Directory of Open Access Journals (Sweden)

    Joël Rosato

    2017-09-01

    Full Text Available We present an analysis of spectra observed in a corona discharge designed for the study of dielectrics in electrical engineering. The medium is a gas of helium and the discharge was performed at the vicinity of a tip electrode under high voltage. The shape of helium lines is dominated by the Stark broadening due to the plasma microfield. Using a computer simulation method, we examine the sensitivity of the He 492 nm line shape to the electron density. Our results indicate the possibility of a density diagnostic based on passive spectroscopy. The influence of collisional broadening due to interactions between the emitters and neutrals is discussed.

  10. Vertical one-dimensional electron cyclotron emission imaging diagnostic for HT-7 tokamak

    International Nuclear Information System (INIS)

    Wang Jun; Xu Xiaoyuan; Wen Yizhi; Yu Changxuan; Wan Baonian; Luhmann, N.C.; Wang, Jian; Xia, Z.G.

    2005-01-01

    A vertical resolved 16-channel electron cyclotron emission imaging (ECEI) diagnostic has been developed and installed on the HT7 Tokamak for measuring plasma electron cyclotron emission with a temporal resolution of 0.5 us. The system is working on a fixed frequency 97.5 GHz in the first stage. The sample volumes of the system are aligned vertically with a vertical channel spacing of 11 mm, and can be shifted across the plasma cross-section by varying the toroidal magnetic field. The high spatial resolution of the system is achieved by utilizing a low cost linear mixer/receiver array and an optical imaging system. The focus location may be shifted horizontally via translation of one of the optical imaging elements. The detail of the system design and laboratory testing of the ECE Imaging optics are presented, together with HT7 plasma data. (author)

  11. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  12. High precision electron beam diagnostic system for high current long pulse beams

    International Nuclear Information System (INIS)

    Chen, Y J; Fessenden, T; Holmes, C; Nelson, S D; Selchow, N.

    1999-01-01

    As part of the effort to develop a multi-axis electron beam transport system using stripline kicker technology for DARHT II applications, it is necessary to precisely determine the position and extent of long high energy beams (6-40 MeV, 1-4 kA, 2 microseconds) for accurate position control. The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (<20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt measurements performed using capacitive pick-off probes. Likewise, transmission line traveling wave probes have problems with multi-bounce effects due to these longer pulse widths. Finally, the high energy densities experienced in these applications distort typical foil beam position measurements

  13. Improved operation of the Michelson interferometer electron cyclotron emission diagnostic on DIII-D

    International Nuclear Information System (INIS)

    Austin, M.E.; Ellis, R.F.; Doane, J.L.; James, R.A.

    1997-01-01

    The measurement of accurate temperature profiles is critical for transport analysis and equilibrium reconstruction in the DIII-D tokamak. Recent refinements in the Michelson interferometer diagnostic have produced more precise electron temperature measurements from electron cyclotron emission and made them available for a wider range of discharge conditions. Replacement of a lens-relay with a low-loss corrugated waveguide transmission system resulted in an increase in throughput of 6 dB and a reduction of calibration error from 15% to 5%. The waveguide exhibits a small polarization scrambling fraction of 0.05 at the quarter-wavelength frequency and very stable transmission characteristics over time. Further reduction in error was realized through special signal processing of the calibration and plasma interferograms. copyright 1997 American Institute of Physics

  14. Department of Micr

    African Journals Online (AJOL)

    USER

    2016-03-03

    Mar 3, 2016 ... isolated and most of these isolates were multiple antibiotic resistant. This study is of ... Key Words: Wastewater, Fish pond, Catfish, Assessment, Antibiotic resistance ..... of disinfectants eg chlorine before final disposal into ...

  15. Complementary views on electron spectra: From fluctuation diagnostics to real-space correlations

    Science.gov (United States)

    Gunnarsson, O.; Merino, J.; Schäfer, T.; Sangiovanni, G.; Rohringer, G.; Toschi, A.

    2018-03-01

    We study the relation between the microscopic properties of a many-body system and the electron spectra, experimentally accessible by photoemission. In a recent paper [O. Gunnarsson et al., Phys. Rev. Lett. 114, 236402 (2015), 10.1103/PhysRevLett.114.236402], we introduced the "fluctuation diagnostics" approach to extract the dominant wave-vector-dependent bosonic fluctuations from the electronic self-energy. Here, we first reformulate the theory in terms of fermionic modes to render its connection with resonance valence bond (RVB) fluctuations more transparent. Second, by using a large-U expansion, where U is the Coulomb interaction, we relate the fluctuations to real-space correlations. Therefore, it becomes possible to study how electron spectra are related to charge, spin, superconductivity, and RVB-like real-space correlations, broadening the analysis of an earlier work [J. Merino and O. Gunnarsson, Phys. Rev. B 89, 245130 (2014), 10.1103/PhysRevB.89.245130]. This formalism is applied to the pseudogap physics of the two-dimensional Hubbard model, studied in the dynamical cluster approximation. We perform calculations for embedded clusters with up to 32 sites, having three inequivalent K points at the Fermi surface. We find that as U is increased, correlation functions gradually attain values consistent with an RVB state. This first happens for correlation functions involving the antinodal point and gradually spreads to the nodal point along the Fermi surface. Simultaneously, a pseudogap opens up along the Fermi surface. We relate this to a crossover from a Kondo-type state to an RVB-like localized cluster state and to the presence of RVB and spin fluctuations. These changes are caused by a strong momentum dependence in the cluster bath couplings along the Fermi surface. We also show, from a more algorithmic perspective, how the time-consuming calculations in fluctuation diagnostics can be drastically simplified.

  16. Diagnostic for a high-repetition rate electron photo-gun and first measurements

    Science.gov (United States)

    Filippetto, D.; Doolittle, L.; Huang, G.; Norum, E.; Portmann, G.; Qian, H.; Sannibale, F.

    2015-05-01

    The APEX electron source at LBNL combines the high-repetition-rate with the high beam brightness typical of photoguns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment, opening the doors of the high average power to brightness-hungry applications as X-Ray FELs, MHz ultrafast electron diffraction etc.. As first step, a complete characterization of the beam parameters is foreseen at the Gun beam energy of 750 keV. Diagnostics for low and high current measurements have been installed and tested, and measurements of cathode lifetime and thermal emittance in a RF environment with mA current performed. The recent installation of a double slit system, a deflecting cavity and a high precision spectrometer, allow the exploration of the full 6D phase space. Here we discuss the present layout of the machine and future upgrades, showing the latest results at low and high repetition rate, together with the tools and techniques used.

  17. The capacitor banks for the text diagnostic neutral beam and electron cyclotron heating experiments

    International Nuclear Information System (INIS)

    Nelin, K.; Jagger, J.; Baker, M.; Ourou, A.; De Turk, P.

    1986-01-01

    The Texas Experimental Tokamak (TEXT) has been operational since November of 1980. Since that time, many experimental systems have been added to the machine. Currently, two major experiments are being added to compliment the diagnostics already online. These systems, the Diagnostic Neutral Beam (DNB) and the Electron Cyclotron Heating (ECH) experiments are described in separate papers. A set of five modular, bipolar capacitor banks are used to power both the DNB and the ECH. The total capacitance of the banks is 92μF. The stored energy is about 500kJ at+or-100kV. The banks are built as five identical, interchangeable modules. One module is adequate to run the DNB. Up to four banks are used to power the ECH. The banks are portable so that they can be moved to the open end of the laboratory for maintenance. This gives much better access for repair work and allows the experiments to continue to run with the remaining banks. Due to budgetary constraints, these banks were constructed in the most economical manner possible consistent with worker safety and long term reliability. The capacitors themselves are on loan from Los Alamos National Labs. They are rated at 1.85μF at 60kV. Our application requires that they be used in a series/parallel configuration with a peak voltage of 50kV each. This paper describes the electrical, mechanical and control design considerations required to achieve a working set of banks

  18. Suprathermal electron studies in Tokamak plasmas by means of diagnostic measurements and modeling

    International Nuclear Information System (INIS)

    Kamleitner, J.

    2015-01-01

    To achieve reactor-relevant conditions in a tokamak plasma, auxiliary heating systems are required and can be realized by waves injected in the plasma that heat ions or electrons. Electron cyclotron resonant heating (ECRH) is a very flexible and robust technique featuring localized power deposition and current drive (CD) capabilities. Its fundamental principles are well understood and the application of ECRH is a proven and established tool; electron cyclotron current drive (ECCD) is regularly used to develop advanced scenarios and control magneto-hydrodynamics (MHD) instabilities in the plasma by tailoring the current profile. There remain important open questions, such as the phase space dynamics, the observed radial broadening of the supra-thermal electron distribution function and discrepancies in predicted and experimental CD efficiency. A main goal is to improve the understanding of wave-particle interaction in plasmas and current drive mechanisms. This was accomplished by combined experimental and numerical studies, strongly based on the conjunction of hard X-ray (HXR) Bremsstrahlung measurements and Fokker-Planck modelling, characterizing the supra-thermal electron population. The hard X-ray tomographic spectrometer (HXRS) diagnostic was developed to perform these studies by investigating spatial HXR emission asymmetries in the co- and counter-current directions and within the poloidal plane. The system uses cadmium-telluride detectors and digital acquisition to store the complete time history of incoming photon pulses. An extensive study of digital pulse processing algorithms was performed and its application allows the HXRS to handle high count rates in a noisy tokamak environment. Numerical tools were developed to improve the time resolution by conditional averaging and to obtain local information with the general tomographic inversion package. The interfaces of the LUKE code and the well-established CQL3D Fokker-Planck code to the Tokamak a

  19. Electron Bernstein wave emission based diagnostic on National Spherical Torus Experiment (invited)

    International Nuclear Information System (INIS)

    Diem, S.; Taylor, G.; Caughman, John B.; Efthimion, P.C.; Kugel, H.; LeBlanc, B.; Preinhaelter, J.; Sabbagh, S.A.; Urban, J.

    2008-01-01

    National Spherical Torus Experiment (NSTX) is a spherical tokamak (ST) that operates with n(e) up to 10(20) m(-3) and B-T less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for T-e measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local T-e measurements in the ST. Practically, a robust T-e(R,t) EBE diagnostic requires EBW transmission efficiencies of >90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While T-e(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge n(e) scale length resulted in >20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency during H modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when T-e < 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H modes have shown that evaporated lithium can increase T-e inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  20. Electron Bernstein Wave Emission Based Diagnostic on National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Diem, S.; Taylor, G.; Caughman, John B.; Efthimion, P.C.; Kugel, H.; LeBlanc, B.; Preinhaelter, J.; Sabbagh, S.A.; Urban, J.; Wilgen, John B.

    2008-01-01

    National Spherical Torus Experiment (NSTX) is a spherical tokamak (ST) that operates with n(e) up to 10(20) m(-3) and B(T) less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for T(e) measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local T(e) measurements in the ST. Practically, a robust T(e)(R,t) EBE diagnostic requires EBW transmission efficiencies of >90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While T(e)(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge n(e) scale length resulted in >20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency during H modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when T(e)< 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H modes have shown that evaporated lithium can increase T(e) inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  1. Diagnostic value of electron-beam computed tomography (EBT). I. cardiac applications

    International Nuclear Information System (INIS)

    Enzweiler, C.N.H.; Lembcke, A.; Rogalla, P.; Taupitz, M.; Wiese, T.H.; Hammm, B.; Becker, C.R.; Reiser, M.F.; Felix, R.; Knollmann, F.D.; Georgi, M.; Weisser, G.; Lehmann, K.J.

    2004-01-01

    Electron beam tomography (EBT) directly competes with other non-invasive imaging modalities, such as multislice computed tomography, magnetic resonance imaging, and echocardiography, in the diagnostic assessment of cardiac diseases. EBT is the gold standard for the detection and quantification of coronary calcium as a preclinical sign of coronary artery disease (CAD). Its standardized examination protocols and the broad experience with this method favor EBT. First results with multislice CT indicate that this new technology may be equivalent to EBT for coronary calcium studies. The principal value of CT-based coronary calcium measurements continues to be an issue of controversy amongst radiologists and cardiologists due to lack of prospective randomized trials. Coronary angiography with EBT is characterized by a high negative predictive value and, in addition, may be indicated in some patients with manifest CAD. It remains to be shown whether coronary angiography with multislice CT is reliable and accurate enough to be introduced into the routine work-up, to replace some of the many strictly diagnostic coronary catheterizations in Germany and elsewhere. Assessment of coronary stent patency with EBT is associated with several problems and in our opinion cannot be advocated as a routine procedure. EBT may be recommended for the evaluation of coronary bypasses to look for bypass occlusions and significant stenoses, which, however, can be equally well achieved with multislice CT. Quantification of myocardial perfusion with EBT could not replace MRI or other modalities in this field. EBT has proven to be accurate, reliable and in some instances equivalent to MRI, which is the gold standard for the quantitative and qualitative evaluation of cardiac function. Some disadvantages not the least of which is the limited distribution of electron beam scanners, favor MRI for functional assessment of the heart. (orig.) [de

  2. Selected methods of electron-and ion-diagnostics in tokamak scrape-off-layer

    Directory of Open Access Journals (Sweden)

    Sadowski Marek J.

    2015-06-01

    Full Text Available This invited paper considers reasons why exact measurements of fast electron and ion losses in tokamaks, and particularly i n a scrape-off-layer and near a divertor region, are necessary in order to master nuclear fusion energy production. Attention is also paid to direct measurements of escaping fusion products from D-D and D-T reactions, and in particular of fast alphas which might be used for plasma heating. The second part describes the generation of so-called runaway and ripple-born electrons which might induce high energy losses and cause severe damages of internal walls in fusion facilities. Advantages and disadvantages of different diagnostic methods applied for studies of such fast electrons are discussed. Particular attention is paid to development of a direct measuring technique based on the Cherenkov effect which might be induced by fast electrons in appropriate radiators. There are presented various versions of Cherenkov-type probes which have been developed by the NCBJ team and applied in different tokamak experiments. The third part is devoted to direct measurements of fast ions (including those produced by the nuclear fusion reactions which can escape from a high-temperature plasma region. Investigation of fast fusion-produced protons from tokamak discharges is reported. New ion probes, which were developed by the NCBJ team, are also presented. For the first time there is given a detailed description of an ion pinhole camera, which enables irradiation of several nuclear track detectors during a single tokamak discharge, and a miniature Thomson-type mass-spectrometer, which can be used for ion measurements at plasma borders.

  3. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    Science.gov (United States)

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  4. Calculation of the nonlinear relativistic Thomson scattering fields and Its application to electron distribution function diagnostic

    Science.gov (United States)

    Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.

    2015-02-01

    Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these

  5. micrOMEGAs 2.0.7: a program to calculate the relic density of dark matter in a generic model

    Science.gov (United States)

    Bélanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A.

    2007-12-01

    micrOMEGAs2.0.7 is a code which calculates the relic density of a stable massive particle in an arbitrary model. The underlying assumption is that there is a conservation law like R-parity in supersymmetry which guarantees the stability of the lightest odd particle. The new physics model must be incorporated in the notation of CalcHEP, a package for the automatic generation of squared matrix elements. Once this is done, all annihilation and coannihilation channels are included automatically in any model. Cross-sections at v=0, relevant for indirect detection of dark matter, are also computed automatically. The package includes three sample models: the minimal supersymmetric standard model (MSSM), the MSSM with complex phases and the NMSSM. Extension to other models, including non supersymmetric models, is described. Program summaryTitle of program:micrOMEGAs2.0.7 Catalogue identifier:ADQR_v2_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADQR_v2_1.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:216 529 No. of bytes in distributed program, including test data, etc.:1 848 816 Distribution format:tar.gz Programming language used:C and Fortran Computer:PC, Alpha, Mac, Sun Operating system:UNIX (Linux, OSF1, SunOS, Darwin, Cygwin) RAM:17 MB depending on the number of processes required Classification:1.9, 11.6 Catalogue identifier of previous version:ADQR_v2_0 Journal version of previous version:Comput. Phys. Comm. 176 (2007) 367 Does the new version supersede the previous version?:Yes Nature of problem:Calculation of the relic density of the lightest stable particle in a generic new model of particle physics. Solution method:In numerically solving the evolution equation for the density of dark matter, relativistic formulae for the thermal average are used. All tree

  6. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  7. A new gamma ray imaging diagnostic for runaway electron studies at DIII-D

    Science.gov (United States)

    Cooper, C. M.; Pace, D. C.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Hollmann, E. M.; Moyer, R. A.; Risov, V.

    2015-11-01

    A new Gamma Ray Imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at DIII-D. The diagnostic is sensitive to 0.5 - 50 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE dissipation from pellet injection. The GRI consists of a lead ``pinhole camera'' mounted on the midplane with 11x11 counter-current tangential chords 20 cm wide that span the vessel. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE Bremsstrahlung radiation. Detectors operate in current saturation mode at 10 MHz, or the flux is attenuated for Pulse Height Analysis (PHA) capable of discriminating up to ~10k pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. Work supported by the US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917 & DE-FC02-04ER54698.

  8. Synchrotron emission diagnostic of full-orbit kinetic simulations of runaway electrons in tokamaks plasmas

    Science.gov (United States)

    Carbajal Gomez, Leopoldo; Del-Castillo-Negrete, Diego

    2017-10-01

    Developing avoidance or mitigation strategies of runaway electrons (RE) for the safe operation of ITER is imperative. Synchrotron radiation (SR) of RE is routinely used in current tokamak experiments to diagnose RE. We present the results of a newly developed camera diagnostic of SR for full-orbit kinetic simulations of RE in DIII-D-like plasmas that simultaneously includes: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We observe a strong dependence of the SR measured by the camera on the pitch angle distribution of RE, namely we find that crescent shapes of the SR on the camera pictures relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of RE with larger pitch angles. A weak dependence of the SR measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is found. Furthermore, we observe that oversimplifying the angular distribution of the SR changes the synchrotron spectra and overestimates its amplitude. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U. S. DoE.

  9. Microwave heating and diagnostic of suprathermal electrons in an overdense stellarator plasma

    International Nuclear Information System (INIS)

    Stange, Torsten

    2014-01-01

    The resonant coupling of microwaves into a magnetically confined plasma is one of the fundamental methods for the heating of such plasmas. Identifying and understanding the processes of the heating of overdense plasmas, in which the wave propagation is generally not possible because the wave frequency is below the plasma frequency, is becoming increasingly important for high density fusion plasmas. This work focuses on the heating of overdense plasmas in the WEGA stellarator. The excitation of electron Bernstein waves, utilizing the OXB-conversion process, provides a mechanism for the wave to reach the otherwise not accessible resonant absorption layer. In WEGA these OXB-heated plasmas exhibit a suprathermal electron component with energies up to 80 keV. The fast electrons are located in the plasma center and have a Maxwellian energy distribution function within the soft X-ray related energy range. The corresponding averaged energy is a few keV. The OXB-discharges are accompanied by a broadband microwave radiation spectrum with radiation temperatures of the order of keV. Its source was identified as a parametric decay of the heating wave and has no connection to the suprathermal electron component. For the detailed investigation of the microwave emission, a quasioptical mirror system, optimized for the OX-conversion, has been installed. Based on the measurement of the broadband microwave stray radiation of the decay process, the OX-conversion efficiency has been determined to 0.56 being in good agreement with full-wave calculations. In plasmas without an electron cyclotron resonance, corresponding to the wave frequency used, non-resonant heating mechanisms have been identified in the overdense plasma regions. Whistler waves or R-like waves are the only propagable wave types within the overdense plasmas. The analysis of the heating efficiency in dependence on the magnetic flux density leads to tunneling as the most probable coupling mechanism. For the determination

  10. Overall comparison of subpicosecond electron beam diagnostics by the polychromator, the interferometer and the femtosecond streak camera

    CERN Document Server

    Watanabe, T; Yoshimatsu, T; Sasaki, S; Sugiyama, Y; Ishi, K; Shibata, Y; Kondo, Y; Yoshii, K; Ueda, T; Uesaka, M

    2002-01-01

    Measurements of longitudinal bunch length of subpicosecond and picosecond electron beams have been performed by three methods with three radiation sources at the 35 MeV S-band twin liner accelerators at Nuclear Engineering Research Laboratory, University of Tokyo. The methods we adopt are the femtosecond streak camera with a nondispersive reflective optics, the coherent transition radiation (CTR) Michelson interferometer and the 10 ch polychromator that detects the spectrum of CTR and coherent diffraction radiation (CDR). The measurements by the two CTR methods were independently done with the streak camera and their results were consistent with one another. As a result, the reliability of the polychromator for the diagnostics of less than picosecond electron bunch and the usefulness of the diagnostics for the single shot measurement were verified. Furthermore, perfect nondestructive diagnostics for subpicosecond bunches was performed utilizing CDR interferometry. Then the good agreement between CDR interfero...

  11. Online diagnostics of time-resolved electron beam properties with femtosecond resolution for X-ray FELs

    International Nuclear Information System (INIS)

    Yan, Minjie

    2016-07-01

    The European X-ray Free-electron Laser (XFEL) puts high demands on the quality of the highbrightness driving electron beam with bunch lengths in the femtosecond regime. Longitudinal diagnostics is requested to optimize and control the longitudinal profile, the longitudinal phase space, the slice energy spread and the slice emittance of the electron bunch, all of which are crucial to the generation of Self-Amplified Spontaneous Emission (SASE). The high bunch repetition rate of the super-conducting accelerator renders diagnostic method that is (quasi) non-destructive to the generation of SASE possible. In this thesis, three online diagnostic sections utilizing transverse deflecting structures (TDS) have been designed for the European XFEL, providing access to all parameters of interest with a longitudinal resolution down to below 10 fs.The requirement on the non-destructive capability has been realized by the implementation of fast kickermagnets and off-axis screens, which has been validated experimentally using an installation of the same concept at the Free-electron Laser in Hamburg. A special slicing procedure has been developed to significantly enhance the accuracy of slice energy spread measurements. Suppression of coherence effects, which impede the beam imaging in the TDS diagnostics, has been first demonstrated experimentally using the spatial separation method with scintillator screens. Comparison of the results of emittance measurements using the quadrupole scan method with those using the multi-screen method has proved the reliability of the latter method, which has been modelled intensively for the European XFEL.

  12. TEMPERATURE AND ELECTRON DENSITY DIAGNOSTICS OF A CANDLE-FLAME-SHAPED FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Guidoni, S. E. [NASA Goddard Space Flight Center/CUA, Code 674, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); McKenzie, D. E.; Longcope, D. W.; Yoshimura, K. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Plowman, J. E., E-mail: silvina.e.guidoni@nasa.gov [High Altitude Observatory, National Center for Atmospheric Research P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2015-02-10

    Candle-flame-shaped flares are archetypical structures that provide indirect evidence of magnetic reconnection. A flare resembling Tsuneta's famous 1992 candle-flame flare occurred on 2011 January 28; we present its temperature and electron density diagnostics. This flare was observed with Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), Hinode/X-Ray Telescope (XRT), and Solar Terrestrial Relations Observatory Ahead (STEREO-A)/Extreme Ultraviolet Imager, resulting in high-resolution, broad temperature coverage, and stereoscopic views of this iconic structure. The high-temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the posteruption flare arcade, a feature that has been observed in other long-duration events. Despite the extensive work on the standard reconnection scenario, there is no complete agreement among models regarding the nature of this high-intensity elongated structure. Electron density maps reveal that reconnected loops that are successively connected at their tops to the tower develop a density asymmetry of about a factor of two between the two legs, giving the appearance of ''half-loops''. We calculate average temperatures with a new fast differential emission measure (DEM) method that uses SDO/AIA data and analyze the heating and cooling of salient features of the flare. Using STEREO observations, we show that the tower and the half-loop brightenings are not a line-of-sight projection effect of the type studied by Forbes and Acton. This conclusion opens the door for physics-based explanations of these puzzling, recurrent solar flare features, previously attributed to projection effects. We corroborate the results of our DEM analysis by comparing them with temperature analyses from Hinode/XRT.

  13. Current and future delivery of diagnostic electron microscopy in the UK: results of a national survey.

    Science.gov (United States)

    de Haro, Tracey; Furness, Peter

    2012-04-01

    Electron microscopy (EM) remains essential to delivering several specialist areas of diagnosis, especially the interpretation of native renal biopsies. However, there is anecdotal evidence of EM units struggling to survive, for a variety of reasons. The authors sought to obtain objective evidence of the extent and the causes of this problem. An online survey was undertaken of Fellows of the Royal College of Pathologists who use EM in diagnosis. A significant number of EM units anticipate having to close and hence outsource their EM work in the coming years. Yet most existing units are working to full capacity and would be unable to take on the substantial amounts of extra work implied by other units outsourcing their needs. Equipment and staffing are identified by most EM units as the major barriers to growth and are also the main reasons cited for units facing potential closure. In the current financial climate it seems unlikely that units will be willing to make the large investment in equipment and staff needed to take on extra work, unless they can be reasonably confident of an acceptable financial return as a result of increased external referral rates. The case is thus made for a degree of national coordination of the future provision of this specialist service, possibly through the National Commissioning Group or the new National Commissioning Board. Without this, the future of diagnostic EM services in the UK is uncertain. Its failure would pose a threat to good patient care.

  14. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    CERN Document Server

    Neuman, C P; Barnett, G A; Madey, J M J; O'Shea, P G

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 sup 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these m...

  15. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    International Nuclear Information System (INIS)

    Neuman, C.P.; Ponds, M.L.; Barnett, G.A.; Madey, J.M.J.; O'Shea, P.G.

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these methods to calculate the expected outcome of a COUR experiment. We propose an experiment to demonstrate COUR effects and their applications to SASE FELs

  16. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, L.; Zebrowski, J.; Malinowski, K.; Rabinski, M.; Sadowski, M. J. [National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock (Poland)

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  17. Application of new simulation algorithms for modeling rf diagnostics of electron clouds

    International Nuclear Information System (INIS)

    Veitzer, Seth A.; Smithe, David N.; Stoltz, Peter H.

    2012-01-01

    Traveling wave rf diagnostics of electron cloud build-up show promise as a non-destructive technique for measuring plasma density and the efficacy of mitigation techniques. However, it is very difficult to derive an absolute measure of plasma density from experimental measurements for a variety of technical reasons. Detailed numerical simulations are vital in order to understand experimental data, and have successfully modeled build-up. Such simulations are limited in their ability to reproduce experimental data due to the large separation of scales inherent to the problem. Namely, one must resolve both rf frequencies in the GHz range, as well as the plasma modulation frequency of tens of MHz, while running for very long simulations times, on the order of microseconds. The application of new numerical simulation techniques allow us to bridge the simulation scales in this problem and produce spectra that can be directly compared to experiments. The first method is to use a plasma dielectric model to measure plasma-induced phase shifts in the rf wave. The dielectric is modulated at a low frequency, simulating the effects of multiple bunch crossings. This allows simulations to be performed without kinetic particles representing the plasma, which both speeds up the simulations as well as reduces numerical noise from interpolation of particle charge and currents onto the computational grid. Secondly we utilize a port boundary condition model to simultaneously absorb rf at the simulation boundaries, and to launch the rf into the simulation. This method improves the accuracy of simulations by restricting rf frequencies better than adding an external (finite) current source to drive rf, and absorbing layers at the boundaries. We also explore the effects of non-uniform plasma densities on the simulated spectra.

  18. A temporally and spatially resolved electron density diagnostic method for the edge plasma based on Stark broadening

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, A., E-mail: zafara@ornl.gov [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Martin, E. H.; Isler, R. C.; Caughman, J. B. O. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Shannon, S. C. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-11-15

    An electron density diagnostic (≥10{sup 10} cm{sup −3}) capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free spectral line profile of the n = 6–2 hydrogen Balmer series transition. The profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The quasi-static approach used to calculate the Doppler-free spectral line profile is outlined here and the results from the model are presented for H-δ spectra for electron densities of 10{sup 10}–10{sup 13} cm{sup −3}. The profile shows complex behavior due to the interaction between the magnetic substates of the atom.

  19. Optical beam diagnostics at the Electron Stretcher Accelerator ELSA; Optische Strahldiagnose an der Elektronen-Stretcher-Anlage ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Zander, Sven

    2013-10-15

    At the ELectron Stretcher Accelerator ELSA, a resonant excitation of the horizontal particle oscillations is used to extract the electrons to the experiments. This so-called resonance extraction influences the properties of the extracted beam. The emittance, as a number of the beam quality, was determined by using synchrotron light monitors. To enable broad investigations of the emittance a system of synchrotron light monitors was set up. This system was used to measure the influence of the extraction method on the emittance. Time resolved measurements were conducted to investigate the development of the emittance during an accelerator cycle. To improve the optical beam diagnostics a new beamline to an external laboratory was constructed. There, a new high resolution synchrotron light monitor was commissioned. In addition, a streak camera has been installed to enable longitudinal diagnostics of the beam profiles. First measurements of the longitudinal charge distribution with a time resolution in the range of a few picoseconds were conducted successfully.

  20. 2D imaging X-ray diagnostic for measuring the current density distribution in a wide-area electron beam produced in a multiaperture diode with plasma cathode

    Science.gov (United States)

    Kurkuchekov, V.; Kandaurov, I.; Trunev, Y.

    2018-05-01

    A simple and inexpensive X-ray diagnostic tool was designed for measuring the cross-sectional current density distribution in a low-relativistic pulsed electron beam produced in a source based on an arc-discharge plasma cathode and multiaperture diode-type electron optical system. The beam parameters were as follows: Uacc = 50–110 kV, Ibeam = 20–100 A, τbeam = 0.1–0.3 ms. The beam effective diameter was ca. 7 cm. Based on a pinhole camera, the diagnostic allows one to obtain a 2D profile of electron beam flux distribution on a flat metal target in a single shot. The linearity of the diagnostic system response to the electron flux density was established experimentally. Spatial resolution of the diagnostic was also estimated in special test experiments. The optimal choice of the main components of the diagnostic technique is discussed.

  1. Development of a Cherenkov-type diagnostic system to study runaway electrons within the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Rabinski, M.; Jakubowski, L.; Malinowski, K.; Sadowski, M. J.; Zebrowski, J.; Jakubowski, M.J.; Mirowski, R.; Weinzettl, Vladimír; Ficker, Ondřej; Mlynář, Jan; Pánek, Radomír; Papřok, Richard; Vlainic, Milos

    2017-01-01

    Roč. 12, October (2017), č. článku C10014. ISSN 1748-0221. [European Conference on Plasma Diagnostics (ECPD2017)/2./. Bordeaux, 18.04.2017-21.04.2017] R&D Projects: GA MŠk(CZ) LM2015045 Institutional support: RVO:61389021 Keywords : Nuclear instruments and methods for hot plasma diagnostics * Plasma diagnostics - probes Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/12/10/C10014

  2. Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge

    International Nuclear Information System (INIS)

    Xu Lin; Chen, Lee; Funk, Merritt; Ranjan, Alok; Hummel, Mike; Bravenec, Ron; Sundararajan, Radha; Economou, Demetre J.; Donnelly, Vincent M.

    2008-01-01

    The energy distribution of ballistic electrons in a dc/rf hybrid parallel-plate capacitively coupled plasma reactor was measured. Ballistic electrons originated as secondaries produced by ion and electron bombardment of the electrodes. The energy distribution of ballistic electrons peaked at the value of the negative bias applied to the dc electrode. As that bias became more negative, the ballistic electron current on the rf substrate electrode increased dramatically. The ion current on the dc electrode also increased

  3. Electron Impact Excitation Cross Sections of Xenon for Optical Plasma Diagnostic

    National Research Council Canada - National Science Library

    Srivastava, Rajesh

    2007-01-01

    In this project the researcher had taken up the calculation of xenon apparent emission-excitation cross sections for emission lines that have diagnostic value in the analysis of Xe-propelled electric thruster plasmas...

  4. Laser Scattering Diagnostic for Shock Front Arrival and Electron Number Density, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Three diagnostic methods are proposed for measuring properties of interest in the post-shock regions of a hypersonic bow shock wave that is used for studying...

  5. Electron slicing for the generation of tunable femtosecond soft x-ray pulses from a free electron laser and slice diagnostics

    Directory of Open Access Journals (Sweden)

    S. Di Mitri

    2013-04-01

    Full Text Available We present the experimental results of femtosecond slicing an ultrarelativistic, high brightness electron beam with a collimator. In contrast to some qualitative considerations reported in Phys. Rev. Lett. 92, 074801 (2004PRLTAO0031-900710.1103/PhysRevLett.92.074801, we first demonstrate that the collimation process preserves the slice beam quality, in agreement with our theoretical expectations, and that the collimation is compatible with the operation of a linear accelerator in terms of beam transport, radiation dose, and collimator heating. Accordingly, the collimated beam can be used for the generation of stable femtosecond soft x-ray pulses of tunable duration, from either a self-amplified spontaneous emission or an externally seeded free electron laser. The proposed method also turns out to be a more compact and cheaper solution for electron slice diagnostics than the commonly used radio frequency deflecting cavities and has minimal impact on the machine design.

  6. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    Science.gov (United States)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  7. Electron attachment mass spectrometry as a diagnostics for electronegative gases and plasmas

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Tachibana, K.

    1998-01-01

    Electron attachment mass spectrometry (EAMS) has been developed to study mixtures of electronegative gases and plasmas. A quadrupole mass spectrometer (QMS) has been used to detect negative ions, formed from sampled species by attachment of low energy electrons. Varying the electron energy allows to

  8. An electro-optical timing diagnostic for pump-probe experiments at the free-electron laser in Hamburg FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Azima, Armin

    2009-07-15

    Femtosecond pump-probe experiments have extensively been used to follow atomic and molecular motion in time. The very intense extreme ultraviolet XUV light of the Free electron LASer in Hamburg FLASH facility allows to investigate fundamental processes such as direct one or few photon inner shell ionizations. A supplementary Ti:Sapphire near infrared femtosecond laser system allows to perform two-color pump-probe experiments with FLASH involving intense laser fields of hugely different photon energies. Within this work a bunch arrival measurement system has been built, which assists these two-color pump-probe experiments to reduce the temporal jitter of FLASH and to increase the temporal resolution. The diagnostic is based upon an electro-optical detection scheme and measures the relative arrival time between the Ti:Sapphire femtosecond pulse and the electron bunch, which generates the self-amplified by stimulated emission SASE XUV pulse in the undulator section of FLASH. Key feature of the diagnostic is a 150 m long glass fiber pulse transport line, which inflicts non-linear dispersion. A dispersion control system to compensate for this higher order dispersion has been developed including the control and programming of a spatial light phase modulator. It was possible to transport a 90 fs FWHM short near infrared femtosecond laser pulse Fourier limited by the dispersion compensated glass fiber. The electro-optical signal induced by the FLASH electron bunch was generated, characterized and optimized. The signal features beside the designated bunch arrival timing capability the additional possibility to measure the longitudinal electron bunch density distribution of an arbitrary bunch of FLASH in a single shot with a temporal resolution of below 100 fs RMS. Timing and bunch analysis capabilities of the developed diagnostic have been cross-checked with other comparable diagnostics at FLASH like the transversal deflecting cavity structure named LOLA. Finally, the

  9. An electro-optical timing diagnostic for pump-probe experiments at the free-electron laser in Hamburg FLASH

    International Nuclear Information System (INIS)

    Azima, Armin

    2009-07-01

    Femtosecond pump-probe experiments have extensively been used to follow atomic and molecular motion in time. The very intense extreme ultraviolet XUV light of the Free electron LASer in Hamburg FLASH facility allows to investigate fundamental processes such as direct one or few photon inner shell ionizations. A supplementary Ti:Sapphire near infrared femtosecond laser system allows to perform two-color pump-probe experiments with FLASH involving intense laser fields of hugely different photon energies. Within this work a bunch arrival measurement system has been built, which assists these two-color pump-probe experiments to reduce the temporal jitter of FLASH and to increase the temporal resolution. The diagnostic is based upon an electro-optical detection scheme and measures the relative arrival time between the Ti:Sapphire femtosecond pulse and the electron bunch, which generates the self-amplified by stimulated emission SASE XUV pulse in the undulator section of FLASH. Key feature of the diagnostic is a 150 m long glass fiber pulse transport line, which inflicts non-linear dispersion. A dispersion control system to compensate for this higher order dispersion has been developed including the control and programming of a spatial light phase modulator. It was possible to transport a 90 fs FWHM short near infrared femtosecond laser pulse Fourier limited by the dispersion compensated glass fiber. The electro-optical signal induced by the FLASH electron bunch was generated, characterized and optimized. The signal features beside the designated bunch arrival timing capability the additional possibility to measure the longitudinal electron bunch density distribution of an arbitrary bunch of FLASH in a single shot with a temporal resolution of below 100 fs RMS. Timing and bunch analysis capabilities of the developed diagnostic have been cross-checked with other comparable diagnostics at FLASH like the transversal deflecting cavity structure named LOLA. Finally, the

  10. Dirac R -matrix calculations for the electron-impact excitation of neutral tungsten providing noninvasive diagnostics for magnetic confinement fusion

    Science.gov (United States)

    Smyth, R. T.; Ballance, C. P.; Ramsbottom, C. A.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.

    2018-05-01

    Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to characterize the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R -matrix method, and by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.

  11. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl; Malinowski, K.; Czarski, T.; Kowalska-Strzęciwilk, E. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Wojeński, A.; Poźniak, K. T.; Kasprowicz, G.; Krawczyk, R.; Kolasiński, P.; Zabołotny, W.; Zienkiewicz, P. [Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw (Poland); Vezinet, D.; Herrmann, A. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Mazon, D.; Jardin, A. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2016-11-15

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  12. Assessment of Augmented Electronic Fuel Controls for Modular Engine Diagnostics and Condition Monitoring

    Science.gov (United States)

    1978-12-01

    removal of the horoscope . Diagnostic Conoctor - E4 Th10 E4 23-pin connoctor on the electrical control unit Is provided for ground- checking electrical...confidenou in engine condition monitoring * 1min general. Thi9 has boon especially true in~ eases where fUse signal s have c~aused engine shutdowns. Where ECWI

  13. Assessing use of a standardized dental diagnostic terminology in an electronic health record

    NARCIS (Netherlands)

    Tokede, O.; White, J.; Stark, P.C.; Vaderhobli, R.; Walji, M.F.; Ramoni, R.; Schoonheim-Klein, M.; Kimmes, N.; Tavares, A.; Kalenderian, E.

    2013-01-01

    Although standardized terminologies such as the International Classification of Diseases have been in use in medicine for over a century, efforts in the dental profession to standardize dental diagnostic terms have not achieved widespread acceptance. To address this gap, a standardized dental

  14. Investigation of advanced electron bunch generation and diagnostics in the BOND laboratory at DESY

    OpenAIRE

    Kononenko, Olena; Bohlen, Simon; Gruse, Jan-Niclas; Karstensen, Sven; Libov, Vladyslav; Ludwig, Kai; Martinez de la Ossa, Alberto; Marutzky, Frank; Niroula, Avinash; Osterhoff, Jens; Quast, Martin; Schaper, Lucas; Dale, John; Schwinkendorf, Jan-Patrick; Streeter, Matthew

    2016-01-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is poss...

  15. Lectures in plasma diagnostics

    International Nuclear Information System (INIS)

    Hutchinson, I.H.

    1990-06-01

    This paper discusses the following topics on plasma diagnostics: Electric probes in flowing and magnetized plasmas; Electron cyclotron emission absorption; Magnetic diagnostics; Spectroscopy; and Thomson Scattering

  16. Coherent Smith-Purcell radiation as a diagnostic for sub-picosecond electron bunch length

    International Nuclear Information System (INIS)

    Nguyen, D.C.

    1996-01-01

    We suggest a novel technique of measuring sub-picosecond electron bunch length base on coherent Smith-Purcell radiation (SPR) emitted when electrons pass close to the surface of a metal grating. With electron bunch lengths comparable to the grating period, we predict that coherent SPR will be emitted at large angles with respect to direction of beam propagation. As the bunch length shortens, the coherent SPR will be enhanced over the incoherent component that is normally observed at small angles. Furthermore, the angular distribution of the coherent SPR will be shifted toward smaller angles as the bunch length becomes much smaller than the grating period. By measuring the angular distribution of the coherent SPR, one can determine the bunch length of sub-picosecond electron pulses. This new technique is easy to implement and appears capable of measuring femtosecond electron bunch lengths

  17. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak.

    Science.gov (United States)

    Purohit, S; Joisa, Y S; Raval, J V; Ghosh, J; Tanna, R; Shukla, B K; Bhatt, S B

    2014-11-01

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.

  18. Contribution to the electron density diagnostics of a plasma by means of three-wave interferometry

    International Nuclear Information System (INIS)

    Says, L.P.

    1988-01-01

    Plasma use can be considered as an acceleration technique but a high precision diagnostic is necessary. This can be provided by refractive index determination. A three wave interferometer gives an accuracy in the range of a few nanometers in optical path measurements. Such an apparatus has been designed, built and tested on a discharge plasma, previously diagnosed by conventional methods. Results are in good agreement and the expected accuracy is achieved [fr

  19. A new MSc course on diagnostics of electrical machines and power electronics

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen

    2011-01-01

    students. Additionally, specific subjects requested by participants, basic diagnosis and testing methods were presented during the lectures and workshops. General engineering knowledge about electric machines, power electronics and the combination of these was presented. The laboratory method, experiments...

  20. Diagnostics of the Enterprise Participation in Electronic Public Procurement: the Aspect of Logistics Management

    Directory of Open Access Journals (Sweden)

    Klyuvak Oksana V.

    2017-03-01

    Full Text Available The aim of the article is to formulate and develop the theoretical and methodological foundations for the functioning of the electronic public procurement system in the logistic environment and develop an approach to determining the level of enterprise readiness for participation in electronic public procurement based on the logistic management of information, financial, information and financial flows, document flows, flows of goods, flows of work and services. The classification of groups of temporary, quantitative, qualitative, cost, technical and technological indicators as well as indicators of the level of readiness of the electronic public procurement system at the macro- and microlevels is proposed. It is recommended to consider the readiness to participate in electronic public procurement and the effectiveness of fulfilling obligations to the customer after the completion of the tender process to be the key indicators for the enterprise. There developed an approach to determining the level of enterprise readiness for participation in electronic public procurement on the basis of a set of criteria related to management of information logistics systems, financial logistics, information and financial logistics, document management, commodity logistics, logistics services and works. Prospects for further research in this direction are development of an approach to financial and economic analysis and evaluation of the effectiveness of the tender security mechanism in the system of electronic public procurement in Ukraine and countries of the European Union.

  1. The Diagnostics of the Shape of the Electron Distribution Function during the Solar Flares

    Science.gov (United States)

    Dzifčáková, E.; Kulinová, A.; Kašparová, J.

    2011-12-01

    The non-thermal electrons accelerated during the flares interact with surrounding plasma and the electron distribution of the flaring plasma becomes non-Maxwellian. X-ray spectrometers RESIK and RHESSI with high energy resolution give an opportunity to diagnose the presence of the non-thermal electron distribution. RESIK X-line spectra with high fluxes of satellite lines can be explained by presence of the non-thermal n-distribution in a plasma bulk in the 2-2.5 keV range. The RHESSI spectrometer enables us to diagnose the non-thermal high-energy tail of the electron distribution in deka-keV energy range. This high-energy tail can be described by a power-law distribution. We have analyzed three solar flares to get non-thermal characteristics of both non-thermal parts of the electron distribution. The ratios of the intensities of allowed to satellite lines have been used to estimate the parameters of the n-distribution. RHESSI data has been used to obtain the temporal changes of the parameters of Maxwellian and power-law distributions and also for determination of the parameters of n-distribution in two specific cases. The parameters of n-distribution obtained from RHESSI analysis agree within the errors with those derived from RESIK observations. Finally, the synthetic soft X-ray line spectra has been computed for diagnosed parameters of distributions and have been compared with RESIK X-ray observations.

  2. Coherent transition radiation from a laser wakefield accelerator as an electron bunch diagnostic

    International Nuclear Information System (INIS)

    Tilborg, J. van; Geddes, C.G.R.; Toth, C.; Esarey, E.; Schroeder, C.B.; Martin, M.C.; Hao, Z.; Leemans, W.P.

    2004-01-01

    The observation and modeling of coherent transition radiation from femtosecond laser accelerated electron bunches is discussed. The coherent transition radiation, scaling quadratically with bunch charge, is generated as the electrons transit the plasma-vacuum boundary. Due to the limited transverse radius of the plasma boundary, diffraction effects will strongly modify the angular distribution and the total energy radiated is reduced compared to an infinite transverse boundary. The multi-nC electron bunches, concentrated in a length of a few plasma periods (several tens of microns), experience partial charge neutralization while propagating inside the plasma towards the boundary. This reduces the space-charge blowout of the beam, allowing for coherent radiation at relatively high frequencies (several THz). The charge distribution of the electron bunch at the plasma-vacuum boundary can be derived from Fourier analysis of the coherent part of the transition radiation spectrum. A Michelson interferometer was used to measure the coherent spectrum, and electron bunches with duration on the order of 50 fs (rms) were observed

  3. Electronic equipment of the extended system for beam diagnostics of the ''Lyudmila'' liquid-hydrogen chamber

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Bulanov, N.F.; Nguen V'et Zung; Yudin, V.K.

    1978-01-01

    The electronic equipment of an expanded system of beam monitoring for the Lyudmila liquid-hydrogen bubble chamber is described. The system contains ten proportional chambers: nine two-coordinate and one one-coordinate chambers, spacing being 1 mm. The total number of wires is 912. Signals are measured in parallel from all the 48 wires for any plane, or for two planes from even and odd wires. The electronic equipment includes preamplifiers on a field transistor, charge-digital converters, and followers. The electronic circuits in the chambers are distinguished by simplicity and low power consumption: one transistor and 1 mW per wire respectively. The system operates with a small TPA-i computer

  4. Femtosecond resolved diagnostics for electron beam and XUV seed temporal overlap at sFLASH

    International Nuclear Information System (INIS)

    Tarkeshian, Roxana

    2012-02-01

    sFLASH is a seeded experiment at the Free-Electron Laser FLASH in Hamburg. It uses a 38 nm High-Harmonic-Generation (HHG) scheme to seed the FEL-process in a 10m long variable-gap undulator. The temporal overlap between the electron and HHG pulses is critical to the seeding process. The use of a 3 rd harmonic accelerating module provides a high current electron beam with ∝ (400 fs) FWHM bunch duration. The duration of the HHG laser pulse is ≤ (30 fs) FWHM . The desired overlap is achieved in two steps. Firstly, the HHG drive laser is brought to temporal overlap with the incoherent spontaneous radiation from an upstream undulator with picosecond resolution. The temporal overlap is periodically monitored using a streak camera installed in the linear accelerator tunnel. Next, the coherent radiation from an undulator is used to determine the exact overlap of the electron beam in a modulator-radiator set-up with sub-picosecond resolution. The physical and technical principles of the setup providing the temporal overlap are described. Results of the system are analyzed. An analytical approach and simulation results for the performance of the seeding experiment are presented. First attempts at demonstration of seeding are discussed. Strategies for optimizing overlap conditions are presented. (orig.)

  5. Theoretical and practical considerations for teaching diagnostic electronic-nose technologies to clinical laboratory technicians

    Science.gov (United States)

    Alphus D. Wilson

    2012-01-01

    The rapid development of new electronic technologies and instruments, utilized to perform many current clinical operations in the biomedical field, is changing the way medical health care is delivered to patients. The majority of test results from laboratory analyses, performed with these analytical instruments often prior to clinical examinations, are frequently used...

  6. Femtosecond resolved diagnostics for electron beam and XUV seed temporal overlap at sFLASH

    Energy Technology Data Exchange (ETDEWEB)

    Tarkeshian, Roxana

    2012-02-15

    sFLASH is a seeded experiment at the Free-Electron Laser FLASH in Hamburg. It uses a 38 nm High-Harmonic-Generation (HHG) scheme to seed the FEL-process in a 10m long variable-gap undulator. The temporal overlap between the electron and HHG pulses is critical to the seeding process. The use of a 3{sup rd} harmonic accelerating module provides a high current electron beam with {proportional_to} (400 fs){sub FWHM} bunch duration. The duration of the HHG laser pulse is {<=} (30 fs){sub FWHM}. The desired overlap is achieved in two steps. Firstly, the HHG drive laser is brought to temporal overlap with the incoherent spontaneous radiation from an upstream undulator with picosecond resolution. The temporal overlap is periodically monitored using a streak camera installed in the linear accelerator tunnel. Next, the coherent radiation from an undulator is used to determine the exact overlap of the electron beam in a modulator-radiator set-up with sub-picosecond resolution. The physical and technical principles of the setup providing the temporal overlap are described. Results of the system are analyzed. An analytical approach and simulation results for the performance of the seeding experiment are presented. First attempts at demonstration of seeding are discussed. Strategies for optimizing overlap conditions are presented. (orig.)

  7. Optical Sideband Generation: a Longitudinal Electron Beam Diagnostic Beyond the Laser Bandwidth Resolution Limit

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Tilborg, J. van; Matlis, N. H.; Plateau, G. R.; Leemans, W. P.

    2010-06-01

    Electro-optic sampling (EOS) is widely used as a technique to measure THz-domain electric field pulses such asthe self-fields of femtosecond electron beams. We present an EOS-based approach for single-shot spectral measurement that excels in simplicity (compatible with fiber integration) and bandwidth coverage (overcomes the laser bandwidth limitation), allowing few-fs electron beams or single-cycle THz pulses to be characterized with conventional picosecond probes. It is shown that the EOS-induced optical sidebands on the narrow-bandwidth optical probe are spectrally-shifted replicas of the THz pulse. An experimental demonstration on a 0-3 THz source is presented.

  8. Theoretical Studies of TE-Wave Propagation as a Diagnostic for Electron Cloud

    International Nuclear Information System (INIS)

    Penn, Gregory E.; Vay, Jean-Luc

    2010-01-01

    The propagation of TE waves is sensitive to the presence of an electron cloud primarily through phase shifts generated by the altered dielectric function, but can also lead to polarization changes and other effects, especially in the presence of magnetic fields. These effects are studied theoretically and also through simulations using WARP. Examples are shown related to CesrTA parameters, and used to observe different regimes of operation as well as to validate estimates of the phase shift.

  9. Electron plasmas as a diagnostic tool for hyperfine spectroscopy of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, T.; Thompson, R. I. [Department of Physics and Astronomy, University of Calgary, Calgary AB, T2N 1N4 (Canada); Amole, C.; Capra, A.; Menary, S. [Department of Physics and Astronomy, York University, Toronto ON, M3J 1P3 (Canada); Ashkezari, M. D.; Hayden, M. E. [Department of Physics, Simon Fraser University, Burnaby BC, V5A 1S6 (Canada); Baquero-Ruiz, M.; Fajans, J.; Little, A.; So, C.; Wurtele, J. S. [Department of Physics, University of California, Berkeley, CA 94720-7300 (United States); Bertsche, W. [School of Physics and Astronomy, University of Manchester, M13 9PL Manchester, UK and The Cockcroft Institute, WA4 4AD Warrington (United Kingdom); Bowe, P. D.; Hangst, J. S.; Rasmussen, C. O. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Cesar, C. L.; Silveira, D. M. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Charlton, M. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); and others

    2013-03-19

    Long term magnetic confinement of antihydrogen atoms has recently been demonstrated by the ALPHA collaboration at CERN, opening the door to a range of experimental possibilities. Of particular interest is a measurement of the antihydrogen spectrum. A precise comparison of the spectrum of antihydrogen with that of hydrogen would be an excellent test of CPT symmetry. One prime candidate for precision CPT tests is the ground-state hyperfine transition; measured in hydrogen to a precision of nearly one part in 10{sup 12}. Effective execution of such an experiment with trapped antihydrogen requires precise knowledge of the magnetic environment. Here we present a solution that uses an electron plasma confined in the antihydrogen trapping region. The cyclotron resonance of the electron plasma is probed with microwaves at the cyclotron frequency and the subsequent heating of the electron plasma is measured through the plasma quadrupole mode frequency. Using this method, the minimum magnetic field of the neutral trap can be determined to within 4 parts in 10{sup 4}. This technique was used extensively in the recent demonstration of resonant interaction with the hyperfine levels of trapped antihydrogen atoms.

  10. Diagnostics of electron-heated solar flare models. III - Effects of tapered loop geometry and preheating

    Science.gov (United States)

    Emslie, A. G.; Li, Peng; Mariska, John T.

    1992-01-01

    A series of hydrodynamic numerical simulations of nonthermal electron-heated solar flare atmospheres and their corresponding soft X-ray Ca XIX emission-line profiles, under the conditions of tapered flare loop geometry and/or a preheated atmosphere, is presented. The degree of tapering is parameterized by the magnetic mirror ratio, while the preheated atmosphere is parameterized by the initial upper chromospheric pressure. In a tapered flare loop, it is found that the upward motion of evaporated material is faster compared with the case where the flare loop is uniform. This is due to the diverging nozzle seen by the upflowing material. In the case where the flare atmosphere is preheated and the flare geometry is uniform, the response of the atmosphere to the electron collisional heating is slow. The upward velocity of the hydrodynamic gas is reduced due not only to the large coronal column depth, but also to the increased inertia of the overlying material. It is concluded that the only possible electron-heated scenario in which the predicted Ca XIX line profiles agree with the BCS observations is when the impulsive flare starts in a preheated dense corona.

  11. Longitudinal profile diagnostic scheme with subfemtosecond resolution for high-brightness electron beams

    Directory of Open Access Journals (Sweden)

    G. Andonian

    2011-07-01

    Full Text Available High-resolution measurement of the longitudinal profile of a relativistic electron beam is of utmost importance for linac based free-electron lasers and other advanced accelerator facilities that employ ultrashort bunches. In this paper, we investigate a novel scheme to measure ultrashort bunches (subpicosecond with exceptional temporal resolution (hundreds of attoseconds and dynamic range. The scheme employs two orthogonally oriented deflecting sections. The first imparts a short-wavelength (fast temporal resolution horizontal angular modulation on the beam, while the second imparts a long-wavelength (slow angular kick in the vertical dimension. Both modulations are observable on a standard downstream screen in the form of a streaked sinusoidal beam structure. We demonstrate, using scaled variables in a quasi-1D approximation, an expression for the temporal resolution of the scheme and apply it to a proof-of-concept experiment at the UCLA Neptune high-brightness injector facility. The scheme is also investigated for application at the SLAC NLCTA facility, where we show that the subfemtosecond resolution is sufficient to resolve the temporal structure of the beam used in the echo-enabled free-electron laser. We employ beam simulations to verify the effect for typical Neptune and NLCTA parameter sets and demonstrate the feasibility of the concept.

  12. Diagnostic health risk assessment of electronic waste on the general population in developing countries' scenarios

    International Nuclear Information System (INIS)

    Frazzoli, Chiara; Orisakwe, Orish Ebere; Dragone, Roberto; Mantovani, Alberto

    2010-01-01

    E-waste is the generic name for technological waste. Even though aspects related to e-waste environmental pollution and human exposure are known, scientific assessments are missing so far on the actual risks for health sustainability of the general population exposed to e-waste scenarios, such as illicit dumping, crude recycling and improper treatment and disposal. In fact, further to occupational and direct local exposure, e-waste scenarios may impact on the environment-to-food chain, thus eliciting a widespread and repeated exposure of the general population to mixtures of toxicants, mainly toxic chemical elements, polycyclic aromatic hydrocarbons and persistent organic pollutants. In the absence of any clear policy on e-waste flow management, the situation in the e-waste receiver countries may become quite scary; accordingly, here we address a diagnostic risk assessment of health issues potentially elicited by e-waste related mixtures of toxicants. Scientific evidence available so far (mainly from China) is discussed with special attention to the concept of health sustainability, i.e. the poor health burden heritage perpetuated through the mother-to-child dyad. Endocrine disruption and neurotoxicity are specifically considered as examples of main health burden issues relevant to perpetuation through life cycle and across generations; toxicological information are considered along with available data on environmental and food contamination and human internal exposure. The risk from exposure to e-waste related mixtures of toxicants of vulnerable subpopulation like breast-fed infants is given special attention. The diagnostic risk assessment demonstrates how e-waste exposure poses an actual public health emergency, as it may entrain significant health risks also for generations to come. Exposure scenarios as well as specific chemicals of major concern may vary in different contexts; for instance, only limited information is available on e-waste related exposures in

  13. Diagnostic accuracy of organ electrodermal diagnostics | Szopinski ...

    African Journals Online (AJOL)

    Objective. To estimate the diagnostic accuracy as well as the scope of utilisation of a new bio-electronic method of organ diagnostics. Design. Double-blind comparative study of the diagnostic results obtained by means of organ electrodermal diagnostics (OED) and clinical diagnoses, as a criterion standard. Setting.

  14. Miniature silicon electronic biological assay chip and applications for rapid battlefield diagnostics

    Science.gov (United States)

    Cunningham, Brian T.; Regan, Robert A.; Clapp, Christopher; Hildebrant, Eric; Weinberg, Marc S.; Williams, John

    1999-07-01

    Assessing the medical condition of battlefield personnel requires the development of rapid, portable biological diagnostic assays for a wide variety of antigens and enzymes. Ideally, such an assay would be inexpensive, small, and require no added reagents while maintaining the sensitivity and accuracy of laboratory-based assays. In this work, a microelectromechanical (MEMS) based biological assay sensor is presented which is expected to meet the above requirements. The sensor is a thin silicon membrane resonator (SMR) which registers a decrease in resonant frequency when mass is adsorbed onto its surface. By coating the sensor surface with a monolayer of antibody, for example, we have detected the corresponding antigen with a detection resolution of 0.25 ng/ml in phosphate buffer solution. Micromachining techniques are being used to integrate many (64 elements on the first test chip) identical SMR sensors into a single silicon chip which would be capable of simultaneously performing a wide variety of biomedical assays. The sensors require only a small printed circuit board and 8V power supply to operate and provide a readout. The presentation will describe the operation of the SMR sensor, the fabrication of the sensor array, and initial test results using commercially available animal immunoglobulins in laboratory-prepared test solutions.

  15. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  16. Beam diagnostics using transition radiation produced by a 100 Mev electron beam

    International Nuclear Information System (INIS)

    Jablonka, M.; Leroy, J.; Hanus, X.; Derost, J.C.; Wartski, L.

    1991-01-01

    We report on several experiments using the optical transition radiation (OTR) produced by a 100 MeV electron beam. In using a sensitive video camera coupled with a digital image processing system an accurate and simple beam profile monitor has been devised. In measuring with a photo-multiplier the radiation emitted in a small solid angle around the direction of the OTR emission, a signal very sensitive to beam energy variations has been obtained. These experiments have been carried out on the Saclay ALS linac

  17. Acute unclassified leukemia: A clinicopathologic study with diagnostic implications of electron microscopy.

    Science.gov (United States)

    Youness, E; Trujillo, J M; Ahearn, M J; McCredie, K B; Cork, A

    1980-01-01

    By rigid cytological and cytochemical criteria, the diagnosis of acute and undifferentiated leukemia was established in 22 patients. According to defined criteria, the leukemic cells could not be classified by conventional light microscopic techniques employed in the study of hematopoietic tissue. Cytochemical studies including peroxidase, periodic acid schiff (PAS) and nonspecific esterase (alpha napthyl butyrate-reacting esterase) stains were done on fresh bone marrow samples, and the percentage of positive leukemia cells for each of these stains was determined on 200 cells. In this series of leukemias, cytochemistry at the light microscope level did not contribute to further classification. Subsequent electron microscopic examination of bone marrow samples from these patients confirmed the immaturity and nuclear/cytoplasmic asynchrony of the leukemic cells. Several in vivo neoplastic markers, such as nuclear blebs, increased nuclear bodies, and cytoplasmic fibrillar bundles could be demonstrated in these cells. Fourteen cases from this series exhibited peroxidase-positive developmental granule formation at the ultrastructural level and were reclassified as acute granulocyte leukemia (AGL). One case was reclassified as lymphoma (poor differentiated type), one case was diagnosed as acute monocytic leukemia (AmonoL), and six cases remained in the undifferentiated category (AUL). Clinical and laboratory features, response to treatment, and survival data were evaluated for these patients. This study demonstrated that electron microscopy is useful in the cytological diagnosis of human leukemia.

  18. Techniques for fabricating an infrared optical pyrometry system for pulsed electron beam diagnostics

    International Nuclear Information System (INIS)

    Ouellette, A.L.

    1976-01-01

    A description is given of an infrared optical pyrometry system which was designed to make fast time resolved temperature measurements. The purpose of this equipment is to determine the amount of energy from an electron beam or some other type of pulsed energy deposition that is absorbed in a target. The system is capable of measuring energy deposition levels up to 4000 J/g in carbon, which corresponds to a graphite target temperature of 2200 0 C. Methods of fabrication, alignment, and calibration are presented. The measurement of absorbed energy in a target as a function of position and depth is discussed as a possible application, and several measurements are described which permit a comparison of results from this system with those taken by other methods

  19. Real-time control of tearing modes using a line-of-sight electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Hennen, B A; Westerhof, E; De Baar, M R; Bongers, W A; Thoen, D J; Nuij, P W J M; Steinbuch, M; Oosterbeek, J W; Buerger, A

    2010-01-01

    The stability and performance of tokamak plasmas are limited by instabilities such as neoclassical tearing modes. This paper reports on an experimental proof of principle of a feedback control approach for real-time, autonomous suppression and stabilization of tearing modes in a tokamak. The system combines an electron cyclotron emission diagnostic for sensing of the tearing modes in the same sight line with a steerable electron cyclotron resonance heating and current drive (ECRH/ECCD) antenna. A methodology for fast detection of q = m/n = 2/1 tearing modes and retrieval of their location, rotation frequency and phase is presented. Set-points to establish alignment of the ECRH/ECCD deposition location with the centre of the tearing mode are generated in real time and forwarded in closed loop to the steerable launcher and as a modulation pulse train to the gyrotron. Experimental results demonstrate the capability of the control system to track externally perturbed tearing modes in real time.

  20. Four-hour processing of clinical/diagnostic specimens for electron microscopy using microwave technique.

    Science.gov (United States)

    Giberson, R T; Demaree, R S; Nordhausen, R W

    1997-01-01

    A protocol for routine 4-hour microwave tissue processing of clinical or other samples for electron microscopy was developed. Specimens are processed by using a temperature-restrictive probe that can be set to automatically cycle the magnetron to maintain any designated temperature restriction (temperature maximum). In addition, specimen processing during fixation is performed in 1.7-ml microcentrifuge tubes followed by subsequent processing in flow-through baskets. Quality control is made possible during each step through the addition of an RS232 port to the microwave, allowing direct connection of the microwave oven to any personal computer. The software provided with the temperature probe enables the user to monitor time and temperature on a real-time basis. Tissue specimens, goat placenta, mouse liver, mouse kidney, and deer esophagus were processed by conventional and microwave techniques in this study. In all instances, the results for the microwave-processed samples were equal to or better than those achieved by routine processing techniques.

  1. Reconstruction of compact diagnostic and therapeutic systems of electron and X-ray

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2003-01-01

    This paper describes the state of the reconstruction study in the title by the Tokyo University in the project (organized by National Institute of Radiological Sciences) by the Ministry of Education, Culture, Sports Science and Technology, toward the development of advanced compact accelerators. The review of the accelerator development from the global aspect concludes that, at present, the medical linacs' are those of S-band, 6 MW Klystron with high energy (-20 Mev) and of X-band (9.3 GHz), 1 MW Magnetron with low energy (-6 Mev). A more compact, hard X-ray source (X-band 11.424 GHz, 2.4 cm wavelength) is proposed by the authors and is under development, where collision of accelerated electron and laser generates the X-ray (33 keV). This enables the volume-size to be reduced to 1/64. Globally, novel, advanced accelerators of C-W band (90 GHz), and laser/plasma (THz) are being developed. Problems in Japanese state of medical physics involving manpower are described together with idea of space-time control of Chemo-radiotherapy' composing from utilization of advanced compact accelerators, control of space and of time. (N.I.)

  2. A Si IV/O IV Electron Density Diagnostic for the Analysis of IRIS Solar Spectra

    Science.gov (United States)

    Young, P. R.; Keenan, F. P.; Milligan, R. O.; Peter, H.

    2018-04-01

    Solar spectra of ultraviolet bursts and flare ribbons from the Interface Region Imaging Spectrograph (IRIS) have suggested high electron densities of > {10}12 cm‑3 at transition region temperatures of 0.1 MK, based on large intensity ratios of Si IV λ1402.77 to O IV λ1401.16. In this work, a rare observation of the weak O IV λ1343.51 line is reported from an X-class flare that peaked at 21:41 UT on 2014 October 24. This line is used to develop a theoretical prediction of the Si IV λ1402.77 to O IV λ1401.16 ratio as a function of density that is recommended to be used in the high-density regime. The method makes use of new pressure-dependent ionization fractions that take account of the suppression of dielectronic recombination at high densities. It is applied to two sequences of flare kernel observations from the October 24 flare. The first shows densities that vary between 3× {10}12 and 3× {10}13 cm‑3 over a seven-minute period, while the second location shows stable density values of around 2× {10}12 cm‑3 over a three-minute period.

  3. Time-dependent analysis of visible helium line-ratios for electron temperature and density diagnostic using synthetic simulations on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz Burgos, J. M., E-mail: jmunozbu@pppl.gov; Stutman, D.; Tritz, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Barbui, T.; Schmitz, O. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    Helium line-ratios for electron temperature (T{sub e}) and density (n{sub e}) plasma diagnostic in the Scrape-Off-Layer (SOL) and edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet, 667.8 and 728.1 nm, and triplet, 706.5 nm, visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of this powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. The analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer or by other conflicting lines from different ions.

  4. Phenotype analysis of early risk factors from electronic medical records improves image-derived diagnostic classifiers for optic nerve pathology

    Science.gov (United States)

    Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina M.; Mawn, Louise A.; Landman, Bennett A.

    2017-03-01

    We examine imaging and electronic medical records (EMR) of 588 subjects over five major disease groups that affect optic nerve function. An objective evaluation of the role of imaging and EMR data in diagnosis of these conditions would improve understanding of these diseases and help in early intervention. We developed an automated image processing pipeline that identifies the orbital structures within the human eyes from computed tomography (CT) scans, calculates structural size, and performs volume measurements. We customized the EMR-based phenome-wide association study (PheWAS) to derive diagnostic EMR phenotypes that occur at least two years prior to the onset of the conditions of interest from a separate cohort of 28,411 ophthalmology patients. We used random forest classifiers to evaluate the predictive power of image-derived markers, EMR phenotypes, and clinical visual assessments in identifying disease cohorts from a control group of 763 patients without optic nerve disease. Image-derived markers showed more predictive power than clinical visual assessments or EMR phenotypes. However, the addition of EMR phenotypes to the imaging markers improves the classification accuracy against controls: the AUC improved from 0.67 to 0.88 for glaucoma, 0.73 to 0.78 for intrinsic optic nerve disease, 0.72 to 0.76 for optic nerve edema, 0.72 to 0.77 for orbital inflammation, and 0.81 to 0.85 for thyroid eye disease. This study illustrates the importance of diagnostic context for interpretation of image-derived markers and the proposed PheWAS technique provides a flexible approach for learning salient features of patient history and incorporating these data into traditional machine learning analyses.

  5. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Pei [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Jones, Roger M.; Shinton, Ian R. R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Cockcroft Institute, Cheshire WA4 4AD (United Kingdom); Flisgen, Thomas; Glock, Hans-Walter [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock, 18051 Rostock (Germany)

    2012-08-15

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  6. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    CERN Document Server

    Zhang, P; Jones, R M; Shinton, I R R; Flisgen, T; Glock, H W

    2012-01-01

    We investigate the feasibility of beam position diagnostics using Higher Order Mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR) and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  7. Plug-and-play paper-based toolkit for rapid prototyping of microfluidics and electronics towards point-of-care diagnostic solutions

    CSIR Research Space (South Africa)

    Smith, S

    2015-11-01

    Full Text Available We present a plug-and-play toolkit for the rapid assembly of paper-based microfluidic and electronic components for quick prototyping of paper-based components towards point-of-care diagnostic solutions. Individual modules, each with a specific...

  8. Does use of an electronic health record with dental diagnostic system terminology promote dental students' critical thinking?

    Science.gov (United States)

    Reed, Susan G; Adibi, Shawn S; Coover, Mullen; Gellin, Robert G; Wahlquist, Amy E; AbdulRahiman, Anitha; Hamil, Lindsey H; Walji, Muhammad F; O'Neill, Paula; Kalenderian, Elsbeth

    2015-06-01

    The Consortium for Oral Health Research and Informatics (COHRI) is leading the way in use of the Dental Diagnostic System (DDS) terminology in the axiUm electronic health record (EHR). This collaborative pilot study had two aims: 1) to investigate whether use of the DDS terms positively impacted predoctoral dental students' critical thinking skills measured by the Health Sciences Reasoning Test (HSRT), and 2) to refine study protocols. The study design was a natural experiment with cross-sectional data collection using the HSRT for 15 classes (2013-17) of students at three dental schools. Characteristics of students who had been exposed to the DDS terms were compared with students who had not, and the differences were tested by t-tests or chi-square tests. Generalized linear models were used to evaluate the relationship between exposure and outcome on the overall critical thinking score. The results showed that exposure was significantly related to overall score (p=0.01), with not-exposed students having lower mean overall scores. This study thus demonstrated a positive impact of using the DDS terminology in an EHR on the critical thinking skills of predoctoral dental students in three COHRI schools as measured by their overall score on the HSRT. These preliminary findings support future research to further evaluate a proposed model of critical thinking in clinical dentistry.

  9. Does Use of an Electronic Health Record with Dental Diagnostic System Terminology Promote Dental Students’ Critical Thinking?

    Science.gov (United States)

    Reed, Susan G.; Adibi, Shawn S.; Coover, Mullen; Gellin, Robert G.; Wahlquist, Amy E.; AbdulRahiman, Anitha; Hamil, Lindsey H.; Walji, Muhammad F.; O’Neill, Paula; Kalenderian, Elsbeth

    2015-01-01

    The Consortium for Oral Health Research and Informatics (COHRI) is leading the way in use of the Dental Diagnostic System (DDS) terminology in the axiUm electronic health record (EHR). This collaborative pilot study had two aims: 1) to investigate whether use of the DDS terms positively impacted predoctoral dental students’ critical thinking skills measured by the Health Sciences Reasoning Test (HSRT), and 2) to refine study protocols. The study design was a natural experiment with cross-sectional data collection using the HSRT for 15 classes (2013–17) of students at three dental schools. Characteristics of students who had been exposed to the DDS terms were compared with students who had not, and the differences were tested by t-tests or chi-square tests. Generalized linear models were used to evaluate the relationship between exposure and outcome on the overall critical thinking score. The results showed that exposure was significantly related to overall score (p=0.01), with not-exposed students having lower mean overall scores. This study thus demonstrated a positive impact of using the DDS terminology in an EHR on the critical thinking skills of predoctoral dental students in three COHRI schools as measured by their overall score on the HSRT. These preliminary findings support future research to further evaluate a proposed model of critical thinking in clinical dentistry. PMID:26034034

  10. The offline combination of thin-layer chromatography and high-performance liquid chromatography with diode array detection and micrOTOF-Q mass spectrometry for the separation and identification of spinochromes from sea urchin (Strongylocentrotus droebachiensis) shells.

    Science.gov (United States)

    Shikov, Alexander N; Ossipov, Vladimir I; Martiskainen, Olli; Pozharitskaya, Olga N; Ivanova, Svetlana A; Makarov, Valery G

    2011-12-16

    Thin-layer chromatography (TLC) with off-line high-performance liquid chromatography coupled to diode array detection and micrOTOF-Q mass spectrometry (HPLC-DAD-MS) resulted in the successful fractionation, separation and identification of spinochrome pigments from sea urchin (Strongylocentrotus droebachiensis) shells. Two fractions of pigments were separated by TLC and eluted with methanol using a TLC-MS interface. HPLC-DAD-MS analysis of the fractions indicated the presence of six sea urchin pigments: spinochrome monomers B and D, three spinochrome dimers (anhydroethylidene-6,6'-bis(2,3,7-trihydroxynaphthazarin) and its isomer and ethylidene-6,6'-bis(2,3,7-trihydroxynaphthazarin)), and one pigment that was preliminary identified as a spinochrome dimer with the structural formula C(22)H(16)O(16). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A new thermal He-beam diagnostic for electron density and temperature measurements in the scrape-off layer of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Griener, Michael; Wolfrum, Elisabeth; Eich, Thomas; Herrmann, Albrecht; Rohde, Volker [Max Planck Institute for Plasma Physics, Garching (Germany); Schmitz, Oliver [Engineering Physics Department, University of Wisconsin-Madison (United States); Stroth, Ulrich [Max Planck Institute for Plasma Physics, Garching (Germany); Physik Department E28, Technische Universitaet Muenchen, Garching (Germany); Collaboration: the ASDEX Upgrade Team

    2015-05-01

    In a nuclear fusion device power is exhausted across the last closed flux surface into the so-called 'scrape-off layer', SOL. In order to study the transport dynamics to (a) the divertor via parallel heat flux and (b) to the wall via filaments, a diagnostic for the determination of n{sub e} and T{sub e} with high spatial and temporal resolution is required. Although the diagnostic capabilities of the ASDEX Upgrade edge plasma are excellent, there is a lack of spatially and temporally highly resolved electron temperature measurements in the SOL. Therefore a piezo valve will be installed in ASDEX Upgrade in April 2015. It allows fast chopping of a thermal He-beam which is part of the new diagnostic. In the first campaign, existing lines of sight of the CXRS diagnostic will be used to measure various He I transitions to confirm the collisional radiative model for He. The principle of the thermal He-diagnostic as well as calculations of the achievable spatial resolution of the initial set-up are presented.

  12. Density-dependent lines of one- and two-electron ions in diagnostics of laboratory plasma. I. The rates of collision relaxation of excited levels

    Energy Technology Data Exchange (ETDEWEB)

    Shevelko, V P; Skobelev, I Yu; Vinogradov, A V [Lebedev Physical Institute, Academy of Sciences of the USSR, Moscow, USSR

    1977-01-01

    Plasma devices with inertial plasma confinement such as laser produced plasmas, exploding wires, plasma focus, etc., which have been rapidly developed during recent years., appear to be very intensive sources of spectral line radiation in far UV and X-ray regions. Analysis of this radiation provides a good tool for plasma diagnostics with very high electron densities up to 10/sup 22/cm/sup -3/. In this work, consisting of two parts, the authors consider the mechanism of the formation of spectral lines in hot and dense plasma. The key point for density diagnostics is the fact that for some ion levels the rate of collisional relaxation has the same order of magnitude as the radiative decay. Thus the intensities of spectral lines arising from these levels show a strong dependence on electron density which makes diagnostics possible. In this paper, emphasis is laid on the calculation of rates of transition between close ion levels induced by electron or ion impact, which usually gives the main contribution to the collisional relaxation constants. The influence of plasma polarization effects on the collision frequency in a dense plasma is also considered.

  13. Value of transmission electron microscopy for primary ciliary dyskinesia diagnosis in the era of molecular medicine: Genetic defects with normal and non-diagnostic ciliary ultrastructure.

    Science.gov (United States)

    Shapiro, Adam J; Leigh, Margaret W

    2017-01-01

    Primary ciliary dyskinesia (PCD) is a genetic disorder causing chronic oto-sino-pulmonary disease. No single diagnostic test will detect all PCD cases. Transmission electron microscopy (TEM) of respiratory cilia was previously considered the gold standard diagnostic test for PCD, but 30% of all PCD cases have either normal ciliary ultrastructure or subtle changes which are non-diagnostic. These cases are identified through alternate diagnostic tests, including nasal nitric oxide measurement, high-speed videomicroscopy analysis, immunofluorescent staining of axonemal proteins, and/or mutation analysis of various PCD causing genes. Autosomal recessive mutations in DNAH11 and HYDIN produce normal TEM ciliary ultrastructure, while mutations in genes encoding for radial spoke head proteins result in some cross-sections with non-diagnostic alterations in the central apparatus interspersed with normal ciliary cross-sections. Mutations in nexin link and dynein regulatory complex genes lead to a collection of different ciliary ultrastructures; mutations in CCDC65, CCDC164, and GAS8 produce normal ciliary ultrastructure, while mutations in CCDC39 and CCDC40 cause absent inner dynein arms and microtubule disorganization in some ciliary cross-sections. Mutations in CCNO and MCIDAS cause near complete absence of respiratory cilia due to defects in generation of multiple cellular basal bodies; however, the scant cilia generated may have normal ultrastructure. Lastly, a syndromic form of PCD with retinal degeneration results in normal ciliary ultrastructure through mutations in the RPGR gene. Clinicians must be aware of these genetic causes of PCD resulting in non-diagnostic TEM ciliary ultrastructure and refrain from using TEM of respiratory cilia as a test to rule out PCD.

  14. NEW STRONG-LINE ABUNDANCE DIAGNOSTICS FOR H II REGIONS: EFFECTS OF κ-DISTRIBUTED ELECTRON ENERGIES AND NEW ATOMIC DATA

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, Michael A.; Sutherland, Ralph S.; Nicholls, David C.; Kewley, Lisa J.; Vogt, Frédéric P. A., E-mail: Michael.Dopita@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd., Weston ACT 2611 (Australia)

    2013-09-01

    Recently, Nicholls et al., inspired by in situ observations of solar system astrophysical plasmas, suggested that the electrons in H II regions are characterized by a κ-distribution of energies rather than a simple Maxwell-Boltzmann distribution. Here, we have collected together new atomic data within a modified photoionization code to explore the effects of both the new atomic data and the κ-distribution on the strong-line techniques used to determine chemical abundances in H II regions. By comparing the recombination temperatures (T {sub rec}) with the forbidden line temperatures (T {sub FL}), we conclude that κ ∼ 20. While representing only a mild deviation from equilibrium, this result is sufficient to strongly influence abundances determined using methods that depend on measurements of the electron temperature from forbidden lines. We present a number of new emission line ratio diagnostics that cleanly separate the two parameters determining the optical spectrum of H II regions—the ionization parameter q or U and the chemical abundance, 12+log(O/H). An automated code to extract these parameters is presented. Using the homogeneous data set from van Zee et al., we find self-consistent results between all of these different diagnostics. The systematic errors between different line ratio diagnostics are much smaller than those found in the earlier strong-line work. Overall, the effect of the κ-distribution on the strong-line abundances derived solely on the basis of theoretical models is rather small.

  15. Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Zaveryaev, V [Kurchatov Institute, Moscow (Russian Federation); others, and

    2012-09-15

    The success in achieving peaceful fusion power depends on the ability to control a high temperature plasma, which is an object with unique properties, possibly the most complicated object created by humans. Over years of fusion research a new branch of science has been created, namely plasma diagnostics, which involves knowledge of almost all fields of physics, from electromagnetism to nuclear physics, and up-to-date progress in engineering and technology (materials, electronics, mathematical methods of data treatment). Historically, work on controlled fusion started with pulsed systems and accordingly the methods of plasma parameter measurement were first developed for short lived and dense plasmas. Magnetically confined hot plasmas require the creation of special experimental techniques for diagnostics. The diagnostic set is the most scientifically intensive part of a plasma device. During many years of research operation some scientific tasks have been solved while new ones arose. New tasks often require significant changes in the diagnostic system, which is thus a very flexible part of plasma machines. Diagnostic systems are designed to solve several tasks. As an example here are the diagnostic tasks for the International Thermonuclear Experimental Reactor - ITER: (1) Measurements for machine protection and basic control; (2) Measurements for advanced control; (3) Additional measurements for performance evaluation and physics. Every new plasma machine is a further step along the path to the main goal - controlled fusion - and nobody knows in advance what new phenomena will be met on the way. So in the planning of diagnostic construction we should keep in mind further system upgrading to meet possible new scientific and technical challenges. (author)

  16. X-rays diagnostics of the hot electron energy distribution in the intense laser interaction with metal targets

    Science.gov (United States)

    Kostenko, O. F.; Andreev, N. E.; Rosmej, O. N.

    2018-03-01

    A two-temperature hot electron energy distribution has been revealed by modeling of bremsstrahlung emission, measured by the radiation attenuation and half-shade methods, and Kα emission from a massive silver cylinder irradiated by a subpicosecond s-polarized laser pulse with a peak intensity of about 2 × 1019 W/cm2. To deduce parameters of the hot electron spectrum, we have developed semi-analytical models of generation and measurements of the x-rays. The models are based on analytical expressions and tabulated data on electron stopping power as well as cross-sections of generation and absorption of the x-rays. The Kα emission from thin silver foils deposited on low-Z substrates, both conducting and nonconducting, has been used to verify the developed models and obtained hot electron spectrum. The obtained temperatures of the colder and hotter electron components are in agreement with the values predicted by kinetic simulations of the cone-guided approach to fast ignition [Chrisman et al., Phys. Plasmas 15, 056309 (2008)]. The temperature of the low-energy component of the accelerated electron spectrum is well below the ponderomotive scaling and Beg's law. We have obtained relatively low conversion efficiency of laser energy into the energy of hot electrons propagating through the solid target of about 2%. It is demonstrated that the assumption about a single-temperature hot electron energy distribution with the slope temperature described by the ponderomotive scaling relationship, without detailed analysis of the hot electron spectrum, can lead to strong overestimation of the laser-to-electron energy-conversion efficiency, in particular, the conversion efficiency of laser energy into the high-temperature component of the hot electron distribution.

  17. Synchronization and Characterization of an Ultra-Short Laser for Photoemission and Electron-Beam Diagnostics Studies at a Radio Frequency Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy; Ruan, Jinhao; Piot, Philippe; Lumpkin, Alex

    2012-03-01

    A commercially-available titanium-sapphire laser system has recently been installed at the Fermilab A0 photoinjector laboratory in support of photoemission and electron beam diagnostics studies. The laser system is synchronized to both the 1.3-GHz master oscillator and a 1-Hz signal use to trigger the radiofrequency system and instrumentation acquisition. The synchronization scheme and performance are detailed. Long-term temporal and intensity drifts are identified and actively suppressed to within 1 ps and 1.5%, respectively. Measurement and optimization of the laser's temporal profile are accomplished using frequency-resolved optical gating.

  18. Development of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics for the free electron density of laser-generated plasma

    International Nuclear Information System (INIS)

    Boerner, M.; Frank, A.; Pelka, A.; Schaumann, G.; Schoekel, A.; Schumacher, D.; Roth, M.; Fils, J.; Blazevic, A.; Hessling, T.; Basko, M. M.; Maruhn, J.; Tauschwitz, An.

    2012-01-01

    This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10 18 cm -3 , the maximal one is 2 x 10 20 cm -3 . Furthermore, it provides a resolution of the electron density in space of 50 μm and in time of 0.5 ns for one image with a customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.

  19. RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Eoin P.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Vilmer, Nicole, E-mail: eoin.carley@obspm.fr [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-12-10

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.

  20. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C. M., E-mail: coopercm@fusion.gat.com [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Pace, D. C.; Paz-Soldan, C.; Eidietis, N. W. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Commaux, N.; Shiraki, D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Hollmann, E. M. [University of California, San Diego, La Jolla, California 92093-0533 (United States)

    2016-11-15

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  1. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    International Nuclear Information System (INIS)

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Eidietis, N. W.; Commaux, N.; Shiraki, D.; Hollmann, E. M.

    2016-01-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  2. Clinical data miner: an electronic case report form system with integrated data preprocessing and machine-learning libraries supporting clinical diagnostic model research.

    Science.gov (United States)

    Installé, Arnaud Jf; Van den Bosch, Thierry; De Moor, Bart; Timmerman, Dirk

    2014-10-20

    Using machine-learning techniques, clinical diagnostic model research extracts diagnostic models from patient data. Traditionally, patient data are often collected using electronic Case Report Form (eCRF) systems, while mathematical software is used for analyzing these data using machine-learning techniques. Due to the lack of integration between eCRF systems and mathematical software, extracting diagnostic models is a complex, error-prone process. Moreover, due to the complexity of this process, it is usually only performed once, after a predetermined number of data points have been collected, without insight into the predictive performance of the resulting models. The objective of the study of Clinical Data Miner (CDM) software framework is to offer an eCRF system with integrated data preprocessing and machine-learning libraries, improving efficiency of the clinical diagnostic model research workflow, and to enable optimization of patient inclusion numbers through study performance monitoring. The CDM software framework was developed using a test-driven development (TDD) approach, to ensure high software quality. Architecturally, CDM's design is split over a number of modules, to ensure future extendability. The TDD approach has enabled us to deliver high software quality. CDM's eCRF Web interface is in active use by the studies of the International Endometrial Tumor Analysis consortium, with over 4000 enrolled patients, and more studies planned. Additionally, a derived user interface has been used in six separate interrater agreement studies. CDM's integrated data preprocessing and machine-learning libraries simplify some otherwise manual and error-prone steps in the clinical diagnostic model research workflow. Furthermore, CDM's libraries provide study coordinators with a method to monitor a study's predictive performance as patient inclusions increase. To our knowledge, CDM is the only eCRF system integrating data preprocessing and machine-learning libraries

  3. Application of Thomson scattering at 1.06μm as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    International Nuclear Information System (INIS)

    Franke, S.

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs

  4. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-15

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 {mu}m) or in long wavelength mode (45-430 {mu}m). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  5. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    International Nuclear Information System (INIS)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-01

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 μm) or in long wavelength mode (45-430 μm). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  6. Runaway electron studies with hard x-ray and microwave diagnostics in the FT-2 lower hybrid current drive discharges

    Science.gov (United States)

    Shevelev, A. E.; Khilkevitch, E. M.; Lashkul, S. I.; Rozhdestvensky, V. V.; Pandya, S. P.; Plyusnin, V. V.; Altukhov, A. B.; Kouprienko, D. V.; Chugunov, I. N.; Doinikov, D. N.; Esipov, L. A.; Gin, D. B.; Iliasova, M. V.; Naidenov, V. O.; Polunovsky, I. A.; Sidorov, A. V.; Kiptily, V. G.

    2018-01-01

    Studies of the super-thermal and runaway electron behavior in ohmic and lower hybrid current drive FT-2 tokamak plasmas have been carried out using information obtained from measurements of hard x-ray spectra and non-thermal microwave radiation intensity at the frequency of 10 GHz and in the range of (53 ÷ 78) GHz. A gamma-ray spectrometer based on a scintillation detector with a LaBr3(Ce) crystal was used, which provides measurements at counting rates up to 107 s-1. Reconstruction of the energy distribution of RE interacting with the poloidal limiter of the tokamak chamber was made with application of the DeGaSum code. Super-thermal electrons accelerated up to 2 MeV by the LH waves at the high-frequency pumping of the plasma with low density ≤ft ~ 2  ×  1013 cm-3 and then up to 7 MeV by vortex electric field have been found. Experimental analysis of the runaway electron beam generation and evolution of their energy distribution in the FT-2 plasmas is presented in the article and compared with the numerical calculation of the maximum energy gained by runaway electrons for given plasma parameters. In addition, possible mechanisms for limiting the maximum energy gained by the runaway electrons are also calculated and described for a FT-2 plasma discharge.

  7. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    Science.gov (United States)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.

  8. Development of time-resolved optical measurement and diagnostic system for parameters of high current and pulsed electron beam

    International Nuclear Information System (INIS)

    Jiang Xiaoguo; Wang Yuan; Yang Guojun; Xia Liansheng; Li Hong; Zhang Zhuo; Liao Shuqing; Shi Jinshui

    2013-01-01

    The beam parameters measurement is the most important work for the study of linear induction accelerator(LIA). The beam parameters are important to evaluate the character of the beam. The demands of beam parameters measurement are improving while the development of accelerator is improving. The measurement difficulty feature higher time-resolved ability, higher spatial resolution, larger dynamic range and higher intuitionistic view data. The measurement technology of beam spot, beam emittance, beam energy have been developed for the past several years. Some high performance equipment such as high speed framing camera are developed recently. Under this condition, the relative integrated optical measurement and diagnostic system for the beam parameters is developed based on several principles. The system features time-resolved ability of up to 2 ns, high sensitivity and large dynamic range. The processing program is compiled for the data process and the local real-time process is reached. The measurement and diagnostic system has provided full and accurate data for the debug work and has been put into applications. (authors)

  9. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hilsabeck, T. J.; Wu, W. [General Atomics, PO Box 85608, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  10. A Multistep Maturity Model for the Implementation of Electronic and Computable Diagnostic Clinical Prediction Rules (eCPRs).

    Science.gov (United States)

    Corrigan, Derek; McDonnell, Ronan; Zarabzadeh, Atieh; Fahey, Tom

    2015-01-01

    The use of Clinical Prediction Rules (CPRs) has been advocated as one way of implementing actionable evidence-based rules in clinical practice. The current highly manual nature of deriving CPRs makes them difficult to use and maintain. Addressing the known limitations of CPRs requires implementing more flexible and dynamic models of CPR development. We describe the application of Information and Communication Technology (ICT) to provide a platform for the derivation and dissemination of CPRs derived through analysis and continual learning from electronic patient data. We propose a multistep maturity model for constructing electronic and computable CPRs (eCPRs). The model has six levels - from the lowest level of CPR maturity (literaturebased CPRs) to a fully electronic and computable service-oriented model of CPRs that are sensitive to specific demographic patient populations. We describe examples of implementations of the core model components - focusing on CPR representation, interoperability, electronic dissemination, CPR learning, and user interface requirements. The traditional focus on derivation and narrow validation of CPRs has severely limited their wider acceptance. The evolution and maturity model described here outlines a progression toward eCPRs consistent with the vision of a learning health system (LHS) - using central repositories of CPR knowledge, accessible open standards, and generalizable models to avoid repetition of previous work. This is useful for developing more ambitious strategies to address limitations of the traditional CPR development life cycle. The model described here is a starting point for promoting discussion about what a more dynamic CPR development process should look like.

  11. A Computer-Based, Interactive Videodisc Job Aid and Expert System for Electron Beam Lithography Integration and Diagnostic Procedures.

    Science.gov (United States)

    Stevenson, Kimberly

    This master's thesis describes the development of an expert system and interactive videodisc computer-based instructional job aid used for assisting in the integration of electron beam lithography devices. Comparable to all comprehensive training, expert system and job aid development require a criterion-referenced systems approach treatment to…

  12. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    International Nuclear Information System (INIS)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A.R.; Zigler, A.

    2016-01-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  13. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  14. Influence of laser parameters on the relativistic short electron bunches dynamics in linear accelerators based on RF-guns and development of associated diagnostics

    International Nuclear Information System (INIS)

    Vinatier, T.

    2015-01-01

    My thesis investigates dynamics and diagnostics related to short electron bunches, namely whose rms duration is not directly measurable by an electronic method locating the border at a few tens of picoseconds. The short nature of the bunch and the necessity of a high peak current for the applications imply strong space-charge forces leading to a degradation of beam properties, as its transverse emittance and duration. The main difficulty is to characterize, model and take into account these effects. The chapter 2 consists in the measurements of several properties of these bunches: charge, transverse emittance, energy and duration. The originality of my work is that I use simple methods, both on the theoretical (analytical at maximum) and technological (using only common elements of electron accelerators) point of view. I have developed a method of charge measurement from the measurement of the light intensity emitted by a scintillating screen following the interaction with an electron beam. I have also developed a method to measure the bunch mean energy with a steering magnet and a scintillating screen, via the displacement of the bunch centroid as a function of the field of the steering magnet. I have also adapted multi-parametric methods to measure the transverse emittance and duration of electron bunches. These indirect methods allow the determination of these properties from the measurement of other more accessible properties: the transverse dimensions for the transverse emittance and the energy spread for the duration. The chapter 3 consists in the comparison of the properties of short electron beams, single or longitudinally modulated, generated by 3 different methods: Injection of a short or longitudinally modulated laser pulse in an RF-gun; Magnetic compression in a chicane; and RF-compression in an accelerating structure (Velocity Bunching). I have shown that, at equal conditions of charge, the generation of short bunches thanks to a short laser pulse

  15. Microbulk MicrOMEGAs for the search of 0νββ of 136Xe in the PandaX-III experiment

    International Nuclear Information System (INIS)

    Galan, J.

    2016-01-01

    The search for the neutrinoless double beta decay (0νββ) is one of the most important quests nowadays in neutrino physics. Among the different techniques used, high pressure xenon (HPXe) gas time projection chambers (TPC) stand out because they allow to image the topology of the 0νββ event (one straggling track ending in two blobs), and use it to discriminate signal from background events. Recent results with microbulk Micromegas in Xe + trimethylamine (TMA) mixtures show high promise in terms of gain, stability of operation, and energy resolution at high pressures (up to 10 bar). The addition of TMA at levels of 1% reduces electron diffusion in up to a factor of 10 with respect pure Xe, improving the quality of the topological pattern, and therefore the discrimination capability. Moreover microbulk Micromegas have very low levels of intrinsic radioactivity. All these results show that a Micromegas-read High Pressure Xenon TPC (HPXe-TPC) can be a competitive technique in the search for 0νββ. The recently proposed PandaX-III experiment, based on these results, aims at building a large TPC of 200 kg of enriched Xe, to be located at Jinping Underground laboratory in China. In this document the main features of the experiment will be presented, with an emphasis on the design and tests of the microbulk readout, as well as the status of the project and first results of the prototyping phase.

  16. Non-thermal recombination - a neglected source of flare hard X-rays and fast electron diagnostics (Corrigendum)

    Science.gov (United States)

    Brown, J. C.; Mallik, P. C. V.; Badnell, N. R.

    2010-06-01

    Brown and Mallik (BM) recently claimed that non-thermal recombination (NTR) can be a dominant source of flare hard X-rays (HXRs) from hot coronal and chromospheric sources. However, major discrepancies between the thermal continua predicted by BM and by the Chianti database as well as RHESSI flare data, led us to discover substantial errors in the heuristic expression used by BM to extend the Kramers expressions beyond the hydrogenic case. Here we present the relevant corrected expressions and show the key modified results. We conclude that, in most cases, NTR emission was overestimated by a factor of 1-8 by BM but is typically still large enough (as much as 20-30% of the total emission) to be very important for electron spectral inference and detection of electron spectral features such as low energy cut-offs since the recombination spectra contain sharp edges. For extreme temperature regimes and/or if the Fe abundance were as high as some values claimed, NTR could even be the dominant source of flare HXRs, reducing the electron number and energy budget, problems such as in the extreme coronal HXR source cases reported by e.g. Krucker et al.

  17. Composición y diversidad vegetal de un área de matorral desértico micrófilo con historial pecuario en el noreste de México

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Mora-Donjuán

    2015-07-01

    Full Text Available Las agrupaciones de matorral desértico ocupan la mayor parte de la extensión de las regiones áridas de México y son áreas que comúnmente se encuentran bajo constante presión antropogénica. Este estudio aborda la caracterización de la diversidad vegetal del matorral desértico micrófilo en el noreste de México. Para cumplir los objetivos se establecieron 25 sitios de muestreo de 10 × 10 (100 m2, donde se censaron los arbustos y árboles =0.5cm de diámetro (d0.10, y se midió diámetro de copa (dcopa. Se calcularon los parámetros ecológicos de abundancia (Ar, dominancia (Dr, frecuencia (Fr, índice de valor de importancia (IVI, índice de Margalef (DMg, índice de Shannon (H´ e índice de Pretzsch (A. Los resultados muestran a Gutierrezia microcephala como la especie más abundante con 584 N/ha (33%, seguida deProsopis glandulosacon 368 N/ha (21%; la especie que presentó mayor valor de dominancia y frecuencia fueP. glandulosacon 1 574 m2/ha, con presencia en 19 de los 25 sitios, lo cual incide en el IVI, siendo la especie que presenta el valor más alto con 34.6%. Se obtuvo un valor de DMg = 2.29 para riqueza de especies y un índice de diversidad de H´=1.87.

  18. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Henke, B.L.

    1981-08-01

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra.

  19. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    International Nuclear Information System (INIS)

    Henke, B.L.

    1981-08-01

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra

  20. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Science.gov (United States)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  1. Investigation of irradiation effects on highly integrated leading-edge electronic components of diagnostics and control systems for LHD deuterium operation

    Science.gov (United States)

    Ogawa, K.; Nishitani, T.; Isobe, M.; Murata, I.; Hatano, Y.; Matsuyama, S.; Nakanishi, H.; Mukai, K.; Sato, M.; Yokota, M.; Kobuchi, T.; Nishimura, T.; Osakabe, M.

    2017-08-01

    High-temperature and high-density plasmas are achieved by means of real-time control, fast diagnostic, and high-power heating systems. Those systems are precisely controlled via highly integrated electronic components, but can be seriously affected by radiation damage. Therefore, the effects of irradiation on currently used electronic components should be investigated for the control and measurement of Large Helical Device (LHD) deuterium plasmas. For the precise estimation of the radiation field in the LHD torus hall, the MCNP6 code is used with the cross-section library ENDF B-VI. The geometry is modeled on the computer-aided design. The dose on silicon, which is a major ingredient of electronic components, over nine years of LHD deuterium operation shows that the gamma-ray contribution is dominant. Neutron irradiation tests were performed in the OKTAVIAN at Osaka University and the Fast Neutron Laboratory at Tohoku University. Gamma-ray irradiation tests were performed at the Nagoya University Cobalt-60 irradiation facility. We found that there are ethernet connection failures of programmable logic controller (PLC) modules due to neutron irradiation with a neutron flux of 3  ×  106 cm-2 s-1. This neutron flux is equivalent to that expected at basement level in the LHD torus hall without a neutron shield. Most modules of the PLC are broken around a gamma-ray dose of 100 Gy. This is comparable with the dose in the LHD torus hall over nine years. If we consider the dose only, these components may survive more than nine years. For the safety of the LHD operation, the electronic components in the torus hall have been rearranged.

  2. High-accuracy diagnostic tool for electron cloud observation in the LHC based on synchronous phase measurements

    CERN Document Server

    Esteban Müller, J F; Shaposhnikova, E; Valuch, D; Mastoridis, T

    2014-01-01

    Electron cloud effects such as heat load in the cryogenic system, pressure rise and beam instabilities are among the main limitations for the LHC operation with 25 ns spaced bunches. A new observation tool was developed to monitor the e-cloud activity and has been successfully used in the LHC during Run 1 (2010-2012). The power loss of each bunch due to the e-cloud can be estimated using very precise bunch-by-bunch measurement of the synchronous phase shift. In order to achieve the required accuracy, corrections for reflection in the cables and some systematic errors need to be applied followed by a post-processing of the measurements. Results clearly show the e-cloud build-up along the bunch trains and its evolution during each LHC fill as well as from fill to fill. Measurements during the 2012 LHC scrubbing run reveal a progressive reduction in the e-cloud activity and therefore a decrease in the secondary electron yield (SEY). The total beam power loss can be computed as a sum of the contributions from all...

  3. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    Science.gov (United States)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  4. Progress in Development of C60 Nanoparticle Plasma Jet for Diagnostic of Runaway Electron Beam-Plasma Interaction and Disruption Mitigation Study for ITER

    Science.gov (United States)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.

    2013-10-01

    We produced a C60 nanoparticle plasma jet (NPPJ) with uniquely fast response-to-delivery time (~ 1 - 2 ms) and unprecedentedly high momentum (~ 0 . 6 g .km/s). The C60 NPPJ was obtained by using a solid state TiH2/C60 pulsed power cartridge producing ~180 mg of C60 molecular gas by sublimation and by electromagnetic acceleration of the C60 plasma in a coaxial gun (~35 cm length, 96 kJ energy) with the output of a high-density (>1023 m-3) hyper-velocity (>4 km/s) plasma jet. The ~ 75 mg C60/C plasma jet has the potential to rapidly and deeply deliver enough mass to significantly increase electron density (to ne ~ 2 . 4 ×1021 m-3, i.e. ~ 60 times larger than typical DIII-D pre-disruption value, ne 0 ~ 4 ×1019 m-3), and to modify the 'critical electric field' and the runaway electrons (REs) collisional drag during different phases of REs dynamics. The C60 NPPJ, as a novel injection technique, allows RE beam-plasma interaction diagnostic by quantitative spectroscopy of C ions visible/UV line intensity. The system is scalable to ~ 1 - 2 g C60/C plasma jet output and technology is adaptable to ITER acceptable materials (BN and Be) for disruption mitigation. Work supported by US DOE DE-FG02-08ER85196 grant.

  5. Validations of calibration-free measurements of electron temperature using double-pass Thomson scattering diagnostics from theoretical and experimental aspects

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H., E-mail: tojo.hiroshi@qst.go.jp; Hiratsuka, J.; Yatsuka, E.; Hatae, T.; Itami, K. [National Institutes for Quantum and Radiological Science and Technology, 801-1 Mukoyama, Naka 311-0193 (Japan); Yamada, I.; Yasuhara, R.; Funaba, H.; Hayashi, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ejiri, A.; Togashi, H.; Takase, Y. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561 (Japan)

    2016-09-15

    This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (T{sub e}) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured T{sub e} and intensity of the signals. How accurate the values are depends on the electron temperature (T{sub e}) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2). Analyzing the data from the TST-2 indicates that a high T{sub e} and a large scattering angle (θ) yield accurate values. Indeed, the errors for scattering angle θ = 135° are approximately half of those for θ = 115°. The method of determining the T{sub e} in a wide T{sub e} range spanning over two orders of magnitude (0.01–1.5 keV) was validated using the experimental results of the LHD and TST-2. A simple method to provide relative transmissivities, which include inputs from collection optics, vacuum window, optical fibers, and polychromators, is also presented. The relative errors were less than approximately 10%. Numerical simulations also indicate that the T{sub e} measurements are valid under harsh radiation conditions. This method to obtain T{sub e} can be considered for the design of Thomson scattering systems where there is high-performance plasma that generates harsh radiation environments.

  6. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  7. Haplodiploid androgenetic breeding in oat: genotypic variation in anther size and microspore development stage Melhoramento por haplodiploidização androgenética: variação genotípica no tamanho das anteras e no estágio de desenvolvimento dos micrósporos em aveia

    Directory of Open Access Journals (Sweden)

    Taniela De Cesaro

    2009-02-01

    Full Text Available Oat (Avena spp. is poorly responsive to the haplodiploidization process, which leads to the production of homozygous lines in one step, increasing breeding efficiency. Androgenetic haploids in small grain cereal crops are obtained from microspores cultured at the mononucleate stage, which can be identified by the size of anthers. In order to identify the appropriate anther size for in vitro culture, microspore cytological analyses were made in Avena sativa cultivars UPF 7, UPF 18, UFRGS 14, Stout and Avena sterilis CAV 3361, cultivated in growth chamber under controlled light and temperature conditions. Variation was observed within and among genotypes for anther size at each microspore developmental stage and according to the position of spikelets in the panicle. Architecture variation in panicle shape and non-linear microsporogenesis maturation increased the challenge of identifying potentially androgenetic oat anthers. Cytological screening before culture is critical in identifying microspores at the right stage for oat androgenesis.A aveia (Avena spp. tem sido pouco responsiva à haplodiploidização, um processo que aumenta a eficiência da seleção no melhoramento por gerar, em uma etapa, linhas puras homozigóticas. A fase mononucleada do micrósporo é critica para o sucesso da androgênese in vitro nos cereais de inverno e, em geral, pode ser inferida pelo tamanho da antera. Foram medidas anteras e analisados citológicamente micrósporos das cultivares de Avena sativa UPF 7, UPF 18, UFRGS 14, Stout e da linhagem CAV 3361 de Avena sterilis, cultivadas em câmaras de crescimento sob temperaturas dia-noite variando de 16ºC a 9ºC e 12 horas de intensidade luminosa de 300 mol m-2 s-1. O tamanho das anteras em cada fase de desenvolvimento dos micrósporos variou significativamente entre genótipos e de acordo com a região de inserção das espiguetas na panícula. A variação na arquitetura da panícula e a maturação não linear das

  8. Description of the plasma diagnostics package (PDP) for the OSS-1 Shuttle mission and JSC plasma chamber test in conjunction with the fast pulse electron gun (FPEG)

    Science.gov (United States)

    Shawhan, S. D.

    1982-01-01

    The objectives, equipment, and techniques for the plasma diagnostics package (PDP) carried by the OSS-1 instrument payload of the STS-4 and scheduled for the Spacelab-2 mission are described. The goals of the first flight were to examine the Orbiter-magnetoplasma interactions by measuring the electric and magnetic field strengths, the ionized particle wakes, and the generated waves. The RMS was employed to lift the unit out of the bay in order to allow characterization of the fields, EM interference, and plasma contamination within 15 m of the Orbiter. The PDP will also be used to examine plasma depletion, chemical reaction rates, waves, and energized plasma produced by firing of the Orbiter thrusters. Operation of the PDP was carried out in the NASA Space Environment Simulation Laboratory test chamber, where the PDP was used to assay the fields, fluxes, wave amplitudes, and particle energy spectra. The PDP instrumentation is also capable of detecting thermal ions, thermal electrons suprathermal particles, VHF/UHF EMI levels, and the S-band field strength.

  9. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Preynas, M.; Laqua, H. P.; Marsen, S.; Reintrog, A. [Max-Planck-Institut für Plasmaphysik (IPP), D-17491 Greifswald (Germany); Corre, Y.; Moncada, V.; Travere, J.-M. [IRFM, CEA-Cadarache, 13108 Saint Paul lez Durance Cedex (France)

    2015-11-15

    The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the camera and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.

  10. Scanning Electron Microscopy-Energy-Dispersive X-Ray (SEM/EDX): A Rapid Diagnostic Tool to Aid the Identification of Burnt Bone and Contested Cremains.

    Science.gov (United States)

    Ellingham, Sarah T D; Thompson, Tim J U; Islam, Meez

    2018-03-01

    This study investigates the use of Scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) as a diagnostic tool for the determination of the osseous origin of samples subjected to different temperatures. Sheep (Ovis aries) ribs of two experimental groups (fleshed and defleshed) were burned at temperatures of between 100°C and 1100°C in 100°C increments and subsequently analyzed with the SEM-EDX to determine the atomic percentage of present elements. Three-factor ANOVA analysis showed that neither the exposure temperature, nor whether the burning occurred with or without soft tissue present had any significant influence on the bone's overall elemental makeup (p > 0.05). The Ca/P ratio remained in the osseous typical range of between 1.6 and 2.58 in all analyzed samples. This demonstrates that even faced with high temperatures, the overall gross elemental content and atomic percentage of elements in bone remain stable, creating a unique "fingerprint" for osseous material, even after exposure to extreme conditions. © 2017 American Academy of Forensic Sciences.

  11. Isolation and identification of main mastitis pathogens in Mexico Isolação e identificação dos micróbios patogênicos principais da mastite em México

    Directory of Open Access Journals (Sweden)

    H. Castañeda Vázquez

    2013-04-01

    Full Text Available The present work is a large epidemiological study aiming to detect the prevalence of subclinical mastitis and to investigate the major udder pathogens in Jalisco State, western Mexico. For this purpose, 2205 dairy cows, representing 33 Mexican dairy herds, were involved. Of 2205 cows, 752 mastitic animals were diagnosed and only 2,979 milk samples could be obtained for further investigation. All 2979 milk samples were subjected to California Mastitis Test (CMT to differentiate clinical cases from subclinical ones where 1996 samples (67 % reacted positively. Of these, 1087 samples (54.5% came from cows suffering from clinical cases of mastitis. Bacteriological identification of the causative agents revealed the presence of a major group of pathogens including the Coagulase negative staphylococci (CNS, S.aureus, S.agalactiae, Corynebacterium spp. and Coliform bacteria which were detected in 464 (15.6%, 175 (5.9%, 200 (6.8%, 417 (14% and 123 (4.1% of the 2927 investigated quarters, 295 (15.4%, 118 (15.7%, 111 (14.8%, 227 (30.2% and 109 (14.5% of the 752 examined cows and in 33 (100%, 22 (66.7%, 19 (57.6%, 30 (90.1% and 27 (81.8% of the 33 herds involved, respectively. Other pathogens could be detected in the investigated milk samples such as S. dysgalactiae (0.4%, S.uberis (0.37%, Bacillus spp. (1%, Nocardia spp. (0.6% und Candida spp. (0.1%. Meanwhile, others were present in a negligible ratio; including the Aerococcus viridans, and Enterococcus spp., Lactococcus lactis, S. bovis.O trabalho atual é um estudo epidemiológico que objetiva detectar a predominância da mastite subclínica e investigar os micróbios patogênicos principais do úbere no México ocidental. Com esta finalidade, foram utilizadas 2205 vacas leiteiras, representando 33 rebanhos de leiteiras mexicanas. Além dessas 2205 vacas, 752 animais com mastite foram diagnosticados, considerando-se que somente 2979 amostras do leite poderiam ser obtidas para a posterior investiga

  12. Notes on the design of experiments and beam diagnostics with synchrotron light detected by a gated photomultiplier for the Fermilab superconducting electron linac and for the Integrable Optics Test Accelerator (IOTA)

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanov, Aleksandr [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ruan, Jinhao [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Santucci, James [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, Randy [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-11-08

    We outline the design of beam experiments for the electron linac at the Fermilab Accelerator Science and Technology (FAST) facility and for the Integrable Optics Test Accelerator (IOTA), based on synchrotron light emitted by the electrons in bend dipoles, detected with gated microchannel-plate photomultipliers (MCP-PMTs). The system can be used both for beam diagnostics (e.g., beam intensity with full dynamic range, turn-by-turn beam vibrations, etc.) and for scientific experiments, such as the direct observation of the time structure of the radiation emitted by single electrons in a storage ring. The similarity between photon pulses and spectrum at the downstream end of the electron linac and in the IOTA ring allows one to test the apparatus during commissioning of the linac.

  13. STELLA Experiment - Microbunch Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    He, P.; Liu, Y.; Cline, D. B.; Babzien, M.; Gallardo, J. C.; Kusche, K. P.; Pogorelsky, I. V.; Skaritka, J.; van Steenbergen, A.; Yakimenko, V.; Kimura, W. D.

    1998-07-01

    A microbunch diagnostic system is built at the Accelerator Test Facility (ATF) of Brookhaven National Laboratory for monitoring microbunches (10-fs bunch length) produced by the Inverse Free Electron Laser accelerator in Staged Electron Laser Acceleration experiment. It is similar to one already demonstrated at the ATF. With greatly improved beam optics conditions higher order harmonic coherent transition radiation will be measurable to determine the microbunch length and shape.

  14. Plasma diagnostics on large tokamaks

    International Nuclear Information System (INIS)

    Orlinskij, D.V.; Magyar, G.

    1988-01-01

    The main tasks of the large tokamaks which are under construction (T-15 and Tore Supra) and of those which have already been built (TFTR, JET, JT-60 and DIII-D) together with their design features which are relevant to plasma diagnostics are briefly discussed. The structural features and principal characteristics of the diagnostic systems being developed or already being used on these devices are also examined. The different diagnostic methods are described according to the physical quantities to be measured: electric and magnetic diagnostics, measurements of electron density, electron temperature, the ion components of the plasma, radiation loss measurements, spectroscopy of impurities, edge diagnostics and study of plasma stability. The main parameters of the various diagnostic systems used on the six large tokamaks are summarized in tables. (author). 351 refs, 44 figs, 22 tabs

  15. Status of the new thermal He-beam diagnostic for electron density and temperature measurements in the scrape-off layer of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Griener, Michael; Stroth, Ulrich [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Physik Department E28, Technische Universitaet Muenchen, 85748 Garching (Germany); Wolfrum, Elisabeth; Eich, Thomas; Herrmann, Albrecht; Rohde, Volker [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Schmitz, Oliver [Engineering Physics Department, University of Wisconsin-Madison (United States); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    In a nuclear fusion device a significant fraction of power is exhausted across the last closed flux surface into the so-called ''scrape-off layer''. In order to study the transport dynamics to (a) the divertor via parallel heat flux and (b) to the wall via filaments, a diagnostic for the determination of n{sub e} and T{sub e} with high spatial and temporal resolution is required. These data should be provided by the new thermal He-beam diagnostic, where helium is injected into the plasma by a piezo valve. The principle of this diagnostic is the measurement of line resolved emission intensities of the excited helium. The calculated line intensity ratios of two singlet lines combined with a collisional radiative model then lead to n{sub e} values, whereas singlet-triplet ratios yield T{sub e} values. The principle of the He-diagnostic as well as emission profiles of several He I transitions measured during the campaign 2015/2016 will be shown. First calculated n{sub e} and T{sub e} profiles will be compared to data from the lithium beam and the Thomson scattering diagnostic.

  16. Molecular Diagnostics

    OpenAIRE

    Choe, Hyonmin; Deirmengian, Carl A.; Hickok, Noreen J.; Morrison, Tiffany N.; Tuan, Rocky S.

    2015-01-01

    Orthopaedic infections are complex conditions that require immediate diagnosis and accurate identification of the causative organisms to facilitate appropriate management. Conventional methodologies for diagnosis of these infections sometimes lack accuracy or sufficient rapidity. Current molecular diagnostics are an emerging area of bench-to-bedside research in orthopaedic infections. Examples of promising molecular diagnostics include measurement of a specific biomarker in the synovial fluid...

  17. FEL components and diagnostics

    International Nuclear Information System (INIS)

    Carr, R.

    1997-01-01

    FEL hardware includes undulators, alignment systems, electron beam diagnostics, and mechanical and vacuum systems. While most FEL close-quote s employ conventional undulators, there is some interest in novel types, particularly where conventional designs cannot be used, as at very short periods and high fields. For these areas, superconducting technology is indicated. The most serious issue facing long FEL undulators is that of alignment; mechanical techniques may not be accurate enough, and beam-based strategies must be considered. To maintain alignment and control the electron trajectory, beam position monitors with micron precision are required. Beam size monitors are also required to assure control of emittance. The talks given in the working group sessions touch on undulators, alignment, and electron beam diagnostics, and they are summarized here. copyright 1997 American Institute of Physics

  18. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960's to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore's Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail

  19. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1997-01-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at Lawrence Livermore National Laboratory (LLNL) from the early 1960s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400-ns pulses. The Advanced Test Accelerator (ATA) built at Livermore close-quote s Site 300 produced 10,000-Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and Lawrence Berkeley National Laboratory (LBNL). This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high-current, short-pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail. copyright 1997 American Institute of Physics

  20. Companion diagnostics

    DEFF Research Database (Denmark)

    Jørgensen, Jan Trøst; Hersom, Maria

    2016-01-01

    of disease mechanisms, things are slowly changing. Within the last few years, we have seen an increasing number of predictive biomarker assays being developed to guide the use of targeted cancer drugs. This type of assay is called companion diagnostics and is developed in parallel to the drug using the drug-diagnostic...... co-development model. The development of companion diagnostics is a relatively new discipline and in this review, different aspects will be discussed including clinical and regulatory issues. Furthermore, examples of drugs, such as the ALK and PD-1/PD-L1 inhibitors, that have been approved recently....... Despite having discussed personalized medicine for more than a decade, we still see that most drug prescriptions for severe chronic diseases are largely based on 'trial and error' and not on solid biomarker data. However, with the advance of molecular diagnostics and a subsequent increased understanding...

  1. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  2. A study of beam position diagnostics with beam-excited dipole higher order modes using a downconverter test electronics in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    International Nuclear Information System (INIS)

    Zhang, P.; Baboi, N.; Lorbeer, B.; Wamsat, T.; Eddy, N.; Fellenz, B.; Wendt, M.; Jones, R.M.

    2012-08-01

    Beam-excited higher order modes (HOM) in accelerating cavities contain transverse beam position information. Previous studies have narrowed down three modal options for beam position diagnostics in the third harmonic 3.9 GHz cavities at FLASH. Localized modes in the beam pipes at approximately 4.1 GHz and in the fifth cavity dipole band at approximately 9 GHz were found, that can provide a local measurement of the beam position. In contrast, propagating modes in the first and second dipole bands between 4.2 and 5.5 GHz can reach a better resolution. All the options were assessed with a specially designed test electronics built by Fermilab. The aim is to de ne a mode or spectral region suitable for the HOM electronics. Two data analysis techniques are used and compared in extracting beam position information from the dipole HOMs: direct linear regression and singular value decomposition. Current experiments suggest a resolution of 50 m accuracy in predicting local beam position using modes in the fifth dipole band, and a global resolution of 20 m over the complete module. Based on these results we decided to build a HOM electronics for the second dipole band and the fifth dipole band, so that we will have both high resolution measurements for the whole module, and localized measurements for individual cavity. The prototype electronics is being built by Fermilab and planned to be tested in FLASH by the end of 2012.

  3. A study of beam position diagnostics with beam-excited dipole higher order modes using a downconverter test electronics in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P. [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, N.; Lorbeer, B.; Wamsat, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Eddy, N.; Fellenz, B.; Wendt, M. [Fermi National Accelerator Lab., Batavia, IL (United States); Jones, R.M. [Manchester Univ. (United Kingdom); The Cockcroft Institute, Daresbury (United Kingdom)

    2012-08-15

    Beam-excited higher order modes (HOM) in accelerating cavities contain transverse beam position information. Previous studies have narrowed down three modal options for beam position diagnostics in the third harmonic 3.9 GHz cavities at FLASH. Localized modes in the beam pipes at approximately 4.1 GHz and in the fifth cavity dipole band at approximately 9 GHz were found, that can provide a local measurement of the beam position. In contrast, propagating modes in the first and second dipole bands between 4.2 and 5.5 GHz can reach a better resolution. All the options were assessed with a specially designed test electronics built by Fermilab. The aim is to de ne a mode or spectral region suitable for the HOM electronics. Two data analysis techniques are used and compared in extracting beam position information from the dipole HOMs: direct linear regression and singular value decomposition. Current experiments suggest a resolution of 50 m accuracy in predicting local beam position using modes in the fifth dipole band, and a global resolution of 20 m over the complete module. Based on these results we decided to build a HOM electronics for the second dipole band and the fifth dipole band, so that we will have both high resolution measurements for the whole module, and localized measurements for individual cavity. The prototype electronics is being built by Fermilab and planned to be tested in FLASH by the end of 2012.

  4. Diagnostic development

    International Nuclear Information System (INIS)

    Barnett, C.F.; Brisson, D.A.; Greco, S.E.

    1978-01-01

    During the past year the far-infrared or submillimeter diagnostic research program resulted in three major developments: (1) an optically pumped 0.385-μm D 2 O-laser oscillator-amplifier system was operated at a power level of 1 MW with a line width of less than 50 MHz; (2) a conical Pyrex submillimeter laser beam dump with a retention efficiency greater than 10 4 was developed for the ion temperature Thompson scattering experiment; and (3) a new diagnostic technique was developed that makes use of the Faraday rotation of a modulated submillimeter laser beam to determine plasma current profile. Measurements of the asymmetric distortion of the H/sub α/ (6563 A) spectral line profile show that the effective toroidal drift velocity, dv/sub two vertical bars i/dT/sub i/, may be used as an indicator of plasma quality and as a complement to other ion temperature diagnostics

  5. A study on the heating and diagnostic of a tokamak plasma by electromagnetic waves of the electron cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi

    1989-09-01

    A study on the heating and diagnosis of tokamak plasma by electromagnetic waves of electron cyclotron range of frequency is summarized. The main results obtained are as follows. On the engineering and technology, the technology of injecting high frequency, large power millimeter waves into tokamak plasma was established by carrying out the design, manufacture and test of a 60 GHz, 400 kW high frequency heating system, and the design, manufacture and test of a heterodyne type electron cyclotron radiation multi-channel mealsuring system were carried out, and the technology of measuring the radiation from tokamak plasma with the time resolution of 10 μs in multi-channel was established. On nuclear fusion reactor core engineering and plasma physics, the high efficiency electron heating of tokamak plasma by the incidence of fundamental irregular and regular waves at electron cyclotron frequency was verified. The discovery and analysis of the heating by electrostatic waves arising due to mode transformation from electromagnetic waves in upper hybrid resonance layer were carried out. By the incidence of second harmonic waves, the high efficiency electron heating of tokamak plasma was verified, and the heating characteristics were clarified. And others. (K.I.) 179 refs

  6. Diagnostic dilemma

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, Ulla; Dobrovolny, Robert; Nazarenko, Irina

    2011-01-01

    Fabry disease, an X-linked lysosomal storage disorder, results from the deficient activity of a-galactosidase A (a-Gal A). In affected males, the clinical diagnosis is confirmed by the markedly decreased a-Gal A activity. However, in female heterozygotes, the a-Gal A activity can range from low t...... on enzyme replacement therapy. Thus, gene dosage analyses can detect large deletions (>50bp) in suspect heterozygotes for X-linked and autosomal dominant diseases that are "sequencing cryptic," resolving molecular diagnostic dilemmas....... to normal due to random X-chromosomal inactivation, and diagnostic confirmation requires identification of the family's a-Gal A gene mutation. In a young female who had occasional acroparesthesias, corneal opacities, and 15 to 50% of the lower limit of normal leukocyte a-Gal A activity, a-Gal A sequencing...... in two expert laboratories did not identify a confirmatory mutation, presenting a diagnostic dilemma. A renal biopsy proved diagnostic and renewed efforts to detect an a-Gal A mutation. Subsequent gene dosage analyses identified a large a-Gal A deletion confirming her heterozygosity, and she was started...

  7. Cold-target recoil-ion momentum spectroscopy for diagnostics of high harmonics of the extreme-ultraviolet free-electron laser light source at SPring-8

    International Nuclear Information System (INIS)

    Liu, X.-J.; Fukuzawa, H.; Pruemper, G.; Ueda, K.; Okunishi, M.; Shimada, K.; Motomura, K.; Saito, N.; Iwayama, H.; Nagaya, K.; Yao, M.; Rudenko, A.; Ullrich, J.; Foucar, L.; Czasch, A.; Schmidt-Boecking, H.; Doerner, R.; Nagasono, M.; Higashiya, A.; Yabashi, M.

    2009-01-01

    We have developed a cold-target recoil-ion momentum spectroscopy apparatus dedicated to the experiments using the extreme-ultraviolet light pulses at the free-electron laser facility, SPring-8 Compact SASE Source test accelerator, in Japan and used it to measure spatial distributions of fundamental, second, and third harmonics at the end station.

  8. Combination of the ionic-to-atomic line intensity ratios from two test elements for the diagnostic of plasma temperature and electron number density in Inductively Coupled Plasma Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tognoni, E. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)], E-mail: tognoni@ipcf.cnr.it; Hidalgo, M.; Canals, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia. Universidad de Alicante. Apdo. 99, 03080, Alicante (Spain); Cristoforetti, G.; Legnaioli, S.; Salvetti, A.; Palleschi, V. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)

    2007-05-15

    In Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) spectrochemical analysis, the MgII(280.270 nm)/MgI(285.213 nm) ionic to atomic line intensity ratio is commonly used as a monitor of the robustness of operating conditions. This approach is based on the univocal relationship existing between intensity ratio and plasma temperature, for a pure argon atmospheric ICP in thermodynamic equilibrium. In a multi-elemental plasma in the lower temperature range, the measurement of the intensity ratio may not be sufficient to characterize temperature and electron density. In such a range, the correct relationship between intensity ratio and plasma temperature can be calculated only when the complete plasma composition is known. We propose the combination of the line intensity ratios of two test elements (double ratio) as an effective diagnostic tool for a multi-elemental low temperature LTE plasma of unknown composition. In particular, the variation of the double ratio allows us discriminating changes in the plasma temperature from changes in the electron density. Thus, the effects on plasma excitation and ionization possibly caused by introduction of different samples and matrices in non-robust conditions can be more accurately interpreted. The method is illustrated by the measurement of plasma temperature and electron density in a specific analytic case.

  9. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    International Nuclear Information System (INIS)

    Sio, H.; Frenje, J. A.; Katz, J.; Stoeckl, C.; Weiner, D.

    2016-01-01

    Here, a Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D"3He, and T"3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, their time differences, and measurements of T_i(t) and T_e(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.

  10. Characterization and in situ fluorescence diagnostic of the deposition of YBa2Cu3O7-x thin films by pseudo-spark electron beam ablation

    International Nuclear Information System (INIS)

    Jiang, Q.D.; Matacotta, F.C.; Masciarelli, G.; Fuso, F.; Arimondo, E.; Sandrin, G.

    1992-12-01

    The pseudo-spark electron beam ablation (PSA) technique is a comparatively simple and inexpensive method to deposit thin films of oxide materials. The effect of the electron beam power density on the efficiency of the PSA is studied. Results concerning the optimization of the deposition process of high quality superconducting YBa 2 Cu 3 O 7-x thin films on single crystal SrTiO 3 substrates are reported. Correlation between processing parameters and superconducting properties of the thin films are presented: in particular, the effects of the break-down voltage of the pseudo-spark and geometrical arrangement of the target-substrate-beam system on the T c of the resulting films. In situ spectral analysis of the radiative emission from the plasma plume has been performed at different distances from the surface of the target and at different break-down voltages of the pseudo-spark. The role of the oxygen pressure in the PSA process, which could be one order of magnitude less than that for a typical laser ablation system, is discussed. (author). 17 refs, 7 figs, 1 tab

  11. Bi-layer structure of counterstreaming energetic electron fluxes: a diagnostic tool of the acceleration mechanism in the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2010-02-01

    Full Text Available For the first time we identify a bi-layer structure of energetic electron fluxes in the Earth's magnetotail and establish (using datasets mainly obtained by the Geotail Energetic Particles and Ion Composition (EPIC/ICS instrument that it actually provides strong evidence for a purely spatial structure. Each bi-layer event is composed of two distinct layers with counterstreaming energetic electron fluxes, parallel and antiparallel to the local ambient magnetic field lines; in particular, the tailward directed fluxes always occur in a region adjacent to the lobes. Adopting the X-line as a standard reconnection model, we determine the occurrence of bi-layer events relatively to the neutral point, in the substorm frame; four (out of the shown seven events are observed earthward and three tailward, a result implying that four events probably occurred with the substorm's local recovery phase. We discuss the bi-layer events in terms of the X-line model; they add more constraints for any candidate electron acceleration mechanism. It should be stressed that until this time, none proposed electron acceleration mechanism has discussed or predicted these layered structures with all their properties. Then we discuss the bi-layer events in terms of the much promising "akis model", as introduced by Sarafopoulos (2008. The akis magnetic field topology is embedded in a thinned plasma sheet and is potentially causing charge separation. We assume that as the Rc curvature radius of the magnetic field line tends to become equal to the ion gyroradius rg, then the ions become non-adiabatic. At the limit Rc=rg the demagnetization process is also under way and the frozen-in magnetic field condition is violated by strong wave turbulence; hence, the ion particles in this geometry are stochastically scattered. In addition, ion diffusion probably takes place across the magnetic field, since an

  12. Diagnostics and structure

    International Nuclear Information System (INIS)

    Vial, J.C.

    1986-01-01

    The structure of prominences and the diagnostic techniques used to evaluate their physical parameters are discussed. These include electron temperature, various densities (n sub p, n sub e, n sub l), ionization degree, velocities, and magnetic field vector. UV and radio measurements have already evidenced the existence of different temperature regions, corresponding to different geometrical locations, e.g., the so called Prominence-Corona (P-C) interface. Velocity measurements are important for considering formation and mass balance of prominences but there are conflicting velocity measurements which have led to the basic question: what structure is actually observed at a given wavelength; what averaging is performed within the projected slit area during the exposure time? In optically thick lines, the question of the formation region of the radiation along the line of sight is also not a trivial one. The same is true for low resolution measurements of the magnetic field. Coupling diagnostics with structure is now a general preoccupation

  13. Summary from working group on noninterceptive diagnostics

    International Nuclear Information System (INIS)

    Chamberlin, D.D.

    1985-01-01

    The working group for noninterceptive diagnostics spent much of its time comparing diagnostic techniques from different fields and their possible application to high-power injectors. The group included backgrounds from electron beam diagnostics, fusion power diagnostics, cw ion source and transport design, and ion beam of diagnostics. The probability of success for adapting techniques from these different areas is quite difficult to judge, short of a detailed examination of each application. Unexpected flaws or unforeseen noise sources can eliminate an idea that would otherwise appear promising. The report presents several ideas that were discussed, with an indication of those ideas most likely to succeed if implemented

  14. An Endogenous Electron Spin Resonance (ESR signal discriminates nevi from melanomas in human specimens: a step forward in its diagnostic application.

    Directory of Open Access Journals (Sweden)

    Eleonora Cesareo

    Full Text Available Given the specific melanin-associated paramagnetic features, the Electron Spin Resonance (ESR, called also Electron Paramagnetic Resonance, EPR analysis has been proposed as a potential tool for non-invasive melanoma diagnosis. However, studies comparing human melanoma tissues to the most appropriate physiological counterpart (nevi have not been performed, and ESR direct correlation with melanoma clinical features has never been investigated. ESR spectrum was obtained from melanoma and non-melanoma cell-cultures as well as mouse melanoma and non-melanoma tissues and an endogenous ESR signal (g = 2.005 was found in human melanoma cells and in primary melanoma tissues explanted from mice, while it was always absent in non-melanoma samples. These characteristics of the measured ESR signal strongly suggested its connection with melanin. Quantitative analyses were then performed on paraffin-embedded human melanoma and nevus sections, and validated on an independent larger validation set, for a total of 112 sections (52 melanomas, 60 nevi. The ESR signal was significantly higher in melanomas (p = 0.0002 and was significantly different between "Low Breslow's and "High Breslow's" depth melanomas (p<0.0001. A direct correlation between ESR signal and Breslow's depth, expressed in millimetres, was found (R = 0.57; p<0.0001. The eu/pheomelanin ratio was found to be significantly different in melanomas "Low Breslow's" vs melanomas "High Breslow's" depth and in nevi vs melanomas "High Breslow's depth". Finally, ROC analysis using ESR data discriminated melanomas sections from nevi sections with up to 90% accuracy and p<0.0002. In the present study we report for the first time that ESR signal in human paraffin-embedded nevi is significantly lower than signal in human melanomas suggesting that spectrum variations may be related to qualitative melanin differences specifically occurring in melanoma cells. We therefore conclude that this ESR signal

  15. Thyroid diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Scriba, P C; Boerner, W; Emrich, S; Gutekunst, R; Herrmann, J; Horn, K; Klett, M; Krueskemper, H L; Pfannenstiel, P; Pickardt, C R

    1985-03-01

    None of the in-vitro and in-vivo methods listed permits on unambiguous diagnosis when applied alone, owing to the fact that similar or even identical findings are obtained for various individual parameters in different thyroid diseases. Further, especially the in-vitro tests are also subject to extrathyroidal effects which may mask the typical findings. The limited and varying specificity and sensitivity of the tests applied, as well as the falsification of results caused by the patients' idiosyncracies and the methodology, make it necessary to interpret and evaluate the in-vivo and in-vitro findings only if the clinical situation (anamnesis and physical examination) is known. For maximum diagnostic quality of the tests, the initial probability of the assumed type of thyroid disease must be increased (formulation of the clinical problem). The concepts of exclusion diagnosis and identification must be distinguished as well as the diagnosis of functional disturbances on the one hand and of thyroid diseases on the other. Both of this requires a qualified, specific and detailed anamnesis and examination procedure, and the clinical examination remains the obligatory basis of clinical diagnostics. In case of inexplicable discrepancies between the clinical manifestations and the findings obtained with specific methods, or between the findings obtained with a specific method, the patient should be referred to an expert institution, or the expert institution should be consulted.

  16. Thyroid diagnostics

    International Nuclear Information System (INIS)

    Scriba, P.C.; Boerner, W.; Emrich, S.; Gutekunst, R.; Herrmann, J.; Horn, K.; Klett, M.; Krueskemper, H.L.; Pfannenstiel, P.; Pickardt, C.R.; Reiners, C.; Reinwein, D.; Schleusener, H.

    1985-01-01

    None of the in-vitro and in-vivo methods listed permits on unambiguous diagnosis when applied alone, owing to the fact that similar or even identical findings are obtained for various individual parameters in different thyroid diseases. Further, especially the in-vitro tests are also subject to extrathyroidal effects which may mask the typical findings. The limited and varying specificity and sensitivity of the tests applied, as well as the falsification of results caused by the patients' idiosyncracies and the methodology, make it necessary to interpret and evaluate the in-vivo and in-vitro findings only if the clinical situation (anamnesis and physical examination) is known. For maximum diagnostic quality of the tests, the initial probability of the assumed type of thyroid disease must be increased (formulation of the clinical problem). The concepts of exclusion diagnosis and identification must be distinguished as well as the diagnosis of functional disturbances on the one hand and of thyroid diseases on the other. Both of this requires a qualified, specific and detailed anamnesis and examination procedure, and the clinical examination remains the obligatory basis of clinical diagnostics. In case of inexplicable discrepancies between the clinical manifestations and the findings obtained with specific methods, or between the findings obtained with a specific method, the patient should be referred to an expert institution, or the expert institution should be consulted. (orig./MG) [de

  17. Ambient diagnostics

    CERN Document Server

    Cai, Yang

    2014-01-01

    Part I. FundamentalsIntroductionWhat is Ambient Diagnostics?Diagnostic ModelsMultimedia IntelligenceCrowd SourcingSoft SensorsScience of SimplicityPersonal DiagnosesBasic AlgorithmsBasic ToolsSummaryProblemsTransformationEarly Discoveries of Heartbeat PatternsTransforms, Features, and AttributesSequential FeaturesSpatiotemporal FeaturesShape FeaturesImagery FeaturesFrequency Domain FeaturesMulti-Resolution FeaturesSummaryProblemsPattern RecognitionSimilarities and DistancesClustering MethodsClassification MethodsClassifier Accuracy MeasuresSummaryProblemsPart II. Multimedia IntelligenceSound RecognitionMicrophone AppsModern Acoustic Transducers (Microphones)Frequency Response CharacteristicsDigital Audio File FormatsHeart Sound SensingLung Sound SensingSnore MeterSpectrogram (STFT)Ambient Sound AnalysisSound RecognitionRecognizing Asthma SoundPeak ShiftFeature CompressionRegroupingNoise IssuesFuture ApplicationsSummaryProblemsColor SensorsColor SensingHuman Color VisionColor SensorsColor Matching ExperimentsC...

  18. Thermal diagnostics for LTP

    International Nuclear Information System (INIS)

    Lobo, Alberto; Nofrarias, M; Sanjuan, J

    2005-01-01

    This is a short note reporting on the current state of development of the temperature sensors which are part of the LTP Diagnostics Subsystem on board the LISA Pathfinder mission (LPF). A thermal insulator has been designed which ensures sufficient stability of a set of eight NTC sensors (negative temperature coefficient of resistance or thermistors), and the front-end electronics has also been designed and manufactured. Tests have been performed which nearly approach the goal of a global stability of 10 -5 K Hz -1/2

  19. SNS Diagnostics

    International Nuclear Information System (INIS)

    Shea, T.J.; Cameron, P.; Doolittle, L.; Power, J.

    2000-01-01

    The Spallation Neutron Source (SNS) Project is a collaborative effort to build the next generation neutron science facility at Oak Ridge, TN. The facility will deliver a 2 MW proton beam to a liquid mercury target. Neutrons from this target will be moderated and sent to several state-of-the-art instruments. Six national laboratories are involved in SNS construction. Berkeley (LBNL) will build the front end that produces a 2.5 MeV, 52 mA H-beam. Los Alamos (LANL) is responsible for the 1 GeV linac with a superconducting section provided by Thomas Jefferson (JLab). Brookhaven (BNL) is building the transfer lines and accumulator ring. Oak Ridge (ORNL) and Argonne (ANL) have responsibility for the target and instruments. All activities are coordinated by the SNS project office at Oak Ridge. The high beam power, a desired availability of 95%, and an aggressive commissioning schedule lead to some interesting challenges in beam diagnostics

  20. Reflectometry diagnostics on TCV

    Science.gov (United States)

    Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team

    2017-10-01

    Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.

  1. Diagnostic thoracoscopy

    Directory of Open Access Journals (Sweden)

    Plavec Goran

    2002-01-01

    Full Text Available Diagnostic thoracoscopy in patients with pleural effusion of unclear origin mostly provides the correct diagnosis. Results from published reports of previous researches are not uniform. In 47 male and 20 female patients with pleural effusion of unknown etiology, after receiving negative results obtained from cytological finding of pleural effusion and percutaneous needle biopsy, thoracoscopy with biopsy of one or both pleurae was performed. Procedure was done in local anesthesia using Stortz rigid thoracoscope. In 37 patients with malignant disease (primary or metastatic diagnosis was confirmed histopathologically in 31 patient (81.12%. In 27 patients with inflammatory pleural disease diagnosis was confirmed histopathologically in 22 patients (81.4%. Among 11 patients with specific pleural effusions, tuberculosis was confirmed in 10 (90.91%. Normal finding in cases of spontaneous pneumothorax and pulmonary embolism was taken as a positive result. Total number of positive findings was 55 (82.10%. In one patient, the third spontaneous pneumothorax was the indication for thoracoscopy, and after numerous bullae were seen during the procedure, talcum powder pleurodesis was done. In four patients low intensity subcutaneous emphysema occurred one day after thoracoscopy. It can be concluded that thoracoscopy in local anesthesia out of the operating room is good and practical method for solving the unclear pleural effusions, with neglectable rate of complications.

  2. Mitigation diagnostics

    International Nuclear Information System (INIS)

    Hall, S.T.

    1990-01-01

    This paper reports that experience in the remediation of schools and other large buildings has shown the importance of the effects of both the location of geologic sources and HVAC-induced distribution of indoor radon. In general, elevated radon in areas of schools with evenly distributed HVAC pressures are correlated with maximum soil radon emanations. However, strong or unequal HVAC effects can redistribute indoor radon to areas away from the direct source. Effective remediation required a complete understanding of both contributions. In some schools, highest indoor radon levels were located near large return ducts and were attributed to proximity to negative HVAC pressure. Successful sub-slab depressurization systems were installed, however, in rooms with lower indoor but greatest sub-slab radon levels, closest to the source. This shows the inadequacy of using indoor radon levels alone as a basis for remediation. Wings of two other schools with radon problems have equivalent window fan coil units in rooms of equal size and no central HVAC system. Highest indoor radon levels correlated well with highest sub-slab radon levels due to the equivalent effects of the window units. Diagnostic tests in other schools have revealed: blockwall radon transport to upper floors; high blockwall radon adjacent to sub-slab sources; and elevated indoor radon over crawlspace being drawn upward by HVAC-induced negative pressure, determined from indoor to outdoor micromanometer measurements

  3. A proposal for both plasma ion- and electron-temperature diagnostics under simultaneous incidence of particles and x-rays into a semiconductor on the basis of a proposed model for a semiconductor detector response

    International Nuclear Information System (INIS)

    Numakura, T; Cho, T; Kohagura, J; Hirata, M; Minami, R; Yoshida, M; Nakashima, Y; Tamano, T; Yatsu, K; Miyoshi, S

    2003-01-01

    A method is proposed for obtaining radial profiles of plasma temperatures of both plasma ion (T i ) and electron (T e ) simultaneously by the use of a semiconductor detector array. The method is based on our developed particle-response model for a semiconductor detector; in particular, the response theory is constructed for giving the applicability in particle energies ranging down to a kiloelectronvolt. Calculated results from our model are in fairly good agreement with experimental data on the detector response of incident particle beams with energies in the range 100 eV to a few kiloelectronvolts. On the basis of the verification of the proposed model, an idea of the use of a developed semiconductor detector array covered with 'reliably unbreakable' ultrathin SiO 2 'dead-layer filters' having various nanometre-order thicknesses is applied for simultaneous T i and T e analyses by using charge-exchange neutral particles and x-rays from plasmas. Radial profiles of T i and T e are obtained in a single plasma discharge alone, and the data reliability is independently cross-checked by a radial scan of a conventional charge-exchange neutral-particle analyser system as well as a 50-channel microchannel plate x-ray diagnostics system in the GAMMA 10 tandem mirror

  4. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  5. DNA Diagnostics: Optical or by Electronics?

    KAUST Repository

    Khan, Hadayat Ullah; Knoll, Wolfgang

    2016-01-01

    In this paper, we very briefly review DNA biosensors based on optical and electrical detection principles, referring mainly to our past work applying both techniques but here using nearly identical sensor chip surface architectures, i.e., capture

  6. DNA Diagnostics: Optical or by Electronics?

    KAUST Repository

    Khan, Hadayat Ullah

    2016-01-15

    In this paper, we very briefly review DNA biosensors based on optical and electrical detection principles, referring mainly to our past work applying both techniques but here using nearly identical sensor chip surface architectures, i.e., capture probe layers that were prepared based on a pulsed plasma deposition protocol for maleic anhydride and subsequent wet-chemical attachment of the amine-functionalized peptide nucleic acid (PNA) probe oligonucleotides. 15 mer DNA target strands, labeled with Cy5-chromophores that were attached at the 5’ end were used for surface plasmon optical detection and the same target DNA but without label was used in OTFT sensor-based detection where the mere charge density of the bound (hybridized) DNA molecules modulate the source-drain current. The sensing mechanisms and the detection limits of the devices are described in some detail. Both techniques allow for the monitoring of surface hybridization reactions, and offer the capacity to quantitatively discriminate between targets with different degrees of mismatched sequences.

  7. Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, RT [University of Washington; Protat, A [Australian Bureau of Meterology; Alexander, SP [Australian Antarctic Division

    2015-12-01

    Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in top-of-atmosphere (TOA) broadband radiative fluxes in this region are among the largest globally, with large implications for modeling both regional and global scale climate responses (e.g., Trenberth and Fasullo 2010, Ceppi et al. 2012). Recent analyses of model simulations suggest that model radiative errors in the Southern Ocean are due to a lack of low-level postfrontal clouds (including clouds well behind the front) and perhaps a lack of supercooled liquid water that contribute most to the model biases (Bodas-Salcedo et al. 2013, Huang et al. 2014). These assessments of model performance, as well as our knowledge of cloud and aerosol properties over the Southern Ocean, rely heavily on satellite data sets. Satellite data sets are incomplete in that the observations are not continuous (i.e., they are acquired only when the satellite passes nearby), generally do not sample the diurnal cycle, and view primarily the tops of cloud systems (especially for the passive instruments). This is especially problematic for retrievals of aerosol, low-cloud properties, and layers of supercooled water embedded within (rather than at the top of) clouds, as well as estimates of surface shortwave and longwave fluxes based on these properties.

  8. Optical beam diagnostics on PEP

    International Nuclear Information System (INIS)

    Sabersky, A.P.

    1981-02-01

    In designing the PEP optical diagnostics we have been able to build on the experience gained with SPEAR. Most of the problems at SPEAR could be traced to the optical diagnostic system being inside the tunnel. A machine shutdown is required for any maintenance or modification. This implies that in order to make such an instrument successful, a large engineering effort must be mounted to ensure 100% operation at startup. The functions that do not work at startup may never be made to work; this has happened at several machines. Experimental setups are likewise risky and time consuming. A point which has been borne out in both SPEAR and PEP is that the mechanical part of the instrument, the special vacuum chamber, the optical mounts, the alignment and adjustments, require approximately 60% of the effort and cost of the optical diagnostics. It is far better to economize on detectors and electronics than on mechanical and optical essentials

  9. Comunidades de roedores nocturnos en un ecotono de matorrales micrófilos y zacatal gipsófilo en San Luis Potosí, México Nocturnal rodents at the edge of a microphyllous shrubland and gypsophilous grassland in San Luis Potosi, Mexico

    Directory of Open Access Journals (Sweden)

    Jaime Luévano

    2008-06-01

    Full Text Available En el presente estudio se compara la abundancia y riqueza entre los roedores nocturnos de un zacatal gipsófilo y los de 3 matorrales micrófilos, en el norte de San Luis Potosí. Los muestreos se llevaron a cabo en sitios con distintas características edáficas y de estructura de la vegetación, en la estación lluviosa y en la seca de los años 2003 y 2004. Como estimador del tamaño poblacional se utilizó el número de individuos capturados en cada periodo. Se capturaron 414 individuos de 12 especies de las familias Heteromyidae y Muridae. Se concluye que: 1 las comunidades de roedores en cada sitio fueron diferentes en función de la estructura vegetal y cambiaron de manera notable entre el zacatal y los 3 sitios de matorral adyacentes; 2 dichas comunidades reflejaron el mosaico de la vegetación más que la época del año; 3 los tres tipos de matorral mantuvieron su identidad individual a lo largo del año, y 4 la baja precipitación y/o el pastoreo, a través de la reducción de la cobertura vegetal sobre suelos gipsófilos afectó a los roedores.In this study we compared abundance and species richness of nocturnal rodents at the edge of gypsophilous grassland on an exposed gypsum substrate and 3 sites of microphilous shrubland, in northern San Luis Potosí, Mexico. We sampled at sites that differed in edaphic characteristics and vegetation structure, in the wet and dry seasons of 2003 and 2004. As a population estimator we used the number of individuals captured in each sampling period. We captured 414 individuals of 12 species of Heteromyidae and Muridae. We concluded that 1 rodent communities were different among sites as a function of vegetation structure, and varied notably between grassland and adjacent shrublands: 2 such communities reflected the vegetation mosaic more than season of the year: 3 the three shrubland types maintained their identity throughout the year; y 4 low precipitation and/or grazing, through the reduction of

  10. Laser fusion diagnostics

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1978-01-01

    The current status of the capability of laser fusion diagnostics is reviewed. Optical and infrared streak cameras provide one time resolution measurement capability of less than 10 ps, while x-ray streak cameras provide 15 ps time resolution in the range of about 1--30 keV presently. Time integrated spatial resolutions of 1 μm are provided with a variety of optical techniques. Ultraviolet holographic interferometry has measured electron densities above 10 21 cm -3 with 1 μm spatial resolution and 15 ps temporal resolution. X-ray microscopes provide 3 μm time integrated resolution and the x-ray streak pinhole camera has 6 μm spatial resolution. Development of the framing camera has thus far provided 50 μm spatial resolution with 125 ps frame duration and the third order reconstruction of zone plate images has provided 3 μm resolutions for alpha particles. Time integrated measurements of x-rays span the range shown. Finally, the new Shiva neutron spectrometer increases the energy resolution capability of that technique to 25 keV for 14-MeV neutrons. These combined capabilities provide a unique set of diagnostics for the detailed measurement of the interaction of laser light with targets and a subsequent performance of those targets

  11. Encyclopedia of diagnostic imaging

    International Nuclear Information System (INIS)

    Baert, A.L.

    2008-01-01

    The simple A to Z format provides easy access to relevant information in the field of imaging. Extensive cross references between keywords and related articles enable efficient searches in a user-friendly manner. Fully searchable and hyperlinked electronic online edition. The aim of this comprehensive encyclopedia is to provide detailed information on diagnostic radiology contributing to the broad field of imaging. The wide range of entries are written by leading experts. They will provide basic and clinical scientists in academia, practice and industry with valuable information about the field of diagnostic imaging. Those in related fields, students, teachers, and interested laypeople will also benefit from the important and relevant information on the most recent developments. Please note that this publication is available as print only or online only or print + online set. Save 75% of the online list price when purchasing the bundle. For more information on the online version please type the publication title into the search box above, then click on the eReference version in the results list. (orig.)

  12. Development of a helium-beam diagnostic for the measurement of the electron density and temperature with high space and time resolution; Entwicklung einer Heliumstrahldiagnostik zur Messung der Elektronendichte und -temperatur mit hoher raeumlicher und zeitlicher Aufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kruezi, U.

    2006-11-15

    A cvoncept for the control of teh particle and energy removal is available with the Dynamic Ergodic Divertor (DED) at the TEXTOR tokamak and is studied there. In the framework of this thesis a new diagnostic fot the study of short-time events in the plasma boundary layer was developed and constructed. It allows spatially (2 mm) and timely (10 {mu}s) highly resolved measurements of the electron density n{sub e} and electron temperaturew T{sub e}. This occurs by spectroscopy on helium atoms injected into the plasma, for whose measured line intensities respectively intensity ratios by means of a collision-radiation model n{sub e} and T{sub e} can be determined. In order to fulfil the requirements for the measurement of the plasma fluctuations up to 100 kHz, an injection system was developed, which can produce a supersonic helium beam of high particle density (1.5.10{sup 18} m{sup -3}) and simulataneously low deivergence {+-}1 . Parallely for this an observation system consisting of many-channel photomultipliers (PMT) with high and a CCD camera with lower time resolution. The signals of the different MT channels are calibrated on the intensities of the comparable spatial channels of the CCD camera. The first spectroscopic measurement of T{sub e} fluctuations resulted for the characterizing parameters: velocity v{sub r}=(380{+-}60) m/s, correlation length L{sub r}{approx}(5{+-}1) mm, and lifetime {tau}{sub L}{approx}(10{+-}1.25) {mu}s. Under the influence of resonant disturbing magnetic fields by the DED because of the not negligible photon noise no quantitative fluctuation characteristics could be determined. Furthermore during the dynamic AC operation of the DED with rotating disturbing field (974 Hz) n{sub e} and T{sub e} could be spatially and timely resolved and showed because of dynamically co-moved plasma structures a strong modulation by a factor 3 respectively 2. Beside an expected pressure decreasement in the laminar flux tube a hitherto unknown increasement

  13. Beam diagnostic instruments of TARN

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi.

    1987-09-01

    The paper summarizes the beam diagnostic instruments of the low energy ion accumulation ring; TARN. With these monitors, position, profiles, bunch structure, intensity, emittance and momentum spread were measured to evaluate the injection and stacking experiments. The monitors provide the sensitivity of a few μA for the nondestructive and a few nA for the destructive monitors. Discussions on monitor probe and electronics are presented on the basis of an achievement of the beam stacking experiments. (author)

  14. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  15. A Self-Diagnostic System for the M6 Accelerometer

    Science.gov (United States)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  16. Diagnostic reasoning strategies and diagnostic success.

    Science.gov (United States)

    Coderre, S; Mandin, H; Harasym, P H; Fick, G H

    2003-08-01

    Cognitive psychology research supports the notion that experts use mental frameworks or "schemes", both to organize knowledge in memory and to solve clinical problems. The central purpose of this study was to determine the relationship between problem-solving strategies and the likelihood of diagnostic success. Think-aloud protocols were collected to determine the diagnostic reasoning used by experts and non-experts when attempting to diagnose clinical presentations in gastroenterology. Using logistic regression analysis, the study found that there is a relationship between diagnostic reasoning strategy and the likelihood of diagnostic success. Compared to hypothetico-deductive reasoning, the odds of diagnostic success were significantly greater when subjects used the diagnostic strategies of pattern recognition and scheme-inductive reasoning. Two other factors emerged as independent determinants of diagnostic success: expertise and clinical presentation. Not surprisingly, experts outperformed novices, while the content area of the clinical cases in each of the four clinical presentations demonstrated varying degrees of difficulty and thus diagnostic success. These findings have significant implications for medical educators. It supports the introduction of "schemes" as a means of enhancing memory organization and improving diagnostic success.

  17. Plasma impact on diagnostic mirrors in JET

    OpenAIRE

    A. Garcia-Carrasco; P. Petersson; M. Rubel; A. Widdowson; E. Fortuna-Zalesna; S. Jachmich; M. Brix; L. Marot

    2017-01-01

    Metallic mirrors will be essential components of all optical systems for plasma diagnosis in ITER. This contribution provides a comprehensive account on plasma impact on diagnostic mirrors in JET with the ITER-Like Wall. Specimens from the First Mirror Test and the lithium-beam diagnostic have been studied by spectrophotometry, ion beam analysis and electron microscopy. Test mirrors made of molybdenum were retrieved from the main chamber and the divertor after exposure to the 2013–2014 experi...

  18. The LIDAR Thomson scattering diagnostic on JET

    International Nuclear Information System (INIS)

    Salzmann, H.; Gadd, A.

    1989-01-01

    By combining the time-of-flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density can be measured with a single set of detectors for all spatial points. This approach considerably simplifies the collection optics required for measuring a spatial profile. The system is described and examples of measurements are given and compared with the results of other diagnostics. (author)

  19. Assessment of the diagnostic accuracy of {sup 18}F-FDG PET/CT in prosthetic infective endocarditis and cardiac implantable electronic device infection: comparison of different interpretation criteria

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Ballve, Ana; Jesus Perez-Castejon, Maria; Carreras-Delgado, Jose L. [Clinico San Carlos University Hospital, San Carlos Health Research Institute (IdISSC), Complutense University of Madrid, Department of Nuclear Medicine, Madrid (Spain); Delgado-Bolton, Roberto C. [Clinico San Carlos University Hospital, San Carlos Health Research Institute (IdISSC), Complutense University of Madrid, Department of Nuclear Medicine, Madrid (Spain); San Pedro Hospital and Centre for Biomedical Research of La Rioja (CIBIR), University of La Rioja, Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, La Rioja (Spain); Sanchez-Enrique, Cristina; Vilacosta, Isidre; Vivas, David; Olmos, Carmen [Clinico San Carlos University Hospital, Department of Cardiology, Madrid (Spain); Ferrer, Manuel E.F. [Clinico San Carlos University Hospital, Research Unit, Madrid (Spain)

    2016-12-15

    The diagnosis of prosthetic valve (PV) infective endocarditis (IE) and infection of cardiac implantable electronic devices (CIEDs) remains challenging. The aim of this study was to assess the usefulness of {sup 18}F-FDG PET/CT in these patients and analyse the interpretation criteria. We included 41 patients suspected of having IE by the Duke criteria who underwent {sup 18}F-FDG PET/CT. The criteria applied for classifying the findings as positive/negative for IE were: (a) visual analysis of only PET images with attenuation-correction (AC PET images); (b) visual analysis of both AC PET images and PET images without AC (NAC PET images); (c) qualitative analysis of NAC PET images; and (d) semiquantitative analysis of AC PET images. {sup 18}F-FDG PET/CT was considered positive for IE independently of the intensity and distribution of FDG uptake. The gold standard was the Duke pathological criteria (if tissue was available) or the decision of an endocarditis expert team after a minimum 4 months follow-up. We studied 62 areas with suspicion of IE, 28 areas (45 %) showing definite IE and 34 (55 %) showing possible IE. Visual analysis of only AC PET images showed poor diagnostic accuracy (sensitivity 20 %, specificity 57 %). Visual analysis of both AC PET and NAC PET images showed excellent sensitivity (100 %) and intermediate specificity (73 %), focal uptake being more frequently associated with IE. The accuracy of qualitative analysis of NAC PET images depended on the threshold: the maximum sensitivity, specificity and accuracy achieved were 88 %, 80 %, 84 %, respectively. In the semiquantitative analysis of AC PET images, SUVmax was higher in areas of confirmed IE than in those without IE (∇SUVmax 2.2, p < 0.001). When FDG uptake was twice that in the liver, IE was always confirmed, and SUVmax 5.5 was the optimal threshold for IE diagnosis using ROC curve analysis (area under the curve 0.71). The value of {sup 18}F-FDG PET/CT in the diagnosis of suspected IE of PVs

  20. Assessment of the diagnostic accuracy of "1"8F-FDG PET/CT in prosthetic infective endocarditis and cardiac implantable electronic device infection: comparison of different interpretation criteria

    International Nuclear Information System (INIS)

    Jimenez-Ballve, Ana; Jesus Perez-Castejon, Maria; Carreras-Delgado, Jose L.; Delgado-Bolton, Roberto C.; Sanchez-Enrique, Cristina; Vilacosta, Isidre; Vivas, David; Olmos, Carmen; Ferrer, Manuel E.F.

    2016-01-01

    The diagnosis of prosthetic valve (PV) infective endocarditis (IE) and infection of cardiac implantable electronic devices (CIEDs) remains challenging. The aim of this study was to assess the usefulness of "1"8F-FDG PET/CT in these patients and analyse the interpretation criteria. We included 41 patients suspected of having IE by the Duke criteria who underwent "1"8F-FDG PET/CT. The criteria applied for classifying the findings as positive/negative for IE were: (a) visual analysis of only PET images with attenuation-correction (AC PET images); (b) visual analysis of both AC PET images and PET images without AC (NAC PET images); (c) qualitative analysis of NAC PET images; and (d) semiquantitative analysis of AC PET images. "1"8F-FDG PET/CT was considered positive for IE independently of the intensity and distribution of FDG uptake. The gold standard was the Duke pathological criteria (if tissue was available) or the decision of an endocarditis expert team after a minimum 4 months follow-up. We studied 62 areas with suspicion of IE, 28 areas (45 %) showing definite IE and 34 (55 %) showing possible IE. Visual analysis of only AC PET images showed poor diagnostic accuracy (sensitivity 20 %, specificity 57 %). Visual analysis of both AC PET and NAC PET images showed excellent sensitivity (100 %) and intermediate specificity (73 %), focal uptake being more frequently associated with IE. The accuracy of qualitative analysis of NAC PET images depended on the threshold: the maximum sensitivity, specificity and accuracy achieved were 88 %, 80 %, 84 %, respectively. In the semiquantitative analysis of AC PET images, SUVmax was higher in areas of confirmed IE than in those without IE (∇SUVmax 2.2, p < 0.001). When FDG uptake was twice that in the liver, IE was always confirmed, and SUVmax 5.5 was the optimal threshold for IE diagnosis using ROC curve analysis (area under the curve 0.71). The value of "1"8F-FDG PET/CT in the diagnosis of suspected IE of PVs and CIEDs is

  1. Recent developments of ECE diagnostics at JET

    Energy Technology Data Exchange (ETDEWEB)

    Luna, E. de la; Sanchez, J. [Association Euratom-Ciemat para Fusion, Ciemant (Spain); Cientoli, C.; Blanchard, P.; Joffrin, E.; Mazon, D. [Association Euratom-ENEA sulla Fusione, IFP-CNR, Milano (Italy); Riva, M.; Zerbini, M. [Association Euratom-ENEA sulla Fusione Centro Ricerche Energia Frascati (Italy); Conway, G. [IPP-Euratom Association, Garching (Germany); Felton, R.; Fessey, J.; Gowers, C. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Murari, A. [Consorzio RFX, Association Euratom-ENEA sulla Fusione, Padova (Italy)

    2004-07-01

    In JET, two types of ECE (electron cyclotron emission) instruments are routinely operated to provide electron temperature measurements: a Michelson interferometer and a heterodyne radiometer. ECE diagnostics are able to provide time-resolved electron temperature profiles with high spatial and temporal resolution, and have proven to play a fundamental role in the investigation and development of internal transport barriers (ITBs) in JET. In this paper we report on the major upgrade of the ECE diagnostics systems currently in progress at JET. Diagnostic developments include an upgrade of the multi-channel heterodyne radiometer, aimed at extending the radial region over which T{sub e} measurement can be performed, and the installation of a new Michelson interferometer with fast scanning capability, to improve the frequency and temporal resolution of the multi-harmonic ECE measurements at JET. Moreover, a future extension of the ECE system, an oblique ECE diagnostic to measure the ECE spectra at different angles with respect to the normal to the magnetic field, is being developed. This diagnostic is expected to give valuable insight into the interpretation of ECE measurements in high T{sub e}-plasmas and should be available for measurements once JET resumes operation in 2005.In this paper, the recent developments in the JET ECE diagnostic system will be described and illustrated with some recent results, with an emphasis on issues related with calibration stability, high-Te plasmas and ITB studies. Some of these issues will be discussed in the context of ITER.

  2. Procedures in diagnostic radiology

    International Nuclear Information System (INIS)

    Doyle, T.; Hare, W.S.C.; Thomson, K.; Tess, B.

    1989-01-01

    This book outlines the various procedures necessary for the successful practice of diagnostic radiology. Topics covered are: general principles, imaging of the urinary and gastrointestinal tracts, vascular radiology, arthrography, and miscellaneous diagnostic radiologic procedures

  3. Diagnostic Algorithm Benchmarking

    Science.gov (United States)

    Poll, Scott

    2011-01-01

    A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.

  4. Veterinary Molecular Diagnostics

    NARCIS (Netherlands)

    Roest, H.I.J.; Engelsma, M.Y.; Weesendorp, E.; Bossers, A.; Elbers, A.R.W.

    2017-01-01

    In veterinary molecular diagnostics, samples originating from animals are tested. Developments in the farm animals sector and in our societal attitude towards pet animals have resulted in an increased demand for fast and reliable diagnostic techniques. Molecular diagnostics perfectly matches this

  5. Measuring methods for the TFR plasma diagnostics

    International Nuclear Information System (INIS)

    Etievant, C.

    1975-02-01

    The measuring methods in operation or still under development for the diagnostics of the TFR plasma parameters (ion and electron temperatures, electron density, current density are reviewed, the diagnostics of the electrical behavior of the discharge, the neutral gas densities, the impurities and the parameters of the plasma turbulence being also investigated. Actual works are principally devoted to: improving ion temperature measurements by the possible use of the Doppler effect or infra-red incoherent scattering; improving n(e) and T(e) measurement by Thomson scattering; measuring the poloidal field and current density; measuring impurities by X and UV spectroscopy and measuring instabilities and turbulence [fr

  6. Progress in diagnostics of the COMPASS tokamak

    Science.gov (United States)

    Weinzettl, V.; Adamek, J.; Berta, M.; Bilkova, P.; Bogar, O.; Bohm, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Ficker, O.; Fridrich, D.; Grover, O.; Hacek, P.; Havlicek, J.; Havranek, A.; Horacek, J.; Hron, M.; Imrisek, M.; Komm, M.; Kovarik, K.; Krbec, J.; Markovic, T.; Matveeva, E.; Mitosinkova, K.; Mlynar, J.; Naydenkova, D.; Panek, R.; Paprok, R.; Peterka, M.; Podolnik, A.; Seidl, J.; Sos, M.; Stockel, J.; Tomes, M.; Varavin, M.; Varju, J.; Vlainic, M.; Vondracek, P.; Zajac, J.; Zacek, F.; Stano, M.; Anda, G.; Dunai, D.; Krizsanoczi, T.; Refy, D.; Zoletnik, S.; Silva, A.; Gomes, R.; Pereira, T.; Popov, Tsv.; Sarychev, D.; Ermak, G. P.; Zebrowski, J.; Jakubowski, M.; Rabinski, M.; Malinowski, K.; Nanobashvili, S.; Spolaore, M.; Vianello, N.; Gauthier, E.; Gunn, J. P.; Devitre, A.

    2017-12-01

    The COMPASS tokamak at IPP Prague is a small-size device with an ITER-relevant plasma geometry and operating in both the Ohmic as well as neutral beam assisted H-modes since 2012. A basic set of diagnostics installed at the beginning of the COMPASS operation has been gradually broadened in type of diagnostics, extended in number of detectors and collected channels and improved by an increased data acquisition speed. In recent years, a significant progress in diagnostic development has been motivated by the improved COMPASS plasma performance and broadening of its scientific programme (L-H transition and pedestal scaling studies, magnetic perturbations, runaway electron control and mitigation, plasma-surface interaction and corresponding heat fluxes, Alfvenic and edge localized mode observations, disruptions, etc.). In this contribution, we describe major upgrades of a broad spectrum of the COMPASS diagnostics and discuss their potential for physical studies. In particular, scrape-off layer plasma diagnostics will be represented by a new concept for microsecond electron temperature and heat flux measurements - we introduce a new set of divertor Langmuir and ball-pen probe arrays, newly constructed probe heads for reciprocating manipulators as well as several types of standalone probes. Among optical tools, an upgraded high-resolution edge Thomson scattering diagnostic for pedestal studies and a set of new visible light and infrared (plasma-surface interaction investigations) cameras will be described. Particle and beam diagnostics will be covered by a neutral particle analyzer, diagnostics on a lithium beam, Cherenkov detectors (for a direct detection of runaway electrons) and neutron detectors. We also present new modifications of the microwave reflectometer for fast edge density profile measurements.

  7. Infrared laser diagnostics for ITER

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Richards, R.K.; Ma, C.H.

    1995-01-01

    Two infrared laser-based diagnostics are under development at ORNL for measurements on burning plasmas such as ITER. The primary effort is the development of a CO 2 laser Thomson scattering diagnostic for the measurement of the velocity distribution of confined fusion-product alpha particles. Key components of the system include a high-power, single-mode CO 2 pulsed laser, an efficient optics system for beam transport and a multichannel low-noise infrared heterodyne receiver. A successful proof-of-principle experiment has been performed on the Advanced Toroidal Facility (ATF) stellerator at ORNL utilizing scattering from electron plasma frequency satellites. The diagnostic system is currently being installed on Alcator C-Mod at MIT for measurements of the fast ion tail produced by ICRH heating. A second diagnostic under development at ORNL is an infrared polarimeter for Faraday rotation measurements in future fusion experiments. A preliminary feasibility study of a CO 2 laser tangential viewing polarimeter for measuring electron density profiles in ITER has been completed. For ITER plasma parameters and a polarimeter wavelength of 10.6 microm, a Faraday rotation of up to 26 degree is predicted. An electro-optic polarization modulation technique has been developed at ORNL. Laboratory tests of this polarimeter demonstrated a sensitivity of ≤ 0.01 degree. Because of the similarity in the expected Faraday rotation in ITER and Alcator C-Mod, a collaboration between ORNL and the MIT Plasma Fusion Center has been undertaken to test this polarimeter system on Alcator C-Mod. A 10.6 microm polarimeter for this measurement has been constructed and integrated into the existing C-Mod multichannel two-color interferometer. With present experimental parameters for C-Mod, the predicted Faraday rotation was on the order of 0.1 degree. Significant output signals were observed during preliminary tests. Further experiment and detailed analyses are under way

  8. Vibration diagnostics instrumentation for ILC

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, A.

    2007-06-15

    The future e{sup -}e{sup +} 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)

  9. Intensified CCD for ultrafast diagnostics

    International Nuclear Information System (INIS)

    Cheng, J.; Tripp, G.; Coleman, L.

    1978-01-01

    Many of the present laser fusion diagnostics are recorded on either ultrafast streak cameras or on oscilloscopes. For those experiments in which a large volume of data is accumulated, direct computer processing of the information becomes important. We describe an approach which uses a RCA 52501 back-thinned CCD sensor to obtain direct electron readouts for both the streak camera and the CRT. Performance of the 100 GHz streak camera and the 4 GHz CRT are presented. Design parameters and computer interfacing for both systems are described in detail

  10. Vibration diagnostics instrumentation for ILC

    International Nuclear Information System (INIS)

    Bertolini, A.

    2007-06-01

    The future e - e + 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)

  11. A new diagnostic for spheromaks

    International Nuclear Information System (INIS)

    Boyd, D.A.

    1986-01-01

    Electron cyclotron emission from a spheromak plasma may be able to provide information about the confining magnetic field of the system. Emission generated in the extraordinary mode wit hits electric vector perpendicular to the local magnetic field at sufficiently high frequency will propagate out of the plasma while retaining the original orientation if its electric vector. Thus, a measurement of the orientation of the emergent electric vector and the emission frequency will allow one to deduce the orientation and strength of the magnetic field at the radiation source. In this paper, simple models of the Maryland spheromak are used to examine the practicality of such a diagnostic

  12. Electron cyclotron emission imaging in tokamak plasmas

    NARCIS (Netherlands)

    Munsat, T.; Domier, C.W.; Kong, X. Y.; Liang, T. R.; N C Luhmann Jr.,; Tobias, B. J.; Lee, W.; Park, H. K.; Yun, G.; Classen, I.G.J.; Donne, A. J. H.

    2010-01-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the

  13. Target Diagnostics Supports NIF's Path to Ignition

    International Nuclear Information System (INIS)

    Shelton, R.

    2011-01-01

    the RAGS system. Three new instrument controllers were developed and commissioned to support this diagnostic. A residual-gas analyzer (RGA) instrument measures the gas content at various points in the system. The Digital Gamma Spectrometer instrument measures the radiological spectrum of the decaying gas isotopes. A final instrument controller was developed to interface to a PLC based Gas collection system. In order to support the implosion velocity measurements an additional Gated X-ray Detector (GXD) diagnostic was tested and commissioned. This third GXD views the target through a slit contained in its snout and allows the other GXD diagnostics to be used for measuring the shape on the same shot. In order to measure the implosion shape in a high neutron environment, Actide Readout In A Neutron Environment (ARIANE) and Neutron Imaging (NI) diagnostics were commissioned. The controls for ARIANE, a fixed port gated x-ray imager, contain a neutron shielded camera and micro channel plate pulser with its neutron sensitive electronics located in the diagnostic mezzanine. The NI diagnostic is composed of two Spectral Instruments SI-1000 cameras located 20M from the target and provides neutron images of the DT hot spot for high yield shots. The development and commissioning of these new or enhanced diagnostics in FY11 have provided meaningful insight that facilitates the optimization of the four key Ignition variables. In FY12 they will be adding three new diagnostics and enhancing four existing diagnostics in support of the continuing optimization series of campaigns.

  14. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  15. Role of teleradiology in modern diagnostic imaging

    International Nuclear Information System (INIS)

    Chrzan, R.; Urbanik, A.; Wyrobek -Renczynska, M.; Podsiadlo, L.

    2004-01-01

    Teleradiology is a dynamically expanding technology of electronic transmission of radiologic images. History of teleradiology development, methods of obtaining images in digital form, media used for their transmission, factors affecting time of transmission, methods of visualization of transmitted images, attempts at standardization of new technology and at last typical applications of teleradiology were presented. Teleradiology from the position of technical curiosity advanced to the role of everyday work tool. Possibility of specialist diagnostic imaging assurance in poorly developed regions, not possessing sufficient number of radiologists, turned out particularly important. Cooperation of regional hospitals with specialist centers of diagnostic images reporting and archiving created a chance for making better use of owned equipment and reducing the costs of diagnostics. For the sake of broader and broader access to teleradiology not only over the world but also in Poland it is advisable to familiarize with its possibilities by both radiologists and clinicists using the results of diagnostic imaging. (author)

  16. Laser diagnostics for picosecond e-beams

    International Nuclear Information System (INIS)

    Pogorelsky, I.; Ben-Zvi, I.

    1992-01-01

    We propose a novel approach to picosecond e-bunch/laser pulse synchronization and spatial alignment based upon refraction and reflection of a laser beam on a plasma column created by relativistic electrons traveling through a gas or solid optical material. The technique may be used in laser accelerators and for general subpicosecond e-beam diagnostics

  17. The LIDAR Thomson Scattering Diagnostic on JET

    DEFF Research Database (Denmark)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time‐of‐flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3‐J pulse ener...

  18. Diagnostic Development on NSTX

    International Nuclear Information System (INIS)

    A.L. Roquemore; D. Johnson; R. Kaita; et al

    1999-01-01

    Diagnostics are described which are currently installed or under active development for the newly commissioned NSTX device. The low aspect ratio (R/a less than or equal to 1.3) and low toroidal field (0.1-0.3T) used in this device dictate adaptations in many standard diagnostic techniques. Technical summaries of each diagnostic are given, and adaptations, where significant, are highlighted

  19. TFTR diagnostic vacuum controller

    International Nuclear Information System (INIS)

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller

  20. Cooled Beam Diagnostics on LEIR

    CERN Document Server

    Tranquille, G; Carli, C; Chanel, M; Prieto, V; Sautier, R; Tan, J

    2008-01-01

    Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the LINAC3 are transformed into short highbrightness bunches using multi-turn injection, cooling and accumulation in the Low Energy Ion Ring, LEIR [1]. The cooling process must therefore be continuously monitored in order to guarantee that the lead ions have the required characteristics in terms of beam size and momentum spread. In LEIR a number of systems have been developed to perform these measurements. These include Schottky diagnostics, ionisation profile monitors and scrapers. Along with their associated acquisition and analysis software packages these instruments have proved to be invaluable for the optimisation of the electron cooler.

  1. Advancements of microwave diagnostics in magnetically confined plasmas

    NARCIS (Netherlands)

    Mase, A.; Kogi, Y.; Ito, N.; Yokota, Y.; Akaki, K.; Kawahata, K.; Nagayama, Y.; Tokuzawa, T.; Yamaguchi, S.; Hojo, H.; Oyama, N.; N C Luhmann Jr.,; Park, H. K.; Donne, A. J. H.

    2009-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Recent advances in electronic devices and components together with computer technology have enabled the

  2. ITER perspective on fusion reactor diagnostics - A spectroscopic view

    DEFF Research Database (Denmark)

    De Bock, M. F. M.; Barnsley, R.; Bassan, M.

    2016-01-01

    challenges to the development of spectroscopic (but also other) diagnostics. This contribution presents an overview of recent achievements in 4 topical areas: First mirror protection and cleaning, Nuclear confinement, Radiation mitigation strategy for optical and electronic components and Calibration...

  3. Psychologists' diagnostic processes during a diagnostic interview

    NARCIS (Netherlands)

    Groenier, Marleen; Beerthuis, Vos R.J.; Pieters, Julius Marie; Witteman, C.L.M.; Witteman, Cilia L.M.; Swinkels, Jan A.

    2011-01-01

    In mental health care, psychologists assess clients’ complaints, analyze underlying problems, and identify causes for these problems, to make treatment decisions. We present a study on psychologists’ diagnostic processes, in which a mixed-method approach was employed. We aimed to identify a common

  4. Diagnostic value of proton MR spectroscopy and diffusion-weighted MR imaging in childhood inherited neurometabolic brain diseases and review of the literature

    International Nuclear Information System (INIS)

    Cakmakci, Handan; Pekcevik, Yeliz; Yis, Uluc; Unalp, Aycan; Kurul, Semra

    2010-01-01

    The purpose of this study is to evaluate parenchymal diffusion properties and metabolite ratios in affected brain tissues of inherited neurometabolic brain diseases with an overview of the current literature about the diagnostic data of both techniques in childhood inherited metabolic brain diseases. The study group was consisting, 19 patients (15 males, 4 females; mean age, 54 months (4.5 years); age range, 1-171 months (14.25 years)) diagnosed with inherited neurometabolic brain disease. Single- and multivoxel proton MRS was carried out and NAA/Cr, Cho/Cr, mI/Cr, Glx/Cr ratios were calculated. Presence of lactate peak and abnormal different peaks were noted. ADC values were calculated from brain lesions. Results are compared with age and sex matched normal subjects. Elevated NAA/Cr ratio (Canavan disease), galactitol peak (galactosemia) at 3.7 ppm, branched chain amino acids (Maple syrup urine disease-MSUD) at 0.9 ppm were seen on different diseases. In Leigh disease and MSUD restricted diffusion was detected. Different diffusion properties were seen only in one Glutaric aciduria lesions. NAA/Cr ratios and calculated ADC values were significantly different from normal subjects (p < 0.05). DWI combined with MRS are complementary methods to routine cranial MRI for evaluating neurometabolic diseases which can give detailed information about neurochemistry of affected brain areas.

  5. Diagnostic value of proton MR spectroscopy and diffusion-weighted MR imaging in childhood inherited neurometabolic brain diseases and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Cakmakci, Handan, E-mail: handan.cakmakci@deu.edu.t [Dokuz Eylul University Faculty of Medicine, Department of Radiology, Izmir (Turkey); Pekcevik, Yeliz [Dokuz Eylul University Faculty of Medicine, Department of Radiology, Izmir (Turkey); Yis, Uluc [Dokuz Eylul University Faculty of Medicine, Department of Pediatric Neurology, Izmir (Turkey); Unalp, Aycan [Behcet Uz Hospital, Department of Pediatric Neurology, Izmir (Turkey); Kurul, Semra [Dokuz Eylul University Faculty of Medicine, Department of Pediatric Neurology, Izmir (Turkey)

    2010-06-15

    The purpose of this study is to evaluate parenchymal diffusion properties and metabolite ratios in affected brain tissues of inherited neurometabolic brain diseases with an overview of the current literature about the diagnostic data of both techniques in childhood inherited metabolic brain diseases. The study group was consisting, 19 patients (15 males, 4 females; mean age, 54 months (4.5 years); age range, 1-171 months (14.25 years)) diagnosed with inherited neurometabolic brain disease. Single- and multivoxel proton MRS was carried out and NAA/Cr, Cho/Cr, mI/Cr, Glx/Cr ratios were calculated. Presence of lactate peak and abnormal different peaks were noted. ADC values were calculated from brain lesions. Results are compared with age and sex matched normal subjects. Elevated NAA/Cr ratio (Canavan disease), galactitol peak (galactosemia) at 3.7 ppm, branched chain amino acids (Maple syrup urine disease-MSUD) at 0.9 ppm were seen on different diseases. In Leigh disease and MSUD restricted diffusion was detected. Different diffusion properties were seen only in one Glutaric aciduria lesions. NAA/Cr ratios and calculated ADC values were significantly different from normal subjects (p < 0.05). DWI combined with MRS are complementary methods to routine cranial MRI for evaluating neurometabolic diseases which can give detailed information about neurochemistry of affected brain areas.

  6. AN APPLICATION OF ELECTRONIC AMPLIFIER STETHOSCOPE

    Directory of Open Access Journals (Sweden)

    Alper KAÇAR

    2014-05-01

    Full Text Available Electronic stethoscopes are one of the important medical devices which affects the self-diagnostic or remote diagnostic in medical area. Rather the general stethoscopes, electronic ones increases the sound amplitude and quality. By filtering ambient noise, they can be used for advance analysis of heart or lung related diseases.

  7. Diagnostic nerve ultrasonography

    International Nuclear Information System (INIS)

    Baeumer, T.; Grimm, A.; Schelle, T.

    2017-01-01

    For the diagnostics of nerve lesions an imaging method is necessary to visualize peripheral nerves and their surrounding structures for an etiological classification. Clinical neurological and electrophysiological investigations provide functional information about nerve lesions. The information provided by a standard magnetic resonance imaging (MRI) examination is inadequate for peripheral nerve diagnostics; however, MRI neurography is suitable but on the other hand a resource and time-consuming method. Using ultrasonography for peripheral nerve diagnostics. With ultrasonography reliable diagnostics of entrapment neuropathies and traumatic nerve lesions are possible. The use of ultrasonography for neuropathies shows that a differentiation between different forms is possible. Nerve ultrasonography is an established diagnostic tool. In addition to the clinical examination and clinical electrophysiology, structural information can be obtained, which results in a clear improvement in the diagnostics. Ultrasonography has become an integral part of the diagnostic work-up of peripheral nerve lesions in neurophysiological departments. Nerve ultrasonography is recommended for the diagnostic work-up of peripheral nerve lesions in addition to clinical and electrophysiological investigations. It should be used in the clinical work-up of entrapment neuropathies, traumatic nerve lesions and spacy-occupying lesions of nerves. (orig.) [de

  8. Ongoing experiments: diagnostics requirements

    International Nuclear Information System (INIS)

    Dickerman, C.E.

    1976-01-01

    The paper reviews the fuel motion diagnostics needs for ongoing LMFBR safety experiments over approximately the next five years, with the discussion centered on TREAT. Brief comments on the direction in which clad motion diagnostics requirements are expected to develop are also presented

  9. Clinical diagnostic ultrasound

    International Nuclear Information System (INIS)

    Barnett, E.; Morley, P.

    1986-01-01

    This textbook on diagnostic ultrasound covers the main systems, with emphasis being placed on the clinical application of diagnostic ultrasound in everyday practice. It provides not only a textbook for postgraduates (particularly FRCR candidates), but also a reference work for practitioners of clinical ultrasound and clinicians generally

  10. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  11. Development of new diagnostics for WEST

    International Nuclear Information System (INIS)

    Lotte, P.; Moreau, P.; Gil, C.

    2015-01-01

    WEST, the upgraded superconducting tokamak Tore Supra, will be an international experimental platform aimed to support ITER Physics program. The main objective of WEST is to provide relevant plasma conditions for validating plasma facing component (PFC) technology, in particular the actively cooled Tungsten divertor monoblocks, and also assessing high heat flux and high fluence plasma wall interactions with Tungsten in order to prepare ITER divertor operation. In parallel, WEST will also open new experimental opportunities for developing integrated H mode operation and exploring steady state scenarios in a metallic environment. In order to fulfil the Scientific Program of WEST, new diagnostics have been developed in addition to the already existing diagnostics of Tore Supra, modified and improved during the shutdown. For the PFC technology validation program, new tools have been implemented, like a full infrared survey of the PFC, a new calorimetry system, local temperature measurements (thermocouple and Bragg grating optical fiber), and several sets of Langmuir probes. For the analysis of long pulse H mode operation, new plasma diagnostics will be implemented, among which the Visible Spectroscopy diagnostic for W sources and transport studies, the Soft-Xray diagnostic based on gas electron multiplier detectors for transport and MHD studies, the X-ray imaging crystal spectroscopy diagnostic with advanced solid state detector properties for ion temperature, ion density and plasma rotation velocity measurements, and the ECE Imaging diagnostic for MHD and turbulence studies. Most of these new diagnostics are developed with the participation of French Universities or through international collaborations. This paper focuses on the description of these four plasma diagnostics. (author)

  12. Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, K.; Gonsalves, A.J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W.P.

    2010-01-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

  13. Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-01-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm 2 and 0.4 pC/ps/mm 2 , respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within ±10%.

  14. Diagnostics on Z (invited)

    International Nuclear Information System (INIS)

    Nash, T. J.; Derzon, M. S.; Chandler, G. A.; Fehl, D. L.; Leeper, R. J.; Porter, J. L.; Spielman, R. B.; Ruiz, C.; Cooper, G.; McGurn, J.

    2001-01-01

    The 100 ns, 20 MA pinch-driver Z is surrounded by an extensive set of diagnostics. There are nine radial lines of sight set at 12 o above horizontal and each of these may be equipped with up to five diagnostic ports. Instruments routinely fielded viewing the pinch from the side with these ports include x-ray diode arrays, photoconducting detector arrays, bolometers, transmission grating spectrometers, time-resolved x-ray pinhole cameras, x-ray crystal spectrometers, calorimeters, silicon photodiodes, and neutron detectors. A diagnostic package fielded on axis for viewing internal pinch radiation consists of nine lines of sight. This package accommodates virtually the same diagnostics as the radial ports. Other diagnostics not fielded on the axial or radial ports include current B-dot monitors, filtered x-ray scintillators coupled by fiber optics to streak cameras, streaked visible spectroscopy, velocity interferometric system for any reflector, bremsstrahlung cameras, and active shock breakout measurement of hohlraum temperature. The data acquisition system is capable of recording up to 500 channels and the data from each shot is available on the Internet. A major new diagnostic presently under construction is the BEAMLET backlighter. We will briefly describe each of these diagnostics and present some of the highest-quality data from them

  15. Cable Diagnostic Focused Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: •How cable systems age and fail, •The various technologies available for detecting potential failure sites, •The advantages and disadvantages of different diagnostic technologies, •Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online

  16. Systematic reviews of diagnostic test accuracy

    DEFF Research Database (Denmark)

    Leeflang, Mariska M G; Deeks, Jonathan J; Gatsonis, Constantine

    2008-01-01

    More and more systematic reviews of diagnostic test accuracy studies are being published, but they can be methodologically challenging. In this paper, the authors present some of the recent developments in the methodology for conducting systematic reviews of diagnostic test accuracy studies....... Restrictive electronic search filters are discouraged, as is the use of summary quality scores. Methods for meta-analysis should take into account the paired nature of the estimates and their dependence on threshold. Authors of these reviews are advised to use the hierarchical summary receiver...

  17. Optical diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C O; Spence, T G; Kruger, C H; Zare, R N

    2003-01-01

    Atmospheric pressure air plasmas are often thought to be in local thermodynamic equilibrium owing to fast interspecies collisional exchange at high pressure. This assumption cannot be relied upon, particularly with respect to optical diagnostics. Velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. This paper reviews diagnostic techniques based on optical emission spectroscopy and cavity ring-down spectroscopy that we have found useful for making temperature and concentration measurements in atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium

  18. Plasma diagnostic reflectometry

    International Nuclear Information System (INIS)

    Cohen, B.I.; Afeyan, B.B.; Garrison, J.C.; Kaiser, T.B.; Luhmann, N.C. Jr.; Domier, C.W.; Chou, A.E.; Baang, S.

    1996-01-01

    Theoretical and experimental studies of plasma diagnostic reflectometry have been undertaken as a collaborative research project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Plasma Diagnostics Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. Theoretical analyses have explored the basic principles of reflectometry to understand its limitations, to address specific gaps in the understanding of reflectometry measurements in laboratory experiments, and to explore extensions of reflectometry such as ultra-short-pulse reflectometry. The theory has supported basic laboratory reflectometry experiments where reflectometry measurements can be corroborated by independent diagnostic measurements

  19. Equipment for radiation diagnostics

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.

    1976-01-01

    The invention relates to an improvement of the line type of the plotter in an X-ray diagnostics apparatus enabling the production of distinguishable recordings by means of a single plot type. The construction is described explicitly. (UWI) [de

  20. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  1. Diagnostic radiology: I

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This chapter describes the historic development of diagnostic equipment for radiology. The problems associated with fluoroscope design are detailed and the current uses of updated technology, particularly digitization, are considered. Numerous historical photographs are included. 13 refs

  2. Prenatal Genetic Diagnostic Tests

    Science.gov (United States)

    ... are available for many inherited disorders. The main disadvantage is that diagnostic testing carries a very small ... chromosomes, arranged in order of size. Microarray: A technology that examines all of a person’s genes to ...

  3. Spectroscopic diagnostics of industrial plasmas

    International Nuclear Information System (INIS)

    Joshi, N.K.

    2004-01-01

    Plasmas play key role in modern industry and are being used for processing micro electronic circuits to the destruction of toxic waste. Characterization of industrial plasmas which includes both 'thermal plasmas' and non-equilibrium plasmas or 'cold plasmas' in industrial environment offers quite a challenge. Numerous diagnostic techniques have been developed for the measurement of these partially ionized plasma and/or particulate parameters. The 'simple' non-invasive spectroscopic methods for characterization of industrial plasmas will be discussed in detail in this paper. The excitation temperature in thermal (DC/RF) plasma jets has been determined using atomic Boltzmann technique. The central axis temperature of thermal plasma jets in a spray torch can be determined using modified atomic Boltzmann technique with out using Abel inversion. The Stark broadening of H β and Ar-I (430 nm) lines have been used to determine the electron number density in thermal plasma jets. In low-pressure non-equilibrium argon plasma, electron temperature has been measured using the Corona model from the ratio of line intensities of atomic and ionic transitions. (author)

  4. Aluminum and gallium nuclei as microscopic probes for pulsed electron-nuclear double resonance diagnostics of electric-field gradient and spin density in garnet ceramics doped with paramagnetic ions

    Science.gov (United States)

    Uspenskaya, Yu. A.; Mamin, G. V.; Babunts, R. A.; Badalyan, A. G.; Edinach, E. V.; Asatryan, H. R.; Romanov, N. G.; Orlinskii, S. B.; Khanin, V. M.; Wieczorek, H.; Ronda, C.; Baranov, P. G.

    2018-03-01

    The presence of aluminum and gallium isotopes with large nuclear magnetic and quadrupole moments in the nearest environment of impurity ions Mn2+ and Ce3+ in garnets made it possible to use hyperfine and quadrupole interactions with these ions to determine the spatial distribution of the unpaired electron and the gradient of the electric field at the sites of aluminum and gallium in the garnet lattice. High-frequency (94 GHz) electron spin echo detected electron paramagnetic resonance and electron-nuclear double resonance measurements have been performed. Large difference in the electric field gradient and quadrupole splitting at octahedral and tetrahedral sites allowed identifying the positions of aluminum and gallium ions in the garnet lattice and proving that gallium first fills tetrahedral positions in mixed aluminum-gallium garnets. This should be taken into account in the development of garnet-based scintillators and lasers. It is shown that the electric field gradient at aluminum nuclei near Mn2+ possessing an excess negative charge in the garnet lattice is ca. 2.5 times larger than on aluminum nuclei near Ce3+.

  5. Molecular diagnostics of periodontitis

    OpenAIRE

    Izabela Korona-Głowniak; Radosław Siwiec; Marcin Berger; Anna Malm; Jolanta Szymańska

    2017-01-01

    The microorganisms that form dental plaque are the main cause of periodontitis. Their identification and the understanding of the complex relationships and interactions that involve these microorganisms, environmental factors and the host’s health status enable improvement in diagnostics and targeted therapy in patients with periodontitis. To this end, molecular diagnostics techniques (both techniques based on the polymerase chain reaction and those involving nucleic acid analysis via hybridi...

  6. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  7. Status of the diagnostics development for the first operation phase of the stellarator Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    König, R., E-mail: rlk@ipp.mpg.de; Biedermann, C.; Burhenn, R.; Endler, M.; Grulke, O.; Hathiramani, D.; Hirsch, M.; Jakubowski, M.; Kornejew, P.; Krychowiak, M.; Langenberg, A.; Laux, M.; Lorenz, A.; Otte, M.; Pasch, E.; Pedersen, T. S.; Schneider, W.; Thomsen, H.; Windisch, T.; Zhang, D. [Max Planck Institute for Plasma Physics, 17491 Greifswald (Germany); and others

    2014-11-15

    An overview of the diagnostics which are essential for the first operational phase of Wendelstein 7-X and the set of diagnostics expected to be ready for operation at this time are presented. The ongoing investigations of how to cope with high levels of stray Electron Cyclotron Resonance Heating (ECRH) radiation in the ultraviolet (UV)/visible/infrared (IR) optical diagnostics are described.

  8. Analyzer for gamma cameras diagnostic

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Osorio Deliz, J. F.; Diaz Garcia, A.

    2013-01-01

    This research work was carried out to develop an analyzer for gamma cameras diagnostic. It is composed of an electronic system that includes hardware and software capabilities, and operates from the acquisition of the 4 head position signals of a gamma camera detector. The result is the spectrum of the energy delivered by nuclear radiation coming from the camera detector head. This system includes analog processing of position signals from the camera, digitization and the subsequent processing of the energy signal in a multichannel analyzer, sending data to a computer via a standard USB port and processing of data in a personal computer to obtain the final histogram. The circuits are composed of an analog processing board and a universal kit with micro controller and programmable gate array. (Author)

  9. FEL diagnostics and user control

    International Nuclear Information System (INIS)

    Knippels, G.M.H.; Meer, A.F.G. van der

    1998-01-01

    The most recent upgrades and improvements to the free-electron laser (FEL) facility FELIX are presented. Special attention is paid to the improved beam-handling and diagnostic station. In this evacuated beam station a device is implemented that is capable of selecting single micropulses with measured efficiencies of more than 50% over the whole wavelength range of FELIX (5-110 μm). Furthermore, the broadband autocorrelator for micropulse length measurements and the planned continuous polarization rotator based on reflective optics are discussed. Recent additions to the ancillary equipment available to FEL users are presented briefly. The most important ones are the mirror-dispersion-controlled 10-fs Ti:sapphire laser and the 40-T magnet. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. The next organizational challenge: finding and addressing diagnostic error.

    Science.gov (United States)

    Graber, Mark L; Trowbridge, Robert; Myers, Jennifer S; Umscheid, Craig A; Strull, William; Kanter, Michael H

    2014-03-01

    Although health care organizations (HCOs) are intensely focused on improving the safety of health care, efforts to date have almost exclusively targeted treatment-related issues. The literature confirms that the approaches HCOs use to identify adverse medical events are not effective in finding diagnostic errors, so the initial challenge is to identify cases of diagnostic error. WHY HEALTH CARE ORGANIZATIONS NEED TO GET INVOLVED: HCOs are preoccupied with many quality- and safety-related operational and clinical issues, including performance measures. The case for paying attention to diagnostic errors, however, is based on the following four points: (1) diagnostic errors are common and harmful, (2) high-quality health care requires high-quality diagnosis, (3) diagnostic errors are costly, and (4) HCOs are well positioned to lead the way in reducing diagnostic error. FINDING DIAGNOSTIC ERRORS: Current approaches to identifying diagnostic errors, such as occurrence screens, incident reports, autopsy, and peer review, were not designed to detect diagnostic issues (or problems of omission in general) and/or rely on voluntary reporting. The realization that the existing tools are inadequate has spurred efforts to identify novel tools that could be used to discover diagnostic errors or breakdowns in the diagnostic process that are associated with errors. New approaches--Maine Medical Center's case-finding of diagnostic errors by facilitating direct reports from physicians and Kaiser Permanente's electronic health record--based reports that detect process breakdowns in the followup of abnormal findings--are described in case studies. By raising awareness and implementing targeted programs that address diagnostic error, HCOs may begin to play an important role in addressing the problem of diagnostic error.

  11. LHD neutron diagnostics

    International Nuclear Information System (INIS)

    Isobe, M.; Ogawa, K.; Kobuchi, T.

    2015-01-01

    The Large Helical Device (LHD) project will step into a next stage, i.e. experiment by using deuterium gases after two years of preparation. A comprehensive set of neutron and γ-ray diagnostics is going to be installed on the LHD towards extension of energetic-particle (EP) physics research in heliotron plasmas. Conceptual design of fusion products diagnostics for the LHD was made in late 1990s. After conclusion of agreements for the LHD deuterium experiment with local government bodies, development of FPs diagnostics has begun lately. Because there are a lot of tasks to do, all Japan fusion neutron and γ-ray diagnostics team has been organized in the collaboration framework of National Institute for Fusion Science. FPs diagnostics system on the LHD will consist of 1) wide dynamic range neutron flux monitor (NFM), 2) neutron activation system (NAS), 3) vertical neutron camera (VNC). In addition to these, we are developing a directional scintillating fiber detector, an artificial diamond detector and a γ-ray scintillation detector for confinement study of MeV ions. A neutron energy spectrometer prototype is also being developed and tested in KSTAR. In this paper, roles of NFM, NAS and VNC and current status of implementation onto the LHD are briefly described. (author)

  12. Pitfalls in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Peh, Wilfred C.G. (ed.) [Khoo Teck Puat Hospital (Singapore). Dept. of Diagnostic Radiology

    2015-04-01

    Only textbook to focus primarily on the topic of pitfalls in diagnostic radiology. Highlights the pitfalls in a comprehensive and systematic manner. Written by experts in different imaging modalities and subspecialties from reputable centers across the world. The practice of diagnostic radiology has become increasingly complex, with the use of numerous imaging modalities and division into many subspecialty areas. It is becoming ever more difficult for subspecialist radiologists, general radiologists, and residents to keep up with the advances that are occurring year on year, and this is particularly true for less familiar topics. Failure to appreciate imaging pitfalls often leads to diagnostic error and misinterpretation, and potential medicolegal problems. Diagnostic errors may be due to various factors such as inadequate imaging technique, imaging artifacts, failure to recognize normal structures or variants, lack of correlation with clinical and other imaging findings, and poor training or inexperience. Many, if not most, of these factors are potentially recognizable, preventable, or correctable. This textbook, written by experts from reputable centers across the world, systematically and comprehensively highlights the pitfalls that may occur in diagnostic radiology. Both pitfalls specific to different modalities and techniques and those specific to particular organ systems are described with the help of numerous high-quality illustrations. Recognition of these pitfalls is crucial in helping the practicing radiologist to achieve a more accurate diagnosis.

  13. Pitfalls in diagnostic radiology

    International Nuclear Information System (INIS)

    Peh, Wilfred C.G.

    2015-01-01

    Only textbook to focus primarily on the topic of pitfalls in diagnostic radiology. Highlights the pitfalls in a comprehensive and systematic manner. Written by experts in different imaging modalities and subspecialties from reputable centers across the world. The practice of diagnostic radiology has become increasingly complex, with the use of numerous imaging modalities and division into many subspecialty areas. It is becoming ever more difficult for subspecialist radiologists, general radiologists, and residents to keep up with the advances that are occurring year on year, and this is particularly true for less familiar topics. Failure to appreciate imaging pitfalls often leads to diagnostic error and misinterpretation, and potential medicolegal problems. Diagnostic errors may be due to various factors such as inadequate imaging technique, imaging artifacts, failure to recognize normal structures or variants, lack of correlation with clinical and other imaging findings, and poor training or inexperience. Many, if not most, of these factors are potentially recognizable, preventable, or correctable. This textbook, written by experts from reputable centers across the world, systematically and comprehensively highlights the pitfalls that may occur in diagnostic radiology. Both pitfalls specific to different modalities and techniques and those specific to particular organ systems are described with the help of numerous high-quality illustrations. Recognition of these pitfalls is crucial in helping the practicing radiologist to achieve a more accurate diagnosis.

  14. Plasma diagnostics by means of electric probes

    International Nuclear Information System (INIS)

    Colunga S, S.

    1991-04-01

    In this work a summary of the classical theoretical models to interpret the characteristic curve of a Langmuir electric probe placed in a plasma without magnetic field and with the one is made. The methodology for the electron temperature calculation and the density of the plasma in both cases is given, starting from the characteristic curve of the probe, as well as the approaches for the correct application of this diagnostic method of the plasma. (Author)

  15. Diagnostic expert system in the PF LINAC

    International Nuclear Information System (INIS)

    Abe, Isamu; Nakahara, Kazuo; Kitamura, Masaharu.

    1992-01-01

    A prototype diagnostic expert system (ES) was developed for the Photon Factory 2.5-GeV electron/positron LINAC injector system. The ES has been on-lined with the conventional linac computer network for receiving real data. This project was undertaken in an attempt to reduce the linac operator's mental workload, diagnosis duties, and to explore Artificial Intelligence (AI) technologies. The outlook for ES and its problems, and what has been achieved are outlined in this presentation. (author)

  16. [Spectroscopic diagnostics of high temperature plasmas

    International Nuclear Information System (INIS)

    Moos, W.

    1989-01-01

    A research program in soft x-ray/ultraviolet/visible diagnostics for magnetic fusion is described. Recent results include the electron temperature, electron density and impurity densities during EML activity on the TEXT tokamak. The Zeeman effect induced circular polarization in Li neutral beam emissions has been analyzed to determine the safety factor in sawtoothing and ECRH heated discharge. The reflective properties of multilayer mirrors (10-200 Angstrom) were measured. Future work includes an order of magnitude improvement in the time resolution of the circular-polarimeter, development of a soft x-ray normal incidence spectrometer and a feasibility study for a narrow band x-ray photometer

  17. Diagnostics for high-brightness beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1990-01-01

    Special techniques are required for beam diagnostics on high-brightness particle beams. Examples of high-brightness beams include low-emittance proton linacs (either pulsed or CW), electron linacs suitable for free-electron-laser applications, and future linear colliders. Non-interceptive and minimally-interceptive techniques for measuring beam current, position, profile, and transverse and longitudinal emittance will be reviewed. Included will be stripline, wire scanner, laser neutralization, beam-beam scattering, interceptive microgratings, spontaneous emission, optical transition radiation, and other techniques. 24 refs

  18. Polychromatic holographic plasma diagnostics

    International Nuclear Information System (INIS)

    Zhiglinskij, A.G.; Morozov, A.O.

    1992-01-01

    Review of holographic interferometry properties is performed and advantages of this method by plasma diagnostics are indicated. Main results obtained by the method of holographic interferometry in studies of various-type plasmas are considered. Special attention is paid to multiwave plasma diagnostics, the necessity of which is related as a rule to multicomponent composition of plasma. The eight laser and gas-discharge sources and holographic schemes, which make it possible to realize plasma polychromatic and holographic interferometry, are considered. The advantages of the method are demonstrated by examples of polychromatic holographic diagnostics of arc discharge and discharge in a hollow cathode. Review of theoretical works determining the applicability area of resonance polychromatic interferometry is carried out

  19. Reversed field pinch diagnostics

    International Nuclear Information System (INIS)

    Weber, P.G.

    1986-01-01

    The Reversed Field Pinch (RFP) is a toroidal, axisymmetric magnetic confinement configuration characterized by a magnetic field configuration in which the toroidal magnetic field is of similar strength to the poloidal field, and is reversed at the edge compared to the center. The RFP routinely operates at high beta, and is a strong candidate for a compact fusion device. Relevant attributes of the configuration will be presented, together with an overview of present and planned experiments and their diagnostics. RFP diagnostics are in many ways similar to those of other magnetic confinement devices (such as tokamaks); these lectures will point out pertinent differences, and will present some diagnostics which provide special insights into unique attributes of the RFP

  20. Metabolomics for laboratory diagnostics.

    Science.gov (United States)

    Bujak, Renata; Struck-Lewicka, Wiktoria; Markuszewski, Michał J; Kaliszan, Roman

    2015-09-10

    Metabolomics is an emerging approach in a systems biology field. Due to continuous development in advanced analytical techniques and in bioinformatics, metabolomics has been extensively applied as a novel, holistic diagnostic tool in clinical and biomedical studies. Metabolome's measurement, as a chemical reflection of a current phenotype of a particular biological system, is nowadays frequently implemented to understand pathophysiological processes involved in disease progression as well as to search for new diagnostic or prognostic biomarkers of various organism's disorders. In this review, we discussed the research strategies and analytical platforms commonly applied in the metabolomics studies. The applications of the metabolomics in laboratory diagnostics in the last 5 years were also reviewed according to the type of biological sample used in the metabolome's analysis. We also discussed some limitations and further improvements which should be considered taking in mind potential applications of metabolomic research and practice. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Corpuscular plasma diagnostics

    International Nuclear Information System (INIS)

    Afrosimov, V.; Petrov, M.

    1984-01-01

    An elementary explanation is presented of the physical principles and important methods of corpuscular plasma diagnostics. The invaluable role of corpuscular methods for measuring the hot plasma ion component in thermonuclear facilities, especially hydrogen ions in tokamaks, is emphasized. All corpuscular methods employ analysis of fast neutral atoms and therefore the mechanism of their creation inside a hot plasma is explained first. The ammount of information obtainable from spectra of fast neutrals is discussed. Multichannel analyzers developed at the FTI A.F. Ioffe in Leningrad are described in detail. Classical passive corpuscular diagnostics are examined as are active methods using artifitial beams of hydrogen atoms. The method used for obtaining local values of ion temperature and density is explained. Corpuscular spectroscopic diagnostics and its application for measuring impurities is mentioned. (J.U.)

  2. [Cytology in uropathological diagnostics].

    Science.gov (United States)

    Gaisa, N T; Lindemann-Docter, K

    2015-11-01

    Cytology in uropathological diagnostics is mainly performed for oncological purposes. The assessment of malignancy by urothelial cell morphology is therefore decisive; however, cytology is only sensitive enough to detect high-grade tumor cells and the different low-grade tumors cannot be reliably diagnosed. Thus, the four-tier classification system of cytological findings (i.e. negative, atypical cells but significance uncertain, suspicious and positive) refers to high-grade tumor cells only. Furthermore, for valid cytological diagnostics not only the cytological specimen but also clinical information on cystoscopy findings and, if applicable, a biopsy should be evaluated together. In difficult differential diagnostic settings, e.g. differentiation between reactive versus neoplastic atypia or difficult to access lesions in the upper urinary tract, additional fluorescence in situ hybridization of cytological preparations might be helpful. At the moment there are no indications for further immunocytology or additional biomarker tests.

  3. ORION laser target diagnostics

    International Nuclear Information System (INIS)

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.

    2012-01-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  4. ORION laser target diagnostics.

    Science.gov (United States)

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  5. Nova diagnostics summary

    International Nuclear Information System (INIS)

    Slivinsky, V.W.; Drake, R.P.

    1985-01-01

    The authors intend that Nova be the best diagnosed ICF research facility in operation today. The authors experience in providing advanced diagnostics for previous laser systems will be extended at Nova, and will be challenged by the development of new instrumentation to diagnose the more advanced targets made possible by this powerful laser. Previous experience has shown that to understand target performance, the authors must have as complete a set of diagnostics as possible. The Nova diagnostics are divided into two sets: the basic set required for the initial Nova experiments and the more advanced set for later, generally more complex, experiments. The basic set will be operational for the first Nova shots; it was a Nova line item funded with Nova construction money. This basic set is presented in a table

  6. Angiography - interventional diagnostic applications

    International Nuclear Information System (INIS)

    Schild, H.

    1994-01-01

    The angiography system is very different from the other systems used in diagnostic radiology. The invasivity of angiography requires special, high standards in theoretical and practical training and experience both of beginners and experienced personnel. This textbook fully meets the demand for in-depth and exhaustive information, as it presents: - The fundamentals and techniques of angiography, the vascular anatomy, and many hints and tips of great help in practice. - A comprehensive survey of diagnostic problems and examination approaches, including neuro-angiography, with 221 reproductions of original angiographs, and additional schematic representations. - A special chapter devoted to indication and relevant techniques for the major vascular interventional examinations. - A great number of tables explain at a glance standard examination techniques, indications and diagnostic criteria. (orig./CB) [de

  7. First Case of Trichoderma longibrachiatum CIED (Cardiac Implantable Electronic Device)-Associated Endocarditis in a Non-immunocompromised Host: Biofilm Removal and Diagnostic Problems in the Light of the Current Literature.

    Science.gov (United States)

    Tascini, Carlo; Cardinali, Gianluigi; Barletta, Valentina; Di Paolo, Antonello; Leonildi, Alessandro; Zucchelli, Giulio; Corte, Laura; Colabella, Claudia; Roscini, Luca; Consorte, Augusta; Pasticci, Maria Bruna; Menichetti, Francesco; Bongiorni, Maria Grazia

    2016-04-01

    Trichoderma species are saprophytic filamentous fungi producing localized and invasive infections that are cause of morbidity and mortality, especially in immunocompromised patients, causing up to 53% mortality. Non-immunocompromised patients, undergoing continuous ambulatory peritoneal dialysis, are other targets of this fungus. Current molecular diagnostic tools, based on the barcode marker ITS, fail to discriminate these fungi at the species level, further increasing the difficulty associated with these infections and their generally poor prognosis. We report on the first case of endocarditis infection caused by Trichoderma longibrachiatum in a 30-year-old man. This patient underwent the implantation of an implantable cardioverter defibrillator in 2006, replaced in 2012. Two years later, the patient developed fever, treated successfully with amoxicillin followed by ciprofloxacin, but an echocardiogram showed large vegetation onto the ventricular lead. After CIED extraction, the patient had high-grade fever. The culturing of the catheter tip was positive only in samples deriving from sonication according to the 2014 ESCMID guidelines, whereas the simple washing failed to remove the biofilm cells from the plastic surface. Subsequent molecular (ITS sequencing) and microbiological (macromorphology) analyses showed that the vegetation was due to T. longibrachiatum. This report showed that T. longibrachiatum is an effective threat and that sonication is necessary for the culturing of vegetations from plastic surfaces. Limitations of the current barcode marker ITS, and the long procedures required by a multistep approach, call for the development of rapid monophasic tests.

  8. Beam Instrumentation and Diagnostics

    CERN Document Server

    Strehl, Peter

    2006-01-01

    This treatise covers all aspects of the design and the daily operations of a beam diagnostic system for a large particle accelerator. A very interdisciplinary field, it involves contributions from physicists, electrical and mechanical engineers and computer experts alike so as to satisfy the ever-increasing demands for beam parameter variability for a vast range of operation modi and particles. The author draws upon 40 years of research and work, most of them spent as the head of the beam diagnostics group at GSI. He has illustrated the more theoretical aspects with many real-life examples that will provide beam instrumentation designers with ideas and tools for their work.

  9. Diagnostic Imaging Workshop

    International Nuclear Information System (INIS)

    Sociedad Argentina de Fisica Medica

    2012-01-01

    The American Association of Physicist in Medicine (AAPM), the International Organization for Medical Physics (IOMP) and the Argentina Society of Medical Physics (SAFIM) was organized the Diagnostic Imaging Workshop 2012, in the city of Buenos Aires, Argentina. This workshop was an oriented training and scientific exchange between professionals and technicians who work in medical physics, especially in the areas of diagnostic imaging, nuclear medicine and radiotherapy, with special emphasis on the use of multimodal imaging for radiation treatment, planning as well of quality assurance associates.

  10. Diagnostics data management on MTX

    International Nuclear Information System (INIS)

    Butner, D.N.; Brown, M.D.; Casper, T.A.; Meyer, W.H.; Moller

    1992-01-01

    This paper reports on the Microwave Tokamak Experiment (MTX), a magnetic fusion energy research experiment to explore electron cyclotron heating using a free electron laser operating in the microwave range. The diagnostic data from MTX is acquired and processed by a distributed, multivendor, computer network. Each shot of the experiment produces data files containing up to 15 megabytes of data. Typically half-second shots are taken every 5 minutes with 50 to 60 shots taken on a single day. As many as 80 full data short have been taken on a good day. Data files are created on Hewlett-Packard (HP) computers running Unix, HP computers running BASIC, and a Digital Equipment Corporation (DEC) VAXcluster running VMS. A small portion of the data acquired on the HP systems is immediately stored in a data system on the VAXcluster, but most data is held and processed on the computer on which it was acquired. A commercial database program running on the VAXcluster maintains a history of the data files created for each shot

  11. Molecular Beacons in Diagnostics

    OpenAIRE

    Tyagi, Sanjay; Kramer, Fred Russell

    2012-01-01

    Recent technical advances have begun to realize the potential of molecular beacons to test for diverse infections in clinical diagnostic laboratories. These include the ability to test for, and quantify, multiple pathogens in the same clinical sample, and to detect antibiotic resistant strains within hours. The design principles of molecular beacons have also spawned a variety of allied technologies.

  12. Diagnostic radiation and pregnancy

    International Nuclear Information System (INIS)

    Collins, L.; Fitzgerald, P.

    1983-01-01

    Accidental irradiation of the embryo or fetus in the first trimester is a problem which will occasionally occur. The value of a proper estimation of the radiation dose is emphasised. Very rarely does a single diagnostic procedure result in a uterine dose as high as 50 mGy. An accidental irradiation should rarely be cause for termination of a pregnancy

  13. Diagnostic imaging of craniopharyngioma

    International Nuclear Information System (INIS)

    Gradzki, J.; Nowak, S.; Paprzycki, W.

    1993-01-01

    40 patients have been examined with operational and histological confirmation of craniopharyngioma. CT image and X-ray plane of skull were performed in case all of these patients. TMR was conformed to examine 4 patients. X-ray planes was compared to CT. CT permits tumor cyst detection. The efficacy of mentioned above diagnostic techniques was compared with surgical findings. (author)

  14. Diagnostic studies in amyloidosis

    NARCIS (Netherlands)

    Hazenberg, Bouke Pier Cornelis

    2007-01-01

    In this thesis two diagnostic techniques are studied in amyloidosis. Systemic amyloidosis is characterized by deposition of amyloid fibrils (tiny fibres) throughout the body resulting in damage of vital organs. Amyloid can be detected in a tissue specimen stained with Congo red: red-stained amyloid

  15. 1968 Prototype Diagnostic Test.

    Science.gov (United States)

    Veterans Administration Hospital, Bedford, MA.

    This true-false diagnostic test was used for pretesting of employees at a Veterans Administration Hospital. The test is comprised of 20 items. An alternate test--Classification Questionnaire--was used for testing after remedial training. (For related document, see TM 002 334.) (DB)

  16. It's diagnostics, stupid.

    Science.gov (United States)

    Bernards, René

    2010-04-02

    To stem the spiraling cost of cancer treatment, a concerted effort is urgently needed to develop molecular diagnostics to better identify the patients that respond to expensive targeted therapies. Opportunities and obstacles in the development of such drug response biomarkers are discussed here. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Diagnostics for pellet experiments

    International Nuclear Information System (INIS)

    Johnson, R.R.

    1978-01-01

    The target diagnostics which are being used and planned in current laser driven ICF Experiments are described. Most of these diagnostics can be easily applied to future ion-beam fusion experiments. The status of laser fusion diagnostics has been much improved in the last 5 years and further improvements can be expected and should be available when the first ICF experiments using ion beams are performed. As an example, x-ray temporal and spatial resolutions are now approximately 5 psec and 3 μm, which is approximately a factor of 4 better than the resolution reported in the first implosion experiments. As one plans ahead for ion-beam fusion experiments it should be emphasized that high yield experiments are easier to diagnose provided adequate shielding is employed. However, in the event that the first high yield experiments fail it will be necessary to have diagnostics available to determine where the problems lie. In laser fusion it is interesting to note that higher laser powers are required now for breakeven experiments than first anticipated, mainly because some aspects of the laser-interaction physics were not recognized until the experiments were carefully diagnosed. Thus as has been pointed out, it may be necessary to increase the energy of the ion-beam driver to enable us to do breakeven experiments with high confidence

  18. Flowfield modeling and diagnostics

    International Nuclear Information System (INIS)

    Gupta, A.K.; Lilley, D.G.

    1985-01-01

    This textbook is devoted solely to flowfield modeling and diagnostics; their practical use, recent and current research, and projected developments and trends. It provides an account of the use of a broad range of techniques in industrial and research practice, both with and without combustion. Application ideas are complemented by details about experimental and modeling techniques

  19. Serbia : Systematic Country Diagnostic

    OpenAIRE

    World Bank Group

    2015-01-01

    This Systematic Country Diagnostic (SCD) aims to identify the major constraints on and opportunities for sustaining poverty reduction and shared prosperity in Serbia. The SCD serves as the analytic foundation on which the World Bank Group and the Government of Serbia will define a new Country Partnership Framework for FY2016 to FY2020. It is based on the best possible analysis, drawing on ...

  20. Diagnostic and interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, Thomas J. [Klinikum der Johann Wolfgang Goethe-Universitaet, Frankfurt am Main (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Reith, Wolfgang [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Diagnostische und Interventionelle Neuroradiologie; Rummeny, Ernst J. (ed.) [Technische Univ. Muenchen Klinikum rechts der Isar, Muenchen (Germany). Inst. fuer Radiologie

    2016-08-01

    This exceptional book covers all aspects of diagnostic and interventional radiology within one volume, at a level appropriate for the specialist. From the basics through diagnosis to intervention: the reader will find a complete overview of all areas of radiology. The clear, uniform structure, with chapters organized according to organ system, facilitates the rapid retrieval of information. Features include: Presentation of the normal radiological anatomy Classification of the different imaging procedures according to their diagnostic relevance Imaging diagnosis with many reference images Precise description of the interventional options The inclusion of many instructive aids will be of particular value to novices in decision making: Important take home messages and summaries of key radiological findings smooth the path through the jungle of facts Numerous tables on differential diagnosis and typical findings in the most common diseases offer a rapid overview and orientation Diagnostic flow charts outline the sequence of diagnostic evaluation All standard procedures within the field of interventional radiology are presented in a clinically relevant and readily understandable way, with an abundance of illustrations. This is a textbook, atlas, and reference in one: with more than 2500 images for comparison with the reader's own findings. This comprehensive and totally up-to-date book provides a superb overview of everything that the radiology specialist of today needs to know.

  1. Electronic technology

    International Nuclear Information System (INIS)

    Kim, Jin Su

    2010-07-01

    This book is composed of five chapters, which introduces electronic technology about understanding of electronic, electronic component, radio, electronic application, communication technology, semiconductor on its basic, free electron and hole, intrinsic semiconductor and semiconductor element, Diode such as PN junction diode, characteristic of junction diode, rectifier circuit and smoothing circuit, transistor on structure of transistor, characteristic of transistor and common emitter circuit, electronic application about electronic equipment, communication technology and education, robot technology and high electronic technology.

  2. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  3. The Electron

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, George

    1972-01-01

    Electrons are elementary particles of atoms that revolve around and outside the nucleus and have a negative charge. This booklet discusses how electrons relate to electricity, some applications of electrons, electrons as waves, electrons in atoms and solids, the electron microscope, among other things.

  4. Advancing the research agenda for diagnostic error reduction.

    Science.gov (United States)

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  5. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  6. Beyond Diagnostic Accuracy: The Clinical Utility of Diagnostic Tests

    NARCIS (Netherlands)

    Bossuyt, Patrick M. M.; Reitsma, Johannes B.; Linnet, Kristian; Moons, Karel G. M.

    2012-01-01

    Like any other medical technology or intervention, diagnostic tests should be thoroughly evaluated before their introduction into daily practice. Increasingly, decision makers, physicians, and other users of diagnostic tests request more than simple measures of a test's analytical or technical

  7. Fusion plasma diagnostics with mm-waves an introduction

    CERN Document Server

    Hartfuss, Hans-Jürgen

    2013-01-01

    Filling a gap in the literature, this introduction to the topic covers the physics of the standard microwave diagnostics established on modern fusion experiments, and the necessary technological background from the field of microwave engineering. Written by well-known mm-wave diagnosticians in the field of fusion physics, the textbook includes such major diagnostic techniques as electron cyclotron emission, interferometry, reflectometry, polarimetry, and scattering.

  8. Recent improvements of the JET lithium beam diagnostic.

    Science.gov (United States)

    Brix, M; Dodt, D; Dunai, D; Lupelli, I; Marsen, S; Melson, T F; Meszaros, B; Morgan, P; Petravich, G; Refy, D I; Silva, C; Stamp, M; Szabolics, T; Zastrow, K-D; Zoletnik, S

    2012-10-01

    A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).

  9. Electronic Nose Technology and its Applications

    Directory of Open Access Journals (Sweden)

    Esmaeil MAHMOUDI

    2009-08-01

    Full Text Available In the past decade, Electronic Nose instrumentation has generated much interest internationally for its potential to solve a wide variety of problems in fragrance and cosmetics production, food and beverages manufacturing, chemical engineering, environmental monitoring and more recently medical diagnostic, bioprocesses and clinical diagnostic plant diseases. This instrument measure electrical resistance changes generated by adsorption of volatiles to the surface of electro active- polymer coated sensor- unique digital electronic fingerprint of aroma derived from multi-sensor- responses to distinct mixture of microbial volatiles. Major advances in information and gas sensor technology could enhance the diagnostic power of future bio-electronic nose and facilitate global surveillance mode of disease control and management. Several dozen companies are now designed and selling electronic nose units globally for a wide variety of expending markets. The present review includes principles of electronic nose technology, biosensor structure and applications of electronic nose in many fields.

  10. Electron radiography

    Science.gov (United States)

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  11. Nonneutral plasma diagnostic commissioning for the ALPHA Antihydrogen experiment

    Science.gov (United States)

    Konewko, S.; Friesen, T.; Tharp, T. D.; Alpha Collaboration

    2017-10-01

    The ALPHA experiment at CERN creates antihydrogen by mixing antiproton and positron plasmas. Diagnostic measurements of the precursor plasmas are performed using a diagnostic suite, colloquially known as the ``stick.'' This stick has a variety of sensors and is able to move to various heights to align the desired diagnostic with the beamline. A cylindrical electrode, a faraday cup, an electron gun, and a microchannel-plate detector (MCP) are regularly used to control and diagnose plasmas in ALPHA. We have designed, built, and tested a new, upgraded stick which includes measurement capabilities in both beamline directions.

  12. Cancer pancreatis, diagnostic procedures

    International Nuclear Information System (INIS)

    Graadal, Oe.; Schlichting, E.; Aasen, A.O.; Stadaas, J.O.

    1990-01-01

    151 patients treated for carcinoma of the pancreas at Ullevaal Hospital (Oslo University) during the period 1980-89 were studied. The most common initial symptom was abdominal pain. Other frequent debut symptoms were loss of weight and jaundice. ERCP and PTC were found to be the best diagnostic procedures. CT or ultrasonography were normal in 10-20% of the patients. Nearly all tumors of the pancreas were found by the ERCP procedure. Also angiography was used to evaluate operability of the pancreas tumor, but was found to be a very uncertain diagnostic method. This method will not be used in the future evaluation of patients with cancer of the pancreas. 13 refs., 1 fig., 2 tabs

  13. Inertial confinement fusion diagnostics

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1986-10-01

    The concept and goals of ICF will be briefly reviewed and the new 100 kJ class Nova laser facility will be described. Experimental results obtained to date with Nova will be summarized, and the discussions of diagnostics will use examples on the present capabilities of Nova and new developments that are underway. The classes of diagnostic systems to be discussed fall into three basic categories: optical, x-ray, and particle. Examples of highly space resolved, time resolved, and spectrally resolved techniques as well as schemes involving combinations of these capabilities will be presented. A brief summary of the sophisticated acquisition and analysis system in use for Nova data will be provided

  14. Nanodevices in diagnostics

    Science.gov (United States)

    Hu, Ye; Fine, Daniel H.; Tasciotti, Ennio; Bouamrani, Ali; Ferrari, Mauro

    2010-01-01

    The real-time, personalized and highly sensitive early-stage diagnosis of disease remains an important challenge in modern medicine. With the ability to interact with matter at the nanoscale, the development of nanotechnology architectures and materials could potentially extend subcellular and molecular detection beyond the limits of conventional diagnostic modalities. At the very least, nanotechnology should be able to dramatically accelerate biomarker discovery, as well as facilitate disease monitoring, especially of maladies presenting a high degree of molecular and compositional heterogeneity. This article gives an overview of several of the most promising nanodevices and nanomaterials along with their applications in clinical practice. Significant work to adapt nanoscale materials and devices to clinical applications involving large interdisciplinary collaborations is already underway with the potential for nanotechnology to become an important enabling diagnostic technology. PMID:20229595

  15. Nanobiosensors in diagnostics

    Directory of Open Access Journals (Sweden)

    Alejandro Chamorro-Garcia

    2016-11-01

    Full Text Available Medical diagnosis has been greatly improved thanks to the development of new techniques capable of performing very sensitive detection and quantifying certain parameters. These parameters can be correlated with the presence of specific molecules and their quantity. Unfortunately, these techniques are demanding, expensive, and often complicated. On the other side, progress in other fields of science and technology has contributed to the rapid growth of nanotechnology. Although being an emerging discipline, nanotechnology has raised huge interest and expectations. Most of the enthusiasm comes from new possibilities and properties of nanomaterials. Biosensors (simple, robust, sensitive, cost-effective combined with nanomaterials, also called nanobiosensors, are serving as bridge between advanced detection/diagnostics and daily/routine tests. Here we review some of the latest applications of nanobiosensors in diagnostics field.

  16. Diagnostic radiation risks

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, T [Addenbrooke' s Hospital, Cambridge (UK)

    1980-04-01

    A brief discussion on diagnostic radiation risks is given. First some fundamental facts on the concepts and units of radiation measurement are clarified. Medical diagnostic radiation doses are also compared to the radiation doses received annually by man from natural background radiation. The controversy concerning the '10-day rule' in X-raying women of child-bearing age is discussed; it would appear that the risk of malformation in an unborn child due to X-radiation is very much less than the natural level of risk of malformation. The differences in the radiographic techniques and thus the different X-ray doses needed to make adequate X-ray images of different parts of the body are considered. The radiation burden of nuclear medicine investigations compared to X-ray procedures is also discussed. Finally, the problems of using volunteers in radiation research are aired.

  17. Litigations in diagnostic radiology

    International Nuclear Information System (INIS)

    Patil, Ranjit

    2014-01-01

    There are various regulatory bodies at the international and national level, which lay down norms for radiation protection. These are the International Commission for Radiation Protection (ICRP) the National Commission for Radiation Protection (NCRP) in America, and the Atomic Energy Regulatory Board (AERB) in India. These bodies recommend norms on various radiation issues. Radiography and radiology are two key tools for diagnosing and treating diseases. Recently there are concerns about the effect of ionizing radiation on man and the frequent use of diagnostic radiographs. The professionals are expected to conduct their actions according to guidelines which reflect new information and changing technology in diagnostic radiography. Failure to do so may have severe legal consequences. Patient protection is a matter of normal course but knowledge and awareness of the legal issues is important to avoid legal hassles. Implications of the radiation protection guidelines are discussed. (author)

  18. Advanced diagnostic graphics

    International Nuclear Information System (INIS)

    Bray, M.A.; Petersen, R.J.; Clark, M.T.; Gertman, D.I.

    1981-01-01

    This paper reports US NRC-sponsored research at the Idaho National Engineering Laboratory (INEL) involving evaluation of computer-based diagnostic graphics. The specific targets of current evaluations are multivariate data display formats which may be used in Safety Parameter Display Systems (SPDS) being developed for nuclear power plant control rooms. The purpose of the work is to provide a basis for NRC action in regulating licensee SPDSs or later computer/cathode ray tube (CRT) applications in nuclear control rooms

  19. Molecular diagnostics in endodontics

    OpenAIRE

    Rechenberg, Dan-Krister; Zehnder, Matthias

    2014-01-01

    Recent systematic reviews have substantiated the fact that current testing methods to assess the inflammatory state of the pulp and the periapical tissues are of limited value. Consequently, it may be time to search for alternative routes in endodontic diagnostics. Molecular assessment methods could be the future. However, in the field of endodontics, the research in that direction is only about to evolve. Because pulpal and periradicular diseases are related to opportunistic infections, diag...

  20. Molecular Diagnostics of ?-Thalassemia

    OpenAIRE

    Atanasovska, B; Bozhinovski, G; Chakalova, L; Kocheva, S; Karanfilski, O; Plaseska-Karanfiska, D

    2012-01-01

    A high-quality hemoglobinopathy diagnosis is based on the results of a number of tests including assays for molecular identification of causative mutations. We describe the current diagnostic strategy for the identification of ?-thalassemias and hemoglobin (Hb) variants at the International Reference Laboratory for Haemoglobinopathies, Research Centre for Genetic Engineering and Biotechnology (RCGEB) ?Georgi D. Efremov,? Skopje, Republic of Macedonia. Our overall approach and most of the meth...

  1. Equipment for isotope diagnostics

    International Nuclear Information System (INIS)

    Platz, W.

    1976-01-01

    The invention concerns an improvement of equipment for isotope diagnostics allowing to mark special intensity ranges of the recorded measurements by means of different colors. For undisturbed operation it is of advantage to avoid electric circuits between movable and unmovable parts of the color recorder. According to the invention, long gear wheels of glass fiber-reinforced polyamide are used for these connections. (ORU) [de

  2. RFQ1 diagnostic devices

    International Nuclear Information System (INIS)

    Chidley, B.G.; Arbique, G.M.; de Jong, M.S.; McMichael, G.E.; Michel, W.L.; Smith, B.H.

    1991-01-01

    The diagnostic devices in use on RFQ1 will be described. They consist of a double-slit emittance-measuring unit, a 45 degree deflection energy-analysis magnet, parametric current transformers, optical beam sensors, beam-stop current monitors, and an x-ray end-point analyzer. All of these devices are able to operate up to the full output current of RFQ1 (75 mA cw at 0.6 MeV)

  3. Idiopathic chondrolysis - diagnostic difficulties

    International Nuclear Information System (INIS)

    Kozlowski, K.; Scougall, J.; Royal Alexandra Hospital for Children, Sydney

    1984-01-01

    Four cases of idiopathic chondrolysis of the hip in three white girls and one Maori girl are reported. The authors stress the causes why a disease with characteristic clinical and radiographic appearances and normal biochemical findings presents diagnostic difficulties. It is suspected that idiopathic chondrolysis is a metabolic disorder of chondrocytes, triggered by environment circumstances in susceptible individuals. Idiopathic chondrolysis is probably one of the most common causes of coxarthrosis in women. (orig.)

  4. Radiological diagnostics in hyperparathyroidism

    International Nuclear Information System (INIS)

    Moedder, U.; Kuhn, F.P.; Gruetzner, G.

    1991-01-01

    The most important radiologically detectable effects of the primary and secondary hyperparathyroidism of the skeletal system and the periarticular soft tissue structures are presented. In the following sensitivity and specificity of radiological imaging - sonography, scintigraphy, computed tomography, magnetic resonance imaging, arteriography and selective venous sampling - in the preoperative diagnostic of the parathyroid adenomas are discussed. Therefore, radiological imaging can be omitted before primary surgery. It was only in secondary surgery that radiological process proved useful and a guide during surgical intervention. (orig.) [de

  5. Thioaptamer Diagnostic System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AM Biotechnologies (AM) will develop a diagnostic system in response to SBIR Topic X10.01 Reusable Diagnostic Lab Technology that will simultaneously detect and...

  6. Molecular diagnostics of periodontitis.

    Science.gov (United States)

    Korona-Głowniak, Izabela; Siwiec, Radosław; Berger, Marcin; Malm, Anna; Szymańska, Jolanta

    2017-01-28

    The microorganisms that form dental plaque are the main cause of periodontitis. Their identification and the understanding of the complex relationships and interactions that involve these microorganisms, environmental factors and the host's health status enable improvement in diagnostics and targeted therapy in patients with periodontitis. To this end, molecular diagnostics techniques (both techniques based on the polymerase chain reaction and those involving nucleic acid analysis via hybridization) come increasingly into use. On the basis of a literature review, the following methods are presented: polymerase chain reaction (PCR), real-time polymerase chain reaction (real-time PCR), 16S rRNA-encoding gene sequencing, checkerboard and reverse-capture checkerboard hybridization, microarrays, denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), as well as terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). The advantages and drawbacks of each method in the examination of periopathogens are indicated. The techniques listed above allow fast detection of even small quantities of pathogen present in diagnostic material and prove particularly useful to detect microorganisms that are difficult or impossible to grow in a laboratory.

  7. Molecular diagnostics of periodontitis

    Directory of Open Access Journals (Sweden)

    Izabela Korona-Głowniak

    2017-01-01

    Full Text Available The microorganisms that form dental plaque are the main cause of periodontitis. Their identification and the understanding of the complex relationships and interactions that involve these microorganisms, environmental factors and the host’s health status enable improvement in diagnostics and targeted therapy in patients with periodontitis. To this end, molecular diagnostics techniques (both techniques based on the polymerase chain reaction and those involving nucleic acid analysis via hybridization come increasingly into use. On the basis of a literature review, the following methods are presented: polymerase chain reaction (PCR, real-time polymerase chain reaction (real-time PCR, 16S rRNA-encoding gene sequencing, checkerboard and reverse-capture checkerboard hybridization, microarrays, denaturing gradient gel electrophoresis (DGGE, temperature gradient gel electrophoresis (TGGE, as well as terminal restriction fragment length polymorphism (TRFLP and next generation sequencing (NGS. The advantages and drawbacks of each method in the examination of periopathogens are indicated. The techniques listed above allow fast detection of even small quantities of pathogen present in diagnostic material and prove particularly useful to detect microorganisms that are difficult or impossible to grow in a laboratory.

  8. XML Diagnostics Description Standard

    International Nuclear Information System (INIS)

    Neto, A.; Fernandes, H.; Varandas, C.; Lister, J.; Yonekawa, I.

    2006-01-01

    A standard for the self-description of fusion plasma diagnostics will be presented, based on the Extensible Markup Language (XML). The motivation is to maintain and organise the information on all the components of a laboratory experiment, from the hardware to the access security, to save time and money when problems arises. Since there is no existing standard to organise this kind of information, every Association stores and organises each experiment in different ways. This can lead to severe problems when the organisation schema is poorly documented or written in national languages. The exchange of scientists, researchers and engineers between laboratories is a common practice nowadays. Sometimes they have to install new diagnostics or to update existing ones and frequently they lose a great deal of time trying to understand the currently installed system. The most common problems are: no documentation available; the person who understands it has left; documentation written in the national language. Standardisation is the key to solving all the problems mentioned. From the commercial information on the diagnostic (component supplier; component price) to the hardware description (component specifications; drawings) to the operation of the equipment (finite state machines) through change control (who changed what and when) and internationalisation (information at least in the native language and in English), a common XML schema will be proposed. This paper will also discuss an extension of these ideas to the self-description of ITER plant systems, since the problems will be identical. (author)

  9. SNS Diagnostics Timing Integration

    CERN Document Server

    Long, Cary D; Murphy, Darryl J; Pogge, James; Purcell, John D; Sundaram, Madhan

    2005-01-01

    The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The SNS diagnostics platform is PC-based running Windows XP Embedded for its OS and LabVIEW as its programming language. Coordinating timing among the various diagnostics instruments with the generation of the beam pulse is a challenging task that we have chosen to divide into three phases. First, timing was derived from VME based systems. In the second phase, described in this paper, timing pulses are generated by an in house designed PCI timing card installed in ten diagnostics PCs. Using fan-out modules, enough triggers were generated for all instruments. This paper describes how the Timing NAD (Network Attached Device) was rapidly developed using our NAD template, LabVIEW's PCI driver wizard, and LabVIEW Channel Access library. The NAD...

  10. Plasma Diagnostics in High Density Reactors

    International Nuclear Information System (INIS)

    Daltrini, A. M.; Moshkalyov, S.; Monteiro, M. J. R.; Machida, M.; Kostryukov, A.; Besseler, E.; Biasotto, C.; Diniz, J. A.

    2006-01-01

    Langmuir electric probes and optical emission spectroscopy diagnostics were developed for applications in high density plasmas. These diagnostics were employed in two plasma sources: an electron cyclotron resonance (ECR) plasma and an RF driven inductively coupled plasma (ICP) plasma. Langmuir probes were tested using a number of probing dimensions, probe tip materials, circuits for probe bias and filters. Then, the results were compared with the optical spectroscopy measurements. With these diagnostics, analyses of various plasma processes were performed in both reactors. For example, it has been shown that species like NH radicals generated in gas phase can have critical impact on films deposited by ECR plasmas. In the ICP source, plasmas in atomic and molecular gases were shown to have different spatial distributions, likely due to nonlocal electron heating. The low-to-high density transitions in the ICP plasma were also studied. The role of metastables is shown to be significant in Ar plasmas, in contrast to plasmas with additions of molecular gases

  11. Edge diagnostics for tandem mirror machines

    International Nuclear Information System (INIS)

    Allen, S.L.

    1984-01-01

    The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed

  12. Diagnostics of solar flare reconnection

    Directory of Open Access Journals (Sweden)

    M. Karlický

    2004-01-01

    Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally

  13. Radiological diagnostics of skeletal tumors

    International Nuclear Information System (INIS)

    Uhl, M.; Herget, G.W.

    2008-01-01

    The book contains contributions concerning the following topics: 1. introduction and fundamentals: WHO classification of bone tumors, imaging diagnostics and their function; localization, typical clinical and radiological criteria, TNM classification and status classification, invasive tumor diagnostics; 2. specific tumor diagnostics: chondrogenic bone tumors, osseous tumors, connective tissue bony tumors, osteoclastoma, osteomyelogenic bone tumors, vascular bone tumors, neurogenic bone tumors, chordoma; adamantinoma of the long tubular bone; tumor-like lesions, bony metastases, bone granulomas, differential diagnostics: tumor-like lesions

  14. « Le nez dans le micro ». Répercussions du travail sous commande vocale dans les entrepôts de la grande distribution alimentaire “Up front and close”. The impact of voice guidance systems in large food distribution warehouses “Estar pegado al micrófono”. Repercusiones del trabajo de activación por voz en los almacenes de la distribución alimentaria masiva

    Directory of Open Access Journals (Sweden)

    David Gaborieau

    2012-12-01

    estar “pegados al micrófono”, el saber-hacer de los preparadores se reduce a un compromiso físico. Entonces, el uso del cuerpo constituye un recurso en tanto que modo de apropiación del sentido en el trabajo, además de que constituye una barrera cuando los límites de la intensificación se hacen patentes en forma de patologías.

  15. The architecture of diagnostic research

    DEFF Research Database (Denmark)

    Colli, Agostino; Fraquelli, Mirella; Casazza, Giovanni

    2014-01-01

    The diagnostic research process can be divided into five phases, designed to establish the clinical utility of a new diagnostic test - the index test. The aim of the present review is to illustrate the study designs that are appropriate for each diagnostic phase, using clinical examples regarding...

  16. Design of new Thomson scattering diagnostic system on COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Bílková, Petra; Aftanas, Milan; Böhm, Petr; Weinzettl, Vladimír; Šesták, David; Melich, Radek; Stöckel, Jan; Scannell, R.; Walsh, M.

    2010-01-01

    Roč. 623, č. 2 (2010), s. 656-659 ISSN 0168-9002. [International Conference on Frontiers in Diagnostic Technologies/1st./. Frascati, 25.11.2009-27.11.2009] R&D Projects: GA ČR GA202/09/1467; GA ČR GD202/08/H057 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thomson scattering * Laser diagnostic * Electron temperature * Electron density Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.142, year: 2010 www.elsevier.com/locate/nima

  17. 2012 HIV Diagnostics Conference: the molecular diagnostics perspective.

    Science.gov (United States)

    Branson, Bernard M; Pandori, Mark

    2013-04-01

    2012 HIV Diagnostic Conference Atlanta, GA, USA, 12-14 December 2012. This report highlights the presentations and discussions from the 2012 National HIV Diagnostic Conference held in Atlanta (GA, USA), on 12-14 December 2012. Reflecting changes in the evolving field of HIV diagnostics, the conference provided a forum for evaluating developments in molecular diagnostics and their role in HIV diagnosis. In 2010, the HIV Diagnostics Conference concluded with the proposal of a new diagnostic algorithm which included nucleic acid testing to resolve discordant screening and supplemental antibody test results. The 2012 meeting, picking up where the 2010 meeting left off, focused on scientific presentations that assessed this new algorithm and the role played by RNA testing and new developments in molecular diagnostics, including detection of total and integrated HIV-1 DNA, detection and quantification of HIV-2 RNA, and rapid formats for detection of HIV-1 RNA.

  18. Remote Control of TJ-II Diagnostics

    International Nuclear Information System (INIS)

    Lopez Sanchez, A.; Vega, J.; Montoro, A.; Encabo, J.

    2001-01-01

    The present paper is about the design and development of ten remote control diagnostic systems used in the study of plasma fusion in the TJ-II device installed at CIEMAT. This development goes from the definition of sensors and devices necessary in carrying out these remote controls, to its assembly, wiring, development of electronic circuits inserted between sensors and PLC, development of programs for these PLC, connections and administration of the real time automation network, and later development of the necessary programs via the appropriate software tools for web access through a navigator to a specific web page, allowing visual and real time access over the auxiliary systems that make up all the diagnostics. (Author)

  19. Revolutionary diagnostic method using rotating atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Frese, W.

    1986-01-23

    Nuclear tomography, a newcomer in medical diagnostics, has rapidly gained ground and recently achieved a decisive success: Electronic sectional images of the body which hitherto took measuring times of several minutes now can be obtained within only a few seconds. This jump in time has been earned by experts of the Goettingen Max Planck Institute for biophysical chemistry who puzzled out the significant modification of the method, which offers completely new insight to clinical diagnostics. One advantage is that nuclear magnetic resonance imaging - as the method also is called - allows dynamic processes to be made visible, and not only the movements of anatomic structures such as the heart, but indeed also physiological processes such as renal excretion. The other decisive improvement is that three-dimensional images of tissue and organs can be obtained. And on top of it all, nuclear magnetic resonance imaging does not invade the patient's body with harmful radiation.

  20. Spectroscopic diagnostics of high temperature plasmas

    International Nuclear Information System (INIS)

    Moos, W.

    1990-01-01

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q o and local poloidal field measurements using Zeeman polarimetry

  1. Revolutionary diagnostic method using rotating atomic nuclei

    International Nuclear Information System (INIS)

    Frese, W.

    1986-01-01

    Nuclear tomography, a newcomer in medical diagnostics, has rapidly gained ground and recently achieved a decisive success: Electronic sectional images of the body which hitherto took measuring times of several minutes now can be obtained within only a few seconds. This jump in time has been earned by experts of the Goettingen Max Planck Institute for biophysical chemistry who puzzled out the significant modification of the method, which offers completely new insight to clinical diagnostics. One advantage is that nuclear magnetic resonance imaging - as the method also is called - allows dynamic processes to be made visible, and not only the movements of anatomic structures such as the heart, but indeed also physiological processes such as renal excretion. The other decisive improvement is that three-dimensional images of tissue and organs can be obtained. And on top of it all, nuclear magnetic resonance imaging does not invade the patient's body with harmful radiation. (orig./MG) [de

  2. Automated diagnostic kiosk for diagnosing diseases

    Science.gov (United States)

    Regan, John Frederick; Birch, James Michael

    2014-02-11

    An automated and autonomous diagnostic apparatus that is capable of dispensing collection vials and collections kits to users interesting in collecting a biological sample and submitting their collected sample contained within a collection vial into the apparatus for automated diagnostic services. The user communicates with the apparatus through a touch-screen monitor. A user is able to enter personnel information into the apparatus including medical history, insurance information, co-payment, and answer a series of questions regarding their illness, which is used to determine the assay most likely to yield a positive result. Remotely-located physicians can communicate with users of the apparatus using video tele-medicine and request specific assays to be performed. The apparatus archives submitted samples for additional testing. Users may receive their assay results electronically. Users may allow the uploading of their diagnoses into a central databank for disease surveillance purposes.

  3. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C.O.; Kruger, C.H.; Zare, R.N.

    2001-01-01

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  4. Target Diagnostic Control System Implementation for the National Ignition Facility

    International Nuclear Information System (INIS)

    Shelton, R.T.; Kamperschroer, J.H.; Lagin, L.J.; Nelson, J.R.; O'Brien, D.W.

    2010-01-01

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics. Many diagnostics are being developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. A Diagnostic Control System (DCS) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. DCS instruments are reusable by replication with reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and high reliability. Collaborators save costs by assembling diagnostics with existing DCS instruments. This talk discusses target diagnostic instrumentation used on NIF and presents the DCS architecture and framework.

  5. Identification of factors associated with diagnostic error in primary care

    Science.gov (United States)

    2014-01-01

    Background Missed, delayed or incorrect diagnoses are considered to be diagnostic errors. The aim of this paper is to describe the methodology of a study to analyse cognitive aspects of the process by which primary care (PC) physicians diagnose dyspnoea. It examines the possible links between the use of heuristics, suboptimal cognitive acts and diagnostic errors, using Reason’s taxonomy of human error (slips, lapses, mistakes and violations). The influence of situational factors (professional experience, perceived overwork and fatigue) is also analysed. Methods Cohort study of new episodes of dyspnoea in patients receiving care from family physicians and residents at PC centres in Granada (Spain). With an initial expected diagnostic error rate of 20%, and a sampling error of 3%, 384 episodes of dyspnoea are calculated to be required. In addition to filling out the electronic medical record of the patients attended, each physician fills out 2 specially designed questionnaires about the diagnostic process performed in each case of dyspnoea. The first questionnaire includes questions on the physician’s initial diagnostic impression, the 3 most likely diagnoses (in order of likelihood), and the diagnosis reached after the initial medical history and physical examination. It also includes items on the physicians’ perceived overwork and fatigue during patient care. The second questionnaire records the confirmed diagnosis once it is reached. The complete diagnostic process is peer-reviewed to identify and classify the diagnostic errors. The possible use of heuristics of representativeness, availability, and anchoring and adjustment in each diagnostic process is also analysed. Each audit is reviewed with the physician responsible for the diagnostic process. Finally, logistic regression models are used to determine if there are differences in the diagnostic error variables based on the heuristics identified. Discussion This work sets out a new approach to studying the

  6. Identification of factors associated with diagnostic error in primary care.

    Science.gov (United States)

    Minué, Sergio; Bermúdez-Tamayo, Clara; Fernández, Alberto; Martín-Martín, José Jesús; Benítez, Vivian; Melguizo, Miguel; Caro, Araceli; Orgaz, María José; Prados, Miguel Angel; Díaz, José Enrique; Montoro, Rafael

    2014-05-12

    Missed, delayed or incorrect diagnoses are considered to be diagnostic errors. The aim of this paper is to describe the methodology of a study to analyse cognitive aspects of the process by which primary care (PC) physicians diagnose dyspnoea. It examines the possible links between the use of heuristics, suboptimal cognitive acts and diagnostic errors, using Reason's taxonomy of human error (slips, lapses, mistakes and violations). The influence of situational factors (professional experience, perceived overwork and fatigue) is also analysed. Cohort study of new episodes of dyspnoea in patients receiving care from family physicians and residents at PC centres in Granada (Spain). With an initial expected diagnostic error rate of 20%, and a sampling error of 3%, 384 episodes of dyspnoea are calculated to be required. In addition to filling out the electronic medical record of the patients attended, each physician fills out 2 specially designed questionnaires about the diagnostic process performed in each case of dyspnoea. The first questionnaire includes questions on the physician's initial diagnostic impression, the 3 most likely diagnoses (in order of likelihood), and the diagnosis reached after the initial medical history and physical examination. It also includes items on the physicians' perceived overwork and fatigue during patient care. The second questionnaire records the confirmed diagnosis once it is reached. The complete diagnostic process is peer-reviewed to identify and classify the diagnostic errors. The possible use of heuristics of representativeness, availability, and anchoring and adjustment in each diagnostic process is also analysed. Each audit is reviewed with the physician responsible for the diagnostic process. Finally, logistic regression models are used to determine if there are differences in the diagnostic error variables based on the heuristics identified. This work sets out a new approach to studying the diagnostic decision-making process

  7. Electrons, Electronic Publishing, and Electronic Display.

    Science.gov (United States)

    Brownrigg, Edwin B.; Lynch, Clifford A.

    1985-01-01

    Provides a perspective on electronic publishing by distinguishing between "Newtonian" publishing and "quantum-mechanical" publishing. Highlights include media and publishing, works delivered through electronic media, electronic publishing and the printed word, management of intellectual property, and recent copyright-law issues…

  8. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  9. MAST magnetic diagnostics

    Science.gov (United States)

    Edlington, T.; Martin, R.; Pinfold, T.

    2001-01-01

    The mega-ampere spherical tokamak (MAST) experiment is a new, large, low aspect ratio device (R=0.7-0.8 m, a=0.5-0.65 m, maximum BT˜0.63 T at R=0.7 m) operating its first experimental physics campaign. Designed to study a wide variety of plasma shapes with up to 2 MA of plasma current with an aspect ratio down to 1.3, the poloidal field (PF) coils used for plasma formation, equilibrium and shaping are inside the main vacuum vessel. For plasma control and to investigate a wide range of plasma phenomena, an extensive set of magnetic diagnostics have been installed inside the vacuum vessel. More than 600 vacuum compatible, bakeable diagnostic coils are configured in a number of discrete arrays close to the plasma edge with about half the coils installed behind the graphite armour tiles covering the center column. The coil arrays measure the toroidal and poloidal variation in the equilibrium field and its high frequency fluctuating components. Internal coils also measure currents in the PF coils, plasma current, stored energy and induced currents in the mechanical support structures of the coils and graphite armour tiles. The latter measurements are particularly important when halo currents are induced following a plasma termination, for example, when the plasma becomes vertically unstable. The article describes the MAST magnetic diagnostic coil set and their calibration. The way in which coil signals are used to control the plasma equilibrium is described and data from the first MAST experimental campaign presented. These coil data are used as input to the code EFIT [L. Lao et al., Nucl. Fusion 25, 1611 (1985)], for measurement of halo currents in the vacuum vessel structure and for measurements of the structure of magnetic field fluctuations near the plasma edge.

  10. Planetary Transmission Diagnostics

    Science.gov (United States)

    Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.

    2004-01-01

    This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the

  11. Progress on development of SPIDER diagnostics

    Science.gov (United States)

    Pasqualotto, R.; Agostini, M.; Barbisan, M.; Bernardi, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Palma, M. Dalla; Delogu, R. S.; Gorini, G.; Lotto, L.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rizzolo, A.; Serianni, G.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.

    2017-08-01

    SPIDER experiment, the full size prototype of the beam source for the ITER heating neutral beam injector, has to demonstrate extraction and acceleration to 100 kV of a large negative ion hydrogen or deuterium beam with co-extracted electron fraction e-/D- SPIDER plant systems are being installed, the different diagnostic systems are in the procurement phase. Their final design is described here with a focus on some key solutions and most original and cost effective implementations. Thermocouples used to measure the power load distribution in the source and over the beam dump front surface will be efficiently fixed with proven technique and acquired through commercial and custom electronics. Spectroscopy needs to use well collimated lines of sight and will employ novel design spectrometers with higher efficiency and resolution and filtered detectors with custom built amplifiers. The electrostatic probes will be operated through electronics specifically developed to cope with the challenging environment of the RF source. The instrumented calorimeter STRIKE will use new CFC tiles, still under development. Two linear cameras, one built in house, have been tested as suitable for optical beam tomography. Some diagnostic components are off the shelf, others are custom developed: some of these are being prototyped or are under test before final production and installation, which will be completed before start of SPIDER operation.

  12. Biotechnology in diagnostics

    International Nuclear Information System (INIS)

    Koprowski, H.; Ferrone, S.; Albertini, A.

    1985-01-01

    In recent years much progress has been made in the area of biotechnology. The cellular and molecular cloning methodology to develop monoclonal antibodies and DNA probes have been extensively utilized in basic and clinical research. These investigations have provided the necessary information to apply these reagents to diagnostic problems. The RIA 85 meeting focused on the application of monoclonal antibodies and DNA probes in laboratory medicine. The papers presented at this meeting clearly indicate that biotechnology has already had a significant impact on clinical medicine. (Auth.)

  13. Bouveret's Syndrome: diagnostic considerations

    International Nuclear Information System (INIS)

    Cooper, S.G.; Sherman, S.B.; Steinhardt, J.E.; Wilson, J.M. Jr.; Richman, A.H.

    1987-01-01

    Bouveret's syndrome is a rare disease entity manifested by the formation of a cholecystoduodenal or choledochoduodenal fistula with passage of a gallstone into the duodenal bulb and subsequent obstruction of the gastric outlet. To date, no report of this entity using computed tomographic (CT) imaging is available. This article presents a case of Bouveret's syndrome with the classic findings on upper gastrointestinal (GI) tract series and a description of the CT manifestations. The literature is reviewed with discussion of the diagnostic approach to patients with Bouveret's syndrome

  14. FASTBUS Snoop Diagnostic Module

    International Nuclear Information System (INIS)

    Walz, H.V.; Downing, R.

    1980-11-01

    Development of the FASTBUS Snoop Module, undertaken as part of the prototype program for the new interlaboratory data bus standard, is described. The Snoop Module resides on a FASTBUS crate segment and provides diagnostic monitoring and testing capability. Communication with a remote host computer is handled independent of FASTBUS through a serial link. The module consists of a high-speed ECL front-end to monitor and single-step FASTBUS cycles, a master-slave interface, and a control microprocessor with serial communication ports. Design details and performance specifications of the prototype module are reported. 9 figures, 1 table

  15. Isotope diagnostics apparatus

    International Nuclear Information System (INIS)

    Herrschaft, H.

    1976-01-01

    The invention relates to a measuring probe for an isotope diagnostics apparatus to determine the distribution of radioactive substances in a body by measuring the radiation emanating from this body by means of a multiplicity of measuring probes directed simultaneously towards areas of measuring surfae and carried in guidances of a holding block. The measuring results of the individual probes are recorded separately, thus allowing the possibility of being evaluated separately, too. Measuring probes of this kind are used in multi-channel measuring objects and are useful particularly for determining the regional cerebral blood flow. (orig./ORU) [de

  16. Vibration control, machine diagnostics

    International Nuclear Information System (INIS)

    1990-01-01

    Changing vibrations announce damage in the form of wear or cracks on components of, e.g., engine rotors, pumps, power plant turbo sets, rounding-up tools, or marine diesel engines. Therefore, machine diagnostics use frequency analyses, system tests, trend analyses as well as expert systems to localize or estimate the causes of these damages and malfunctions. Data acquisistion, including not only sensors, but also reliable and redundant data processing systems and analyzing systems, play an important role. The lectures pertaining to the data base are covered in detail. (DG) [de

  17. Diagnostic radiology 1987

    International Nuclear Information System (INIS)

    Margulis, A.R.; Gooding, C.A.

    1987-01-01

    This is the latest version of the continuing education course on diagnostic radiology given yearly by the Department of Radiology at the University of California, San Francisco. The lectures are grouped into sections on gastrointestinal radiology, mammography, uroradiology, magnetic resonance, hepatobiliary radiology, pediatric radiology, ultrasound, interventional radiology, chest radiology, nuclear medicine, cardiovascular radiology, and skeletal radiology. Each section contains four to eight topics. Each of these consists of text that represents highlights in narrative form, selected illustrations, and a short bibliography. The presentation gives a general idea of what points were made in the lecture

  18. Nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Hollo, E.; Siklossy, P.

    1982-01-01

    The cooling circuit vibration diagnostic system of the Block 1 of the Paks nuclear power station is described. The automatic online vibration monitoring system consisting presently of 42 acceleration sensors and 9 pressure fluctuation sensors, which could be extended, performs both global and local inspection of the primary cooling circuit and its components. The offline data processing system evaluates the data for failure mode analysis. The software under development will be appropriate for partial preliminary identification of failure reasons during their initial phases. The installation experiences and the preliminary results during the hot operational testing of Block 1 are presented. (Sz.J.)

  19. Development of archetypes of radiology for electronic health record

    International Nuclear Information System (INIS)

    Araujo, Tiago V.; Pires, Silvio R.; Paiva, Paulo B.

    2013-01-01

    This paper presents a proposal to develop archetypes for electronic patient records system based the openEHR Foundation model. Archetypes were developed specifically for the areas of radiology and diagnostic imaging, as for the early implementation of an electronic health records system. The archetypes developed are related to the examinations request, their execution and report, corresponding to both the administrative as diagnostic workflow inside a diagnostic imaging sector. (author)

  20. Diagnostic Development for ST Plasmas on NSTX

    International Nuclear Information System (INIS)

    Johnson, D.

    2003-01-01

    Spherical tokamaks (STs) have much lower aspect ratio (a/R) and lower toroidal magnetic field, relative to tokamaks and stellarators. This paper will highlight some of the challenges and opportunities these features pose in the diagnosis of ST plasmas on the National Spherical Torus Experiment (NSTX), and discuss some of the corresponding diagnostic development that is underway. The low aspect ratio necessitates a small center stack, with tight space constraints and large thermal excursions, complicating the design of magnetic sensors in this region. The toroidal magnetic field on NSTX is less than or equal to 0.6 T, making it impossible to use ECE as a good monitor of electron temperature. A promising new development for diagnosing electron temperature is electron Bernstein wave (EBW) radiometry, which is currently being pursued on NSTX. A new high-resolution charge exchange recombination spectroscopy system is being installed. Since non-inductive current initiation and sustainment ar e top-level NSTX research goals, measurements of the current profile J(R) are essential to many planned experiments. On NSTX several modifications are planned to adapt the MSE technique to lower field, and two novel MSE systems are being prototyped. Several high speed 2-D imaging techniques are being developed, for viewing both visible and x-ray emission. The toroidal field is comparable to the poloidal field at the outside plasma edge, producing a large field pitch (>50 o ) at the outer mid-plane. The large shear in pitch angle makes some fluctuation diagnostics like beam emission spectroscopy very difficult, while providing a means of achieving spatial localization for microwave scattering investigations of high-k turbulence, which are predicted to be virulent for NSTX plasmas. A brief description of several of these techniques will be given in the context of the current NSTX diagnostic set

  1. Diagnostic Technologies in Practice

    Science.gov (United States)

    Steinberg, Malcolm; Kwag, Michael; Chown, Sarah A.; Doupe, Glenn; Trussler, Terry; Rekart, Michael; Gilbert, Mark

    2015-01-01

    Diagnosing HIV-positive gay men through enhanced testing technologies that detect acute HIV infection (AHI) or recent HIV infection provides opportunities for individual and population health benefits. We recruited 25 men in British Columbia who received an acute (n = 13) or recent (n = 12) HIV diagnosis to engage in a longitudinal multiple-methods study over one year or longer. Our thematic analysis of baseline qualitative interviews revealed insights within men’s accounts of technologically mediated processes of HIV discovery and diagnosis. Our analysis illuminated the dialectic of new HIV technologies in practice by considering the relationship between advances in diagnostics (e.g., nucleic acid amplification tests) and the users of these medical technologies in clinical settings (e.g., clients and practitioners). Technological innovations and testing protocols have shifted experiences of learning of one’s HIV-positive status; these innovations have created new diagnostic categories that require successful interpretation and translation to be rendered meaningful, to alleviate uncertainty, and to support public health objectives. PMID:25201583

  2. Shiva optical diagnostics

    International Nuclear Information System (INIS)

    Rienecker, F.; Kobierecki, M.; Ozarski, R.; Seppala, L.; Manes, K.; Merritt, B.

    1977-01-01

    In the laser fusion program at Lawrence Livermore Laboratory, no target experiment is complete unless it is complemented by careful measurements of the laser pulse that irradiates the target. For this purpose, an incident beam diagnostics (IBD) package has been designed for the Shiva laser. The package will furnish data on items such as the total energy and the focusable energy out of the laser chain, and the spatial and temporal energy and power distribution at the target plane. Understanding laser-plasma interactions requires knowledge of the amount of 1.06 μm light energy that is scattered in various directions from the target. The light energy that is scattered toward the beam focusing lens is analyzed by a reflected beam diagnostic (RBD) package containing a calorimeter, a multiple image camera and a TV camera. This paper describes the detailed design and operation of the IBD and RBD packages as tools to align spatial filters and targets, as well as to diagnose the laser beams and target reflectivity

  3. Radiation hardening of diagnostics

    International Nuclear Information System (INIS)

    Siemon, R.E.

    1991-01-01

    The world fusion program has advanced to the stage where it is appropriate to construct a number of devices for the purpose of burning DT fuel. In these next-generation experiments, the expected flux and fluence of 14 MeV neutrons and associated gamma rays will pose a significant challenge to the operation and diagnostics of the fusion device. Radiation effects include structural damage to materials such as vacuum windows and seals, modifications to electrical properties such as electrical conductivity and dielectric strength and impaired optical properties such as reduced transparency and luminescence of windows and fiber optics during irradiation. In preparation for construction and operation of these new facilities, the fusion diagnostics community needs to work with materials scientists to develop a better understanding of radiation effects, and to undertake a testing program aimed at developing workable solutions for this multi-faceted problem. A unique facility to help in this regard is the Los Alamos Spallation Radiation Effects Facility, a neutron source located at the beam stop of the world's most powerful accelerator, the Los Alamos Meson Physics Facility (LAMPF). The LAMPF proton beam generates 10 16 neutrons per second because of ''spallation'' reactions when the protons collide with the copper nuclei in the beam stop

  4. Climate Model Diagnostic Analyzer

    Science.gov (United States)

    Lee, Seungwon; Pan, Lei; Zhai, Chengxing; Tang, Benyang; Kubar, Terry; Zhang, Zia; Wang, Wei

    2015-01-01

    The comprehensive and innovative evaluation of climate models with newly available global observations is critically needed for the improvement of climate model current-state representation and future-state predictability. A climate model diagnostic evaluation process requires physics-based multi-variable analyses that typically involve large-volume and heterogeneous datasets, making them both computation- and data-intensive. With an exploratory nature of climate data analyses and an explosive growth of datasets and service tools, scientists are struggling to keep track of their datasets, tools, and execution/study history, let alone sharing them with others. In response, we have developed a cloud-enabled, provenance-supported, web-service system called Climate Model Diagnostic Analyzer (CMDA). CMDA enables the physics-based, multivariable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. At the same time, CMDA provides a crowd-sourcing space where scientists can organize their work efficiently and share their work with others. CMDA is empowered by many current state-of-the-art software packages in web service, provenance, and semantic search.

  5. Thioaptamer Diagnostic System (TDS)

    Science.gov (United States)

    Yang, Xianbin

    2015-01-01

    AM Biotechnologies, LLC, in partnership with Sandia National Laboratories, has developed a diagnostic device that quickly detects sampled biomarkers. The TDS quickly quantifies clinically relevant biomarkers using only microliters of a single sample. The system combines ambient-stable, long shelf-life affinity assays with handheld, microfluidic gel electrophoresis affinity assay quantification technology. The TDS is easy to use, operates in microgravity, and permits simultaneous quantification of 32 biomarkers. In Phase I of the project, the partners demonstrated that a thioaptamer assay used in the microfluidic instrument could quantify a specific biomarker in serum in the low nanomolar range. The team also identified novel affinity agents to bone-specific alkaline phosphatase (BAP) and demonstrated their ability to detect BAP with the microfluidic instrument. In Phase II, AM Biotech expanded the number of ambient affinity agents and demonstrated a TDS prototype. In the long term, the clinical version of the TDS will provide a robust, flight-tested diagnostic capability for space exploration missions.

  6. Optical plasma diagnostics

    International Nuclear Information System (INIS)

    Gross, B.

    1973-01-01

    The measurement is described of the radial courses of temperature and electron, atom and ion density in the plasma of a water-stabilized arc with currents from 20 A to 60 A. For temperature measurement a method based on the determination of the relative intensity of Balmer lines was used. The electron density was measured by determining the Hsub(β) line profile and the relative density of other particles was measured by determining the intensity ratio of radiation emitted by the respective atoms or ions. (author)

  7. ATA diagnostic beam dump conceptual design

    International Nuclear Information System (INIS)

    1981-09-01

    A diagnostic beam dump, able to withstand 72,000 pulses (10 kA, 50 MeV/pulse) per shift was designed and analyzed. The analysis shows that the conceptual beam dump design consisting of 80 vitreous carbon plate-foam elements is able to withstand the thermal and mechanical stresses generated. X-rays produced by bremsstrahlung are absorbed by a three element copper plate-foam x-ray absorber. Cooling between bursts of electron pulses is provided by pressurized helium

  8. Time response measurements of LASL diagnostic detectors

    International Nuclear Information System (INIS)

    Hocker, L.P.

    1970-07-01

    The measurement and data analysis techniques developed under the Los Alamos Scientific Laboratory's detector improvement program were used to characterize the time and frequency response of selected LASL Compton, fluor-photodiode (NPD), and fluor-photomultiplier (NPM) diagnostic detectors. Data acquisition procedures and analysis methods presently in use are summarized, and detector time and frequency data obtained using the EG and G/AEC electron linear accelerator fast pulse (approximately 50 psec FWHM) as the incident radiation driving function are presented. (U.S.)

  9. Diagnostics at JINR LHEP photogun bench

    International Nuclear Information System (INIS)

    Nozdrin, M.A.; Balalykin, N.I.; Minashkin, V.F.; Shirkov, G.D.

    2016-01-01

    The photoinjector electron beam quality dramatically depends on the laser driver beam quality. For laser beam diagnostics a 'virtual cathode' system was realized at the JINR LHEP photogun bench. The system allows one to image laser beam profile at the cathode. The AVINE software complex developed in DESY Zeuthen is being used for imaging. Equipment for emittance measurement using the slit method was installed. The original emittance calculation software EmCa was created and tested with the laser beam.

  10. Technique of infrared synchrotron acceleration diagnostics

    International Nuclear Information System (INIS)

    Mal'tsev, A.A.; Mal'tsev, M.A.

    1997-01-01

    Techniques of measuring of current and geometric parameters and evaluating of energy parameters of the ring bunch of relativistic low-energy electrons have been presented. They have been based on using the synchrotron radiation effect in its infrared spectral part. Fast infrared detectors have provided radiation detection in the spectral range Δλ ≅ 0.3-45 μm. The descriptions of some data monitoring and measuring systems developed in JINR for the realization of techniques of the infrared synchrotron acceleration diagnostics have been given. Infrared optics elements specially developed have been used in these systems

  11. Oblique electron cyclotron emission for electron distribution studies (invited)

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1997-01-01

    Electron cyclotron emission (ECE) at an oblique angle to the magnetic field provides a means of probing the electron distribution function both in energy and physical space through changes in and constraints on the relativistic electron cyclotron resonance condition. Diagnostics based on this Doppler shifted resonance are able to study a variety of electron distributions through changes in the location of the resonance in physical or energy space accomplished by changes in the viewing angle and frequency, and the magnetic field. For the case of observation across a changing magnetic field, such as across the tokamak midplane, the constraint on the resonance condition for real solutions to the dispersion relation can constrain the physical location of optically thin emission. A new Oblique ECE diagnostic was installed and operated on the PBX-M tokamak for the study of energetic electrons during lower hybrid current drive. It has a view 33 degree with respect to perpendicular in the tokamak midplane, receives second harmonic X-mode emission, and is constrained to receive single pass emission by SiC viewing dumps on the tokamak walls. Spatial localization of optically thin emission from superthermal electrons (50 endash 100 keV) was obtained by observation of emission upshifted from a thermal cyclotron harmonic. The localized measurements of the electron energy distribution and the superthermal density profile made by this diagnostic demonstrate its potential to study the spatial transport of energetic electrons on fast magnetohydrodynamic time scales or anomalous diffusion time scales. Oblique ECE can also be used to study electron distributions that may have a slight deviation from a Maxwellian by localizing the emission in energy space. (Abstract Truncated)

  12. 78 FR 18988 - Establishing the Performance Characteristics of In Vitro Diagnostic Devices for the Detection of...

    Science.gov (United States)

    2013-03-28

    ... either electronic or written comments on this guidance at any time. General comments on Agency guidance... INFORMATION section for information on electronic access to the guidance. Submit electronic comments on the... diagnostic devices for the detection of antibodies to B. burgdorferi in human serum, plasma, and blood. These...

  13. Electron detector

    International Nuclear Information System (INIS)

    Hashimoto, H.; Mogami, A.

    1975-01-01

    A device for measuring electron densities at a given energy level in an electron beam or the like having strong background noise, for example, in the detection of Auger electric energy spectrums is described. An electron analyzer passes electrons at the given energy level and at the same time electrons of at least one adjacent energy level. Detecting means associated therewith produce signals indicative of the densities of the electrons at each energy level and combine these signals to produce a signal indicative of the density of the electrons of the given energy level absent background noise

  14. Cognitive aspect of diagnostic errors.

    Science.gov (United States)

    Phua, Dong Haur; Tan, Nigel C K

    2013-01-01

    Diagnostic errors can result in tangible harm to patients. Despite our advances in medicine, the mental processes required to make a diagnosis exhibits shortcomings, causing diagnostic errors. Cognitive factors are found to be an important cause of diagnostic errors. With new understanding from psychology and social sciences, clinical medicine is now beginning to appreciate that our clinical reasoning can take the form of analytical reasoning or heuristics. Different factors like cognitive biases and affective influences can also impel unwary clinicians to make diagnostic errors. Various strategies have been proposed to reduce the effect of cognitive biases and affective influences when clinicians make diagnoses; however evidence for the efficacy of these methods is still sparse. This paper aims to introduce the reader to the cognitive aspect of diagnostic errors, in the hope that clinicians can use this knowledge to improve diagnostic accuracy and patient outcomes.

  15. Diagnostics development for E-beam excited air channels

    Science.gov (United States)

    Eckstrom, D. J.; Dickenson, J. S.

    1982-02-01

    As the tempo of development of particle beam weapons increases, more detailed diagnostics of the interaction of the particle beam with the atmosphere are being proposed and implemented. Some of these diagnostics involve probing of the excited air channel with visible wavelength laser radiation. Examples include the use of visible wavelength interferometry to measure electron density profiles in the nose of the beam Ri81 and Stark shift measurements to determine self-induced electric fields Hi81, DR81. In these diagnostics, the change in laser intensity due to the desired diagnostic effect can be quite small, leading to the possibility that other effects, such as gas phase absorption, could seriously interfere with the measurement.

  16. Generator for radiological diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Seissl, J; Broenner, K; Krause, H

    1978-10-02

    A generator is described for X-ray diagnostics, with a high-voltage transformer with a primary coil connected or with the grid and a secondary coil feeding the X-ray tube and with a rectifier bridge situated in the primary circuit of the high-voltage transformer. The direct current branch of the rectifier bridge contains a filter capacitor and a thyristor which is opened and closed by means of a pulse duty factor determining the capacitor voltage and thus the voltage of the X-ray tube. An LC-tuned circuit is connected to the thyristor whose capacity is discharged to the conductive thyristor so that the thyristor is quenched via a free-wheel diode arranged in parallel to the thyristor. In this way, a high switching frequency of the thyristor and, consequently, a low ripple of the X-ray tube voltage is obtained.

  17. Molecular diagnostic PCR handbook

    International Nuclear Information System (INIS)

    Viljoen, G.J.; Crowther, J.R.; Nel, L.H.

    2005-01-01

    The uses of nucleic acid-directed methods have increased significantly in the past five years and have made important contributions to disease control country programmes for improving national and international trade. These developments include the more routine use of PCR as a diagnostic tool in veterinary diagnostic laboratories. However, there are many problems associated with the transfer and particularly, the application of this technology. These include lack of consideration of: the establishment of quality-assured procedures, the required set-up of the laboratory and the proper training of staff. This can lead to a situation where results are not assured. This book gives a comprehensive account of the practical aspects of PCR and strong consideration is given to ensure its optimal use in a laboratory environment. This includes the setting-up of a PCR laboratory; Good Laboratory Practice and standardised PCR protocols to detect animal disease pathogens. Examples of Standard Operating Procedures as used in individual specialist laboratories and an outline of training materials necessary for PCR technology transfer are presented. The difficulties, advantages and disadvantages in PCR applications are explained and placed in context with other test systems. Emphasis is placed on the use of PCR for detection of pathogens, with a particular focus on diagnosticians and scientists from the developing world. It is hoped that this book will enable readers from various disciplines and levels of expertise to better judge the merits of PCR and to increase their skills and knowledge in order to assist in a more logical, efficient and assured use of this technology

  18. Oral vs. salivary diagnostics

    Science.gov (United States)

    Marques, Joana; Corby, Patricia M.; Barber, Cheryl A.; Abrams, William R.; Malamud, Daniel

    2015-05-01

    The field of "salivary diagnostics" includes studies utilizing samples obtained from a variety of sources within the oral cavity. These samples include; whole unstimulated saliva, stimulated whole saliva, duct saliva collected directly from the parotid, submandibular/sublingual glands or minor salivary glands, swabs of the buccal mucosa, tongue or tonsils, and gingival crevicular fluid. Many publications state "we collected saliva from subjects" without fully describing the process or source of the oral fluid. Factors that need to be documented in any study include the time of day of the collection, the method used to stimulate and collect the fluid, and how much fluid is being collected and for how long. The handling of the oral fluid during and post-collection is also critical and may include addition of protease or nuclease inhibitors, centrifugation, and cold or frozen storage prior to assay. In an effort to create a standard protocol for determining a biomarker's origin we carried out a pilot study collecting oral fluid from 5 different sites in the mouth and monitoring the concentrations of pro- and anti-inflammatory cytokines detected using MesoScaleDiscovery (MSD) electrochemiluminesence assays. Our data suggested that 3 of the cytokines are primarily derived from the submandibular gland, while 7 of the cytokines come from a source other than the major salivary glands such as the minor salivary glands or cells in the oral mucosae. Here we review the literature on monitoring biomarkers in oral samples and stress the need for determining the blood/saliva ratio when a quantitative determination is needed and suggest that the term oral diagnostic be used if the source of an analyte in the oral cavity is unknown.

  19. Rapid development of paper-based fluidic diagnostic devices

    CSIR Research Space (South Africa)

    Smith, S

    2014-11-01

    Full Text Available We present a method for rapid and low-cost development of microfluidic diagnostic devices using paper-based techniques. Specifically, the implementation of fluidic flow paths and electronics on paper are demonstrated, with the goal of producing...

  20. Status and challenges in electrical diagnostics of processing plasmas

    DEFF Research Database (Denmark)

    Stamate, Eugen

    2014-01-01

    Dry processing based on reactive plasmas was the main driven force for micro- and recently nano-electronic industry. Once with the increasing in plasma complexity new diagnostics methods have been developed to ensure a proper process control during etching, thin film deposition, ion implantation...

  1. Time resolved two- and three-dimensional plasma diagnostics

    International Nuclear Information System (INIS)

    1991-03-01

    This collection of papers on diagnostics in fusion plasmas contains work on the data analysis of inverse problems and on the experimental arrangements presently used to obtain spatially and temporally resolved plasma radial profiles, including electron and ion temperature, plasma density and plasma current profiles. Refs, figs and tabs

  2. A new method of diagnostics for the magnetospheric plasma

    International Nuclear Information System (INIS)

    Etcheto, Jacqueline; Petit, Michel

    1977-01-01

    A new diagnostic technique for magnetospheric plasma, based on in situ excitation of the plasma resonances, has been used for the first time on board the Geos satellite. The preliminary results are very gratifying: electron density and magnetic field intensity are derived reliably and accurately from the resonances observed; hopefully, temperature and electric field will be deduced from the data as well [fr

  3. Nova target diagnostics control system

    International Nuclear Information System (INIS)

    Severyn, J.R.

    1985-01-01

    During the past year the Nova target diagnostics control system was finished and put in service. The diagnostics loft constructed to the north of the target room provides the environmental conditions required to collect reliable target diagnostic data. These improvements include equipment cooling and isolation of the power source with strict control of instrumentation grounds to eliminate data corruption due to electromagnetic pulses from the laser power-conditioning system or from target implosion effects

  4. Picosecond image-converter diagnostics

    International Nuclear Information System (INIS)

    Schelev, M.Ya.

    1975-01-01

    A brief review is presented of the improvements in picosecond image-converter diagnostics carried out since the previous Congress in 1972. The account is given under the following headings: picosecond image converter cameras for visible and x-ray radiation diagnostics; Nd:glass and ruby mode-locked laser measurements; x-ray plasma emission diagnostics; computer treatment of pictures produced by picosecond cameras. (U.K.)

  5. Diagnostics Challenges for FACET-II

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Christine

    2015-10-07

    FACET-II is a prospective user facility at SLAC National Accelerator Laboratory. The facility will focus on high-energy, high-brightness beams and their interaction with plasma and lasers. The accelerator is designed for high-energy-density electron beams with peak currents of approximately 50 kA (potentially 100 kA) that are focused down to below 10x10 micron transverse spot size at an energy of 10 GeV. Subsequent phases of the facility will provide positron beams above 10 kA peak current to the experiment station. Experiments will require well characterised beams; however, the high peak current of the electron beam can lead to material failure in wirescanners, optical transition radiation screens and other instruments critical for measurement or delivery. The radiation environment and space constraints also put additional pressure on diagnostic design.

  6. A device for measuring electron beam characteristics

    Directory of Open Access Journals (Sweden)

    M. Andreev

    2017-01-01

    Full Text Available This paper presents a device intended for diagnostics of electron beams and the results obtained with this device. The device comprises a rotating double probe operating in conjunction with an automated probe signal collection and processing system. This provides for measuring and estimating the electron beam characteristics such as radius, current density, power density, convergence angle, and brightness.

  7. Plant diagnostics in power stations

    International Nuclear Information System (INIS)

    Sturm, A.; Doering, D.

    1985-01-01

    The method of noise diagnostics is dealt with as a part of plant diagnostics in nuclear power stations. The following special applications are presented: (1) The modular noise diagnostics system is used for monitoring primary coolant circuits and detecting abnormal processes due to mechanical vibrations, loose parts or leaks. (2) The diagnostics of machines and plants with antifriction bearings is based on bearing vibration measurements. (3) The measurement of the friction moment by means of acoustic emission analysis is used for evaluating the operational state of slide bearings

  8. Team building and diagnostic training

    International Nuclear Information System (INIS)

    Bulmer, S.

    1987-01-01

    While developing a commercial training program to improve teamwork in control room crews, General Electric's Nuclear Training Services made an important discovery. Traditional training methods for developing teamwork and enhancing diagnostics capabilities are incomplete. Traditional methods generally help, but fail to fulfill the long-term needs of most teams. Teamwork has been treated as a short-term performance problem. Traditional diagnostic training suffers from a similar problem. Too often, it covers only the basic principles of decision-making, ignoring the development of expert diagnostic capabilities. In response to this discovery, they have developed comprehensive training in Team Building and Diagnostics

  9. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.

    1987-01-01

    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  10. Plasma impact on diagnostic mirrors in JET

    Directory of Open Access Journals (Sweden)

    A. Garcia-Carrasco

    2017-08-01

    Full Text Available Metallic mirrors will be essential components of all optical systems for plasma diagnosis in ITER. This contribution provides a comprehensive account on plasma impact on diagnostic mirrors in JET with the ITER-Like Wall. Specimens from the First Mirror Test and the lithium-beam diagnostic have been studied by spectrophotometry, ion beam analysis and electron microscopy. Test mirrors made of molybdenum were retrieved from the main chamber and the divertor after exposure to the 2013–2014 experimental campaign. In the main chamber, only mirrors located at the entrance of the carrier lost reflectivity (Be deposition, while those located deeper in the carrier were only slightly affected. The performance of mirrors in the JET divertor was strongly degraded by deposition of beryllium, tungsten and other species. Mirrors from the lithium-beam diagnostic have been studied for the first time. Gold coatings were severely damaged by intense arcing. As a consequence, material mixing of the gold layer with the stainless steel substrate occurred. Total reflectivity dropped from over 90% to less than 60%, i.e. to the level typical for stainless steel.

  11. ECE diagnostics for RTO/RC ITER

    International Nuclear Information System (INIS)

    Vayakis, G.; Bartlett, D.V.; Costley, A.E.

    2001-01-01

    This paper presents the current status of the Electron Cyclotron Emission (ECE) diagnostic on the Reduced Technical Objectives/Reduced Cost International Thermonuclear Experimental Reactor (RTO/RC ITER). It discusses the implications of the new machine design on the measurement requirements, the ability of the diagnostic technique to meet these, and the changes in the implementation imposed by the new layout. Finally, it outlines the physics studies, design and R and D work required prior to the detailed design and construction of the diagnostic. Key results are: (i) that the localisation of the measurement is similar to that in ITER-FDR (40-100 mm in X-mode, 60-200 mm in O-mode for the reference scenario), so that the relative spatial resolution degrades in this, smaller, machine, and (ii) the expected effect of transport barriers on the temperature profile in the high temperature region will be poorly resolved, because the effect of the temperature gradient on the outboard side is to degrade the resolution to (∼250 mm in X-mode, ∼350 mm in O-mode). Nevertheless ECE will be able to make a unique and useful contribution to the RTO/RC ITER measurement set

  12. Revisited diagnostics of hereditary epidermolysis bullosa

    Directory of Open Access Journals (Sweden)

    V. I. Albanova

    2014-01-01

    Full Text Available Hereditary epidermolysis bullosa is a big group of hereditary diseases with the main manifestations in the form of blisters on the skin and mucous coat after slight mechanical injuries. It is not always possible to diagnose this disease based on the clinical picture. The article discusses current laboratory diagnostics methods for hereditary epidermolysis bullosa including immunofluorescence antigen mapping (IFM, transmission electron microscopy (TEM and genetic analysis (molecular or DNA diagnostics as well as their advantages and disadvantages. TEM determines the micro splitting level and nature of ultrafine changes in the area of the dermoepidermal junction; at the same time, such tests need special expensive equipment. Substantial experience is also needed to analyze the resulting submicroscopic images. IFM determines whether expression of the affected protein related to the disease development is reduced or absent; however, invalid (false positive or false negative results can be obtained in patients with the reduced expression of the affected protein. Genetic analysis plays a key role for prenatal diagnostics. Therefore, to make an exact diagnosis of hereditary epidermolysis bullosa, it is expedient to apply IFM, TEM and genetic analysis. The need to set an exact diagnosis of the disease is related to the fact that the promising treatment methods being currently developed are aimed at treating patients with certain forms of the disease.

  13. Cognitive diagnostic assessment via Bayesian evaluation of informative diagnostic hypotheses.

    NARCIS (Netherlands)

    Hoijtink, Herbert; Béland, Sébastien; Vermeulen, Jorine A.

    2014-01-01

    There exist diverse approaches that can be used for cognitive diagnostic assessment, such as mastery testing, constrained latent class analysis, rule space methodology, diagnostic cognitive modeling, and person-fit analysis. Each of these approaches can be used within 1 of the 4 psychometric

  14. Cognitive Diagnostic Assessment via Bayesian Evaluation of Informative Diagnostic Hypotheses

    NARCIS (Netherlands)

    Hoitink, Herbert; Beland, Sebastien; Vermeulen, Jorine

    2014-01-01

    There exist diverse approaches that can be used for cognitive diagnostic assessment, such as mastery testing, constrained latent class analysis, rule space methodology, diagnostic cognitive modeling, and person-fit analysis. Each of these approaches can be used within 1 of the 4 psychometric

  15. Diagnostics data management on MTX

    International Nuclear Information System (INIS)

    Butner, D.N.; Brown, M.D.; Casper, T.A.; Meyer, W.H.; Moller, J.M.

    1991-09-01

    The Microwave Tokamak Experiment (MTX) is a magnetic fusion energy research experiment to explore electron cyclotron heating using a free electron laser operating in the microwave range. The diagnostic data from MTX is acquired and processed by a distributed, multivendor, computer network. Each shot of the experiment produces data files containing up to 15 megabytes of data. Typically half-second shots are taken every 5 minutes with 50 to 60 shots taken on a single day. As many as 80 full data shots have been taken on a good day. Data files are created on Hewlett-Packard (HP) computers running Unix, HP computers running BASIC, and a Digital Equipment Corporation (DEC) VAXcluster running VMS. A small portion of the data acquired on the HP systems is immediately stored in a data system on the VAXcluster, but most data is held and processed on the computer on which it was acquired. A commercial database program running on the VAXcluster maintains a history of the data files created for each shot. During the night, data files on all computers are compressed to about one-third their original size and the files on the HP computers are transferred to the VAXcluster. When enough data has accumulated, all data files that have not been previously archived are archived to 8 mm magnetic tape. Once the data is on the VAXcluster, a single defined procedure call may be used to obtain data that was taken on any of the computers in the network. Data that has been archived to tape is maintained on disk for a few days. Users may specify that certain shots be designated ''goodshots,'' whose data files will be maintained on disk for a longer period of time. If a user requests data for a shot that is no longer on disk, retrieval processes on the VAXcluster determine which tapes contain the data, request the computer operator to load the tapes if necessary, and retrieve the files from the tapes. The data is then available for processing by programs running on any computer in the network

  16. A beam diagnostic system for ELSA

    International Nuclear Information System (INIS)

    Schillo, M.; Althoff, K.H.; Drachenfels, W.; Goetz, T.; Husmann, D.; Neckenig, M.; Picard, M.; Schittko, F.J.; Schauerte, W.; Wenzel, J.

    1991-01-01

    A beam diagnostic system, which is based on capacitive beam-position monitors combined with fast electronics, has been developed for the Bonn ELectron Stretcher Accelerator ELSA. The position signal of each monitor is digitized at an adjustable sampling rate (max.: 10 MHz) and the most recent 8192 position and intensity values are buffered. This allows a wide range of different beam diagnostic measurements. The main purpose is the closed-orbit correction, which can be carried out on various time scales. To optimize the duty factor of the extracted beam, the system can also be used as a fast relative intensity monitor resolving the intensity distribution of the bunches or of the injected beam. It is designed to support betatron tune and phase measurements with very high accuracy, offering the choice to select any of the beam position monitors. This enables the measuring of many optical parameters. Furthermore any pair of suitable monitors can be used for experimental particle tracking or phase space measurements

  17. Diagnostics Beamline for the SRF Gun Project

    CERN Document Server

    Kamps, T; Goldammer, K; Krämer, Dietrich; Kuske, P; Kuszynski, J; Lipka, D; Marhauser, F; Quast, T; Richter, R

    2005-01-01

    A superconducting rf photo electron injector (SRF gun) is currently under construction by a collaboration between BESSY, DESY, FZR and MBI. The project aims at the design and setup of an CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 pi mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies be...

  18. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 - 10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 gm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the article refractive index

  19. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 -10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 μm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the particle refractive index

  20. Electronic emission and electron guns

    International Nuclear Information System (INIS)

    Roy, Amitava

    2010-01-01

    This paper reviews the process of electron emission from metal surface. Although electrons move freely in conductors like metals, they normally do not leave the metal without some manipulation. In fact, heating and bombardment are the two primary ways in which electrons are emitted through the use of a heating element behind the cathode (termed thermionic emission) or as a result of bombardment with a beam of electrons, ions, or metastable atoms (termed secondary emission). Another important emission mechanism called Explosive Electron Emission (EEE) is also often used in various High Voltage Pulse Power Systems to generate very high current (few hundreds of kA) pulsed electron beams. The electron gun is the device in that it shoots off a continuous (or pulsed) stream of electrons. A brief idea about the evolution of the electron gun components and their basis of functioning are also discussed. (author)

  1. Sticker electronics

    KAUST Repository

    Hussain, Muhammad Mustafa; Torres Sevilla, Galo Andres; Diaz Cordero, Marlon Steven

    2017-01-01

    Electronic stickers may be manufactured on flexible substrates (110, 120, 130) as layers and packaged together. The package may then have an adhesive applied to one side to provide capability for sticking the electronic devices to surfaces

  2. ELECTRONIC SIGNATURES

    African Journals Online (AJOL)

    10332324

    "[to] promote the understanding and, acceptance of and growth in the number of electronic transactions .... Chapter III of the ECT Act is based on the UNCITRAL Model Law on Electronic. Commerce ... Communications Technology Law 146. 22.

  3. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  4. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  5. Regression models of reactor diagnostic signals

    International Nuclear Information System (INIS)

    Vavrin, J.

    1989-01-01

    The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)

  6. Dual Processing and Diagnostic Errors

    Science.gov (United States)

    Norman, Geoff

    2009-01-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…

  7. Laser-aided plasma diagnostics

    NARCIS (Netherlands)

    Donne, A. J. H.; Barth, C. J.

    2008-01-01

    This paper will focus on two types of laser-aided diagnostics: Thomson scattering and laser-induced fluorescence. Thomson scattering is a very powerful diagnostic, which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can

  8. Student Interpretations of Diagnostic Feedback

    Science.gov (United States)

    Doe, Christine

    2015-01-01

    Diagnostic assessment is increasingly being recognized as a potentially beneficial tool for teaching and learning (Jang, 2012). There have been calls in the research literature for students to receive diagnostic feedback and for researchers to investigate how such feedback is used by students. Therefore, this study examined how students…

  9. Technical diagnostics of steam turbines

    International Nuclear Information System (INIS)

    Vlckova, B.; Drahy, J.

    1987-01-01

    This paper deals with practical experience in application of technical diagnostics methods to steam turbines, in particular using pedestal and shaft vibration measurements as well as estimation of bearing metal temperature and ultrasound emission signals. An estimation of effectiveness of the diagnostics methods used is given on the basis of experimental investigations made on a 30-MW turbine. (author)

  10. Psychometric perspectives on diagnostic systems

    NARCIS (Netherlands)

    Borsboom, D.

    2008-01-01

    The author identifies four conceptualizations of the relation between symptoms and disorders as utilized in diagnostic systems such as the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; American Psychiatric Association, 1994): A constructivist perspective, which holds

  11. Electronic components

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  12. Understand electronics

    CERN Document Server

    Bishop, Owen

    2013-01-01

    Understand Electronics provides a readable introduction to the exciting world of electronics for the student or enthusiast with little previous knowledge. The subject is treated with the minimum of mathematics and the book is extensively illustrated.This is an essential guide for the newcomer to electronics, and replaces the author's best-selling Beginner's Guide to Electronics.The step-by-step approach makes this book ideal for introductory courses such as the Intermediate GNVQ.

  13. Electronic Commerce

    OpenAIRE

    Slavko Đerić

    2016-01-01

    Electronic commerce can be defined in different ways. Any definition helps to understand and explain that concept as better as possible.. Electronic commerce is a set of procedures and technologies that automate the tasks of financial transactions using electronic means. Also, according to some authors, electronic commerce is defined as a new concept, which is being developed and which includes process of buying and selling or exchanging products, services or information via computer networks...

  14. Capabilities and diagnostics of the Sandia Pelletron-raster system

    International Nuclear Information System (INIS)

    Buckalew, W.H.; Lockwood, G.J.; Luker, S.M.; Ruggles, L.E.; Wyant, F.J.

    1984-07-01

    The radiation capabilities of the PELLETRON Electron Beam Accelerator have been expanded to include a controllable, variable dimension, beam diffusion option. This rastered beam option has been studied in detail. Beam characteristics have been determined as a function of incident electron beam energy, current, and deflection system parameters. The beam diagnostics required to define any given diffuse beam pattern are accurate and predictable. Recently, utility of this added PELLETRON capability was demonstrated by simulating the effects of complex nuclear reactor accident electron environments on electrical insulation materials similar to those used in nuclear power plants

  15. Modelling of JET diagnostics using Bayesian Graphical Models

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.

    2011-07-01

    The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This

  16. Electronic Publishing.

    Science.gov (United States)

    Lancaster, F. W.

    1989-01-01

    Describes various stages involved in the applications of electronic media to the publishing industry. Highlights include computer typesetting, or photocomposition; machine-readable databases; the distribution of publications in electronic form; computer conferencing and electronic mail; collaborative authorship; hypertext; hypermedia publications;…

  17. Diagnostic evaluation of rhabdomyolysis.

    Science.gov (United States)

    Nance, Jessica R; Mammen, Andrew L

    2015-06-01

    Rhabdomyolysis is characterized by severe acute muscle injury resulting in muscle pain, weakness, and/or swelling with release of myofiber contents into the bloodstream. Symptoms develop over hours to days after an inciting factor and may be associated with dark pigmentation of the urine. Serum creatine kinase and urine myoglobin levels are markedly elevated. Clinical examination, history, laboratory studies, muscle biopsy, and genetic testing are useful tools for diagnosis of rhabdomyolysis, and they can help differentiate acquired from inherited causes of rhabdomyolysis. Acquired causes include substance abuse, medication or toxic exposures, electrolyte abnormalities, endocrine disturbances, and autoimmune myopathies. Inherited predisposition to rhabdomyolysis can occur with disorders of glycogen metabolism, fatty acid β-oxidation, and mitochondrial oxidative phosphorylation. Less common inherited causes of rhabdomyolysis include structural myopathies, channelopathies, and sickle-cell disease. This review focuses on the differentiation of acquired and inherited causes of rhabdomyolysis and proposes a practical diagnostic algorithm. Muscle Nerve 51: 793-810, 2015. © 2015 Wiley Periodicals, Inc.

  18. Laboratory diagnostics of malaria

    Science.gov (United States)

    Siahaan, L.

    2018-03-01

    Even now, malaria treatment should only be administered after laboratory confirmation. There are several principal methods for diagnosing malaria. All these methods have their disadvantages.Presumptive treatment of malaria is widely practiced where laboratory tests are not readily available. Microscopy of Giemsa-stained thick and thin blood films remains the gold standard for the diagnosis of malaria infection. The technique of slide preparation, staining and reading are well known and standardized, and so is the estimate of the parasite density and parasite stages. Microscopy is not always available or feasible at primary health services in limited resource settings due to cost, lack of skilled manpower, accessories and reagents required. Rapid diagnostic tests (RDTs) are potential tools for parasite-based diagnosis since the tests are accurate in detecting malaria infections and are easy to use. The test is based on the capture of parasite antigen that released from parasitized red blood cells using monoclonal antibodies prepared against malaria antigen target. Polymerase Chain Reaction (PCR), depend on DNA amplification approaches and have higher sensitivity than microscopy. PCR it is not widely used due to the lack of a standardized methodology, high costs, and the need for highly-trained staff.

  19. Moyamoya disease: Diagnostic imaging

    International Nuclear Information System (INIS)

    Tarasów, Eugeniusz; Kułakowska, Alina; Łukasiewicz, Adam; Kapica-Topczewska, Katarzyna; Korneluk-Sadzyńska, Alicja; Brzozowska, Joanna; Drozdowski, Wiesław

    2011-01-01

    Moyamoya disease is a progressive vasculopathy leading to stenosis of the main intracranial arteries. The incidence of moyamoya disease is high in Asian countries; in Europe and North America, the prevalence of the disease is considerably lower. Clinically, the disease may be of ischaemic, haemorrhagic and epileptic type. Cognitive dysfunction and behavioral disturbance are atypical symptoms of moyamoya disease. Characteristic angiographic features of the disease include stenosis or occlusion of the arteries of the circle of Willis, as well as the development of collateral vasculature. Currently, magnetic resonance angiography and CT angiography with multi-row systems are the main imaging methods of diagnostics of the entire range of vascular changes in moyamoya disease. The most common surgical treatment combines the direct arterial anastomosis between the superficial temporal artery and middle cerebral, and the indirect synangiosis involving placement of vascularised tissue in the brain cortex, in order to promote neoangiogenesis. Due to progressive changes, correct and early diagnosis is of basic significance in selecting patients for surgery, which is the only effective treatment of the disease. An appropriate qualification to surgery should be based on a comprehensive angiographic and imaging evaluation of brain structures. Despite the rare occurrence of moyamoya disease in European population, it should be considered as one of causes of ischaemic or haemorrhagic strokes, especially in young patients

  20. Radiologic diagnostics of dementia

    International Nuclear Information System (INIS)

    Essig, M.; Schoenberg, S.O.

    2003-01-01

    Dementia is one of the most common diseases in the elderly population and is getting more and more important with the ageing of the population. A radiologic structural examination with CT or MRI is meanwhile a standard procedure in the diagnostic work up of patients with dementia syndrome. Radiology enables an early diagnosis and a differential diagnosis between different causes of dementia. Because structural changes occur only late in the disease process, a more detailed structural analysis using volumetric techniques or the use of functional imaging techniques is mandatory. These days, structural imaging uses MRI which enables to detect early atrophic changes at the medial temporal lobe with focus on the amygdala hippocampal complex. These changes are also present in the normal ageing process. In patients with Alzheimer's disease, however, they are more rapid and more pronounced. The use of functional imaging methods such as perfusion MRI, diffusion MRI or fMRI allow new insights into the pathophysiologic changes of dementia. The article gives an overview of the current status of structural imaging and an outlook into the potential of functional imaging methods. Detailed results of structural and functional imaging are presented in other articles of this issue. (orig.) [de

  1. Recent diagnostic developments on LHD

    International Nuclear Information System (INIS)

    Sudo, S.; Nagayama, Y.; Peterson, B.J.

    2003-01-01

    Standard diagnostics for fundamental plasma parameters and for plasma physics are routinely utilized for daily operation and physics study in the large helical device (LHD) with high reliability. Diagnostics for steady state plasma are intensively developed, especially for T e , n e (YAG laser Thomson, CO 2 laser polarimeter), data acquisition in steady state, heat resistant probes. To clarify the plasma property of the helical structure, 2-D or 3-D diagnostics are intensively developed: Tangential cameras (Fast SX TV, Photon counting CCD, H α TV); Tomography (Tangential SX CCD, Bolometer); Imaging (Bolometer, ECE, Reflectometer). Divertor and edge physics are one of important key issues for steady state operation. Diagnostics for neutral flux (H α array, Zeeman spectroscopy) and n e (Fast scanning probe, Li beam probe, Pulsed radar reflectometer). In addition to these, advanced diagnostics are being intensively developed with national and international collaborations in LHD. (author)

  2. The engineering of JET diagnostics

    International Nuclear Information System (INIS)

    Walker, C.I.; Dillon, S.F.; Hammond, N.P.; Hancock, C.J.; Lam, N.; McCarron, E.J.; Prior, P.C.S.; Reid, J.; Sanders, S.; Tellier, X.; Tiscornia, A.J.; Whitfield, G.A.H.; Wilson, C.H.; Wilson, D.J.

    1995-01-01

    There are some 62 identifiably different diagnostic systems on JET. 22 were installed new at the last, Pumped Divertor, shutdown and a further 22 which were modified, upgraded or repositioned. This paper describes some of the engineering aspects peculiar to the renewed diagnostic systems, reviews their construction and installation and gives an overview of the design of presently installed diagnostic equipment at the Torus. Examples are considered that illustrate the breakdown into a categorisation based on their installation method. This is useful for discussion of many of the associated engineering problems of method and quality control of manufacture, vulnerability, access for installation and maintenance and ultimately system safety and reliability. The function and measured plasma parameter of specific diagnostics is covered in other papers and is not attempted here, neither is a full catalogue of Diagnostics on JET. (orig.)

  3. Understanding diagnostic variability in breast pathology: lessons learned from an expert consensus review panel

    Science.gov (United States)

    Allison, Kimberly H; Reisch, Lisa M; Carney, Patricia A; Weaver, Donald L; Schnitt, Stuart J; O’Malley, Frances P; Geller, Berta M; Elmore, Joann G

    2015-01-01

    Aims To gain a better understanding of the reasons for diagnostic variability, with the aim of reducing the phenomenon. Methods and results In preparation for a study on the interpretation of breast specimens (B-PATH), a panel of three experienced breast pathologists reviewed 336 cases to develop consensus reference diagnoses. After independent assessment, cases coded as diagnostically discordant were discussed at consensus meetings. By the use of qualitative data analysis techniques, transcripts of 16 h of consensus meetings for a subset of 201 cases were analysed. Diagnostic variability could be attributed to three overall root causes: (i) pathologist-related; (ii) diagnostic coding/study methodology-related; and (iii) specimen-related. Most pathologist-related root causes were attributable to professional differences in pathologists’ opinions about whether the diagnostic criteria for a specific diagnosis were met, most frequently in cases of atypia. Diagnostic coding/study methodology-related root causes were primarily miscategorizations of descriptive text diagnoses, which led to the development of a standardized electronic diagnostic form (BPATH-Dx). Specimen-related root causes included artefacts, limited diagnostic material, and poor slide quality. After re-review and discussion, a consensus diagnosis could be assigned in all cases. Conclusions Diagnostic variability is related to multiple factors, but consensus conferences, standardized electronic reporting formats and comments on suboptimal specimen quality can be used to reduce diagnostic variability. PMID:24511905

  4. Evidence-based diagnostics: adult septic arthritis.

    Science.gov (United States)

    Carpenter, Christopher R; Schuur, Jeremiah D; Everett, Worth W; Pines, Jesse M

    2011-08-01

    Acutely swollen or painful joints are common complaints in the emergency department (ED). Septic arthritis in adults is a challenging diagnosis, but prompt differentiation of a bacterial etiology is crucial to minimize morbidity and mortality. The objective was to perform a systematic review describing the diagnostic characteristics of history, physical examination, and bedside laboratory tests for nongonococcal septic arthritis. A secondary objective was to quantify test and treatment thresholds using derived estimates of sensitivity and specificity, as well as best-evidence diagnostic and treatment risks and anticipated benefits from appropriate therapy. Two electronic search engines (PUBMED and EMBASE) were used in conjunction with a selected bibliography and scientific abstract hand search. Inclusion criteria included adult trials of patients presenting with monoarticular complaints if they reported sufficient detail to reconstruct partial or complete 2 × 2 contingency tables for experimental diagnostic test characteristics using an acceptable criterion standard. Evidence was rated by two investigators using the Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS). When more than one similarly designed trial existed for a diagnostic test, meta-analysis was conducted using a random effects model. Interval likelihood ratios (LRs) were computed when possible. To illustrate one method to quantify theoretical points in the probability of disease whereby clinicians might cease testing altogether and either withhold treatment (test threshold) or initiate definitive therapy in lieu of further diagnostics (treatment threshold), an interactive spreadsheet was designed and sample calculations were provided based on research estimates of diagnostic accuracy, diagnostic risk, and therapeutic risk/benefits. The prevalence of nongonococcal septic arthritis in ED patients with a single acutely painful joint is approximately 27% (95% confidence interval [CI] = 17

  5. Electron cloud and ion effects

    CERN Document Server

    Arduini, Gianluigi

    2002-01-01

    The significant progress in the understanding and control of machine impedances has allowed obtaining beams with increasing brilliance. Dense positively charged beams generate electron clouds via gas ionization, photoemission and multipacting. The electron cloud in turn interacts with the beam and the surrounding environment originating fast coupled and single bunch instabilities, emittance blow-up, additional loads to vacuum and cryogenic systems, perturbation to beam diagnostics and feedbacks and it constitutes a serious limitation to machine performance. In a similar way high brilliance electron beams are mainly affected by positively charged ions produced by residual gas ionization. Recent observations of electron cloud build-up and its effects in present accelerators are reviewed and compared with theory and with the results of state-of-the-art computer simulations. Two-stream instabilities induced by the interaction between electron beams and ions are discussed. The implications for future accelerators ...

  6. Electron cyclotron emission measurement in Tore Supra

    International Nuclear Information System (INIS)

    Javon, C.

    1991-06-01

    Electron cyclotron radiation from Tore-Supra is measured with Michelson and Fabry-Perot interferometers. Calibration methods, essential for this diagnostic, are developed allowing the determination of electron temperature in the plasma. In particular the feasibility of Fabry-Perot interferometer calibration by an original method is demonstrated. A simulation code is developed for modelling non-thermal electron population in these discharges using measurements in non-inductive current generation regime [fr

  7. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  8. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  9. ECR plasma diagnostics with Langmuir probe

    International Nuclear Information System (INIS)

    Kenez, L.; Biri, S.; Valek, A.

    2000-01-01

    Complete text of publication follows. An Electron Cyclotron Resonance (ECR) Ion Source is a tool to generate highly charged ions. The ion beam is extracted from the plasma chamber of the ECRIS. Higher charge states and beam intensities are the main objectives of ECR research. The heart of an ion source is the confined plasma which should be well known to reach those objectives. Information about the plasma can be obtained by plasma diagnostics methods. Langmuir probes were successfully used in case of other plasmas, e.g. TOKAMAK. Until last year plasma diagnostics at the ATOMKI ECRIS was performed by X-ray and visible light measurements. While X-ray measurements give global information, the Langmuir probe method can give information on the local plasma parameters. This is an advantage because the local parameters are not known in detail. By Langmuir probe measurements it is possible to get information on plasma density, plasma potential and partly on the electron temperature. From the experimental point of view a Langmuir probe is very simple. However, the precise positioning of the probe in the plasma chamber (HV platform, strong magnetic field, RF waves) is a difficult task. Also the theory of probes is complicated: the ECR plasma is a special one because the confining magnetic field is inhomogeneous, beside hot electrons it contains cold ions with different charge states and it is heated with high frequency EM waves. What can be measured with a probe is a voltage-current (U-I) characteristics. Figure 1 shows a typical U-I curve measured in our lab. As it can be seen in the figure the diagram has three main parts. An ion saturation current region (I.), an electron saturation current region (III.) and a transition region (II.) between them. These measurements were performed using two different power supplies to bias the probe to positive and negative voltage. To perform more precise U-I measurements we need a special power supply which is presently being built in

  10. Sticker electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-09-08

    Electronic stickers may be manufactured on flexible substrates (110, 120, 130) as layers and packaged together. The package may then have an adhesive applied to one side to provide capability for sticking the electronic devices to surfaces. The stickers can be wrappable, placed on surfaces, glued on walls or mirrors or wood or stone, and have electronics (112, 122, 132) which may or may not be ultrathin. Packaging for the electronic sticker can use polymer on cellulose manufacturing and/or three dimensional (3-D) printing. The electronic stickers may provide lighting capability, sensing capability, and/or recharging capabilities.

  11. Basic electronics

    CERN Document Server

    Holbrook, Harold D

    1971-01-01

    Basic Electronics is an elementary text designed for basic instruction in electricity and electronics. It gives emphasis on electronic emission and the vacuum tube and shows transistor circuits in parallel with electron tube circuits. This book also demonstrates how the transistor merely replaces the tube, with proper change of circuit constants as required. Many problems are presented at the end of each chapter. This book is comprised of 17 chapters and opens with an overview of electron theory, followed by a discussion on resistance, inductance, and capacitance, along with their effects on t

  12. Electronic Commerce and Electronic Business

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This special issue is motivated by the recent upsurge of research activity in the areas of electronic commerce and electronic business both in India and all over the world. The current ... Monte Carlo methods for pricing financial options are then.

  13. Electronic Government and Electronic Participation

    NARCIS (Netherlands)

    Tambouris, E; Scholl, H.J.; Janssen, M.F.W.H.A.; Wimmer, M.A.; Tarabanis, K; Gascó, M; Klievink, A.J.; Lindgren, I; Milano, M; Panagiotopoulos, P; Pardo, T.A.; Parycek, P; Sæbø, Ø

    2016-01-01

    Electronic government and electronic participation continue to transform the public sector and society worldwide and are constantly being transformed themselves by emerging information and communication technologies.This book presents papers from the 14th International Federation for Information

  14. Electronic Government and Electronic Participation

    NARCIS (Netherlands)

    Tambouris, E.; Scholl, H.J.; Janssen, M.F.W.H.A.; Wimmer, M.A.; Tarabanis, K.; Gascó, M.; Klievink, A.J.; Lindgren, I.; Milano, M.; Panagiotopoulos, P.; Pardo, T.A.; Parycek, P.; Sæbø, O.

    2015-01-01

    Electronic government and electronic participation continue to transform the public sector and society worldwide and are constantly being transformed themselves by emerging information and communication technologies. This book presents papers from the 14th International Federation for Information

  15. Electron Tree

    DEFF Research Database (Denmark)

    Appelt, Ane L; Rønde, Heidi S

    2013-01-01

    The photo shows a close-up of a Lichtenberg figure – popularly called an “electron tree” – produced in a cylinder of polymethyl methacrylate (PMMA). Electron trees are created by irradiating a suitable insulating material, in this case PMMA, with an intense high energy electron beam. Upon discharge......, during dielectric breakdown in the material, the electrons generate branching chains of fractures on leaving the PMMA, producing the tree pattern seen. To be able to create electron trees with a clinical linear accelerator, one needs to access the primary electron beam used for photon treatments. We...... appropriated a linac that was being decommissioned in our department and dismantled the head to circumvent the target and ion chambers. This is one of 24 electron trees produced before we had to stop the fun and allow the rest of the accelerator to be disassembled....

  16. `Twisted' electrons

    Science.gov (United States)

    Larocque, Hugo; Kaminer, Ido; Grillo, Vincenzo; Leuchs, Gerd; Padgett, Miles J.; Boyd, Robert W.; Segev, Mordechai; Karimi, Ebrahim

    2018-04-01

    Electrons have played a significant role in the development of many fields of physics during the last century. The interest surrounding them mostly involved their wave-like features prescribed by the quantum theory. In particular, these features correctly predict the behaviour of electrons in various physical systems including atoms, molecules, solid-state materials, and even in free space. Ten years ago, new breakthroughs were made, arising from the new ability to bestow orbital angular momentum (OAM) to the wave function of electrons. This quantity, in conjunction with the electron's charge, results in an additional magnetic property. Owing to these features, OAM-carrying, or twisted, electrons can effectively interact with magnetic fields in unprecedented ways and have motivated materials scientists to find new methods for generating twisted electrons and measuring their OAM content. Here, we provide an overview of such techniques along with an introduction to the exciting dynamics of twisted electrons.

  17. Status of the design of the ITER ECE diagnostic

    International Nuclear Information System (INIS)

    Taylor, G.; Austin, M. E.; Beno, J. H.; Danani, S.; Ellis, R. F.; Feder, R.; Hesler, J. L.; Hubbard, A. E.; Johnson, D. W.; Kumar, R.; Kumar, S.; Kumar, V.; Ouroua, A.; Pandya, H. K. B.; Phillips, P. E.; Roman, C.; Rowan, W. L.; Udintsev, V.; Vayakis, G.; Walsh, M.; Kubo, S.

    2015-01-01

    In this study, the baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation in the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system

  18. Plasma diagnostics for tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Stott, P E; Sanchez, J

    1994-07-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: Magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Scattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma. (Author) 451 refs.

  19. Plasma diagnostics for tokamaks and stellarators

    International Nuclear Information System (INIS)

    Stott, P.E.; Sanchez, J.

    1994-01-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Sattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma

  20. Density dependence of line intensities and application to plasma diagnostics

    International Nuclear Information System (INIS)

    Masai, Kuniaki.

    1993-02-01

    Electron density dependence of spectral lines are discussed in view of application to density diagnostics of plasmas. The dependence arises from competitive level population processes, radiative and collisional transitions from the excited states. Results of the measurement on tokamak plasmas are presented to demonstrate the usefulness of line intensity ratios for density diagnostics. Also general characteristics related to density dependence are discussed with atomic-number scaling for H-like and He-like systems to be helpful for application to higher density plasmas. (author)

  1. Beam profile diagnostics system for SDUV-FEL

    International Nuclear Information System (INIS)

    Xu Yichao; Han Lifeng; Chen Yongzhong

    2010-01-01

    A new beam profile diagnostics system for Shanghai Deep Ultraviolet Free Electron Laser (SDUV-FEL) has been developed based on industrial Ethernet, with good versatility and scalability. The system includes three major subsystems for image acquisition,pneumatic control and stepper motor control, respectively. Virtual instrument technology is adopted to drive the devices, and to develop the measurement software. In this paper,we describe the system structure, and its hardware and software design. The results of system commissioning are given as well. As an important diagnostic tool and data acquisition method, the system has been successfully applied to the measurement and control of the SDUV-FEL.(authors)

  2. Soft x-ray virtual diagnostics for tokamak simulations

    Science.gov (United States)

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-11-01

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  3. Soft x-ray virtual diagnostics for tokamak simulations

    International Nuclear Information System (INIS)

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-01-01

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  4. Imaging systems for medical diagnostics

    International Nuclear Information System (INIS)

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  5. [Diagnostic laparoscopy in acute abdomen].

    Science.gov (United States)

    Keller, R; Kleemann, M; Hildebrand, P; Roblick, U J; Bruch, H-P

    2006-11-01

    Acute abdomen is not a disease in itself but a description of a complex of symptoms combined with severe abdominal pain developed within a time frame of less than 24 h. All strategies for the management of acute abdomen underline the need for an interdisciplinary approach to diagnosis and therapy. This requires focused and intelligent use of efficient diagnostic procedures. Diagnostic laparoscopy may be a key to solving the diagnostic dilemma of unspecific acute abdomen. Furthermore, it allows not only direct inspection of the abdominal cavity but also surgical intervention, if needed. In particular the rate of negative laparotomies can be reduced.

  6. Screening diagnostic program breast cancer

    International Nuclear Information System (INIS)

    Portnoj, L.M.; Zhakova, I.I.; Budnikova, N.V.; Rukhlyadko, E.D.

    1995-01-01

    The authors propose their screening program for detection of breast cancer. It includes the entire complex of present-day screening diagnostic methods, starting from an original system for the formation of groups at risk of breast cancer and completed by the direct diagnostic model of detection of the condition, oriented at a differentiated approach to the use of mammographic techniques. The proposed organizational and methodologic screening measures are both economic and diagnostically effective, thus meeting the principal requirements to screening programs. Screening of 8541 risk-groups patients helped detect 867 nodular formations, 244 of which were cancer and 623 benign formations. 8 refs., 3 figs.,

  7. Mammary carcinoma diagnostics and therapy

    International Nuclear Information System (INIS)

    Fischer, Uwe; Baum, Friedemann

    2014-01-01

    The book on mammary carcinoma diagnostics and therapy covers the following issues: development, anatomy and physiology of the mammary glands, pathology of benign and malign mammary gland changes, non-imaging diagnostics; mammography; ultrasonic mammography; magnetic resonance tomography of the mammary glands; imaging diagnostics findings; mammary interventions; examination concepts; operative therapy of the mammary carcinoma; chemotherapy of the mammary carcinoma; radio-oncological therapy of the mammary carcinoma; logistics in a medical center for mammary gland diseases; logistics in an interdisciplinary center for mammary diseases; dialogue conduction and psycho-social attendance.

  8. Electronic Commerce

    Directory of Open Access Journals (Sweden)

    Slavko Đerić

    2016-12-01

    Full Text Available Electronic commerce can be defined in different ways. Any definition helps to understand and explain that concept as better as possible.. Electronic commerce is a set of procedures and technologies that automate the tasks of financial transactions using electronic means. Also, according to some authors, electronic commerce is defined as a new concept, which is being developed and which includes process of buying and selling or exchanging products, services or information via computer networks, including the Internet. Electronic commerce is not limited just to buying and selling, but it also includes all pre-sales and after-sales ongoing activities along the supply chain. Introducing electronic commerce, using the Internet and Web services in business, realizes the way to a completely new type of economy - internet economy.

  9. Recent development of transient electronics

    Directory of Open Access Journals (Sweden)

    Huanyu Cheng

    2016-01-01

    Full Text Available Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.

  10. Diagnostics for the National Compact Stellarator Experiment

    International Nuclear Information System (INIS)

    Stratton, B.C.; Johnson, D.; Feder, R.; Fredrickson, E.; Neilson, H.; Takahashi, H.; Zarnstorf, M.; Cole, M.; Goranson, P.; Lazarus, E.; Nelson, B.

    2003-01-01

    The status of planning of the National Compact Stellarator Experiment (NCSX) diagnostics is presented, with the emphasis on resolution of diagnostics access issues and on diagnostics required for the early phases of operation

  11. Advanced Electronics

    Science.gov (United States)

    2017-07-21

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0114 TR-2017-0114 ADVANCED ELECTRONICS Ashwani Sharma 21 Jul 2017 Interim Report APPROVED FOR PUBLIC RELEASE...NUMBER Advanced Electronics 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) 5d. PROJECT NUMBER 4846 Ashwani Sharma 5e. TASK NUMBER...Approved for public release; distribution is unlimited. (RDMX-17-14919 dtd 20 Mar 2018) 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Space Electronics

  12. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  13. Diagnostics of Gun Barrel Propellants

    National Research Council Canada - National Science Library

    Lederman, S

    1983-01-01

    A preliminary investigation of the applicability of the spontaneous Raman diagnostic technique to the determination of the temperature of the propellant gases in the vicinity of the muzzle of a 2Omm...

  14. Microfluidic technology for molecular diagnostics.

    Science.gov (United States)

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  15. Thioaptamer Diagnostic System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — AM Biotechnologies (AM) in partnership with Sandia National Laboratories will develop a Thioaptamer Diagnostic System (TDS) in response to Topic X10.01 Reusable...

  16. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-10-01

    In order for ITER to meet its operational and programmatic goals, it will be necessary to measure a wide range of plasma parameters. Some of the required parameters e.g., neutron yield, fusion power and power density, ion temperature profile in the core plasma, and characteristics of confined and escaping alpha particle populations are best measured by fusion product diagnostic techniques. To make these measurements, ITER will have dedicated diagnostic systems, including radial and vertical neutron cameras, neutron and gamma ray spectrometers, internal and external fission chambers, a neutron activation system, and diagnostics for confined and escaping alpha particles. Engineering integration of many of these systems is in progress, and other systems are under investigation. This paper summarizes the present state of design of fusion product diagnostic systems for ITER and discusses expected measurement capability

  17. Environmental sensing and combustion diagnostics

    International Nuclear Information System (INIS)

    Santoleri, J.J.

    1991-01-01

    This book contains proceedings of Environmental Sensing and Combustion Diagnostics. Topics covered include: Incineration Systems Applications, Permitting, And Monitoring Overview; Infrared Techniques Applied to Incineration Systems; Continuous Emission Monitors; Analyzers and Sensors for Process Control And Environmental Monitoring

  18. The Downside of Diagnostic Imaging

    Science.gov (United States)

    An article about radiation exposure during computed tomography and nuclear imaging procedures and the risk of cancer. Several studies released in 2009 have helped to quantify the risk and the growing use of these diagnostic imaging methods.

  19. Saliva Preservative for Diagnostic Purposes

    Science.gov (United States)

    Pierson, Duane L.; Mehta, Satish K.

    2012-01-01

    Saliva is an important body fluid for diagnostic purposes. Glycoproteins, glucose, steroids, DNA, and other molecules of diagnostic value are found in saliva. It is easier to collect as compared to blood or urine. Unfortunately, saliva also contains large numbers of bacteria that can release enzymes, which can degrade proteins and nucleic acids. These degradative enzymes destroy or reduce saliva s diagnostic value. This innovation describes the formulation of a chemical preservative that prevents microbial growth and inactivates the degradative enzymes. This extends the time that saliva can be stored or transported without losing its diagnostic value. Multiple samples of saliva can be collected if needed without causing discomfort to the subject and it does not require any special facilities to handle after it is collected.

  20. Recent diagnostic developments on LHD

    International Nuclear Information System (INIS)

    Sudo, S; Ozaki, T; Ashikawa, N; Emoto, M; Goto, M; Hamada, Y; Ida, K; Ido, T; Iguchi, H; Inagaki, S; Isobe, M; Kawahata, K; Khlopenkov, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Morita, S; Muto, S; Nagayama, Y; Nakanishi, H; Narihara, K; Nishizawa, A; Ohdachi, S; Osakabe, M; Peterson, B J; Sakakibara, S; Sasao, M; Sato, K; Shoji, M; Tamura, N; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K; Watanabe, T; Yamada, I; Goncharov, P; Ejiri, A; Okajima, S; Mase, A; Tsuji-Iio, S; Akiyama, T; Lyon, J F; Vyacheslavov, L N; Sanin, A

    2003-01-01

    The recent diagnostic developments on the large helical device (LHD) are described briefly. LHD is the largest helical machine with all superconducting coils, and its purpose is to prove the ability of a helical system to confine a fusion-relevant plasma in steady state. According to the missions of LHD research, the diagnostic devices are categorized as follows: diagnostics for (i) high nτ E T plasmas and transport physics; (ii) magnetohydrodynamic stability; (iii) long pulse operation and divertor function; and (iv) energetic particles. These are briefly described focusing on the recent developments of the devices. Since the LHD experiment started in March 1998, five series of experimental campaigns have been carried out. The LHD diagnostics during these periods were operated successfully, and contributed to the analysis of the experimental results