WorldWideScience

Sample records for diabetic zdf rats

  1. Myocardial impulse propagation is impaired in right ventricular tissue of Zucker Diabetic Fatty (ZDF rats

    Directory of Open Access Journals (Sweden)

    Olsen Kristine Boisen

    2013-01-01

    Full Text Available Abstract Background Diabetes increases the risk of cardiovascular complications including arrhythmias, but the underlying mechanisms remain to be established. Decreased conduction velocity (CV, which is an independent risk factor for re-entry arrhythmias, is present in models with streptozotocin (STZ induced type 1 diabetes. Whether CV is also disturbed in models of type 2 diabetes is currently unknown. Methods We used Zucker Diabetic Fatty (ZDF rats, as a model of type 2 diabetes, and their lean controls Zucker Diabetic Lean (ZDL rats to investigate CV and its response to the anti-arrhythmic peptide analogue AAP10. Gap junction remodeling was examined by immunofluorescence and western blotting. Cardiac histomorphometry was examined by Masson`s Trichrome staining and intracellular lipid accumulation was analyzed by Bodipy staining. Results CV was significantly slower in ZDF rats (56±1.9 cm/s compared to non-diabetic controls (ZDL, 66±1.6 cm/s, but AAP10 did not affect CV in either group. The total amount of Connexin43 (C×43 was identical between ZDF and ZDL rats, but the amount of lateralized C×43 was significantly increased in ZDF rats (42±12 % compared to ZDL rats (30±8%, p Conclusion CV is reduced in type 2 diabetic ZDF rats. The CV disturbance may be partly explained by increased lateralization of C×43, but other factors are likely also involved. Our data indicates that lipotoxicity potentially may play a role in development of conduction disturbances and arrhythmias in type 2 diabetes.

  2. Evaluation of the Zucker diabetic fatty (ZDF rat as a model for human disease based on urinary peptidomic profiles.

    Directory of Open Access Journals (Sweden)

    Justyna Siwy

    Full Text Available Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD and cardiovascular disease (CVD biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin or related to disease development (collagen. Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level.

  3. The combination of colesevelam with sitagliptin enhances glycemic control in diabetic ZDF rat model

    DEFF Research Database (Denmark)

    Shang, Quan; Liu, Matthew K; Saumoy, Monica

    2012-01-01

    . In the present study, we tested whether adding sitagliptin (Januvia) (SIT), which prolongs bioactive GLP-1 half life, to COL would further enhance glycemic control. Male Zucker diabetic fatty (ZDF) rats were assigned to four groups: diabetic model without treatment (the model), the model treated with 2% COL or 0...... to levels similar to the model. Histological examination of the pancreatic ß-cell islets showed that islet sizes were larger, proliferation enhanced, and cell apoptosis reduced in the COL+SIT but not the SIT alone group compared with the model. We hypothesize that the combination of COL with SIT extends...

  4. Pioglitazone reverses down-regulation of cardiac PPARγ expression in Zucker diabetic fatty rats

    International Nuclear Information System (INIS)

    Pelzer, Theo; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPARγ in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPARγ agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPARγ, glucose transporter-4 and α-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPARγ, glut-4, and α-MHC expression levels in diabetic ZDF rats. Cardiac [ 18 F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPARγ agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPARγ expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin

  5. Variability in Zucker diabetic fatty rats: differences in disease progression in hyperglycemic and normoglycemic animals

    Directory of Open Access Journals (Sweden)

    Wang X

    2014-11-01

    Full Text Available Xi Wang,1 Debra C DuBois,1,2 Siddharth Sukumaran,2 Vivaswath Ayyar,1 William J Jusko,2,3 Richard R Almon1–3 1Department of Biological Sciences, 2Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; 3New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA Abstract: Both obesity and chronic inflammation are often associated with insulin resistance and type 2 diabetes. The Zucker diabetic fatty (ZDF rat (fa/fa is an obese animal model frequently used in type 2 diabetes research. The current study determines whether chronic administration (from 5 weeks of age through 24 weeks of age of salsalate, a salicylate with anti-inflammatory properties, would be effective in mitigating diabetes disease progression in ZDF rats. Although a trend existed for lower blood glucose in the salsalate-treated group, significant differences were obscured by high animal-level variability. However, even in the non-drug-treated group, not all ZDF rats became diabetic as expected. Therefore, animals were parsed into two groups, regardless of drug treatment: normoglycemic ZDF rats, which maintained blood glucose profiles identical to nondiabetic Zucker lean rats (ZLRs, and hyperglycemic ZDF rats, which exhibited progressive elevation in blood glucose. To ascertain the differences between ZDF rats that became hyperglycemic and those that did not, relevant physiological indices and expression levels of adiponectin, tumor necrosis factor-α, interleukin-6, and glucocorticoid-induced leucine zipper messenger RNAs in adipose tissue were measured at sacrifice. Plasma C-reactive protein concentrations and expression levels of cytokine and glucocorticoid-induced leucine zipper messenger RNAs suggested more prevalent chronic inflammation in hyperglycemic animals. Early elevation of the insulin-sensitizing adipokine, adiponectin, was present in both ZDF groups, with the rate of its age-related decline

  6. Calcium activity of upper thoracic dorsal root ganglion neurons in zucker diabetic Fatty rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise; Nyborg, Niels C B; Fjalland, Bjarne

    2013-01-01

    The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated bilatera......The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated...... in calcium activity of the DRG neurons were found, potentially indicating altered neuronal responses during myocardial ischemia....

  7. Pre-diabetes augments neuropeptide Y1- and α1-receptor control of basal hindlimb vascular tone in young ZDF rats.

    Directory of Open Access Journals (Sweden)

    Nicole M Novielli

    Full Text Available Peripheral vascular disease in pre-diabetes may involve altered sympathetically-mediated vascular control. Thus, we investigated if pre-diabetes modifies baseline sympathetic Y(1-receptor (Y(1R and α(1-receptor (α(1R control of hindlimb blood flow (Q(fem and vascular conductance (VC.Q(fem and VC were measured in pre-diabetic ZDF rats (PD and lean controls (CTRL under infusion of BIBP3226 (Y(1R antagonist, prazosin (α(1R antagonist and BIBP3226+prazosin. Neuropeptide Y (NPY concentration and Y(1R and α(1R expression were determined from hindlimb skeletal muscle samples.Baseline Q(fem and VC were similar between groups. Independent infusions of BIBP3226 and prazosin led to increases in Q(fem and VC in CTRL and PD, where responses were greater in PD (p<0.05. The percent change in VC following both drugs was also greater in PD compared to CTRL (p<0.05. As well, Q(fem and VC responses to combined blockade (BIBP3226+prazosin were greater in PD compared to CTRL (p<0.05. Interestingly, an absence of synergistic effects was observed within groups, as the sum of the VC responses to independent drug infusions was similar to responses following combined blockade. Finally, white and red vastus skeletal muscle NPY concentration, Y(1R expression and α(1R expression were greater in PD compared to CTRL.For the first time, we report heightened baseline Y(1R and α(1R sympathetic control of Q(fem and VC in pre-diabetic ZDF rats. In support, our data suggest that augmented sympathetic ligand and receptor expression in pre-diabetes may contribute to vascular dysregulation.

  8. Eplerenone prevents salt-induced vascular stiffness in Zucker diabetic fatty rats: a preliminary report

    Directory of Open Access Journals (Sweden)

    Brunner Sabine

    2011-10-01

    Full Text Available Abstract Background Aldosterone levels are elevated in a rat model of type 2 diabetes mellitus, the Zucker Diabetic fatty rat (ZDF. Moreover blood pressure in ZDF rats is salt-sensitive. The aim of this study was to examine the effect of the aldosterone antagonist eplerenone on structural and mechanical properties of resistance arteries of ZDF-rats on normal and high-salt diet. Methods After the development of diabetes, ZDF animals were fed either a normal salt diet (0.28% or a high-salt diet (5.5% starting at an age of 15 weeks. ZDF rats on high-salt diet were randomly assigned to eplerenone (100 mg/kg per day, in food (ZDF+S+E, hydralazine (25 mg/kg per day (ZDF+S+H, or no treatment (ZDF+S. Rats on normal salt-diet were assigned to eplerenone (ZDF+E or no treatment (ZDF. Normoglycemic Zucker lean rats were also divided into two groups receiving normal (ZL or high-salt diet (ZL+S serving as controls. Systolic blood pressure was measured by tail cuff method. The experiment was terminated at an age of 25 weeks. Mesenteric resistance arteries were studied on a pressurized myograph. Specifically, vascular hypertrophy (media-to-lumen ratio and vascular stiffness (strain and stress were analyzed. After pressurized fixation histological analysis of collagen and elastin content was performed. Results Blood pressure was significantly higher in salt-loaded ZDF compared to ZDF. Eplerenone and hydralazine prevented this rise similarily, however, significance niveau was missed. Media-to-lumen ratio of mesenteric resistance arteries was significantly increased in ZDF+S when compared to ZDF and ZL. Both, eplerenone and hydralazine prevented salt-induced vascular hypertrophy. The strain curve of arteries of salt-loaded ZDF rats was significantly lower when compared to ZL and when compared to ZDF+S+E, but was not different compared to ZDF+S+H. Eplerenone, but not hydralazine shifted the strain-stress curve to the right indicating a vascular wall composition

  9. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2015-02-01

    Full Text Available Background/Aims: The Zucker diabetic fatty (ZDF, FA/FA rat is a genetic model of type 2 diabetes, characterized by insulin resistance with progressive metabolic syndrome. We have previously demonstrated mitochondrial dysfunction and oxidative stress in the heart, kidneys and pancreas of ZDF rats. However, the precise molecular mechanism of disease progression is not clear. Our aim in the present study was to investigate oxidative stress and mitochondrial dysfunction in the liver and brain of ZDF rats. Methods: In this study, we have measured mitochondrial oxidative stress, bioenergetics and redox homeostasis in the liver and brain of ZDF rats. Results: Our results showed increased reactive oxygen species (ROS production in the ZDF rat brain compared to the liver, while nitric oxide (NO production was markedly increased both in the brain and liver. High levels of lipid and protein peroxidation were also observed in these tissues. Glutathione metabolism and mitochondrial respiratory functions were adversely affected in ZDF rats when compared to Zucker lean (ZL, +/FA control rats. Reduced ATP synthesis was also observed in the liver and brain of ZDF rats. Western blot analysis confirmed altered expression of cytochrome P450 2E1, iNOS, p-JNK, and IκB-a confirming an increase in oxidative and metabolic stress in ZDF rat tissues. Conclusions: Our data shows that, like other tissues, ZDF rat liver and brain develop complications associated with redox homeostasis and mitochondrial dysfunction. These results, thus, might have implications in understanding the etiology and pathophysiology of diabesity which in turn, would help in managing the disease associated complications.

  10. Cardioprotective effect of L-glutamate in obese type 2 diabetic Zucker fatty rats

    DEFF Research Database (Denmark)

    Povlsen, Jonas Agerlund; Løfgren, Bo; Rasmussen, Lars Ege

    2009-01-01

    (Wistar-Kyoto) and diabetic (Zucker diabetic fatty (ZDF)) rats, studied at 16 weeks of age. The infarct size (IS)/area-at-risk (AAR) ratio was the primary end-point. Expression of L-glutamate excitatory amino acid transporter (EAAT) 1 (mitochondrial) and EAAT3 (sarcolemmal) was determined by quantitative...... was downregulated in hearts from ZDF rats at both the mRNA and protein levels (P diabetic hearts (P obese diabetic rats have......1. Because diabetic hearts have an increased threshold for cardioprotection by ischaemic preconditioning (IPC), we hypothesized that protection by L-glutamate during reperfusion is restricted in Type 2 diabetic hearts. Previously, we found that L-glutamate-mediated postischaemic cardioprotection...

  11. Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats

    Czech Academy of Sciences Publication Activity Database

    Holubová, M.; Zemenová, J.; Mikulášková, Barbora; Panajotová, V.; Stöhr, J.; Haluzík, M.; Kuneš, Jaroslav; Železná, B.; Maletínská, L.

    2016-01-01

    Roč. 229, č. 2 (2016), s. 85-96 ISSN 0022-0795 R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GA15-08679S Institutional support: RVO:67985823 Keywords : prolactin-releasing peptide * lipidization * diet-induced obesity * ZDF rats * food intake rat Subject RIV: ED - Physiology Impact factor: 4.706, year: 2016

  12. Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Waagepetersen, Helle S; Schousboe, Arne

    2010-01-01

    Obesity and type 2 diabetes have reached epidemic proportions; however, scarce information about how these metabolic syndromes influence brain energy and neurotransmitter homeostasis exist. The objective of this study was to elucidate how brain glycogen and neurotransmitter homeostasis are affected...... by these conditions. [1-(13)C]glucose was administered to Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats. Sprague-Dawley (SprD), Zucker lean (ZL), and ZDF lean rats were used as controls. Several brain regions were analyzed for glycogen levels along with (13)C-labeling and content of glutamate, glutamine...... of glutamine and glutamate were decreased in the cerebellum of the ZO and the ZDF rats. Glycogen levels were also lower in this region. These results suggest that the obese and type 2 diabetic models were associated with lower brain glucose metabolism. Glucose metabolism through the TCA cycle was more...

  13. Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats

    Czech Academy of Sciences Publication Activity Database

    Holubová, Martina; Zemenová, Jana; Mikulášková, Barbora; Panajotová, V.; Stöhr, J.; Haluzík, M.; Kuneš, Jaroslav; Železná, Blanka; Maletínská, Lenka

    2016-01-01

    Roč. 229, č. 2 (2016), s. 85-96 ISSN 0022-0795 R&D Projects: GA ČR(CZ) GA15-08679S; GA TA ČR(CZ) TE01020028 Institutional support: RVO:61388963 Keywords : prolactin-releasing peptide * lipidization * diet-induced obesity * ZDF rats * food intake * rat Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.706, year: 2016

  14. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: Activation of PPAR-α

    International Nuclear Information System (INIS)

    Hsun-Wei Huang, Tom; Peng Gang; Qian Li, George; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2006-01-01

    Salacia oblonga (SO) root is an Ayurvedic medicine with anti-diabetic and anti-obese properties. Peroxisome proliferator-activated receptor (PPAR)-α, a nuclear receptor, plays an important role in maintaining the homeostasis of lipid metabolism. Here, we demonstrate that chronic oral administration of the water extract from the root of SO to Zucker diabetic fatty (ZDF) rats, a genetic model of type 2 diabetes and obesity, lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. By contrast, the extract had no effect on plasma triglyceride and TC levels in fasted ZDF rats. After olive oil administration to ZDF the extract also inhibited the increase in plasma triglyceride levels. These results suggest that SO extract improves postprandial hyperlipidemia and hepatic steatosis in ZDF rats. Additionally, SO treatment enhanced hepatic expression of PPAR-α mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SO extract and its main component mangiferin activated PPAR-α luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages; these effects were completely suppressed by a selective PPAR-α antagonist MK-886. The findings from both in vivo and in vitro suggest that SO extract functions as a PPAR-α activator, providing a potential mechanism for improvement of postprandial hyperlipidemia and hepatic steatosis in diabetes and obesity

  15. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes

    International Nuclear Information System (INIS)

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2006-01-01

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-α plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-α activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-α mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-α-mediated FA metabolic gene transcription

  16. Prevention of diabetic nephropathy by compound 21, selective agonist of angiotensin type 2 receptors, in Zucker diabetic fatty rats

    DEFF Research Database (Denmark)

    Castoldi, Giovanna; di Gioia, Cira Rt; Bombardi, Camila

    2014-01-01

    Aim of the study was to evaluate the effect of compound 21 (C21), selective AT2 receptor agonist, in diabetic nephropathy and the potential additive effect of C21, when associated to losartan treatment, on the development of albuminuria and renal fibrosis in Zucker diabetic fatty (ZDF) rats. The ...

  17. Long Term Osmotic Mini Pump Treatment with Alpha-MSH Improves Myocardial Function in Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Miklos Szokol

    2017-10-01

    Full Text Available The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH, in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT. Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF, fractional shortening (FS, isovolumetric relaxation time (IVRT, mitral annular plane systolic excursion (MAPSE, and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.

  18. Adaptations in mitochondrial function parallel, but fail to rescue, the transition to severe hyperglycemia and hyperinsulinemia : a study in zucker diabetic fatty rats

    NARCIS (Netherlands)

    Lenaers, E.; Feyter, de H.M.M.L.; Hoeks, J.; Schrauwen, P.A.J.; Schaart, G.; Nabben, M.W.; Nicolay, K.; Prompers, J.J.; Hesselink, M.K.C.

    2010-01-01

    Cross-sectional human studies have associated mitochondrial dysfunction to type 2 diabetes. We chose Zucker diabetic fatty (ZDF) rats as a model of progressive insulin resistance to examine whether intrinsic mitochondrial defects are required for development of type 2 diabetes. Muscle mitochondrial

  19. Activation of PPAR by Rosiglitazone Does Not Negatively Impact Male Sex Steroid Hormones in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mahmoud Mansour

    2009-01-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPAR activation decreased serum testosterone (T in women with hyperthecosis and/or polycystic ovary syndrome and reduced the conversion of androgens to estradiol (E2 in female rats. This implies modulation of female sex steroid hormones by PPAR. It is not clear if PPAR modulates sex steroid hormones in diabetic males. Because PPAR activation by thiazolidinedione increased insulin sensitivity in type 2 diabetes, understanding the long term impact of PPAR activation on steroid sex hormones in males is critical. Our objective was to determine the effect of PPAR activation on serum and intratesticular T, luteinizing hormone (LH, follicle stimulating hormone (FSH and E2 concentrations in male Zucker diabetic fatty (ZDF rats treated with the PPAR agonist rosiglitazone (a thiazolidinedione. Treatment for eight weeks increased PPAR mRNA and protein in the testis and elevated serum adiponectin, an adipokine marker for PPAR activation. PPAR activation did not alter serum or intratesticular T concentrations. In contrast, serum T level but not intratesticular T was reduced by diabetes. Neither diabetes nor PPAR activation altered serum E2 or gonadotropins FSH and LH concentrations. The results suggest that activation of PPAR by rosiglitazone has no negative impact on sex hormones in male ZDF rats.

  20. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.

    Science.gov (United States)

    Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L

    2015-04-16

    Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Involvement of spinal glutamate transporter-1 in the development of mechanical allodynia and hyperalgesia associated with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Shi J

    2016-11-01

    Full Text Available Jinshan Shi,1,* Ke Jiang,2,* Zhaoduan Li,3 1Department of Anesthesiology, Guizhou Provincial People’s Hospital, 2Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 3Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Little is known about the effects of the development of type 2 diabetes on glutamate homeostasis in the spinal cord. Therefore, we quantified the extracellular levels of glutamate in the spinal cord of Zucker diabetic fatty (ZDF rats using in vivo microdialysis. In addition, protein levels of glutamate transporter-1 (GLT-1 in the spinal cord of ZDF rats were measured using Western blot. Finally, the effects of repeated intrathecal injections of ceftriaxone, which was previously shown to enhance GLT-1 expression, on the development of mechanical allodynia and hyperalgesia as well as on basal extracellular level of glutamate and the expression of GLT-1 in the spinal cord of ZDF rats were evaluated. It was found that ZDF rats developed mechanical hyperalgesia and allodynia, which were associated with increased basal extracellular levels of glutamate and attenuated levels of GLT-1 expression in the spinal cord, particularly in the dorsal horn. Furthermore, repeated intrathecal administrations of ceftriaxone dose-dependently prevented the development of mechanical hyperalgesia and allodynia in ZDF rats, which were correlated with enhanced GLT-1 expression without altering the basal glutamate levels in the spinal cord of ZDF rats. Overall, the results suggested that impaired glutamate reuptake in the spinal cord may contribute to the development of neuropathic pains in type 2 diabetes. Keywords: diabetes, peripheral neuropathy, spinal cord, Zucker diabetic fatty rats, glutamate, glutamate transporter-1

  2. Attenuation of renovascular damage in Zucker diabetic fatty rat by NWT-03, an egg protein hydrolysate with ACE- and DPP4-inhibitory Activity.

    Directory of Open Access Journals (Sweden)

    Yumei Wang

    Full Text Available BACKGROUND: Dipeptidyl peptidase 4 (DPP4 and angiotensin-converting enzyme (ACE are important target enzymes in glycemic control and renovascular protection. Here, we studied the effect of NWT-03, an egg protein hydrolysate with DPP4- and ACE-inhibitory activity, on renovascular damage in Zucker diabetic fatty (ZDF rats. Comparisons were made to rats treated with vildagliptin (VIL, included as a positive control for the effect of DPP4 inhibition. METHODS: ZDF rats received NWT-03 (1 g/kg/day or VIL (3 mg/kg/day from 10 to 25 weeks of age. Metabolic and renal functions were assessed; the kidney was removed for histological analysis of glomerulosclerosis and expression of pro-inflammatory/fibrotic markers (RT-PCR and Western blotting; and the aorta was removed for studies of endothelium-dependent relaxation (EDR. FINDINGS: Hyperinsulinemic ZDF rats typically developed signs of type-2 diabetes and renovascular damage, as evidenced by albuminuria, glomerulosclerosis, and impaired EDR. Neither NWT-03 nor VIL improved metabolic parameters; for VIL, this was despite a 5-fold increase in glucagon-like peptide (GLP-1 levels. NWT-03 and VIL both reduced renal interleukin (Il-1β/Il-13 mRNA expression and glomerulosclerosis. However, only NWT-03 additionally decreased renal tumor necrosis factor (TNF-α mRNA and P22(phox protein expression, reduced albuminuria, and restored aortic EDR. Indomethacin added to the organ bath instantly improved aortic EDR, indicating a role for cyclooxygenase (COX-derived contractile prostanoids in opposing relaxation in ZDF rats. This indomethacin effect was reduced by NWT-03, but not by VIL, and coincided with decreased renal COX-1/2 protein expression. CONCLUSION AND INTERPRETATION: Long-term supplementation with the egg protein hydrolysate NWT-03 attenuated renovascular damage in this preclinical rat model of type 2 diabetes. A comparison to the DPP4-inhibitor VIL suggests that the effects of NWT-03 were related to both

  3. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Hofbauer, C; Picke, A-K; Rauner, M; Huber, G; Peña, J A; Damm, T; Barkmann, R; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-01-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, pbone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (pbone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes". Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Combination of Medicinal Herbs KIOM-79 Reduces Advanced Glycation End Product Accumulation and the Expression of Inflammatory Factors in the Aorta of Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Eunjin Sohn

    2011-01-01

    Full Text Available Previous studies have reported that KIOM-79 shows a strong inhibitory effect on AGE formation and inhibited a proinflammatory state in a murine macrophage cell line. In the present study, we investigated the effect of KIOM-79 on AGE accumulation and vascular inflammation in the aorta of Zucker diabetic fatty (ZDF rats, a commonly used model of type 2 diabetes. Seven-week-old male ZDF rats were treated with KIOM-79 (50 mg/kg once a day orally for 13 weeks. We examined the dissected aortas for AGE accumulation, expression of the receptor for AGEs (RAGE, and the expression of proinflammatory factors, including monocyte chemoattractant protein-1 (MCP-1, vascular endothelial growth factor (VEGF, and vascular adhesion molecule-1 (VCAM-1. Nuclear factor-kappaB (NF-κB and inducible nitric oxide synthase (iNOS were also measured by Southwestern histochemistry, electrophoretic mobility shift assay (EMSA, and immunohistochemistry, respectively. KIOM-79 markedly reduced the accumulation of AGEs and the expression of RAGE in the aorta. We also found that KIOM-79 attenuated the expression of inflammatory factors including NF-κB, MCP-1, VEGF, VCAM-1, and iNOS in the aortas of ZDF rats. These data suggest that KIOM-79 may prevent or retard the development of inflammation in diabetic vascular disease.

  5. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function.

    Science.gov (United States)

    Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C

    2011-12-01

    Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.

  6. Cardioprotective effect of L-glutamate in obese type 2 diabetic Zucker fatty rats

    DEFF Research Database (Denmark)

    Povlsen, Jonas Agerlund; Løfgren, Bo; Rasmussen, Lars Ege

    2009-01-01

    (Wistar-Kyoto) and diabetic (Zucker diabetic fatty (ZDF)) rats, studied at 16 weeks of age. The infarct size (IS)/area-at-risk (AAR) ratio was the primary end-point. Expression of L-glutamate excitatory amino acid transporter (EAAT) 1 (mitochondrial) and EAAT3 (sarcolemmal) was determined by quantitative......1. Because diabetic hearts have an increased threshold for cardioprotection by ischaemic preconditioning (IPC), we hypothesized that protection by L-glutamate during reperfusion is restricted in Type 2 diabetic hearts. Previously, we found that L-glutamate-mediated postischaemic cardioprotection...... mimics IPC. 2. Rat hearts were studied in a Langendorff preparation perfused with Krebs'-Henseleit solution and subjected to 40 min global no-flow ischaemia, followed by 120 min reperfusion. L-Glutamate (0, 15 and 30 mmol/L) was added to the perfusate during reperfusion of hearts from non-diabetic...

  7. Renal expression of FGF23 in progressive renal disease of diabetes and the effect of ACE inhibitor.

    Directory of Open Access Journals (Sweden)

    Cristina Zanchi

    Full Text Available Fibroblast growth factor 23 (FGF23 is a phosphaturic hormone mainly produced by bone that acts in the kidney through FGF receptors and Klotho. Here we investigated whether the kidney was an additional source of FGF23 during renal disease using a model of type 2 diabetic nephropathy. Renal expression of FGF23 and Klotho was assessed in Zucker diabetic fatty (ZDF and control lean rats at 2, 4, 6, 8 months of age. To evaluate whether the renoprotective effect of angiotensin converting enzyme (ACE inhibitor in this model was associated with changes in FGF23 and Klotho, ZDF rats received ramipril from 4, when proteinuric, to 8 months of age. FGF23 mRNA was not detectable in the kidney of lean rats, nor of ZDF rats at 2 months of age. FGF23 became measurable in the kidney of diabetic rats at 4 months and significantly increased thereafter. FGF23 protein localized in proximal and distal tubules. Renal Klotho mRNA and protein decreased during time in ZDF rats. As renal disease progressed, serum phosphate levels increased in parallel with decline of fractional phosphorus excretion. Ramipril limited proteinuria and renal injury, attenuated renal FGF23 upregulation and ameliorated Klotho expression. Ramipril normalized serum phosphate levels and tended to increase fractional phosphorus excretion. These data indicate that during progressive renal disease the kidney is a site of FGF23 production which is limited by ACE inhibition. Interfering pharmacologically with the delicate balance of FGF23 and phosphorus in diabetes may have implications in clinics.

  8. L-cysteine supplementation upregulates glutathione (GSH) and vitamin D binding protein (VDBP) in hepatocytes cultured in high glucose and in vivo in liver, and increases blood levels of GSH, VDBP, and 25-hydroxy-vitamin D in Zucker diabetic fatty rats.

    Science.gov (United States)

    Jain, Sushil K; Kanikarla-Marie, Preeti; Warden, Cassandra; Micinski, David

    2016-05-01

    Vitamin D binding protein (VDBP) status has an effect on and can potentially improve the status of 25(OH) vitamin D and increase the metabolic actions of 25(OH) vitamin D under physiological and pathological conditions. Diabetes is associated with lower levels of glutathione (GSH) and 25(OH) vitamin D. This study examined the hypothesis that upregulation of GSH will also upregulate blood levels of VDBP and 25(OH) vitamin D in type 2 diabetic rats. L-cysteine (LC) supplementation was used to upregulate GSH status in a FL83B hepatocyte cell culture model and in vivo using Zucker diabetic fatty (ZDF) rats. Results show that LC supplementation upregulates both protein and mRNA expression of VDBP and vitamin D receptor (VDR) and GSH status in hepatocytes exposed to high glucose, and that GSH deficiency, induced by glutamate cysteine ligase knockdown, resulted in the downregulation of GSH, VDBP, and VDR and an increase in oxidative stress levels in hepatocytes. In vivo, LC supplementation increased GSH and protein and mRNA expression of VDBP and vitamin D 25-hydroxylase (CYP2R1) in the liver, and simultaneously resulted in elevated blood levels of LC and GSH, as well as increases in VDBP and 25(OH) vitamin D levels, and decreased inflammatory biomarkers in ZDF rats compared with those in placebo-supplemented ZDF rats consuming a similar diet. LC supplementation may provide a novel approach by which to raise blood levels of VDBP and 25(OH) vitamin D in type 2 diabetes. © 2016 The Authors. Molecular Nutrition & Food Research Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ebselen treatment prevents islet apoptosis, maintains intranuclear Pdx-1 and MafA levels, and preserves β-cell mass and function in ZDF rats.

    Science.gov (United States)

    Mahadevan, Jana; Parazzoli, Susan; Oseid, Elizabeth; Hertzel, Ann V; Bernlohr, David A; Vallerie, Sara N; Liu, Chang-qin; Lopez, Melissa; Harmon, Jamie S; Robertson, R Paul

    2013-10-01

    We reported earlier that β-cell-specific overexpression of glutathione peroxidase (GPx)-1 significantly ameliorated hyperglycemia in diabetic db/db mice and prevented glucotoxicity-induced deterioration of β-cell mass and function. We have now ascertained whether early treatment of Zucker diabetic fatty (ZDF) rats with ebselen, an oral GPx mimetic, will prevent β-cell deterioration. No other antihyperglycemic treatment was given. Ebselen ameliorated fasting hyperglycemia, sustained nonfasting insulin levels, lowered nonfasting glucose levels, and lowered HbA1c levels with no effects on body weight. Ebselen doubled β-cell mass, prevented apoptosis, prevented expression of oxidative stress markers, and enhanced intranuclear localization of pancreatic and duodenal homeobox (Pdx)-1 and v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MafA), two critical insulin transcription factors. Minimal β-cell replication was observed in both groups. These findings indicate that prevention of oxidative stress is the mechanism whereby ebselen prevents apoptosis and preserves intranuclear Pdx-1 and MafA, which, in turn, is a likely explanation for the beneficial effects of ebselen on β-cell mass and function. Since ebselen is an oral antioxidant currently used in clinical trials, it is a novel therapeutic candidate to ameliorate fasting hyperglycemia and further deterioration of β-cell mass and function in humans undergoing the onset of type 2 diabetes.

  10. Evaluation of Cardioprotective Effects of Genistein against Diabetes ...

    African Journals Online (AJOL)

    weeks, and cardiac functions and metabolic alterations were determined. ... improving glucose tolerance and insulin resistance; facilitating Akt activation and ... disease. Diabetic induced cardiovascular disease was characterized in ZDF rats by ... impairment can be detected in the early stage of ... Body weight and fasting.

  11. Evolution from increased cardiac mechanical function towards cardiomyopathy in the obese rat due to unbalanced high fat and abundant equilibrated diets

    Directory of Open Access Journals (Sweden)

    Mourmoura Evangelia

    2015-07-01

    Full Text Available The aim of our study was to know whether high dietary energy intake (HDEI with equilibrated and unbalanced diets in term of lipid composition modify the fatty acid profile of cardiac phospholipids and function of various cardiac cells and to know if the changes in membrane lipid composition can explain the modifications of cellular activity. Wistar rats were fed either a control or high-fat (HF diet for 12 weeks and Zucker diabetic fatty (ZDF rats as well as their lean littermate (ZL a control diet between week 7 to 11 of their life. Energy intake and abdominal obesity was increased in HF-fed and ZDF rats. Circulating lipids were also augmented in both strains although hyperglycemia was noticed only in ZDF rats. HDEI induced a decrease in linoleate and increase in arachidonate in membrane phospholipids which was more pronounced in the ZDF rats compared to the HF-fed rats. In vivo cardiac function (CF was improved in HF-fed rats whereas ex vivo cardiac function was unchanged, suggesting that environmental factors such as catecholamines stimulated the in vivo CF. The unchanged ex vivo CF was associated with an increased cardiac mass which indicated development of fibrosis and/or hypertrophy. The increased in vivo CF was sustained by an augmented coronary reserve which was related to the cyclooxygenase pathway and accumulation of arachidonate in membrane phospholipids. In conclusion, before triggering a diabetic cardiomyopathy, HDEI stimulated the CF. The development of cardiomyopathy seems to result from fibrosis and/or hypertrophy which augments myocardial stiffness and decreases contractility.

  12. Anti-diabetic action of Punica granatum flower extract: Activation of PPAR-γ and identification of an active component

    International Nuclear Information System (INIS)

    Huang, Tom H.W.; Peng Gang; Kota, Bhavani P.; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2005-01-01

    Peroxisome proliferator-activated receptor (PPAR)-γ activators are widely used in the treatment of type 2 diabetes because they improve the sensitivity of insulin receptors. Punica granatum flower (PGF) has been used as an anti-diabetic medicine in Unani medicinal literature. The mechanism of actions is, however, unknown. In the current study, we demonstrated that 6-week oral administration of methanol extract from PGF (500 mg/kg, daily) inhibited glucose loading-induced increase of plasma glucose levels in Zucker diabetic fatty rats (ZDF), a genetic animal model for type 2 diabetes, whereas it did not inhibit the increase in Zucker lean rats (ZL). The treatment did not lower the plasma glucose levels in fasted ZDF and ZL rats. Furthermore, RT-PCR results demonstrated that the PGF extract treatment in ZDF rats enhanced cardiac PPAR-γ mRNA expression and restored the down-regulated cardiac glucose transporter (GLUT)-4 (the insulin-dependent isoform of GLUTs) mRNA. These results suggest that the anti-diabetic activity of PGF extract may result from improved sensitivity of the insulin receptor. From the in vitro studies, we demonstrated that the PGF extract enhanced PPAR-γ mRNA and protein expression and increased PPAR-γ-dependent mRNA expression and activity of lipoprotein lipase in human THP-1-differentiated macrophage cells. Phytochemical investigation demonstrated that gallic acid in PGF extract is mostly responsible for this activity. Thus, our findings indicate that PPAR-γ is a molecular target for PGF extract and its prominent component gallic acid, and provide a better understanding of the potential mechanism of the anti-diabetic action of PGF

  13. A novel oral dual amylin and calcitonin receptor agonist (KBP-042) exerts antiobesity and antidiabetic effects in rats

    DEFF Research Database (Denmark)

    Andreassen, Kim V; Feigh, Michael; Hjuler, Sara T

    2014-01-01

    -induced obese (DIO) and Zucker diabetic fatty (ZDF) rats. In vitro, KBP-042 demonstrated superior binding affinity and activation of amylin and calcitonin receptors, and ex vivo, KBP-042 exerted inhibitory action on stimulated insulin and glucagon release from isolated islets. In vivo, KBP-042 induced...... a superior and pronounced reduction in food intake in conjunction with a sustained pair-fed corrected weight loss in DIO rats. Concomitantly, KBP-042 improved glucose homeostasis and reduced hyperinsulinemia and hyperleptinemia in conjunction with enhanced insulin sensitivity. In ZDF rats, KBP-042 induced...... antiobesity and antidiabetic efficacy by dual modulation of insulin sensitivity and directly decelerating stress on the pancreatic α- and β-cells. These results could provide the basis for oral KBP-042 as a novel therapeutic agent in type 2 diabetes....

  14. Regulation of cardiac expression of the diabetic marker microRNA miR-29.

    Directory of Open Access Journals (Sweden)

    Nicholas Arnold

    Full Text Available Diabetes mellitus (DM is an independent risk factor for heart disease and its underlying mechanisms are unclear. Increased expression of diabetic marker miR-29 family miRNAs (miR-29a, b and c that suppress the pro-survival protein Myeloid Cell Leukemia 1(MCL-1 is reported in pancreatic β-cells in Type 1 DM. Whether an up-regulation of miR-29 family miRNAs and suppression of MCL-1 (dysregulation of miR-29-MCL-1 axis occurs in diabetic heart is not known. This study tested the hypothesis that insulin regulates cardiac miR-29-MCL-1 axis and its dysregulation correlates with DM progression. In vitro studies with mouse cardiomyocyte HL-1 cells showed that insulin suppressed the expression of miR-29a, b and c and increased MCL-1 mRNA. Conversely, Rapamycin (Rap, a drug implicated in the new onset DM, increased the expression of miR-29a, b and c and suppressed MCL-1 and this effect was reversed by transfection with miR-29 inhibitors. Rap inhibited mammalian target of rapamycin complex 1 (mTORC1 signaling in HL-1 cells. Moreover, inhibition of either mTORC1 substrate S6K1 by PF-4708671, or eIF4E-induced translation by 4E1RCat suppressed MCL-1. We used Zucker diabetic fatty (ZDF rat, a rodent model for DM, to test whether dysregulation of cardiac miR-29-MCL-1 axis correlates with DM progression. 11-week old ZDF rats exhibited significantly increased body weight, plasma glucose, insulin, cholesterol, triglycerides, body fat, heart weight, and decreased lean muscle mass compared to age-matched lean rats. Rap treatment (1.2 mg/kg/day, from 9-weeks to 15-weeks significantly reduced plasma insulin, body weight and heart weight, and severely dysregulated cardiac miR-29-MCL1 axis in ZDF rats. Importantly, dysregulation of cardiac miR-29-MCL-1 axis in ZDF rat heart correlated with cardiac structural damage (disorganization or loss of myofibril bundles. We conclude that insulin and mTORC1 regulate cardiac miR-29-MCL-1 axis and its dysregulation caused by reduced

  15. Preclinical characterization of recombinant human tissue kallikrein-1 as a novel treatment for type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Tadeusz Kolodka

    Full Text Available Modulation of the kallikrein-kinin system (KKS has been shown to have beneficial effects on glucose homeostasis and several other physiological responses relevant to the progression of type 2 diabetes mellitus (T2D. The importance of bradykinin and its receptors in mediating these responses is well documented, but the role of tissue kallikrein-1, the protease that generates bradykinin in situ, is much less understood. We developed and tested DM199, recombinant human tissue kallikrein-1 protein (rhKLK-1, as a potential novel therapeutic for T2D. Hyperinsulinemic-euglycemic clamp studies suggest that DM199 increases whole body glucose disposal in non-diabetic rats. Single-dose administration of DM199 in obese db/db mice and ZDF rats, showed an acute, dose-dependent improvement in whole-body glucose utilization. Sub-acute dosing for a week in ZDF rats improved glucose utilization, with a concomitant rise in fasting insulin levels and HOMA1-%B scores. After cessation of sub-acute dosing, fasting blood glucose levels were significantly lower in ZDF rats during a drug wash-out period. Our studies show for the first time that DM199 administration results in acute anti-hyperglycemic effects in several preclinical models, and demonstrate the potential for further development of DM199 as a novel therapeutic for T2D.

  16. Effects of insulin therapy on porosity, non-enzymatic glycation and mechanical competence in the bone of rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Picke, A-K; Hofbauer, C; Rauner, M; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-10-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and optimal treatment strategies remain unclear. We studied the effects of diabetes and insulin therapy on non-enzymatic glycation (NEG), cortical porosity (Ct.Po) and biomechanics of the bone tissue in Zucker Diabetic Fatty (ZDF) rats. Eleven-week old ZDF diabetic and non-diabetic rats were given insulin to achieve glycaemic control or vehicle seven days per week over twelve weeks (insulin dose adapted individually 0.5 international units (IU) at week 1 to 13.0IU at week 12). The right femora were excised, micro-CT scanned, and tested in 3-point bending to measure biomechanics. NEG of the midshaft was determined from bulk fluorescence. Diabetes led to increased NEG (+50.1%, p=0.001) and Ct.Po (+22.9%, p=0.004), as well as to reduced mechanical competence (max. stress: -14.2%, p=0.041, toughness: -29.7%, p=0.016) in the bone tissue. NEG and Ct.Po both correlated positively to serum glucose (NEG: R(2)=0.41, p1, Ct.Po: R(2)=0.34, p=0.003) and HbA1c (NEG: R(2)=0.42, p1, Ct.Po: R(2)=0.28, p=0.008) levels, while NEG correlated negatively with bone biomechanics (elastic modulus: R(2)=0.21, p=0.023, yield stress: R(2)=0.17, p=0.047). Twelve weeks of insulin therapy had no significant effect on NEG or Ct.Po, and was unable to improve the mechanical competence of the bone tissue. A reduction of mechanical competence was observed in the bone tissue of the diabetic rats, which was explained in part by increased collagen NEG. Twelve weeks of insulin therapy did not alter NEG, Ct.Po or bone biomechanics. However, significant correlations between NEG and serum glucose and HbA1c were observed, both of which were reduced with insulin therapy. This suggests that a longer duration of insulin therapy may be required to reduce the NEG of the bone collagen and restore the mechanical competence of diabetic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Involvement of Proteasome and Macrophages M2 in the Protection Afforded by Telmisartan against the Acute Myocardial Infarction in Zucker Diabetic Fatty Rats with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    C. Di Filippo

    2014-01-01

    Full Text Available This study investigated the involvement of proteasome and macrophages M2 in the protection afforded by telmisartan against the acute myocardial infarction in Zucker diabetic fatty (ZDF rats with metabolic syndrome. ZDF rats were treated for three weeks with telmisartan at doses of 7 and 12 mg/kg/day. After treatment, rats were subjected to a 25 min occlusion of the left descending coronary artery followed by 2 h reperfusion (I/R. At the end of the I/R period, biochemical, immunohistochemical, and echocardiographic evaluations were done. Telmisartan treatment (7 mg/kg and 12 mg/kg reduced the myocardial infarct size, the expression of proteasome subunits 20S and 26S, and the protein ubiquitin within the heart. The compound has led to an increased M2 macrophage phenotype within the cardiac specimens and a modification of the cardiac cytokine and chemokine profile. This was functionally translated in improved cardiac performance as evidenced by echography after 2 h reperfusion. 7 mg/kg/day telmisartan was sufficient to improve the left ventricular ejection fraction LVEF of the rat heart recorded after I/R (e.g., vehicle 38 ± 2.2%; telmisartan 54 ± 2.7% and was sufficient to improve the diastolic function and the myocardial performance index up to values of 0.6 ± 0.01 measured after I/R.

  18. JTT-130, a Novel Intestine-Specific Inhibitor of Microsomal Triglyceride Transfer Protein, Improves Hyperglycemia and Dyslipidemia Independent of Suppression of Food Intake in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Shohei Sakata

    2014-01-01

    Full Text Available We investigated the effects of JTT-130 on glucose and lipid metabolism independent of the suppression of feeding by comparing with pair-fed animals. Male Zucker diabetic fatty (ZDF rats were divided into control, JTT-130 treatment, and pair-fed groups. The rats were fed with a regular powdered diet with or without JTT-130 as a food admixture for 6 weeks. We compared the effects on glucose and lipid metabolism in JTT-130 treatment group with those in pair-fed group. Results. Hyperglycemia in ZDF rats was prevented in both JTT-130 treatment and pair-fed groups, but the prevention in pair-fed group became poor with time. Moreover, reduction in plasma cholesterol levels was observed only in JTT-130 treatment group. JTT-130 treatment group showed improved glucose tolerance at 5 weeks after treatment and significant elevation of portal glucagon-like peptide-1 (GLP-1 levels. The hepatic lipid content in JTT-130 treatment group was decreased as compared with pair-fed group. Furthermore, pancreatic protection effects, such as an increase in pancreatic weight and an elevation of insulin-positive area in islets, were observed after JTT-130 treatment. Conclusions. JTT-130 improves hyperglycemia and dyslipidemia via a mechanism independent of suppression of food intake, which is ascribed to an enhancement of GLP-1 secretion and a reduction of lipotoxicity.

  19. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    International Nuclear Information System (INIS)

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-01-01

    In type 2 diabetes (T2DM) β-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 ± 3.8%) than ZF rats (48.8 ± 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 ± 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity

  20. Brain glucose overexposure and lack of acute metabolic flexibility in obesity and type 2 diabetes: a PET-[18F]FDG study in Zucker and ZDF rats

    OpenAIRE

    Liistro, Tiziana; Guiducci, Letizia; Burchielli, Silvia; Panetta, Daniele; Belcari, Nicola; Pardini, Silvia; Guerra, Alberto Del; Salvadori, Piero A; Iozzo, Patricia

    2010-01-01

    Brain glucose exposure may complicate diabetes and obesity. We used positron emission tomography with 18F-fluorodeoxyglucose in Zucker obese, diabetic, and control rats to determine the contributions of blood glucose mass action versus local mechanisms in regulating central glucose disposal in fasted and acutely glucose-stimulated states, and their adaptations in obesity and diabetes. Our study data indicate that brain glucose uptake is dependent on both local and mass action components, and ...

  1. Curcumin Alleviates Diabetic Retinopathy in Experimental Diabetic Rats.

    Science.gov (United States)

    Yang, Fang; Yu, Jinqiang; Ke, Feng; Lan, Mei; Li, Dekun; Tan, Ke; Ling, Jiaojiao; Wang, Ying; Wu, Kaili; Li, Dai

    2018-03-29

    To investigate the potential protective effects of curcumin on the retina in diabetic rats. An experimental diabetic rat model was induced by a low dose of streptozotocin combined with a high-energy diet. Rats which had blood glucose levels ≥11.6 mmol/L were used as diabetic rats. The diabetic rats were randomly divided into 3 groups: diabetic rats with no treatment (DM), diabetic rats treated with 100 mg/kg curcumin (DM + Cur 100 mg/kg), and diabetic rats treated with 200 mg/kg curcumin (DM + Cur 200 mg/kg). Curcumin was orally administered daily for 16 weeks. After 16 weeks of administration, the rats were euthanized, and eyes were dissected. Retinal histology was examined, and the thickness of the retina was measured. Ultrastructural changes of retinal ganglion cells, inner layer cells, retinal capillary, and membranous disks were observed by electron microscopy. Malondialdehyde, superoxide dismutase, and total antioxidant capacity were measured by ELISA. Expression levels of vascular endothelial growth factor (VEGF) in retina tissues were examined by immunohistochemical staining and ELISA. Expression levels of Bax and Bcl-2 in retina tissues were determined by immunohistochemical staining and Western blotting. Curcumin reduced the blood glucose levels of diabetic rats and decreased diabetes-induced body weight loss. Curcumin prevented attenuation of the retina in diabetic rats and ameliorated diabetes-induced ultrastructure changes of the retina, including thinning of the retina, apoptosis of the retinal ganglion cells and inner nuclear layer cells, thickening of retinal capillary basement membrane and disturbance of photoreceptor cell membranous disks. We also found that curcumin has a strong antioxidative ability in the retina of diabetic rats. It was observed that curcumin attenuated the expression of VEGF in the retina of diabetic rats. We also discovered that curcumin had an antiapoptotic effect by upregulating the expression of Bcl-2 and downregulating

  2. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats.

    Science.gov (United States)

    Eom, Young Sil; Gwon, A-Ryeong; Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung; Kim, Byung-Joon

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model.

  3. KDT501, a derivative from hops, normalizes glucose metabolism and body weight in rodent models of diabetes.

    Directory of Open Access Journals (Sweden)

    Veera R Konda

    Full Text Available AIMS/HYPOTHESIS: We developed KDT501, a novel substituted 1,3-cyclopentadione chemically derived from hop extracts, and evaluated it in various in vitro and in vivo models of diabetes and insulin sensitivity. METHODS: KDT501 was evaluated for anti-inflammatory effects in monocyte/macrophage cells; agonistic activity for peroxisome proliferator-activated receptors (PPAR; lipogenesis and gene expression profile in human subcutaneous adipocytes. Body composition, glucose, insulin sensitivity, and lipids were assessed in diet-induced obesity (DIO mice and Zucker Diabetic Fatty (ZDF rats after oral administration. RESULTS: KDT501 mediated lipogenesis in 3T3L1 and human subcutaneous adipocytes; however, the gene expression profile of KDT501 differed from that of the full PPARγ agonist rosiglitazone, suggesting that KDT501 has pleiotropic biological activities. In addition, KDT501 showed only modest, partial PPARγ agonist activity and exhibited anti-inflammatory effects in monocytes/macrophages that were not observed with rosiglitazone. In a DIO mouse model, oral administration of KDT501 significantly reduced fed blood glucose, glucose/insulin AUC following an oral glucose bolus, and body fat. In ZDF rats, oral administration of KDT501 significantly reduced fed glucose, fasting plasma glucose, and glucose AUC after an oral glucose bolus. Significant, dose-dependent reductions of plasma hemoglobin A1c, weight gain, total cholesterol, and triglycerides were also observed in animals receiving KDT501. CONCLUSION: These results indicate that KDT501 produces a unique anti-diabetic profile that is distinct in its spectrum of pharmacological effects and biological mechanism from both metformin and pioglitazone. KDT501 may thus constitute a novel therapeutic agent for the treatment of Type 2 diabetes and associated conditions.

  4. Bariatric surgery, gut morphology and enteroendocrine cells

    DEFF Research Database (Denmark)

    Hansen, Carl Frederik

    40 hormones. In this PhD study, gut morphology and the population of endocrine cells have been examined in three rodent animal models using stereological techniques. First, in a rodent model of type-2 diabetes (T2DM), the Zucker diabetic fatty rat (ZDF), the population of endocrine L-cells...... to contribute to the positive effects of bariatic surgery but the mechanisms remain largely unknown. The endocrine cells of the gastrointestinal tract that produce and secrete hormones are difficult to examine as they are distributed as single cells. Several types of endocrine cells together produce more than...... and the gut morphology were quantified. The number of Lcells was 4.8 million in the normal rat and the L-cells were found to double in number in the diabetic ZDF rat model. Second, the L-cell population, gut morphology and endocrine cell gene expression were examined in a rodent model of Roux-en-Y gastric...

  5. Renal function in streptozotocin-diabetic rats

    DEFF Research Database (Denmark)

    Jensen, P K; Christiansen, J S; Steven, K

    1981-01-01

    to the rise in kidney glomerular filtration rate (diabetic rats: 37.0 nl/min; control rats: 27.9 nl/min). Likewise renal plasma flow was significantly higher in the diabetic rats (4.1 ml/min) than in the control group (3.0 ml/min). Glomerular capillary pressure was identical in both groups (56.0 and 56.0 mm......-1mmHg-1). Kidney weight was significantly higher in the diabetic rats (1.15 g; control rats: 0.96 g) while body weight was similar in both groups (diabetic rats: 232 g; control rats: 238 g). Calculations indicate that the increases in transglomerular hydraulic pressure, renal plasma flow......Renal function was examined with micropuncture methods in the insulin-treated streptozotocin-diabetic rat. Kidney glomerular filtration rate was significantly higher in the diabetic rats (1.21 ml/min) than in the control group (0.84 ml/min) Nephron glomerular filtration rate increased in proportion...

  6. X-ray lethality in diabetic rats

    International Nuclear Information System (INIS)

    Cember, H.; Thorson, T.M. Jr.

    1978-01-01

    Rats were made diabetic with streptozotocin and were irradiated with X-rays at various exposure levels in order to determine the LD-50/30 day dose. Non-diabetic control rats were exposed in a similar manner. The LD-50 exposures for the diabetic rats and the control rats were 436 R, and 617 R respectively. In view of the high prevalence of diabetes among the adult population, this finding may have important implications for diabetic workers who may be exposed accidentally to high levels of ionizing radiation

  7. Total parenteral nutrition in diabetic rats

    International Nuclear Information System (INIS)

    Norcross, E.D.; Stein, T.P.

    1986-01-01

    Parenteral Nutrition with hypertonic glucose is frequently given to diabetic patients. Large amounts of insulin can be required. The purpose of this investigation was to develop a totally parenterally nourished diabetic rat model. 200 g Female Sprague Dawley rats were made diabetic by i.v. injection of streptozotocin (50 mg/kg). Rats were then allowed to recover for at least 1 week before undergoing surgical insertion of a central venous catheter for parenteral feeding. TPN was begun 3 days after surgery. Prior to this they were allowed unlimited access to food and water. Control (non-streptozotocin treated) rats were run at the same time. Protein turnover was investigated by using 15 N glycine. Preliminary results: diabetic rats given mostly fat as a calorie source survived well in the absence of exogenous insulin whereas those that were given glucose only as their non-protein calorie source showed poor survival even with exogenous insulin. N balance and protein turnover in the lipid treated diabetic rats were comparable to the non-diabetic control rats

  8. Treatment of diabetic rats with encapsulated islets.

    Science.gov (United States)

    Sweet, Ian R; Yanay, Ofer; Waldron, Lanaya; Gilbert, Merle; Fuller, Jessica M; Tupling, Terry; Lernmark, Ake; Osborne, William R A

    2008-12-01

    Immunoprotection of islets using bioisolator systems permits introduction of allogeneic cells to diabetic patients without the need for immunosuppression. Using TheraCyte immunoisolation devices, we investigated two rat models of type 1 diabetes mellitus (T1DM), BB rats and rats made diabetic by streptozotocin (STZ) treatment. We chose to implant islets after the onset of diabetes to mimic the probable treatment of children with T1DM as they are usually diagnosed after disease onset. We encapsulated 1000 rat islets and implanted them subcutaneously (SQ) into diabetic biobreeding (BB) rats and STZ-induced diabetic rats, defined as two or more consecutive days of blood glucose>350 mg/dl. Rats were monitored for weight and blood glucose. Untreated BB rats rapidly lost weight and were euthanized at >20% weight loss that occurred between 4 and 10 days from implantation. For period of 30-40 days following islet implantation weights of treated rats remained steady or increased. Rapid weight loss occurred after surgical removal of devices that contained insulin positive islets. STZ-treated rats that received encapsulated islets showed steady weight gain for up to 130 days, whereas untreated control rats showed steady weight loss that achieved >20% at around 55 days. Although islet implants did not normalize blood glucose, treated rats were apparently healthy and groomed normally. Autologous or allogeneic islets were equally effective in providing treatment. TheraCyte devices can sustain islets, protect allogeneic cells from immune attack and provide treatment for diabetic-mediated weight loss in both BB rats and STZ-induced diabetic rats.

  9. Myocardial impulse propagation is impaired in right ventricular tissue of Zucker Diabetic Fatty (ZDF) rats

    DEFF Research Database (Denmark)

    Olsen, Kristine Boisen; Axelsen, Lene Nygaard; Braunstein, Thomas Hartig

    2013-01-01

    Diabetes increases the risk of cardiovascular complications including arrhythmias, but the underlying mechanisms remain to be established. Decreased conduction velocity (CV), which is an independent risk factor for re-entry arrhythmias, is present in models with streptozotocin (STZ) induced type ...

  10. Jiangtang Xiaozhi Recipe () prevents diabetic retinopathy in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Li, Lin; Li, Yan-Lin; Zhou, Yun-Feng; Ge, Zheng-Yan; Wang, Li-Li; Li, Zhi-Qiang; Guo, Yu-Jie; Jin, Long; Ren, Ye; Liu, Jian-Xun; Xu, Yang

    2017-06-01

    To evaluate the prevention effect of diabetic retinopathy of Jiangtang Xiaozhi Recipe (, JXR) in streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley rats were randomly divided into normal control group and diabetic group. Rats in the diabetic group were induced by intraperitoneal administration of STZ (50 mg/kg), and subdivided into 5 groups. Rats in the diabetic control group were given saline; four treatment groups were given metformin (300 mg/kg), JXR (2, 4 and 8 g/kg) respectively for 8 weeks, while rats in the normal control group were injected with citrate buffer and given the same volume of vehicle. Body weight and food intake were measured every week. The hypoglycaemic effects were determined by testing fasting blood glucose (FBG) every other week, and hemoglobin A1c (HbA1c), insulin, and glucagon at the end of the treatment. The preventive effects of JXR on STZ-induced diabetic rats were determined by histopathological examination with hematoxylin and eosin staining, and periodic acid-schiff staining. The effects were further evaluated by serum superoxide dismutase (SOD) activity and malondialdehyde (MDA). High-dose JXR significantly reduced FBG and HbA1c level at the 8th week of administration (Pdiabetic rats. Histopathological studies revealed that there were no basement membrane thickening and mild destruction in the treated groups. Morphometric measurements of retina microvascular showed that acellular capillary and capillary density decreased in treated rats while pericyte and endothelial cell increasing after the treatment. JXR have protective effect of diabetic retinopathy and its mechanism may be associated with the obvious hypoglycemic and antioxidant effect.

  11. Hematological changes in opium addicted diabetic rats.

    Science.gov (United States)

    Asadikaram, Gholamreza; Sirati-Sabet, Majid; Asiabanha, Majid; Shahrokhi, Nader; Jafarzadeh, Abdollah; Khaksari, Mohammad

    2013-01-01

    Chronic opioid treatment in animal models has shown to alter hematological parameters. The aim of this study was to evaluate the biological effects of opium on the number of peripheral blood cells and red blood cells (RBCs) indices in diabetic rats. Peripheral blood samples were collected from diabetic, opium-addicted, diabetic opium-addicted and normal male and female rats and hematological parameters were measured. The mean number of white blood cells (WBCs) was significantly higher in diabetic opium-addict females compared to diabetic non-addict female group. In both male and female, the mean number of neutrophils was significantly higher and the mean number of lymphocytes was lower in diabetic opium-addicted rats than those observed in diabetic non-addicted group. In diabetic opium-addicted male group the mean counts of RBC significantly increased as compared with diabetic male group. However, in diabetic addicted female, the mean number of RBCs was significantly lower than diabetic non-addicted female group. In both males and females, the mean number of platelets was significantly lower in diabetic addict rats compared to diabetic non-addict group. Generally, the results indicated that opium addiction has different effects on male and female rats according to the number of WBC, RBC and RBC indices. It could also be concluded that in the opium-addicts the risk of infection is enhanced due to the weakness of immune system as a result of the imbalance effect of opium on the immune cells.

  12. Metallothionein metabolism in the streptozotocin-diabetic rat

    International Nuclear Information System (INIS)

    Chen, M.L.; Failla, M.L.

    1986-01-01

    Earlier reports from their laboratory showed the induction of the insulin-deficient diabetic state in adult rats was associated with an accumulation of zinc, copper, and a metallothionein-like zinc and copper binding protein in the soluble fraction of liver and kidney. Based upon chromatographic and electrophoretic properties, -SH to metal ratio and amino acid composition, they now report that elevated concentrations of metallothioneins (MT)-I and -II are indeed present in diabetic rat liver and kidney cytosol. The relative rates of MT synthesis in tissues from diabetic and control rats were measured by comparing incorporation of 35 S-cysteine into MT vs. total cytoplasmic proteins at 5 h after injection of the precursor. The relative rates of MT synthesis in livers from rats diabetic for 10 d and fed either chow or purified diet containing 13 or 35 ppm copper were 1.4, 2.3 and 2.8 times greater, respectively, than control rats fed the same diets. Higher relative rates of MT synthesis were also observed in kidneys from diabetic rats fed purified diets compared to controls. Maximal relative rates of MT synthesis in diabetic liver and kidney were observed at 4 and 10 d, respectively, after onset of diabetes. The half-lives of cytoplasmic MT in liver and kidney from diabetic (10 d) rats were 1.3 and 2.6 days, respectively; half-lives of MT in control liver and kidney were 5.0 and 2.1 days, respectively

  13. Adrenergic blockade in diabetic and uninephrectomized rats

    DEFF Research Database (Denmark)

    Thulesen, J; Poulsen, Steen Seier; Jørgensen, P E

    1999-01-01

    The present study reports on the effects of adrenergic blocking agents on the renal growth and on the renal content and urinary excretion of epidermal growth factor (EGF) in streptozotocin-induced diabetic or uninephrectomized rats. Diabetic and uninephrectomized rats were allocated to groups...... treated with either saline or adrenergic antagonists and compared to controls and sham-operated controls, respectively. 24-hour urine samples were obtained on days 7, 14, and 21 and renal tissue samples on day 21. The 24-hour urinary excretion of EGF from controls and saline-treated diabetic rats...... was comparable. In adrenergic antagonist treated diabetic rats, it was reduced by at least 40% throughout the study period. Uninephrectomy caused a 50% reduction in the urinary excretion of EGF. This was not influenced by treatment with an adrenergic antagonist. After 3 weeks, saline-treated diabetic rats had...

  14. Treatment of diabetic rats with encapsulated islets

    OpenAIRE

    Sweet, Ian R; Yanay, Ofer; Waldron, Lanaya; Gilbert, Merle; Fuller, Jessica M; Tupling, Terry; Lernmark, Ake; Osborne, William R A

    2008-01-01

    Immunoprotection of islets using bioisolator systems permits introduction of allogeneic cells to diabetic patients without the need for immunosuppression. Using TheraCyte? immunoisolation devices, we investigated two rat models of type 1 diabetes mellitus (T1DM), BB rats and rats made diabetic by streptozotocin (STZ) treatment. We chose to implant islets after the onset of diabetes to mimic the probable treatment of children with T1DM as they are usually diagnosed after disease onset. We enca...

  15. Metabolic Disorders and Diabetic Complications in Spontaneously Diabetic Torii Leprfa Rat: A New Obese Type 2 Diabetic Model

    Directory of Open Access Journals (Sweden)

    Yusuke Kemmochi

    2013-01-01

    Full Text Available Spontaneously Diabetic Torii Leprfa (SDT fatty rat, established by introducing the fa allele of the Zucker fatty rat into SDT rat genome, is a new model of obese type 2 diabetes. Both male and female SDT fatty rats show overt obesity, and hyperglycemia and hyperlipidemia are observed at a young age as compared with SDT rats. With early incidence of diabetes mellitus, diabetic complications, such as nephropathy, retinopathy, and neuropathy, in SDT fatty rats were seen at younger ages compared to those in the SDT rats. In this paper, we overview pathophysiological features in SDT fatty rats and also describe new insights regarding the hematology, blood pressure, renal complications, and sexual dysfunction. The SDT fatty rats showed an increase of leukocytes, especially the monocyte count, prominent hypertension associated with salt drinking, end-stage renal disease with aging, and hypogonadism. Unlike other diabetic models, the characteristic of SDT fatty rat is to present an incidence of diabetes in females, hypertension, and retinopathy. SDT fatty rat is a useful model for analysis of various metabolic disorders and the evaluation of drugs related to metabolic disease.

  16. in Alloxan-induced Diabetic Rats

    African Journals Online (AJOL)

    HP

    Group 4: Diabetic rats that were administered. 500 mg/kg body weight extracts. Group 5: Diabetic rats that were administered. 300 mg/kg body weight of metformin. The drug and extracts treatment was done for a period of 21 days using orogastric tube. Collection of blood samples. Following 21 days of extract administration, ...

  17. Evaluation of Urinary Tryptophan Metabolite Levels in Non-diabetic Compared to Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Loredana Elena OLAR

    2017-11-01

    Full Text Available Diabetes mellitus is one of the most common metabolic disorders in animals. Thus, currently, it is imperative to introduce non-invasive, economical and rapid methods for the investigation of diabetes in animals. In this study, the urine samples collected from 10 non-diabetic and 10 streptozotocin-induced diabetic rats were investigated by the spectrofluorimetric technique. Emission spectra for the urine samples were obtained following an excitation wavelength of 280 and 400 nm. The investigated fluorophores were mainly tryptophan metabolites, and significant differences resulted between the mean heights of the emission bands attributed to these fluorophore compounds in diabetic compared to non-diabetic rats. The shape of the spectral windings after the utilization of these two excitation wavelengths was almost similar for diabetic and non-diabetic rats; however, there were some discriminatory elements between the two types of investigated samples. In conclusion, the obtained urine fluorescence spectra allow a clear differentiation between diabetic and non-diabetic rats.

  18. Hydrogen sulfide accelerates wound healing in diabetic rats.

    Science.gov (United States)

    Wang, Guoguang; Li, Wei; Chen, Qingying; Jiang, Yuxin; Lu, Xiaohua; Zhao, Xue

    2015-01-01

    The aim of this study was to explore the role of hydrogen sulfide on wound healing in diabetic rats. Experimental diabetes in rats was induced by intraperitoneal injection of streptozotocin (STZ) (in 0.1 mol/L citrate buffer, Ph 4.5) at dose of 70 mg/kg. Diabetic and age-matched non-diabetic rats were randomly assigned to three groups: untreated diabetic controls (UDC), treated diabetic administrations (TDA), and non-diabetic controls (NDC). Wound Healing Model was prepared by making a round incision (2.0 cm in diameter) in full thickness. Rats from TDA receive 2% sodium bisulfide ointment on wound, and animals from UDC and NDC receive control cream. After treatment of 21 days with sodium bisulfide, blood samples were collected for determination of vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule-1 (ICAM-1), antioxidant effects. Granulation tissues from the wound were processed for histological examination and analysis of western blot. The study indicated a significant increase in levels of VEGF and ICAM-1 and a decline in activity of coagulation in diabetic rats treated with sodium bisulfide. Sodium bisulfide treatment raised the activity of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) protein expression, and decreased tumor necrosis factor α (TNF-α) protein expression in diabetic rats. The findings in present study suggested that hydrogen sulfide accelerates the wound healing in rats with diabetes. The beneficial effect of H2S may be associated with formation of granulation, anti-inflammation, antioxidant, and the increased level of vascular endothelial growth factor (VEGF).

  19. Assessment of diabetic peripheral neuropathy in streptozotocin-induced diabetic rats with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongye; Zhang, Xiang; Lu, Liejing; Li, Haojiang; Zhang, Fang; Chen, Yueyao; Shen, Jun [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong (China)

    2014-09-10

    To determine the role of magnetic resonance (MR) imaging and quantitative T2 value measurements in the assessment of diabetic peripheral neuropathy (DPN). Sequential MR imaging, T2 measurement, and quantitative sensory testing of sciatic nerves were performed in streptozotocin-induced diabetic rats (n = 6) and normal control rats (n = 6) over a 7-week follow-up period. Histological assessment was obtained from 48 diabetic rats and 48 control rats once weekly for 7 weeks (n = 6 for each group at each time point). Nerve signal abnormalities were observed, and the T2 values, mechanical withdrawal threshold (MWT), and histological changes were measured and compared between diabetic and control animals. Sciatic nerves in the diabetic rats showed a gradual increase in T2 values beginning at 2 weeks after the induction (P = 0.014), while a decrease in MWT started at 3 weeks after the induction (P = 0.001). Nerve T2 values had a similar time course to sensory functional deficit in diabetic rats. Histologically, sciatic nerves of diabetic rats demonstrated obvious endoneural oedema from 2 to 3 weeks after the induction, followed by progressive axonal degeneration, Schwann cell proliferation, and coexistent disarranged nerve regeneration. Nerve T2 measurement is potentially useful in detecting and monitoring diabetic neuropathy. (orig.)

  20. Assessment of diabetic peripheral neuropathy in streptozotocin-induced diabetic rats with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang, Dongye; Zhang, Xiang; Lu, Liejing; Li, Haojiang; Zhang, Fang; Chen, Yueyao; Shen, Jun

    2015-01-01

    To determine the role of magnetic resonance (MR) imaging and quantitative T2 value measurements in the assessment of diabetic peripheral neuropathy (DPN). Sequential MR imaging, T2 measurement, and quantitative sensory testing of sciatic nerves were performed in streptozotocin-induced diabetic rats (n = 6) and normal control rats (n = 6) over a 7-week follow-up period. Histological assessment was obtained from 48 diabetic rats and 48 control rats once weekly for 7 weeks (n = 6 for each group at each time point). Nerve signal abnormalities were observed, and the T2 values, mechanical withdrawal threshold (MWT), and histological changes were measured and compared between diabetic and control animals. Sciatic nerves in the diabetic rats showed a gradual increase in T2 values beginning at 2 weeks after the induction (P = 0.014), while a decrease in MWT started at 3 weeks after the induction (P = 0.001). Nerve T2 values had a similar time course to sensory functional deficit in diabetic rats. Histologically, sciatic nerves of diabetic rats demonstrated obvious endoneural oedema from 2 to 3 weeks after the induction, followed by progressive axonal degeneration, Schwann cell proliferation, and coexistent disarranged nerve regeneration. Nerve T2 measurement is potentially useful in detecting and monitoring diabetic neuropathy. (orig.)

  1. Attenuation of Diabetic Conditions by Sida rhombifolia in Moderately Diabetic Rats and Inability to Produce Similar Effects in Severely Diabetic in Rats.

    Science.gov (United States)

    Chaturvedi, Padmaja; Kwape, Tebogo Elvis

    2015-12-01

    This study was done out to evaluate the effects of Sida rhombifolia methanol extract (SRM) on diabetes in moderately diabetic (MD) and severely diabetic (SD) Sprague-Dawley rats. SRM was prepared by soaking the powdered plant material in 70% methanol and rota evaporating the methanol from the extract. Effective hypoglycemic doses were established by performing oral glucose tolerance tests (OGTTs) in normal rats. Hourly effects of SRM on glucose were observed in the MD and the SD rats. Rats were grouped, five rats to a group, into normal control 1 (NC1), MD control 1 (MDC1), MD experimental 1 (MDE1), SD control 1 (SDC1), and SD experimental 1 (SDE1) groups. All rats in the control groups were administered 1 mL of distilled water (DW). The rats in the MDE1 and the SDE1 groups were administered SRM orally at 200 and 300 mg/kg body weight (BW), respectively, dissolved in 1 mL of DW. Blood was collected initially and at intervals of 1 hour for 6 hours to measure blood glucose. A similar experimental design was followed for the 30-day long-term trial. Finally, rats were sacrificed, and blood was collected to measure blood glucose, lipid profiles, thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH). OGTTs indicated that two doses (200 and 300 mg/kg BW) were effective hypoglycemic doses in normal rats. Both doses reduced glucose levels after 1 hour in the MDE1 and the SDE1 groups. A long-term trial of SRM in the MD group showed a reduced glucose level, a normal lipid profile, and normal GSH and TBARS levels. In SD rats, SRM had no statistically significant effects on these parameters. Normal weight was achieved in the MD rats, but the SD rats showed reduced BW. The study demonstrates that SRM has potential to alleviate the conditions of moderate diabetic, but not severe diabetes.

  2. ANTI-DIABETIC EFFECTS OF TURMERIC IN ALLOXAN INDUCE D DIABETIC RATS

    OpenAIRE

    Jeevangi; Manjunath; Deepak D; Prakash G; Prashant; Chetan

    2013-01-01

    ABSTRACT: OBJECTIVE AND BACKGROUND: Turmeric (Curcuma longa) is one of the common constituents of our daily food. The present study wa s undertaken to evaluate the anti-diabetic effects of ethanolic extract of Rhizomes of curcuma longa in alloxan induced diabetic rats and compared with of Pioglitazone, which is the standard anti-diabetic agent. METHODS: Alloxan monohydrate is used to induce diabetes mellitus in albino rats in the dose of 120mg/kg i.p. and ...

  3. Melatonin improves spatial navigation memory in male diabetic rats

    Directory of Open Access Journals (Sweden)

    Farrin Babaei-Balderlou

    2012-09-01

    Full Text Available The aim of the present study was to evaluate the effect of melatonin as an antioxidant on spatial navigation memory in male diabetic rats. Thirty-two male white Wistar rats weighing 200 ± 20 g were divided into four groups, randomly: control, melatonin, diabetic and melatonin-treated diabetic. Experimental diabetes was induced by intraperitoneal injection of 50 mg kg-1 streptozotocin. Melatonin was injected (10 mg kg-1 day-1, ip for 2 weeks after 21 days of diabetes induction. At the end of administration period, the spatial navigation memory of rats was evaluated by cross-arm maze. In this study lipid peroxidation levels, glutathione-peroxidase and catalase activities were measured in hippocampus. Diabetes caused to significant decrease in alternation percent in the cross-arm maze, as a spatial memory index, compared to the control group (p < 0.05, whereas administration of melatonin prevented the spatial memory deficit in diabetic rats. Also melatonin injection significantly increased the spatial memory in intact animals compared to the control group (p < 0.05. Assessment of hippocampus homogenates indicated an increase in lipid peroxidation levels and a decrease in GSH-Px and CAT activities in the diabetic group compared to the control animals, while melatonin administration ameliorated these indices in diabetic rats. In conclusion, diabetes induction leads to debilitation of spatial navigation memory in rats, and the melatonin treatment improves the memory presumably through the reduction of oxidative stress in hippocampus of diabetic rats.

  4. Skin changes in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Andrade, Thiago Antônio Moretti; Masson-Meyers, Daniela Santos; Caetano, Guilherme Ferreira; Terra, Vânia Aparecida; Ovidio, Paula Payão; Jordão-Júnior, Alceu Afonso; Frade, Marco Andrey Cipriani

    2017-09-02

    Diabetes can cause serious health complications, which can affect every organ of the body, including the skin. The molecular etiology has not yet been clarified for all diabetic skin conditions. Thus, this study aimed to investigate the changes of diabetes in skin compared to non-diabetic skin in rats. Fifteen days after establishing the diabetic status, skin samples from the dorsum-cervical region were harvested for subsequent analysis of alterations caused by diabetes. Our results demonstrate that diabetes stimulated higher inflammation and oxidative stress in skin, but antioxidant defense levels were lower compared to the non-diabetic group (p skin changes compared to non-diabetic skin in rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Phenotypic Characterization of LEA Rat: A New Rat Model of Nonobese Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Tadashi Okamura

    2013-01-01

    Full Text Available Animal models have provided important information for the genetics and pathophysiology of diabetes. Here we have established a novel, nonobese rat strain with spontaneous diabetes, Long-Evans Agouti (LEA rat derived from Long-Evans (LE strain. The incidence of diabetes in the males was 10% at 6 months of age and 86% at 14 months, while none of the females developed diabetes. The blood glucose level in LEA male rats was between 200 and 300 mg/dl at 120 min according to OGTT. The glucose intolerance in correspondence with the impairment of insulin secretion was observed in male rats, which was the main cause of diabetes in LEA rats. Histological examination revealed that the reduction of β-cell mass was caused by progressive fibrosis in pancreatic islets in age-dependent manner. The intracytoplasmic hyaline droplet accumulation and the disappearance of tubular epithelial cell layer associated with thickening of basement membrane were evident in renal proximal tubules. The body mass index and glycaemic response to exogenous insulin were comparable to those of control rats. The unique characteristics of LEA rat are a great advantage not only to analyze the progression of diabetes, but also to disclose the genes involved in type 2 diabetes mellitus.

  6. Characterization of Diabetic Neuropathy in the Zucker Diabetic Sprague-Dawley Rat: A New Animal Model for Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Eric P. Davidson

    2014-01-01

    Full Text Available Recently a new rat model for type 2 diabetes the Zucker diabetic Sprague-Dawley (ZDSD/Pco was created. In this study we sought to characterize the development of diabetic neuropathy in ZDSD rats using age-matched Sprague-Dawley rats as a control. Rats were examined at 34 weeks of age 12 weeks after the onset of hyperglycemia in ZDSD rats. At this time ZDSD rats were severely insulin resistant with slowing of both motor and sensory nerve conduction velocities. ZDSD rats also had fatty livers, elevated serum free fatty acids, triglycerides, and cholesterol, and elevated sciatic nerve nitrotyrosine levels. The corneas of ZDSD rats exhibited a decrease in subbasal epithelial corneal nerves and sensitivity. ZDSD rats were hypoalgesic but intraepidermal nerve fibers in the skin of the hindpaw were normal compared to Sprague-Dawley rats. However, the number of Langerhans cells was decreased. Vascular reactivity of epineurial arterioles, blood vessels that provide circulation to the sciatic nerve, to acetylcholine and calcitonin gene-related peptide was impaired in ZDSD rats. These data indicate that ZDSD rats develop many of the neural complications associated with type 2 diabetes and are a good animal model for preclinical investigations of drug development for diabetic neuropathy.

  7. Protective effect of melatonin in the diabetic rat retina.

    Science.gov (United States)

    Mehrzadi, Saeed; Motevalian, Manijeh; Rezaei Kanavi, Mozhgan; Fatemi, Iman; Ghaznavi, Habib; Shahriari, Mansoor

    2018-03-01

    Diabetic retinopathy (DR) is one of the most common and serious microvascular complications of diabetes. The aim of this study was to evaluate the effects of melatonin (MEL) on retinal injury in diabetic rats. In this study, 21 rats were randomly divided into three groups: control, diabetic, and diabetic + MEL. Streptozotocin was used to induce diabetes at a dose of 50 mg/kg, i.p., and blood glucose was measured to choose the diabetic rats for the study. MEL (20 mg/kg) was given orally for 7 weeks in diabetic rats starting 1 week after induction of diabetes. After 8 weeks, the groups were compared in terms of mean scores of fluorescein leakage, using fluorescein angiography. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels were estimated in retina using commercially available assays. Structural changes in retinas were evaluated by light microscopy. Results showed that diabetes significantly increased the mean scores of fluorescein leakage, and MDA and ROS levels compared to control group. Treatment of the diabetic rats with MEL for 7 weeks prevented the alterations induced by diabetes in comparison with the diabetic control group.Based on these findings, it can be concluded that MEL might have beneficial effects in prevention of DR. © 2018 Société Française de Pharmacologie et de Thérapeutique.

  8. Lupine Alleviate Hyperglycemia in Streptozotocin Diabetic gamma- Irradiated Rats

    International Nuclear Information System (INIS)

    El-Sayed, S.M.

    2010-01-01

    This study was to examine the regulatory effect of lupine on the diabetic profile developed in Streptozotocin (STZ) induced diabetic albino rats. The effectiveness of lupine against diabetes in gamma irradiated rats was purposed in the present study. Rats were received lupine seeds powder suspension (1 g/kg body weight for 14 consecutive days) before whole body exposure to 8 Gy of gamma radiation and /or STZ (55 mg/kg body weight, single dose) injection. The results pointed out that radiation exposure sustained the diabetic profile in rats received STZ comparing with STZ diabetic not irradiated rats. The prolonged administration of lupine suspension before STZ induction of diabetic and/or irradiated rats reduced the changes in the level of blood glucose, insulin concentration, liver glycogen, and the activity of glucose-6-phosphatase associated with significant amelioration in blood antioxidant status (superoxide dismutase, SOD; catalase, CAT; glucose-6-phosphate dehydrogenase, G-6-PD activities and reduced glutathione concentration GSH). Also, the level of blood lipid peroxides (TBARS) were reduced greatly when compared with its matched value in diabetic and /or gamma irradiated rats. It could be postulated that lupine powder suspension might be attenuate the diabetic profile development throughout reducing oxidative damages and modulating the antioxidant status. In addition, lupine could be considered as one of a remarkable radio protective agent owing to its antioxidants property

  9. Activating transcription factor 3 is a target molecule linking hepatic steatosis to impaired glucose homeostasis.

    Science.gov (United States)

    Kim, Ji Yeon; Park, Keon Jae; Hwang, Joo-Yeon; Kim, Gyu Hee; Lee, DaeYeon; Lee, Yoo Jeong; Song, Eun Hyun; Yoo, Min-Gyu; Kim, Bong-Jo; Suh, Young Ho; Roh, Gu Seob; Gao, Bin; Kim, Won; Kim, Won-Ho

    2017-08-01

    Non-alcoholic fatty liver disease (NAFLD) contributes to impaired glucose tolerance, leading to type 2 diabetes (T2D); however, the precise mechanisms and target molecules that are involved remain unclear. Activating transcription factor 3 (ATF3) is associated with β-cell dysfunction that is induced by severe stress signals in T2D. We aimed to explore the exact functional role of ATF3 as a mechanistic link between hepatic steatosis and T2D development. Zucker diabetic fatty (ZDF) rats were utilized for animal experiments. An in vivo-jetPEI siRNA delivery system against ATF3 was used for loss-of-function experiments. We analyzed the baseline cross-sectional data derived from the biopsy-proven NAFLD registry (n=322). Human sera and liver tissues were obtained from 43 patients with biopsy-proven NAFLD and from seven healthy participants. ATF3 was highly expressed in the livers of ZDF rats and in human participants with NAFLD and/or T2D. Insulin resistance and hepatic steatosis were associated with increased ATF3 expression and decreased fatty acid oxidation via mitochondrial dysfunction and were attenuated by in vivo ATF3 silencing. Knockdown of ATF3 also ameliorated glucose intolerance, impaired insulin action, and inflammatory responses in ZDF rats. In patients with NAFLD and/or T2D, a significant positive correlation was observed between hepatic ATF3 expression and surrogate markers of T2D, mitochondrial dysfunction, and macrophage infiltration. Increased hepatic ATF3 expression is closely associated with hepatic steatosis and incident T2D; therefore, ATF3 may serve as a potential therapeutic target for NAFLD and hepatic steatosis-induced T2D. Hepatic activating transcription factor 3 (ATF3) may play an important role in oxidative stress-mediated hepatic steatosis and the development of type 2 diabetes (T2D) in a Zucker diabetic fatty (ZDF) rat model and in human patients with non-alcoholic fatty liver disease (NAFLD). Therefore, ATF3 may be a useful biomarker for

  10. Protective effects of sodium selenite on lead nitrate-induced hepatotoxicity in diabetic and non-diabetic rats.

    Science.gov (United States)

    Kalender, Suna; Apaydin, Fatma Gökçe; Baş, Hatice; Kalender, Yusuf

    2015-09-01

    In the present study, the effect of sodium selenite on lead induced toxicity was studied in Wistar rats. Sodium selenite and lead nitrate were administered orally for 28 days to streptozotocin induced diabetic and non-diabetic rats. Eight groups of rats were used in the study: control, sodium selenite, lead nitrate, lead nitrate+sodium selenite, streptozotocin-induced diabetic-control, diabetic-sodium selenite, diabetic-lead nitrate, diabetic-lead nitrate+sodium selenite groups. Serum biochemical parameters, lipid peroxidation, antioxidant enzymes and histopathological changes in liver tissues were investigated in all groups. There were statistically significant changes in liver function tests, antioxidant enzyme activities and lipid peroxidation levels in lead nitrate and sodium selenite+lead nitrate treated groups, also in diabetic and non-diabetic groups. Furthermore, histopathological alterations were demonstrated in same groups. In the present study we found that sodium selenite treatment did not show completely protective effect on diabetes mellitus caused damages, but diabetic rats are more susceptible to lead toxicity than non-diabetic rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats.

    Science.gov (United States)

    Bai, Yu; Zang, Xueli; Ma, Jinshu; Xu, Guangyu

    2016-07-25

    Diabetes mellitus (DM) is a metabolic syndrome caused by multiple genetic and environmental factors. Traditional Chinese medicine preparations have shown a comprehensive and function-regulating characteristic. Purslane (Portulaca oleracea L.) is an annual succulent herb. Currently, there have been some related reports on the treatment of diabetes with purslane. The current study was designed to separate and purify the polysaccharide, a systematic study of its physical and chemical properties, antioxidant activity, and anti-diabetic mechanism, in order to provide a theoretical basis for the development of drugs of purslane. A crude water soluble polysaccharide extracted from purslane was named CPOP (crude Portulaca oleracea L. polysaccharide). Effects of CPOP on bodyweight, glucose tolerance test (GTT), fasting blood glucose (FBG), fasting serum insulin (FINS), insulin sensitivity index (ISI), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), methane dicarboxylic aldehyde (MDA), and superoxygen dehydrogenises (SOD) were investigated. The results indicate that the oral administration of CPOP could significantly increase the body weight and significantly improve the glucose tolerance in diabetic rats. Meanwhile, CPOP could significantly reduce the FBG level, and elevate the FINS level and ISI value in diabetic rats. In addition, CPOP could significantly reduce TNF-α and IL-6 levels in diabetic rats; CPOP could also reduce MDA and SOD activities in the liver tissue of diabetic rats. These results suggest that the anti-diabetic effect of CPOP may be associated with its antioxidant and anti-inflammatory effects.

  12. Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Yu Bai

    2016-07-01

    Full Text Available Diabetes mellitus (DM is a metabolic syndrome caused by multiple genetic and environmental factors. Traditional Chinese medicine preparations have shown a comprehensive and function-regulating characteristic. Purslane (Portulaca oleracea L. is an annual succulent herb. Currently, there have been some related reports on the treatment of diabetes with purslane. The current study was designed to separate and purify the polysaccharide, a systematic study of its physical and chemical properties, antioxidant activity, and anti-diabetic mechanism, in order to provide a theoretical basis for the development of drugs of purslane. A crude water soluble polysaccharide extracted from purslane was named CPOP (crude Portulaca oleracea L. polysaccharide. Effects of CPOP on bodyweight, glucose tolerance test (GTT, fasting blood glucose (FBG, fasting serum insulin (FINS, insulin sensitivity index (ISI, interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, methane dicarboxylic aldehyde (MDA, and superoxygen dehydrogenises (SOD were investigated. The results indicate that the oral administration of CPOP could significantly increase the body weight and significantly improve the glucose tolerance in diabetic rats. Meanwhile, CPOP could significantly reduce the FBG level, and elevate the FINS level and ISI value in diabetic rats. In addition, CPOP could significantly reduce TNF-α and IL-6 levels in diabetic rats; CPOP could also reduce MDA and SOD activities in the liver tissue of diabetic rats. These results suggest that the anti-diabetic effect of CPOP may be associated with its antioxidant and anti-inflammatory effects.

  13. Impaired insulin secretion in the spontaneous diabetes rats.

    Science.gov (United States)

    Kimura, K; Toyota, T; Kakizaki, M; Kudo, M; Takebe, K; Goto, Y

    1982-08-01

    Dynamics of insulin and glucagon secretion were investigated by using a new model of spontaneous diabetes rats produced by the repetition of selective breeding in our laboratories. The perfusion experiments of the pancreas showed that the early phase of insulin secretion to continuous stimulation with glucose was specifically impaired, although the response of the early phase to arginine was preserved. The glucose-induced insulin secretion in the nineth generation (F8) which had a more remarkably impaired glucose tolerance was more reduced than in the sixth generation (F5). No significant difference of glucagon secretion in response to arginine or norepinephrine was noted between the diabetes rats and control ones. The present data indicate that the defective insulin secretion is a primary derangement in a diabetic state of the spontaneous diabetes rat. This defect in the early phase of glucose-induced insulin secretion suggests the specific impairment of the recognition of glucose by the pancreatic beta-cells. The spontaneous diabetes rats are very useful as a model of disease for investigating pathophysiology of non-insulin dependent diabetes mellitus.

  14. The Therapeutic Effect of Zuogui Wan in Gestational Diabetes Mellitus Rats

    Science.gov (United States)

    Feng, Qianjin; Niu, Xin; Liu, Xinshe; Xu, Kaixia; Yang, Xiangzhu; Wang, Huifeng

    2014-01-01

    In this experiment, we established an animal model of gestational diabetes mellitus rats using streptozotocin. Using the rat model of GDM, the pregnant rats in 1-19d were divided into three groups: (1) Zuogui Wan gestational diabetes mellitus group (group I, n = 12), (2) gestational diabetes mellitus rats as the control group (group II, n = 11), and (3) rats of normal pregnancy group (group III, n = 11). Compared with gestational diabetes mellitus rats as the control group, Zuogui Wan can change the indexes of fasting blood glucose, body weight, total cholesterol, insulin, and metabolism cage index significantly in Zuogui Wan gestational diabetes mellitus group. We can conclude that Zuogui Wan has the therapeutic effect on gestational diabetes mellitus. PMID:25136475

  15. Acute effect of different antidepressants on glycemia in diabetic and non-diabetic rats

    Directory of Open Access Journals (Sweden)

    Gomez R.

    2001-01-01

    Full Text Available Diabetic patients have a 20% higher risk of depression than the general population. Treatment with antidepressant drugs can directly interfere with blood glucose levels or may interact with hypoglycemic agents. The treatment of depression in diabetic patients must take into account variations of glycemic levels at different times and a comparison of the available antidepressant agents is important. In the present study we evaluated the interference of antidepressants with blood glucose levels of diabetic and non-diabetic rats. In a first experiment, male adult Wistar rats were fasted for 12 h. Imipramine (5 mg/kg, moclobemide (30 mg/kg, clonazepam (0.25 mg/kg, fluoxetine (20 mg/kg sertraline (30 mg/kg or vehicle was administered. After 30 min, fasting glycemia was measured. An oral glucose overload of 1 ml of a 50% glucose solution was given to rats and blood glucose was determined after 30, 60 and 90 min. Imipramine and clonazepam did not change fasting or overload glycemia. Fluoxetine and moclobemide increased blood glucose at different times after the glucose overload. Sertraline neutralized the increase of glycemia induced by oral glucose overload. In the second experiment, non-diabetic and streptozotocin-induced diabetic rats were fasted, and the same procedures were followed for estimation of glucose tolerance 30 min after glucose overload. Again, sertraline neutralized the increase in glycemia after glucose overload both in diabetic and non-diabetic rats. These data raise the question of whether sertraline is the best choice for prolonged use for diabetic individuals, because of its antihyperglycemic effects. Clonazepam would be useful in cases with potential risk of hypoglycemia.

  16. Anti-diabetic effect of dietary mango (Mangifera indica L.) peel in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Gondi, Mahendranath; Basha, Shaik Akbar; Bhaskar, Jamuna J; Salimath, Paramahans V; Rao, Ummiti J S Prasada

    2015-03-30

    In the present study, the composition of mango peel powder (MPP) collected from the mango pulp industry was determined and the effect of MPP on ameliorating diabetes and its associated complications was studied. Mango peel was rich in polyphenols, carotenoids and dietary fibre. Peel extract contained various bioactive compounds and was found to be rich in soluble dietary fibre. Peel extract exhibited antioxidant properties and protected against DNA damage. Therefore, the effect of peel on ameliorating diabetes was investigated in a rat model of diabetes. A significant increase in urine sugar, urine volume, fasting blood glucose, total cholesterol, triglycerides and low density lipoprotein, and decrease in high density lipoprotein were observed in the rats; however, these parameters were ameliorated in diabetic rats fed with diet supplemented with mango peel at 5% and 10% levels in basal diet. Treatment of diabetic rats with MPP increased antioxidant enzyme activities and decreased lipid peroxidation in plasma, kidney and liver compared to untreated diabetic rats. Glomerular filtration rate and microalbuminuria levels were ameliorated in MPP treated diabetic group. Mango peel, a by-product, can be used as an ingredient in functional and therapeutic foods. © 2014 Society of Chemical Industry.

  17. Supplementation of fenugreek leaves lower lipid profile in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Annida, B; Stanely Mainzen Prince, P

    2004-01-01

    The present study was undertaken to evaluate the lipid-lowering effect of fenugreek leaves in diabetes mellitus. Albino Wistar rats were randomly divided into six groups: normal untreated rats; streptozotocin (STZ)-induced diabetic rats; STZ-induced rats + fenugreek leaves (0.5 g/kg of body weight); STZ-induced rats + fenugreek leaves (1 g/kg of body weight); STZ-induced rats + glibenclamide (600 microg/kg of body weight); and STZ-induced rats + insulin (6 units/kg of body weight). Rats were made diabetic by STZ (40 mg/kg) injected intraperitoneally. Fenugreek leaves were supplemented in the diet daily to diabetic rats for 45 days, and food intake was recorded daily. Blood glucose, total cholesterol, triglycerides, and free fatty acids were determined in serum, liver, heart, and kidney. Our results show that blood glucose and serum and tissue lipids were elevated in STZ-induced diabetic rats. Supplementation of fenugreek leaves lowered the lipid profile in STZ-induced diabetic rats.

  18. Effect of Livingstone Potato ( N.E.Br on Diabetes and Its Complications in Streptozotocin Induced Diabetes in Rats

    Directory of Open Access Journals (Sweden)

    Chinedum Ogbonnaya Eleazu

    2014-10-01

    Full Text Available BackgroundThe effect of livingstone potato (Plectranthus esculenthus N.E.Br on diabetes and its complications in Streptozotocin induced diabetic rats was investigated. The duration of the experiment was 4 weeks.MethodsThe blood glucose level of the rats was measured with a glucometer, the protein and glucose and specific gravity in the urine samples of the rats were measured using urine assay strips and urinometer respectively. The liver and kidney function parameters in the serum of the rats were determined using Biosystem Kits.ResultsThe diabetic rats given livingstonepotato incorporated feeds, had 129.7% decrease in their hyperglycemia with corresponding amelioration of their elevated urinary protein, sugars, specific gravity, renal growth, liver growth as well as 15.64% decrease in body weights compared with the nondiabetic rats that had 5.54% decrease in blood glucose and 20.39% increase in body weight unlike the diabetic control rats that had 18.34% decrease in blood glucose and 52.68% decrease in body weight. There were significant differences (P0.05 in the relative heart weights of all the rats in the three different groups. In terms of liver and kidney function parameters, values obtained for the diabetic rats given livingstone potato incorporated feeds were not significantly different from that of the nondiabetic rats except for total bilurubin, aspartate transaminase, and creatinine (P>0.05 while they were significantly different from the values obtained for the diabetic control rats (P<0.05. In addition, the serum amylase of the diabetic control rats were significantly higher (P<0.05 than that of the nondiabetic and diabetic rats treated with livingstone potato incorporated feeds.ConclusionResults show the antidiabetic actions of livingstone potato and its ability to ameliorate glomerular complication and liver hypertrophy in diabetics.

  19. Effect of Bauhinia holophylla treatment in Streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Pinheiro, Marcelo S; Rodrigues, Luhara S; S, Leila; Moraes-Souza, Rafaianne Q; Soares, Thaigra S; Américo, Madileine F; Campos, Kleber E; Damasceno, Débora C; Volpato, Gustavo T

    2017-01-01

    Bauhinia holophylla, commonly known as "cow's hoof", is widely used in Brazilian folk medicine for the diabetes treatment. Therefore, the aim of this study was at evaluating the aqueous extract effect of Bauhinia holophylla leaves treatment on the streptozotocin-induced diabetic rats. Diabetes was induced by Streptozotocin (40 mg/Kg) in female Wistar rats. Oral administration of aqueous extract of Bauhinia holophylla leaves was given to non-diabetic and diabetic rats at a dose of 400 mg/kg during 21 days. On day 17 of treatment, the Oral Glucose Tolerance Test was performed to determine the area under the curve. At the end of the treatment, the animals were anesthetized and blood was collected for serum biochemical parameters analysis. After treatment with Bauhinia holophylla extract, non-diabetic and diabetic rats presented no glycemic changes. On the other hand, the plant treatment decreased body weight and increased ALT and AST activities. In conclusion, the treatment with aqueous extract of B. holophylla leaves given to diabetic rats presented no hypoglycemic effect in nondiabetic animals and no antidiabetic effect in diabetic animals with the doses studied. In addition, the diabetic animals treated with the B. holophylla extract showed inconvenient effects and its indiscriminate consumption requires particular carefulness.

  20. Streptozotocin-induced diabetes mellitus in spontaneously hypertensive rats: a pathophysiological model for the combined effects of hypertension and diabetes

    NARCIS (Netherlands)

    Pijl, A. J.; van der Wal, A. C.; Mathy, M. J.; Kam, K. L.; Hendriks, M. G.; Pfaffendorf, M.; van Zwieten, P. A.

    1994-01-01

    The present study was undertaken to investigate the combined effects of hypertension and streptozotocin-induced diabetes mellitus in the rat. Accordingly, four groups of rats were studied: Wistar Kyoto rats (WKY), diabetic WKY, spontaneously hypertensive rats (SHR) and diabetic SHR, respectively.

  1. Differential Effects of Acute (Extenuating and Chronic (Training Exercise on Inflammation and Oxidative Stress Status in an Animal Model of Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Edite Teixeira de Lemos

    2011-01-01

    Full Text Available This study compares the effects of a single bout of exercise (acute extenuating with those promoted by an exercise training program (chronic, focusing on low-grade chronic inflammation profile and on oxidative stress status, using the obese ZDF rats as a model of type 2 diabetes mellitus (T2DM. Animals were sacrificed after 12 weeks of a swimming training program and after a single bout of acute extenuating exercise. Glycaemic, insulinemic, and lipidic profile (triglycerides, total-cholesterol were evaluated, as well as inflammatory (serum CRPhs, TNF-α, adiponectin and oxidative (lipidic peroxidation and uric acid status. When compared to obese diabetic sedentary rats, the animals submitted to acute exercise presented significantly lower values of glycaemia and insulinaemia, with inflammatory profile and oxidative stress significantly aggravated. The trained animals showed amelioration of glycaemic and lipidic dysmetabolism, accompanied by remarkable reduction of inflammatory and oxidative markers. In conclusion, the results presented herein suggessted that exercise pathogenesis-oriented interventions should not exacerbate underlying inflammatory stress associated with T2DM.

  2. Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats.

    Science.gov (United States)

    Akhtar, Muhammad Tayyab; Bin Mohd Sarib, Mohamad Syakir; Ismail, Intan Safinar; Abas, Faridah; Ismail, Amin; Lajis, Nordin Hj; Shaari, Khozirah

    2016-08-09

    Andrographis paniculata is an annual herb and widely cultivated in Southeast Asian countries for its medicinal use. In recent investigations, A. paniculata was found to be effective against Type 1 diabetes mellitus (Type 1 DM). Here, we used a non-genetic out-bred Sprague-Dawley rat model to test the antidiabetic activity of A. paniculata against Type 2 diabetes mellitus (Type 2 DM). Proton Nuclear Magnetic Resonance (¹H-NMR) spectroscopy in combination with multivariate data analyses was used to evaluate the A. paniculata and metformin induced metabolic effects on the obese and obese-diabetic (obdb) rat models. Compared to the normal rats, high levels of creatinine, lactate, and allantoin were found in the urine of obese rats, whereas, obese-diabetic rats were marked by high glucose, choline and taurine levels, and low lactate, formate, creatinine, citrate, 2-oxoglutarate, succinate, dimethylamine, acetoacetate, acetate, allantoin and hippurate levels. Treatment of A. paniculata leaf water extract was found to be quite effective in restoring the disturbed metabolic profile of obdb rats back towards normal conditions. Thisstudy shows the anti-diabetic potential of A. paniculata plant extract and strengthens the idea of using this plant against the diabetes. Further classical genetic methods and state of the art molecular techniques could provide insights into the molecular mechanisms involved in the pathogenesis of diabetes mellitus and anti-diabetic effects of A. paniculata water extract.

  3. Taurine Alleviates the Progression of Diabetic Nephropathy in Type 2 Diabetic Rat Model

    Directory of Open Access Journals (Sweden)

    Jang Hyun Koh

    2014-01-01

    Full Text Available The overexpression of vascular endothelial growth factor (VEGF is known to be involved in the pathogenesis of diabetic nephropathy. In this study, the protective effects of taurine on diabetic nephropathy along with its underlying mechanism were investigated. Experimental animals were divided into three groups: LETO rats as normal group (n=10, OLETF rats as diabetic control group (n=10, and OLETF rats treated with taurine group (n=10. We treated taurine (200 mg/kg/day for 20 weeks and treated high glucose (HG, 30 mM with or without taurine (30 mM in mouse cultured podocyte. After taurine treatment, blood glucose level was decreased and insulin secretion was increased. Taurine significantly reduced albuminuria and ACR. Also it decreased glomerular volume, GBM thickness and increased open slit pore density through decreased VEGF and increased nephrin mRNA expressions in renal cortex. The antioxidant effects of taurine were confirmed by the reduction of urine MDA in taurine treated diabetic group. Also reactive oxygen species (ROS levels were decreased in HG condition with taurine treated podocytes compared to without taurine. These results indicate that taurine lowers glucose level via increased insulin secretion and ameliorates the progression of diabetic nephropathy through antifibrotic and antioxidant effects in type 2 diabetes rat model.

  4. Neutrophils Infiltrate the Spinal Cord Parenchyma of Rats with Experimental Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Victoria L. Newton

    2017-01-01

    Full Text Available Spinal glial cell activation and cytokine secretion have been implicated in the etiology of neuropathic pain in a number of experimental models, including diabetic neuropathy. In this study, streptozotocin- (STZ- induced diabetic rats were either untreated or treated with gabapentin (50 mg/kg/day by gavage for 2 weeks, from 6 weeks after STZ. At 8 weeks after STZ, hypersensitivity was confirmed in the untreated diabetic rats as a reduced response threshold to touch, whilst mechanical thresholds in gabapentin-treated diabetic rats were no different from controls. Diabetes-associated thermal hypersensitivity was also ameliorated by gabapentin. We performed a cytokine profiling array in lumbar spinal cord samples from control and diabetic rats. This revealed an increase in L-selectin, an adhesion molecule important for neutrophil transmigration, in the spinal cord of diabetic rats but not diabetic rats treated with gabapentin. Furthermore, we found an increase in the number of neutrophils present in the parenchyma of the spinal cord, which was again ameliorated in gabapentin-treated diabetic rats. Therefore, we suggest that dysregulated spinal L-selectin and neutrophil infiltration into the spinal cord could contribute to the pathogenesis of painful diabetic neuropathy.

  5. High fructose diet feeding accelerates diabetic nephropathy in Spontaneously Diabetic Torii (SDT) rats.

    Science.gov (United States)

    Toyoda, Kaoru; Suzuki, Yusuke; Muta, Kyotaka; Masuyama, Taku; Kakimoto, Kochi; Kobayashi, Akio; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Diabetic nephropathy (DN) is one of the complications of diabetes and is now the most common cause of end-stage renal disease. Fructose is a simple carbohydrate that is present in fruits and honey and is used as a sweetener because of its sweet taste. Fructose has been reported to have the potential to progress diabetes and DN in humans even though fructose itself does not increase postprandial plasma glucose levels. In this study, we investigated the effects of high fructose intake on the kidney of the Spontaneously Diabetic Torii (SDT) rats which have renal lesions similar to those in DN patients and compared these with the effects in normal SD rats. This study revealed that a 4-week feeding of the high fructose diet increased urinary excretion of kidney injury makers for tubular injury and accelerated mainly renal tubular and interstitial lesions in the SDT rats but not in normal rats. The progression of the nephropathy in the SDT rats was considered to be related to increased internal uric acid and blood glucose levels due to the high fructose intake. In conclusion, high fructose intake exaggerated the renal lesions in the SDT rats probably due to effects on the tubules and interstitium through metabolic implications for uric acid and glucose.

  6. Compromised Wound Healing in Ischemic Type 2 Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Peilang Yang

    Full Text Available Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8 weeks high fat diet (HFD feeding regimen followed by multiple injections of streptozotocin (STZ at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds.

  7. Anti-diabetic properties of rice-based herbal porridges in diabetic Wistar rats.

    Science.gov (United States)

    Senadheera, Senadheera Pathirannehelage Anuruddhika Subhashinie; Ekanayake, Sagarika; Wanigatunge, Chandanie

    2014-10-01

    The present study aims to investigate anti-hyperglycaemic, anti-hyperlipidaemic and toxic effects of long-term consumption of selected green leafy porridges in a streptozotocin-induced diabetic Wistar rat model. Porridges made with Asparagus racemosus Willd. (AR), Hemidesmus indicus (L) R. Br. W. T. Aiton (HI), Scoparia dulcis L. (SD) and coconut milk porridge (CM) were incorporated into diets of diabetic Wistar rats. Diabetic control (DM) and normal control groups (NC) were provided with standard rat diet. Fasting blood glucose (FBG), HbA1c , C reactive protein (CRP), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), liver enzymes and creatinine were measured. Feed and water intake among diabetic groups were significantly high when compared with those of NC (p  0.05). Among the diabetic groups, lowest TC (119 ± 20.6 mg/dL) and highest HDL-C (33 ± 6.3 mg/dL) were also detected in SD group. Alanine transaminase and creatinine were not significantly different (p > 0.05) among diabetic groups but significant when compared with those of NC. When compared with those of NC, aspartate transaminase levels were significantly (p < 0.05) high in SD, CM and DM groups. Body weight : liver weight and body weight : pancreas weight ratios and CRP were not significantly different among all groups. The study proved that SD porridge reduced weight loss, elicited hypoglycaemic and hypolipidaemic properties, and caused no toxicity in diabetes-induced Wistar rats. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Structure of the vitreoretinal border region in spontaneously diabetic BB rats

    DEFF Research Database (Denmark)

    Heegaard, S

    1993-01-01

    The morphology of the vitreoretinal border region, also termed the inner limiting membrane, was examined in spontaneously diabetic rats (BB rats), in non-diabetes-prone rats (WB rats) and in Buffalo rats (BUF rats) by scanning electron microscopy (SEM) and transmission electron microscopy (TEM......). This was performed in order to visualize a possible increase in thickness of the lamina densa or in the whole vitreoretinal border region complex with duration of diabetes. The median thickness of the lamina densa in the three groups varied between 34 and 68 nm. In BB rats the thickness decreased with age...... and duration of diabetes. In WB rats the lamina densa thickened up to the 9th month and then decreased to the level of the young rats. In BUF rats the lamina densa decreased in thickness with age. The median thickness of the whole vitreoretinal border region varied between: BB rats: 84 and 126 nm (SEM) and 68...

  9. Oxidative stress in normal and diabetic rats.

    Science.gov (United States)

    Torres, M D; Canal, J R; Pérez, C

    1999-01-01

    Parameters related to oxidative stress were studied in a group of 10 Wistar diabetic rats and 10 control rats. The levels of total erythrocyte catalase activity in the diabetic animals were significantly (pC18:2) ratios. Greater vitaminE/triglyceride (TG) ratio, however, appeared in the control group. The corresponding vitamin A ratios (vitaminA/TG, vitaminA/PUFA, vitaminA/C 18:2) were higher in the control group. Our work corroborates the findings that fatty acid metabolism presents alterations in the diabetes syndrome and that the antioxidant status is affected.

  10. Topical erythropoietin promotes wound repair in diabetic rats.

    Science.gov (United States)

    Hamed, Saher; Ullmann, Yehuda; Masoud, Muhannad; Hellou, Elias; Khamaysi, Ziad; Teot, Luc

    2010-01-01

    Wound healing in diabetic patients is slower than in healthy individuals. Erythropoietin (EPO) has non-hemopoietic targets in the skin, and systemically administered EPO promotes wound healing in experimental animals. This study investigated the effect of topical EPO treatment on defective wound repair in the skin of diabetic rats. Full-thickness excisional skin wounds were made in 38 rats, of which 30 had diabetes. The wounds were then treated topically with a cream that contained either vehicle, 600 IU ml(-1) EPO (low dose), or 3,000 IU ml(-1) (high dose) EPO. We assessed the rate of wound closure during the 12-day treatment period, and microvascular density (MVD), vascular endothelial growth factor (VEGF), and hydroxyproline (HP) contents, and the extent of apoptosis in wound tissues at the end of the 12-day treatment period. Topical EPO treatment significantly reduced the time to final wound closure. This increased rate of closure of the two EPO-treated wounds in diabetic rats was associated with increased MVD, VEGF, and HP contents, and a reduced extent of apoptosis. In light of our finding that topical EPO treatment promotes skin wound repair in diabetic rats, we propose that topical EPO treatment is a therapeutically beneficial method of treating chronic diabetic wounds.

  11. Histopathological, Ultrastructural and Apoptotic Changes in Diabetic Rat Placenta

    Directory of Open Access Journals (Sweden)

    Mehmet Gül

    2015-09-01

    Full Text Available Background: The exchange of substances between mother and fetus via the placenta plays a vital role during development. A number of developmental disorders in the fetus and placenta are observed during diabetic pregnancies. Diabetes, together with placental apoptosis, can lead to developmental and functional disorders. Aims: Histological, ultrastructural and apoptotic changes were investigated in the placenta of streptozotocin (STZ induced diabetic rats. Study Design: Animal experimentation. Methods: In this study, a total of 12 female Wistar Albino rats (control (n=6 and diabetic (n=6 were used. Rats in the diabetic group, following the administration of a single dose of STZ, showed blood glucose levels higher than 200 mg/dL after 72 hours. When pregnancy was detected after the rats were bred, two pieces of placenta and the fetuses were collected on the 20th day of pregnancy by cesarean incision under ketamine/xylazine anesthesia from in four rats from the control and diabetic groups. Placenta tissues were processed for light microscopy and transmission electron microscopy (TEM. Hematoxylin-eosin (HE and periodic acid Schiff-diastase (PAS-D staining for light microscopic and caspase-3 staining for immunohistochemical investigations were performed for each placenta. Electron microscopy was performed on thin sections contrasted with uranyl acetate and lead nitrate. Results: Weight gain in the placenta and fetuses of diabetic rats and thinning of the decidual layer, thickening of the hemal membrane, apoptotic bodies, congestion in intervillous spaces, increased PAS-D staining in decidual cells and caspase-3 immunoreactivity were observed in the diabetic group. After the ultrastructural examination, the apoptotic appearance of the nuclei of trophoblastic cells, edema and intracytoplasmic vacuolization, glycogen accumulation, dilation of the endoplasmic reticulum and myelin figures were observed. In addition, capillary basement membrane thickening

  12. Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Muhammad Tayyab Akhtar

    2016-08-01

    Full Text Available Andrographis paniculata is an annual herb and widely cultivated in Southeast Asian countries for its medicinal use. In recent investigations, A. paniculata was found to be effective against Type 1 diabetes mellitus (Type 1 DM. Here, we used a non-genetic out-bred Sprague-Dawley rat model to test the antidiabetic activity of A. paniculata against Type 2 diabetes mellitus (Type 2 DM. Proton Nuclear Magnetic Resonance (1H-NMR spectroscopy in combination with multivariate data analyses was used to evaluate the A. paniculata and metformin induced metabolic effects on the obese and obese–diabetic (obdb rat models. Compared to the normal rats, high levels of creatinine, lactate, and allantoin were found in the urine of obese rats, whereas, obese-diabetic rats were marked by high glucose, choline and taurine levels, and low lactate, formate, creatinine, citrate, 2-oxoglutarate, succinate, dimethylamine, acetoacetate, acetate, allantoin and hippurate levels. Treatment of A. paniculata leaf water extract was found to be quite effective in restoring the disturbed metabolic profile of obdb rats back towards normal conditions. Thisstudy shows the anti-diabetic potential of A. paniculata plant extract and strengthens the idea of using this plant against the diabetes. Further classical genetic methods and state of the art molecular techniques could provide insights into the molecular mechanisms involved in the pathogenesis of diabetes mellitus and anti-diabetic effects of A. paniculata water extract.

  13. Altered glucose kinetics in diabetic rats during Gram-negative infection

    International Nuclear Information System (INIS)

    Lang, C.H.; Dobrescu, C.; Bagby, G.J.; Spitzer, J.J.

    1987-01-01

    The present study examined the purported exacerbating effect of sepsis on glucose metabolism in diabetes. Diabetes was induced in rats by an intravenous injection of 70 or 45 mg/kg streptozotocin. The higher dose produced severe diabetes, whereas the lower dose of streptozotocin produced a miler, latent diabetes. After a chronic diabetic state had developed for 4 wk, rats had catheters implanted and sepsis induced by intraperitoneal injections of live Escherichia coli. After 24 h of sepsis the blood glucose concentration was unchanged in nondiabetics and latent diabetics, but glucose decreased from 15 to 8 mM in the septic severe diabetic group. This decrease in blood glucose was not accompanied by alterations in the plasma insulin concentration. Glucose turnover, assessed by the constant intravenous infusion of [6- 3 H]- and [U- 14 C]glucose, was elevated in the severe diabetic group, compared with either latent diabetics or nondiabetics. Sepsis increased the rate of glucose disappearance in nondiabetic rats but had no effect in either group of diabetic animals. Sepsis also failed to alter the insulinogenic index, used to estimate the insulin secretory capacity, in diabetic rats. Thus the present study suggests that the imposition of nonlethal Gram-negative sepsis on severe diabetic animals does not further impair glucose homeostasis and that the milder latent diabetes was not converted to a more severe diabetic state by the septic challenge

  14. Attenuation of Diabetic Nephropathy by Carvacrol through Anti-oxidative Effects in Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Hamid Reza Jamshidi

    2018-03-01

    Full Text Available Background and Objectives: Diabetes, a common metabolic disorder, is prevalent in many countries. Nephropathy is a main debate’s side effect. Role of oxidative stress is well known in induction of diabetic nephropathy while carvacrol is a potent anti-oxidant that might attenuate oxidative stress. The aim of this study was to explore the effect of carvacrol in decreasing nephropathy-induced oxidative damage in diabetic rats. Methods: Thirty five Wistar rats (200-250 g were divided to 7 groups. The rats received alloxan (i.p., 200 mg/kg for induction of diabetes. After one week, fasting blood sugar (FBS was assessed and the rats with FBS>250 mg/dL were considered as diabetic. Three weeks after alloxan injection, the blood urea (BUN and creatinine (Cr were determined for confirmation of inducing nephropathy. Then, the animals were treated with carvacrol for one week. Finally, they were anesthetized and blood was collected from animal’s heart for calculation of BUN and Cr. Furthermore, the kidneys were for oxidative stress markers such as glutathione capacity, protein carbonyl, lipid peroxidation and catalase activity. Results: Our results showed that glutathione level and catalase activity significantly increased after treatment with carvacrol. Same results were found in rats that received vitamin E. Also, lipid peroxidation, protein carbonyl content, BUN and Cr levels significantly decreased after treatment with carvacrol in comparison with diabetic rats. Conclusion: Our results showed that carvacrol improved nephropathy-induced oxidative damage similar to vitamin E. Therefore, it may be suggested that carvacrol can be suggested as a useful supplement in decreasing diabetic complaints along with anti-diabetic drugs.

  15. Insulin Modulates Liver Function in a Type I Diabetes Rat Model

    Directory of Open Access Journals (Sweden)

    Eduardo L. Nolasco

    2015-07-01

    Full Text Available Background/Aims: Several studies have been performed to unravel the association between diabetes and increased susceptibility to infection. This study aimed to investigate the effect of insulin on the local environment after cecal ligation and puncture (CLP in rats. Methods: Diabetic (alloxan, 42 mg/kg i.v., 10 days and non-diabetic (control male Wistar rats were subjected to a two-puncture CLP procedure and 6 h later, the following analyses were performed: (a total and differential cell counts in peritoneal lavage (PeL and bronchoalveolar lavage (BAL fluids; (b quantification of tumor necrosis factor (TNF-α, interleukin (IL-1β, IL-6, IL-10 and cytokine-induced neutrophil chemoattractant (CINC-1 and CINC-2 in the PeL and BAL fluids by enzyme-linked immunosorbent assay (ELISA; (c total leukocyte count using a veterinary hematology analyzer and differential leukocyte counts on stained slides; (d biochemical parameters (urea, creatinine, alanine aminotransferase (ALT, aspartate aminotransferase (AST, and alkaline phosphatase (ALP by colorimetric analyses; and (e lung, kidney, and liver morphological analyses (hematoxylin and eosin staining. Results: Relative to controls, non-diabetic and diabetic CLP rats exhibited an increased in the concentration of IL-1β, IL-6, IL-10, CINC-1, and CINC-2 and total and neutrophil in the PeL fluid. Treatment of these animals with neutral protamine Hagedorn insulin (NPH, 1IU and 4IU, respectively, s.c., 2 hours before CLP procedure, induced an increase on these cells in the PeL fluid but it did not change cytokine levels. The levels of ALT, AST, ALP, and urea were higher in diabetic CLP rats than in non-diabetic CLP rats. ALP levels were higher in diabetic sham rats than in non-diabetic sham rats. Treatment of diabetic rats with insulin completely restored ALT, AST, and ALP levels. Conclusion: These results together suggest that insulin attenuates liver dysfunction during early two-puncture CLP-induced peritoneal

  16. RES hyperphagocytosis by rats with streptozotocin-induced diabetes mellitus.

    Science.gov (United States)

    Cornell, R P

    1981-03-01

    In contrast to previous studies of neutrophils from diabetic animals and humans in vitro and of macrophages from diabetic humans in vivo, which reported phagocytic depression, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon was observed in rats at 14 and 28 days after diabetes induction with streptozotocin (STZ). Carbon clearance half times were significantly enhanced to 6.3 +/- 0.79 and 8.1 +/- 1.04 min at 14 and 28 days post-STZ, respectively, compared with the nondiabetic value (12.7 +/- 0.98 min). The severity of uncontrolled STZ-induced diabetes in rats was confirmed by significant hypoinsulinemia, hyperglucagonemia, hyperglycemia, and hyperlipidemia. Although body weights of STZ-diabetic animals declined progressively, liver weights as a percent of body weight increased above the control value at 14 and 28 days post-STZ. In fact, expression of carbon phagocytosis as the corrected phagocytic index, which accounts for changes in liver and spleen weights relative to body weight, eliminated the significant difference between STZ-diabetic and nondiabetic animals. Antibiotic treatment of diabetic rats failed to alter the hyperphagocytosis, implying that a chronic bacterial infection was not the cause of phagocytic stimulation. Daily insulin replacements, but not a single large insulin dose to 14-day post-STZ rats, reversed the enhanced phagocytosis of colloidal carbon.

  17. Resistant starch but not enzymatic treated waxy maize delays development of diabetes in Zucker Diabetic Fatty rats

    DEFF Research Database (Denmark)

    Hedemann, Mette Skou; Hermansen, Kjeld; Pedersen, Sven

    2017-01-01

    excretion during week 8 in rats fed the GLU and EMS diets than that of rats fed S and RS showed that they were diabetic. Urinary nontargeted metabolomics revealed that the diabetic state of rats fed S, GLU, and EMS diets influenced microbial metabolism, as well as amino acid, lipid, and vitamin metabolism......Background: The incidence of type 2 diabetes (T2D) is increasing worldwide, and nutritional management of circulating glucose may be a strategic tool in the prevention of T2D. Objective: We studied whether enzymatically modified waxy maize with an increased degree of branching delayed the onset...... glucose concentrations in feed-deprived rats, none of the groups developed diabetes. However, in week 9, plasma glucose after feed deprivation was significantly lower in rats fed the S and RS diets (13.5 mmol/L) than in rats fed the GLU and EMS diets (17.0–18.9 mmol/L), and rats fed RS had lower HbA1c (4...

  18. Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: effect of secoisolariciresinol diglucoside (SDG).

    Science.gov (United States)

    Prasad, K

    2000-06-01

    Secoisolariciresinol diglucoside (SDG) isolated from flaxseed has antioxidant activity and has been shown to prevent hypercholesterolemic atherosclerosis. An investigation was made of the effects of SDG on the development of diabetes in diabetic prone BioBreeding rats (BBdp rats), a model of human type I diabetes [insulin dependent diabetes mellitus (IDDM)] to determine if this type of diabetes is due to oxidative stress and if SDG can prevent the incidence of diabetes. The rats were divided into three groups: Group I, BioBreeding normal rats (BBn rats) (n = 10); group II, BBdp untreated (n = 11); and group III, BBdp treated with SDG 22 mg/kg body wt, orally) (n = 14). Oxidative stress was determined by measuring lipid peroxidation product malondialdehyde (MDA) an index of level of reactive oxygen species in blood and pancreas; and pancreatic chemiluminescence (Pancreatic-CL), a measure of antioxidant reserve. Incidence of diabetes was 72.7% in untreated and 21.4% in SDG-treated group as determined by glycosuria and hyperglycemia. SDG prevented the development of diabetes by approximately 71%. Development of diabetes was associated with an increase in serum and pancreatic MDA and a decrease in antioxidant reserve. Prevention in development of diabetes by SDG was associated with a decrease in serum and pancreatic-MDA and an increase in antioxidant reserve. These results suggest that IDDM is mediated through oxidative stress and that SDG prevents the development of diabetes.

  19. Protective effects of a coumarin derivative in diabetic rats.

    Science.gov (United States)

    Bucolo, Claudio; Ward, Keith W; Mazzon, Emanuela; Cuzzocrea, Salvatore; Drago, Filippo

    2009-08-01

    Retinal microvascular cells play a crucial role in the pathogenesis of diabetic retinopathy. The endothelial effects of cloricromene, a novel coumarin derivative, on diabetic retinopathy induced by streptozotocin (STZ) in the rat were investigated. Cloricromene (10 mg/kg intraperitoneally) was administered daily in diabetic rats, and 60 days later eyes were enucleated for localization of nitrotyrosine, ICAM-1, VEGF, ZO-1, occludin, claudin-5, and VE-cadherin by immunohistochemical analysis. The effect of treatment was also evaluated by TNFalpha, ICAM-1, VEGF, and eNOS protein levels measurement in the retina with the respective ELISA kits. Blood-retinal barrier (BRB) integrity was also evaluated by Evans blue. Increased amounts of cytokines, adhesion molecule, and nitric oxide synthase were observed in retina. Cloricromene treatment significantly lowered retinal TNFalpha, ICAM-1, VEGF, and eNOS. Furthermore, immunohistochemical analysis for VEGF, ICAM-1, nitrotyrosine (a marker of peroxynitrite), and tight junctions revealed positive staining in the retina from STZ-treated rats. The degree of staining for VEGF, ICAM-1, nitrotyrosine, and tight junctions was markedly reduced in tissue sections obtained from diabetic rats treated with cloricromene. Treatment with cloricromene suppressed diabetes-related BRB breakdown by 45%. This study provides the first evidence that the new coumarin derivative cloricromene attenuates the degree of inflammation preserving the BRB in diabetic rats.

  20. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    International Nuclear Information System (INIS)

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  1. Antioxidant Effects of Biochanin A in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Hamideh Sadri

    2017-08-01

    Full Text Available ABSTRACT Bioflavonoid-containing diets have been reported to be beneficial in diabetes. In the current study, the effect of Biochanin A (BCA on blood glucose, antioxidant enzyme activities and oxidative stress markers in diabetic rats were investigated. 30 male Wistar rats were divided into five groups. Two of them were selected as control; group1: control (receiving 0.5%DMSO, and group2: Control+BCA (receiving 10 mg/kg.bw BCA. Diabetes was induced in other rats with injection of (55 mg/kg.bw streptozotocin; group3: diabetic control (receiving 0.5%DMSO, groups 4 and 5 were treated with 10 and 15 mg/kg.bw BCA respectively. After 6 weeks the following results were obtained. Fasting blood glucose (FBG, Triglyceride (TG, total cholesterol (TC, low density lipoprotein cholesterol (LDL-C, very low density lipoprotein cholesterol (VLDL-C and malondialdehyde (MDA levels significantly increased and body weight, high density lipoprotein cholesterol (HDL-C, superoxide dismutase (SOD and catalase (CAT activity and total antioxidant status (TAS significantly decreased in diabetic rats as compared to control rats. Oral administration of BCA in 10 and 15 mg/kg.bw, FBG, TG, TC, LDL-C, VLDL-C were decreased significantly in all treated rats. MDA was decreased in all treated rats but it was significant just in 15 mg/kg.bw BCA. HDL, CAT, SOD, and TAS were significantly increased in treated group with 15 mg/kg.bw. The obtained results indicated hypoglycemic and hypolipidemic effect of BCA. Also BCA reduced oxidative stress in diabetic rats.

  2. Gallic acid improves the memory and pain in diabetic rats

    Directory of Open Access Journals (Sweden)

    maryam Rafieirad

    2013-08-01

    Full Text Available Background: Complications of diabetes can be caused by the production of free radicals, which lead to memory problems and increase the risk of dementia. Diabetics are at risk of nervous pains. Gallic acid has antioxidant properties and activity against free radicals. In this study the effect of oral administration of Gallic acid, were examined on passive‌ avoidance ‌memory and pain in diabetic rats. Materials and Methods: Rats were divided into control, diabetes with STZ (60mg/kg, 3-groups of control and 3‌groups of diabetic rats and received Gallic ‌‌acid (10, 50&100 mg/kg oral, for two weeks. Blood glucose levels were measured from tail. Results: Results showed a significant reduction in memory (delayed coming down from the podium in the diabetic group all days except day of learning (P≤0.01. Dose of 50 mg/kg Gallic‌ acid caused a significant increase in non-diabetic rats on the first day of memory (P≤0.01, third and seventh (P≤0.05 and dose of 10 mg/kg on the first day (P≤0.05. Compared with diabetic group a significant increase was observed in the first day (P≤0.01, third and seventh (P≤0.05 in diabetics receiving doses of 50 and 10mg/kg Gallic‌ acid. The reflex for tail pulling away from the center of pain was significantly lower (P≤0.01 in the diabetic group. And only the dose of 50 caused a significant increase in the diabetic group (P≤0.01. Conclusion: Probably Gallic‌ acid with strong antioxidant effect led to scavenge free radicals and reduced the complications of diabetes, including pain and may have effects on neural pathways in specific brain regions and has led to improved memory in normal rats and diabetic.

  3. Penile alterations at early stage of type 1 diabetes in rats

    Directory of Open Access Journals (Sweden)

    Mingfang Tao

    Full Text Available ABSTRACT Objective Diabetes affects the erectile function significantly. However, the penile alterations in the early stage of diabetes in experimental animal models have not been well studied. We examined the changes of the penis and its main erectile components in diabetic rats. Materials and methods Male Sprague-Dawley rats were divided into 2 groups: streptozotocin (STZ-induced diabetics and age-matched controls. Three or nine weeks after diabetes induction, the penis was removed for immunohistochemical staining of smooth muscle and neuronal nitric oxide synthase (nNOS in midshaft penile tissues. The cross-sectional areas of the whole midshaft penis and the corpora cavernosa were quantified. The smooth muscle in the corpora cavernosa and nNOS in the dorsal nerves were quantified. Results The weight, but not the length, of the penis was lower in diabetics. The cross-sectional areas of the total midshaft penis and the corpora cavernosa were lower in diabetic rats compared with controls 9 weeks, but not 3 weeks after diabetes induction. The cross-sectional area of smooth muscle in the corpora cavernosa as percentage of the overall area of the corpora cavernosa was lower in diabetic rats than in controls 9 weeks, but not 3 weeks after diabetes induction. Percentage change of nNOS in dorsal nerves was similar at 3 weeks, and has a decreased trend at 9 weeks in diabetic rats compared with controls. Conclusions Diabetes causes temporal alterations in the penis, and the significant changes in STZ rat model begin 3-9 weeks after induction. Further studies on the reversibility of the observed changes are warranted.

  4. Type 2 diabetic rats are sensitive to thioacetamide hepatotoxicity

    International Nuclear Information System (INIS)

    Sawant, Sharmilee P.; Dnyanmote, Ankur V.; Warbritton, Alan; Latendresse, John R.; Mehendale, Harihara M.

    2006-01-01

    Previously, we reported high hepatotoxic sensitivity of type 2 diabetic (DB) rats to three dissimilar hepatotoxicants. Additional work revealed that a normally nonlethal dose of CCl 4 was lethal in DB rats due to inhibited compensatory tissue repair. The present study was conducted to investigate the importance of compensatory tissue repair in determining the final outcome of hepatotoxicity in diabetes, using another structurally and mechanistically dissimilar hepatotoxicant, thioacetamide (TA), to initiate liver injury. A normally nonlethal dose of TA (300 mg/kg, ip), caused 100% mortality in DB rats. Time course studies (0 to 96 h) showed that in the non-DB rats, liver injury initiated by TA as assessed by plasma alanine or aspartate aminotransferase and hepatic necrosis progressed up to 48 h and regressed to normal at 96 h resulting in 100% survival. In the DB rats, liver injury rapidly progressed resulting in progressively deteriorating liver due to rapidly expanding injury, hepatic failure, and 100% mortality between 24 and 48 h post-TA treatment. Covalent binding of 14 C-TA-derived radiolabel to liver tissue did not differ from that observed in the non-DB rats, indicating similar bioactivation-based initiation of hepatotoxicity. S-phase DNA synthesis measured by [ 3 H]-thymidine incorporation, and advancement of cells through the cell division cycle measured by PCNA immunohistochemistry, were substantially inhibited in the DB rats compared to the non-DB rats challenged with TA. Thus, inhibited cell division and compromised tissue repair in the DB rats resulted in progressive expansion of liver injury culminating in mortality. In conclusion, it appears that similar to type 1 diabetes, type 2 diabetes also increases sensitivity to dissimilar hepatotoxicants due to inhibited compensatory tissue repair, suggesting that sensitivity to hepatotoxicity in diabetes occurs in the absence as well as presence of insulin

  5. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract

    Directory of Open Access Journals (Sweden)

    Snehal Nitin Mestry

    2017-07-01

    Full Text Available With an objective to develop Complementary and Alternative Medicine for the treatment of diabetic nephropathy, the present study investigated the protective effects of methanolic extract of Punica granatum leaves (MPGL in streptozotocin-induced diabetic nephropathy. Diabetic nephropathy has become a leading cause of end stage renal failure worldwide. P. granatum, due to its anti-diabetic, anti-inflammatory and antioxidant activities may retard the progression of diabetic nephropathy. In this study, diabetes was induced by a single injection of streptozotocin (STZ, 45 mg/kg, i.p. in rats. STZ-diabetic rats were treated with oral doses of MPGL (100, 200 and 400 mg/kg for 8 weeks. At the end of the experimental period, body and kidney weight and blood glucose levels were determined. Serum and urine parameters were investigated. Antioxidant enzymes and lipid peroxide levels were determined in the kidney along with histopathological examination of the same. MPGL significantly increased body weight, lowered blood glucose levels and ameliorated kidney hypertrophy index in the STZ-diabetic rats. The extract also decreased the levels of creatinine, blood urea nitrogen, total cholesterol, triglycerides, advanced glycation end products and albumin in serum and urine, respectively. MPGL significantly increased the antioxidant parameters in the kidney. Histological evaluation revealed that MPGL treated STZ-diabetic rats demonstrated reduced vacuolar degeneration of tubules; periodic acid Schiff base (PAS positivity staining intensity in glomeruli and basement membrane thickening. Present findings provide experimental evidence that MPGL has potential antioxidant, antihyperglycemic and anti-glycation activities which might be helpful in slowing the progression of diabetic nephropathy.

  6. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract.

    Science.gov (United States)

    Mestry, Snehal Nitin; Dhodi, Jayesh Bachu; Kumbhar, Sangita Balbhim; Juvekar, Archana Ramesh

    2017-07-01

    With an objective to develop Complementary and Alternative Medicine for the treatment of diabetic nephropathy, the present study investigated the protective effects of methanolic extract of Punica granatum leaves (MPGL) in streptozotocin-induced diabetic nephropathy. Diabetic nephropathy has become a leading cause of end stage renal failure worldwide. P. granatum , due to its anti-diabetic, anti-inflammatory and antioxidant activities may retard the progression of diabetic nephropathy. In this study, diabetes was induced by a single injection of streptozotocin (STZ, 45 mg/kg, i.p.) in rats. STZ-diabetic rats were treated with oral doses of MPGL (100, 200 and 400 mg/kg) for 8 weeks. At the end of the experimental period, body and kidney weight and blood glucose levels were determined. Serum and urine parameters were investigated. Antioxidant enzymes and lipid peroxide levels were determined in the kidney along with histopathological examination of the same. MPGL significantly increased body weight, lowered blood glucose levels and ameliorated kidney hypertrophy index in the STZ-diabetic rats. The extract also decreased the levels of creatinine, blood urea nitrogen, total cholesterol, triglycerides, advanced glycation end products and albumin in serum and urine, respectively. MPGL significantly increased the antioxidant parameters in the kidney. Histological evaluation revealed that MPGL treated STZ-diabetic rats demonstrated reduced vacuolar degeneration of tubules; periodic acid Schiff base (PAS) positivity staining intensity in glomeruli and basement membrane thickening. Present findings provide experimental evidence that MPGL has potential antioxidant, antihyperglycemic and anti-glycation activities which might be helpful in slowing the progression of diabetic nephropathy.

  7. Urtica Dioica Distillate Regenerates Pancreatic Beta Cells in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Gohari, Ali; Noorafshan, Ali; Akmali, Masoumeh; Zamani-Garmsiri, Fahimeh; Seghatoleslam, Atefeh

    2018-01-01

    Background Urtica dioica is known as an anti-hyperglycemic plant. Urtica dioica distillate (UD) is a traditional Iranian drink, locally known as “aragh gazaneh”. In spite of its widespread consumption in Iran, according to traditional Iranian medicine, there is no scientific report on the usefulness of UD for diabetic patients. This survey was designed to evaluate its protective effects for the recovery from diabetes by determining the serum insulin, blood glucose, volume of pancreatic islets, and the number and volume of β-cells in diabetic rats. Methods A total of 48 Sprague-Dawley male rats (200-250 g) were randomly distributed into 6 groups (n=8), including non-diabetic plus distilled water (DW), non-diabetic plus UD, diabetic plus DW, diabetic plus UD, diabetic plus insulin, and diabetic plus glibenclamide. DW, UD, and glibenclamide were administered via intragastric gavage and insulin was injected subcutaneously. After four weeks of experiments, blood samples were collected for serum insulin and blood glucose assay. Pancreas was also evaluated using stereological method. The SPSS software was used for statistical analysis. Kruskal-Wallis, repeated measurements, and Mann-Whitney U test were applied for comparisons between the groups. Results The treatment of diabetic rats with UD reduced the blood glucose dramatically (P<0.001) and increased serum insulin levels significantly (P=0.03) in comparison to the diabetic plus DW rats. Treatment with UD did not affect the mean β-cell volumes in the diabetic rats when compared to the diabetic plus DW rats, but the islet volumes and β-cell numbers were significantly recovered. Conclusion UD treatment in diabetic rats improves hyperglycemia by partially restoring plasma insulin levels. The data suggest that UD prevents islet atrophy and/or regenerate pancreatic β-cells. PMID:29749986

  8. Effect of Acute Administration of loganin on Spatial Memory in Diabetic Male Rats

    Directory of Open Access Journals (Sweden)

    Gisou Mohaddes

    2013-02-01

    Full Text Available Purpose: Diabetes is associated with memory and learning disorder. The purpose of this study is to determine the effect of acute oral administration of loganin on memory in diabetic male rats. Methods: 42 male Wistar rats (250-300 g were divided into six groups: Control, Diabetic (1 week, Diabetic (12 weeks, Loganin, Diabetic (1 week + Loganin, Diabetic (12 weeks + Loganin. Diabetes was induced by IP injection of Streptozotocin (60 mg/kg. Loganin (40 mg/kg, po was administrated 1 hour before test. Then, spatial memory was compared between groups with Morris Water Maze tests. Results: Administration of loganin during acquisition, significantly (p<0.05 decreased both escape latency and traveled distance to find hidden platform in 1 and 12 weeks diabetic rats. In evaluation of recall phase of memory, loganin significantly (p<0.05 increased time and distance spent in the target quadrant in 1 and 12 weeks diabetic rats. Conclusion: Acute administration of loganin could improve spatial memory in diabetic rats.

  9. Effects of sleeve gastrectomy in neonatally streptozotocin-induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available BACKGROUND: Sleeve gastrectomy (SG has emerged recently as a stand-alone bariatric procedure to treat morbid obesity and enhance glucose homeostasis. The aim of the study was to evaluate its effects in neonatally streptozotocin (STZ-induced diabetic rats (n-STZ diabetic rats. METHODOLOGY AND PRINCIPAL FINDINGS: To induce diabetes, STZ (90 mg/kg was administered intraperitoneally to 2-day-old male pups. When 12 weeks old, diabetic rats were randomized into sleeve operation group (SLG, n = 6 and sham operation group (SOG, n = 6. Body weights were monitored weekly, and daily consumption of water and food were followed for eight consecutive weeks postoperatively. Serum glucose levels were measured periodically at the 4th and 8th week after surgery. Insulin, ghrelin, glucose-dependent insulinotropic polypeptide (GIP and Glucagon-like peptide-1 (GLP-1 levels were assayed at the end of the study. Our data showed that SLG rats exhibited significantly lower body weight gain in addition to reduced food and water intakes postoperatively compared to their sham-operation counterparts. However, resolution of diabetes was not observed in our study. Correspondingly, there were no significant differences between SOG rats and SLG rats in glucose metabolism-associated hormones, including insulin, GIP and GLP-1. In contrast, ghrelin level significantly decreased (P<0.01 in SLG group (58.01 ± 3.75 pg/ml after SG surgery compared to SOG group (76.36 ± 3.51 pg/ml. CONCLUSIONS: These observations strongly suggest that SG is effective in controlling body weight. However, SG did not achieve resolution or improvement of diabetes in n-STZ diabetic rats.

  10. Effect of irradiation on the healing of extraction sockets in diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Joong; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2003-03-15

    To observe the histologic pattern of healing in molar tooth extraction sockets of streptozotocin-induced diabetic rats following irradiation. Mature Sprague-Dawley rats were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced by injecting streptozotocin. Control rats were injected with a citrate buffer only. After 5 days, the right maxillary first molar was extracted under general anesthesia from each of the rats. After the extraction, rats in the diabetic-irradiated group were irradiated with a single absorbed dose of 10 Gy to the head and neck region. The rats were killed at 1, 3, 7, 14, 21, and 28 days after treatment. Tissue sections were stained with hematoxylin-eosin and Masson's trichrome. In the diabetic and diabetic-irradiated groups, the early healing process of the socket extraction was similar to the control group, but bone formation was delayed at 7 days after the treatment. In the diabetic-irradiated group, alveolar bone surrounding the extraction socket showed sighs of necrosis at 3 days after treatment, and hemorrhage was observed in connective tissue within the extraction socket at 14 days after treatment. The experiment revealed that the healing process of the extraction socket was severely delayed and retarded by irradiation in the diabetic state.

  11. Effect of irradiation on the healing of extraction sockets in diabetic rats

    International Nuclear Information System (INIS)

    Kim, Il Joong; Hwang, Eui Hwan; Lee, Sang Rae

    2003-01-01

    To observe the histologic pattern of healing in molar tooth extraction sockets of streptozotocin-induced diabetic rats following irradiation. Mature Sprague-Dawley rats were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced by injecting streptozotocin. Control rats were injected with a citrate buffer only. After 5 days, the right maxillary first molar was extracted under general anesthesia from each of the rats. After the extraction, rats in the diabetic-irradiated group were irradiated with a single absorbed dose of 10 Gy to the head and neck region. The rats were killed at 1, 3, 7, 14, 21, and 28 days after treatment. Tissue sections were stained with hematoxylin-eosin and Masson's trichrome. In the diabetic and diabetic-irradiated groups, the early healing process of the socket extraction was similar to the control group, but bone formation was delayed at 7 days after the treatment. In the diabetic-irradiated group, alveolar bone surrounding the extraction socket showed sighs of necrosis at 3 days after treatment, and hemorrhage was observed in connective tissue within the extraction socket at 14 days after treatment. The experiment revealed that the healing process of the extraction socket was severely delayed and retarded by irradiation in the diabetic state.

  12. Arginase promotes skeletal muscle arteriolar endothelial dysfunction in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Fruzsina K. Johnson

    2013-05-01

    Full Text Available Endothelial dysfunction is a characteristic feature in diabetes that contributes to the development of vascular disease. Recently, arginase has been implicated in triggering endothelial dysfunction in diabetic patients and animals by competing with endothelial nitric oxide synthase for substrate L-arginine. While most studies have focused on the coronary circulation and large conduit blood vessels, the role of arginase in mediating diabetic endothelial dysfunction in other vascular beds has not been fully investigated. In the present study, we determined whether arginase contributes to endothelial dysfunction in skeletal muscle arterioles of diabetic rats. Diabetes was induced in male Sprague Dawley rats by streptozotocin injection. Four weeks after streptozotocin administration, blood glucose, glycated hemoglobin, and vascular arginase activity were significantly increased. In addition, a significant increase in arginase I and II mRNA expression was detected in gracilis muscle arterioles of diabetic rats compared to age-matched, vehicle control animals. To examine endothelial function, first-order gracilis muscle arterioles were isolated, cannulated in a pressure myograph system, exposed to graded levels of luminal flow, and internal vessel diameter measured. Increases in luminal flow (0-50µL/min caused progressive vasodilation in arterioles isolated from control, normoglycemic animals. However, flow-induced vasodilation was absent in arterioles obtained from streptozotocin-treated rats. Acute in-vitro pretreatment of blood vessels with the arginase inhibitors Nω-hydroxy-nor-L-arginine or S-(2-boronoethyl-L-cysteine restored flow-induced responses in arterioles from diabetic rats and abolished differences between diabetic and control animals. Similarly, acute in-vitro pretreatment with L-arginine returned flow-mediated vasodilation in vessels from diabetic animals to that of control rats. In contrast, D-arginine failed to restore flow

  13. Study on cognitive impairment in diabetic rats by different behavioral experiments

    Science.gov (United States)

    Yu-bin, Ji; Zeng-yi, Li; Guo-song, Xin; Chi, Wei; Hong-jian, Zhu

    2017-12-01

    Object recognition test and Y maze test are widely used in learning and memory behavior evaluation techniques and methods. It was found that in the new object recognition experiment, the diabetic rats did more slowly than the normal rats in the discrimination of the old and new objects, and the learning and memory of the rats in the diabetic rats were injured. And the ratio of retention time and the number of errors in the Y maze test was much higher than that in the blank control group. These two methods can reflect the cognitive impairment in diabetic rats.

  14. Effect of hypocholesterolemia on cholesterol synthesis in small intestine of diabetic rats

    International Nuclear Information System (INIS)

    Feingold, K.R.; Moser, A.H.

    1987-01-01

    Studies by our and other laboratories have demonstrated that cholesterol synthesis is increased in the small intestine of insulinopenic diabetic animals. In normal animals, many factors have been shown to regulate cholesterol synthesis in the small intestine, including changes in plasma cholesterol levels. The purpose of this study was to determine the effect of lowering plasma cholesterol levels on small intestine cholesterol synthesis in streptozocin-induced diabetic rats. In diabetic rats, 4-aminopyrazolo[3,4-d]pyrimidine (4-APP)-induced hypocholesterolemia (plasma cholesterol levels less than 20 mg/dl) resulted in a 2.5-fold increase in small intestine cholesterol synthesis, which was most marked in the distal small intestine, decreasing proximally. In the distal small intestine the incorporation of 3 H 2 O into cholesterol was 0.28 +/- 0.04 mumol.h-1.g-1 in diabetic rats versus 1.60 +/- 0.38 in diabetic rats administered 4-APP (P less than .01). This stimulation of cholesterol synthesis occurred in the upper villus, middle villus, and crypt cells isolated from the middle intestine of the 4-APP-treated diabetic animals. In agreement with these observations, functional hypocholesterolemia due to Triton WR-1339 administration also stimulated cholesterol synthesis 2.5-fold in the small intestine of normal and diabetic animals. In the distal small intestine, cholesterol synthesis was 0.43 +/- 0.10 mumol.h-1.g-1 in the diabetic rats versus 1.08 +/- 0.21 in diabetic rats treated with Triton WR-1339 (P less than .05). In both the 4-APP and Triton WR-1339 experiments, the response of the diabetic rats was similar to that observed in normal rats

  15. Changes in the pharmacokinetics of glibenclamide in rats with streptozotocin-induced diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Yuqing Li

    2012-04-01

    Full Text Available The aim of this study was to investigate the pharmacokinetics of glibenclamide (Gli administrated orally and intravenously to normal and diabetic rats. The AUC(0–720 min of orally administered Gli in diabetic rats (321.24 mg min/L was greater than that (57.752 mg min/L in normal rats. CL (0.019 L/min/kg was significantly slower than that (0.092 L/min/kg of normal rats. The AUC(0–480min of intravenous Gli in diabetic rats (1528.280 mg min/L also was significantly greater than that (509.523 mg min/L in normal rats, and CL was decreased approximately 3-fold. No significant difference in intestinal absorption of Gli was observed between normal and diabetic rats as determined by in situ single-pass intestinal perfusion. The clearance of Diclofenac (a substrate of CYP2C9 was determined to evaluate changes in hepatic drug-metabolizing enzyme activity in rats. The CL in diabetic rats was significantly lower (42.43% decrease than that in normal rats. Hepatic protein expression of CYP2C9 was measured using Western blot analysis; compared with normal rats, the hepatic protein expression of CYP2A9 was decreased in diabetic rats. Therefore, the slower clearance of Gli in diabetic rats can be attributed primarily to the lower expression of hepatic CYP2C9.

  16. The effects of diabetes on the rat parotid gland

    International Nuclear Information System (INIS)

    Park, Chull Jea; Hwang, Eui Hwan; Lee, Sang Rae

    1996-01-01

    The purpose of the study was to observe microscopic change of salivary gland tissue, which is a cause of xerostomia in diabetic condition; for this target, the author injected streptozotocin 0.1 ml/100 gm b.w. on the rat, Sprague Dawley, to induce diabetes, and then observed microscopic changes in parotid gland tissue using light microscopy and electron microscopy. The results were as follows: 1. Parotid gland tissue of the diabetic rat was atrophied or degenerated in lapse of experimental time, but began to re pair from 14 days alter diabetic induction. 2. In the basal lamina of the vessel of parotid gland tissue in the diabetic rat, lamina lucida was discontinued and la mina densa was increased in thickness, but the number of capillary was gradually increased and dilated. 3. In acinic and intercalated ductal cells of parotid gland in the diabetic rat, changes of mitochondria, RER, secretor y granule, free ribosome were prominent. In conclusion, the present study demonstrated that degenerative changes of the parotid gland tissue were due to not completely thickening of the basal lamina of vessels, but many other causal factors, because thickness of the basal lamina of vessels was not related with degenerative changes.

  17. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Bădescu, S V; Tătaru, C P; Kobylinska, L; Georgescu, E L; Zahiu, D M; Zăgrean, A M; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations : STZ = streptozotocin, OFT = Open Field Test.

  18. Cell apoptosis of taste buds in circumvallate papillae in diabetic rats.

    Science.gov (United States)

    Cheng, B; Pan, S; Liu, X; Zhang, S; Sun, X

    2011-09-01

    Diabetes mellitus may result in taste disturbance. The present study has revealed that cell apoptosis of taste buds in circumvallate papillae may contribute to the taste disturbance in a rat model of type2 diabetes. Type2 diabetes was induced in Wistar rats by feeding them with a high-fat diet (30% fat), and a single intraperitoneal injection of streptozotocin (30 mg/kg). The increased cell apoptosis of taste buds in circumvallate papilla sections was detected by TUNEL staining in diabetic rats, and the ultrastructure was further examined by transmission electronic microscopy. Immunohistochemical and Western blot analyses revealed the downregulation of Bcl-2, upregulation of Bax, and increased activation of caspase-9 and -3, in diabetic rats, indicating that the apoptosis of taste bud cells may be mediated via the intrinsic mitochondrial pathway in diabetics. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  19. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats.

    Science.gov (United States)

    Zhang, Qian; Yu, Hongyue; Xiao, Xinhua; Hu, Ling; Xin, Fengjiao; Yu, Xiaobing

    2018-01-01

    Accumulating research has addressed the linkage between the changes to gut microbiota structure and type 2 diabetes (T2D). Inulin is one type of soluble dietary fiber that can alleviate T2D. As a prebiotic, inulin cannot be digested by humans, but rather is digested by probiotics. However, whether inulin treatment can benefit the entire gut bacteria community remains unknown. In this study, we evaluated the differences in gut microbiota composition among diabetic, inulin-treated diabetic, normal control, and inulin-treated normal control rats. A diabetic rat model was generated by a high-fat diet and streptozotocin injections (HF/STZ). Inulin was orally administered to normal and diabetic rats. To determine the composition of the gut microbiota, fecal DNA extraction and 16S rRNA gene 454 pyrosequencing were performed. We found that inulin treatment reduced fasting blood glucose levels and alleviated glucose intolerance and blood lipid panels in diabetic rats. Additionally, inulin treatment increased the serum glucagon-like peptide-1 (GLP-1) level, reduced serum IL-6 level, Il6 expression in epididymal adipose tissue, and Pepck , G6pc expression in liver of diabetic rats. Pyrophosphate sequencing of the 16s V3-V4 region demonstrated an elevated proportion of Firmicutes and a reduced abundance of Bacteroidetes at the phylogenetic level in diabetic rats compared to normal control rats. The characteristics of the gut microbiota in control and inulin-treated rats were similar. Inulin treatment can normalize the composition of the gut microbiota in diabetic rats. At the family and genus levels, probiotic bacteria Lactobacillus and short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae , Phascolarctobacterium , and Bacteroides were found to be significantly more abundant in the inulin-treated diabetic group than in the non-treated diabetic group. In addition, inulin-treated rats had a lower abundance of Desulfovibrio , which produce lipopolysaccharide (LPS). The

  20. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  1. Increased intraretinal PO2 in short-term diabetic rats.

    Science.gov (United States)

    Lau, Jennifer C M; Linsenmeier, Robert A

    2014-12-01

    In diabetic retinopathy, neovascularization is hypothesized to develop due to hypoxia in the retina. However, evidence for retinal hypoxia is limited, and the progressive changes in oxygenation are unknown. The objective of this study was to determine if retinal hypoxia occurs early in the development of diabetes. Intraretinal oxygen (PO2) profiles were recorded with oxygen-sensitive microelectrodes in control and diabetic Long-Evans rats at 4 and 12 weeks after induction of diabetes. Diabetes did not affect oxygen consumption in the photoreceptors in either dark or light adaptation. Oxygenation of the inner retina was not affected after 4 weeks of diabetes, although vascular endothelial growth factor levels increased. At 12 weeks, average inner retinal PO2, normalized to choriocapillaris PO2, was higher in diabetic rats than in age-matched controls, which was opposite to what was expected. Thus retinal hypoxia is not a condition of early diabetes in rat retina. Increased inner retinal PO2 may occur because oxygen consumption decreases in the inner retina. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Effect of irradiation on the temporomandibular joint in streptozotocin-induced diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Ki Dong; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2004-06-15

    To investigate the histopathological changes in the temporomandibular joint in streptozotocin-induced diabetic rat following irradiation. Sprague-Dawley rats weighing about 250 gm were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control group were injected with citrate buffer only. After 5 days, the head and neck region of the rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the temporomandibular joint were sectioned and observed using a histopathological method. In the diabetic group, severe bone resorption in the mandibular condyle was observed throughout the period of experiment. Necrosis of bone marrow and trabeculae was observed at 28 days after diabetic state. Atrophy and fibrosis in the retrodiscal tissue was gradually progressed during the time of the experiment. In the diabetic-irradiated group, severe bone resorption in the mandibular condyle was observed during the early experimental phases, but regeneration of bone marrow was initiated at 14 days after diabetic state and irradiation. Also, calcification of abnormal trabeculae was observed at 28 days after diabetic state and irradiation. The retrodiscal tissue was degenerated in the early experimental phases, but it had been gradually regenerated during the experimental time. This experiment suggests that bone resorption and degeneration in the mandibular condyle are caused by the induction of diabetes, and abnormal bone formation is induced after irradiation in diabetic state.

  3. Effect of irradiation on the temporomandibular joint in streptozotocin-induced diabetic rat

    International Nuclear Information System (INIS)

    Ahn, Ki Dong; Hwang, Eui Hwan; Lee, Sang Rae

    2004-01-01

    To investigate the histopathological changes in the temporomandibular joint in streptozotocin-induced diabetic rat following irradiation. Sprague-Dawley rats weighing about 250 gm were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control group were injected with citrate buffer only. After 5 days, the head and neck region of the rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the temporomandibular joint were sectioned and observed using a histopathological method. In the diabetic group, severe bone resorption in the mandibular condyle was observed throughout the period of experiment. Necrosis of bone marrow and trabeculae was observed at 28 days after diabetic state. Atrophy and fibrosis in the retrodiscal tissue was gradually progressed during the time of the experiment. In the diabetic-irradiated group, severe bone resorption in the mandibular condyle was observed during the early experimental phases, but regeneration of bone marrow was initiated at 14 days after diabetic state and irradiation. Also, calcification of abnormal trabeculae was observed at 28 days after diabetic state and irradiation. The retrodiscal tissue was degenerated in the early experimental phases, but it had been gradually regenerated during the experimental time. This experiment suggests that bone resorption and degeneration in the mandibular condyle are caused by the induction of diabetes, and abnormal bone formation is induced after irradiation in diabetic state.

  4. Morphine hyposensitivity in streptozotocin-diabetic rats: Reversal by dietary l-arginine treatment.

    Science.gov (United States)

    Lotfipour, Shahrdad; Smith, Maree T

    2018-01-01

    Painful diabetic neuropathy (PDN) is a long-term complication of diabetes. Defining symptoms include mechanical allodynia (pain due to light pressure or touch) and morphine hyposensitivity. In our previous work using the streptozotocin (STZ)-diabetic rat model of PDN, morphine hyposensitivity developed in a temporal manner with efficacy abolished at 3 months post-STZ and maintained for 6 months post-STZ. As this time course mimicked that for the temporal development of hyposensitivity to the pain-relieving effects of the furoxan nitric oxide (NO) donor, PRG150 (3-methylfuroxan-4-carbaldehyde) in STZ-diabetic rats, we hypothesized that progressive depletion of endogenous NO bioactivity may underpin the temporal loss of morphine sensitivity in STZ-diabetic rats. Furthermore, we hypothesized that replenishment of NO bioactivity may restore morphine sensitivity in these animals. Diabetes was induced in male Dark Agouti rats by intravenous injection of STZ (85 mg/kg). Diabetes was confirmed on day 7 if blood glucose concentrations were ≥15 mmol/L. Mechanical allodynia was fully developed in the bilateral hindpaws by 3 weeks of STZ-diabetes in rats and this was maintained for the study duration. Morphine hyposensitivity developed in a temporal manner with efficacy abolished by 3 months post-STZ. Administration of dietary l-arginine (NO precursor) at 1 g/d to STZ-diabetic rats according to a 15-week prevention protocol initiated at 9 weeks post-STZ prevented abolition of morphine efficacy. When given as an 8-week intervention protocol in rats where morphine efficacy was abolished, dietary l-arginine at 1 g/d progressively rescued morphine efficacy and potency. Our findings implicate NO depletion in the development of morphine hyposensitivity in STZ-diabetic rats. © 2017 John Wiley & Sons Australia, Ltd.

  5. Antidiabetic effects of Cuscuta reflexa Roxb. in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Rath, Diptirani; Kar, Durga Madhab; Panigrahi, Sandeep Kumar; Maharana, Laxmidhar

    2016-11-04

    Cuscuta reflexa Roxb. (Convolvulaceae) is traditionally used to treat diabetes mellitus by tribal people of north-east India and Bangladesh. To evaluate the anti-diabetic effects of methanol and aqueous extracts of the aerial parts of Cuscuta reflexa Roxb. in normal, glucose loaded and Streptozotocin (STZ) induced diabetic rats. The methanol (MECR) and aqueous (AECR) extracts (200 and 400mg/kg body weight) were administered orally to normal and diabetic rats with Metformin and solvent control as comparison groups. Long term effects like FBG, OGTT, lipid profile, HbA1c, body weight, histopathology of major organs, etc. were investigated. MECR and AECR did not have hypoglycemic effects in normal rats. Both AECR and MECR (400mg/kg) treatments showed significant reduction in blood glucose during OGTT in diabetic rats at 3h. Single oral administration of methanol and aqueous extracts (400mg/kg) to diabetic rats significantly reduced (p<0.05) blood glucose level to 61.90% and 55.39% respectively as compared to the Metformin group i.e. 68.32% at the end of 8h. MECR (400mg/kg body weight for 30 days to diabetic rats) showed a significant decrease (p<0.01) of blood glucose level to 60.00% as compared to other groups. The treatment also resulted an improvement in body weights, decreased HbA1c and restored lipid profile. Histopathological injury was not observed, rather repair of beta cells was seen in extract treated diabetic rats. Methanolic extract of C. reflexa has significant antidiabetic effects and improves metabolic alterations thereby justifying its traditional folkloric claims. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Red Cabbage (Brassica oleracea Ameliorates Diabetic Nephropathy in Rats

    Directory of Open Access Journals (Sweden)

    Hazem A. H. Kataya

    2008-01-01

    Full Text Available The protective action against oxidative stress of red cabbage (Brassica oleracea extract was investigated. Diabetes was induced in male Wistar rats using streptozotocin (60 mg/kg body weight. Throughout the experimental period (60 days, diabetic rats exhibited many symptoms including loss of body weight, hyperglycemia, polyuria, polydipsia, renal enlargement and renal dysfunction. Significant increase in malondialdehyde, a lipid peroxidation marker, was observed in diabetic kidney. This was accompanied by a significant increase in reduced glutathione and superoxide dismutase activity and a decrease in catalase activity and in the total antioxidant capacity of the kidneys. Daily oral ingestion (1 g/kg body weight of B. oleracea extract for 60 days reversed the adverse effect of diabetes in rats. B. oleracea extract lowered blood glucose levels and restored renal function and body weight loss. In addition, B. oleracea extract attenuated the adverse effect of diabetes on malondialdehyde, glutathione and superoxide dismutase activity as well as catalase activity and total antioxidant capacity of diabetic kidneys. In conclusion, the antioxidant and antihyperglycemic properties of B. oleracea extract may offer a potential therapeutic source for the treatment of diabetes.

  7. L-glutamine supplementation prevents the development of experimental diabetic cardiomyopathy in streptozotocin-nicotinamide induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Sachin L Badole

    Full Text Available The objective of the present investigation was to evaluate the effect of L-glutamine on cardiac myopathy in streptozotocin-nicotinamide induced diabetic rats. Diabetes was induced in overnight fasted Sprague Dawely rats by using intraperitonial injection of streptozotocin (55 mg/kg. Nicotinamide (100 mg/kg, i.p. was administered 20 min before administration of streptozotocin. Experimental rats were divided into Group I: non-diabetic control (distilled water; 10 ml/kg, p.o., II: diabetic control (distilled water, 10 ml/kg, p.o., III: L-glutamine (500 mg/kg, p.o. and IV: L-glutamine (1000 mg/kg, p.o.. All groups were diabetic except group I. The plasma glucose level, body weight, electrocardiographic abnormalities, hemodynamic changes and left ventricular contractile function, biological markers of cardiotoxicity, antioxidant markers were determined after 4 months after STZ with nicotinamide injection. Histopathological changes of heart tissue were carried out by using H and E stain. L-glutamine treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters and histological changes in STZ induced diabetic rats. Results from the present investigation demonstrated that L-glutamine has seemed a cardioprotective activity.

  8. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats.

    Science.gov (United States)

    Sharma, Sameer; Kulkarni, Shrinivas K; Chopra, Kanwaljit

    2006-10-01

    Chronic hyperglycaemia in diabetes leads to the overproduction of free radicals and evidence is increasing that these contribute to the development of diabetic nephropathy. Among the spices, turmeric (Curcuma longa) is used as a flavouring and colouring agent in the indian diet every day and is known to possess anti-oxidant properties. The present study was designed to examine the effect of curcumin, a yellow pigment of turmeric, on renal function and oxidative stress in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by a single intraperitoneal injection of STZ (65 mg/kg) in rats. Four weeks after STZ injection, rats were divided into four groups, namely control rats, diabetic rats and diabetic rats treated with curcumin (15 and 30 mg/kg, p.o.) for 2 weeks. Renal function was assessed by creatinine, blood urea nitrogen, creatinine and urea clearance and urine albumin excretion. Oxidative stress was measured by renal malonaldehyde, reduced glutathione and the anti-oxidant enzymes superoxide dismutase and catalase. Streptozotocin-injected rats showed significant increases in blood glucose, polyuria and a decrease in bodyweight compared with age-matched control rats. After 6 weeks, diabetic rats also exhibited renal dysfunction, as evidenced by reduced creatinine and urea clearance and proteinuria, along with a marked increase in oxidative stress, as determined by lipid peroxidation and activities of key anti-oxidant enzymes. Chronic treatment with curcumin significantly attenuated both renal dysfunction and oxidative stress in diabetic rats. These results provide confirmatory evidence of oxidative stress in diabetic nephropathy and point towards the possible anti-oxidative mechanism being responsible for the nephroprotective action of curcumin.

  9. Impaired mitochondrial metabolism and protein synthesis in streptozotocin diabetic rat hepatocytes

    International Nuclear Information System (INIS)

    Memon, R.A.; Bessman, S.P.; Mohan, C.

    1990-01-01

    Isolated hepatocytes prepared from control, streptozotocin diabetic rats were incubated at 30 degrees C in Krebs-Henseleit bicarbonate buffer, pH 7.4, containing 0.5 mM concentration of each of the 20 natural amino acids. Effect of insulin on the oxidation of 2,3- 14 C and 1,4- 14 C succinate (suc) carbons and their incorporation into hepatocyte protein, lipid and various metabolic intermediates was studied. Mitochondrial oxidation of suc carbons and their incorporation into protein and lipid was significantly lower in diabetic and insulin treated diabetic rats. Diabetic rats failed to exhibit any significant insulin effect on the oxidation of either 2,3 or 1,4- 14 C suc carbons. Amphibolic channeling of 2,3- 14 C suc carbons into amino acids was significantly reduced in hepatocytes of diabetic rats, however, more of these carbons were diverted into the gluconeogenesis pathway. Diabetes caused a far greater decrease in the oxidation of 2,3- 14 C suc carbons as compared to 1,4- 14 C suc. Based on an earlier report that insulin stimulates only the intramitochondrial Krebs cycle reactions, the authors conclude that the diminished level of anabolic activities in the diabetic rat hepatocytes is due to the subsequent reduction in amphibolic channeling of metabolic intermediates

  10. Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Juárez-Rojop Isela Esther

    2012-11-01

    Full Text Available Abstract Background Traditional plant treatment for diabetes has shown a surging interest in the last few decades. Therefore, the purpose of this study was to assess the hypoglycemic effect of the aqueous extract of C. papaya leaves in diabetic rats. Several studies have reported that some parts of the C. papaya plant exert hypoglycemic effects in both animals and humans. Methods Diabetes was induced in rats by intraperitoneal administration of 60 mg/kg of streptozotocin (STZ. The aqueous extract of C. papaya was administered in three different doses (0.75, 1.5 and 3 g/100 mL as drinking water to both diabetic and non-diabetic animals during 4 weeks. Results The aqueous extract of Carica papaya (0.75 g and 1.5 g/100 mL significantly decreased blood glucose levels (pC. papaya could help islet regeneration manifested as preservation of cell size. In the liver of diabetic treated rats, C. papaya prevented hepatocyte disruption, as well as accumulation of glycogen and lipids. Finally, an antioxidant effect of C. papaya extract was also detected in diabetic rats. Conclusions This study showed that the aqueous extract of C. papaya exerted a hypoglycemic and antioxidant effect; it also improved the lipid profile in diabetic rats. In addition, the leaf extract positively affected integrity and function of both liver and pancreas.

  11. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  12. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  13. Sulforaphane Prevents Neuronal Apoptosis and Memory Impairment in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Gengyin Wang

    2016-08-01

    Full Text Available Background/Aims: To explore the effects of sulforaphane (SFN on neuronal apoptosis in hippocampus and memory impairment in diabetic rats. Methods: Thirty male rats were randomly divided into normal control, diabetic model and SFN treatment groups (N = 10 in each group. Streptozotocin (STZ was applied to establish diabetic model. Water Morris maze task was applied to test learning and memory. Tunel assaying was used to detect apoptosis in hippocampus. The expressions of Caspase-3 and myeloid cell leukemia 1(MCL-1 were detected by western blotting. Neurotrophic factor levels and AKT/GSK3β pathway were also detected. Results: Compared with normal control, learning and memory were apparently impaired, with up-regulation of Caspase-3 and down-regulation of MCL-1 in diabetic rats. Apoptotic neurons were also found in CA1 region after diabetic modeling. By contrast, SFN treatment prevented the memory impairment, decreased the apoptosis of hippocampal neurons. SFN also attenuated the abnormal expression of Caspase-3 and MCL-1 in diabetic model. Mechanically, SFN treatment reversed diabetic modeling-induced decrease of p-Akt, p-GSK3β, NGF and BDNF expressions. Conclusion: SFN could prevent the memory impairment and apoptosis of hippocampal neurons in diabetic rat. The possible mechanism was related to the regulation of neurotropic factors and Akt/GSK3β pathway.

  14. Salicylate prevents virus-induced type 1 diabetes in the BBDR rat.

    Directory of Open Access Journals (Sweden)

    Chaoxing Yang

    Full Text Available Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID, to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1β, IL-6, IFN-γ, IL-12, and haptoglobin (an acute phase protein in KRV+pIC treated rats. Significant elevations of IL-1β and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1β, IL-6, IFN-γ and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes.

  15. Antihyperglycemic and antidyslipidemic activity of Musa paradisiaca-based diet in alloxan-induced diabetic rats.

    Science.gov (United States)

    Ajiboye, Basiru O; Oloyede, Hussein O B; Salawu, Musa O

    2018-01-01

    This study was aimed at investigating the antihyperglycemic and antidyslipidemic activity of Musa paradisiaca -based diets in alloxan-induced diabetic mellitus rats. Diabetes was induced by a single intraperitoneal injection of alloxan (150 mg/kg b.w) in 48 randomly selected rats. The rats were randomly grouped into four as follows: normal rats fed Dioscorea rotundata -based diet, diabetic control rats fed D. rotundata -based diet, diabetic rats fed D. rotundata -based diet and administered metformin (14.2 mg/kg body weight) orally per day, and diabetic rats fed M. paradisiaca -based diet. Body weight and fasting blood glucose level were monitored, on 28th days the rats were sacrificed, liver was excised. Thereafter, the hyperglycemic and dyslipidemic statii of the induced diabetic animals were determined. The M. paradisiaca -based diet significantly ( p  paradisiaca -based diet demonstrated significant reduction ( p  paradisiaca -based diet significantly ( p  <   .05) reversed the activities of aspartate aminotransferase and alanine aminotransferase when compared with diabetic control animals. The consumption of this diet may be useful in ameliorating hyperglycemia and dyslipidemia in diabetes mellitus patients.

  16. Decrease of Plasma Glucose by Hibiscus taiwanensis in Type-1-Like Diabetic Rats

    Science.gov (United States)

    Wang, Lin-Yu; Chung, Hsien-Hui

    2013-01-01

    Hibiscus taiwanensis (Malvaceae) is widely used as an alternative herb to treat disorders in Taiwan. In the present study, it is used to screen the effect on diabetic hyperglycemia in streptozotocin-induced diabetic rats (STZ-diabetic rats). The extract of Hibiscus taiwanensis showed a significant plasma glucose-lowering action in STZ-diabetic rats. Stems of Hibiscus taiwanensis are more effective than other parts to decrease the plasma glucose in a dose-dependent manner. Oral administration of Hibiscus taiwanensis three times daily for 3 days into STZ-diabetic rats increased the sensitivity to exogenous insulin showing an increase in insulin sensitivity. Moreover, similar repeated administration of Hibiscus taiwanensis for 3 days in STZ-diabetic rats produced a marked reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression in liver and an increased expression of glucose transporter subtype 4 (GLUT 4) in skeletal muscle. Taken together, our results suggest that Hibiscus taiwanensis has the ability to lower plasma glucose through an increase in glucose utilization via elevation of skeletal GLUT 4 and decrease of hepatic PEPCK in STZ-diabetic rats. PMID:23690841

  17. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats

    Directory of Open Access Journals (Sweden)

    Qinna NA

    2015-05-01

    Full Text Available Nidal A Qinna,1 Adnan A Badwan2 1Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, 2Research and Innovation Centre, The Jordanian Pharmaceutical Manufacturing Co. Plc. (JPM, Amman, Jordan Abstract: Streptozotocin (STZ is currently the most used diabetogenic agent in testing insulin and new antidiabetic drugs in animals. Due to the toxic and disruptive nature of STZ on organs, apart from pancreas, involved in preserving the body’s normal glucose homeostasis, this study aims to reassess the action of STZ in inducing different glucose response states in diabetic rats while testing insulin. Diabetic Sprague-Dawley rats induced with STZ were classified according to their initial blood glucose levels into stages. The effect of randomizing rats in such a manner was investigated for the severity of interrupting normal liver, pancreas, and kidney functions. Pharmacokinetic and pharmacodynamic actions of subcutaneously injected insulin in diabetic and nondiabetic rats were compared. Interruption of glucose homeostasis by STZ was challenged by single and repeated administrations of injected insulin and oral glucose to diabetic rats. In diabetic rats with high glucose (451–750 mg/dL, noticeable changes were seen in the liver and kidney functions compared to rats with lower basal glucose levels. Increased serum levels of recombinant human insulin were clearly indicated by a significant increase in the calculated maximum serum concentration and area under the concentration–time curve. Reversion of serum glucose levels to normal levels pre- and postinsulin and oral glucose administrations to STZ diabetic rats were found to be variable. In conclusion, diabetic animals were more responsive to insulin than nondiabetic animals. STZ was capable of inducing different levels of normal glucose homeostasis disruption in rats. Both pharmacokinetic and pharmacodynamic actions of insulin were

  18. Intermittent fasting modulation of the diabetic syndrome in sand rats. II. In vivo investigations.

    Science.gov (United States)

    Belkacemi, Louiza; Selselet-Attou, Ghalem; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J

    2010-11-01

    This study deals with the effects of daily intermittent fasting for 15 h upon the development of diabetes in sand rats exposed to a hypercaloric diet. The same pattern of daily intermittent fasting was imposed on sand rats maintained on a purely vegetal diet (control animals). Over the last 30 days of the present experiments, non-fasting animals gained weight, whilst intermittently fasting sand rats lost weight. In this respect, there was no significant difference between control animals and either diabetic or non-diabetic sand rats exposed to the hypercaloric diet. The postprandial glycemia remained fairly stable in the control animals. During a 3-week transition period from a purely vegetal to a hypercaloric diet, the post-prandial glycemia increased by 5.95 ± 1.26 mM (n=6) in diabetic sand rats, as distinct from an increase of only 0.45 ± 0.56 mM (n=6) in the non-diabetic animals. During the intermittent fasting period, the postprandial glycemia decreased significantly in the diabetic animals, but not so in the non-diabetic sand rats. Before the switch in food intake, the peak glycemia at the 30th min of an intraperitoneal glucose tolerance test was already higher in the diabetic than non-diabetic rats. In both the non-diabetic and diabetic sand rats, intermittent fasting prevented the progressive deterioration of glucose tolerance otherwise observed in non-fasting animals. These findings reveal that, at least in sand rats, intermittent daily fasting prevents the progressive deterioration of glucose tolerance otherwise taking place when these animals are exposed to a hypercaloric diet.

  19. In vivo postprandial lipid partitioning in liver and muscle of diabetic rats is disturbed

    NARCIS (Netherlands)

    Prompers, J.J.; Jonkers, R.A.M.; Loon, van L.J.C.; Nicolay, K.

    2012-01-01

    Objective: To study in vivo lipid partitioning in insulin-resistant liver and muscle of diabetic rats using magnetic resonance spectroscopy (MRS). Methods: Four groups of n=6 male Zucker diabetic fatty rats were used for this study: obese, pre-diabetic fa/fa rats and lean, non-diabetic fa/+

  20. EFFECT OF FERMENTED CHUB MACKEREL EXTRACT ON LIPID METABOLISM OF DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    U. Santoso

    2014-10-01

    Full Text Available The present study was conducted to evaluate the effect of fermented chub mackerel extract(FCME on lipid metabolism in diabetic rats. Four week-old male Wistar rats were divided into threegroups based on weight. All rats were induced with diabetes mellitus by single intraperitoneal injectionof streptozotocin at 45 mg/kg body weight. Thereafter, they were randomly distributed to threetreatments with 7 rats assigned to each treatment. One group was the control with no additive, and twotreatmentgroups were given the purified diets supplemented with 1% or 2% FCME. Experimentalresults showed that in comparison to the control, diabetic rats fed FCME increased feed intake (P<0.01and body weight gain (P<0.05. FCME inclusion significantly reduced the activities of acetyl-CoAcarboxylase (P<0.01 and fatty acid synthetase (P<0.05 in diabetic rats. FCME significantly increasedcholesterol 7 -hydroxylase with no effect on HMG-CoA reductase activity. FCME had no effect onhepatic triglyceride, free cholesterol and phospholipid. FCME inclusion at 1% level significantlyreduced serum triglyceride. FCME significantly increased HDL-cholesterol (P<0.05 with no effect onLDL + VLDL-cholesterol, and significantly reduced atherogenic index. FCME did not significantlyaffect serum insulin and glucose concentration. In conclusion, FCME supplementation altered lipidmetabolism in diabetic rats. FCME supplementation reduced the risk of atherosclerosis in diabetic rats.

  1. Colonic delivery of nutrients for management of blood glucose in type 2 diabetes patients

    Directory of Open Access Journals (Sweden)

    Jerzy Szewczyk

    2017-01-01

    Full Text Available Background:It is now widely accepted that bariatric surgeries such as Roux-en-Y gastric bypass (RYGB and sleeve gastrectomy (SG can resolve orimprove type 2 diabetes mellitus. Post-prandial glucagon-like peptide-1(GLP-1 increases after both RYGB and SG and blockade of the GLP-1 receptor suppresses the hypoglycemic effect post-operatively. The expedited delivery of nutrients, including L-glutamine and butyrate, to the distal small intestine and colon, where most GLP-1–secreting enteroendocrine L-cells are expressed, could explain this increase post-surgery. Pharmacological treatments that target nutrient-sensing receptors on L-cells may mimic the effects of bariatric surgeries and may ameliorate deficiencies in gut hormone responses involved in the regulation of glucose and satiety. In this study, we investigated the effects of the colonic delivery of L-glutamine and butyrate on GLP-1 secretion and glucose homeostasis in both a pre-clinical rodent model and clinical type 2 diabetes mellitus (T2DM. Results: Infusion of 4.4mg of sodium butyrate, compared to saline, into the colon of Zuckerdiabetic fatty (ZDF rats increased GLP-1secretion in response to an intra-duodenal glucose challenge. In a chronic study, oral dosing of 40mg of sodium butyrate twice a day, formulated as colon-targeted sustained-release tablets, preserved glucose tolerance and insulin sensitivity in ZDF rats. In ten T2DM patients requiring oral anti-hyperglycemic agents, infusion of 1g of L-glutamine into the colon, compared to saline, increased plasma GLP-1 (p=0.017 at 30min and insulin (p<0.01 at 90min; p=0.001 at 120min; AUC p<0.005 after an oral glucose challenge. infusion with butyrate significantly increased only insulin secretion at 120min, compared to saline (p<0.05. Neither agent had an effect on glucose disposal.Conclusion: Targeted colonic delivery of L-glutamine and butyrate augments secretion of meal-stimulated GLP-1 and insulin; L-glutamine was more efficacious in

  2. Hypoglycemic of Cajanus scarabaeoides in glucose overloaded and streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Suman Pattanayak, Siva Shankar Nayak, Durgaprasad Panda and Vikas Shende

    2009-12-01

    Full Text Available In light of traditional claim of Cajanus scarabaeoides (L in the treatment of diabetes, we studied the effects of different solvent extracts in normal, glucose over loaded normal rats and streptozotocin-induced diabetic rats. The methanolic extract (500 mg/kg orally was produce significantly reduce blood glucose level at normal, glucose over loaded normal rats, and streptozotocin-induced diabetic rats after 15 days treatment; whereas petroleum ether and chloroform extract (500 mg/kg orally did not exhibit any significant effect on three groups of rats. Histopathology studies on pancreas of streptozotocin-induced diabetic rats shows inflammatory changes in pancreatic islets, results from selective destroy of insulin producing β-cells. These changes are inhibited by C. scarabaeoides methanolic extract and gliclazide. The antidiabetic activity of methanolic extract may be due to the presence of flavonoids.

  3. Impact of opium on the serum levels of TGF-β in diabetic, addicted and addicted-diabetic rats.

    Science.gov (United States)

    Asadikaram, Gholamreza; Asiabanha, Majid; Sayadi, Ahmadreza; Jafarzadeh, Abdollah; Hassanshahi, Gholamhossein

    2010-09-01

    Several cells of immune system such as regulatory T cells and macrophages secrete transforming growth factor-β (TGF-β) in response to different stimuli. This cytokine has inhibitory effect on immune system and diminished production of this cytokine is associated with autoimmune disorders. The aim of this study was to evaluate the influence of opium addiction on serum level of TGF-β in male and female diabetic and non-diabetic Wistar rats. This experimental study was performed on normal, opium addicted, diabetic and addicted-diabetic male and female rats. Serum level of TGF-β was measured by ELISA. The results of our study indicated that the mean serum level of TGF-β in female addicted rats was significantly increased compared to control group (popium and its derivatives have differential inductive effects on the cytokine expression in male and female rats.

  4. Effects of taurine on oxidative-antioxidative status of renal tissue in diabetic rats

    International Nuclear Information System (INIS)

    Chen Yingjian; Tu Xiaowen; Yin Qiuxia; Hu Chenjing

    2004-01-01

    Objective: To investigate the effects of taurine on the oxidative-antioxidative status of renal tissue in diabetic rats. Methods: Diabetic models of rat were induced with streptozotocin. Half of the models (n=7) were treated with taurine for 4 weeks. Blood glucose, uric acid and MDA, 24h urinary albumin and renal cortical homogenate MDA, SOD, GSH-Px contents were determined with appropriate laboratory technics in 1) diabetic rats without taurine treatment, n=7 2) diabetic rats treated with taurine, n=7 and 3) control rats, n=7. Results: There were no significant differences between the blood glucose levels in the two groups of diabetic rats. Blood uric acid and 24h urinary albumin contents in the untreated diabetic rats were significantly higher than those in the controls (P<0.01). However, in the taurine treated rats, the blood uric acid levels approximated to those in the controls, with decreased but still higher than normal 24h urinary albumin contents. In the untreated rats, the renal cortical SOD and GSH-Px activities were about the same as those in control rats but there were significantly higher levels of blood and cortical MDA contents (P<0.01). With taurine treatment, the SOD and GSH-Px activities were significantly higher than those in the two other groups (P<0.05); the MDA contents were lower than those in non-treated rats (P<0.05), but still higher than those in controls (P<0.05). Conclusion: Taurine could enhance the anti-oxidative capability and attenuated the oxidative stress in diabetic rats renal tissue with partial protection of renal function. (authors)

  5. Aberrant Pregnancy Adaptations in the Peripheral Immune Response in Type 1 Diabetes: A Rat Model.

    Directory of Open Access Journals (Sweden)

    Bart Groen

    Full Text Available Despite tight glycemic control, pregnancy complication rate in type 1 diabetes patients is higher than in normal pregnancy. Other etiological factors may be responsible for the development of adverse pregnancy outcome. Acceptance of the semi-allogeneic fetus is accompanied by adaptations in the maternal immune-response. Maladaptations of the immune-response has been shown to contribute to pregnancy complications. We hypothesized that type 1 diabetes, as an autoimmune disease, may be associated with maladaptations of the immune-response to pregnancy, possibly resulting in pregnancy complications.We studied pregnancy outcome and pregnancy-induced immunological adaptations in a normoglycemic rat-model of type 1 diabetes, i.e. biobreeding diabetes-prone rats (BBDP; 5 non-pregnant rats, 7 pregnant day 10 rats and 6 pregnant day 18 rats , versus non-diabetic control rats (i.e. congenic non-diabetic biobreeding diabetes-resistant (BBDR; 6 non-pregnant rats, 6 pregnant day 10 rats and 6 pregnant day 18 rats and Wistar-rats (6 non-pregnant, 6 pregnant day 10 rats and 5 pregnant day 18 rats.We observed reduced litter size, lower fetal weight of viable fetuses and increased numbers of resorptions versus control rats. These complications are accompanied by various differences in the immune-response between BBDP and control rats in both pregnant and non-pregnant animals. The immune-response in non-pregnant BBDP-rats was characterized by decreased percentages of lymphocytes, increased percentages of effector T-cells, regulatory T-cells and natural killer cells, an increased Th1/Th2-ratio and activated monocytes versus Wistar and BBDR-rats. Furthermore, pregnancy-induced adaptations in BBDP-rats coincided with an increased Th1/Th2-ratio, a decreased mean fluorescence intensity CD161a/NKR-P1b ratio and no further activation of monocytes versus non-diabetic control rats.This study suggests that even in the face of strict normoglycemia, pregnancy complications

  6. Effects of exposure to cigarette smoke prior to pregnancy in diabetic rats

    Directory of Open Access Journals (Sweden)

    Damasceno Débora C

    2011-08-01

    Full Text Available Abstract Background The purpose of this study was to evaluate the effects of cigarette smoke exposure before pregnancy on diabetic rats and their offspring development. Methods Diabetes was induced by streptozotocin and cigarette smoke exposure was conducted by mainstream smoke generated by a mechanical smoking device and delivered into a chamber. Diabetic female Wistar rats were randomly distributed in four experimental groups (n minimum = 13/group: nondiabetic (ND and diabetic rats exposed to filtered air (D, diabetic rats exposed to cigarette smoke prior to and into the pregnancy period (DS and diabetic rats exposed to cigarette smoke prior to pregnancy period (DSPP. At day 21 of pregnancy, rats were killed for maternal biochemical determination and reproductive outcomes. Results The association of diabetes and cigarette smoke in DSPP group caused altered glycemia at term, reduced number of implantation and live fetuses, decreased litter and maternal weight, increased pre and postimplantation loss rates, reduced triglyceride and VLDL-c concentrations, increased levels of thiol groups and MDA. Besides, these dams presented increased SOD and GSH-Px activities. However, the increased antioxidant status was not sufficient to prevent the lipid peroxidation observed in these animals. Conclusion Despite the benefits stemming from smoking interruption during the pregnancy of diabetic rats, such improvement was insufficient to avoid metabolic alterations and provide an adequate intrauterine environment for embryofetal development. Therefore, these results suggest that it is necessary to cease smoking extensive time before planning pregnancy, since stopping smoking only when pregnancy is detected may not contribute effectively to fully adequate embryofetal development.

  7. Effect of thyroparathyroidectomy on urinary acidification in diabetic rats

    Directory of Open Access Journals (Sweden)

    Zaladek-Gil F.

    1999-01-01

    Full Text Available In previous studies we have shown stimulation of renal acid excretion in the proximal tubules of rats with diabetes of short duration, with no important alterations in glomerular hemodynamics; on the other hand, in thyroparathyroidectomized rats (TPTX model, a significant decrease in renal acid excretion, glomerular filtration rate (GFR and renal plasma flow (RPF was detected. Since important changes in the parathyroid hormone-vitamin D-Ca axis are observed in the diabetic state, the present study was undertaken to investigate the renal repercussions of thyroparathyroidectomy in rats previously made diabetic by streptozotocin (45 mg/kg. Four to 6 days after the induction of diabetes (DM, a group of rats were thyroparathyroidectomized (DM + TPTX. Renal functional parameters were evaluated by measuring the inulin and sodium para-aminohippurate clearance on the tenth day. The decrease in the GFR and RPF observed in TPTX was not reversed by diabetes since the same alterations were observed in DM + TPTX. Net acid (NA excretion was unchanged in DM (6.19 ± 0.54, decreased in TPTX (3.76 ± 0.25 and returned to normal levels in DM + TPTX (5.54 ± 0.72 when compared to the control group (6.34 ± 0.14 µmol min-1 kg-1. The results suggest that PTH plays an important vasodilator role regarding glomerular hemodynamics, since in its absence the impairment in GFR and RPF was not reversed by the diabetic state. However, with respect to acid excretion, the presence of diabetes was able to overcome the negative stimulus represented by TPTX.

  8. Protective effect of turnip root ethanolic extract on early diabetic nephropathy in the rats

    Directory of Open Access Journals (Sweden)

    Bahram Amouoghli-Tabrizi

    2011-11-01

    Full Text Available Background: Diabetes mellitus is a metabolic disorder and one of its most important consequences is renal insufficiency. A multitude of herbs has been described for the treatment of diabetes mellitus. The aim of present study was to assess the protective effect of turnip root ethanolic extract (TREE on early nephropathy in alloxan-induced diabetic rats.Materials and Method: Eighty male Wistar rats were randomly allocated into 4 equal groups including: healthy rats, normal healthy rats receiving TREE, diabetic rats and diabetic rats receiving TREE. Diabetes was induced by a single injection of alloxan (120 mg/kg; i.p. The extract (200 mg/kg was gavaged to TREE treatment groups daily for 8 weeks. At the end of experiment; serum levels of urea, uric acid and creatinine were assessed. The lipid peroxidation product, thiobarbituric acid-reacting substances (TBARS, and activities of superoxide dismutase, catalase and glutathione peroxidase were measured in the renal tissue. Finally, the biochemical findings were matched with histopathological verification. Statistically, the quantitative data obtained, compared among the groups by one-way analysis of variance followed by Tukey post-test. Statistical significance was considered at p<0.05.Results: In the diabetic rats, TREE significantly decreased the levels of serum biomarkers of renal injury. Furthermore, TREE significantly decreased the lipid peroxidation and elevated the decreased levels of antioxidant enzymes in diabetic rats. Histopathological findings were in agreement with the biochemical findings.Conclusion: TREE has protective effect on early diabetic nephropathy in the rats with experimentally induced diabetes

  9. Long-Term Type 1 Diabetes Enhances In-Stent Restenosis after Aortic Stenting in Diabetes-Prone BB Rats

    Directory of Open Access Journals (Sweden)

    Geanina Onuta

    2011-01-01

    Full Text Available Type 1 diabetic patients have increased risk of developing in-stent restenosis following endovascular stenting. Underlying pathogenetic mechanisms are not fully understood partly due to the lack of a relevant animal model to study the effect(s of long-term autoimmune diabetes on development of in-stent restenosis. We here describe the development of in-stent restenosis in long-term (~7 months spontaneously diabetic and age-matched, thymectomized, nondiabetic Diabetes Prone BioBreeding (BBDP rats (n=6-7 in each group. Diabetes was suboptimally treated with insulin and was characterized by significant hyperglycaemia, polyuria, proteinuria, and increased HbA1c levels. Stented abdominal aortas were harvested 28 days after stenting. Computerized morphometric analysis revealed significantly increased neointima formation in long-term diabetic rats compared with nondiabetic controls. In conclusion, long-term autoimmune diabetes in BBDP rats enhances in-stent restenosis. This model can be used to study the underlying pathogenetic mechanisms of diabetes-enhanced in-stent restenosis as well as to test new therapeutic modalities.

  10. Reduced platelet-mediated and enhanced leukocyte-mediated fibrinolysis in experimentally induced diabetes in rats

    International Nuclear Information System (INIS)

    Winocour, P.D.; Colwell, J.A.

    1985-01-01

    Studies of fibrinolytic activity in diabetes mellitus have produced conflicting results. This may be a result of methodologic insensitivity or of variable contributions of the different blood components to whole blood fibrinolysis. To explore these two possibilities, the authors used a sensitive solid-phase radiometric assay to examine the fibrinolytic activity of whole blood, platelet-rich plasma, leukocytes, and platelet- and leukocyte-poor plasma prepared from control rats and rats with streptozocin-induced diabetes at various times after induction of diabetes. Fibrinolytic activity of whole blood from diabetic rats after 7 days was significantly reduced, and remained reduced after longer durations of diabetes up to 28 days. Platelet-rich plasma from diabetic rats had decreased fibrinolytic activity, which followed the same time course of changes as in whole blood. The platelet contribution to whole blood fibrinolysis was further reduced in vivo after 14 days of diabetes by a reduced whole blood platelet count. In contrast, fibrinolytic activity of leukocytes from diabetic rats became enhanced after 7 days of diabetes. After 49 days of diabetes, the whole blood leukocyte count was reduced, and in vivo would offset the enhanced activity. Plasma fibrinolytic activity was small compared with that of whole blood and was unaltered in diabetic rats. The authors conclude that altered platelet function contributes to decreased fibrinolytic activity of whole blood in diabetic rats, and that this may be partially offset by enhanced leukocyte-mediated fibrinolysis

  11. Gender-Dimorphic Regulation of Skeletal Muscle Proteins in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Minji Choi

    2013-03-01

    Full Text Available Background: Despite the fact that sexual differences increase diabetic risk and contribute to the need for gender-specific care, there remain contradictory results as to whether or not sexual dimorphism increases susceptibility to the development of type 1 diabetes mellitus. Methods: To examine gender-dimorphic regulation of skeletal muscle proteins between healthy control and STZ-induced diabetic rats of both genders, we performed differential proteome analysis using two-dimensional electrophoresis combined with mass spectrometry. Results: Animal experiments revealed that STZ treatment rendered female rats more susceptible to induction of diabetes than their male littermates with significantly lower plasma insulin levels due to hormonal regulation. Proteomic analysis of skeletal muscle identified a total of 21 proteins showing gender-dimorphic differential expression patterns between healthy controls and diabetic rats. Most interestingly, gender-specific proteome comparison showed that male and female rats displayed differential regulation of proteins involved in muscle contraction, carbohydrate, and lipid metabolism, as well as oxidative phosphorylation and cellular stress. Conclusion: The current proteomic study revealed that impaired protein regulation was more prominent in the muscle tissue of female diabetic rats, which were more susceptible to STZ-induced diabetes. We expect that the present proteomic data can provide valuable information for evidence-based gender-specific treatment of diabetes.

  12. Effects of FoxO1 on podocyte injury in diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng; Zhang, Yuanyuan; Wang, Qingzhu; Ren, Lei; Zhou, Yingni [Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Ma, Xiaojun [Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wu, Lina [Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Qin, Guijun, E-mail: hyqingj@zzu.edu.cn [Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China)

    2015-10-16

    Objective: This study was designed to investigate the protective effect of forkhead transcription factor O1 (FoxO1) on podocyte injury in rats with diabetic nephropathy. Methods: Streptozotocin-induced diabetic rats were served as DM group, while DM rats transfected with blank lentiviral vectors (LV-pSC-GFP) or lentiviral vectors carrying constitutively active FoxO1 (LV-CA-FoxO1) were served as LV-NC group or LV-CA group, respectively. The control group (NG) consisted of uninduced rats that received an injection of diluent buffer. At 2, 4, and 8 weeks after transfection, the levels of urine albumin, blood glucose, blood urea nitrogen, serum creatinine and urine podocalyxin were measured. Real-time PCR and western blotting were performed to measure mRNA and protein levels of FoxO1, podocalyxin, nephrin, and desmin in renal cortex. In addition, light and electron microscopy were used to detect structural changes in the glomerulus and podocytes. Results: Compared with the rats in LV-NC and DM groups, LV-CA rats showed a significant increase in FoxO1 mRNA and protein levels and a distinct decrease in urine albumin, blood urea nitrogen, and serum creatinine (except at the two-week time point) levels (p < 0.05). Podocalyxin and nephrin mRNA and protein levels increased (p < 0.05), whereas desmin mRNA and protein levels decreased (p < 0.05). Pathological changes in glomerulus were also ameliorated in LV-CA group. Conclusions: Upregulating expression of FoxO1 by transduction with recombinant lentivirus ameliorates podocyte injury in diabetic rats. - Highlights: • The structures and functions of podocytes were impaired in STZ-induced diabetic rats. • Constitutively active FoxO1 ameliorates structure injury and preserves function of podocytes in diabetic rats. • FoxO1 may alleviate the pathological changes associated with diabetic nephropathy.

  13. Effects of FoxO1 on podocyte injury in diabetic rats

    International Nuclear Information System (INIS)

    Guo, Feng; Zhang, Yuanyuan; Wang, Qingzhu; Ren, Lei; Zhou, Yingni; Ma, Xiaojun; Wu, Lina; Qin, Guijun

    2015-01-01

    Objective: This study was designed to investigate the protective effect of forkhead transcription factor O1 (FoxO1) on podocyte injury in rats with diabetic nephropathy. Methods: Streptozotocin-induced diabetic rats were served as DM group, while DM rats transfected with blank lentiviral vectors (LV-pSC-GFP) or lentiviral vectors carrying constitutively active FoxO1 (LV-CA-FoxO1) were served as LV-NC group or LV-CA group, respectively. The control group (NG) consisted of uninduced rats that received an injection of diluent buffer. At 2, 4, and 8 weeks after transfection, the levels of urine albumin, blood glucose, blood urea nitrogen, serum creatinine and urine podocalyxin were measured. Real-time PCR and western blotting were performed to measure mRNA and protein levels of FoxO1, podocalyxin, nephrin, and desmin in renal cortex. In addition, light and electron microscopy were used to detect structural changes in the glomerulus and podocytes. Results: Compared with the rats in LV-NC and DM groups, LV-CA rats showed a significant increase in FoxO1 mRNA and protein levels and a distinct decrease in urine albumin, blood urea nitrogen, and serum creatinine (except at the two-week time point) levels (p < 0.05). Podocalyxin and nephrin mRNA and protein levels increased (p < 0.05), whereas desmin mRNA and protein levels decreased (p < 0.05). Pathological changes in glomerulus were also ameliorated in LV-CA group. Conclusions: Upregulating expression of FoxO1 by transduction with recombinant lentivirus ameliorates podocyte injury in diabetic rats. - Highlights: • The structures and functions of podocytes were impaired in STZ-induced diabetic rats. • Constitutively active FoxO1 ameliorates structure injury and preserves function of podocytes in diabetic rats. • FoxO1 may alleviate the pathological changes associated with diabetic nephropathy.

  14. Antihyperlipidemic Effect of a Polyherbal Mixture in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Ahmad Ghorbani

    2013-01-01

    Full Text Available The effects of a polyherbal mixture containing Allium sativum, Cinnamomum zeylanicum, Citrullus colocynthis, Juglans regia, Nigella sativa, Olea europaea, Punica granatum, Salvia officinalis, Teucrium polium, Trigonella foenum, Urtica dioica, and Vaccinium arctostaphylos were tested on biochemical parameters in diabetic rats. The animals were randomized into three groups: (1 normal control, (2 diabetic control, and (3 diabetic rats which received diet containing 15% (w/w of this mixture for 4 weeks. Diabetes was induced by intraperitoneal injection of streptozotocin (55 mg/kg. At the end of experiment, the mixture had no significant effect on serum hepatic enzymes, aspartate aminotransferase, and alanine aminotransferase activities. However, the level of fasting blood glucose, water intake, and urine output in treated group was lower than that in diabetic control rats (P<0.01. Also, the levels of triglyceride and total cholesterol in polyherbal mixture treated rats were significantly lower than those in diabetic control group (P<0.05. Our results demonstrated that this polyherbal mixture has beneficial effects on blood glucose and lipid profile and it has the potential to be used as a dietary supplement for the management of diabetes.

  15. Antioxidant activity of citrullus colocynthis pulp extract in the RBC's of alloxan-induced diabetic rats

    International Nuclear Information System (INIS)

    Dallak, M.; Jaliah, B.I.

    2010-01-01

    Previous studies in our laboratory showed that Citrullus colocynthis pulp seedless extract have antihyperglycemic and insulinotropic effects in alloxan induced diabetes. Reactive oxygen species have been implicated in the mechanism of damage of red blood cells and anaemia in diabetic patients. So the current study was carried out to investigate the protective role of citrullus colocynthis against oxidative stress in the RBC's of alloxan induced diabetic rats. Methods: Rats were divided into four groups each of ten rats, the first group was normal non diabetic rats given normal saline orally and was named control group, the second group was diabetic rats given normal saline orally and were named normal saline treated-diabetic rats, the third and fourth group were diabetic rats treated with the pulp extract or glibenclamide (a positive control) orally. Evaluations were made for haematological parameters in the blood and for lipid peroxidation and oxidative stress enzymes activities in the RBC's of all experimental rats. Results: The diabetic rats had a significant decrease (p<0.05) in total erythrocytes count and Packed Cell Volume (PCV) and a normal Haemoglobin (Hb) value in the blood. They also showed decreased levels of Thiobarbituric Acid Reactive Substances (TBARS) and decreased activities of Superoxide Dismutase (SOD) and Catalase (CAT) in the RBC's hemolysate. On other hand, oral administration of citrullus colocynthis or glibenclamide alleviated these altered parameters in the treated rats, they resulted in a significant increase (p<0.05) in the in total erythrocytes count and PCV (Haematocrit) values in the blood and caused a significant decreased levels of TBARS and increased activities of SOD and CAT in the RBC's of those diabetic treated rats when compared to diabetic rats given normal saline. The effect was more profound in citrullus colocynthis treated diabetic rats. Conclusion: Citrullus colocynthis pulp extract possesses a potent antioxidant property

  16. Effects of diabetes on tooth movement and root resorption after orthodontic force application in rats.

    Science.gov (United States)

    Arita, K; Hotokezaka, H; Hashimoto, M; Nakano-Tajima, T; Kurohama, T; Kondo, T; Darendeliler, M A; Yoshida, N

    2016-05-01

    To investigate the effects of diabetes on orthodontic tooth movement and orthodontically induced root resorption in rats. Twenty-three 10-week-old male Sprague-Dawley rats divided into control (n = 7), diabetes (n = 9), and diabetes + insulin (n = 7) groups. Diabetes was induced by administering a single intraperitoneal injection of streptozotocin. Rats with a blood glucose level exceeding 250 mg/dl were assigned to the diabetes group. Insulin was administered daily to the diabetes + insulin group. A nickel-titanium closed-coil spring of 10 g was applied for 2 weeks to the maxillary left first molar in all rats to induce mesial tooth movement. Tooth movement was measured using microcomputed tomography images. To determine the quantity of root resorption, the mesial surfaces of the mesial and distal roots of the first molar were analyzed using both scanning electron microscopy and scanning laser microscopy. After 2 weeks, the amount of tooth movement in the diabetic rats was lower than that in the control rats. Root resorption was also significantly lower in the diabetic rats. These responses of the rats caused by diabetes were mostly diminished by insulin administration. Diabetes significantly reduced orthodontic tooth movement and orthodontically induced root resorption in rats. The regulation of blood glucose level through insulin administration largely reduced these abnormal responses to orthodontic force application. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Bacanlı, Merve; Anlar, Hatice Gül; Aydın, Sevtap; Çal, Tuğbagül; Arı, Nuray; Ündeğer Bucurgat, Ülkü; Başaran, A Ahmet; Başaran, Nurşen

    2017-12-01

    It is known that diabetes causes some complications including alterations in lipid profile, hepatic enzyme levels but also it causes oxidative stress. Limonene, a major component of Citrus oils, has important health beneficial effects in lowering the level of oxidative stress due to its antioxidant activity. The aim of this study was to investigate the effects of D-limonene on streptozotocin (STZ)-induced diabetes in Wistar albino rats. For this purpose, DNA damage was evaluated by alkaline comet assay. Changes in the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GSHPx) and the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), total glutathione (GSH), malondialdehyde (MDA), insulin, total bilirubin and BCA protein, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT), high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol and triglyceride were also evaluated. D-limonene treatment was found to significantly decrease DNA damage, GR enzyme activities and MDA levels and significantly increase GSH levels and CAT, SOD and GSH-Px enzyme activities and altered lipid and liver enzyme parameters in diabetic rats. According to our results, it seems that D-limonene might have a role in the prevention of the complication of diabetes in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The influence of dietary Cu and diabetes on tissue 67Cu retention kinetics in rats

    International Nuclear Information System (INIS)

    Uriu-Hare, J.Y.; Rucker, R.B.; Keen, C.L.

    1991-01-01

    Compared to controls, diabetes results in higher plasma, liver and kidney Cu concentrations. Since alterations in Cu metabolism may be associated with diabetic pathology, the authors investigated how Cu metabolism is affected by diabetes and dietary Cu intake. Nondiabetic and STZ diabetic rats were fed Cu suppl. or Cu def. diets for 5 wks. Rats were intubated with 28 μCi 67 Cu and killed after 8, 16, 24, 32, 64, or 128 h. There were marked effects of both diet and diabetes on 67 Cu metabolism. Independent of diabetes, deficient rats had a higher % of retained 67 Cu, in liver, plasma, RBC, muscle, spleen, brain, lung, uterus, and intestine than adequate Cu rats. Independent of dietary Cu, diabetic rats had a lower % of retained 67 Cu in liver, plasma, RBC, muscle, spleen, lung, bone, pancreas, skin, uterus and heart than controls. Differential effects were noted for kidney; adequate Cu diabetic rats had a higher % of retained 67 Cu than all other groups. Marked effects of both diet and diabetes were evident when tissue Cu turnover was examined. Compared to Cu suppl. rats, Cu def. rats had a slower turnover of 67 Cu, in liver, plasma, intestine, pancreas, eye, brain, muscle, spleen, lung and heart. Diabetic rats had a slower turnover of 67 Cu than nondiabetic rats in liver, plasma, intestine, pancreas, eye, kidney, RBC and uterus. The data imply that a focus on Cu metabolism with regard to cellular Cu trafficking and pathology may be warranted

  19. Delayed progression of diabetic cataractogenesis and retinopathy by Litchi chinensis in STZ-induced diabetic rats.

    Science.gov (United States)

    Kilari, Eswar Kumar; Putta, Swathi

    2017-03-01

    The study was carried out to evaluate the effect of the aqueous fruit pericarp extract of Litchi chinensis (APLC) on parameters which leads to diabetic cataractogenesis and retinopathy in the streptozotocin-induced diabetic rats. The objective of the study is to evaluate the APLC for in vivo antioxidant activity and its role in inhibiting the polyol pathway and formation of advanced glycation end products (AGEs). The diabetic animals were treated with L. chinensis for a period of 12 weeks. At the end of 12 weeks, the animals were killed and the biochemical pathways involved in the pathogenesis of cataract such as oxidative stress by protein content, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and polyolpathway by aldose reductase (AR) in lens homogenates, alterations in protein carbonyl content (PCO) and AGEs in both serum and lens the APLC-treated diabetic rats were compared against diabetic control rats. Cataract progression due to hyperglycemia was monitored by slit lamp bio microscope and classified into four stages. Fundoscope test and retinal histopathology were done for assessing retinopathy. Statistically significant reduction in glucose, and elevation of protein content, SOD, CAT, and GSH levels and decreased levels of AR and PCO in lens homogenate and significant reduction in AGEs serum and lens homogenate were observed. Slit lamp examination, fundoscope, and histopathology showed improvement in retinal changes in APLC-treated rats compared to diabetic control animals. The treatment with APLC found to delay the progression of diabetic cataractogenesis and retinopathy, which might be due to its antioxidant activity, because of the presence of active phytochemicals in APLC.

  20. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  1. Lectins binding during alloxan-induced diabetes in rat soleus muscle

    African Journals Online (AJOL)

    Membrane structural changes of soleus muscle of alloxan-diabetic rats were detected with a panel of six biotinylated lectins. Samples of muscles were obtained from normal and diabetic rats. The biotinylated lectins in staining were detected by avidin-peroxidase complex. Lectin stainning of soleus muscle cryostat sections ...

  2. Protective role of marine macroalgae extracts against STZ induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Marine macroalgae

    2017-12-01

    Full Text Available Objective: To study the anti-diabetic activity of marine macroalgae extracts (n = 31, purification and characterization of sulphated galactopyran (SGP from Gracilaria opuntia (FM4 in diabetic rats. Methods: The animals were separated into groups and STZ (55 mg/kg body weight was used to induce diabetics. Glucose, HbA1c, insulin, C-peptide levels and in vivo antioxidant levels were estimated and histopathological studies were done in STZ-induced diabetic and marine macroalgae treated rats. Results: Based on glucose and HbA1c levels and in vivo antioxidant levels, among the 31 marine macroalgae extracts, FM4 has showed high anti-diabetic activity. Hence, FM4 was purified and characterized by 1H-NMR spectra and FT-IR as sulphated galactopyran. During the survival analysis, SGP at dose of 100 mg/kg showed significant (P < 0.05 survival rate and elevations in C-peptide and insulin levels. The histopathological modulations of SGP were observed in diabetic rat tissues such as liver, kidney and brain. Hence obtained results reveal that SGP treated diabetic rats has significant changes in C-peptide and insulin levels which regulates the blood glucose levels and recovered the histopathological changes. Conclusions: Marine macroalgae have significant anti-diabetic activity. Hence, they could be used as nutraceutical supplement or natural green remedy against diabetes mellitus.

  3. Free radical activity during development of insulin-dependent diabetes mellitus in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, O.M.; Akerblom, H.K.; Sariola, H.; Andersson, S.M. (Univ. of Helsinki (Finland)); Martin, J.M. (Hospital for Sick Children, Toronto, Ontario (Canada)); Hallman, M. (Univ. of California, Irvine (United States))

    1991-01-01

    Free radical-induced lipid peroxidation was quantified by measuring expired pentane from diabetic prone BB Wistar rats of 45-90 d of age. Insulin-dependent diabetes mellitus was manifest at the age of 71 {plus minus} 8 d. Expired pentane increased from 2.1 {plus minus} 0.7 to 5.0 {plus minus}3.0 pmol/100g/min (p <0.01) at manifestation of the disease and remained high throughout the test period. In healthy age-matched control rats it persisted low. In rats made diabetic with streptozotocin, expired pentane remained low. The changes in expired pentane suggest that the development of endogenous insulin-dependent diabetes mellitus in BB rats is associated with increased free radical activity. This is not due to hyperglycemia or ketosis per se, and reflects a fundamental difference in the free radical activity between the spontaneously diabetic BB rats and the disease produced by streptozotocin. Development of spontaneous insulin-dependent diabetes in BB rats is associated with increased free radical activity that persists after the manifestation of the disease.

  4. Effect of irradiation on the dental pulp tissues in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Kang, Ho Duk; Hwang, Eui Hwan; Lee, Sang Rae

    2005-01-01

    To observe the histological changes in the pulp tissues of mandibular molars in streptozotocin-induced diabetic rats after irradiation. The male Sprague-Dawley rats weighing approximately 250 gm were divided into four groups : control, diabetes, irradiation, and diabetes-irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in control and irradiation groups were injected with citrate buffer only. After 5 days, the head and neck region of the rats in irradiation and diabetes-irradiation groups were irradiated with a single absorbed dose of 10 Gy. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the mandibular molars were sectioned and observed using a histopathological method. In the diabetes group, capillary dilatation was observed. However, there was no obvious morphologic alteration of the odontoblasts. In the irradiation group, generalized necrosis of the dental pulp tissues was observed. Vacuolation of the odontoblasts and dilatation of the capillaries were noted in the early experimental phases. In the diabetes-irradiation group, generalized degeneration of the dental pulp tissues was observed. Vacuolation of the dental pulp cells and the odontoblasts was noted in the late experimental phases. This experiment suggest that dilatation of the capillaries in the dental pulp tissue is induced by diabetic state, and generalized degeneration of the dental pulp tissues is induced by irradiation of the diabetic group.

  5. Gender Differences in Metabolic Disorders and Related Diseases in Spontaneously Diabetic Torii-Leprfa Rats

    Directory of Open Access Journals (Sweden)

    Takeshi Ohta

    2014-01-01

    Full Text Available The Spontaneously Diabetic Torii Leprfa (SDT fatty rat is a novel type 2 diabetic model wherein both male and female rats develop glucose and lipid abnormalities from a young age. In this study, we investigated gender differences in abnormalities and related complications in SDT fatty rats. Food intake was higher in males compared to female rats; however, body weight was not different between genders. Progression of diabetes, including increases in blood glucose and declines in blood insulin, was observed earlier in male rats than in females, and diabetic grade was more critical in male rats. Blood lipids tended to increase in female rats. Gonadal dysfunction was observed in both male and female rats with aging. Microangiopathies, such as nephropathy, retinopathy, neuropathy, and osteoporosis, were seen in both genders, and pathological grade and progression were more significant in males. Qualitative and quantitative changes were observed for metabolic disease gender differences in SDT fatty rats. The SDT fatty rat is a useful model for researching gender differences in metabolic disorders and related diseases in diabetes with obesity.

  6. Dual therapy of vildagliptin and telmisartan on diabetic nephropathy in experimentally induced type 2 diabetes mellitus rats.

    Science.gov (United States)

    Sharma, Ashish Kumar; Kanawat, Devendra Singh; Mishra, Akanksha; Dhakad, Prashant Kumar; Sharma, Prashant; Srivastava, Varnika; Joshi, Sneha; Joshi, Megha; Raikwar, Sachin Kumar; Kurmi, Muneem Kumar; Srinivasan, Bharthu Parthsarthi

    2014-12-01

    The objective of this article is to investigate the combination of telmisartan with vildagliptin therapy versus monotherapy of vildagliptin and telmisartan on diabetic nephropathy in type 2 diabetes mellitus rats. In adult rats streptozotocin (65 mg/kg) and nicotinamide (110 mg/kg) were injected intraperitoneally to produce diabetic nephropathy. Rats of either sex allotted to the following groups: (i) triple therapy: metformin (120 mg/kg, o.d.) + pioglitazone (1.25 mg/kg, o.d.) + glimepiride (0.7 mg/kg, o.d.); (ii) dual therapy: vildagliptin (8.76 mg/kg, o.d.) + telmisartan (6.48 mg/kg, o.d.); (iii) vildagliptin (8.76 mg/kg, o.d.); and (iv) telmisartan (6.48 mg/kg, o.d.); therapy was carried out for 35 days orally. Weekly at days 7, 14, 21, 28 and 35, blood pressure, blood glucose level, body weight, blood serum creatinine level, protein albumin level in urine, and blood urea nitrogen (BUN) were estimated. Renal structural changes were observed. Blood pressure, blood glucose level, blood serum creatinine level, protein albumin level in urine, BUN and renal deterioration increased significantly in diabetic rats compared with normal control rats. The vildagliptin + telmisartan treatment group showed no weight gain and controlled blood pressure, renovascular structural and biochemical parameters in diabetic neuropathy rats. The addition of telmisartan to vildagliptin demonstrated the best control over blood pressure, glycemia and diabetic nephropathy markers, renal structural changes and improvement of renal function as opposed to monotherapy with either drug, possibly because of the dual inhibitory effect on the renin-angiotensin system. © The Author(s) 2013.

  7. The Antidiabetic Activity of Nigella sativa and Propolis on Streptozotocin-Induced Diabetes and Diabetic Nephropathy in Male Rats

    Directory of Open Access Journals (Sweden)

    Haddad A. El Rabey

    2017-01-01

    Full Text Available This study was conducted to compare the ameliorative effect of Nigella sativa and propolis methanol extract on streptozotocin-induced diabetic male rats and treating diabetic nephropathy. Forty male Albino rats were divided into four groups; the first group was the negative control fed standard diet. The other 30 rats were injected with streptozotocin to induce diabetes by a single intravenous injection and then divided equally into three groups; the second group was the positive diabetic control; the third and the fourth groups were treated orally with 20% w/w Nigella sativa seeds methanol extract and propolis methanol extract (20% w/w, respectively. The rats of the second group showed increased glucose levels and lipid peroxide accompanied with reduction in superoxide dismutase, catalase, and glutathione-S-transferase enzyme activities compared with the negative control. Carboxymethyl lysine, interleukin-6, and immunoglobulins were also increased as a result of diabetes. Kidney function parameters were also elevated, while potassium and sodium levels were decreased. Moreover, tissues of kidney and pancreas showed severe histopathological changes. Treating the diabetic rats with Nigella sativa and propolis methanol extract in the third and fourth groups, respectively, ameliorated all altered biochemical and pathological examinations approaching the negative control. Propolis was more effective than Nigella sativa.

  8. The Protective Effect of Fucoidan in Rats with Streptozotocin-Induced Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-05-01

    Full Text Available Diabetic nephropathy (DN has long been recognized as the leading cause of end-stage renal disease, but the efficacy of available strategies for the prevention of DN remains poor. The aim of this study was to investigate the possible beneficial effects of fucoidan (FPS in streptozotocin (STZ-induced diabetes in rats. Wistar rats were made diabetic by injection of STZ after removal of the right kidney. FPS was administered to these diabetic rats for 10 weeks. Body weight, physical activity, renal function, and renal morphometry were measured after 10 weeks of treatment. In the FPS-treated group, the levels of blood glucose, BUN, Ccr and Ucr decreased significantly, and microalbumin, serum insulin and the β2-MG content increased significantly. Moreover, the FPS-treated group showed improvements in renal morphometry. In summary, FPS can ameliorate the metabolic abnormalities of diabetic rats and delay the progression of diabetic renal complications.

  9. Repopulation of the atrophied thymus in diabetic rats by insulin-like growth factor I

    International Nuclear Information System (INIS)

    Binz, K.; Joller, P.; Froesch, P.; Binz, H.; Zapf, J.; Froesch, E.R.

    1990-01-01

    Atrophy of the thymus is one of the consequences of severe insulin deficiency. The authors describe here that the weight and the architecture of the thymus of diabetic rats is restored towards normal not only by insulin but also by insulin-like growth factor I (IGF-I) treatment. In contrast to insulin, this effect of IGF-I occurs despite persisting hyperglycemia and adrenal hyperplasia. They also investigated the in vivo effect of IGF-I on replication and differentiation of thymocytes from streptozotocin-induced diabetic rats. Thymocytes from diabetic rats incorporated less [ 3 H]thymidine than did thymocytes from healthy rats. Insulin, as well as IGF-I treatment of diabetic rats increased [ 3 H]thymidine incorporation by thymocytes. Flow cytometry of thymocytes labeled with monoclonal antibodies revealed a decreased expression of the Thy-1 antigen in diabetic rats compared with control rats. In addition, a major deficiency of thymocytes expressing simultaneously the W3/25 and the Ox8 antigens was observed. These changes were restored towards normal by insulin as well as by IGF-I treatment. The antibody response to a T cell-dependent antigen (bovine serum albumin) was comparable in normal and diabetic rats. They conclude that IGF-I has important effects on the thymocyte number and the presence of CD4 + /CD8 + immature cells in the thymus of diabetic rats despite persisting hyperglycemia. However, helper T-cell function for antibody production appears to be preserved even in the severely diabetic state

  10. Effect of irradiation on the acinar cells of submandibular gland in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Hwang, Eui Hwan; Lee, Sang Rae

    2003-01-01

    To observe the histologic changes and clusterin expression in the acinar cells of the submandibular gland in streptozotocin-induced diabetic rat following irradiation. Mature Sprague-Dawley rats were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the Sprague-Dawley rats by injecting streptozotocin, while the control rats were injected with citrate buffer only. After 5 days, rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy to the head and neck region. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the submandibular gland were sectioned and observed using histologic and immunohistochemical methods. Morphologic change of acinar cells was remarkable in the diabetic group, but was not observed in the diabetic-irradiated group. Necrotic tissues were observed in the diabetic-irradiated group. Coloring of toluidine blue stain was most increased at 14 days in the diabetic group, however there were no significant change throughout the period of the experiment in the diabetic-irradiated group. Expression of clusterin was most significant at 14 days in the diabetic group, but gradually decreased with time after 7 days in the diabetic-irradiated group. Degeneration of clusterin was observed in the diabetic-irradiated group. This experiment suggests that the acinar cells of submandibular gland in rats are physiologically apoptosis by the induction of diabetes, but that the apoptosis is inhibited and the acinar cells necrotized after irradiation.

  11. The Effect of Treadmill Exercise on Antioxidant Status in the Hearts of the Diabetic Rats

    Directory of Open Access Journals (Sweden)

    I. Salehi

    2009-07-01

    Full Text Available Introduction & Objective: Diabetes is a metabolic disorder caused by low secretion or resistance to the insulin action. Oxidative stress, as a result of imbalance between the free radical production and antioxidant defense systems is strongly related to diabetes and its complications. The aim of the present study is to evaluate the effect of experimental diabetes and forced treadmill exercise on oxidative stress indexes in heart tissue.Materials & Methods: 40 male wistar rats (20020g were divided into four groups(n=10: control, control with exercise, diabetic, diabetic with exercise. Diabetes was induced by a single dose injection of streptozotocin (50 mg/Kg-1, i.p. Treadmill was performed for 1 hour, 5 days in 8 weeks. At the end of the experiments, the rats were anesthetized by sodium pentobarbital (50 mg/Kg-1, i.p and left ventricle dissociate from heart and maintenance in -80 ºC. Supernatant from homogenization were used to determine the superoxide dismutase (SOD, gluthatione peroxidase (GPX, gluthatione reductase (GR and catalase (CAT activities as enzymatic antioxidant status. Also Maolnyldealdehyde (MDA level as index of lipid peroxidation and total glutathione (T.GSH of the heart tissue were measured.Results: Diabetes significantly reduced CAT and GR activities in diabetic rats compared with control rats. SOD and GPX activities weren't changed in the hearts of the diabetic rats. MDA level, as a lipid peroxidation index, increased in non exercised diabetic rats. In response to exercise, MDA level, CAT, GR and SOD activities showed a significant increase in exercise diabetic rats compared with non exercise diabetic rats.Conclusion: Forced treadmill with moderate severity has harmful effects on cardiovascular system in diabetes because it increases MDA level of heart tissue in exercised diabetic rats.

  12. Interleukin-1 beta (IL-1) does not reduce the diabetes incidence in diabetes-prone BB rats

    DEFF Research Database (Denmark)

    Reimers, J I; Mørch, L; Markholst, H

    1994-01-01

    The cytokine interleukin 1 beta (IL-1) has been implicated as a pathogenetic factor in the initial events leading to insulin-dependent diabetes mellitus. Previous studies investigating the impact of IL-1 on diabetes incidence in spontaneously diabetic rodent models have been conflicting. IL-1...... concentrations at diagnosis, but did not change the diabetes incidence in DP BB rats. The results are not in conflict with the hypothesis that IL-1 is a pathogenetic factor in IDDM, caused by high local concentrations of rat IL-1 in the islets during early insulitis. The results also show the necessity of pair...

  13. Treadmill exercise alleviates diabetic cardiomyopathy by suppressing plasminogen activator inhibitor expression and enhancing eNOS in streptozotocin-induced male diabetic rats.

    Science.gov (United States)

    Chengji, Wang; Xianjin, Fan

    2018-04-01

    To investigate the biological mechanism of the effect of different intensity exercises on diabetic cardiomyopathy. 87 raise specific pathogen SPF healthy 6-week-old male Sprague-Dawley rats, fed 6 weeks with high-fat diet for rats were used, and a diabetic model was established by intraperitoneal injection of streptozotocin - randomly selected 43 rats were divided into Diabetic control group (DCG, n  = 10), Diabetic exercise group 1 (DEG1, n  = 11), Diabetic exercise group 2 (DEG2, n  = 11) and Diabetic exercise group 3 (DEG3, n  = 11). The rats in DEG1 were forced to run on a motorized treadmill, the exercise load consisted of running at a speed of 10 m/min, the exercise load of the rats in DEG2 were running at a speed of 15 m/min, the exercise load of the rats in DEG3 were running at a speed of 20 m/min, for one hour once a day for 6 weeks. After 6 weeks of exercise intervention, glucose metabolism-related indexes in rats such as blood glucose (FBG), glycosylated serum protein (GSP) and insulin (FINS); cardiac fibrinolytic system parameters such as PAI-1 (plasminogen activator inhibitor 1), Von Willebrand factor (vWF), protein kinase C (PKC) and diacylglycerol (DAG); and serum level of NO, eNOS and T-NOS were measured. Compared with DCG, fasting blood glucose and GSP were decreased, while insulin sensitivity index and insulin level were increased in all rats of the three exercise groups. FBG decrease was statistically significant ( P  diabetic rats; myocardial PAI-1 in DEG1, DEG2 and DEG3 rats decreased significantly ( P  diabetic cardiomyopathy by affecting the levels of PAI-1 and eNOS, and there is a dependence on intensity. © 2018 The authors.

  14. Antidiabetic And Antioxidant Effects Of Parsley Extract (Petroselinum Crispum) On Diabetic Rats

    International Nuclear Information System (INIS)

    Mahmoud, K.A.

    2011-01-01

    Parsley (Petroselinum crispum) is one of the medicinal herbs in Egypt. The aim of the present study is to investigate the effects of parsley (10 mg/kg/day) on diabetic rats. Diabetes was induced in male albino rats with a single intraperitoneal injection of alloxan (150 mg/kg). The volatile compounds were separated by gas chromatographic-mass spectrometric (GC-MS) for analysis of essential oils. The results showed that 18 compounds could be identified (natural antioxidants). Experimental rats were divided into four groups: control, diabetic, diabetic received parsley, and diabetic received irradiated parsley through gastric intubation for 4 weeks. A single administrative dose of alloxan (150 mg/kg) resulted in hyperglycemia, increase in AST, ALT, urea, creatinine, triglycerides, total cholesterol and low density lipoprotein-cholesterol levels and decrease in body weight, serum insulin, total protein and high density lipoprotein-cholesterol levels. Concurrent with those changes, an increased TBARS level was observed. This oxidative stress was related to a decrease in superoxide dismutase (SOD) and glutathione (GSH) levels of alloxan diabetic rats. Intake of parsley extract after diabetes ameliorated hyperglycemia, AST, ALT, body weight, total protein insulin and lipid profiles, and blunted the increase in TBARS and modulated the levels of SOD, CAT and GSH of alloxan treated rats. It could be concluded that parsley extract has a protective effect against hepatotoxicity caused by diabetes

  15. Effect of irradiation on the periodontal tissues in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Park, Dong Sin; Hwang, Eui Hwan; Lee, Sang Rae

    2005-01-01

    To observe the histopathological changes in the periodontal tissues of mandibular molars in streptozotocin-induced diabetic rats after irradiation. The male Sprague-Dawley rats weighing approximately 250 gm were divided into four groups; control, diabetes, irradiation, and diabetes - irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control and irradiation groups were injected with citrate buffer only. After 5 days, the head and neck region of the rats in irradiation and diabetes - irradiation groups were irradiated with a single absorbed dose of 10 Gy. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the mandibular molars were sectioned and observed using a histopathological method. In the diabetes group, osteoclastic activity was observed in the alveolar bone and the root throughout the period of experiment. Also, osteoblastic and fibroblastic activities were markedly decreased. In the irradiation group, the osteoclasts were observed in the alveolar bone and the dilated capillaries were increased in the early experimental phases. However, vigorous osteoblastic activity was noted in the late experimental phases. In the diabetes- irradiation group, osteoblastic activity in the alveolar bone and the root was observed in the early experimental phases. However, there were no resorption and osteoblastic activity in the alveolar bone and the root in the late experimental phases, and obvious atrophic change of fibrous tissues was noted. This experiment suggests that osteoblastic activity was caused by irradiation in the late experimental phases, but atrophic change of the periodontal ligament tissues was induced after irradiation in diabetic state.

  16. Ultrastructural evaluation of the effects of cinnamon on the nervus ischiadicus in diabetic rats

    International Nuclear Information System (INIS)

    Bahceci, Selen; Akkus, Murat; Aluclu, Mehmet U; Canoruc, Naime; Bahceci, Mithat; Gokalp, Deniz; Baran, Sedat; Akbalik, Mehmet E

    2009-01-01

    To investigate the effects of oral cinnamon supplementation on the nervus ischiadicus at the electron microscopical level in rats. This study was performed between 2004-2006 in Dicle University School of Medicine, Diyarbakir, Turkey in 15 adult Sprague-Dawley rats. Rats were divided into 3 groups; control (C) (n=5), diabetic without cinnamon (D) (n=5), and diabetic with cinnamon (D-C) (n=5). Diabetes was induced with intraperitoneal alloxan administration. All diabetic rats were treated with human insulin. All rats were fed with standard pellet chow. The D-C group rats were fed with standard pellet chow plus Cinnamomum cassia at the dose of 400mg/kg. All rats were sacrificed after 3 months and we obtained the nervus ischiadicus of all rats. Contrast stained thin sections evaluated by Jeol-TEM-1010 electron microscope, were not statistically different in both groups and photo samples were obtained. Mean blood glucose, hemoglobin A1C, and lipid profile were not statistically different in both groups. Marked detachment of myelin lamellae at Schmidt-Lanterman clefts, lysis in cristae mitochondrialis and degenerative changes, severe dispersion of organelles in neurolemma, mesoaxon region, and remarkable edema at the endoneurium were found in diabetic rats. On the contrary, mesoaxon, nucleus, nucleolus and myelin sheet were almost of normal appearance at the ultra-structural level in the D-C group. Cinnamon extracts may have beneficial effects on the development of diabetic neuropathy in alloxan induced diabetic rats. (author)

  17. Glucose production and storage in hepatocytes isolated from normal versus diabetic rats

    International Nuclear Information System (INIS)

    Olivieri, M.C.; Dragland-Meserve, C.J.; Parker Botelho, L.H.

    1987-01-01

    The rates of glucose production and storage were compared in hepatocytes isolated from normal versus insulin-resistant diabetic rats. A single low-dose (40 mg/kg) IV injection of streptozotocin to 250 g rats resulted in a Type II diabetic animal model which was hyperglycemic with normal insulin levels. Addition of 8 mM 14 C-lactate and 2 mM pyruvate to hepatocytes resulted in a linear increase in total glucose production ( 14 C-glucose and unlabeled glucose) and incorporation into glycogen measured over 120 min. The rate of gluconeogenesis was estimated from the production of 14 C-glucose and the rate of glycogenolysis was estimated from the production of unlabeled glucose in cells incubated in the presence or absence of 14 C-labelled substrate. There was not significant difference in total glucose production in hepatocytes isolated from normal versus diabetic rats, however, the contribution from gluconeogenesis versus glycogenolysis was significantly different. Following a 1 h incubation of cells from normal rats, 42% of the total glucose production was due to gluconeogenesis and 58% was due to glycogenolysis. In cells from diabetic rats, 83% of total glucose production was from gluconeogenesis and 17% from glycogenolysis. Also, incubation with 14 C-lactate/pyruvate resulted in a 3.3-fold increase in 14 C-glucose incorporation into glycogen in hepatocytes isolated from normal rats compared to diabetic rats. These data suggest that alterations occur in the rate-limiting enzymes responsible for glucose production and storage in hepatocytes isolated from a rat model of insulin-resistant Type II diabetes

  18. "Healing Effect of Topical Nifedipine on Skin Wounds of Diabetic Rats "

    Directory of Open Access Journals (Sweden)

    Abbas Ebadi

    2003-07-01

    Full Text Available Non-healing foot ulcers in patients with diabetes are the leading causes of complications such as infection and amputation. Ulceration is the most common single precursor to amputation and has been identified as a causative factor in 85% of lower extremity amputations. It seems that poor outcomes are generally associated with infection, peripheral vascular disease and wounds of increasing depth. Nifedipine, a calcium channel blocker that is mainly used for the treatment of cardiovascular disorders has recently been used to treat wounds caused by peripheral vascular disorders. In present study topical Nifedipine 3% has been used to treat skin wounds in normal and diabetic rats. Effects of Nifedipine were evaluated in three different phases of wound healing process. In both experiments (normal and diabetic rats topical Nifedipine significantly improved inflammatory phase. However, maturation phase was only significantly improved in diabetic rats. Nifedipine did not affect proliferation phase in either group significantly. Overall results of this study showed topical Nifedipine improved skin wound healing process in normal and diabetic rats.

  19. DNA protective effects of melatonin on oxidative stress in streptozotocin - induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Selim Sekkin

    2015-05-01

    the antioxidant system, MEL regulates the expression of several genes such as those of superoxide dismutase (SOD and glutathione peroxidase (2-4. The aim of this study was to research the effects of MEL on oxidative stress and DNA protective effects in streptozotocin-induced diabetic rats. A total of 32 rats were equally divided into 4 experimental groups as Control, Melatonin, Diabetic, and Diabetic + Melatonin. A pancreatic beta-cell cytotoxic agent, single dose streptozotocin (60 mg/kg was given by intraperitoneal route to induce experimental diabetes in rats. Rats with ≥200mg/dL blood glucose level were established as Diabetic and Diabetic + Melatonin groups. MEL (10 mg/kg per day and sodium citrate solution were administrated to rats by intraperitoneal route for 6 weeks. With the termination of the experiment, tissue and blood samples were obtained for further analysis. SOD, catalase (CAT, reduced glutathione (GSH and malondialdehyde (MDA were evaluated in rat liver, renal, brain and pancreas tissues. Body weight, plasma glucose, and %HbA1c levels were studied. DNA damage was analyzed with the comet assay in rat lymphocytes; %Tail DNA and Mean Tail Moment parameters were evaluated (5. Antioxidant and oxidant enzyme levels were similar in the Control and Melatonin groups, although there were significant differences between the Diabetic and Diabetic + Melatonin groups. SOD levels in brain and liver tissues were higher (P<0,001, and CAT activities in renal tissue (P<0,001, GSH levels in pancreas tissue (P<0,01 as well as MDA levels in liver (P<0,001, renal (P<0,001 and brain (P<0,01 tissues were higher in the Diabetic + Melatonin group compared with the Diabetic group. Body weight changes and blood glucose levels of the rats were evaluated during the 6 weeks. The effect of MEL on the body weights of Control and Melatonin as well as Diabetic and Diabetic + Melatonin group rats were similar. MEL had no effect on body weight and the diabetic rats were lighter (P<0

  20. Effects of parsley (Petroselinum crispum) on the liver of diabetic rats: a morphological and biochemical study.

    Science.gov (United States)

    Bolkent, S; Yanardag, R; Ozsoy-Sacan, O; Karabulut-Bulan, O

    2004-12-01

    Parsley is used by diabetics in Turkey to reduce blood glucose. The present study aims to investigate both the morphological and biochemical effects of parsley on liver tissue. Rat hepatocytes were examined by light and electron microscopy. Degenerative changes were observed in the hepatocytes of diabetic rats. These degenerative changes were significantly reduced or absent in the hepatocytes of diabetic rats treated with parsley. Blood glucose levels, alanine transaminase and alkaline phosphatase were observed to be raised in diabetic rats. Diabetic rats treated with parsley demonstrated significantly lower levels of blood glucose, alanine transaminase and alkaline phosphatase. The present study suggests that parsley demonstrates a significant hepatoprotective effect in diabetic rats. 2004 John Wiley & Sons, Ltd.

  1. Telmisartan attenuates diabetes induced depression in rats.

    Science.gov (United States)

    Aswar, Urmila; Chepurwar, Shilpa; Shintre, Sumit; Aswar, Manoj

    2017-04-01

    Role of brain renin angiotensin system (RAS) is well understood and various clinical studies have proposed neuroprotective effects of ARB's. It is also assumed that diabetic depression is associated with activation of brain RAS, HPA axis dysregulation and brain inflammatory events. Therefore, the present study was designed to investigate the antidepressant effect of low dose telmisartan (TMS) in diabetes induced depression (DID) in rats. Diabetes was induced by injecting streptozotocin. After 21days of treatment the rats were subjected to forced swim test (FST). The rats, with increased immobility time, were considered depressed and were treated with vehicle or TMS (0.05mg/kg, po) or metformin (200mg/kg, po) or fluoxetine (20mg/kg, po). A separate group was also maintained to study the combination of metformin and TMS. At the end of 21days of treatments, FST, open field test (OFT) and elevated plus maze (EPM) paradigm were performed. Blood was drawn to estimate serum cortisol, nitric oxide (NO), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Persistent hyperglycemia resulted in depression and anxiety in rats as observed by increased immobility, reduced latency for immobility, reduced open arm entries and time spent. The depressed rats showed a significant rise in serum cortisol, NO, IL-6 and IL-1β (pdepression and anxiety. It also significantly attenuated serum cortisol, NO, IL-6 and IL-1β (pdepressive mood, reduces pro-inflammatory mediators and ameliorates the HPA axis function; thereby providing beneficial effects in DID. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  2. Genetic control of differential acetylation in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Pamela J Kaisaki

    Full Text Available Post-translational protein modifications such as acetylation have significant regulatory roles in metabolic processes, but their relationship to both variation in gene expression and DNA sequence is unclear. We address this question in the Goto-Kakizaki (GK rat inbred strain, a model of polygenic type 2 diabetes. Expression of the NAD-dependent deacetylase Sirtuin-3 is down-regulated in GK rats compared to normoglycemic Brown Norway (BN rats. We show first that a promoter SNP causes down-regulation of Sirtuin-3 expression in GK rats. We then use mass-spectrometry to identify proteome-wide differential lysine acetylation of putative Sirtuin-3 protein targets in livers of GK and BN rats. These include many proteins in pathways connected to diabetes and metabolic syndrome. We finally sequence GK and BN liver transcriptomes and find that mRNA expression of these targets does not differ significantly between GK and BN rats, in contrast to other components of the same pathways. We conclude that physiological differences between GK and BN rats are mediated by a combination of differential protein acetylation and gene transcription and that genetic variation can modulate acetylation independently of expression.

  3. Anti-hyperlipidemic action of Zingiber officinale (Ginger juice in alloxan induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Selima Sultana

    2012-07-01

    Full Text Available Abstract Hyperlipidemia is an important modifiable risk factor contributing to atterosclerosis in diabetes mellitus. Zingiber officinale (ginger widely consumed as spice is known for its hypoglycemic and hypochlosteremic actions. The present study was undertaken to investigate anti-hyperlipidemic action of ginger juice in alloxan-induced diabetic rats. Male Wister rats, 130-150 g wt, fed on standard diet and water ad libitum were divided into 4 groups (n=6 in each group: group I non-diabetic control, group II non-diabetic treated; group III diabetic control and group IV diabetic treated. Diabetes was induced by Inj. alloxan 150 mg Kg–1 b.w., i.p. (group III & IV on Day 2. Rats having blood glucose level of >7 mmol/l on day 5 (72 hrs after alloxan Inj. were considered diabetic and selected for experimentation. Both non-diabetic and diabetic treated groups (Gr II & IV received Zingiber officinale (ginger juice (4 ml Kg–1 b.w., p.o. for 10 days (day 2-day 11 through Ryles tube. On Day 12, animals were sacrificed under light ether anaesthesia, blood was collected by cardiac puncture and serum separated for estimation of lipids. Zingiber officinale (ginger juice significantly (p<0.01 decreased alloxan induced hyperglycemia (group IV, but had no effect on blood glucose level in normal rats (group II; significantly (p<0.001 reduced alloxan induced hyperlipidemia, but produced no significant lipid lowering effects in normal rats (group II. The results suggest a significant anti-hyperlipidemic action of Zingiber officinale (ginger juice in alloxan induced diabetic rats. The findings may be clinically significant and exploited. Ibrahim Med. Coll. J. 2012; 6(2: 55-58

  4. Protective and Therapeutic Role of Low Dose Gamma Radiation on Streptozotocin Induced Diabetes in Rats

    International Nuclear Information System (INIS)

    Mansour, H.H.; Hafez, H.F.; Shouman, S.A.

    2011-01-01

    Diabetes mellitus is a multi-factorial disease which is characterized by vascular and renal complication. This study was initiated to investigate the protective and the therapeutic effect of low dose of gamma radiation (LDR) on diabetic complications. A total of 30 adult male rats were divided into 5 groups: Group I: served as control and injected intraperitoneally with 0.2 ml of 0.1 mol/l citrate buffer (ph 4.5), group II: rats became diabetic via intraperitoneal injection with 60 mg/kg streptozotocin (STZ) dissolved in 0.2 ml of 0.1 mol/l citrate buffer (ph 4.5), group III irradiated rats (IRR): submitted to fractionated dose of whole body gamma rays; 0.25 Gy for 2 consecutive days (whole dose 0.5 Gy), group IV diabetic irradiated rats (STZ + IRR): rats became diabetic as group II then four weeks after diabetes induction (day 28), rats were submitted to 2 fractions of whole body gamma rays as in group III, and group V irradiated diabetic rats (IRR + STZ): rats were injected intraperitoneally with 0.2 ml of 0.1 mol/l citrate buffer then submitted to whole body gamma rays; 0.25 Gy for 2 consecutive days then one hour after the last IRR dose, rats were made diabetic as group II. In pre and post-irradiation of STZ rats, significant changes were observed in serum lipid profiles, hepatic and cardiac serum enzymes. Significant decrease in hepatic and cardiac malondialdehyde (MDA) and total nitrate/nitrite (NO(x)) levels, and significant increase in superoxide dismutase (SOD) and glutathione (GSH) levels were observed as compared to diabetic group. The study suggests that LDR may provide useful protective and therapeutic option in the reversal of oxidative stress induced in diabetic rats

  5. An investigation on body weights, blood glucose levels and pituitary-gonadal axis hormones in diabetic and metformin-treated diabetic female rats

    Directory of Open Access Journals (Sweden)

    Pouya Pournaghi

    2012-06-01

    Full Text Available Diabetes is a metabolic disorder which affects whole body systems including reproductive system. Diabetes is also a contributing factor to infertility. Metformin is one of the most common drugs to control hyperglycemia. In this study, 36 adult Sprague-Dawley female rats (170-210 g were divided into 3 groups (control, diabetic and diabetic-treated by metformin. In second and third groups, diabetes was induced by streptozotocin injection (45 mg kg-1, IP and the third group was treated by metformin hydrochloride (100 mg kg-1 day-1, PO for 8 weeks. Body weights were compared and blood glucose, gonadotropins and sexual hormones were measured. In diabetic group the blood glucose level significantly (P < 0.05 increased in comparison with that of control and metformin-treated diabetic rats. The results also revealed that, in the untreated diabetic rats, the mean body weights and pituitary-gonadal axis hormones were significantly (P < 0.05 reduced in comparison with the control. Although there were significant (P < 0.05 reduction in mean body weights in metformin-treated diabetic rats, reduction in pituitary-gonadal axis hormones was not as sharp as in untreated diabetic rats and only level of progesterone was significantly (P < 0.05 reduced in comparison with the control. The results of this investigation revealed that there was a clear relationship between experimental diabetes with body weight and pituitary-gonadal axis hormones, and treatment with metformin relatively restored diabetic complications.

  6. Garcinia kola aqueous suspension prevents cerebellar neurodegeneration in long-term diabetic rat - a type 1 diabetes mellitus model.

    Science.gov (United States)

    Farahna, Mohammed; Seke Etet, Paul F; Osman, Sayed Y; Yurt, Kıymet K; Amir, Naheed; Vecchio, Lorella; Aydin, Isınsu; Aldebasi, Yousef H; Sheikh, Azimullah; Chijuka, John C; Kaplan, Süleyman; Adem, Abdu

    2017-01-04

    The development of compounds able to improve metabolic syndrome and mitigate complications caused by inappropriate glycemic control in type 1 diabetes mellitus is challenging. The medicinal plant with established hypoglycemic properties Garcinia kola Heckel might have the potential to mitigate diabetes mellitus metabolic syndrome and complications. We have investigated the neuroprotective properties of a suspension of G. kola seeds in long-term type 1 diabetes mellitus rat model. Wistar rats, made diabetic by single injection of streptozotocin were monitored for 8 months. Then, they were administered with distilled water or G. kola oral aqueous suspension daily for 30 days. Body weight and glycemia were determined before and after treatment. After sacrifice, cerebella were dissected out and processed for stereological quantification of Purkinje cells. Histopathological and immunohistochemical analyses of markers of neuroinflammation and neurodegeneration were performed. Purkinje cell counts were significantly increased, and histopathological signs of apoptosis and neuroinflammation decreased, in diabetic animals treated with G. kola compared to diabetic rats given distilled water. Glycemia was also markedly improved and body weight restored to non-diabetic control values, following G. kola treatment. These results suggest that G. kola treatment improved the general condition of long-term diabetic rats and protected Purkinje cells partly by improving the systemic glycemia and mitigating neuroinflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Protective Effect of Royal Jelly against Renal Damage in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Elham Ghanbari

    2015-03-01

    Full Text Available Background: Royal jelly has been shown to have antioxidant and antidiabetic effects. The objective of this study was to evaluate the protective effect of RJ against kidney damage in streptozotocin induced diabetic rats. Methods: Thirty two male Wistar rats were divided randomly into four groups (n=8 per group. Normal control and diabetic control groups received 1cc/day distilled water, normal RJ-treated and diabetic RJ-treated groups received 100mg RJ/kg body weight daily. Diabetes was induced by intraperitoneal injection of streptozotocin. At the end of the experiment, urine and kidney samples were collected for biochemical and histopathological analysis. Results: The results showed that diabetes could increase levels of urine urea, total protein and albumin significantly, and could decrease the levels of creatinine and uric acid in urine. In the kidney tissue homogenates, catalase activity and antioxidant power were significantly lower, whereas malondialdehyde levels were significantly higher in diabetic group when compared with control group. Diabetic rats showed severe histological changes in kidney tissues. Treatment of diabetic rats with RJ improved significantly all of these parameters. Conclusion: The present study revealed that treatment with RJ resulted in significant improvement in histopathological alterations in kidney tissue and urine parameters of diabetic rats. This could be due to its antioxidant activity and the ability of RJ for scavenging the free radicals released in diabetes. These findings suggest that RJ has protective effects on kidneys affected by diabetes mellitus.

  8. Exercise alters myostatin protein expression in sedentary and exercised streptozotocin-diabetic rats.

    Science.gov (United States)

    Bassi, Daniela; Bueno, Patricia de Godoy; Nonaka, Keico Okino; Selistre-Araujo, Heloisa Sobreiro; Leal, Angela Merice de Oliveira

    2015-04-01

    The aim of this study was to analyze the effect of exercise on the pattern of muscle myostatin (MSTN) protein expression in two important metabolic disorders, i.e., obesity and diabetes mellitus. MSTN, is a negative regulator of skeletal muscle mass. We evaluated the effect of exercise on MSTN protein expression in diabetes mellitus and high fat diet-induced obesity. MSTN protein expression in gastrocnemius muscle was analyzed by Western Blot. P sedentary or exercised obese animals. Diabetes reduced gastrocnemius muscle weight in sedentary animals. However, gastrocnemius muscle weight increased in diabetic exercised animals. Both the precursor and processed forms of muscle MSTN protein were significantly higher in sedentary diabetic rats than in control rats. The precursor form was significantly lower in diabetic exercised animals than in diabetic sedentary animals. However, the processed form did not change. These results demonstrate that exercise can modulate the muscle expression of MSTN protein in diabetic rats and suggest that MSTN may be involved in energy homeostasis.

  9. Skeletal Muscle Sorbitol Levels in Diabetic Rats with and without Insulin Therapy and Endurance Exercise Training

    Science.gov (United States)

    Sánchez, O. A.; Walseth, T. F.; Snow, L. M.; Serfass, R. C.; Thompson, L. V.

    2009-01-01

    Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one experimental group (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin). Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks). Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin. PMID:20016800

  10. Depressed glucose utilization in lungs of BB wistar spontaneously diabetic rats

    International Nuclear Information System (INIS)

    Uhal, B.D.; Moxley, M.A.; Longmore, W.J.

    1986-01-01

    Lungs of BB wistar spontaneously diabetic rats were perfused with [ 14 C(U)]glucose in modified Krebs Ringer bicarbonate medium for 1.5 hours. Lungs from non-diabetic BB Wistar rats were perfused simultaneously and served as controls. The perfusions were terminated by rapid freezing of the tissue in liquid N 2 followed by separation of surfactant and residual lung fractions. The rates of glucose incorporation into surfactant DSPC, PG, and PE were decreased 4.7, 2.4 and 2.5-fold, respectively, in lungs of spontaneously diabetic rats when expressed as final product specific activities. The rate of glucose incorporation into residual PC was also reduced by 2.3-fold. Expressed as moles incorporated per gram wet weight of lung, incorporations into surfactant DSPC, PG and residual PC were also reduced by 4.1, 6.3 and 3.8-fold respectively. These data; (1) agree with previous studies of the lungs of streptozotocin and alloxan-diabetic rats; (2) show that the depressed glucose utilization for lipid synthesis observed previously is not due to streptozotocin or alloxan toxicity; (3) suggest that the BB Wistar rat will provide a useful model for the study of the effects of insulin-dependent diabetes on lung metabolism

  11. Beneficial effects of exercise training in heart failure are lost in male diabetic rats.

    Science.gov (United States)

    Boudia, Dalila; Domergue, Valérie; Mateo, Philippe; Fazal, Loubina; Prud'homme, Mathilde; Prigent, Héloïse; Delcayre, Claude; Cohen-Solal, Alain; Garnier, Anne; Ventura-Clapier, Renée; Samuel, Jane-Lise

    2017-12-01

    Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve

  12. Expression of Endoplasmic Reticulum Stress-Related Factors in the Retinas of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Shu Yan

    2012-01-01

    Full Text Available Recent reports show that ER stress plays an important role in diabetic retinopathy (DR, but ER stress is a complicated process involving a network of signaling pathways and hundreds of factors, What factors involved in DR are not yet understood. We selected 89 ER stress factors from more than 200, A rat diabetes model was established by intraperitoneal injection of streptozotocin (STZ. The expression of 89 ER stress-related factors was found in the retinas of diabetic rats, at both 1- and 3-months after development of diabetes, by quantitative real-time polymerase chain reaction arrays. There were significant changes in expression levels of 13 and 12 ER stress-related factors in the diabetic rat retinas in the first and third month after the development of diabetes, Based on the array results, homocysteine- inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1(HERP, and synoviolin(HRD1 were studied further by immunofluorescence and Western blot. Immunofluorescence and Western blot analyses showed that the expression of HERP was reduced in the retinas of diabetic rats in first and third month. The expression of Hrd1 did not change significantly in the retinas of diabetic rats in the first month but was reduced in the third month.

  13. Cerebrolysin Ameloriates Cognitive Deficits in Type III Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Gehan S Georgy

    Full Text Available Cerebrolysin (CBL, a mixture of several active peptide fragments and neurotrophic factors including brain-derived neurotrophic factor (BDNF, is currently used in the management of cognitive alterations in patients with dementia. Since Cognitive decline as well as increased dementia are strongly associated with diabetes and previous studies addressed the protective effect of BDNF in metabolic syndrome and type 2 diabetes; hence this work aimed to evaluate the potential neuroprotective effect of CBL in modulating the complications of hyperglycaemia experimentally induced by streptozotocin (STZ on the rat brain hippocampus. To this end, male adult Sprague Dawley rats were divided into (i vehicle- (ii CBL- and (iii STZ diabetic-control as well as (iv STZ+CBL groups. Diabetes was confirmed by hyperglycemia and elevated glycated haemoglobin (HbA1c%, which were associated by weight loss, elevated tumor necrosis factor (TNF-α and decreased insulin growth factor (IGF-1β in the serum. Uncontrolled hyperglycemia caused learning and memory impairments that corroborated degenerative changes, neuronal loss and expression of caspase (Casp-3 in the hippocampal area of STZ-diabetic rats. Behavioral deficits were associated by decreased hippocampal glutamate (GLU, glycine, serotonin (5-HT and dopamine. Moreover, diabetic rats showed an increase in hippocampal nitric oxide and thiobarbituric acid reactive substances versus decreased non-protein sulfhydryls. Though CBL did not affect STZ-induced hyperglycemia, it partly improved body weight as well as HbA1c%. Such effects were associated by enhancement in both learning and memory as well as apparent normal cellularity in CA1and CA3 areas and reduced Casp-3 expression. CBL improved serum TNF-α and IGF-1β, GLU and 5-HT as well as hampering oxidative biomarkers. In conclusion, CBL possesses neuroprotection against diabetes-associated cerebral neurodegeneration and cognitive decline via anti

  14. Antidiabetic effect of Chloroxylon swietenia bark extracts on streptozotocin induced diabetic rats

    Directory of Open Access Journals (Sweden)

    B. Jayaprasad

    2016-03-01

    Full Text Available Diabetes has been increasing at an alarming rate around the world, and experts have relied on remedies from the utilization of ancient drugs that are essentially derived from plants. The present study aimed to evaluate the antidiabetic potential of Chloroxylon swietenia bark extracts on streptozotocin induced diabetic rats. Diabetes was induced in male albino Wistar rats by single intraperitoneal injection of streptozotocin (STZ (50 mg/kg b.w.. The diabetic rats were administered orally with C. swietenia bark (CSB methanolic (CSBMEt and aqueous (CSBAEt (250 mg/kg b.w. extracts and glibenclamide (600 µg/kg b.w. by intragastric intubation for 45 days. The result showed a heavy loss in weight, increase in blood glucose and glycosylated hemoglobin level, and decline in plasma insulin and total hemoglobin content. Furthermore, glucose-6-phosphatase and fructose-1,6-bis phosphatase were found to be increased whereas hexokinase and glycogen contents were decreased in STZ induced diabetic rats. CSBAEt, CSBMEt and glibenclamide treated diabetic rats showed moderate reduction in blood glucose and glycosylated hemoglobin levels; in addition, plasma insulin and hemoglobin levels were elevated. The altered activities of carbohydrate metabolizing enzymes and liver glycogen were improved remarkably. CSBMEt results were comparable to the standard drug glibenclamide. The present findings support the usage of the plant extracts for the traditional treatment of diabetes.

  15. Impaired Mitochondrial Respiratory Functions and Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Subbuswamy K. Prabu

    2011-05-01

    Full Text Available We have previously shown a tissue-specific increase in oxidative stress in the early stages of streptozotocin (STZ-induced diabetic rats. In this study, we investigated oxidative stress-related long-term complications and mitochondrial dysfunctions in the different tissues of STZ-induced diabetic rats (>15 mM blood glucose for 8 weeks. These animals showed a persistent increase in reactive oxygen and nitrogen species (ROS and RNS, respectively production. Oxidative protein carbonylation was also increased with the maximum effect observed in the pancreas of diabetic rats. The activities of mitochondrial respiratory enzymes ubiquinol: cytochrome c oxidoreductase (Complex III and cytochrome c oxidase (Complex IV were significantly decreased while that of NADH:ubiquinone oxidoreductase (Complex I and succinate:ubiquinone oxidoreductase (Complex II were moderately increased in diabetic rats, which was confirmed by the increased expression of the 70 kDa Complex II sub-unit. Mitochondrial matrix aconitase, a ROS sensitive enzyme, was markedly inhibited in the diabetic rat tissues. Increased expression of oxidative stress marker proteins Hsp-70 and HO-1 was also observed along with increased expression of nitric oxide synthase. These results suggest that mitochondrial respiratory complexes may play a critical role in ROS/RNS homeostasis and oxidative stress related changes in type 1 diabetes and may have implications in the etiology of diabetes and its complications.

  16. Anti-Diabetic Potential of the Leaves of Anisomeles malabarica in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Peddanna Kotha

    2017-10-01

    Full Text Available Background/Aims: Diabetes mellitus is a pandemic metabolic disorder that is affecting a majority of populations in recent years. There is a requirement for new drugs that are safer and cheaper due to the side effects associated with the available medications. Methods: We investigated the anti-diabetic activity of leaves of Anisomeles malabarica following bioactivity guided fractionation. The different solvent (hexane, ethyl acetate, methanol and water extracts of A. malabarica leaves were used in acute treatment studies to evaluate and identify the active fraction. The ethyl acetate extract was subjected to further fractionation using silica gel column chromatography and the compounds were identified by LC-SRM/MS and GC-MS. Additional chronic treatment studies were carried out using this active fraction (AMAF for 30 days in experimental diabetic rats. Fasting blood glucose (FBG, glycosylated hemoglobin (HbA1c, plasma insulin levels and glucose tolerance were measured along with insulin resistance/sensitivity indicators (HOMA-IR, HOMA-β and QUICKI to assess the beneficial effects of A. malabarica in the management of diabetes mellitus. Results: Among the different solvent extracts tested, ethyl acetate extract showed maximum (66% anti-hyperglycemic activity. The hexane and ethyl acetate (1: 1 fraction that has maximum anti-diabetic activity was identified as active fraction of A. malabarica (AMAF. The FBG, HbA1c, plasma insulin levels and insulin sensitivity/resistance indicators such as glucose tolerance, HOMA-IR, HOMA-β and QUICKI were significantly improved to near normal in diabetic rats treated with AMAF. Further, we identified key flavonoids and fatty acids as the anti-diabetic active principles from the AMAF of A. malabarica leaves. Conclusion: The results of our study suggest that Anisomeles malabarica has potential anti-diabetic activity in STZ induced diabetic rats.

  17. Epidermal growth factor and lung development in the offspring of the diabetic rat

    DEFF Research Database (Denmark)

    Thulesen, J; Poulsen, Steen Seier; Nexø, Ebba

    2000-01-01

    Fetuses of diabetic mothers who were exposed to excessive glucose show delayed maturation. Under these conditions, altered growth factor expression or signaling may have important regulatory influences. We examined the role of epidermal growth factor (EGF) in lung development and maternal diabetes...... in the rat. In order to evaluate the possible role of glucose for the expression of EGF and the growth of lung tissue, we performed in vitro studies with organotypic cultures of fetal alveolar cells obtained from control rats. Compared to pups of normal rats, the newborn rats of untreated diabetic rats had...... and was associated with a reduced intensity of surfactant protein A-IR. The only difference observed between pups of treated diabetic rats and controls was a decrease in the lung weight:body weight ratio. In organotypic cultures, the presence of 13 mmol/L glucose in the cell media increased immunoreactive staining...

  18. Antihyperlipidemic effect of Scoparia dulcis (sweet broomweed) in streptozotocin diabetic rats.

    Science.gov (United States)

    Pari, Leelavinothan; Latha, Muniappan

    2006-01-01

    We have investigated Scoparia dulcis, an indigenous plant used in Ayurvedic medicine in India, for its possible antihyperlipidemic effect in rats with streptozotocin-induced experimental diabetes. Oral administration of an aqueous extract of S. dulcis plant (200 mg/kg of body weight) to streptozotocin diabetic rats for 6 weeks resulted in a significant reduction in blood glucose, serum and tissue cholesterol, triglycerides, free fatty acids, phospholipids, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity, and very low-density lipoprotein and low-density lipoprotein cholesterol levels. The decreased serum high-density lipoprotein cholesterol, anti-atherogenic index, and HMG-CoA reductase activity in diabetic rats were also reversed towards normalization after the treatment. Similarly, the administration of S. dulcis plant extract (SPEt) to normal animals resulted in a hypolipidemic effect. The effect was compared with glibenclamide (600 microg/kg of body weight). The results showed that SPEt had antihyperlipidemic action in normal and experimental diabetic rats in addition to its antidiabetic effect.

  19. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes.

    Science.gov (United States)

    Yang, Chao; Fei, Yuda; Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients.

  20. Effects of diabetes mellitus on gastric motility in rats

    International Nuclear Information System (INIS)

    Rafsanjani, F.N.; Adeli, S.; Ardakani, Z.V.; Ardakani, J.V.; Ardakani, J.V.; Ghotbi, P.

    2009-01-01

    Diabetes mellitus is one of the most common endocrine diseases that affects most body organs. Peristaltic disorders and gastric distension have also been observed in diabetes. Because the effect of diabetes on gastric motility has not been fully examined, we decided to determine if gastric motility is also affected by diabetes in rat. This study was carried out at Kerman University of Medical Science, Kerman, Iran from October 2004 to February 2005. Three groups of male wistar rats (control, vehicle, diabetic) weighing 200-250 g were used. Diabetic state was induced by intraperitoneal injection of 45 mg/kg streptozotocin. Animals were anesthetized by intraperitoneal (IP) injection of 50 mg/kg thiopental sodium. After tracheostomy and laparatomy, a balloon was inserted into the stomach, which was attached to a pressure transducer system via a cannula and this whole system was connected to a physiograph. Acetylcholine (Ach) was the stimulant agent which was used intraperitoneally. There was no significant difference between basal intragastric pressures in three groups. Also there was no significant difference in the basal and Ach-stimulated intragastric pressure among the three groups. But Ach-stimulated intragastric pressure was more than the basal state in each group (control 28.3+-1.77 vs 14+-1.4, vehicle 30.8+-2.03 vs 15.9+-1.56 and diabetic 30.6+-0.05 vs 13.7+-0.84 mmHg). Although it has been shown that diabetes can change gastric acid and pepsin secretion in rats, no significant change in gastric motility could be shown. (author)

  1. Beneficial effects of Hibiscus rosa-sinensis L. flower aqueous extract in pregnant rats with diabetes

    Science.gov (United States)

    Afiune, Luana Alves Freitas; Leal-Silva, Thaís; Sinzato, Yuri Karen; Moraes-Souza, Rafaianne Queiroz; Soares, Thaigra Sousa; Campos, Kleber Eduardo; Fujiwara, Ricardo Toshio; Herrera, Emilio; Damasceno, Débora Cristina

    2017-01-01

    Purpose The Hibiscus rosa-sinensis flower is widely used in Brazilian traditional medicine for the treatment of diabetes and has shown antifertility activity in female Wistar rats. However, there is no scientific confirmation of its effect on diabetes and pregnancy. The aim of this study was evaluate the effect of aqueous extract of H. rosa-sinensis flowers on maternal-fetal outcome in pregnant rats with diabetes. Methods Diabetes was induced by streptozotocin (STZ, 40 mg/kg) in virgin, adult, female Wistar rats. After diabetes induction, the rats were mated. The pregnant rats were distributed into four groups (n minimum = 11 animals/group): non-diabetic, non-diabetic treated, diabetic, and diabetic treated. Oral aqueous extract of Hibiscus rosa-sinensis was administered to rats in the treatment groups during pregnancy. At term pregnancy, maternal reproductive outcomes, fetal parameters, and biochemical parameters were analyzed. Results The non-diabetic treated group showed decreased high density lipoprotein cholesterol, increased atherogenic index (AI) and coronary artery risk index (CRI), and increased preimplantation loss rate compared to the non-diabetic group. Although treatment with H. rosa-sinensis led to no toxicity, it showed deleterious effects on cardiac and reproductive functions. However, the diabetic treated group showed increased maternal and fetal weights, reduced AI and CRI, and reduced preimplantation loss rate compared to the untreated diabetic group. Conclusion Our results demonstrate beneficial effects of this flower only in pregnant rats with diabetes and their offspring. Although these findings cannot be extrapolated to human clinical use, they show that the indiscriminate intake of H. rosa-sinensis may be harmful to healthy individuals and its use should be completely avoided in pregnancy. PMID:28644857

  2. Beneficial effects of Hibiscus rosa-sinensis L. flower aqueous extract in pregnant rats with diabetes.

    Science.gov (United States)

    Afiune, Luana Alves Freitas; Leal-Silva, Thaís; Sinzato, Yuri Karen; Moraes-Souza, Rafaianne Queiroz; Soares, Thaigra Sousa; Campos, Kleber Eduardo; Fujiwara, Ricardo Toshio; Herrera, Emilio; Damasceno, Débora Cristina; Volpato, Gustavo Tadeu

    2017-01-01

    The Hibiscus rosa-sinensis flower is widely used in Brazilian traditional medicine for the treatment of diabetes and has shown antifertility activity in female Wistar rats. However, there is no scientific confirmation of its effect on diabetes and pregnancy. The aim of this study was evaluate the effect of aqueous extract of H. rosa-sinensis flowers on maternal-fetal outcome in pregnant rats with diabetes. Diabetes was induced by streptozotocin (STZ, 40 mg/kg) in virgin, adult, female Wistar rats. After diabetes induction, the rats were mated. The pregnant rats were distributed into four groups (n minimum = 11 animals/group): non-diabetic, non-diabetic treated, diabetic, and diabetic treated. Oral aqueous extract of Hibiscus rosa-sinensis was administered to rats in the treatment groups during pregnancy. At term pregnancy, maternal reproductive outcomes, fetal parameters, and biochemical parameters were analyzed. The non-diabetic treated group showed decreased high density lipoprotein cholesterol, increased atherogenic index (AI) and coronary artery risk index (CRI), and increased preimplantation loss rate compared to the non-diabetic group. Although treatment with H. rosa-sinensis led to no toxicity, it showed deleterious effects on cardiac and reproductive functions. However, the diabetic treated group showed increased maternal and fetal weights, reduced AI and CRI, and reduced preimplantation loss rate compared to the untreated diabetic group. Our results demonstrate beneficial effects of this flower only in pregnant rats with diabetes and their offspring. Although these findings cannot be extrapolated to human clinical use, they show that the indiscriminate intake of H. rosa-sinensis may be harmful to healthy individuals and its use should be completely avoided in pregnancy.

  3. Beneficial effects of Hibiscus rosa-sinensis L. flower aqueous extract in pregnant rats with diabetes.

    Directory of Open Access Journals (Sweden)

    Luana Alves Freitas Afiune

    Full Text Available The Hibiscus rosa-sinensis flower is widely used in Brazilian traditional medicine for the treatment of diabetes and has shown antifertility activity in female Wistar rats. However, there is no scientific confirmation of its effect on diabetes and pregnancy. The aim of this study was evaluate the effect of aqueous extract of H. rosa-sinensis flowers on maternal-fetal outcome in pregnant rats with diabetes.Diabetes was induced by streptozotocin (STZ, 40 mg/kg in virgin, adult, female Wistar rats. After diabetes induction, the rats were mated. The pregnant rats were distributed into four groups (n minimum = 11 animals/group: non-diabetic, non-diabetic treated, diabetic, and diabetic treated. Oral aqueous extract of Hibiscus rosa-sinensis was administered to rats in the treatment groups during pregnancy. At term pregnancy, maternal reproductive outcomes, fetal parameters, and biochemical parameters were analyzed.The non-diabetic treated group showed decreased high density lipoprotein cholesterol, increased atherogenic index (AI and coronary artery risk index (CRI, and increased preimplantation loss rate compared to the non-diabetic group. Although treatment with H. rosa-sinensis led to no toxicity, it showed deleterious effects on cardiac and reproductive functions. However, the diabetic treated group showed increased maternal and fetal weights, reduced AI and CRI, and reduced preimplantation loss rate compared to the untreated diabetic group.Our results demonstrate beneficial effects of this flower only in pregnant rats with diabetes and their offspring. Although these findings cannot be extrapolated to human clinical use, they show that the indiscriminate intake of H. rosa-sinensis may be harmful to healthy individuals and its use should be completely avoided in pregnancy.

  4. Some pharmacological effects of cinnamon and ginger herbs in obese diabetic rats

    Science.gov (United States)

    Shalaby, Mostafa Abbas; Saifan, Hamed Yahya

    2014-01-01

    Aims: The present study was designed to assess some pharmacological effects of cinnamon (CAE) and ginger (GAE) aqueous extracts in obese diabetic rats, and to elucidate the potential mechanisms. Materials and Methods: Forty-two Sprague-Dawley rats were randomized into 6 equal groups. Group 1 was a negative control and the other groups were rendered obese by feeding rats on high-fat diet for 4 weeks. The obese rats were subcutaneously injected with alloxan for 5*days to induce diabetes. Group 2 was a positive control, and Groups 3, 4, 5 and 6 were orally given CAE in doses 200 and 400 mg/kg and GAE in the same doses, respectively for 6 weeks. Blood samples were collected for serum biochemical analyses. Kidneys were dissected out to assay activity of tissue antioxidant enzymes: Superoxide dismutase, glutathione peroxidase and catalase. Results: CAE and GAE significantly reduced body weight and body fat mass; normalized serum levels of liver enzymes; improved lipid profile; decreased blood glucose and leptin and increased insulin serum levels in obese diabetic rats. Both extracts also increased activity of kidney antioxidant enzymes. Conclusion: CAE and GAE exhibit anti-obesity, hepatoprotective, hypolipidemic, antidiabetic and anti-oxidant effects in obese diabetic rats. These results confirm the previous reports on both extracts. The potential mechanisms underlying these effects are fully discussed and clarified. Our results affirm the traditional use of cinnamon and ginger for treating patients suffering from obesity and diabetes. The obese diabetic rat model used in this study is a novel animal model used in pharmacology researches. PMID:26401364

  5. Assessment of antidiabetic potential of Cynodon dactylon extract in streptozotocin diabetic rats.

    Science.gov (United States)

    Singh, Santosh Kumar; Kesari, Achyut Narayan; Gupta, Rajesh Kumar; Jaiswal, Dolly; Watal, Geeta

    2007-11-01

    This study was undertaken to investigate the hypoglycemic and antidiabetic effect of single and repeated oral administration of the aqueous extract of Cynodon dactylon (Family: Poaceae) in normal and streptozotocin induced diabetic rats, respectively. The effect of repeated oral administration of aqueous extract on serum lipid profile in diabetic rats was also examined. A range of doses, viz. 250, 500 and 1000mg/kg bw of aqueous extract of Cynodon dactylon were evaluated and the dose of 500mg/kg was identified as the most effective dose. It lowers blood glucose level around 31% after 4h of administration in normal rats. The same dose of 500mg/kg produced a fall of 23% in blood glucose level within 1h during glucose tolerance test (GTT) of mild diabetic rats. This dose has almost similar effect as that of standard drug tolbutamide (250mg/kg bw). Severely diabetic rats were also treated daily with 500mg/kg bw for 14 days and a significant reduction of 59% was observed in fasting blood glucose level. A reduction in the urine sugar level and increase in body weight of severe diabetic rats were additional corroborating factors for its antidiabetic potential. Total cholesterol (TC), low density lipoprotein (LDL) and triglyceride (TG) levels were decreased by 35, 77 and 29%, respectively, in severely diabetic rats whereas, cardioprotective, high density lipoprotein (HDL) was increased by 18%. These results clearly indicate that aqueous extract of Cynodon dactylon has high antidiabetic potential along with significant hypoglycemic and hypolipidemic effects.

  6. Progression of nephropathy after islet of langerhans transplantation in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    César Tadeu Spadella

    1997-03-01

    Full Text Available We studied the effects of islet of Langerhans transplantation (IT on the kidney lesions of rats with alloxan-induced diabetes. Forty-five inbred male Lewis rats were randomly assigned to 3 experimental groups: group Gl included 15 non-diabetic control rats (NC, group GIT included 15 alloxan-induced diabetic rats (DC, and group III included 15 alloxan-induced diabetic rats that received pancreatic islet transplantation prepared by nonenzymatic method from normal donor Lewis rats and injected into the portal vein (IT. Each group was further divided into 3 subgroups of 5 rats which were sacrificed at 1, 3, and 6 months of follow-up, respectively. Clinical and laboratorial parameters were recorded in the mentioned periods in the 3 experimental groups. For histology, the kidneys of all rats of each subgroup were studied and 50 glomeruli and 50 tubules of each kidney were analyzed using light microscopy by two different investigators in a double blind study. The results showed progressive glomerular basement membrane thickening (GBMT, mesangial enlargement (ME, and Bowman's capsule thickening (BCT in the 3 experimental groups throughout the follow-up. These alterations were significantly more severe in DC rats at 6 months when compared to NC rats (p < 0.01. However, the degree of GBMT, ME, and BCT observed in DC rats was not statistically different from IT rats at 1, 3, and 6 months. In addition, Armanni-Ebstein lesions of the tubules (AE and tubular lumen protein (PRO observed in DC rats were also observed in IT rats all over the study. These lesions were never present in NC rats. We conclude that IT did not prevent progression of kidney lesions in alloxan-induced diabetic rats within 6 months after transplantation.

  7. Glucose metabolic alterations in hippocampus of diabetes mellitus rats and the regulation of aerobic exercise.

    Science.gov (United States)

    Li, Jingjing; Liu, Beibei; Cai, Ming; Lin, Xiaojing; Lou, Shujie

    2017-11-04

    Diabetes could negatively affect the structures and functions of the brain, especially could cause the hippocampal dysfunction, however, the potential metabolic mechanism is unclear. The aim of this study was to investigate the changes of glucose metabolism in hippocampus of diabetes mellitus rats and the regulation of aerobic exercise, and to analyze the possible mechanisms. A rat model of type 2 diabetes mellitus was established by high-fat diet feeding in combination with STZ intraperitoneal injection, then 4 weeks of aerobic exercise was conducted. The glucose metabolites and key enzymes involved in glucose metabolism in hippocampus were respectively detected by GC/MS based metabolomics and western blot. Metabolomics results showed that compared with control rats, the level of citric acid was significantly decreased, while the levels of lactic acid, ribose 5-phosphate, xylulose 5-phosphate and glucitol were significantly increased in the diabetic rat. Compared with diabetic rats, the level of citric acid was significantly increased, while the lactic acid, ribose 5-phosphate and xylulose 5-phosphate were significantly decreased in the diabetic exercise rats. Western blot results showed that lower level of citrate synthase and oxoglutarate dehydrogenase, higher level of aldose reductase and glucose 6-phosphatedehydrogenase were found in the diabetic rats when compared to control rats. After 4 weeks of aerobic exercise, citrate synthase was upregulated and glucose 6-phosphatedehydrogenase was downregulated in the diabetic rats. These results suggest that diabetes could cause abnormal glucose metabolism, and aerobic exercise plays an important role in regulating diabetes-induced disorder of glucose metabolism in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Antidiabetic effect of hydroalcoholic extract of Carthamus tinctorius L. in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Sedigheh Asgary

    2012-01-01

    Full Text Available Background: Carthamus tinctorius L. (Compositae has been used in Iranian traditional medicine for treatment of diabetes. In this study, anti-diabetic effect of its hydroalcoholic extract was compared with that of glibenclamide. Methods: Male white Wistar rats were randomly allocated into four groups of six each: nondiabetic control; diabetic control; diabetic treated with hydroalcoholic extract of Carthamus tinctorius (200 mg kg -1 BW; diabetic rats treated with glibenclamide (0.6 mg kg -1 BW. Alloxan was administered (120 mg kg -1 BW, intraperitoneally to induce diabetes. Fasting blood samples were collected three times, before injection of alloxan, two weeks and six weeks after injection of alloxan and fasting blood sugar (FBS, Hb A1C, insulin, cholesterol, LDL-C, HDL-C, VLDL-C, triglyceride, alkaline phosphatase (ALP, alanine aminotransferase (ALT and aspartate aminotransferase (AST were measured each time. Results: FBS, triglyceride, cholesterol, LDL-C and VLDL-C had a meaningful decrease in diabetic rats treated with Carthamus tinctorius and diabetic rats treated with glibenclamide as compared with diabetic rats with no treatment. Insulin level increased significantly in diabetic groups received treatment (glibenclamide or Carthamus tinctorius L in comparison with diabetic group with no treatment. The histological study revealed size of islets of Langerhans enlarged significantly consequentially as compared with diabetic rats with no treatment. The extract appeared non toxic as evidenced by normal levels of AST, ALP and ALT. Effects of administrating glibenclamide or extract of Carthamus tinctorius L on all biochemical parameters discussed above showed no difference and both tend to bring the values to near normal. Conclusion: These results suggested that the hydroalcoholic extract of Carthamus tinctorius possesses beneficial effect on treatment of diabetes.

  9. Antifibrogenic role of valproic acid in streptozotocin induced diabetic rat penis.

    Science.gov (United States)

    Kutlu, O; Karaguzel, E; Gurgen, S G; Okatan, A E; Kutlu, S; Bayraktar, C; Kazaz, I O; Eren, H

    2016-05-01

    We investigated the therapeutic effects of valproic acid (VPA) on erectile dysfunction and reducing penile fibrosis in streptozocin (STZ)-induced diabetic rats. Eighteen male rats were divided into three experimental groups (Control, STZ-DM, STZ-DM plus VPA) and diabetes was induced by transperitoneal single dose STZ. Eight weeks after, VPA and placebo treatments were given according to groups for 15 days. All rats were anesthetised for the measurement of in vivo erectile response to cavernous nerve stimulation. Afterward penes were evaluated histologically in terms of immune labelling scores of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). Slides were also evaluated in terms of collagen/smooth muscle ratio and penile apoptosis. After the treatment with VPA, erectile responses were found as improved when compared with STZ-DM rats but not statistically meaningful. eNOS and VEGF immune expressions diminished in penile corpora of STZ-DM rats and improved with VPA treatment. VPA led to decrease in TGF-β1 expression and collagen content of diabetic rats' penes. Penile apoptosis was not diminished with VPA. In conclusion, VPA treatment seems to be effective for reducing penile fibrosis in diabetic rats and more prolonged treatment period may enhance erectile functions. © 2015 Blackwell Verlag GmbH.

  10. Light Modulates Ocular Complications in an Albino Rat Model of Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Andrawus, Elias; Veildbaum, Gizi; Zemel, Esther; Leibu, Rina; Perlman, Ido; Shehadeh, Naim

    2017-07-01

    The purpose of the study was to assess potential interactions of light exposure and hyperglycemia upon ocular complications in diabetic rats. Streptozotocin-induced (STZ-induced) diabetic rats ( N = 39) and non-diabetic rats ( N = 9) were distributed into eight groups according to the irradiance and color of the light phase during the 12/12-hour light/dark regime. Follow-up lasted 90 days and included assessment of cataract development and electroretinogram (ERG) recordings. Stress to the retina was also assessed by glial fibrillary acidic protein immunocytochemistry. Cataract development was fast in diabetic rats that were exposed to unattenuated white light or to bright colored lights during the light phase. Diabetic rats that were kept under attenuated brown or yellow light during the light phase exhibited slower rate of cataract development. Electroretinogram responses indicated very severe retinal damage in diabetic rats kept under bright colored lights in the blue-yellow range or bright white light during the light phase. Electroretinogram damage was milder in rats kept under bright red light or attenuated yellow or brown light during the light phase. Glial fibrillary acidic protein expression in retinal Müller cells was consistent with ERG assessment of retinal damage. Attenuating white light and filtering out short wavelengths have a protective effect on the eyes of diabetic rats as evident by slower rate of cataract formation and a smaller degree of retinal damage. Our findings suggest that special glasses attenuating light exposure and filtering out short wavelengths (400-530 nm) may be beneficial for diabetic patients.

  11. Tangshen Formula Attenuates Colonic Structure Remodeling in Type 2 Diabetic Rats

    DEFF Research Database (Denmark)

    Chen, Pengmin; Zhao, Jingbo; Zhang, Haojun

    2017-01-01

    Aim. This study investigated the effect and mechanism of the Chinese herbal medicine Tangshen Formula (TSF) on GI structure remodeling in the rat model of diabetes. Methods. Type 2 diabetic rats were used. Wet weight per unit length, layer thicknesses, levels of collagens I and III, nuclear factor...

  12. LEW.1WR1 RATS DEVELOP AUTOIMMUNE DIABETES SPONTANEOUSLY AND IN RESPONSE TO ENVIRONMENTAL PERTURBATION

    Science.gov (United States)

    Mordes, John P.; Leif, Jean H.; Woda, Bruce A.; Flanagan, Joan F.; Greiner, Dale L.; Kislauskis, Edward H.; Tirabassi, Rebecca S.

    2005-01-01

    We describe a new rat model of autoimmune diabetes that arose in a major histocompatibility complex (MHC) congenic LEW rat. Spontaneous diabetes in LEW.1WR1 rats (RT1u/u/a) occurs with a cumulative frequency of ∼2% at a median age of 59 days. The disease is characterized by hyperglycemia, glycosuria, ketonuria and polyuria. Both sexes are affected, and islets of acutely diabetic rats are devoid of beta cells whereas alpha and delta cell populations are spared. The peripheral lymphoid phenotype is normal, including the fraction of ART2+ regulatory T cells (Tregs). We tested the hypothesis that the expression of diabetes would be increased by immunological perturbation of innate or adaptive immunity. Treatment of young rats with depleting anti-ART2.1 mAb increased the frequency of diabetes to 50%. Treatment with the toll-like receptor 3 (TLR3) ligand polyinosinic:polycytidylic acid increased the frequency of diabetes to 100%. All diabetic rats exhibited end-stage islets. The LEW.1WR1 rat is also susceptible to collagen-induced arthritis but is free of spontaneous thyroiditis. The LEW.1WR1 rat provides a new model for studying autoimmune diabetes and arthritis in an animal with a genetic predisposition to both disorders that can be amplified by environmental perturbation. PMID:16123363

  13. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats.

    Science.gov (United States)

    Murugan, Pidaran; Pari, Leelavinothan

    2006-08-01

    Hyperlipidaemia is an associated complication of diabetes mellitus. We recently reported that tetrahydrocurcumin lowered the blood glucose in diabetic rats. In the present study, we have investigated the effect of tetrahydrocurcumin, one of the active metabolites of curcumin on lipid profile and lipid peroxidation in streptozotocin-nicotinamide-induced diabetic rats. Tetrahydrocurcumin 80 mg/kg body weight was administered orally to diabetic rats for 45 days, resulted a significant reduction in blood glucose and significant increase in plasma insulin in diabetic rats, which proved its antidiabetic effect. Tetrahydrocurcumin also caused a significant reduction in lipid peroxidation (thiobarbituric acid reactive substances and hydroperoxides) and lipids (cholesterol, triglycerides, free fatty acids and phospholipids) in serum and tissues, suggesting its role in protection against lipid peroxidation and its antihyperlipidemic effect. Tetrahydrocurcumin showed a better effect when compared with curcumin. Results of the present study indicate that tetrahydrocurcumin showed antihyperlipidaemic effect in addition to its antidiabetic effect in type 2 diabetic rats.

  14. Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats.

    Science.gov (United States)

    Reddy, S Sreenivasa; Shruthi, Karnam; Prabhakar, Y Konda; Sailaja, Gummadi; Reddy, G Bhanuprakash

    2018-02-01

    Skeletal muscle is adversely affected in type-1 diabetes, and excessively stimulated ubiquitin-proteasome system (UPS) was found to be a leading cause of muscle wasting or atrophy. The role of endoplasmic reticulum (ER) stress in muscle atrophy of type-1 diabetes is not known. Hence, we investigated the role of UPS and ER stress in the muscle atrophy of chronic diabetes rat model. Diabetes was induced with streptozotocin (STZ) in male Sprague-Dawley rats and were sacrificed 2- and 4-months thereafter to collect gastrocnemius muscle. In another experiment, 2-months post-STZ-injection diabetic rats were treated with MG132, a proteasome inhibitor, for the next 2-months and gastrocnemius muscle was collected. The muscle fiber cross-sectional area was diminished in diabetic rats. The expression of UPS components: E1, MURF1, TRIM72, UCHL1, UCHL5, ubiquitinated proteins, and proteasome activity were elevated in the diabetic rats indicating activated UPS. Altered expression of ER-associated degradation (ERAD) components and increased ER stress markers were detected in 4-months diabetic rats. Proteasome inhibition by MG132 alleviated alterations in the UPS and ER stress in diabetic rat muscle. Increased UPS activity and ER stress were implicated in the muscle atrophy of diabetic rats and proteasome inhibition exhibited beneficiary outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cardioprotective effect of vitamin D2 on isoproterenol-induced myocardial infarction in diabetic rats.

    Science.gov (United States)

    El Agaty, Sahar M

    2018-03-08

    To assess the effect of vitamin D 2 and to elucidate the underlying mechanisms on acute myocardial injury induced by isoproterenol (ISO) in diabetic rats. Rats were divided into control rats, diabetic rats (DM), diabetic rats received ISO (DM-ISO), and diabetic rats pretreated with vitamin D 2 and received ISO (DM-D 2 -ISO). Vitamin D 2 pretreatment significantly decreased fasting glucose and myocardial malondialdehyde, associated with increased insulin, myocardial glutathione and superoxide dismutase in DM-D 2 -ISO versus DM-ISO. The serum triglycerides, total cholesterol, and LDL were significantly decreased, along with increased HDL and adiponectin. Poly-ADP ribose polymerase, cyclooxygenase-2, tumour necrosis factor alpha, interleukin-6, caspase-3, BAX, and p53 were significantly downregulated in myocardium of DM-D 2 -ISO versus DM-ISO. Histological studies showed diminished inflammatory cells infiltration in myocardium of DM-D 2 -ISO versus DM-ISO. Vitamin D 2 ameliorates hyperglycaemia, dyslipidaemia, redox imbalance, inflammatory and apoptotic processes, protecting the myocardium of diabetic rats against acute myocardial infarction.

  16. Comparative pharmacokinetics of arctigenin in normal and type 2 diabetic rats after oral and intravenous administration.

    Science.gov (United States)

    Zeng, Xiao-yan; Dong, Shu; He, Nan-nan; Jiang, Chun-jie; Dai, Yue; Xia, Yu-feng

    2015-09-01

    Arctigenin is the main active ingredient of Fructus Arctii for the treatment of type 2 diabetes. In this study, the pharmacokinetics of arctigenin in normal and type 2 diabetic rats following oral and intravenous administration was investigated. As compared to normal rats, Cmax and AUC(0-10h) values of oral arctigenin in diabetic rats increased by 356.8% and 223.4%, respectively. In contrast, after intravenous injection, the Cmax and AUC(0-10h) values of arctigenin showed no significant difference between diabetic and normal rats. In order to explore how the bioavailability of oral arctigenin increased under diabetic condition, the absorption behavior of arctigenin was evaluated by in situ single-pass intestinal perfusion (SPIP). The results indicated that arctigenin was a substrate of P-glycoprotein (P-gp). The absorption difference of arctigenin in the normal and diabetic rats could be eliminated by the pretreatment of classic P-gp inhibitor verapamil, suggesting that P-gp might be the key factor causing the absorption enhancement of arctigenin in diabetic rats. Further studies revealed that the uptake of rhodamine 123 (Rho123) in diabetic rats was significantly higher, indicating that diabetes mellitus might impair P-gp function. Consistently, a lower mRNA level of P-gp in the intestine of diabetic rats was found. In conclusion, the absorption of arctigenin after oral administration was promoted in diabetic rats, which might be partially attribute to the decreased expression and impaired function of P-gp in intestines. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effect of starvation, diabetes and insulin on the casein kinase 2 from rat liver cytosol.

    OpenAIRE

    Martos, C; Plana, M; Guasch, M D; Itarte, E

    1985-01-01

    Starvation, diabetes and insulin did not alter the concentration of casein kinases in rat liver cytosol. However, the Km for casein of casein kinase 2 from diabetic rats was about 2-fold lower than that from control animals. Administration of insulin to control rats did not alter this parameter, but increased the Km for casein of casein kinase 2 in diabetic rats. Starvation did not affect the kinetic constants of casein kinases. The effect of diabetes on casein kinase 2 persisted after partia...

  18. Type 2 Diabetes and Metformin Influence on Fracture Healing in an Experimental Rat Model.

    Science.gov (United States)

    La Fontaine, Javier; Chen, Chris; Hunt, Nathan; Jude, Edward; Lavery, Lawrence

    2016-01-01

    Persons with diabetes have a greater incidence of fractures compared with persons without diabetes. However, very little published information is available concerning the deleterious effect of late-stage diabetes on osseous structure and bone healing. The purpose of the present study was to evaluate the role of diabetes on fracture healing in a rat femur repair model. Thirty-six lean and diabetic Zucker rats were subdivided into 3 groups: (1) 12 lean rats as the control group; (2) 12 diabetic rats without blood glucose control (DM group); and (3) 12 diabetic rats treated with 300 mg/kg metformin to reduce the blood glucose levels (DM + Met group). Radiographs were taken every week to determine the incidence of bone repair and delayed union. All the rats were killed at 6 weeks after surgery. In both the sham-operated and the fractured and repaired femurs, significant decreases in the fracture-load/weight and marginal decreases in the fracture-load between the lean and DM groups were found. Metformin treatment significantly reduced the blood glucose and body weight 12 days postoperatively. Furthermore, a decrease in the fracture-load and fracture-load/weight in the repaired femurs was found in the DM + Met group. Diabetes impairs bone fracture healing. Metformin treatment reduces the blood glucose and body weight but had an adverse effect on fracture repair in diabetic rats. Further investigations are needed to reveal the mechanisms responsible for the effects of type 2 diabetes mellitus on bone and bone quality and the effect of medications such as metformin might have in diabetic bone in the presence of neuropathy and vascular disease. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Effects of total glucosides of paeony on oxidative stress in the kidney from diabetic rats.

    Science.gov (United States)

    Su, Jing; Zhang, Pei; Zhang, Jing-Jing; Qi, Xiang-Ming; Wu, Yong-Gui; Shen, Ji-Jia

    2010-03-01

    TGP, extracted from the traditional Chinese herb root of Paeonia lactiflora pall, has been shown to have therapeutic effect in experimental diabetic nephropathy. However, its mechanism is not fully understood. In this study, the effects of TGP on oxidative stress were investigated in the kidney of diabetic rats induced by streptozotocin. TGP (50, 100, 200mg/kg) was orally administered once a day for 8 weeks. TGP treatment in all three doses significantly lowered 24 h urinary albumin excretion rate in diabetic rats and attenuated glomerular volume. TGP treatment with 100 and 200mg/kg significantly reduced indices for tubulointerstitial injury in diabetic rats. The level of MDA was significantly increased in the kidney of diabetic rats and attenuated by TGP treatment at the dose of 200mg/kg. TGP treatment in a dose-dependent manner decreased the level of 3-NT protein of the kidney which increased under diabetes. T-AOC was significantly reduced in diabetic rat kidney and remarkably increased by TGP treatment at the dose of 100 and 200mg/kg. Activity of antioxidant enzyme such as SOD, CAT was markedly elevated by TGP treatment with 200mg/kg. Western blot analysis showed that p-p38 MAPK and NF-kappaB p65 protein expression increased in diabetic rat kidney, which were significantly decreased by TGP treatment. It seems likely that oxidative stress is increased in the diabetic rat kidneys, while TGP can prevent diabetes-associated renal damage against oxidative stress.

  20. The anti-oxidant effects of ginger and cinnamon on spermatogenesis dys-function of diabetes rats.

    Science.gov (United States)

    Khaki, Arash; Khaki, Amir Afshin; Hajhosseini, Laleh; Golzar, Farhad Sadeghpour; Ainehchi, Nava

    2014-01-01

    Diabetes rats have been linked to reproductive dysfunction and plant medicine has been shown to be effective in its treatment. Antioxidants have distinctive effects on spermatogenesis, sperm biology and oxidative stress, and changes in anti-oxidant capacity are considered to be involved in the pathogenesis of chronic diabetes mellitus. Ginger and cinnamon are strong anti-oxidants and have been shown to reduce oxidative stress in the long-term treatment of streptozotocin (STZ)-induced diabetes in animal models. The present study examined the influence of combined ginger and cinnamon on spermatogenesis in STZ-induced diabetes in male Wistar rats. Animals (n = 80) were allocated randomly into eight groups, 10 each: Group 1: Control rats given only 5cc Normal saline (0.9% NaCl) daily;Group2: rats received ginger (100mg/kg/rat) daily; Group 3: rats received cinnamon (75mg/kg) daily; Group 4: rats received ginger and cinnamon, (100mg/kg/rat ginger and 75mg/kg cinnamon) daily; Group 5: Diabetic control rats received only normal saline. Group 6: Diabetic rats received 100mg/kg/day ginger; Group 7: Diabetic rats received 75mg /kg/ day cinnamon; Group 8: Diabetic rats received ginger and cinnamon (100mg/kg/day and 75mg/kg /day). Diabetes was induced with 55 mg/kg, single intra-peritoneal injection of STZ in all groups. At the end of the experiment (56th day), blood samples were taken for determination of testosterone, LH,FSH, total anti-oxidant capacity, and levels of malondialdehyde, SOD, Catalase and GPX. All rats were euthanized, testes were dissected out and spermatozoa were collected from the epididymis for analysis. Sperm numbers, percentages of sperm viability and motility, and total serum testosterone increased in ginger and cinnamon and combined ginger and cinnamon treated diabetic rats compared with control groups. Serum testosterone, LH and FSH were higher compared to control group and also serum anti-oxidants (TAC, SOD, GPX and catalase) all were increased at the

  1. The effects of chronic resveratrol treatment on vascular responsiveness of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Silan, Coskun

    2008-05-01

    Deficiency in the vasorelaxant capacity is a result of an oxidative stress in diabetic animals and seems to be an etiological factor of vascular complications of diabetes. The present study was designed to examine whether resveratrol (RSV), a polyphenolic compound which is naturally present in grape and red wine, has a protective effect on diabetic aorta. Resveratrol (5 mg/kg/d, i.p.) was administered for 42 d to streptozotocin (STZ) (60 mg/kg) induced diabetic rats. Loss of weight, hyperglycemia, and elevated levels of plasma malondialdehyde (MDA) were observed in diabetic rats. Resveratrol treatment was significantly effective for these metabolic and biochemical abnormalities. The contractile responses of the aorta were recorded. Compared with control subjects, the aorta showed significantly enhanced contractile responses to noradrenaline (NA), but not to potassium chloride (KCl), in diabetic rats. Treatment of diabetic rats with resveratrol significantly reversed the increases in responsiveness and sensitivity of aorta to noradrenaline. In diabetic aorta, the relaxation response to acetylcholine (Ach) was found to be significantly decreased compared with control subjects, and resveratrol treatment reversed this; no such change was observed in the relaxation response to sodium nitroprusside (SNP). These results indicated that resveratrol significantly improved not only glucose metabolism and oxidative injury but also impaired vascular responses in streptozotocin induced diabetic rats.

  2. Microarray analysis of thioacetamide-treated type 1 diabetic rats

    International Nuclear Information System (INIS)

    Devi, Sachin S.; Mehendale, Harihara M.

    2006-01-01

    It is well known that diabetes imparts high sensitivity to numerous hepatotoxicants. Previously, we have shown that a normally non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats due to inhibited tissue repair allowing progression of liver injury. On the other hand, DB rats exposed to 30 mg TA/kg exhibit delayed tissue repair and delayed recovery from injury. The objective of this study was to investigate the mechanism of impaired tissue repair and progression of liver injury in TA-treated DB rats by using cDNA microarray. Gene expression pattern was examined at 0, 6, and 12 h after TA challenge, and selected mechanistic leads from microarray experiments were confirmed by real-time RT-PCR and further investigated at protein level over the time course of 0 to 36 h after TA treatment. Diabetic condition itself increased gene expression of proteases and decreased gene expression of protease inhibitors. Administration of 300 mg TA/kg to DB rats further elevated gene expression of proteases and suppressed gene expression of protease inhibitors, explaining progression of liver injury in DB rats after TA treatment. Inhibited expression of genes involved in cell division cycle (cyclin D1, IGFBP-1, ras, E2F) was observed after exposure of DB rats to 300 mg TA/kg, explaining inhibited tissue repair in these rats. On the other hand, DB rats receiving 30 mg TA/kg exhibit delayed expression of genes involved in cell division cycle, explaining delayed tissue repair in these rats. In conclusion, impaired cyclin D1 signaling along with increased proteases and decreased protease inhibitors may explain impaired tissue repair that leads to progression of liver injury initiated by TA in DB rats

  3. The ultrastructural alterations in rat corneas with experimentally-induced diabetes mellitus

    International Nuclear Information System (INIS)

    Take, G.; Karabay, G.; Erdogan, D.; Duyar, I.

    2006-01-01

    To examine the ultrastructural changes of rat corneas in streptozotocin (STZ) induced diabetes mellitus and the and the follow-up insulin treatment. Sprague-Dawley type rats were used for experimental procedures during the period from January to April 2003 at Baskent University, Ankara, Turkey. Rats were studied in four groups: group 1: controls, group 2 sham controls (single dose IV sodium citrate); group 3 STZ-induced diabetes mellitus (Single dose 45mg/kg STZ intravenously), group 4: diabetes mellitus + insulin treatment (8U/day). We observed degenerative changes in the epithelial layer, stromal keratocytes and endothelial cells in diabetic group. In contrast, the corneal layers have revealed positive alterations in the insulin-treated group. The statistical analysis, showed significant narrowing in the epithelial layer in the diabetic group (p0.02), whereas thickening was observed in the epithelial basement membrane and Descemet's membrane (p=0.002). It was determined that that diabetes mellitus causes degenerative changes in cornea, which are positively influenced by short-term insulin treatment. (author)

  4. Effect of Urtica dioica L. (Urticaceae) on testicular tissue in STZ-induced diabetic rats.

    Science.gov (United States)

    Ghafari, S; Balajadeh, B Kabiri; Golalipour, M J

    2011-08-15

    Urtica dioica L. (Stinging nettle) has already been known for a long time as a medicinal plant in the world. This histopathological and morphometrical study was conducted to determine the effects of the hydroalcoholic extract of Urtica dioica leaves on testis of streptozotocin-induced diabetic rats. Eighteen male Wistar rats were allocated to equally normal, diabetic and treatment groups. Hyperglycemia was induced by Streptozotocin (80 mg kg(-1)) in animals of diabetic and treatment groups. One week after STZ injection (80 mg kg(-1)), the rats of treatment group received the extract of U. dioica (100 mg/kg/day) IP for 28 days. After 5 weeks of study, all the rats were sacrificed and testes were removed and fixed in bouin and after tissue processing stained with H and E technique. Tubular cell disintegration, sertoli and spermatogonia cell vacuolization and decrease in sperm concentration in seminiferous tubules were seen in diabetic and treatment groups group in comparison with control. External Seminiferous Tubular Diameter (STD) and Seminiferous Epithelial Height (SEH) significantly reduced (p < 0.05) in the diabetic rats compared with controls and these parameters in the treatment group were similar to diabetics animals. This study showed that hydroalcoholic extract of Urtica dioica leaves, after induction of diabetes; has no treatment effect on seminiferous tubules alterations in streptozotocin-induced diabetic rats.

  5. Lipid profile of alloxan-induced diabetic wistar rats treated with ...

    African Journals Online (AJOL)

    weeks; Group 2, diabetes control rats, induced with 150 mg/kg b.w., i.p. administration of alloxan and thereafter given 0.2 ml distilled water throughout the study period; Groups 3, 4 and 5, diabetic (i.p., 150 mg/kg b.w. alloxan) rats were given single oral dose of MAD (100, 200 and 300 mg/kg b.w. respectively) for 4 weeks; ...

  6. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Al-Numair, Khalid S; Chandramohan, Govindasamy; Veeramani, Chinnadurai; Alsaif, Mohammed A

    2015-09-01

    The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats. The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal. The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.

  7. Effect of glycation of albumin on its renal clearance in normal and diabetic rats

    International Nuclear Information System (INIS)

    Layton, G.J.; Jerums, G.

    1988-01-01

    Two independent techniques have been used to study the renal clearances of nonenzymatically glycated albumin and nonglycated albumin in normal and streptozotocin-induced diabetic rats, 16 to 24 weeks after the onset of diabetes. In the first technique, serum and urinary endogenous glycated and nonglycated albumin were separated using m-aminophenylboronate affinity chromatography and subsequently quantified by radioimmunoassay. Endogenous glycated albumin was cleared approximately twofold faster than nonglycated albumin in normal and diabetic rats. However, no difference was observed in the glycated albumin/nonglycated albumin clearance ratios (Cga/Calb) in normal and diabetic rats, respectively (2.18 +/- 0.39 vs 1.83 +/- 0.22, P greater than 0.05). The second technique measured the renal clearance of injected 125I-labelled glycated albumin and 125I-labelled albumin. The endogenous results were supported by the finding that 125I-labelled glycated albumin was cleared more rapidly than 125I-labelled albumin in normal (P less than 0.01) and diabetic (P less than 0.05) rats. The Cga/Calb ratio calculated for the radiolabelled albumins was 1.4 and 2.0 in normal and diabetic rats, respectively. This evidence suggests that nonenzymatic glycation of albumin increases its renal clearance to a similar degree in normal and diabetic rats

  8. Hypoglycemic effect of instant aloe vera on the diabetic rats

    Directory of Open Access Journals (Sweden)

    Riyanto

    2017-09-01

    Full Text Available Instant aloe vera contains phenolic compounds which has antioxidative activity. However, this product is hygroscopic and damaged easily during storage. The critical condition of the instant occurs at the moisture content of 12.52 ± 0.24% (wb. Increasing the moisture content could accelerate oxidation of the phenolic compounds, thus decrease the antioxidative activity. Previous research showed that the antioxidative activity of instant aloe vera could lower the blood glucose. The purpose of this study was to evaluate the hypoglycemic activity of instant aloe vera during storage until the critical condition. The hypoglycemic effect was determined with the in vivo method using diabetic Wistar rats as experimental animals. The diabetic rats were fed with a standard feed combined with instant aloe vera which has been stored at various storage time i.e. 0, 2, 4, 6, 8 weeks and used normal rats fed without instant aloe vera as a control. The blood glucose was analyzed every week until 4 weeks. The research showed that the diabetic rats fed with standard feed without instant aloe vera had high blood glucose (219.40 mg/dL after 4 weeks treatment. Otherwise, the blood glucose of diabetic rats fed with instant aloe vera decreased from 214.00 mg/dL to 97.57 mg/dL after 4 weeks.

  9. [Red Blood Cells Raman Spectroscopy Comparison of Type Two Diabetes Patients and Rats].

    Science.gov (United States)

    Wang, Lei; Liu, Gui-dong; Mu, Xin; Xiao, Hong-bin; Qi, Chao; Zhang, Si-qi; Niu Wen-ying; Jiang, Guang-kun; Feng, Yue-nan; Bian, Jing-qi

    2015-10-01

    By using confocal Raman spectroscopy, Raman spectra were measured in normal rat red blood cells, normal human red blood cells, STZ induced diabetetic rats red blood cells, Alloxan induced diabetetic rats red blood cells and human type 2 diabetes red blood cells. Then principal component analysis (PCA) with support vector machine (SVM) classifier was used for data analysis, and then the distance between classes was used to judge the degree of close to two kinds of rat model with type 2 diabetes. The results found significant differences in the Raman spectra of red blood cell in diabetic and normal red blood cells. To diabetic red blood cells, the peak in the amide VI C=O deformation vibration band is obvious, and amide V N-H deformation vibration band spectral lines appear deviation. Belong to phospholipid fatty acyl C-C skeleton, the 1 130 cm(-1) spectral line is enhanced and the 1 088 cm(-1) spectral line is abated, which show diabetes red cell membrane permeability increased. Raman spectra of PCA combined with SVM can well separate 5 types of red blood cells. Classifier test results show that the classification accuracy is up to 100%. Through the class distance between the two induced method and human type 2 diabetes, it is found that STZ induced model is more close to human type 2 diabetes. In conclusion, Raman spectroscopy can be used for diagnosis of diabetes and rats STZ induced diabetes method is closer to human type 2 diabetes.

  10. Magnetic resonance imaging of the pancreas in streptozotocin-induced diabetic rats: Gadofluorine P and Gd-DOTA.

    Science.gov (United States)

    Cho, Hye Rim; Lee, Youkyung; Doble, Philip; Bishop, David; Hare, Dominic; Kim, Young-Jae; Kim, Kwang Gi; Jung, Hye Seung; Park, Kyong Soo; Choi, Seung Hong; Moon, Woo Kyung

    2015-05-21

    To investigate the performance of Gadofluorine P-enhanced magnetic resonance imaging (MRI) on the diagnosis of diabetes in a streptozotocin (STZ) -induced diabetic rat model. Fischer 344 rats were treated with STZ. Rats not treated with STZ served as controls. T1-weighted MRI was performed using a 3T scanner before and after the injection of Gd-DOTA or Gadofluorine P (6 diabetic rats, 5 controls). The normalized signal intensity (SI) and the enhancement ratio (ER) of the pancreas were measured at each time point, and the values were compared between the normal and diabetic rats using the Mann-Whitney test. In addition, the values were correlated with the mean islet number. Optimal cut-off values were calculated using a positive test based on receiver operating characteristics. Intrapancreatic Gd concentration after the injection of each contrast media was measured using laser ablation-inductively coupled plasma-mass spectrometry in a separate set of rats (4 diabetic rats, 4 controls for Gadofluorine P; 2, 2 for Gd-DOTA). The normalized SI and ER of the pancreas using Gd-DOTA were not significantly different between diabetic rats and controls. With Gadofluorine P, the values were significantly higher in the diabetic rats than in the control rats 30 min after injection (P DOTA (0.967 vs 0.667, P = 0.085). An increase in normalized SI 30 min after Gadofluorine P was correlated with a decrease in the mean number of islets (r (2) = 0.510, P = 0.014). Intra-pancreatic Gd was higher in rats with Gadofluorine P injection than Gd-DOTA injection (Gadofluorine P vs Gd-DOTA, 7.37 vs 0.00, P < 0.01). A significant difference in the concentration of intrapancreatic Gd was observed between the control and diabetic animals that were sacrificed 30 min after Gadofluorine P injection (control vs diabetic, 3.25 ng/g vs 10.55 ng/g, P < 0.05) CONCLUSION: In this STZ-induced diabetes rat model, Gadofluorine P-enhanced MRI of the pancreas showed high accuracy in the diagnosis of diabetes.

  11. Andrographolide reorganise hyperglycaemia and distorted antioxidant profile in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Naik, Ramavat Ravindhar; Munipally, Praveen Kumar; Nagaraju, Turlapati

    2017-10-26

    Diabetes mellitus (DM) is a constant and illimitable metabolic disorder that can happen even at a young age due to the virtual absence of naturally acting insulin, which uptakes and accumulates glucose; thereby reduce the use of glucose. In the present study, we evaluated the neuroprotective efficacy of andrographolide on streptozotocin (STZ) induced diabetic Sprague dawley rats. Diabetes was induced by intraperitonial injection of STZ (45 mg/kg B.W) in Sprague dawley rats. Andrographolide (2.5 mg/kg B.W) was administered orally to diabetic rats and Glibenclamide (25mg/kg B.W) as control for 30 days to assess its effects on blood glucose, insulin, insulin resistance and antioxidant profiles such as superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione and lipid peroxidation in various regions of brain namely hypothalamus, cerebellum, hippocampus and brain cerebral cortex. Oral supplementation of andrographolide extensively diminished the blood glucose levels than diabetic control. There was noteworthy reduction in the CAT, SOD and GPx activities in the hippocampus, hypothalamus and cerebral cortex cerebellum of the DM rat brain. However, andrographolide supplementation drastically reverses the CAT, GPx and SOD back to normal levels. In conclusion, the results revealed that andrographolide shown beneficial potentiality against neuropathy in STZ induced diabetic rats. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Renoprotective effect of lansoprazole in streptozotocin-induced diabetic nephropathy in wistar rats.

    Science.gov (United States)

    Kaur, Rupinder; Sodhi, Rupinder Kaur; Aggarwal, Neha; Kaur, Jaspreet; Jain, Upendra K

    2016-01-01

    Proton pump inhibitors (PPIs) have exhibited glucose lowering action in animal models of diabetes; however, their potential in diabetes-related complications has not yet been evaluated. Hence, the present study has been undertaken to investigate the renoprotective potential of lansoprazole in streptozotocin-induced diabetic nephropathy in wistar rats. Diabetic nephropathy was induced with a single injection of streptozotocin (STZ, 45 mg/kg, i.p.). Lansoprazole (40 mg/kg; 80 mg/kg, p.o.; 4 weeks) was administered to diabetic rats after 4 weeks of STZ treatment. A battery of biochemical tests such as serum glucose, glycated hemoglobin, blood urea nitrogen (BUN), serum creatinine, albumin, and kidney weight/body weight (%) ratio were performed to evaluate the renal functions. Oxidative stress was determined by estimating renal thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH) levels. Lipid profile was assessed by determining serum cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL). The STZ-treated rats demonstrated deleterious alterations in kidney functions, enhanced oxidative stress, and disturbed lipid profile. Administration of lansoprazole to diabetic rats significantly reduced serum glucose, glycated hemoglobin, BUN, creatinine, albumin levels, and oxidative stress. Serum lipids like TC and TG were decreased, and HDL was enhanced in lansoprazole-treated STZ rats. The findings of our study indicate that renoprotective effects of lansoprazole may be attributed to its glucose-lowering, lipid-lowering, and antioxidative potential.

  13. Characterization of upper thoracic spinal neurons responding to esophageal distension in diabetic rats

    DEFF Research Database (Denmark)

    Qin, Chao; Ghorbani, Marie L M; Wu, Mingyuan

    2008-01-01

    The aim of this study was to examine spinal neuronal processing of innocuous and noxious mechanical inputs from the esophagus in diabetic rats. Streptozotocin (50 mg/kg, ip) was used to induce diabetes in 15 male Sprague-Dawley rats, and vehicle (10 mM citrate buffer) was injected into 15 rats...

  14. Beneficial effects of dietary acarbose in the streptozotocin-induced diabetic rat.

    Science.gov (United States)

    Katovich, M J; Meldrum, M J; Vasselli, J R

    1991-12-01

    Diabetes is characterized by hyperphagia, polydipsia, polyuria, and elevations in blood and urinary glucose. It has also been documented that beta-adrenergic responsiveness is reduced in diabetes. The intestinal glucosidase inhibitor, acarbose (BAY G 5421), decreases postprandial glycemia by delaying carbohydrate absorption. The purpose of this study was to evaluate the effects of chronic acarbose treatment (20 and 40 mg/100 g of diet) on the metabolic and adrenergic parameters altered in streptozotocin (STZ) (50 mg/kg, intravenously [IV] )-induced diabetes. Metabolic parameters were measured daily for 8 weeks. Diabetic rats were hyperphagic, polydipsic, and polyuric within 1 week of STZ treatment. Acarbose treatment did not consistently effect the food intake but did reduce water intake, urinary output, blood glucose, and the urinary loss of glucose associated with STZ-induced diabetes. Adrenergic responses were assessed by monitoring the increase in tail skin temperature (TST) associated with administration of isoproterenol. Diabetic rats were less responsive than controls and acarbose treatment restored responses toward that of the controls. Additionally, 3H-NE release from the tail artery was elevated in the diabetic rat and restored to normal in the acarbose-treated animals. Collectively these data suggest that acarbose treatment is effective in reducing the severity of metabolic and autonomic complications associated with STZ-induced diabetes.

  15. Furan induced ovarian damage in non-diabetic and diabetic rats and cellular protective role of lycopene.

    Science.gov (United States)

    Uçar, Semra; Pandir, Dilek

    2017-11-01

    In our work, furan, lycopene, and furan + lycopene treatments were applied to non-diabetic and diabetic female rats via gavage. Ovarian tissue alterations with histopathology, immunohistochemistry, malondialdehyde levels, oxidative stress parameters such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and harmful effect on ovarian tissue DNA were evaluated in all groups for 28 days. Furan caused the changes histological, ovarian cell's DNA structure, malondialdehyde levels, antioxidant enzymes activities as in a statistically significant manner in each group. Useful effect of lycopene was determined both in non-diabetic and diabetic treatment groups against furan according to the used experimental parameters. Although some histopathological alterations were seen in diabetic and non-diabetic/diabetic plus furan-treated group's ovarians, lycopene restored these variations near to normal levels in furan + lycopene treated groups for in 28 days. Additionally, the results of our immunohistochemical analysis and alterations of the oxidative stress parameters results also supported these findings. Our result confirms that lycopene has protective effect and significantly altered diabetes and furan-induced toxicity in the rat ovarian tissue.

  16. Cardio-protective effects of carnitine in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Malone Michael A

    2006-01-01

    Full Text Available Abstract Background Streptozotocin-induced diabetes (STZ-D in rats has been associated with carnitine deficiency, bradycardia and left ventricular enlargement. Aim The purpose of this study was to determine whether oral carnitine supplementation would normalize carnitine levels and cardiac function in STZ-D rats. Methods Wistar rats (48 were made hyperglycemic by STZ at 26 weeks of age. Same age normal Wistar rats (24 were used for comparison. Echocardiograms were performed at baseline 2, 6, 10, and 18 weeks after STZ administration in all animals. HbA1c, serum carnitine and free fatty acids (FFA were measured at the same times. Since STZ-D rats become carnitine deficient, 15 STZ-D rats received supplemental oral carnitine for 16 weeks. Results The heart rates for the STZ-D rats (290 ± 19 bpm were less than control rats (324 ± 20 bpm (p Conclusion Thus, supplemental oral carnitine in STZ-D rats normalized serum carnitine, heart rate regulation and left ventricular size. These findings suggest a metabolic mechanism for the cardiac dysfunction noted in this diabetic animal model.

  17. Momordica charantia polysaccharides mitigate the progression of STZ induced diabetic nephropathy in rats.

    Science.gov (United States)

    Raish, Mohammad; Ahmad, Ajaz; Jan, Basit L; Alkharfy, Khalid M; Ansari, Mushtaq Ahmad; Mohsin, Kazi; Jenoobi, Fahad Al; Al-Mohizea, Abdullah

    2016-10-01

    Diabetic nephropathy (DN) has become a primary cause of end-stage kidney disease. Several complex dynamics converge together to accelerate the advancement of DN. The present investigation was postulated to explore the mechanism of reno-protective nature of Momordica Charantia polysaccharides (MCP) by evaluating the anti-hyperglycemic, anti-lipidemic as well as markers for oxidative stress and antioxidant proficiency in streptozotocin (STZ)-induced diabetic rats. The oral administration of MCP showed a significant normalization in the levels of kidney function test in the STZ-induced diabetic rats. The levels of blood urea nitrogen (BUN), urea protein and creatinine increased by 316.58%, 195.14% and 800.97% respectively, in STZ-induced diabetic rats when compared with normal rats. MCP treatment also illustrated a significant improvement in glutathione peroxidase, superoxide dismutase and catalase levels, with a significant decline in MDA in diabetic kidneys. Immunoblots of heme-oxygenase 1 (HO-1) and Nrf2 of MCP treated diabetic rats showed a significant up-regulation of HO-1 and Nrf2 protein. Histological and ultra-structural observations also reveal that MCP efficiently protects the kidneys from hyperglycemia-mediated oxidative damage. These findings illustrate that the reno-protective nature of MCP mitigates the progression of STZ induced DN in rats by suppression of oxidative stress and amelioration of the HO-1/Nrf2 pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Some pharmacological effects of cinnamon and ginger herbs in obese diabetic rats

    OpenAIRE

    Shalaby, Mostafa Abbas; Saifan, Hamed Yahya

    2014-01-01

    Aims: The present study was designed to assess some pharmacological effects of cinnamon (CAE) and ginger (GAE) aqueous extracts in obese diabetic rats, and to elucidate the potential mechanisms. Materials and Methods: Forty-two Sprague-Dawley rats were randomized into 6 equal groups. Group 1 was a negative control and the other groups were rendered obese by feeding rats on high-fat diet for 4 weeks. The obese rats were subcutaneously injected with alloxan for 5*days to induce diabetes. Group ...

  19. Determination of trace elements in tissues of diabetic rats by INAA

    International Nuclear Information System (INIS)

    Tan Mingguang; Wang Yinsong; Qian Yine; Zhang Guilin

    2000-01-01

    By using streptozotocin (STZ) injection to induce model diabetic rats, instrumental neutron activation analysis was applied to analyze elemental; concentrations in liver, kidney and pancreas tissues in diabetes and control rats. Results obtained for As, Br, Ca, Co, Cl, Cu, Fe, Hg, Mg, Mn, Na, Rb, S, Se and Zn in those tissues show that some elemental contents in diabetic group change obviously when compared with those of the controls. The changes of elemental contents and their significance are discussed

  20. Intraperitoneal administration of the globular adiponectin gene ameliorates diabetic nephropathy in Wistar rats.

    Science.gov (United States)

    Yuan, Fang; Liu, Ying-Hong; Liu, Fu-You; Peng, You-Ming; Tian, Jun-Wei

    2014-06-01

    The present study investigated the potential effects of the long-term expression of exogenous adiponectin (ADPN) on normal and diabetic kidneys. Type 2 diabetes mellitus models were induced by high-lipid and high-sucrose feeding plus intraperitoneal injection of streptozotocin. The recombinant plasmid pIRES2-EGFP-gAd, which is able to co-express globular ADPN (gAd) and enhanced green fluorescent protein (EGFP), was intraperitoneally injected into rat models mediated by Lipofectamine. In total, 32 Wistar rats were randomly assigned into four groups: the normal control group, the diabetes group, the diabetes group treated with pIRES2-EGFP-gAd and the diabetes group treated with pIRES2-EGFP. After 12 weeks, serum biochemistry and urine albumin levels were measured. The kidneys were collected to assess the generation of reactive oxygen species (ROS) and the renal pathological changes were observed by light microcopy. The protein expression of endothelial nitric oxide synthase (eNOS), transforming growth factor-β1 (TGF-β1) and phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were determined by an immunohistochemical staining method and western blot analysis. Intraperitoneal injection of the human gAd gene via Lipofectamine resulted in abundant ADPN protein in the kidney. In the diabetic rats, the delivery of the exogenous gAd gene ameliorated the progression of diabetic nephropathy (DN). ADPN attenuated urine albumin excretion in the diabetic rats. ADPN also mitigated glomerular mesangial expansion, reduced the generation of ROS and prevented interstitial fibrosis. In addition, the expression of gAd inhibited the renal expression of TGF-β1, promoted the protein expression of eNOS and activated the opening of the AMPK signaling pathway in the renal tissues of the diabetic rats. Despite the effects of ADPN on DN being controversial, these observations indicate that the supplementation of ADPN is beneficial in ameliorating DN in rats.

  1. Thymus transplantation and disease prevention in the diabetes-prone Bio-Breeding rat

    International Nuclear Information System (INIS)

    Georgiou, H.M.; Bellgrau, D.

    1989-01-01

    Bio-Breeding rat T lymphocytes proliferate poorly in response to alloantigen. Transplantation of Bio-Breeding rats with fetal thymus tissue from diabetes resistant rats leads to an improvement in the T cell proliferative response, but only if the thymus contains bone marrow-derived, radiation-resistant thymic antigen presenting cells of the diabetes-resistant phenotype. The current study provides evidence that thymus transplantation leading to the restoration of Bio-Breeding T cell proliferative function can also significantly reduce the incidence of insulitis and prevent the development of diabetes. It appears that a defect in the bone marrow-derived thymic APC population contributes to an abnormal maturation of Bio-Breeding T lymphocytes which in turn predisposes animals to insulitis and diabetic disease

  2. Usefulness of cardiac 125I-metaiodobenzylguanidine uptake for evaluation of cardiac sympathetic nerve abnormalities in diabetic rats

    International Nuclear Information System (INIS)

    Abe, Nanami; Kashiwagi, Atsunori; Shigeta, Yukio

    1992-01-01

    We investigated cardiac sympathetic nerve abnormalities in streptozocin-induced diabetic rats using 125 I-metaiodobenzylguanidine (MIBG). The radioactivity ratio of cardiac tissue to 1 ml blood (H/B) was used as an index of cardiac MIBG uptake. Cardiac 125 I-MIBG uptake (H/B) in 4-, 8- and 20-wk diabetic rats was 48% lower than that in control rats. Similar results were obtained even when the data were corrected for g wet tissue weight. Although there was no improvement in H/B following 2-wk insulin treatment, the H/B ratio increased significantly, to 85% of control levels, following 4 wk insulin treatment indicating the reversibility of impaired MIBG uptake in diabetic rats. In vivo reserpine treatment resulted in a 50% reduction in the H/B value in control rats. However, the treatment did not significantly suppress uptake in diabetic rats. Cardiac norepinephrine content in both * 4- and ** 8-wk diabetic rats was significantly ( * p ** p 125 I-MIBG in diabetic rats is significantly impaired due to cardiac sympathetic nerve abnormalities. These abnormalities are reversible, however, dependent on the diabetic state. (author)

  3. Total lymphoid irradiation prevents diabetes mellitus in the Bio-Breeding/Worcester (BB/W) rat

    International Nuclear Information System (INIS)

    Rossini, A.A.; Slavin, S.; Woda, B.A.; Geisberg, M.; Like, A.A.; Mordes, J.P.

    1984-01-01

    Total lymphoid irradiation (TLI) at doses of 2200 rads or greater prevented diabetes in susceptible BB/W rats. Two of 29 (7%) treated rats became diabetic compared with 23 of 39 (59%) controls. TLI did not, however, prevent insulitis or thyroiditis in nondiabetic rats, nor did it restore the depressed concanavalin-A responsiveness of BB rat lymphocytes. T-lymphocyte subset proportions were the same in both groups. TLI was associated with significant radiation-related mortality, and nondiabetic TLI-treated rats weighed significantly less than controls. It was concluded that TLI is effective in the prevention of BB rat diabetes. However, TLI fails to correct the subclinical immunologic abnormalities of the model and is associated with significant morbidity

  4. Protective effect of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Ma Song-Tao

    2014-12-01

    Full Text Available Mulberry leaves (Morus alba L. are a traditional Chinese medicine for blood serum glucose reduction. This study evaluated the protective effects of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats. In this study, 80 Sprague-Dawley rats were divided into five groups: A (control, B (diabetic treated with saline, C-D (diabetic treated with 0.3, 0.1 g/kg mulberry flavonoids once a day for 8 weeks and E (diabetic treated with 0.3 mg/kg methycobal. The diabetic condition was induced by intraperitoneal injection of 200 mg/kg alloxan dissolved in saline. At the end of the experimental period, blood, and tissue samples were obtained for biochemical and histopathological investigation. Treatment with 0.3 g/kg mulberry flavonoids significantly inhibited the elevated serum glucose (P< 0.01. The increased myelin sheath area (P< 0.01, myelinated fiber cross-sectional area and extramedullary fiber number (P< 0.05 were also reduced in alloxan-induced rats treated with 0.3 g/kg mulberry flavonoids. 0.3 g/kg mulberry flavonoids also markedly decreased onion-bulb type myelin destruction and degenerative changes of mitochondria and Schwann cells. These findings demonstrate that mulberry flavonoids may improve the recovery of a severe peripheral nerve injury in alloxan-induced diabetic rats and is likely to be useful as a potential treatment on peripheral neuropathy (PN in diabetic rats.

  5. Chronic type 1 diabetes in spontaneously hypertensive rats leads to exacerbated cardiac fibrosis.

    Science.gov (United States)

    Black, Mary Jane; D'Amore, Angelo; Auden, Alana; Stamp, Laura; Osicka, Tanya; Panagiotopoulos, Sianna; Jerums, George

    2010-01-01

    Diabetes in human subjects is often associated with hypertension. The aim of this study was to examine the development of cardiac fibrosis following induction of type 1 diabetes in genetically hypertensive rats. Diabetes was induced by streptozotocin (STZ) injection in 8-week-old normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) for a duration of 16 or 24 weeks. Aged-matched, nondiabetic WKY and SHRs were used as controls. At termination of treatment, the rats were anaesthetized, hearts arrested in diastole and perfusion fixed. A comprehensive examination of cardiac fibrosis throughout the right and left ventricles was undertaken in picrosirius red-stained sections, using image analysis and by undertaking collagen type I and type III immunohistochemistry. Induction of diabetes in the SHRs led to a marked increase in the levels of interstitial fibrosis in the left ventricle plus septum (LV+S) at both 16 and 24 weeks duration (59% and 43% increase, respectively) and also in the right ventricle after 24 weeks duration of diabetes (35% increase compared to the nondiabetic SHR). Exacerbated perivascular fibrosis was also observed in the LV+S in the diabetic-hypertensive rats at the later time point. These effects of induction of diabetes were not observed in the normotensive strain. Our findings clearly demonstrate elevations in cardiac fibrosis when type 1 diabetes is combined with hypertension. Our findings thus stress the importance of closely monitoring both blood pressure and glucose levels in type 1 diabetic patients in order to prevent myocardial collagen deposition. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    Science.gov (United States)

    Wisetmuen, Eamruthai; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Yutanawiboonchai, Wiboonchai; Itharat, Arunporn

    2013-01-01

    Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa) in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ). Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE) at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively). Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively). Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF) for control and HS-EE treated group, respectively) and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively). Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion. PMID:23798879

  7. Chronic Opium Treatment Can Differentially Induce Brain and Liver Cells Apoptosis in Diabetic and Non-diabetic Male and Female Rats

    OpenAIRE

    Asiabanha, Majid; Asadikaram, Gholamreza; Rahnema, Amir; Mahmoodi, Mehdi; Hasanshahi, Gholamhosein; Hashemi, Mohammad; Khaksari, Mohammad

    2011-01-01

    It has been shown that some opium derivatives promote cell death via apoptosis. This study was designed to examine the influence of opium addiction on brain and liver cells apoptosis in male and female diabetic and non-diabetic Wistar rats. This experimental study was performed on normal, opium-addicted, diabetic and diabetic opium-addicted male and female rats. Apoptosis was evaluated by TUNEL and DNA fragmentation assays. Results of this study showed that apoptosis in opium-addicted and dia...

  8. Red algae (Gelidium amansii reduces adiposity via activation of lipolysis in rats with diabetes induced by streptozotocin-nicotinamide

    Directory of Open Access Journals (Sweden)

    Tsung-Han Yang

    2015-12-01

    Full Text Available Gelidium amansii (GA is an edible red algae that is distributed mainly in northeastern Taiwan. This study was designed to investigate the effects of GA on plasma glucose, lipids, and adipocytokines in rats with streptozotocin-nicotinamide-induced diabetes. Rats were divided into four groups: (1 rats without diabetes fed a high-fat diet (control group; (2 rats with diabetes fed a high-fat diet; (3 rats with diabetes fed a high-fat diet with thiazolidinedione in the diet; and (4 rats with diabetes fed a high-fat diet and GA. The experimental diet and drinking water were available ad libitum for 11 weeks. After the 11-week feeding study, plasma glucose, triglyceride, and cholesterol concentrations were lower in rats with diabetes fed the GA diet than in animals with diabetes fed the control diet. In addition, cholesterol and triglyceride excretion were significantly higher in rats with diabetes fed the GA diet. Moreover, GA feeding induced lipolysis in both paraepididymal and perirenal adipose tissues. Adipose tissue (paraepididymal and perirenal weight and triglyceride contents were lower after GA treatment. Plasma adipocytokines including tumor necrosis factor-alpha, interleukin-6, and plasminogen activator inhibitor-1 were reduced by GA feeding in rats with diabetes. The results of the current study suggest that GA feeding may regulate plasma glucose and lipid levels and prevent adipose tissue accumulation in rats with diabetes.

  9. Antioxidant and Hypolipidemic Effects of Olive Oil in Normal and Diabetic Male Rats

    International Nuclear Information System (INIS)

    Alhazza, I. M.

    2007-01-01

    Diabetes mellitus manifests itself in a wide variety of complications and the symptoms of the disease are multifactorial. The lipid hydroperoxide level and lipid profile were investigated in plasma of normal and Alloxan-induced diabetic rats treated with olive oil for six weeks. Diabetic rats exhibited an increase in the levels of hydroperoxide, cholesterol, triglycerides and low density lipoprotein (LDL), and a decrease in the level of high density lipoprotein (HDL). The administration of olive oil showed a better profile in the lipid as well as decreases in the concentration of lipid hydroperoxides either in normal or diabetic rats. The results are discussed according to antioxidant property of olive oil. (author)

  10. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hajizadeh

    2014-03-01

    Full Text Available Background: It has been proposed that oxidative stress may contribute to the development of testicular abnormalities in diabetes. Morus alba leaf extract (MAE has hypoglycemic and antioxidant properties. We, therefore, explored the impact of the administration of MAE on steroidogenesis in diabetic rats. Methods: To address this hypothesis, we measured the serum level of glucose, insulin, and free testosterone (Ts as well as oxidative stress parameters (including glutathione peroxidase, glutathione reductase, total antioxidant capacity, and malondialdehyde in the testis of control, untreated and MAE-treated (1 g/day/kg diabetic rats. In order to determine the likely mechanism of MAE action on Ts levels, we analyzed the quantitative mRNA expression level of the two key steroidogenic proteins, namely steroid acute regulatory protein (StAR and P450 cholesterol side-chain cleavage enzyme (P450scc, by real-time PCR. Results: The MAE-treated diabetic rats had significantly decreased glucose levels and on the other hand increased insulin and free Ts levels than the untreated diabetic rats. In addition, the administration of MAE to the diabetic rats restored the oxidative stress parameters toward control. Induction of diabetes decreased testicular StAR mRNA expression by 66% and MAE treatment enhanced mRNA expression to the same level of the control group. However, the expression of P540scc was not significantly decreased in the diabetic group as compared to the control group. Conclusion: Our findings indicated that MAE significantly increased Ts production in the diabetic rats, probably through the induction of StAR mRNA expression levels. Administration of MAE to experimental models of diabetes can effectively attenuate oxidative stress-mediated testosterone depletion. Please cite this article as: Hajizadeh MR, Eftekhar E, Zal F, Jaffarian A, Mostafavi-Pour Z. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in

  11. Teripang Pasir Meningkatkan Kandungan Antioksidan Superoksida Dismutase pada Pankreas Tikus Diabetes (SEA CUCUMBER INCREASED ANTIOXIDANT SUPEROXIDE DISMUTASE IN THE PANCREATIC TISSUE OF DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Tutik Wresdiyati

    2015-05-01

    Full Text Available High level of blood glucose is an indicator for diabetes mellitus (DM condition. The condition iscaused by low level of insulin secretion or impairement of insulin receptor. The number of DM patientincreases every year. The World Health Organization reported that the number of DM patient in Indonesiawas the 4th highest in the world, after following China, India, and the United States of America, respectively.This study was conducted to analyze the effect of sea cucumber (Holothuria scabra J on the profile ofantioxidant copper, zinc-superoxide dismutase (Cu, Zn-SOD in the pancreatic tissues of diabetic rats. Atotal of 25 male white rats (Sprague Dawley were used in this study. They were divided into five groups;(1 negative control (KN, (2 positive control, diabetic rats (KP, (3 diabetic rats treated with hydrolyzatedprotein of sea cucumber (HDL, (4 diabetic rats treated with concentrated protein of sea cucumber (KST,and (5 diabetic rats treated with isolated protein of sea cucumber (ISL, respectively. Diabetic conditionwas obtained by alloxan injection 110 mg/kg bw. The treatments were done for 28 days. At the end oftreatment period, the rats were sacrificed and pancreatic tissues were collected and fixed in Bouin solution and then processed to paraffin embedding standard method. The tissues were then stained withimmunohistochemical staining techniques using monoclonal antibody of Cu, Zn-SOD. The results showedthat treatment of HDL, KST, and ISL of sea cucumber (Holothuria scabra J increased the content ofantioxidant Cu, Zn-SOD either in Langerhans islets and acinar cells of pancreatic tissues-diabetic rats.The HDL of sea cucumber treatment gave the best effect in increasing the antioxidant content of Cu, Zn-SOD in pancreatic tissue of diabetic rats.

  12. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats.

    Science.gov (United States)

    Fernandes, Sheila Marques; Cordeiro, Priscilla Mendes; Watanabe, Mirian; Fonseca, Cassiane Dezoti da; Vattimo, Maria de Fatima Fernandes

    2016-10-01

    The objective of this study was to evaluate the role of oxidative stress in an experimental model of streptozotocin-induced diabetic nephropathy in rats. Wistar, adult, male rats were used in the study. Animals were divided in the following groups: Citrate (control, citrate buffer 0.01M, pH 4.2 was administrated intravenously - i.v - in the caudal vein), Uninephrectomy+Citrate (left uninephrectomy-20 days before the study), DM (streptozotocin, 65 mg/kg, i.v, on the 20th day of the study), Uninephrectomy+DM. Physiological parameters (water and food intake, body weight, blood glucose, kidney weight, and relative kidney weight); renal function (creatinine clearance), urine albumin (immunodiffusion method); oxidative metabolites (urinary peroxides, thiobarbituric acid reactive substances, and thiols in renal tissue), and kidney histology were evaluated. Polyphagia, polydipsia, hyperglycemia, and reduced body weight were observed in diabetic rats. Renal function was reduced in diabetic groups (creatinine clearance, p < 0.05). Uninephrectomy potentiated urine albumin and increased kidney weight and relative kidney weight in diabetic animals (p < 0.05). Urinary peroxides and thiobarbituric acid reactive substances were increased, and the reduction in thiol levels demonstrated endogenous substrate consumption in diabetic groups (p < 0.05). The histological analysis revealed moderate lesions of diabetic nephropathy. This study confirms lipid peroxidation and intense consumption of the antioxidant defense system in diabetic rats. The association of hyperglycemia and uninephrectomy resulted in additional renal injury, demonstrating that the model is adequate for the study of diabetic nephropathy.

  13. Effect of Consumption of Tribulus Terrestris on Serum Glucose and Lipid Levels in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    M Roghani

    2010-03-01

    Full Text Available Introduction: The effect of Tribulus terrestris (TT on serum glucose and lipid levels was investigated in an experimental model of diabetes mellitus in rats. Methods: Female Wistar rats were divided into control, TT-treated control, diabetic, glibenclamide-treated, and TT-treated diabetic groups. For induction of diabetes, streptozotcin (STZ was administered (60 mg/Kg. Meanwhile, TT-treated groups received TT mixed with standard pelleted food at a weight ratio of 6.25% for 6 weeks. Serum glucose and lipid levels were determined before the study and at the 3rd and 4th week after the study. Results: Serum glucose was significantly lower in TT-treated diabetic rats at 3rd and 6th weeks as compared to untreated diabetics (p<0.01 and p<0.005, respectively. In addition, serum total cholesterol, triglyceride, and LDL-cholesterol showed a significant reduction in TT-treated diabetic rats as compared to untreated diabetics (p<0.05. On the other hand, HDL-cholesterol level did not change significantly in TT-treated diabetic group as compared to untreated diabetic group. Conclusions: Oral administration of TT has a significant hypoglycemic effect and in long term leads to appropriate changes in serum LDL-cholesterol, total cholesterol, and triglyceride levels, but does not affect HDL-cholesterol levels in diabetic rats.

  14. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats.

    Science.gov (United States)

    Watts, Tammara; Berti, Irene; Sapone, Anna; Gerarduzzi, Tania; Not, Tarcisio; Zielke, Ronald; Fasano, Alessio

    2005-02-22

    Increased intestinal permeability has been observed in numerous human autoimmune diseases, including type-1 diabetes (T1D) and its' animal model, the BB-wor diabetic prone rat. We have recently described zonulin, a protein that regulates intercellular tight junctions. The objective of this study was to establish whether zonulin-dependent increased intestinal permeability plays a role in the pathogenesis of T1D. In the BB diabetic-prone rat model of T1D, intestinal intraluminal zonulin levels were elevated 35-fold compared to control BB diabetic-resistant rats. Zonulin up-regulation was coincident with decreased small intestinal transepithelial electrical resistance, and was followed by the production of autoantibodies against pancreatic beta cells, which preceded the onset of clinically evident T1D by approximately 25 days. In those diabetic prone rats that did not progress to diabetes, both intraluminal zonulin and transepithelial electrical resistance were similar to those detected in diabetic-resistant animal controls. Blockade of the zonulin receptor reduced the cumulative incidence of T1D by 70%, despite the persistence of intraluminal zonulin up-regulation. Moreover, treatment responders did not seroconvert to islet cell antibodies. Combined together, these findings suggest that the zonulin-induced loss in small intestinal barrier function is involved in the pathogenesis of T1D in the BB diabetic-prone animal model.

  15. Effects on Glycemic Control in Impaired Wound Healing in Spontaneously Diabetic Torii (SDT) Fatty Rats.

    Science.gov (United States)

    Katsuhiro, Miyajima; Hui Teoh, Soon; Yamashiro, Hideaki; Shinohara, Masami; Fatchiyah, Fatchiyah; Ohta, Takeshi; Yamada, Takahisa

    2018-02-01

    Impaired diabetic wound healing is an important issue in diabetic complications. The present study aims to evaluate the protective effect on glycemic control against impaired diabetic wound healing using a diabetic rat model. We investigated the wound healing process and effect on the impaired wound repair by glycemic control in the Spontaneously Diabetic Torii (SDT) fatty rat, which is a new animal model of obese type 2 diabetes and may be a good model for study impaired wound healing. Male SDT fatty rats at 15 weeks of age were administered orally with sodium glucose co-transporter (SGLT) 2 inhibitor for 3 weeks. Wounds were induced at 2 weeks after SGLT 2 inhibitor treatment, and the wound areas were periodically examined in morphological and histological analyses. The SDT fatty rats showed a delayed wound healing as compared with the normal rats, but a glycemic control improved the impaired wound healing. In histological analysis in the skin of SDT fatty rats showed severe infiltration of inflammatory cell, hemorrhage and many bacterial masses in the remaining and slight fibrosis of crust on skin tissue . Thought that this results skin performance to be a delay of crust formation and regeneration of epithelium; however, these findings were ameliorated in the SGLT 2 inhibitor treated group. Glycemic control is effective for treatment in diabetic wounds and the SDT fatty rat may be useful to investigate pathophysiological changes in impaired diabetic wound healing.

  16. In vivo somatostatin, vasopressin, and oxytocin synthesis in diabetic rat hypothalamus

    International Nuclear Information System (INIS)

    Fernstrom, J.D.; Fernstrom, M.H.; Kwok, R.P.

    1990-01-01

    The in vivo labeling of somatostatin-14, somatostatin-28, arginine vasopressin, and oxytocin was studied in rat hypothalamus after third ventricular administration of [35S]cysteine to streptozotocin-diabetic and normal rats. Immunoreactive somatostatin levels in hypothalamus were unaffected by diabetes, as was the incorporation of [35S]cysteine into hypothalamic somatostatin-14 and somatostatin-28. In contrast, immunoreactive vasopressin levels in hypothalamus and posterior pituitary (and oxytocin levels in posterior pituitary) were below normal in diabetic rats. Moreover, [35S]cysteine incorporation into hypothalamic vasopressin and oxytocin (probably mainly in the paraventricular nucleus because of its proximity to the third ventricular site of label injection) was significantly above normal. The increments in vasopressin and oxytocin labeling were reversed by insulin administration. In vivo cysteine specific activity and the labeling of acid-precipitable protein did not differ between normal and diabetic animals; effects of diabetes on vasopressin and oxytocin labeling were therefore not caused by simple differences in cysteine specific activity. These results suggest that diabetes (1) does not influence the production of somatostatin peptides in hypothalamus but (2) stimulates the synthesis of vasopressin and oxytocin. For vasopressin at least, the increase in synthesis may be a compensatory response to the known increase in its secretion that occurs in uncontrolled diabetes

  17. Effect of acacia nilotica leaves extract on hyperglycaemia, lipid profile and platelet aggregation in streptozotocin induced diabetic rats

    International Nuclear Information System (INIS)

    Asad, M.; Munir, T.A.; Nadeem, A.

    2011-01-01

    To consider new hypoglycaemic, anti-hyperlipidaemic and anti-platelet aggregation sources, aqueous methanol extract of Acacia Nilotica (AN) leaves was investigated in streptozotocin induced diabetic rats. Methods: Diabetes mellitus was induced in 90 out of 120 male albino rats by administering 50 mg/Kg body weight (bw) streptozotocin intraperitoneal y, and was confirmed by measuring fasting blood glucose level >200 mg/dL on fourth post-induction day. The rats were equally divided into 4 groups, A (normal control), B (diabetic control), C (diabetics rats treated with plant extract) and group D (diabetics rats treated with glyburide). The rats of group C and D were given single dose of 300 mg/Kg bw, An extract, and 900 micro g/Kg bw glyburide respectively for 3 weeks. Blood glucose levels were measured by gluco meter, platelet aggregation by Dia Med method, beta-thrombo globulin and insulin by ELISA technique, and lipid components were measured by enzymatic calorimetric method. Results: Significant differences (p<0.05) were noticed in blood glucose, serum insulin, platelet aggregation and triglyceride levels in diabetic rats treated with AN extract and glyburide as compared to diabetic controlled rats. A significant difference (p<0.05) in beta-thrombo globulin and LDL levels was also noticed in rats treated with glyburide than the diabetic controlled rats. The levels of fasting blood glucose, beta-thrombo globulin and platelet aggregation were significantly reduced (p<0.05) in diabetic rats treated with glyburide than AN extract treated rats. Conclusions: Administration of AN leaves extract showed hypoglycaemic and anti-platelet aggregation activity in diabetic rats as that of glyburide. (author)

  18. Restriction fragment polymorphisms in the major histocompatibility complex of diabetic BB rats

    DEFF Research Database (Denmark)

    Kastern, W.; Dyrberg, T.; Scholler, J.

    1984-01-01

    DNA isolated from diabetic BB (BB/Hagedorn) rats was examined for restriction fragment length differences within the major histocompatibility complex (MHC) as compared with nondiabetic (W-subline) BB rats. Polymorphisms were detected using a mouse class I MHC gene as probe. Specifically, a 2-kb Bam......HI fragment was present in all the nondiabetic rats examined, but absent in the diabetic rats. Similar polymorphisms were observed with various other restriction enzymes, particularly XbaI, HindII, and SacI. There were no polymorphisms detected using either a human DR-alpha (class II antigen heavy chain...

  19. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats

    Science.gov (United States)

    Fathollah, Sara; Mirpour, Shahriar; Mansouri, Parvin; Dehpour, Ahmad Reza; Ghoranneviss, Mahmood; Rahimi, Nastaran; Safaie Naraghi, Zahra; Chalangari, Reza; Chalangari, Katalin Martits

    2016-02-01

    It is estimated that 15 percent of individuals with diabetes mellitus suffer from diabetic ulcers worldwide. The aim of this study is to present a non-thermal atmospheric plasma treatment as a novel therapy for diabetic wounds. The plasma consists of ionized helium gas that is produced by a high-voltage (8 kV) and high-frequency (6 kHz) power supply. Diabetes was induced in rats via an intravascular injection of streptozotocin. The plasma was then introduced to artificial xerograph wounds in the rats for 10 minutes. Immunohistochemistry assays was performed to determine the level of transforming growth factor (TGF-β1) cytokine. The results showed a low healing rate in the diabetic wounds compared with the wound-healing rate in non-diabetic animals (P diabetic rats (P treatment compared with untreated diabetic wounds (P treatment also resulted in the release of TGF-β1 cytokine from cells in the tissue medium. The findings of this study demonstrate the effect of plasma treatment for wound healing in diabetic rats.

  20. Red algae (Gelidium amansii) reduces adiposity via activation of lipolysis in rats with diabetes induced by streptozotocin-nicotinamide

    OpenAIRE

    Tsung-Han Yang; Hsien-Tsung Yao; Meng-Tsan Chiang

    2015-01-01

    Gelidium amansii (GA) is an edible red algae that is distributed mainly in northeastern Taiwan. This study was designed to investigate the effects of GA on plasma glucose, lipids, and adipocytokines in rats with streptozotocin-nicotinamide-induced diabetes. Rats were divided into four groups: (1) rats without diabetes fed a high-fat diet (control group); (2) rats with diabetes fed a high-fat diet; (3) rats with diabetes fed a high-fat diet with thiazolidinedione in the diet; and (4) rats with...

  1. Metabolic effects of quail eggs in diabetes-induced rats: comparison with chicken eggs

    Directory of Open Access Journals (Sweden)

    Eric Lontchi-Yimagou

    2016-10-01

    Full Text Available Background: Quail eggs as a food item have recently been introduced into the diet of some Cameroonians. These eggs are being sold in local markets, but with many unfounded health claims. One claim is that quail eggs can reduce blood glucose levels in diabetics. It was therefore necessary to evaluate the effect of consuming quail eggs on blood glucose levels, lipid profiles, and oxidative stress parameters in diabetes-induced rats. Methods: Twenty Wistar rats weighing, on average, 250 g were divided into four groups of five rats each. Group 1 consisted of rats with normal blood glucose, and the other three groups (2, 3, and 4 consisted of diabetes-induced rats achieved by intravenous injection of streptozotocin. During 16 days, rats in groups 1 and 2 received distilled water; and rats in groups 3 and 4 received quail and chicken eggs, respectively, with gastroesophageal probe at a dose of 1 mL/200 g body weight. Fasting blood glucose levels were determined in all the groups on the 1st, 7th, 14th, and 17th days after induction of diabetes. On the 17th day, the fasting rats were sacrificed, and blood and liver samples were collected for biochemical analyses. Results: In 17 days, the consumption of quail and chicken eggs had no effect on blood glucose levels of diabetic rats. Total cholesterol levels were higher in groups 3 (75.59 mg/dL and 4 (59.41 mg/dL compared to group 2 (55.67 mg/dl, although these differences were not significant (all p>0.05. Triglyceride levels were significantly higher (p <0.05 in groups 3 (106.52 mg/dL and 4 (109.65 mg/dL compared to group 2 (65.82 mg/dL. Quail eggs had no effect on oxidative stress parameters (malondialdehyde, hydroperoxides, and catalase. Conclusions: The consumption of quail eggs by diabetic rats at the tested dose had no effect on blood glucose level and oxidative stress parameters and may have a negative effect on lipid profile.

  2. Effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats.

    Science.gov (United States)

    Peng, Tao; Wang, Jie; Zhen, Junhui; Hu, Zhao; Yang, Xiangdong

    2014-07-01

    The aim of this study was to investigate the effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats. Thirty male Sprague-Dawley rats were included in the present study. Eight of the 30 rats were randomly selected and served as the normal control group (N group), while the remaining 22 rats, injected with streptozotocin (STZ), comprised the diabetic rat model. Rats with diabetes were randomly divided into the diabetic (DM group) and benazepril (B group) groups. The total course was conducted over 12 weeks. Blood glucose, body weight, kidney/body weight, 24-h urinary protein, serum creatinine and blood urea nitrogen were measured at the start and end of the study. We observed the tubulointerstitial pathological changes, and applied immunohistochemistry and western blotting to detect the expression of α-smooth muscle actin (α-SMA) in renal tissue. The levels of blood glucose, kidney/body weight, 24-h urinary protein, serum creatinine, blood urea nitrogen and tubulointerstitial damage index (TII) in the DM group were significantly higher than that in the N group (pbenazepril significantly reduced the expression of α-SMA in renal tubular epithelial cells obtained from diabetic rats, inhibited the transdifferentiation of renal tubular epithelial cells and played an important role in kidney protection.

  3. Red algae (Gelidium amansii) reduces adiposity via activation of lipolysis in rats with diabetes induced by streptozotocin-nicotinamide.

    Science.gov (United States)

    Yang, Tsung-Han; Yao, Hsien-Tsung; Chiang, Meng-Tsan

    2015-12-01

    Gelidium amansii (GA) is an edible red algae that is distributed mainly in northeastern Taiwan. This study was designed to investigate the effects of GA on plasma glucose, lipids, and adipocytokines in rats with streptozotocin-nicotinamide-induced diabetes. Rats were divided into four groups: (1) rats without diabetes fed a high-fat diet (control group); (2) rats with diabetes fed a high-fat diet; (3) rats with diabetes fed a high-fat diet with thiazolidinedione in the diet; and (4) rats with diabetes fed a high-fat diet and GA. The experimental diet and drinking water were available ad libitum for 11 weeks. After the 11-week feeding study, plasma glucose, triglyceride, and cholesterol concentrations were lower in rats with diabetes fed the GA diet than in animals with diabetes fed the control diet. In addition, cholesterol and triglyceride excretion were significantly higher in rats with diabetes fed the GA diet. Moreover, GA feeding induced lipolysis in both paraepididymal and perirenal adipose tissues. Adipose tissue (paraepididymal and perirenal) weight and triglyceride contents were lower after GA treatment. Plasma adipocytokines including tumor necrosis factor-alpha, interleukin-6, and plasminogen activator inhibitor-1 were reduced by GA feeding in rats with diabetes. The results of the current study suggest that GA feeding may regulate plasma glucose and lipid levels and prevent adipose tissue accumulation in rats with diabetes. Copyright © 2015. Published by Elsevier B.V.

  4. Modification of the β-Adrenoceptor Stimulation Pathway in Zucker Obese and Obese Diabetic Rat Myocardium.

    Science.gov (United States)

    Jiang, Cheng; Carillion, Aude; Na, Na; De Jong, Audrey; Feldman, Sarah; Lacorte, Jean-Marc; Bonnefont-Rousselot, Dominique; Riou, Bruno; Amour, Julien

    2015-07-01

    Although metabolic syndrome is associated with increased sympathetic activity that chronically stimulates β-adrenoceptors, the β-adrenoceptor signaling pathway has been poorly studied in this situation. We studied the β-adrenoceptor signaling pathway in Zucker lean, obese, and obese diabetic rats. Experimental, prospective study. University medical research laboratory. Adult male Zucker lean (control), obese, and obese diabetic rats. The effects of β-adrenoceptor stimulation were investigated in vitro in isolated left ventricular papillary muscles in control, obese, and obese diabetic rats. β1-, β2-, and β3-adrenoceptors and multidrug resistance-associated protein 4 were quantified by Western Blotting. Triglyceride, cholesterol, leptin, adiponectin, and C-peptide plasma concentrations were measured. Data are mean ± SD. Hyperlipidemia, high leptin, and C-peptide concentrations were observed in obese and obese diabetic strains, whereas hyperglycemia occurred only in the diabetic strain. The positive inotropic effect of isoproterenol was slightly reduced in obese rats (183% ± 11% of baseline; p = 0.003; n = 7) and markedly reduced in obese diabetic rats (137% ± 18% of baseline; p < 0.001; n = 10) when compared with control rats (210% ± 17% of baseline; n = 9). β1-adrenoceptors were down-regulated in obese (-41%; p = 0.02) and diabetic (-54%; p = 0.003) when compared with control rats, whereas β3-adrenoceptors and multidrug resistance-associated protein expression remained unchanged. Direct stimulation of adenylate cyclase with forskolin or administration of 3',5'-cyclic adenosine monophosphate suggests that subtle impairments also occurred beside the down-regulation of β1-adrenoceptor. The positive inotropic effect of β-adrenoceptor stimulation is slightly decreased in Zucker obese rats and was more markedly decreased in Zucker diabetic rats. These decreases are mainly related to β1-adrenoceptor down-regulation.

  5. Effects of Short Term Exposure of Atrazine on the Liver and Kidney of Normal and Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Dinesh Babu Jestadi

    2014-01-01

    Full Text Available The present study evaluates the effects of short term (15 days exposure of low dose (300 μg kg−1 of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine on antioxidant status and markers of liver and kidney damage in normal (nondiabetic and diabetic male Wistar rats. Rats were divided into four groups: Group I as normal control, Group II as atrazine treated, Group III as diabetic control, and Group IV as atrazine treated diabetic rats. Atrazine administration resulted in increased MDA concentration as well as increased activities of SOD, CAT, and GPx in both liver and kidney of atrazine treated and atrazine treated diabetic rats. However, GSH level was decreased in both liver and kidney of atrazine treated and atrazine treated diabetic rats. Atrazine administration led to significant increase in liver damage biomarkers such as AST, ALT, and ALP as well as kidney damage biomarkers such as creatinine and urea in both normal and diabetic rats, but this increase was more pronounced in diabetic rats when compared to normal rats. In conclusion, the results of the present study demonstrate that short term exposure of atrazine at a dose of 300 μg kg−1 could potentially induce oxidative damage in liver and kidney of both normal and diabetic rats.

  6. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose

    International Nuclear Information System (INIS)

    Craven, P.A.; DeRubertis, F.R.

    1989-01-01

    Glomerular inositol content and the turnover of polyphosphoinositides was reduced by 58% in 1-2 wk streptozotocin diabetic rats. Addition of inositol to the incubation medium increased polyphosphoinositide turnover in glomeruli from diabetic rats to control values. Despite the reduction in inositol content and polyphosphoinositide turnover, protein kinase C was activated in glomeruli from diabetic rats, as assessed by an increase in the percentage of enzyme activity associated with the particulate cell fraction. Total protein kinase C activity was not different between glomeruli from control and diabetic rats. Treatment of diabetic rats with insulin to achieve near euglycemia prevented the increase in particulate protein kinase C. Moreover, incubation of glomeruli from control rats with glucose (100-1,000 mg/dl) resulted in a progressive increase in labeled diacylglycerol production and in the percentage of protein kinase C activity which was associated with the particulate fraction. These results support a role for hyperglycemia per se in the enhanced state of activation of protein kinase C seen in glomeruli from diabetic rats. Glucose did not appear to increase diacylglycerol by stimulating inositol phospholipid hydrolysis in glomeruli. Other pathways for diacylglycerol production, including de novo synthesis and phospholipase C mediated hydrolysis of phosphatidylcholine or phosphatidyl-inositol-glycan are not excluded

  7. Evidence for diffuse central retinal edema in vivo in diabetic male Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Bruce A Berkowitz

    Full Text Available Investigations into the mechanism of diffuse retinal edema in diabetic subjects have been limited by a lack of animal models and techniques that co-localized retinal thickness and hydration in vivo. In this study we test the hypothesis that a previously reported supernormal central retinal thickness on MRI measured in experimental diabetic retinopathy in vivo represents a persistent and diffuse edema.In diabetic and age-matched control rats, and in rats experiencing dilutional hyponatremia (as a positive edema control, whole central retinal thickness, intraretinal water content and apparent diffusion coefficients (ADC, 'water mobility' were measured in vivo using quantitative MRI methods. Glycated hemoglobin and retinal thickness ex vivo (histology were also measured in control and diabetic groups. In the dilutional hyponatremia model, central retinal thickness and water content were supernormal by quantitative MRI, and intraretinal water mobility profiles changed in a manner consistent with intracellular edema. Groups of diabetic (2, 3, 4, 6, and 9 mo of diabetes, and age-matched controls were then investigated with MRI and all diabetic rats showed supernormal whole central retinal thickness. In a separate study in 4 mo diabetic rats (and controls, MRI retinal thickness and water content metrics were significantly greater than normal, and ADC was subnormal in the outer retina; the increase in retinal thickness was not detected histologically on sections of fixed and dehydrated retinas from these rats.Diabetic male Sprague Dawley rats demonstrate a persistent and diffuse retinal edema in vivo, providing, for the first time, an important model for investigating its pathogenesis and treatment. These studies also validate MRI as a powerful approach for investigating mechanisms of diabetic retinal edema in future experimental and clinical investigations.

  8. Effects of voluntary running exercise on bone histology in type 2 diabetic rats.

    Directory of Open Access Journals (Sweden)

    Yuri Takamine

    Full Text Available The incidence of obesity in children and adolescents, which may lead to type 2 diabetes, is increasing. Exercise is recommended to prevent and improve diabetes. However, little is known about the bone marrow environment at the onset of diabetes in the young, and it is unclear whether exercise training is useful for maintaining bone homeostasis, such as mechanical and histological properties. Thus, this study clarified the histological properties of bone and whether exercise contributes to maintaining bone homeostasis at the onset of type 2 diabetes in rats. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF; n = 21 rats as a diabetic model and Long-Evans Tokushima Otsuka (LETO; n = 18 rats as a control were assigned randomly to four groups: the OLETF sedentary group (O-Sed; n = 11, OLETF exercise group (O-Ex; n = 10, LETO sedentary group (L-Sed; n = 9, and LETO exercise group (L-Ex; n = 9. All rats in the exercise group were allowed free access to a steel running wheel for 20 weeks (5-25 weeks of age. In the glucose tolerance test, blood glucose level was higher in the O-Sed group than that in the L-Sed and L-Ex groups, and was markedly suppressed by the voluntary running exercise of O-Ex rats. The energy to fracture and the two-dimensional bone volume at 25 weeks of age did not differ significantly among the groups, though the maximum breaking force and stiffness were lower in OLETF rats. However, bone marrow fat volume was greater in O-Sed than that in L-Sed and L-Ex rats, and was markedly suppressed by wheel running in the O-Ex rats. Our results indicate that exercise has beneficial effects not only for preventing diabetes but also on normal bone remodeling at an early age.

  9. Effects of voluntary running exercise on bone histology in type 2 diabetic rats.

    Science.gov (United States)

    Takamine, Yuri; Ichinoseki-Sekine, Noriko; Tsuzuki, Takamasa; Yoshihara, Toshinori; Naito, Hisashi

    2018-01-01

    The incidence of obesity in children and adolescents, which may lead to type 2 diabetes, is increasing. Exercise is recommended to prevent and improve diabetes. However, little is known about the bone marrow environment at the onset of diabetes in the young, and it is unclear whether exercise training is useful for maintaining bone homeostasis, such as mechanical and histological properties. Thus, this study clarified the histological properties of bone and whether exercise contributes to maintaining bone homeostasis at the onset of type 2 diabetes in rats. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF; n = 21) rats as a diabetic model and Long-Evans Tokushima Otsuka (LETO; n = 18) rats as a control were assigned randomly to four groups: the OLETF sedentary group (O-Sed; n = 11), OLETF exercise group (O-Ex; n = 10), LETO sedentary group (L-Sed; n = 9), and LETO exercise group (L-Ex; n = 9). All rats in the exercise group were allowed free access to a steel running wheel for 20 weeks (5-25 weeks of age). In the glucose tolerance test, blood glucose level was higher in the O-Sed group than that in the L-Sed and L-Ex groups, and was markedly suppressed by the voluntary running exercise of O-Ex rats. The energy to fracture and the two-dimensional bone volume at 25 weeks of age did not differ significantly among the groups, though the maximum breaking force and stiffness were lower in OLETF rats. However, bone marrow fat volume was greater in O-Sed than that in L-Sed and L-Ex rats, and was markedly suppressed by wheel running in the O-Ex rats. Our results indicate that exercise has beneficial effects not only for preventing diabetes but also on normal bone remodeling at an early age.

  10. Use of unripe plantain (Musa paradisiaca) in the management of diabetes and hepatic dysfunction in streptozotocin induced diabetes in rats.

    Science.gov (United States)

    Eleazu, Chinedum O; Okafor, Polycarp

    2015-03-01

    This study aims to investigate the effect of unripe plantain (Musa paradisiaca) on markers of hepatic dysfunction in streptozotocin induced diabetic rats. Blood glucose; relative liver weight (RLW); relative kidney weight (RKW); relative heart weight (RHW); relative pancreatic weight (RPW); serum and hepatic serum aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP); serum amylase, lipase, total, and conjugated bilirubin; and chemical analysis of the test feed were determined using standard techniques. The diabetic rats had significant alteration (P 0.05) in the RHW of the rats in the three groups, as well as significant decreases (P 0.05) in the amylase levels of the rats fed unripe plantain compared with the nondiabetic rats. The test and standard rat feeds contained considerable amount of proteins, carbohydrates, fats, phenols, and crude fiber. Amelioration of acute pancreatitis by unripe plantain could play a key role in its management of diabetes and related complications.

  11. Effect of vitamin D3 on behavioural and biochemical parameters in diabetes type 1-induced rats.

    Science.gov (United States)

    Calgaroto, Nicéia Spanholi; Thomé, Gustavo Roberto; da Costa, Pauline; Baldissareli, Jucimara; Hussein, Fátima Abdala; Schmatz, Roberta; Rubin, Maribel A; Signor, Cristiane; Ribeiro, Daniela Aymone; Carvalho, Fabiano Barbosa; de Oliveira, Lizielle Souza; Pereira, Luciane Belmonte; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2014-08-01

    Diabetes is associated with long-term complications in the brain and reduced cognitive ability. Vitamin D3 (VD3 ) appears to be involved in the amelioration of hyperglycaemia in streptozotocin (STZ)-induced diabetic rats. Our aim was to analyse the potential of VD3 in avoiding brain damage through evaluation of acetylcholinesterase (AChE), Na(+) K(+) -adenosine triphosphatase (ATPase) and delta aminolevulinate dehydratase (δ-ALA-D) activities and thiobarbituric acid reactive substance (TBARS) levels from cerebral cortex, as well as memory in STZ-induced diabetic rats. Animals were divided into eight groups (n = 5): control/saline, control/metformin (Metf), control/VD3 , control/Metf + VD3 , diabetic/saline, diabetic/Metf, diabetic/VD3 and diabetic/Metf + VD3 . Thirty days after treatment, animals were submitted to contextual fear-conditioning and open-field behavioural tests, after which they were sacrificed and the cerebral cortex was dissected. Our results demonstrate a significant memory deficit, an increase in AChE activity and TBARS levels and a decrease in δ-ALA-D and Na(+) K(+) -ATPase activities in diabetic rats when compared with the controls. Treatment of diabetic rats with Metf and VD3 prevented the increase in AChE activity when compared with the diabetic/saline group. In treated diabetic rats, the decrease in Na(+) K(+) -ATPase was reverted when compared with non-treated rats, but the increase in δ-ALA-D activity was not. VD3 prevented diabetes-induced TBARS level and improved memory. Our results show that VD3 can avoid cognitive deficit through prevention of changes in important enzymes such as Na(+) K(+) -ATPase and AChE in cerebral cortex in type 1 diabetic rats. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Dynamic Aerobic Exercise Induces Baroreflex Improvement in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Luciana Jorge

    2012-01-01

    Full Text Available The objective of the present study was to investigate the effects of an acute aerobic exercise on arterial pressure (AP, heart rate (HR, and baroreflex sensitivity (BRS in STZ-induced diabetic rats. Male Wistar rats were divided into control (n=8 and diabetic (n=8 groups. AP, HR, and BRS, which were measured by tachycardic and bradycardic (BR responses to AP changes, were evaluated at rest (R and postexercise session (PE on a treadmill. At rest, STZ diabetes induced AP and HR reductions, associated with BR impairment. Attenuation in resting diabetes-induced AP (R: 103±2 versus PE: 111±3 mmHg and HR (R: 290±7 versus PE: 328±10 bpm reductions and BR dysfunction (R: -0.70±0.06 versus PE: -1.21±0.09 bpm/mmHg was observed in the postexercise period. In conclusion, the hemodynamic and arterial baro-mediated control of circulation improvement in the postexercise period reinforces the role of exercise in the management of cardiovascular risk in diabetes.

  13. Dynamic Aerobic Exercise Induces Baroreflex Improvement in Diabetic Rats

    Science.gov (United States)

    Jorge, Luciana; da Pureza, Demilto Y.; Dias, Danielle da Silva; Conti, Filipe Fernandes; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2012-01-01

    The objective of the present study was to investigate the effects of an acute aerobic exercise on arterial pressure (AP), heart rate (HR), and baroreflex sensitivity (BRS) in STZ-induced diabetic rats. Male Wistar rats were divided into control (n = 8) and diabetic (n = 8) groups. AP, HR, and BRS, which were measured by tachycardic and bradycardic (BR) responses to AP changes, were evaluated at rest (R) and postexercise session (PE) on a treadmill. At rest, STZ diabetes induced AP and HR reductions, associated with BR impairment. Attenuation in resting diabetes-induced AP (R: 103 ± 2 versus PE: 111 ± 3 mmHg) and HR (R: 290 ± 7 versus PE: 328 ± 10 bpm) reductions and BR dysfunction (R: −0.70 ± 0.06 versus PE: −1.21 ± 0.09 bpm/mmHg) was observed in the postexercise period. In conclusion, the hemodynamic and arterial baro-mediated control of circulation improvement in the postexercise period reinforces the role of exercise in the management of cardiovascular risk in diabetes. PMID:22203833

  14. Effect of guava (Psidium guajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats.

    Science.gov (United States)

    Shen, Szu-Chuan; Cheng, Fang-Chi; Wu, Ning-Jung

    2008-11-01

    This study investigated the effect of aqueous and ethanol soluble solid extracts of guava (Psidium guajava Linn.) leaves on hypoglycemia and glucose metabolism in type 2 diabetic rats. Low-dose streptozotocin (STZ) and nicotinamide were injected into Sprague-Dawley (SD) rats to induce type 2 diabetes. Acute and long-term feeding tests were carried out, and an oral glucose tolerance test (OGTT) to follow the changes in plasma glucose and insulin levels was performed to evaluate the antihyperglycemic effect of guava leaf extracts in diabetic rats.The results of acute and long-term feeding tests showed a significant reduction in the blood sugar level in diabetic rats fed with either the aqueous or ethanol extract of guava leaves (p guava leaf extracts increased the plasma insulin level and glucose utilization in diabetic rats. The results also indicated that the activities of hepatic hexokinase, phosphofructokinase and glucose-6-phosphate dehydrogenase in diabetic rats fed with aqueous extracts were higher than in the normal diabetic group (p guava leaf extract and the health function of guava leaves against type 2 diabetes.

  15. The effect of Resveratrol flavonoid on learning and memory in passive avoidance and Y maze in diabetic rat

    Directory of Open Access Journals (Sweden)

    Sima Nasri

    2014-04-01

    Full Text Available Background: Diabetes type I is accompanied with disturbances in cognitive skills, memory and learning. In this research, we evaluated the effect of resveratrol chronic treatment on learning and memory in diabetic male rats. Material and Methods: Rats were divided into 4 groups: control, resveratrol-treated control, diabetic and resveratrol-treated diabetic groups. We used streptozotosin for inducing diabetes. Resveratrol (10mg/kg I.p. was administered for 8 weeks. For evaluation of learning and memory, passive avoidance test and Y-maze task were used. For Statistical analysis, SPSS software and paired T-test and one-way ANOVA were used. Results: Resveratrol decreased serum glucose in diabetic rats (P<0.01. In passive avoidance learning, there wasn’t any significant difference in initial latency between diabetic and treated- diabetic group. Also, a significant decrease of step latency was observed in diabetic and treated diabetic rats (P<0.01. In Y maze, Resveratrol improved alternation percentage in diabetic rats. Conclusion: Probably due to different mechanism of long term and short term memory, long term resveratrol treatment didn’t improve memory and learning in passive avoidance learning. In Y maze, method for determining the spatial memory, resveratrol improved spatial memory in diabetic rats. Resveratrol not only regulates glucose in diabetic rats but also it improves short term memory.

  16. Prevention of diabetes: effect of mycophenolate mofetil and anti-CD25 on onset of diabetes in the DRBB rat.

    Science.gov (United States)

    Ugrasbul, Figen; Moore, Wayne V; Tong, Pei Ying; Kover, Karen L

    2008-12-01

    Anti-CD25 and mycophenolate mofetil (MMF) treatment of patients with new-onset diabetes is currently being tested as one of the trials in TrialNet. We tested the effectiveness of MMF and anti-CD25 in preventing autoimmune diabetes in the diabetes-resistant biobreeding (DRBB) rat. Autoimmune diabetes in the DRBB rat was induced with a Treg cell depletion regimen starting at 24-26 d of age. Treatment was started on the first day of the depletion regimen in the following groups: (i) control (vehicle); (ii) MMF 25 mg/kg/d intramuscularly daily for 8 wk; (iii) anti-CD25 0.8 mg/kg/d intraperitoneally 5 d/wk for 3 wk; and (iv) combination of MMF and anti-CD25. In a second set of experiments, treatments were started on day 5 of the depletion regimen (delayed treatment) with groups 1, 3, and 4. Rats that had diabetes-free survival for at least 30 d after the treatment was stopped underwent a second Treg depletion (redepletion). In each of the three treatment groups (n = 10/group), onset of diabetes was delayed or prevented in 20, 40 and 80% in groups 2, 3, and 4, respectively. After redepletion, diabetes-free survival was unchanged in group 2 and decreased to 10 and 30% in groups 3 and 4, respectively. With delayed treatment, groups 3 and 4 had 33 and 50% diabetes-free survival that decreased to 0 and 33% after redepletion. MMF and anti-CD25 alone or in combination are effective in delaying and preventing diabetes in the DRBB rat especially if treatment is started before stimulation and expansion of the autoreactive T cells.

  17. Tracing Fasting Glucose Fluxes with Unstressed Catheter Approach in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Shichun Du

    2014-01-01

    Full Text Available Objective. Blood glucose concentrations of type 1 diabetic rats are vulnerable, especially to stress and trauma. The present study aimed to investigate the fasting endogenous glucose production and skeletal muscle glucose uptake of Streptozotocin induced type 1 diabetic rats using an unstressed vein and artery implantation of catheters at the tails of the rats as a platform. Research Design and Methods. Streptozotocin (65 mg·kg−1 was administered to induce type 1 diabetic state. The unstressed approach of catheters of vein and artery at the tails of the rats was established before the isotope tracer injection. Dynamic measurement of fasting endogenous glucose production was assessed by continuously infusing stable isotope [6, 6-2H2] glucose, while skeletal muscle glucose uptake by bolus injecting radioactively labeled [1-14C]-2-deoxy-glucose. Results. Streptozotocin induced type 1 diabetic rats displayed polydipsia, polyphagia, and polyuria along with overt hyperglycemia and hypoinsulinemia. They also had enhanced fasting endogenous glucose production and reduced glucose uptake in skeletal muscle compared to nondiabetic rats. Conclusions. The dual catheters implantation at the tails of the rats together with isotope tracers injection is a save time, unstressed, and feasible approach to explore the glucose metabolism in animal models in vivo.

  18. Vascular filtration function in galactose-fed versus diabetic rats: The role of polyol pathway activity

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G.; Tilton, R.G.; Speedy, A.; Chang, K.; Province, M.A.; Kilo, C.; Williamson, J.R. (Washington Univ. School of Medicine, St Louis, MO (USA))

    1990-07-01

    These studies were undertaken to assess the effects of increased galactose (v increased glucose) metabolism via the polyol pathway on vascular filtration function in the kidneys, eyes, nerves, and aorta. Quantitative radiolabeled tracer techniques were used to assess glomerular filtration rate (GFR) and regional tissue vascular clearance of plasma 131I-bovine serum albumin (BSA) in five groups of male Sprague-Dawley rats: nondiabetic controls, streptozotocin-diabetic rats, nondiabetic rats fed a 50% galactose diet, diabetic rats treated with sorbinil (an aldose reductase inhibitor), and galactose-fed rats treated with sorbinil. Sorbinil was added to the diet to provide a daily dose of approximately .2 mmol/kg body weight. After 2 months of diabetes or galactose ingestion, albumin clearance was increased twofold to fourfold in the eye (anterior uvea, choroid, and retina), sciatic nerve, aorta, and kidney; GFR was increased approximately twofold and urinary excretion of endogenous albumin and IgG were increased approximately 10-fold. Sorbinil treatment markedly reduced or completely prevented all of these changes in galactose-fed, as well as in diabetic rats. These observations support the hypothesis that increased metabolism of glucose via the sorbitol pathway is of central importance in mediating virtually all of the early changes in vascular filtration function associated with diabetes in the kidney, as well as in the eyes, nerves, and aorta. On the other hand, renal hypertrophy in diabetic rats and polyuria, hyperphagia, and impaired weight gain in galactose-fed and in diabetic rats were unaffected by sorbinil and therefore are unlikely to be mediated by increased polyol metabolism.

  19. Vascular filtration function in galactose-fed versus diabetic rats: The role of polyol pathway activity

    International Nuclear Information System (INIS)

    Pugliese, G.; Tilton, R.G.; Speedy, A.; Chang, K.; Province, M.A.; Kilo, C.; Williamson, J.R.

    1990-01-01

    These studies were undertaken to assess the effects of increased galactose (v increased glucose) metabolism via the polyol pathway on vascular filtration function in the kidneys, eyes, nerves, and aorta. Quantitative radiolabeled tracer techniques were used to assess glomerular filtration rate (GFR) and regional tissue vascular clearance of plasma 131I-bovine serum albumin (BSA) in five groups of male Sprague-Dawley rats: nondiabetic controls, streptozotocin-diabetic rats, nondiabetic rats fed a 50% galactose diet, diabetic rats treated with sorbinil (an aldose reductase inhibitor), and galactose-fed rats treated with sorbinil. Sorbinil was added to the diet to provide a daily dose of approximately .2 mmol/kg body weight. After 2 months of diabetes or galactose ingestion, albumin clearance was increased twofold to fourfold in the eye (anterior uvea, choroid, and retina), sciatic nerve, aorta, and kidney; GFR was increased approximately twofold and urinary excretion of endogenous albumin and IgG were increased approximately 10-fold. Sorbinil treatment markedly reduced or completely prevented all of these changes in galactose-fed, as well as in diabetic rats. These observations support the hypothesis that increased metabolism of glucose via the sorbitol pathway is of central importance in mediating virtually all of the early changes in vascular filtration function associated with diabetes in the kidney, as well as in the eyes, nerves, and aorta. On the other hand, renal hypertrophy in diabetic rats and polyuria, hyperphagia, and impaired weight gain in galactose-fed and in diabetic rats were unaffected by sorbinil and therefore are unlikely to be mediated by increased polyol metabolism

  20. The potential role of IGF-I receptor mRNA in rats with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    匡洪宇; 邹伟; 刘丹; 史榕荇; 程丽华; 殷慧清; 刘晓民

    2003-01-01

    Objective To evaluate the potential role of insulin-like growth factor-1 receptor mRNA(IGF-IR mRNA) in the onset and development of retinopathy in diabetic rats.Methods A diabetic model was duplicated in Wistar rats. The early changes in the retina were examined using light and transmission electron microscopy. Expression of IGF-IR mRNA was analyzed using in situ hybridization.Results Weak expression of IGF-IR mRNA(5%) was found in retinas of normal rats, but was significantly increased (15% and 18%) in the retinas of diabetic rats after 3 and 6 months of diabetes (P<0.01). In situ hybridization and morphological study demonstrated that there was a positive correlation between IGF-IR mRNA expression and retinal changes at various stages.Conclusion Increased IGF-IR mRNA might play an important role in the onset and development of diabetic retinopathy.

  1. Long-term effects of duodenojejunal bypass on diabetes in Otsuka Long–Evans Tokushima Fatty rats

    Directory of Open Access Journals (Sweden)

    Sang Kuon Lee

    2017-07-01

    Conclusions: We have shown that DJB alone does not improve glucose tolerance in obese, diabetic OLETF rats. Therefore, it may be that DJB alone is insufficient for diabetic control in obese diabetic rats. The addition of a restrictive component such as sleeve gastrectomy, or a new drug may be necessary for achieving diabetes reversal.

  2. Beneficial Effect of Leptin on Spatial Learning and Memory in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohsen Ghasemi

    2016-02-01

    Full Text Available Background: Diabetes mellitus is a chronic disease which may be accompanied by cognitive impairments. The expression of the obesity gene (ob is decreased in insulin-deficient diabetic animals and increased after the administration of insulin or leptin. Plasma leptin levels are reduced in the streptozotocin (STZ-induced diabetic rats. Therefore, the deleterious effects of diabetes on memory may be due to the reduction of leptin. Aims: Investigate the effect of subcutaneous injection of leptin on spatial learning and memory in STZ-induced diabetic rats. Study Design: Animal experimentation. Methods: The rats were divided into three groups: 1- control, 2- diabetic, and 3- diabetic-leptin. Diabetes was induced in groups 2 and 3 by STZ injection (55 mg/kg intraperitoneally (i.p. The animals received leptin (0.1 mg/kg or saline subcutaneously (s.c for 10 days before behavioral studies. Then, they were examined in the Morris water maze over 3 blocks after 3 days of the last injection of leptin. Results: The travelled path length and time spent to reach the platform significantly increased in the diabetic group (p<0.001 and decreased with leptin treatment (p<0.01 & p<0.001 respectively; also, a significant increase in path length and time was observed between the diabetic-leptin group and the diabetic group (p<0.01, p<0.001, respectively in the probe test. Conclusion: Leptin can exert positive effects on memory impairments in diabetic rats.

  3. Serum glucose and lipid levels in alloxan-induced diabetic rats ...

    African Journals Online (AJOL)

    Effect of Aloe barbadensis Miller juice extract on serum glucose and lipids in alloxan-induced diabetic rats was investigated. Diabetes was induced by intraperitoneal injection of 150mg/kg alloxan in 5% solution. Diabetes was confirmed 72 hours after alloxan injection, if fasting blood glucose (FBG) was equal to or greater ...

  4. Effects of insulin combined with idebenone on blood-brain barrier permeability in diabetic rats.

    Science.gov (United States)

    Sun, Yan-Na; Liu, Li-Bo; Xue, Yi-Xue; Wang, Ping

    2015-04-01

    This study investigates the effect of insulin combined with idebenone on blood-brain barrier (BBB) permeability in experimental streptozotocin-induced diabetic rats as well as the underlying mechanisms. With a diabetic rat model, we show that insulin and idebenone normalize body weight and water intake and restore BBB permeability and that their combination displays a synergistic effect. The results from transmission electron microscopy show that the combination of insulin and idebenone significantly closed the tight junction (TJ) in diabetic rats. The results from Western blotting in diabetic rats show that the upregulation of TJ-associated proteins occludin, and zonula occludens (ZO)-1 caused by the combination of insulin and idebenone is more remarkable than that with either agent alone. In addition, the activations of reactive oxygen species (ROS) and advanced glycation end products (AGEs) and the expression levels of receptors for advanced glycation end-products (RAGE) and nuclear factor-κB (NF-κB) were significantly decreased after treatment with insulin and idebenone in diabetic rats. These results suggest that the combination of insulin and idebenone could decrease the BBB permeability in diabetic rats by upregulating the expression of occludin, claudin-5, and ZO-1 and that the ROS/AGE/RAGE/NF-κB signal pathway might be involved in the process. © 2014 Wiley Periodicals, Inc.

  5. [Changes in the innervation of the taste buds in diabetic rats].

    Science.gov (United States)

    Hevér, Helén; Altdorfer, Károly; Zelles, Tivadar; Batbayar, Bayarchimeg; Fehér, Erzsébet

    2013-03-24

    Abnormal sensations such as pain and impairment of taste are symptoms of approximately 10% of patients having diabetes mellitus. The aim of the study was to investigate and quantify the different neuropeptide containing nerve fibres in the vallate papilla of the diabetic rat. Immunohistochemical methods were used to study the changes of the number of different neuropeptide containing nerve terminals located in the vallate papillae in diabetic rats. Diabetes was induced in the rats with streptozotocin. Two weeks after streptozotocin treatment the number of the substance P, galanin, vasoactive intestinal polypeptide and neuropeptide Y immunoreactive nerve terminals was significantly increased (ptaste cells were immunoreactive for any of the investigated peptides. Vasoactive intestinal polypeptide and neuropeptide Y immunoreactive nerve fibres were not detected in the taste buds. For weeks after streptozotocin administration the number of the substance P, calcitonin gene related peptide and galanin immunoreactive nerve terminals was decreased both intragemmally and intergemmally. In case of immediate insulin treatment, the number of the immunoreactive nerve terminals was similar to that of the controls, however, insulin treatment given 1 week later to diabetic rats produced a decreased number of nerve fibers. Morphometry revealed no significant difference in papilla size between the control and diabetic groups, but there were fewer taste buds (per papilla). Increased number of immunoreactive nerve terminals and mast cells 2 weeks after the development of diabetes was the consequence of neurogenic inflammation which might cause vasoconstriction and lesions of the oral mucosa. Taste impairment, which developed 4 weeks after streptozotocin treatment could be caused by neuropathic defects and degeneration or morphological changes in the taste buds and nerve fibres.

  6. Topical fentanyl stimulates healing of ischemic wounds in diabetic rats

    Science.gov (United States)

    FAROOQUI, Mariya; ERICSON, Marna E; GUPTA, Kalpna

    2016-01-01

    Background Topically applied opioids promote angiogenesis and healing of ischemic wounds in rats. We examined if topical fentanyl stimulates wound healing in diabetic rats by stimulating growth-promoting signaling, angiogenesis, lymphangiogenesis and nerve regeneration. Methods We used Zucker diabetic fatty rats that develop obesity and diabetes on a high fat diet due to a mutation in the Leptin receptor. Fentanyl blended with hydrocream was applied topically on ischemic wounds twice daily, and wound closure was analyzed regularly. Wound histology was analyzed by hematoxylin and eosin staining. Angiogenesis, lymphangiogenesis, nerve fibers and phospho-PDGFR-β were visualized by CD31-, lymphatic vessel endothelium-1, protein gene product 9.5- and anti-phospho PDGFR-β-immunoreactivity, respectively. Nitric oxide synthase (NOS) and PDGFR-β signaling were analyzed using Western immunoblotting. Results Fentanyl significantly promoted wound closure as compared to PBS. Histology scores were significantly higher in fentanyl-treated wounds, indicative of increased granulation tissue formation, reduced edema and inflammation, and increased matrix deposition. Fentanyl treatment resulted in increased wound angiogenesis, lymphatic vasculature, nerve fibers, nitric oxide, NOS and PDGFR-β signaling as compared to PBS. Phospho PDGFR-β co-localized with CD31 co-staining for vasculature. Conclusions Topically applied fentanyl promotes closure of ischemic wounds in diabetic rats. Increased angiogenesis, lymphangiogenesis, peripheral nerve regeneration, NO and PDGFR-β signaling are associated with fentanyl-induced tissue remodeling and wound healing. PMID:25266258

  7. Abnormal levels of histone methylation in the retinas of diabetic rats are reversed by minocycline treatment

    DEFF Research Database (Denmark)

    Wang, Wenjun; Sidoli, Simone; Zhang, Wenquan

    2017-01-01

    67% of these marks had their relative abundance restored to non-diabetic levels after minocycline treatment. Mono-and di-methylation states of histone H4 lysine 20 (H4K20me1/me2), markers related to DNA damage response, were found to be up-regulated in the retinas of diabetic rats and restored......In this study we quantified the alterations of retinal histone post-translational modifications (PTMs) in diabetic rats using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. Some diabetic rats were subsequently treated with minocycline, a tetracycline antibiotic, which has...... been shown to inhibit the diabetes-induced chronic inflammation in the retinas of rodents. We quantified 266 differentially modified histone peptides, including 48 out of 83 methylation marks with significantly different abundancein retinas of diabetic rats as compared to non-diabetic controls. About...

  8. Anti-diabetic activity of crude Pistacia lentiscus in alloxan-induced diabetes in rats

    Directory of Open Access Journals (Sweden)

    Muhammad Saad Ur Rehman

    2015-08-01

    Full Text Available The purpose of this study was to investigate the anti-diabetic effect of crude Pistacia lentiscus gum (mastic gum in alloxan-treated diabetic rat model. The crude P. lentiscus (100 mg/kg showed significant (p<0.001 reduction in blood glucose as compared to control. Liver function test also showed significant changes (p<0.001 as compared to alloxan-treated group. The results of this study showed that crude P. lentiscus gum have considerable efficacy in curing diabetes and have hepatoprotective effect.

  9. Suramin-restricted blood volume in the placenta of normal and diabetic rats is normalized by vitamin E treatment.

    Science.gov (United States)

    Nash, P; Eriksson, U J

    2007-01-01

    Previously maternal and fetal alterations resembling human pre-eclampsia were induced in pregnant rats by injections of the angiogenesis inhibitor Suramin. These alterations were aggravated by maternal diabetes and partly rectified by vitamin E supplementation. In the present study we evaluated the morphology of placentae and kidneys in this model. Non-diabetic and streptozotocin-induced diabetic pregnant rats of two rat strains (U and H) were treated with Suramin or saline, and given standard or vitamin E-enriched food. On gestational day 20 one placenta and the left kidney of the mother were collected for morphological and stereological analysis. In the placental trophospongium Suramin treatment caused cysts, which were further enhanced by maternal diabetes. Vitamin E treatment had no effect on the vacuolization. In the placental labyrinth of the non-diabetic rats Suramin treatment restricted maternal placental blood volume and increased the interface between maternal and fetal circulation. These changes were reversed by vitamin E treatment. Diabetes increased slightly the interface between the circulations in both rat strains. Suramin treatment decreased the interface, and vitamin E further decreased the interface in the diabetic U rats, whereas neither treatment affected the maternal-fetal interface in the diabetic H rats. The kidneys of Suramin-treated and diabetic rats were heavier compared to controls. Suramin treatment and maternal diabetes damaged renal glomeruli to a similar extent. Vitamin E treatment diminished the Suramin- and diabetes-induced glomerular damage in U rats, but not in H rats. The average cell count per glomerulus was decreased by Suramin in the U rats. Vitamin E treatment did not affect cell number per glomerulus in any group. We conclude that Suramin-injected pregnant rats constitute a valid animal model for placental dysfunction and pre-eclampsia, also from the histological perspective. The present work supports the notion that one

  10. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats.

    Science.gov (United States)

    Abdel-Moneim, Adel; Yousef, Ahmed I; Abd El-Twab, Sanaa M; Abdel Reheim, Eman S; Ashour, Mohamed B

    2017-08-01

    The brain of diabetics revealed deterioration in many regions, especially the hippocampus. Hence, the present study aimed to evaluate the effects of gallic acid and p-coumaric acid against the hippocampal neurodegeneration in type 2 diabetic rats. Adult male albino rats were randomly allocated into four groups: Group 1 served as control ones and others were induced with diabetes. Group 2 considered as diabetic, and groups 3 and 4 were further orally treated with gallic acid (20 mg/kg b.wt./day) and p-coumaric acid (40 mg/kg b.wt./day) for six weeks. Diabetic rats revealed significant elevation in the levels of serum glucose, blood glycosylated hemoglobin and serum tumor necrosis factor-α, while the level of serum insulin was significantly declined. Furthermore, the brain of diabetic rats showed a marked increase in oxidative stress and a decrease of antioxidant parameters as well as upregulation the protein expression of Bax and downregulation the protein expression of Bcl-2 in the hippocampus. Treatment of diabetic rats with gallic acid and p-coumaric acid significantly ameliorated glucose tolerance, diminished the brain oxidative stress and improved antioxidant status, declined inflammation and inhibited apoptosis in the hippocampus. The overall results suggested that gallic acid and p-coumaric acid may inhibit hippocampal neurodegeneration via their potent antioxidant, anti-inflammatory and anti-apoptotic properties. Therefore, both compounds can be recommended as hopeful adjuvant agents against brain neurodegeneration in diabetics.

  11. Experimental treatment of diabetic mice with microencapsulated rat islet cells transplantation

    International Nuclear Information System (INIS)

    Luo Yun; Xue Yilong; Li Yanling; Li Xinjian

    2006-01-01

    To observe treatment effects of diabetic mice with microcapsulated and non-microcapsulated rat islet cell transplantation, pancreas of SD rat was perfused with collagenase through cloledchus, and then the pancreatic tissues were isolated and digested. Histopaque-1077 was used to purify the digested pancreas. Islet cells were collected and implanted into the peritoneal cavity of diabetic mice. The isolated islets had a response upon glucose stimulation. When the microcapsulated islets and non- microcapsulated islets were transplanted into diabetic mices the high blood glucose level could be decreased to normal. The normal blood glucose level in the diabetic mice transpanted with microcapsulated islets could be maintained for over 30 days,but it could be mainlained only for 2-3 days in the diabetic mice transplanted with non-microcapsulated islets. Thus it is believed that microcapsulated islet cell transplantation exerts good effect on diabetic mice and the microcapsules possessed good immunoisolating function. (authors)

  12. Dexmedetomidine protects from post-myocardial ischaemia reperfusion lung damage in diabetic rats

    Science.gov (United States)

    Kip, Gülay; Çelik, Ali; Bilge, Mustafa; Alkan, Metin; Kiraz, Hasan Ali; Özer, Abdullah; Şıvgın, Volkan; Erdem, Özlem; Arslan, Mustafa; Kavutçu, Mustafa

    2015-01-01

    Objective Diabetic complications and lipid peroxidation are known to have a close association. Lipid peroxidation commonly occurs at sites exposed to ischaemia, but distant organs and tissues also get damaged during ischaemia/reperfusion (I/R). Some of these targets are vital organs, such as the lung, liver, and kidney; the lung is the most frequently affected. The aim of our study was to investigate the effects of dexmedetomidine on I/R damage in lung tissue and on the oxidant/anti-oxidant system in diabetic rats. Material and methods Diabetes was induced with streptozotocin (55 mg/kg) in 18 Wistar Albino rats, which were then randomly divided into three groups (diabetes control (DC), diabetes plus ischaemia-reperfusion (DIR), and diabetes plus dexmedetomidine-ischaemia/reperfusion (DIRD)) after the effects of diabetes were clearly evident. The rats underwent a left thoracotomy and then ischaemia was produced in the myocardium muscle by a left anterior descending artery ligation for 30 min in the DIR and DIRD groups. I/R was performed for 120 min. The DIRD group received a single intraperitoneal dose of dexmedetomidine (100 µg/kg); the DIR group received no dexmedetomidine. Group DC was evaluated as the diabetic control group and also included six rats (C group) in which diabetes was not induced. These mice underwent only left thoracotomy and were closed without undergoing myocardial ischaemia. Histopathological changes, activities of catalase (CAT) and glutathione-S-transferase anti-oxidant enzymes, and malondialdehyde (MDA) levels were evaluated in the lung tissues of all rats. Results Neutrophil infiltration/aggregation was higher in the DIR group than in the C, DC, and DIRD groups (p=0.001, p=0.013, and p=0.042, respectively). The lung injury score was significantly higher in the DIR group than in the C and DC groups (p<0.0001 and p=0.024, respectively). The levels of MDA were significantly higher in the DIR group than in the C and DIRD groups. CAT activity

  13. Dexmedetomidine protects from post-myocardial ischaemia reperfusion lung damage in diabetic rats

    Directory of Open Access Journals (Sweden)

    Gülay Kip

    2015-09-01

    Full Text Available Objective: Diabetic complications and lipid peroxidation are known to have a close association. Lipid peroxidation commonly occurs at sites exposed to ischaemia, but distant organs and tissues also get damaged during ischaemia/reperfusion (I/R. Some of these targets are vital organs, such as the lung, liver, and kidney; the lung is the most frequently affected. The aim of our study was to investigate the effects of dexmedetomidine on I/R damage in lung tissue and on the oxidant/anti-oxidant system in diabetic rats. Material and methods: Diabetes was induced with streptozotocin (55 mg/kg in 18 Wistar Albino rats, which were then randomly divided into three groups (diabetes control (DC, diabetes plus ischaemia-reperfusion (DIR, and diabetes plus dexmedetomidine-ischaemia/reperfusion (DIRD after the effects of diabetes were clearly evident. The rats underwent a left thoracotomy and then ischaemia was produced in the myocardium muscle by a left anterior descending artery ligation for 30 min in the DIR and DIRD groups. I/R was performed for 120 min. The DIRD group received a single intraperitoneal dose of dexmedetomidine (100 µg/kg; the DIR group received no dexmedetomidine. Group DC was evaluated as the diabetic control group and also included six rats (C group in which diabetes was not induced. These mice underwent only left thoracotomy and were closed without undergoing myocardial ischaemia. Histopathological changes, activities of catalase (CAT and glutathione-S-transferase anti-oxidant enzymes, and malondialdehyde (MDA levels were evaluated in the lung tissues of all rats. Results: Neutrophil infiltration/aggregation was higher in the DIR group than in the C, DC, and DIRD groups (p=0.001, p=0.013, and p=0.042, respectively. The lung injury score was significantly higher in the DIR group than in the C and DC groups (p<0.0001 and p=0.024, respectively. The levels of MDA were significantly higher in the DIR group than in the C and DIRD groups. CAT

  14. Antioxidative and hypolipidemic efficacy of alcoholic seed extract of Swietenia macrophylla in streptozotocin diabetic rats.

    Science.gov (United States)

    Kalpana, Kalaivanan; Pugalendi, Kodukkur Viswanathan

    2011-06-17

    The present study was designed to examine the antioxidative potential and antihyperlipidemic activity of Swietenia macrophylla in streptozotocin diabetic rats. The experimental groups were rendered diabetic by intraperitoneal injection of a single dose of streptozotocin (STZ; 40 mg/kg body weight, BW). Rats with glucose levels >200 mg/dL were considered diabetic and were divided into five groups. Three groups of diabetic animals were orally administered daily with seed extract (SME) at a dosage of 50, 100 and 200 mg/kg BW. One group of STZ rats was treated as diabetic control and another group orally administered 600 μg/kg BW glibenclamide daily. Repeated daily oral administration of S. macrophylla significantly reduced blood glucose levels after 45 days of treatment. The lipid peroxidation products such as thiobarbituric acid reactive substances and lipid hydroperoxides of SME treated rats decreased in the plasma, liver and kidney. Glutathione peroxidase, superoxide dismutase and catalase activity were significantly increased in SME treated rats. Antioxidants such as reduced glutathione level in the plasma, liver and kidney and vitamins C and E levels in the plasma increased in SME treated rats. Total cholesterol, triglycerides, phospholipids and free fatty acids and lipoproteins levels increased. Altered lipid profile of treated rats lead to normality with treatment of S. macrophylla. Thus, our results indicate that the administration of 100 mg/kg BW SME restores near normal blood glucose, redox status and lipid profile in STZ-diabetic rats.

  15. Evaluation of toxicity after one-months treatment with Bauhinia forficata decoction in streptozotocin-induced diabetic rats

    Science.gov (United States)

    Pepato, Maria Teresa; Baviera, Amanda Martins; Vendramini, Regina Célia; Brunetti, Iguatemy Lourenço

    2004-01-01

    Background Previous experiments have shown that a decoction of Bauhinia forficata leaves reduces the changes in carbohydrate and protein metabolism that occur in rats with streptozotocin-induced diabetes. In the present investigation, the serum activities of enzymes known to be reliable toxicity markers were monitored in normal and streptozotocin-diabetic rats to discover whether the use of B. forficata decoction has toxic effects on liver, muscle or pancreas tissue or on renal microcirculation. Methods An experimental group of normal and streptozotocin-diabetic rats received an aqueous decoction of fresh B. forficata leaves (150 g/L) by mouth for 33 days while a control group of normal and diabetic rats received water for the same length of time. The serum activity of the toxicity markers lactate dehydrogenase, creatine kinase, amylase, angiotensin-converting enzyme and bilirubin were assayed before receiving B. forficata decoction and on day 19 and 33 of treatment. Results The toxicity markers in normal and diabetic rats were not altered by the diabetes itself nor by treatment with decoction. Whether or not they received B. forficata decoction the normal rats showed a significant increase in serum amylase activity during the experimental period while there was a tendency for the diabetic rats, both treated and untreated with decoction, to have lower serum amylase activities than the normal rats. Conclusions Administration of an aqueous decoction of B. forficata is a potential treatment for diabetes and does not produce toxic effects measurable with the enzyme markers used in our study. PMID:15186500

  16. The effect of low dose radiation on the neuronal cell proliferation in diabetic rats

    International Nuclear Information System (INIS)

    Kim, Doo Soon; Kang, Jin Oh; Hong, Seong Eon; Kim, Sang Ki; Lee, Taeck Hyun; Kim, Chang Ju

    2005-01-01

    To investigate the effect of low dose radiation on neuronal cell proliferation in diabetic rats. A group of rats (first group) were divided into three subgroups (nondiabetic control, nondiabetic 0.1 Gy and nondiabetic 10 Gy groups) to determine the effect of radiation on normal hippocampal neuronal cell proliferation. A further group of rats (second group) were divided into six subgroups (nondiabetic control, diabetic control, diabetic 0.01 Gy, diabetic 0.1 Gy, diabetic 1 Gy and diabetic 10 Gy groups) to determine the effect of radiation on hippocampal neuronal cell proliferation under diabetic conditions. Using immunohistochemistry for 5-bromo-2'-deoxyuridine (BrdU), the number of neuronal cells in the dentate gyrus of all the groups was counted. The number of BrdU-positive cells in the dentate Gyrus of the nondiabetic control, nondiabetic 0.1 Gy and nondiabetic 10 Gy subgroups of the first group were 45.96 ± 3.42, 59.34 ± 5.20 and 19.26 ± 2.98/mm 2 , respectively. The number of BrdU-positive cells in the dentate gyrus of the diabetic control, diabetic 0.01 Gy, diabetic 0.1 Gy, diabetic 1 Gy and diabetic 10 Gy subgroups of the second group were 55.44 ± 8.57, 33.33 ±6.46, 67.75 ± 10.54, 66.63 ± 10.05, 23.59 ± 6.37 and 14.34± 7.22/mm 2 , respectively. Low dose radiation enhances cell proliferation in the dentate gyrus of STZ-induced diabetic rats

  17. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Cheng, Xing; Xia, Zhengyuan; Leo, Joyce M; Pang, Catherine C Y

    2005-09-05

    We examined if myocardial depression at the acute phase of diabetes (3 weeks after injection of streptozotocin, 60 mg/kg i.v.) is due to activation of inducible nitric oxide synthase and production of peroxynitrite, and if treatment with N-acetylcysteine (1.2 g/day/kg for 3 weeks, antioxidant) improves cardiac function. Four groups of rats were used: control, N-acetylcysteine-treated control, diabetic and N-acetylcysteine-treated diabetic. Pentobarbital-anaesthetized diabetic rats, relative to the controls, had reduced left ventricular contractility to dobutamine (1-57 microg/min/kg). The diabetic rats also had increased myocardial levels of thiobarbituric acid reactive substances, immunostaining of inducible nitric oxide synthase and nitrotyrosine, and similar baseline 15-F2t-isoprostane. N-acetylcysteine did not affect responses in the control rats; but increased cardiac contractility to dobutamine, reduced myocardial immunostaining of inducible nitric oxide synthase and nitrotyrosine and level of 15-F2t-isoprostane, and increased cardiac contractility to dobutamine in the diabetic rats. Antioxidant supplementation in diabetes reduces oxidative stress and improves cardiac function.

  18. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Luciane B. Ceretta

    2012-01-01

    Full Text Available Diabetes Mellitus (DM is associated with pathological changes in the central nervous system (SNC as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150 mg/kg, and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD, and catalase (CAT were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals’ recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes.

  19. Effects of benazepril on cardiac fibrosis in STZ-induced diabetic rats.

    Science.gov (United States)

    Li, Qian; Wang, Yi; Sun, Shu-zhen; Tian, Yong-jie; Liu, Ming-hua

    2010-08-01

    The present study was designed to explore the roles of MMP-2/TIMP-2 in cardiac fibrosis and to study the effects of benazepril, an angiotensin-converting enzyme inhibitor (ACEI) on cardiac remodelling in streptozotocin(STZ)-induced diabetic rats. Male Wistar rats were randomly divided into three groups: a normal control group (NC), a diabetes mellitus-untreated group (DM) and a diabetes mellitus benazepril-treated group (DB). Diabetes mellitus was induced in the DM and DB groups by intraperitoneal injection of streptozotocin (60 mg/kg). DB rats were treated with benazepril 10 mg/kg/day for 12 weeks by remedial perfusing of the stomach. In the DM group, compared with the NC group, the gene and protein expression of MMP-2 decreased while the TIMP-2 gene and protein expression increased in heart tissues, along with a markedly cardiac collagen deposition.All the above changes were attenuated by benazepril treatment in the DB group. The imbalance of MMP-2 and TIMP-2 expressions in heart tissues might participate in interstitial fibrosis in diabetic myocardiopathy. Benazepril may ameliorate cardiac fibrosis partly by regulating the MMP-2/TIMP-2 system.

  20. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats.

    Science.gov (United States)

    Valladares, Ricardo; Sankar, Dhyana; Li, Nan; Williams, Emily; Lai, Kin-Kwan; Abdelgeliel, Asmaa Sayed; Gonzalez, Claudio F; Wasserfall, Clive H; Larkin, Joseph; Schatz, Desmond; Atkinson, Mark A; Triplett, Eric W; Neu, Josef; Lorca, Graciela L

    2010-05-06

    The intestinal epithelium is a barrier that composes one of the most immunologically active surfaces of the body due to constant exposure to microorganisms as well as an infinite diversity of food antigens. Disruption of intestinal barrier function and aberrant mucosal immune activation have been implicated in a variety of diseases within and outside of the gastrointestinal tract. With this model in mind, recent studies have shown a link between diet, composition of intestinal microbiota, and type 1 diabetes pathogenesis. In the BioBreeding rat model of type 1 diabetes, comparison of the intestinal microbial composition of diabetes prone and diabetes resistant animals found Lactobacillus species were negatively correlated with type 1 diabetes development. Two species, Lactobacillus johnsonii and L. reuteri, were isolated from diabetes resistant rats. In this study diabetes prone rats were administered pure cultures of L. johnsonii or L. reuteri isolated from diabetes resistant rats to determine the effect on type 1 diabetes development. Findings Results Rats administered L. johnsonii, but not L. reuteri, post-weaning developed type 1 diabetes at a protracted rate. Analysis of the intestinal ileum showed administration of L. johnsonii induced changes in the native microbiota, host mucosal proteins, and host oxidative stress response. A decreased oxidative intestinal environment was evidenced by decreased expression of several oxidative response proteins in the intestinal mucosa (Gpx1, GR, Cat). In L. johnsonii fed animals low levels of the pro-inflammatory cytokine IFNgamma were correlated with low levels of iNOS and high levels of Cox2. The administration of L. johnsonii also resulted in higher levels of the tight junction protein claudin. It was determined that the administration of L. johnsonii isolated from BioBreeding diabetes resistant rats delays or inhibits the onset of type 1 diabetes in BioBreeding diabetes prone rats. Taken collectively, these data

  1. Polyamine and amino acid content, and activity of polyamine-synthesizing decarboxylases, in liver of streptozotocin-induced diabetic and insulin-treated diabetic rats

    OpenAIRE

    Brosnan, Margaret E.; Roebothan, Barbara V.; Hall, Douglas E.

    1980-01-01

    1. Concentrations of polyamines, amino acids, glycogen, nucleic acids and protein, and activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, were measured in livers from control, streptozotocin-diabetic and insulin-treated diabetic rats. 2. Total DNA per liver and protein per mg of DNA were unaffected by diabetes, whereas RNA per mg of DNA and glycogen per g of liver were decreased. Insulin treatment of diabetic rats induced both hypertrophy and hyperplasia, as indicat...

  2. Effects of advanced glycation end-product inhibition and cross-link breakage in diabetic rats

    DEFF Research Database (Denmark)

    Oturai, P S; Christensen, M; Rolin, B

    2000-01-01

    ), and a breaker of already formed AGE cross-links, N-phenacylthiazolium bromide (PTB), were investigated in streptozotocin-diabetic female Wistar rats. Diabetes for 24 weeks resulted in decreased tail collagen pepsin solubility, reflecting the formation of AGE cross-linking. Collagen solubility was significantly...... ameliorated by treatment with NNC39-0028, whereas PTB had no effect. Increased urinary albumin excretion (UAE) in diabetic rats was observed in serial measurements throughout the study period, and was not reduced by any treatment. Vascular dysfunction in the eye, measured as increased clearance of 125I......-albumin, was induced by diabetes. NNC39-0028 did not affect this abnormality. This study demonstrated a pharmacological inhibition of collagen solubility alterations in diabetic rats without affecting diabetes-induced pathophysiology such as the increase in UAE or albumin clearance. Treatment with PTB, a specific...

  3. Phaleria macrocarpa reduces glomerular growth factor expression in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Evy Sulistyoningrum

    2013-08-01

    Full Text Available Background Diabetic nephropathy (DN is the most serious complication of diabetes, causing end-stage renal disease throughout the world. Recent studies have reported a direct role of vascular endothelial growth factor (VEGF and transforming growth factor-â (TGF-â in DN pathogenesis. VEGF and TGF-â are expressed early in glomeruli in response to hyperglycemia. Active substances of Phaleria macrocarpa (PM pericarp are known to have nephroprotective effects. This study aimed to evaluate the effects of Phaleria macrocarpa (Scheff. Boerl pericarp extract on VEGF and TGF-â expression in alloxan-induced diabetic rats. Methods An experimental study was conducted on twenty five male albino (Sprague Dawley rats divided into five groups (of five each: normal control; diabetic; diabetic + metformin 100 mg/kgBW; diabetic + methanolic PM extract 250 mg/kgBW; and diabetic + aqueous PM extract 250 mg/kgBW. Diabetes was induced by alloxan monohydrate 150 mg/BW intraperitoneally. Treatment was given for 3 weeks. VEGF and TGF-â expression analysis was performed by means of immunohistochemical technique. Differences between groups were assessed by one-way ANOVA. Results VEGF expression in the PM extract group was significantly lower than that in the diabetic group and even metformin group (p<0.01. TGF-â expression in methanolic PM extract group was significantly lower than in diabetic and metformin group (p<0.01, but aqueous PM extract group only showed significancy when compared with diabetic group (p< 0.01. Conclusions Phaleria macrocarpa pericarp extract reduces glomerular expression of TGF-â and VEGF in alloxan-induced diabetic rats.

  4. Mediation of Endogenous β-Endorphin by Tetrandrine to Lower Plasma Glucose in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jen-Hao Hsu

    2004-01-01

    Full Text Available The role of β-endorphin in the plasma glucose-lowering action of tetrandrine in streptozotocin-induced diabetic rats (STZ-diabetic rats was investigated. The plasma glucose concentration was assessed by the glucose oxidase method. The enzyme-linked immunosorbent assay was used to determine the plasma level of β-endorphin-like immunoreactivity (BER. The mRNA levels of glucose transporter subtype 4 (GLUT4 in soleus muscle and phosphoenolpyruvate carboxykinase (PEPCK in the liver of STZ-diabetic rats were detected by Northern blotting analysis. The expressed protein of GLUT4 or PEPCK was characterized by Western blotting analysis. Tetrandrine dose-dependently increased plasma BER in a manner parallel to the decrease of plasma glucose in STZ-diabetic rats. Moreover, the plasma glucose-lowering effect of tetrandrine was inhibited by naloxone and naloxonazine at doses sufficient to block opioid μ-receptors. Further, tetrandrine failed to produce plasma glucose-lowering action in opioid μ-receptor knockout diabetic mice. Bilateral adrenalectomy eliminated the plasma glucose-lowering effect and plasma BER-elevating effect of tetrandrine in STZ-diabetic rats. Both effects were abolished by treatment with hexamethonium or pentolinium at doses sufficient to block nicotinic receptors. Tetrandrine enhanced BER release directly from the isolated adrenal medulla of STZ-diabetic rats and this action was abolished by the blockade of nicotinic receptors. Repeated intravenous administration of tetrandrine (1.0 mg/kg to STZ-diabetic rats for 3 days resulted in an increase in the mRNA and protein levels of the GLUT4 in soleus muscle, in addition to the lowering of plasma glucose. Similar treatment with tetrandrine reversed the elevated mRNA and protein levels of PEPCK in the liver of STZ-diabetic rats. The obtained results suggest that tetrandrine may induce the activation of nicotinic receptors in adrenal medulla to enhance the secretion of

  5. Resveratrol Improves Cognitive Impairment by Regulating Apoptosis and Synaptic Plasticity in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Zhiyan Tian

    2016-12-01

    Full Text Available Aims: To investigate the effects of resveratrol on cognitive impairment in streptozotocin (STZ-induced diabetic rats and to explore the mechanisms of that phenomenon. Methods: Sixty healthy male Sprague Dawley rats were randomly divided into four groups: normal control group (Con group, n = 15, Res group (normal Sprague Dawley rats treated with resveratrol, n = 15, diabetes mellitus group (DM group, n = 15 and DM + Res group (diabetic rats treat with resveratrol, n = 15. Streptozotocin (STZ was injected intraperitoneally to establish the diabetic model. One week after diabetic model induction, the animals in the Res group and the DM + Res group received resveratrol intraperitoneally once a day for consecutive 4 weeks. The Morris water maze test was applied to assess the effect of resveratrol on learning and memory. To explore the mechanisms of resveratrol on cognition, we detected the protein expression levels of Caspase-3, Bcl-2, Bax, NMDAR1 (N-Methyl-d-Aspartate receptor and BDNF (Brain Derived Neurotrophic Factor via western blotting analysis. Results: Resveratrol has no obvious effect on normal SD rats. Compared to Con group, cognitive ability was significantly impaired with increased expression of Caspase-3, Bax and down-regulation of Bcl-2, NMDAR1 and BDNF in diabetic rats. By contrast, resveratrol treatment improved the cognitive decline. Evidently, resveratrol treatment reversed diabetes-induced changes of protein expression. Conclusions: Resveratrol significantly ameliorates cognitive decline in STZ-induced diabetic model rats. The potential mechanism underlying the protective effect could be attributed to the inhibition of hippocampal apoptosis through the Bcl-2, Bax and Caspase-3 signaling pathways and improvement of synaptic dysfunction. BDNF may also play an indispensable role in this mechanism.

  6. The Effect of Trans-Chalcone on Amylase Activity, Blood Glucose and Lipid Levels in Diabetic and Non Diabetic Rats

    Directory of Open Access Journals (Sweden)

    M Najafian

    2011-04-01

    Full Text Available Introduction & Objective: Alpha amylase is the most important decomposing enzyme in starch. Digestion and absorption of starch in the intestine can be prevented and also the blood sugar levels can be controlled by restrain and control of alpha amylase. The aim of this study was to evaluate the effect of trans-chalcone on amylase activity, blood glucose and lipid levels in diabetic and non diabetic rats. Materials & Methods: This experimental study was conducted in 1388 at Tehran University of Medical Sciences. Sixty rats were randomly divided to ten equal groups: non diabetic control, diabetic control, four non diabetic experiments and four diabetic experiments. Control groups received grape seed oil and experimental groups received 2, 8,16 and 32 mg/kg of body weight in a period of 24 days with a gastric cannula. Blood sugar, every two days, serum insulin levels in days 0,12, and 24 and at the end of the experiment, lipoproteins and alpha amylase activity were measured.The data were analyzed by one way analysis of variance, ANOVA, followed by Turkey,s test with SPSS soft ware . Results: On average Chalcone reduced 25.5% of blood sugar in normal and diabetic rats. IT also decreased the serum insulin level. On average, chalcone decreased 34.9% of alpha amylase activity in normal and diabetic rats. Following disturbances in lipids metabolism caused by diabetes, this drug improved lipoproteins metabolism and reduced water, food and urine volume. Conclusion: This study shows that trans-Chalcone reduces blood sugar and body weight via inhibition of alpha amylas. Moreover, improvement of lipoprotein metabolism may happen via the inhibitory effect of this drug on hydroxyl methyl glutaryl -COA reductase and phosphodiesterase.

  7. Preventive effects of garlic (Allium sativum) on oxidative stress and histopathology of cardiac tissue in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Naderi, R; Mohaddes, G; Mohammadi, M; Alihemmati, A; Badalzadeh, R; Ghaznavi, R; Ghyasi, R; Mohammadi, Sh

    2015-12-01

    Since some complications of diabetes mellitus may be caused or exacerbated by an oxidative stress, the protective effects of garlic (Allium sativum) were investigated in the blood and heart of streptozotocin-induced diabetic rats. Twenty-eight male Wistar rats were randomly divided into four groups: control, garlic, diabetic, and diabetic+garlic. Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (50 mg/kg) in male rats. Rats were fed with raw fresh garlic homogenate (250 mg/kg) six days a week by gavage for a period of 6 weeks. At the end of the 6th week blood samples and heart tissues were collected and used for determination of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and histological evaluation. Induction of diabetes increased MDA levels in blood and homogenates of heart. In diabetic rats treated with garlic, MDA levels decreased in blood and heart homogenates. Treatment of diabetic rats with garlic increased SOD, GPX and CAT in blood and heart homogenates. Histopathological finding of the myocardial tissue confirmed a protective role for garlic in diabetic rats. Thus, the present study reveals that garlic may effectively modulate antioxidants status in the blood and heart of streptozotocin induced-diabetic rats.

  8. Hepatoprotective and Hypolipidemic Effects of Carthamus tinctorius oil in Alloxan-induced Type 1 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Rahimi Parivash

    2014-04-01

    Full Text Available Introduction: Hepatoprotective and hypolipidemic effects of Carthamus tinctorius Linn.(Safflower seed oil was investigated in diabetic rats. Methods: Diabetes was induced by administration of 120 mg/kg alloxan monohydrate. The seed oil of safflower at dose of 200 mg/kg was administered as single dose per day to diabetic rats for a period of 28 days. The effect of oil on blood glucose level was measured in the diabetic rats. Serum lipid profile [total cholesterol (TC, triglycerides (TGs, low density (LDL and high density lipoprotein (HDL and enzymes such as alanine aminotransferase (ALT, aspartate aminotransferase (AST and alkaline phosphatase (ALP were also determined. Results: Levels of blood glucose, TC, TGs, LDL, ALT, AST and ALP decreased and HDL increased in alloxan induced diabetic rats after treatment with 200 mg/kg safflower seed oil for 28 days. Conclusion: The present study demonstrates that seed oil of safflower seems to be useful for the prevention of diabetes complications.

  9. Effect of total glucosides of paeony on the expression of nephrin in the kidneys from diabetic rats.

    Science.gov (United States)

    Zhang, Pei; Zhang, Jing-Jing; Su, Jing; Qi, Xiang-Ming; Wu, Yong-Gui; Shen, Ji-Jia

    2009-01-01

    Total glucosides of paeony (TGP), extracted from the traditional Chinese herb root of Paeonia lactiflora pall, have been shown to have a therapeutic role in experimental diabetic nephropathy including albuminuria. Recent investigation has identified nephrin, a podocyte-specific transmembrane protein, as a key regulator in the pathogenesis of diabetic albuminuria. The aim of this study was to investigate whether TGP can attenuate albuminuria through prevention of nephrin loss in the experimental diabetic nephropathy. Fifty male Munich-Wistar rats were obtained from the Experimental Animal Center of Anhui Medical University. These rats were divided into 5 groups (n = 10); normal group, control diabetic group, and 3 TGP treated diabetic groups at different concentrations. Diabetes was induced by streptozotocin, and TGP (50, 100, 200 mg/kg) was orally administered to the 3 TGP treated diabetic groups once a day for 8 weeks, respectively. Blood glucose and 24 hour urinary albumin excretion rate (AER) were measured. The expressions of nephrin, tumor necrosis factor-alpha (TNF-alpha), NF-kappaB p65 and 3-nitrotyrosine (3-NT) protein were determined by immunoinfluorescence or Western blot analysis in the kidneys. Elevated AER was markedly attenuated by TGP treatment in diabetic rats. There was a finely dotted linear epithelial staining of nephrin in normal group glomeruli. In contrast, the staining of glomeruli from untreated diabetic rats was attenuated, more diapersed, and clustered. This diabetic-induced loss of glomerular nephrin expression was prevented in a large degree in TGP-treated diabetic rats. Western blot analysis showed that the expression of nephrin protein was reduced in the kidneys of diabetic rats, but significantly increased in the TGP treatment groups. The expressions of TNF-alpha, NF-kappaB p65 and 3-NT protein were significantly increased in the kidneys of diabetic rats, which were all significantly inhibited by TGP treatment. Our results showed that

  10. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats.

    Science.gov (United States)

    Nagareddy, Prabhakara Reddy; Xia, Zhengyuan; MacLeod, Kathleen M; McNeill, John H

    2006-04-01

    Previous studies have indicated that cardiovascular abnormalities such as depressed blood pressure and heart rate occur in streptozotocin (STZ) diabetic rats. Chronic diabetes, which is associated with increased expression of inducible nitric oxide synthase (iNOS) and oxidative stress, may produce peroxynitrite/nitrotyrosine and cause nitrosative stress. We hypothesized that nitrosative stress causes cardiovascular depression in STZ diabetic rats and therefore can be corrected by reducing its formation. Control and STZ diabetic rats were treated orally for 9 weeks with N-acetylcysteine (NAC), an antioxidant and inhibitor of iNOS. At termination, the mean arterial blood pressure (MABP) and heart rate (HR) were measured in conscious rats. Nitrotyrosine and endothelial nitric oxide synthase (eNOS) and iNOS expression were assessed in the heart and mesenteric arteries by immunohistochemistry and Western blot experiments. Untreated diabetic rats showed depressed MABP and HR that was prevented by treatment with NAC. In untreated diabetic rats, levels of 15-F(2t)-isoprostane, an indicator of lipid peroxidation increased, whereas plasma nitric oxide and antioxidant concentrations decreased. Furthermore, decreased eNOS and increased iNOS expression were associated with elevated nitrosative stress in blood vessel and heart tissue of untreated diabetic rats. N-acetylcysteine treatment of diabetic rats not only restored the antioxidant capacity but also reduced the expression of iNOS and nitrotyrosine and normalized the expression of eNOS to that of control rats in heart and superior mesenteric arteries. The results suggest that nitrosative stress depress MABP and HR following diabetes. Further studies are required to elucidate the mechanisms involved in nitrosative stress mediated depression of blood pressure and heart rate.

  11. Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Bucolo, Claudio; Leggio, Gian Marco; Drago, Filippo; Salomone, Salvatore

    2012-07-01

    Diabetic retinopathy is a complex disease that has potential involvement of inflammatory and oxidative stress-related pathways in its pathogenesis. We hypothesized that eriodictyol, one of the most abundant dietary flavonoids, could be effective against diabetic retinopathy, which involves significant oxidative stress and inflammation. The aim of the present study was to investigate the effects of eriodictyol in early retinal and plasma changes of streptozotocin-induced diabetic rats. The effect of eriodictyol treatment (0.1, 1, 10 mg/kg daily for 10 days) was evaluated by TNF-α, ICAM-1, VEGF, and eNOS protein levels measurement in the retina, plasma lipid peroxidation, and blood-retinal barrier (BRB) integrity. Increased amounts of cytokines, adhesion molecule, and nitric oxide synthase were observed in retina from diabetic rats. Eriodictyol treatment significantly lowered retinal TNF-α, ICAM-1, VEGF, and eNOS in a dose-dependent manner. Further, treatment with eriodictyol significantly suppressed diabetes-related lipid peroxidation, as well as the BRB breakdown. These data demonstrated that eriodictyol attenuates the degree of retinal inflammation and plasma lipid peroxidation preserving the BRB in early diabetic rats. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Up-regulation of Hsp72 and keratin16 mediates wound healing in streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Rasha R. Ahmed

    2015-01-01

    Full Text Available BACKGROUND: Impaired wound healing is a complication of diabetes and a serious problem in clinical practice. We previously found that whey protein (WP was able to regulate wound healing normally in streptozotocin (STZ-dia-betic models. This subsequent study was designed to assess the effect of WP on heat shock protein-72 (Hsp72 and keratin16 (Krt16 expression during wound healing in diabetic rats. METHODS: WP at a dosage of 100 mg/kg of body weight was orally administered daily to wounded normal and STZ-diabetic rats for 8 days. RESULTS: At day 4, the WP-treated diabetic wound was significantly reduced compared to that in the corresponding control. Diabetic wounded rats developed severe inflammatory infiltration and moderate capillary dilatation and regeneration. Treated rats had mild necrotic formation, moderate infiltration, moderate to severe capillary dilatation and regeneration, in addition to moderate epidermal formation. Hsp72 and Krt16 densities showed low and dense activity in diabetic wounded and diabetic wounded treated groups, respectively. At day 8, WP-treatment of diabetic wounded animals revealed great amelioration with complete recovery and closure of the wound. Reactivity of Hsp72 and Krt16 was reversed, showing dense and low, or medium and low, activity in the diabetic wounded and diabetic wounded treated groups, respectively. Hsp72 expression in the pancreas was found to show dense reactivity with WP-treated diabetic wound rats. CONCLUSION: This data provides evidence for the potential impact of WP in the up-regulation of Hsp72 and Krt16 in T1D, resulting in an improved wound healing process in diabetic models.

  13. Chronic Rumex Patientia Seed Feeding Improves Passive Avoidance Learning and Memory in Streptozotocin-Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Tourandokht Baluchnejadmojarad

    2010-08-01

    Full Text Available A B S T R A C T Introduction: Diabetes mellitus is accompanied with disturbances in learning, memory, and cognitive skills in the human society and experimental animals. Due to anti-diabetic and antioxidant activity of Rumex patientia (RP, this research study was conducted to evaluate the efficacy of chronic Rumex patientia feeding on alleviation of learning and memory disturbance in streptozotocindiabetic rats. Methods: Male Wistar rats were divided into control, diabetic, RP-treatedcontrol and -diabetic groups. For induction of diabetes, streptozotcin (STZ was administered at a dose of 60 mg/Kg. Meanwhile, RP-treated groups received RP seed powder mixed with standard pelleted food at a weight ratio of 6% for 4 weeks. For evaluation of learning and memory, initial latency (IL and step-through latency (STL were determined at the end of study using passive avoidance test. Results: It was found out that regarding initial latency, there was no significant difference among the groups. In addition, diabetic rats developed a significant impairment in retention and recall in passive avoidance test (p<0.01, as it is evident by a lower STL. Furthermore, RP treatment of diabetic rats did produce a significant improvement in retention and recall (p<0.05. Discussion: Taken together, chronic RP feeding could improve retention and recall capability in passive avoidance test in STZ-diabetic rats

  14. PPAR ligands improve impaired metabolic pathways in fetal hearts of diabetic rats.

    Science.gov (United States)

    Kurtz, Melisa; Capobianco, Evangelina; Martinez, Nora; Roberti, Sabrina Lorena; Arany, Edith; Jawerbaum, Alicia

    2014-10-01

    In maternal diabetes, the fetal heart can be structurally and functionally affected. Maternal diets enriched in certain unsaturated fatty acids can activate the nuclear receptors peroxisome proliferator-activated receptors (PPARs) and regulate metabolic and anti-inflammatory pathways during development. Our aim was to investigate whether PPARα expression, lipid metabolism, lipoperoxidation, and nitric oxide (NO) production are altered in the fetal hearts of diabetic rats, and to analyze the putative effects of in vivo PPAR activation on these parameters. We found decreased PPARα expression in the hearts of male but not female fetuses of diabetic rats when compared with controls. Fetal treatments with the PPARα ligand leukotriene B4 upregulated the expression of PPARα and target genes involved in fatty acid oxidation in the fetal hearts. Increased concentrations of triglycerides, cholesterol, and phospholipids were found in the hearts of fetuses of diabetic rats. Maternal treatments with diets supplemented with 6% olive oil or 6% safflower oil, enriched in unsaturated fatty acids that can activate PPARs, led to few changes in lipid concentrations, but up-regulated PPARα expression in fetal hearts. NO production, which was increased in the hearts of male and female fetuses in the diabetic group, and lipoperoxidation, which was increased in the hearts of male fetuses in the diabetic group, was reduced by the maternal treatments supplemented with safflower oil. In conclusion, impaired PPARα expression, altered lipid metabolism, and increased oxidative and nitridergic pathways were evidenced in hearts of fetuses of diabetic rats and were regulated in a gender-dependent manner by treatments enriched with PPAR ligands. © 2014 Society for Endocrinology.

  15. Systemic perturbations of key metabolites in diabetic rats during the evolution of diabetes studied by urine metabonomics.

    Directory of Open Access Journals (Sweden)

    Mimi Guan

    Full Text Available BACKGROUND: Elucidation of metabolic profiles during diabetes progression helps understand the pathogenesis of diabetes mellitus. In this study, urine metabonomics was used to identify time-related metabolic changes that occur during the development of diabetes mellitus and characterize the biochemical process of diabetes on a systemic, metabolic level. METHODOLOGY/PRINCIPAL FINDINGS: Urine samples were collected from diabetic rats and age-matched controls at different time points: 1, 5, 10, and 15 weeks after diabetes modeling. (1H nuclear magnetic resonance ((1H NMR spectra of the urine samples were obtained and analyzed by multivariate data analysis and quantitative statistical analysis. The metabolic patterns of diabetic groups are separated from the controls at each time point, suggesting that the metabolic profiles of diabetic rats were markedly different from the controls. Moreover, the samples from the diabetic 1-wk group are closely associated, whereas those of the diabetic 15-wk group are scattered, suggesting that the presence of various of complications contributes significantly to the pathogenesis of diabetes. Quantitative analysis indicated that urinary metabolites related to energy metabolism, tricarboxylic acid (TCA cycle, and methylamine metabolism are involved in the evolution of diabetes. CONCLUSIONS/SIGNIFICANCE: The results highlighted that the numbers of metabolic changes were related to diabetes progression, and the perturbed metabolites represent potential metabolic biomarkers and provide clues that can elucidate the mechanisms underlying the generation and development of diabetes as well as its complication.

  16. Effects of Astragalus polysaccharides on memory impairment in a diabetic rat model

    Directory of Open Access Journals (Sweden)

    Dun C

    2016-07-01

    Full Text Available Changping Dun,1 Junqian Liu,1 Fucheng Qiu,1 Xueda Wu,2 Yakun Wang,3 Yongyan Zhao,4 Ping Gu1 1Department of Neurology, the First Hospital of Hebei Medical University, 2Department of Cardiac Surgery, the Second Hospital of Hebei Medical University, 3Department of Endocrinology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 4Department of Nursing, Maternal and Child Health Hospital of Tangshan City, Tangshan, People’s Republic of China Objective: Astragalus polysaccharides (APS are active constituents of Astragalus membranaceus. In this study, we aimed to investigate the effects of APS on memory impairment in a diabetic rat model and their mechanisms. Methods: A diabetic model was established in 50 male Wistar rats with streptozotocin intraperitoneal injection. A blood glucose level higher than 16.7 mmol/L obtained 72 hours after the injection was regarded as a successful diabetic model. The modeled rats were divided into model group, high, medium, and low doses of APS, and piracetam groups (positive control. A group of ten rats without streptozotocin-induced diabetes were used as a normal control. After respective consecutive 8-week treatments, the levels of blood fasting plasma glucose, insulin, hemoglobin A1c, memory performance, hippocampal malondialdehyde, and superoxide dismutase were determined. Results: After the 8-week APS treatment, serum fasting plasma glucose, hemoglobin A1c, and insulin levels were decreased compared with those of the model group (P<0.05. Importantly, memory impairment in the diabetic model was reversed by APS treatments. In addition, hippocampal malondialdehyde concentration was lowered, whereas that of superoxide dismutase was higher after APS treatments. Conclusion: APS are important active components responsible for memory improvement in rats with streptozotocin-induced diabetes. The potential mechanism of action is associated with the effects of APS on glucose and lipid metabolism, and

  17. Polyol pathway, 2,3-diphosphoglycerate in erythrocytes and diabetic neuropathy in rats.

    Science.gov (United States)

    Nakamura, J; Koh, N; Sakakibara, F; Hamada, Y; Wakao, T; Hara, T; Mori, K; Nakashima, E; Naruse, K; Hotta, N

    1995-12-27

    The relationship between the 2,3-diphosphoglycerate concentration in red blood cells as a biological indicator of tissue hypoxia and diabetic neuropathy, and the effect of a potent aldose reductase inhibitor, (2S,4S)-6-fluoro-2'5'-dioxospiro [chroman-4,4'-imidazolidine]-2-carboxamide (SNK-860), on both were investigated in streptozotocin-induced diabetic rats. Diabetic rats demonstrated significantly delayed motor nerve conduction velocity and reduced sciatic nerve blood flow. Altered biochemical features in the sciatic nerves, including a marked accumulation of sorbitol and fructose, myo-inositol depletion and decreased Na+/K(+)-ATPase activity were also detected in diabetic rats. These defects were accompanied by a decrease in the red blood cell 2,3-diphosphoglycerate concentration. Treatment with SNK-860 partially or completely ameliorated these abnormalities. These observations suggest that a decrease in the red blood cell 2,3-diphosphoglycerate concentration is one of the factors contributing to tissue hypoxia, which results in diabetic neuropathy, and that this decrease is mediated through an aldose reductase inhibitor-sensitive pathway.

  18. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Nabi Shaik Abdul

    2013-02-01

    Full Text Available Abstract Background The available drugs for diabetes, Insulin or Oral hypoglycemic agents have one or more side effects. Search for new antidiabetic drugs with minimal or no side effects from medicinal plants is a challenge according to WHO recommendations. In this aspect, the present study was undertaken to evaluate the antihyperglycemic and antihyperlipidemic effects of Piper longum root aqueous extract (PlrAqe in streptozotocin (STZ induced diabetic rats. Methods Diabetes was induced in male Wister albino rats by intraperitoneal administration of STZ (50 mg/kg.b.w. Fasting blood glucose (FBG levels were measured by glucose-oxidase & peroxidase reactive strips. Serum biochemical parameters such as glycosylated hemoglobin (HbA1c, total cholesterol (TC, triglycerides (TG, very low density lipoprotein (VLDL, low density lipoprotein (LDL and high density lipoprotein (HDL cholesterol were estimated. The activities of liver and kidney functional markers were measured. The statistical analysis of results was carried out using Student t-test and one-way analysis (ANOVA followed by DMRT. Results During the short term study the aqueous extract at a dosage of 200 mg/kg.b.w was found to possess significant antidiabetic activity after 6 h of the treatment. The administration of aqueous extract at the same dose for 30 days in STZ induced diabetic rats resulted in a significant decrease in FBG levels with the corrections of diabetic dyslipidemia compared to untreated diabetic rats. There was a significant decrease in the activities of liver and renal functional markers in diabetic treated rats compared to untreated diabetic rats indicating the protective role of the aqueous extract against liver and kidney damage and its non-toxic property. Conclusions From the above results it is concluded that the plant extract is capable of managing hyperglycemia and complications of diabetes in STZ induced diabetic rats. Hence this plant may be considered as one of the

  19. Autoimmunity in type 1 diabetes mellitus: a rat model

    International Nuclear Information System (INIS)

    Liu, Z.

    1987-01-01

    In this study, we have sought to isolate in vitro, from acutely diabetic BB rats, cytotoxic T lymphocytes, which exhibit specific cytotoxicity toward islet cells. Thoracic duct lymphocytes (TDL) from acutely diabetic BB rats cultured with irradiated MHC matched (RT1.u) islet cells and dendritic cells in vitro were shown to be specifically cytotoxic to MHC matched and mismatched allogeneic (RT1.1) and xenogeneic (hamster) islet target cells in a 3 H-leucine release assay. Two cell lines (V1A8 and V1D11) derived from the TDL culture showed similar patterns of non-MHC restricted islet cell killing which could be blocked by islet cells and cultured rat insulinoma cells (RIN5mF) but not by non-islet cells of various tissue origins. Both V1A8 and V1D11 were not cytotoxic to Natural Killer (NK) sensitive target cells, G1TC and YAC-1. Conventional surface markers for rat helper and suppressor/cytotoxic T cells were not detectable on either cell lines. The V1D11 cell line was positive for W 3/13 (rat T/NK marker) on OX-19 (rat T/macrophage marker), whereas the V1A8 cell line was only positive for W 3/13

  20. Garlic and Resveratrol attenuate diabetic complications, loss of β-cells, pancreatic and hepatic oxidative stress in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2016-10-01

    Full Text Available Abstract:The study was aimed at finding the effect of garlic and resveratrol on loss of β-cells and diabetic complication in streptozotocin (STZ-induced Type-I diabetic rats. Rats were injected with single dose STZ (50mg/kg, i.p. for induction of type 1 diabetes (Dia and compared with control group. Rats from third (Dia+Gar, fourth (Dia+Resv and fifth (Dia+Met groups were fed raw garlic homogenate (250 mg/kg/day, resveratrol (25 mg/kg/day and metformin (500 mg/kg/day orally, respectively for a period of 4 weeks. Diabetic group had decreased serum insulin and hydrogen sulfide levels along with increased blood glucose and glycated hemoglobin, triglyceride, uric acid and nitric oxide levels. Significant (p<0.05 increase in pancreatic and hepatic TBARS, conjugated dienes, nitric oxide, and AGE level and significant (p<0.05 decrease in SOD, catalase, H2S, GSH level were observed in diabetic group. Administration of garlic, resveratrol and metformin significantly (p<0.05 normalized most of the altered metabolic and oxidative stress parameters as well as histopathological changes. Administration of garlic, resveratrol and 9metformin in diabetic rat decreases pancreatic β-cell damage and hepatic injury. Our data concluded that administration of garlic showed more promising effect in terms of reducing oxidative stress and pathological changes when compared to resveratrol and metformin groups.

  1. The Histological, Histomorphometrical and Histochemical Changes of Testicular Tissue in the Metformin Treated and Untreated Streptozotocin-Induced Adult Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Davoud Kianifard

    2011-03-01

    Full Text Available In this investigation, diabetes was induced in adult male Sprague-Dawley rats by single intraperitoneal injection of streptozotocin (STZ at 45 mg kg-1 of body weight. A group comprised of 8 diabetic rats was treated with metformin at 100 mg kg-1 of body weight for reducing the elevated blood glucose level. The results revealed that, in the untreated diabetic rats, the body and testicular weight reduced in comparison with the control rats (P < 0.05 , the metformin treated diabetic rats showed body weight loss in comparison with the control group (P < 0.05. In the untreated diabetic rats, the blood glucose level significantly increased in comparison with control and metformin treated diabetic rats. Histomorphological examinations revealed a reduction in testicular capsule diameter, seminiferous tubules (STs and germinal epithelium height, increase of amorphous material of interstitial tissue, germ cell depletion, decrease in cellular population and activity and disruption of spermatogenesis in the untreated diabetic rats in comparison with control group. In metformin treated diabetic rats, the histomorphological alterations were seen in lesser part in comparison with untreated diabetic group. The results from this study proved that, there was a direct relationship between increased levels of blood glucose as a result of STZ-induced diabetes and the histomorphological changes of testicular tissue.

  2. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rabbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated (n = 10) groups. After diabetes induction, the animals were investigated for daily glucose measurements for 35 days. Serum lipid profile and haemoglobin A1c (HbA(1c)) were assayed at the baseline (before induction of diabetes) and at 35-day follow-up. The glycaemia levels in the rats treated with opium were similar to the levels measured in the control rats (544.8 +/- 62.2 mg/dl v. 524.6 +/- 50.0 mg/dl, P = 0.434). In addition, there was no difference between the opium-treated rats and control rats in HbA(1c) (6.5 +/- 0.5% v. 6.6 +/- 0.2%, P = 0.714). Compared to the control rats, the serum total cholesterol, high density lipoprotein (HDL), triglyceride and lipoprotein (a) in the test animals were similar. Opium use has no significant effect on glucose metabolism and serum lipid profile in rats with induced diabetes.

  3. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats.

    Science.gov (United States)

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-12-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli ( Brassica oleracea ) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics ( P <0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values ( P <0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.

  4. Treatment with acarbose, an alpha-glucosidase inhibitor, reduces increased albumin excretion in streptozotocin-diabetic rats.

    Science.gov (United States)

    Cohen, M P; Vasselli, J R; Neuman, R G; Witt, J

    1995-10-01

    1. We examined the effect of the alpha-glucosidase inhibitor acarbose on urinary albumin excretion (UAE) in streptozotocin diabetic rats. 2. Treatment with acarbose for 8 weeks after induction of diabetes prevented the significant increase in UAE observed in untreated diabetic rats relative to nondiabetic controls. 3. Acarbose significantly reduced integrated glycemia, which correlated with albumin excretion rates, and exerts a salutary effect on diabetic renal dysfunction.

  5. Intestinal absorption and excretion of zinc in streptozotocin-diabetic rats as affected by dietary zinc and protein

    International Nuclear Information System (INIS)

    Johnson, W.T.; Canfield, W.K.

    1985-01-01

    65 Zn was used to examine the effects of dietary zinc and protein on true zinc absorption and intestinal excretion of endogenous zinc by an isotope dilution technique in streptozotocin-diabetic and control rats. Four groups each of diabetic and control rats were fed diets containing 20 ppm Zn, 20% egg white protein (HMHP); 20 ppm Zn, 10% egg white protein (HMLP); 10 ppm Zn, 20% egg white protein (LMHP); and 10 ppm Zn, 10% egg white protein (LMLP). Measurement of zinc balance was begun 9 d after an i.m. injection of 65 Zn. True zinc absorption and the contribution of endogenous zinc to fecal zinc excretion were calculated from the isotopically labeled and unlabeled zinc in the feces, duodenum and kidney. Results from the isotope dilution study indicated that diabetic rats, but not control rats, absorbed more zinc from 20 ppm zinc diets than from 10ppm zinc diets and that all rats absorbed more zinc from 20% protein diets than from 10% protein diets. Furthermore, all rats excreted more endogenous zinc from their intestines when dietary zinc and protein levels resulted in greater zinc absorption. In diabetic and control rats, consuming equivalent amounts of zinc, the amount of zinc absorbed was not significantly different, but the amount of zinc excreted by the intestine was less in the diabetic rats. Decreased intestinal excretion of endogenous zinc may be a homeostatic response to the increased urinary excretion of endogenous zinc in the diabetic rats and may also lead to the elevated zinc concentrations observed in some organs of the diabetic rats

  6. Resistance Exercise Restores Endothelial Function and Reduces Blood Pressure in Type 1 Diabetic Rats

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Marcelo Mendonça; Silva, Tharciano Luiz Teixeira Braga da; Fontes, Milene Tavares; Barreto, André Sales; Araújo, João Eliakim dos Santos [Departamento de Fisiologia - Universidade Federal de Sergipe (UFS), São Cristóvão, SE (Brazil); Oliveira, Antônio Cesar Cabral de; Wichi, Rogério Brandão [Departamento de Educação Física - UFS, São Cristóvão, SE (Brazil); Santos, Márcio Roberto Viana, E-mail: marciorvsantos@bol.com.br [Departamento de Fisiologia - Universidade Federal de Sergipe (UFS), São Cristóvão, SE (Brazil)

    2014-07-15

    Resistance exercise effects on cardiovascular parameters are not consistent. The effects of resistance exercise on changes in blood glucose, blood pressure and vascular reactivity were evaluated in diabetic rats. Wistar rats were divided into three groups: control group (n = 8); sedentary diabetic (n = 8); and trained diabetic (n = 8). Resistance exercise was carried out in a squat device for rats and consisted of three sets of ten repetitions with an intensity of 50%, three times per week, for eight weeks. Changes in vascular reactivity were evaluated in superior mesenteric artery rings. A significant reduction in the maximum response of acetylcholine-induced relaxation was observed in the sedentary diabetic group (78.1 ± 2%) and an increase in the trained diabetic group (95 ± 3%) without changing potency. In the presence of NG-nitro-L-arginine methyl ester, the acetylcholine-induced relaxation was significantly reduced in the control and trained diabetic groups, but not in the sedentary diabetic group. Furthermore, a significant increase (p < 0.05) in mean arterial blood pressure was observed in the sedentary diabetic group (104.9 ± 5 to 126.7 ± 5 mmHg) as compared to that in the control group. However, the trained diabetic group showed a significant decrease (p < 0.05) in the mean arterial blood pressure levels (126.7 ± 5 to 105.1 ± 4 mmHg) as compared to the sedentary diabetic group. Resistance exercise could restore endothelial function and prevent an increase in arterial blood pressure in type 1 diabetic rats.

  7. Resistance Exercise Restores Endothelial Function and Reduces Blood Pressure in Type 1 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Marcelo Mendonça Mota

    2014-07-01

    Full Text Available Background: Resistance exercise effects on cardiovascular parameters are not consistent. Objectives: The effects of resistance exercise on changes in blood glucose, blood pressure and vascular reactivity were evaluated in diabetic rats. Methods: Wistar rats were divided into three groups: control group (n = 8; sedentary diabetic (n = 8; and trained diabetic (n = 8. Resistance exercise was carried out in a squat device for rats and consisted of three sets of ten repetitions with an intensity of 50%, three times per week, for eight weeks. Changes in vascular reactivity were evaluated in superior mesenteric artery rings. Results: A significant reduction in the maximum response of acetylcholine-induced relaxation was observed in the sedentary diabetic group (78.1 ± 2% and an increase in the trained diabetic group (95 ± 3% without changing potency. In the presence of NG-nitro-L-arginine methyl ester, the acetylcholine-induced relaxation was significantly reduced in the control and trained diabetic groups, but not in the sedentary diabetic group. Furthermore, a significant increase (p < 0.05 in mean arterial blood pressure was observed in the sedentary diabetic group (104.9 ± 5 to 126.7 ± 5 mmHg as compared to that in the control group. However, the trained diabetic group showed a significant decrease (p < 0.05 in the mean arterial blood pressure levels (126.7 ± 5 to 105.1 ± 4 mmHg as compared to the sedentary diabetic group. Conclusions: Resistance exercise could restore endothelial function and prevent an increase in arterial blood pressure in type 1 diabetic rats.

  8. Resistance Exercise Restores Endothelial Function and Reduces Blood Pressure in Type 1 Diabetic Rats

    International Nuclear Information System (INIS)

    Mota, Marcelo Mendonça; Silva, Tharciano Luiz Teixeira Braga da; Fontes, Milene Tavares; Barreto, André Sales; Araújo, João Eliakim dos Santos; Oliveira, Antônio Cesar Cabral de; Wichi, Rogério Brandão; Santos, Márcio Roberto Viana

    2014-01-01

    Resistance exercise effects on cardiovascular parameters are not consistent. The effects of resistance exercise on changes in blood glucose, blood pressure and vascular reactivity were evaluated in diabetic rats. Wistar rats were divided into three groups: control group (n = 8); sedentary diabetic (n = 8); and trained diabetic (n = 8). Resistance exercise was carried out in a squat device for rats and consisted of three sets of ten repetitions with an intensity of 50%, three times per week, for eight weeks. Changes in vascular reactivity were evaluated in superior mesenteric artery rings. A significant reduction in the maximum response of acetylcholine-induced relaxation was observed in the sedentary diabetic group (78.1 ± 2%) and an increase in the trained diabetic group (95 ± 3%) without changing potency. In the presence of NG-nitro-L-arginine methyl ester, the acetylcholine-induced relaxation was significantly reduced in the control and trained diabetic groups, but not in the sedentary diabetic group. Furthermore, a significant increase (p < 0.05) in mean arterial blood pressure was observed in the sedentary diabetic group (104.9 ± 5 to 126.7 ± 5 mmHg) as compared to that in the control group. However, the trained diabetic group showed a significant decrease (p < 0.05) in the mean arterial blood pressure levels (126.7 ± 5 to 105.1 ± 4 mmHg) as compared to the sedentary diabetic group. Resistance exercise could restore endothelial function and prevent an increase in arterial blood pressure in type 1 diabetic rats

  9. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats.

    Science.gov (United States)

    Olatunji, L A; Soladoye, A O

    2007-06-01

    Cardiovascular disorders are the primary causes of morbidity and mortality in patients with diabetes mellitus (DM). Agents that improve lipid profile and reduce oxidative stress have been shown to reduce the ensuing risk factors. In the present study, we investigated whether increased magnesium intake could improve hyperglycaemia, dyslipidaemia, and reduce oxidative stress in alloxan-induced diabetic rats. Male Wistar rats were divided into non-diabetic (ND), diabetic (DM) and diabetic fed on a high magnesium diet (DM-Mg) groups. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were used as markers of oxidative stress. Plasma levels of ascorbic acid, magnesium and calcium were also determined. Diabetes was induced by injecting alloxan (100 mg/kg B.W). The fasting blood glucose levels were significantly lower in the DM-Mg rats than in the DM rats. Plasma total cholesterol, triglyceride, TBARS levels were significantly higher while plasma HDL-cholesterol, HDL-cholesterol/total cholesterol ratio, ascorbic acid levels were significantly lowered in DM rats compared with the ND rats. Increased intake of magnesium significantly abrogated these alterations. There were no significant differences in the plasma levels of magnesium and calcium between the DM and ND groups. However, plasma levels of magnesium but not calcium were significantly elevated in DM-Mg rats when compared with other groups. In conclusion, these results suggest that diet rich in magnesium could exert cardioprotective effect through reduced plasma total cholesterol, triglyceride, oxidative stress and ameliorated HDL-cholesterol/total cholesterol ratio as well as increased plasma ascorbic acid and magnesium in diabetic rats.

  10. Anti-Diabetic Effects of an Ethanol Extract of Cassia Abbreviata Stem Bark on Diabetic Rats and Possible Mechanism of Its Action - Anti-diabetic Properties of Cassia abbreviata -

    Directory of Open Access Journals (Sweden)

    Keagile Bati

    2017-03-01

    Full Text Available Objectives: This study aimed to evaluate the hypoglycemic effects of an ethanol extract of Cassia abbreviata (ECA bark and the possible mechanisms of its action in diabetic albino rats. Methods: ECA was prepared by soaking the powdered plant material in 70% ethanol. It was filtered and made solvent-free by evaporation on a rotary evaporator. Type 2 diabetes was induced in albino rats by injecting 35 mg/kg body weight (bw of streptozotocin after having fed the rats a high-fat diet for 2 weeks. Diabetic rats were divided into ECA-150, ECA-300 and Metformin (MET-180 groups, where the numbers are the doses in mg.kg.bw administered to the groups. Normal (NC and diabetic (DC controls were given distilled water. The animals had their fasting blood glucose levels and body weights determined every 7 days for 21 days. Oral glucose tolerance tests (OGTTs were carried out in all animals at the beginning and the end of the experiment. Liver and kidney samples were harvested for glucose 6 phosphatase (G6Pase and hexokinase activity analyses. Small intestines and diaphragms from normal rats were used for α-glucosidase and glucose uptake studies against the extract. Results: Two doses, 150 and 300 mg/kg bw, significantly reduced the fasting blood glucose levels in diabetic rats and helped them maintain normal body weights. The glucose level in DC rats significantly increased while their body weights decreased. The 150 mg/kg bw dose significantly increased hexokinase and decreased G6Pase activities in the liver and the kidneys. ECA inhibited α-glucosidase activity and promoted glucose uptake in the rats’ hemi-diaphragms. Conclusion: This study revealed that ECA normalized blood glucose levels and body weights in type 2 diabetic rats. The normalization of the glucose levels may possibly be due to inhibition of α-glucosidase, decreased G6Pase activity, increased hexokinase activity and improved glucose uptake by muscle tissues.

  11. Increased oral AUC of baicalin in streptozotocin-induced diabetic rats due to the increased activity of intestinal beta-glucuronidase.

    Science.gov (United States)

    Liu, Li; Deng, Yuan-Xiong; Liang, Yan; Pang, Xiao-Yan; Liu, Xiao-Dong; Liu, Yao-Wu; Yang, Jian-Song; Xie, Lin; Wang, Guang-Ji

    2010-01-01

    The purpose of the study was to investigate the pharmacokinetics of baicalin, a major bioactive component of Scutellariae radix, in diabetic conditions. The 4-week diabetic rats were induced by intraperitoneal administration of streptozotocin. Plasma concentrations of baicalin were measured following oral (200 mg/kg) or intravenous (12 mg/kg) administration. Everted intestinal transport, intestinal mucosal metabolism of baicalin and intestinal beta-glucuronidase activity were also investigated. It was found that the diabetic condition significantly increased the exposure of baicalin following oral doses (AUC 100.77 +/- 4.16 microg x h/mL in diabetic rats vs. 48.48 +/- 7.94 microg x h/mL in normal rats). In contrast, the diabetic condition significantly decreased the exposure of baicalin following intravenous doses (AUC 11.20 +/- 2.28 microg x h/mL in diabetic rats vs. 18.02 +/- 3.45 microg x h/mL in normal rats). We also found lower apparent permeability coefficients of baicalin in the ileum of diabetic rats (8.43 x 10 (-6) +/- 2.40 x 10 (-6) cm/s in diabetic rats vs. 5.21 x 10 (-5) +/- 1.55 x 10 (-5) cm/s in normal rats). Further studies showed that the diabetic condition enhanced the hydrolysis of baicalin to baicalein in intestinal mucosal, accompanied by an increase of beta-glucuronidase activity. All these results suggested that the higher oral exposure of baicalin in diabetic rats did not result from the decreased hepatic metabolism or increased intestinal absorption of baicalin. The enhancement of intestinal beta-glucuronidase activity may partly account for the higher exposure of baicalin in diabetic rats after oral administration. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  12. Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats.

    Science.gov (United States)

    Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

    2014-08-01

    During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.

  13. The effect of Urtica dioica extract on the number of astrocytes in the dentate gyrus of diabetic rats.

    Science.gov (United States)

    Jahanshahi, M; Golalipour, M J; Afshar, M

    2009-05-01

    Diabetes mellitus is associated with cerebral alterations in both human and animal models of the disease. These alterations include abnormal expression of hypothalamic neuropeptides and hippocampal astrogliosis. Urtica dioica (Nettle) is among several species listed for their use against diabetes in folk medicine. The aim of this study was the evaluation of the astrocyte number in the dentate gyrus of diabetic rats after treatment with nettle. A total of 21 male albino Wistar rats were used in the present study. The animals were divided into three groups: control, nettle-untreated diabetic, and nettle treated diabetic. Hyperglycaemia was induced by streptozotocin (80 mg/kg) in the animals of the diabetic and treatment groups. One week after injection of the streptozotocin, the animals in the treatment group received a hydroalcoholic extract of Urtica dioica (100 mg/kg/day) for 4 weeks intraperitoneally. After a 5-week survival period, all the rats were sacrificed and coronal sections were taken from the dorsal hippocampal formation of the right cerebral hemispheres. The area densities of the astrocytes were measured and compared between the three groups (p < 0.05). The number of astrocytes increased in the diabetic rats (24.06 +/- 9.57) compared with the controls (17.52 +/- 6.66). The densities in the treated rats (19.50 +/- 6.16) were lower than in the diabetic rats. Furthermore, the control and treated rats showed similar densities. We concluded that U. dioica extract helped compensate for astrocytes in the treatment rats dentate gyrus in comparison with diabetic rats.

  14. Antidiabetic and Neuroprotective Effects of Trigonella Foenum-graecum Seed Powder in Diabetic Rat Brain

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2012-01-01

    Full Text Available Trigonella foenum-graecum seed powder (TSP has been reported to have hypoglycemic and hyperinsulinemic action. The objective of the study was to examine the antidiabetic and neuroprotective role of TSP in hyperglycemiainduced alterations in blood glucose, insulin levels and activities of membrane linked enzymes (Na+K+ATPase, Ca2+ATPase, antioxidant enzymes (superoxide dismutase, glutathione S-transferase, calcium (Ca2+ levels, lipid peroxidation, membrane fluidity and neurolipofuscin accumulation in the diabetic rat brain. Female Wistar rats weighing between 180 and 220 g were made diabetic by a single injection of alloxan monohydrate (15 mg/100 g body weight, diabetic rats were given 2 IU insulin, per day with 5% TSP in the diet for three weeks. A significant increase in lipid peroxidation was observed in diabetic brain. The increased lipid peroxidation following chronic hyperglycemia was accompanied with a significant increase in the neurolipofuscin deposition and Ca2+ levels with decreased activities of membrane linked ATPases and antioxidant enzymes in diabetic brain. A decrease in synaptosomal membrane fluidity may influence the activity of membrane linked enzymes in diabetes. The present study showed that TSP treatment can reverse the hyperglycemia induced changes to normal levels in diabetic rat brain. TSP administration amended effect of hyperglycemia on alterations in lipid peroxidation, restoring membrane fluidity, activities of membrane bound and antioxidant enzymes, thereby ameliorating the diabetic complications.

  15. Antidiabetic and Antioxidant Properties of Triticum aestivum in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Yogesha Mohan

    2013-01-01

    Full Text Available The antidiabetic and antioxidant potential of Triticum aestivum were evaluated by using in vivo methods in normal and streptozotocin-induced diabetic rats. Diabetes was induced in the Wistar strain albino rats by injecting streptozotocin at a dose of 55 mg/kg body weight. Ethanolic extracts of Triticum aestivum at doses of 100 mg/kg body weight were administered orally for 30 days. Various parameters were studied and the treatment group with the extract showed a significant increase in the liver glycogen and a significant decrease in fasting blood glucose, glycosylated hemoglobin levels, and serum marker enzyme levels. The total cholesterol and serum triglycerides levels, low density lipoprotein, and very low density lipoprotein were also significantly reduced and the high density lipoprotein level was significantly increased upon treatment with the Triticum aestivum ethanol extract. A significant decrease in the levels of lipid peroxides, superoxide dismutase, and glutathione peroxidise and increase in the levels of vitamin E, catalase, and reduced glutathione were observed in Triticum aestivum treated diabetic rats. Thus, from this study we conclude that ethanolic extract of Triticum aestivum exhibited significant antihyperglycemic, hypolipidemic, and antioxidant activities in streptozotocin-induced diabetic rats.

  16. Effect of Whole Body Low Dose Radiation (WB-LDR) on diabetic rats

    International Nuclear Information System (INIS)

    Roy, B.G.

    2014-01-01

    Exposure of type II diabetic mice to LDR has been shown to significantly up regulate pancreatic antioxidants along with reduction of glucose levels. Present study was aimed to evaluate the effects of WB-LDR on type II diabetic rats. Sprague-Dawley male rats (n=18) were pre-treated with Alloxan Monohydrate (150 mg/kg body weight, IP) to induce hyperglycemia. Elevated level of blood glucose was monitored for consecutive 10 days by Glucometer (Accu-Chek, Active) before irradiation. Two group of rats (n=12) were exposed to single dose of 0.25 Gy and 0.5 Gy of gamma radiation at the rate of 1.02 Gy/minute. Blood glucose level, feed, water intake and body weight was monitored for 10 days post irradiation. Results revealed weight loss, polydipsia, polyphagia and elevated blood glucose level up to 10th day in diabetic control, whereas; reverse trend was observed from 7th day post irradiation in two treated groups. However, no significant difference was found between two treated groups. The results indicate that treatment with WB-LDR reduces the blood-glucose level and so its complications in diabetic rats. (author)

  17. Impact of Ellagic Acid in Bone Formation after Tooth Extraction: An Experimental Study on Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mazen M. Jamil Al-Obaidi

    2014-01-01

    Full Text Available Objectives. To estimate the impact of ellagic acid (EA towards healing tooth socket in diabetic animals, after tooth extraction. Methods. Twenty-four Sprague Dawley male rats weighing 250–300 g were selected for this study. All animals were intraperitoneally injected with 45 mg/kg (b.w. of freshly prepared streptozotocin (STZ, to induce diabetic mellitus. Then, the animals were anesthetized, and the upper left central incisor was extracted and the whole extracted sockets were filled with Rosuvastatin (RSV. The rats were separated into three groups, comprising 8 rats each. The first group was considered as normal control group and orally treated with normal saline. The second group was regarded as diabetic control group and orally treated with normal saline, whereas the third group comprised diabetic rats, administrated with EA (50 mg/kg orally. The maxilla tissue stained by eosin and hematoxylin (H&E was used for histological examinations and immunohistochemical technique. Fibroblast growth factor (FGF-2 and alkaline phosphatase (ALP were used to evaluate the healing process in the extracted tooth socket by immunohistochemistry test. Results. The reactions of immunohistochemistry for FGF-2 and ALP presented stronger expression, predominantly in EA treated diabetic rat, than the untreated diabetic rat. Conclusion. These findings suggest that the administration of EA combined with RSV may have accelerated the healing process of the tooth socket of diabetic rats, after tooth extraction.

  18. Metabolic Syndrome and Bone: Pharmacologically Induced Diabetes has Deleterious Effect on Bone in Growing Obese Rats.

    Science.gov (United States)

    Bagi, Cedo M; Edwards, Kristin; Berryman, Edwin

    2017-12-01

    Metabolic syndrome and osteoporosis share similar risk factors. Also, patients with diabetes have a higher risk of osteoporosis and fracture. Liver manifestations, such as non-alcoholic steatohepatitis (NASH), of metabolic syndrome are further aggravated in diabetics and often lead to liver failure. Our objective was to create a rat model of human metabolic syndrome and determine the long-term impact of early-onset T1D on bone structure and strength in obese growing rats. Male rats were given either standard chow and RO water (Controls) or a high-fat, high-cholesterol diet and sugar water containing 55% fructose and 45% glucose (HFD). A third group of rats received the HFD diet and a single dose of streptozotocin to induce type 1 diabetes (HFD/Sz). Body weight and glucose tolerance tests were conducted several times during the course of the study. Serum chemistry, liver enzymes, and biomarkers of bone metabolism were evaluated at 10 and 28 weeks. Shear wave elastography and histology were used to assess liver fibrosis. Cancellous bone structure and cortical bone geometry were evaluated by mCT and strength by the 3-point bending method. Body mass and fat accumulation was significantly higher in HFD and HFD/Sz rats compared to Controls. Rats in both the HFD and HFD/Sz groups developed NASH, although the change was more severe in diabetic rats. Although both groups of obese rats had larger bones, their cancellous structure and cortical thickness were reduced, resulting in diminished strength that was further aggravated by diabetes. The HFD and HFD/Sz rats recapitulate MeSy in humans with liver pathology consistent with NASH. Our data provide strong indication that obesity accompanied by type 1 diabetes significantly aggravates comorbidities of MeSy, including the development of osteopenia and weaker bones. The juvenile rat skeleton seems to be more vulnerable to damage imposed by obesity and diabetes and may offer a model to inform the underlying pathology associated

  19. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Directory of Open Access Journals (Sweden)

    G.B. Peres

    2014-06-01

    Full Text Available It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old, while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease. There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  20. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Peres, G.B. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Juliano, M.A. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Biofísica, São Paulo, SP, Brasil, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Aguiar, J.A.K.; Michelacci, Y.M. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10{sup th} or the 30{sup th} day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10{sup th}, but not on the 30{sup th} day. Sulfatase decreased 30% on the 30{sup th} day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  1. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    International Nuclear Information System (INIS)

    Peres, G.B.; Juliano, M.A.; Aguiar, J.A.K.; Michelacci, Y.M.

    2014-01-01

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10 th or the 30 th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10 th , but not on the 30 th day. Sulfatase decreased 30% on the 30 th day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver

  2. Partial recovery of erythrocyte glycogen in diabetic rats treated with phenobarbital

    Directory of Open Access Journals (Sweden)

    da-Silva C.A.

    1997-01-01

    Full Text Available Erythrocytes may play a role in glucose homeostasis during the postprandial period. Erythrocytes from diabetic patients are defective in glucose transport and metabolism, functions that may affect glycogen storage. Phenobarbital, a hepatic enzyme inducer, has been used in the treatment of patients with non-insulin-dependent diabetes mellitus (NIDDM, increasing the insulin-mediated glucose disposal. We studied the effects of phenobarbital treatment in vivo on glycemia and erythrocyte glycogen content in control and alloxan-diabetic rats during the postprandial period. In control rats (blood glucose, 73 to 111 mg/dl in femoral and suprahepatic veins the erythrocyte glycogen content was 45.4 ± 1.1 and 39.1 ± 0.8 µg/g Hb (mean ± SEM, N = 4-6 in the femoral artery and vein, respectively, and 37.9 ± 1.1 in the portal vein and 47.5 ± 0.9 in the suprahepatic vein. Diabetic rats (blood glucose, 300-350 mg/dl presented low (P<0.05 erythrocyte glycogen content, i.e., 9.6 ± 0.1 and 7.1 ± 0.7 µg/g Hb in the femoral artery and vein, respectively, and 10.0 ± 0.7 and 10.7 ± 0.5 in the portal and suprahepatic veins, respectively. After 10 days of treatment, phenobarbital (0.5 mg/ml in the drinking water did not change blood glucose or erythrocyte glycogen content in control rats. In diabetic rats, however, it lowered (P<0.05 blood glucose in the femoral artery (from 305 ± 18 to 204 ± 45 mg/dl and femoral vein (from 300 ± 11 to 174 ± 48 mg/dl and suprahepatic vein (from 350 ± 10 to 174 ± 42 mg/dl, but the reduction was not sufficient for complete recovery. Phenobarbital also stimulated the glycogen synthesis, leading to a partial recovery of glycogen stores in erythrocytes. In treated rats, erythrocyte glycogen content increased to 20.7 ± 3.8 µg/g Hb in the femoral artery and 30.9 ± 0.9 µg/g Hb in the suprahepatic vein (P<0.05. These data indicate that phenobarbital activated some of the insulin-stimulated glucose metabolism steps which were

  3. Amelioration of Glomerulosclerosis by Satureja khozestanica Essential Oil in Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Hassan Ahmadvand

    2014-10-01

    Full Text Available Background: Satureja khuzestanica, an endemic plant of Iran, has been reported to be used traditionally to treat diabetes. We examined possible protective effect of Satureja khozestanica essential oil (SKE on glomerulosclerosis in alloxan-induced type 1 diabetic rats. Materials and Methods: In this experimental study, 30 Sprage-dawley male rats were divided into 3 groups randomly; group 1 as control, group 2 diabetic untreated, and group 3 treatments with SKE by 500 ppm in drinking water, respectively. Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, animals were anaesthetized; livers and kidneys were then removed immediately. Kidney paraffin sections were prepared and stained by periodic acid Schiff method. Glomerular volume and leukocyte infiltration were estimated by stereological rules and glomerular sclerosis was studied semi-quantitatively. Results: Flow treatment of diabetic animals with SKE could significantly inhibit glomerular hypertrophy (22% leukocyte infiltration (31% and glomerulosclerosis (20% in comparison with the diabetic untreated group. Conclusion: The findings showed that SKE alleviates loss of glomerular volume, leukocyte infiltration, and glomerulosclerosis and exerts beneficial effects on the lipid peroxidation in alloxan-induced type 1 diabetic rats.

  4. Hepatoprotective, Antihyperlipidemic, and Anti-inflammatory Activity of Moringa oleifera in Diabetic-induced Damage in Male Wistar Rats

    Science.gov (United States)

    Omodanisi, Elizabeth I.; Aboua, Yapo G.; Chegou, Novel N.; Oguntibeju, Oluwafemi O.

    2017-01-01

    Background: The number of individuals with diabetes is increasing daily, and diabetes is presently estimated to affect about 422 million adults worldwide. Conventional drugs used to treat diabetes are not without severe side effects, accessibility, and affordability. This study elucidates the potential effects of Moringa oleifera (MO) leaves extract to manage and treat diabetes induced in male Wistar rats. Materials and Methods: Adult male Wistar rats were randomly divided into four groups (n = 12/group): NC – nondiabetic rats (positive control), MO – nondiabetic-treated rats, DM – diabetic rats (negative control), DM + MO – diabetic-treated rats. Hepatic enzymes and biochemical parameters as well as antioxidant capacity and inflammatory cytokine levels were assessed. Levels of low-density lipoprotein, high-density lipoprotein, and total cholesterol were evaluated. Results: Oral administration of methanolic extract of MO (250 mg/kg) to diabetic rats for 42 days showed a significant reduction in hepatic enzyme markers and normalized lipid profile parameters in the serum compared to normal control group. Treatment also increased the level of antioxidant capacity and alleviated inflammatory biomarkers of the liver. Histology sections of the liver tissue showed protective effect of MO in treated rats. Conclusions: MO showed hepatoprotective, anti-inflammatory, and lipid-lowering effects against streptozotocin-induced hepatotoxicity. Histological section demonstrated specific alterations in the liver of the diabetic and nondiabetic male Wistar rats while MO treatment revealed improvement in liver alterations. Abbreviations Used: IL 1: Interleukin 1, IL 6: Interleukin 16, MCP-1: Monocyte chemotactic protein, TNF-α: Tumor Necrotic factor alpha, ROS: Reactive oxygen species, MO: Moringa oleifera, STZ: Streptozotocin, SRC: Standard rat chow, ALP: Alkaline phosphatase, AST: Aspartate aminotransferase, ALT: Alanine aminotransferase, ORAC: Oxygen radical absorbance

  5. Changes of plasma angiogenic factors during chronic resistance exercise in type 1 diabetic rats

    International Nuclear Information System (INIS)

    Esfahani, S.P.; Gharakhanlou, R.

    2012-01-01

    Objective: Exercise has several beneficial effects on cardiovascular system. However, the exact mechanism is unclear. The purpose of this study was to evaluate the effects of chronic resistance exercise on some plasma angiogenic factors in type 1 diabetic rats. Methodology: Thirty male Wistar rats were divided into three groups of control, diabetic and diabetic trained (n = 10 each). Diabetes was induced by a single intraperitoneal injection of streptozotocin (55 mg/kg). The rats in the trained group undertook one training session per day, 3 days/week, for 4 weeks. Blood samples were taken and the concentrations of plasma glucose, lipid profile, nitric oxide (NO), vascular endothelial growth factor (VEGF) and soluble form of VEGF receptor-1 (sFlt-1) were determined. Results: We found a significant reduction in plasma NO concentrations in diabetic rats compared to the controls (p 0.05). There were no significant differences in plasma VEGF and sFlt-1 concentrations between diabetic sedentary and trained groups (p > 0.05). Moreover, VEGF/sFlt-1 ratios in diabetic animals were lower than the control group and resistance exercise could not increase this ratio in diabetic animals (p > 0.05) Conclusion: Resistance exercise could not change plasma VEGF, sFlt-1 and VEGF/sFlt-1 ratio. However, it increased plasma NO concentrations in diabetic animals. More studies are needed to determine the effects of this type of exercise on the angiogenesis process. (author)

  6. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    Science.gov (United States)

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.

  7. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats.

    Directory of Open Access Journals (Sweden)

    Ricardo Valladares

    Full Text Available BACKGROUND: The intestinal epithelium is a barrier that composes one of the most immunologically active surfaces of the body due to constant exposure to microorganisms as well as an infinite diversity of food antigens. Disruption of intestinal barrier function and aberrant mucosal immune activation have been implicated in a variety of diseases within and outside of the gastrointestinal tract. With this model in mind, recent studies have shown a link between diet, composition of intestinal microbiota, and type 1 diabetes pathogenesis. In the BioBreeding rat model of type 1 diabetes, comparison of the intestinal microbial composition of diabetes prone and diabetes resistant animals found Lactobacillus species were negatively correlated with type 1 diabetes development. Two species, Lactobacillus johnsonii and L. reuteri, were isolated from diabetes resistant rats. In this study diabetes prone rats were administered pure cultures of L. johnsonii or L. reuteri isolated from diabetes resistant rats to determine the effect on type 1 diabetes development. METHODOLOGY/PRINCIPAL: Findings Results Rats administered L. johnsonii, but not L. reuteri, post-weaning developed type 1 diabetes at a protracted rate. Analysis of the intestinal ileum showed administration of L. johnsonii induced changes in the native microbiota, host mucosal proteins, and host oxidative stress response. A decreased oxidative intestinal environment was evidenced by decreased expression of several oxidative response proteins in the intestinal mucosa (Gpx1, GR, Cat. In L. johnsonii fed animals low levels of the pro-inflammatory cytokine IFNgamma were correlated with low levels of iNOS and high levels of Cox2. The administration of L. johnsonii also resulted in higher levels of the tight junction protein claudin. CONCLUSIONS: It was determined that the administration of L. johnsonii isolated from BioBreeding diabetes resistant rats delays or inhibits the onset of type 1 diabetes in Bio

  8. Post-translational processing of synaptophysin in the rat retina is disrupted by diabetes.

    Directory of Open Access Journals (Sweden)

    Travis S D'Cruz

    Full Text Available Synaptophysin, is an abundant presynaptic protein involved in synaptic vesicle recycling and neurotransmitter release. Previous work shows that its content is significantly reduced in the rat retina by streptozotocin (STZ-diabetes. This study tested the hypothesis that STZ-diabetes alters synaptophysin protein turnover and glycosylation in the rat retina. Whole explant retinas from male Sprague-Dawley rats were used in this study. Rats were made diabetic by a single intraperitoneal STZ injection (65 mg/kg body weight in 10 mM sodium citrate, pH 4.5. mRNA translation was measured using a (35S-methionine labeling assay followed by synaptophysin immunoprecipitation and autoradiography. A pulse-chase study was used to determine the depletion of newly synthesized synaptophysin. Depletion of total synaptophysin was determined after treatment with cycloheximide. Mannose rich N-glycosylated synaptophysin was detected by treating retinal lysates with endoglycosidase H followed by immunoblot analysis. Synaptophysin mRNA translation was significantly increased after 1 month (p<0.001 and 2 months (p<0.05 of STZ-diabetes, compared to age-matched controls. Newly synthesized synaptophysin degradation was significantly accelerated in the retina after 1 and 2 months of diabetes compared to controls (p<0.05. Mannose rich glycosylated synaptophysin was significantly increased after 1 month of STZ-diabetes compared to controls (p<0.05.These data suggest that diabetes increases mRNA translation of synaptophysin in the retina, resulting in an accumulation of mannose rich glycosylated synaptophysin, a transient post-translational state of the protein. This diabetes-induced irregularity in post-translational processing could explain the accelerated degradation of retinal synaptophysin in diabetes.

  9. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Basiru Olaitan Ajiboye

    2018-03-01

    Full Text Available Purpose: Diabetes mellitus is one of the major endocrine disorders, characterized by impaired insulin action and deficiency. Traditionally, Artocarpus heterophyllus stem bark has been reputably used in the management of diabetes mellitus and its complications. The present study evaluates the ameliorative activity of ethanol extract of Artocarpus heterophyllus stem bark in alloxan-induced diabetic rats. Methods: Diabetes mellitus was induced by single intraperitoneal injection of 150 mg/kg body weight of alloxan and the animals were orally administered with 50, 100 and 150 mg/kg body weight ethanol extract of Artocarpus heterophyllus stem bark once daily for 21 days. Results: At the end of the intervention, diabetic control rats showed significant (p0.05 different with non-diabetic rats. Conclusion: The results suggest that ethanol extract of Artocarpus heterophyllus stem bark may be useful in ameliorating complications associated with diabetes mellitus patients.

  10. Effects of Spironolactone and Losartan on Diabetic Nephropathy in a Type 2 Diabetic Rat Model

    Directory of Open Access Journals (Sweden)

    Mi Young Lee

    2011-04-01

    Full Text Available BackgroundWhile there is an evidence that the anti-inflammatory properties of spironolactone can attenuate proteinuria in type 2 diabetes, its effects on vascular endothelial growth factor (VEGF expression in diabetic nephropathy have not been clearly defined. In this study, we examined the effects of spironolactone, losartan, and a combination of these two drugs on albuminuria, renal VEGF expression, and inflammatory and oxidative stress markers in a type 2 diabetic rat model.MethodsThirty-three Otsuka-Long-Evans-Tokushima-Fatty (OLETF rats were divided into four groups and treated with different medication regimens from weeks 25 to 50; OLETF diabetic controls (n=5, spironolactone-treated (n=10, losartan-treated (n=9, and combination of spironolactone- and losartan-treated (n=9.ResultsAt week 50, the albumin-to-creatinine ratio was significantly decreased in the losartan and combination groups compared to the control OLETF group. No decrease was detected in the spironolactone group. There was a significant reduction in renal VEGF, transforming growth factor (TGF-β, and type IV collagen mRNA levels in the spironolactone- and combination regimen-treated groups. Twenty-four hour urine monocyte chemotactic protein-1 levels were comparable in all four groups but did show a decreasing trend in the losartan and combination regimen groups. Twenty-four hour urine malondialdehyde levels were significantly decreased in the spironolactone- and combination regimen-treated groups.ConclusionThese results suggest that losartan alone and a combined regimen of spironolactone and losartan could ameliorate albuninuria by reducing renal VEGF expression. Also, simultaneous treatment with spironolactone and losartan may have protective effects against diabetic nephropathy by decreasing TGF-β and type IV collagen expression and by reducing oxidative stress in a type 2 diabetic rat model.

  11. Tangzhining exhibits a protective effect against cognitive dysfunction in diabetic rats

    OpenAIRE

    Song, Xiaomei; Wang, Wei; Kang, Yaguo; Zhang, Xin; Jiang, Yi; Yue, Zhenggang; Tang, Zhishu

    2015-01-01

    Previous studies have suggested that diabetes significantly impairs the cognitive function. Tangzhining (TZN), as a kind of Traditional Chinese Medicine (TCM), has been widely used to treat diabetes in China. However, the effect of TZN on treatment of diabetes-induced learning and memory deficits has not been well documented. The present study was to investigate the effect of TZN on diabetes-induced learning and memory deficits and delineate the underlying molecular mechanism. Diabetic rats w...

  12. Altered synthesis of some secretory proteins in pancreatic lobules isolated from streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Duan, R.D.; Erlanson-Albertsson, C.

    1990-01-01

    The in vitro incorporation of [35S]cysteine into lipase, colipase, amylase, procarboxypeptidase A and B, and the serine proteases and total proteins was studied in pancreatic lobules isolated from normal and diabetic rats with or without insulin treatment. The incorporation of [35S]cysteine into total proteins was 65% greater in pancreatic lobules from diabetic animals than from normal rats. The increased incorporation was partly reversed by insulin treatment (2 U/100 g/day for 5 days) of diabetic rats. The relative rates of biosynthesis for amylase and the procarboxypeptidases in diabetic pancreatic lobules were decreased by 75 and 25%, respectively, after 1 h of incubation, while those for lipase, colipase, and the serine proteases were increased by 90, 85, and 35%, respectively. The absolute rates of synthesis for these enzymes changed in the same direction as the relative rates in diabetic lobules, except that for the procarboxypeptidases, which did not change. The changed rates of biosynthesis for the pancreatic enzymes were reversed by insulin treatment of the diabetic rats. Kinetic studies showed that the incorporation of [35S]cysteine into amylase, lipase, and colipase was linear until up to 2 h of incubation in normal pancreatic lobules, while in the diabetic lobules the incorporation into lipase and colipase was accelerated, reaching a plateau level already after 1 h of incubation. It is concluded that the biosynthesis of pancreatic secretory proteins in diabetic rats is greatly changed both in terms of quantity and kinetics

  13. Placental dysfunction in Suramin-treated rats: impact of maternal diabetes and effects of antioxidative treatment.

    Science.gov (United States)

    Nash, Peppi; Olovsson, Matts; Eriksson, Ulf J

    2005-04-01

    The aim of the present study was to evaluate a rat model of placental dysfunction/preeclampsia in pregnancies complicated by maternal diabetes. A second objective was to evaluate the effects of vitamin E treatment in this model. Normal and streptozotocin-induced diabetic rats of two different strains (U and H) were given intraperitoneal (IP) injections of the angiogenesis inhibitor Suramin (Sigma Chemical Co, St Louis, MO) or saline in early pregnancy, and fed standard or vitamin E-enriched food. The outcome of pregnancy was evaluated on gestational day 20. In both rat strains Suramin caused fetal growth retardation, decreased placental blood flow, and increased placental concentration of the isoprostane 8-iso-PGF(2alpha). In the U rats Suramin also caused increased fetal resorption rate, increased maternal blood pressure, decreased renal blood flow, and diminished maternal growth. Diabetes caused severe maternal and fetal growth retardation, increased resorption rate, and increased placental 8-iso-PGF(2alpha) concentration independent of Suramin administration. The maternal and fetal effects of Suramin and diabetes were more pronounced in the U strain than in the H strain. Vitamin E treatment improved the status of Suramin-injected diabetic rats: in U rats the blood pressure increase was normalized; and in both U and H rats the decreased placental blood flow was marginally enhanced, and the increase in placental 8-iso-PGF(2alpha) was partly normalized by vitamin E. Suramin injections to pregnant rats cause a state of placental insufficiency, which in U rats resembles human preeclampsia. The induction of this condition is at least partly mediated by oxidative stress, and antagonized by antioxidative treatment. Maternal diabetes involves increased oxidative stress, and causes both maternal and fetal morbidity, which are only marginally affected by additional Suramin treatment.

  14. Effects of acetylcysteine and probucol on contrast medium-induced depression of intrinsic renal glutathione peroxidase activity in diabetic rats.

    Science.gov (United States)

    Yen, Hsueh-Wei; Lee, Hsiang-Chun; Lai, Wen-Te; Sheu, Sheng-Hsiung

    2007-04-01

    Antioxidants such as N-acetylcysteine and probucol have been used to protect patients from contrast media-induced nephrotoxicity. The mechanisms underlying these protective effects are not well understood. We hypothesized that acetylcysteine and probucol alter the activity of endogenous antioxidant enzyme activity. Four weeks after induction of diabetes with streptozotocin, diabetic and nondiabetic rats were divided into three groups. Group 1 rats did not receive any antioxidant agents. Group 2 rats were treated with acetylcysteine and group 3 rats with probucol for 1 week before injection of the contrast medium diatrizoate (DTZ). We found that diabetic rats had higher renal glutathione peroxidase (GPx) activity than normal rats. DTZ suppressed renal GPx activity significantly in both group 1 diabetic and normal rats. Interestingly, renal GPx activity in both diabetic and normal rats pretreated with acetylcysteine or probucol was not inhibited by DTZ. Renal superoxide dismutase (SOD) increased significantly in normal rats after DTZ injection, but not in diabetic rats. Finally, acetylcysteine or probucol did not significantly influence renal SOD. These findings suggest that the renal protective effects of acetylcysteine and probucol against contrast-induced oxidative stress and nephrotoxicity may be mediated by altering endogenous GPx activity.

  15. Effects of Andiroba oil (Carapa guianensis on wound healing in alloxan-diabetic rats

    Directory of Open Access Journals (Sweden)

    Bruna Angelina Alves de Souza

    2017-10-01

    Full Text Available Purpose: To evaluate wound healing in diabetic rats by using topic Andiroba oil (Carapa guianensis. Methods: Six male, adult, Wistar rats were distributed into three groups: Sham group (wound treatment with distilled water; Collagenase group (treatment with collagenase ointment; and Andiroba group (wound treatment with Andiroba oil. The wound was evaluated considering the macroscopic and microscopic parameters. Results: The results indicated differences in the healing of incisional wounds between treatments when compared to control group. Accelerated wound healing was observed in the group treated with Andiroba oil and Collagenase in comparison to control group, especially after the 14th day. Morphometric data confirmed the structural findings. Conclusion: There was significant effect in topical application of Andiroba oil on wound healing in rats with induced diabetes.   Keywords: Medicinal plants. Diabetes Mellitus. Wound healing. Rats.

  16. Hypo glycemic and Hypolipidaemic Effect of cinnamon Extract in Diabetic and irradiated Rats

    International Nuclear Information System (INIS)

    Mohamed, E.T.

    2013-01-01

    This study was made to investigate the antidiabetic and hypolipidemic potential of cinnamon against radiation and/or streptozotocin (STZ) induced diabetes in rats. In the experiment, a total of 36 rats were used and the rats were divided into six groups each of six rats: group 1, normal untreated rats; group 2, animals received only cinnamon (200 mg/kg/day) for 30 consecutive days; group 3, animals exposed to 4 Gy whole body gamma radiation as a single shot dose; group 4, animals were injected intraperitoneally with a freshly prepared solution of streptozotocin (45 mg/kg) in 0.1 M citrate buffer, ph 4.5; group 5, rats were injected intraperitoneally with a freshly prepared solution of streptozotocin (45 mg/kg), followed by irradiation at a dose level of 4 Gy; and group 6, rats were given orally cinnamon (200 mg/kg/day) for 30 days then injected intraperitoneally with a freshly prepared solution of streptozotocin followed by irradiation at a dose level of 4 Gy. Blood samples were collected from all groups for the determination of serum fasting blood sugar (FBG), glycidate hemoglobin (HbA1c), plasma insulin, serum C-peptide, serum total cholesterol (TC), Serum triglyceride (TG), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C). In diabetic and irradiated groups there was a highly significant increase in the percentage of (HbA1c) and concentration of FBG, TC, TG, LDL-C and a significant decrease in the level of HDL-C, plasma insulin and C-peptide compared to those of control group. Treatment of the diabetic irradiated rats with cinnamon caused a significant decrease in the percentage of HbA1c and concentration of FBG, TC, TG, LDL-C and significant increase in the level of HDL-C, plasma insulin and C-peptide compared to the diabetic irradiated rats. On the basis of these results, one could conclude that cinnamon exhibit hypo glycemic and hypolipidaemic properties and could be considered a promising agent for diabetes

  17. Diabetes enhances dental caries and apical periodontitis in caries-susceptible WBN/KobSlc rats.

    Science.gov (United States)

    Kodama, Yasushi; Matsuura, Masahiro; Sano, Tomoya; Nakahara, Yutaka; Ozaki, Kiyokazu; Narama, Isao; Matsuura, Tetsuro

    2011-02-01

    Many epidemiologic studies have suggested that diabetes may be an important risk factor for periodontal disease. To determine whether diabetes induces or enhances periodontal disease or dental caries, dental tissue from diabetic male and nondiabetic female WBN/KobSlc rats and male and female age-matched nondiabetic F344 rats was analyzed morphologically and morphometrically for these 2 types of lesions. Soft X-ray examination revealed that the incidence and severity of both molar caries and alveolar bone resorption were much higher in male WBN/KobSlc rats with chronic diabetes than in nondiabetic female rats of the same strain. Histopathologic examination showed that dental caries progressed from acute to subacute inflammation due to bacterial infections and necrosis in the pulp when the caries penetrated the dentin. In the most advanced stage of dental caries, inflammatory changes caused root abscess and subsequent apical periodontitis, with the formation of granulation tissue around the dental root. Inflammatory changes resulted in resorption of alveolar bone and correlated well with the severity of molar caries. Our results suggest that diabetic conditions enhance dental caries in WBN/KobSlc rats and that periodontal lesions may result from the apical periodontitis that is secondary to dental caries.

  18. The protective effect of dietary flavonoid fraction from Acanthophora spicifera on streptozotocin induced oxidative stress in diabetic rats

    Directory of Open Access Journals (Sweden)

    Lavakumar Vuppalapati

    2016-06-01

    Full Text Available The present investigation was considered in arraying of antidiabetic and antioxidant activity from dietary flavonoid loaded fraction of Acanthophora spicifera (A. spicifera, Family: Rhodomelaceae on streptozotocin (STZ induced oxidative stress rats. The testings were acted upon male rats, which were alienated into five groups: control group, diabetic group (single dose of 65 mg/kg, streptozotocin (STZ i.p., diabetic with insulin (6 IU, and diabetic with flavonoid rich fraction groups (FRF at 50 and 100 mg/kg body weight, given orally for 21 days. The blood glucose level was determined at different week intermissions. The antioxidant consequences of FRF on STZ-induced diabetic rats were determined by the estimations of the oxidative stress marker like malonyldialdehyde and antioxidant enzymes such as superoxide dismutase, catalase and glutathione in tissue homogenates of heart, liver and kidney. FRF treatment of diabetic rats significantly (P < 0.05 diminishes the blood glucose altitudes to normal in contrast with diabetic rats. However, FRF administration, significantly decreased the malonyldialdehyde (MDA and increased the activities of superoxide dismutase (SOD, catalase (CAT and glutathione levels (GSH in diabetic rats. The outcome designates that FRF fraction from red algae A. spicifera was potent anti diabetic and antioxidant asset against STZ induced diabetes and oxidative tissue breakups.

  19. Positive effects of acarbose in the diabetic rat are not altered by feeding schedule.

    Science.gov (United States)

    Wright, B E; Vasselli, J R; Katovich, M J

    1998-03-01

    We previously demonstrated that chronic dietary treatment with acarbose, an alpha-glucosidase inhibitor, improves glucose homeostasis in the streptozotocin (STZ)-induced diabetic rat. In this study we evaluated the effects of 4 weeks of acarbose treatment on glucose homeostasis in STZ-diabetic rats for both meal-fed (three times daily) and ad libitum feeding conditions. Sprague Dawley male rats (n = 58) were started on a daily meal-feeding paradigm consisting of three 2-h feeding periods: 0700 to 0900 hours, 1300 to 1500 hours, and 1900 to 2100 hours. Following 2 weeks of adaptation, half of the animals were switched to ad libitum feeding. The feeding paradigm itself (meal fed versus ad lib.) affected neither body weight nor daily food intake. Twenty animals from each feeding group then received STZ (60 mg/kg i.v.), whereas control animals received vehicle injections only. Two days later, the diet of 10 STZ-treated animals from each paradigm was supplemented with acarbose (40 mg of BAY G 5421/100-g diet), and the groups were treated for 4 weeks. Untreated diabetic rats had lower body weight than vehicle-injected control rats at all time points after STZ treatment. Acarbose treatment delayed this effect on body weight. STZ treatment induced hyperphagia regardless of feeding paradigm, which was significantly attenuated by acarbose only for the first week of treatment. Untreated diabetic rats had fasting blood glucose values 4 times those of vehicle-injected controls in both the meal-fed and ad libitum-fed conditions. Acarbose significantly lowered fasting blood glucose in the treated STZ groups. Blood glucose was also assessed 0, 90, and 180 min following the start of a meal. The postprandial rise in blood glucose was significantly reduced in acarbose-treated meal-fed diabetic rats, to values not significantly different from those of vehicle-injected control rats. During the fourth week of treatment glycated hemoglobin levels were significantly higher in untreated

  20. Low Protein Diet Inhibits Uric Acid Synthesis and Attenuates Renal Damage in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jianmin Ran

    2014-01-01

    Full Text Available Aim. Several studies indicated that hyperuricemia may link to the worsening of diabetic nephropathy (DN. Meanwhile, low protein diet (LPD retards exacerbation of renal damage in chronic kidney disease. We then assessed whether LPD influences uric acid metabolism and benefits the progression of DN in streptozotocin- (STZ- induced diabetic rats. Methods. STZ-induced and control rats were both fed with LPD (5% and normal protein diet (18%, respectively, for 12 weeks. Vital signs, blood and urinary samples for UA metabolism were taken and analyzed every 3 weeks. Kidneys were removed at the end of the experiment. Results. Diabetic rats developed into constantly high levels of serum UA (SUA, creatinine (SCr and 24 h amounts of urinary albumin excretion (UAE, creatintine (UCr, urea nitrogen (UUN, and uric acid (UUA. LPD significantly decreased SUA, UAE, and blood glucose, yet left SCr, UCr, and UUN unchanged. A stepwise regression showed that high UUA is an independent risk factor for DN. LPD remarkably ameliorated degrees of enlarged glomeruli, proliferated mesangial cells, and hyaline-degenerated tubular epithelial cells in diabetic rats. Expression of TNF-α in tubulointerstitium significantly decreased in LPD-fed diabetic rats. Conclusion. LPD inhibits endogenous uric acid synthesis and might accordingly attenuate renal damage in STZ-induced diabetic rats.

  1. Combating Combination of Hypertension and Diabetes in Different Rat Models

    Directory of Open Access Journals (Sweden)

    Talma Rosenthal

    2010-03-01

    Full Text Available Rat experimental models are used extensively for studying physiological mechanisms and treatments of hypertension and diabetes co-existence. Each one of these conditions is a major risk factor for cardiovascular disease (CVD, and the combination of the two conditions is a potent enhancer of CVD. Five major animal models that advanced our understanding of the mechanisms and therapeutic approaches in humans are discussed in this review: Zucker, Goto-Kakizaki, SHROB, SHR/NDmcr-cp and Cohen Rosenthal diabetic hypertensive (CRDH rats. The use of various drugs, such as angiotensin-converting enzyme (ACE inhibitors (ACEIs, various angiotensin receptor blockers (ARBs, and calcium channel blockers (CCBs, to combat the effects of concomitant pathologies on the combination of diabetes and hypertension, as well as the non-pharmacological approach are reviewed in detail for each rat model. Results from experiments on these models indicate that classical factors contributing to the pathology of hypertension and diabetes combination—Including hypertension, hyperglycemia, hyperinsulinemia and hyperlipidemia—can now be treated, although these treatments do not completely prevent renal complications. Animal studies have focused on several mechanisms involved in hypertension/diabetes that remain to be translated into clinical medicine, including hypoxia, oxidative stress, and advanced glycation. Several target molecules have been identified that need to be incorporated into a treatment modality. The challenge continues to be the identification and interpretation of the clinical evidence from the animal models and their application to human treatment.

  2. [Rhein promotes the expression of SIRT1 in kidney tissues of type 2 diabetic rat].

    Science.gov (United States)

    Chen, Weidong; Chang, Baochao; Zhang, Yan; Yang, Ping; Liu, Lei

    2015-05-01

    To observe the effect of rhein on the expression of SIRT1(Sirtuin 1) in kidney of diabetic rats, and to explore the role of rhein in protecting rat kidney against diabetic nephropathy and possible mechanism. The type 2 diabetic rats were induced by high-glucose and high-fat diet combined with streptozotocin (35 mg/kg body mass). Seventy-five eight-week-old male SD rats were randomly divided into 6 groups: normal group, diabetic group, low-, medium- and high-dose (50, 100, 150 mg/kg) rhein treatment groups and 10 mg/kg pioglitazone treatment group. The rats were given corresponding substances intragastrically once a day. At the end of the 16th week, the fasting plasma glucose (FPG), fasting insulin (FINS), triglycerides (TG), total cholesterol (TC), serum creatinine (Scr) and 24 hours urine protein (24 h U-PRO) were determined. The renal hypertrophy index (KM/BM), insulin resistance index (HOMA-IR) were calculated. The pathological changes in renal tissues were examined by PAS staining under a light microscopy. The mean glomerular area (MGA) and mean glomerular volume (MGV) were measured by pathological image analysis system. Western blotting and real-time quantitative PCR were used to determine the expression of SIRT1 in renal tissues at protein and mRNA levels, respectively. The expression of SIRT1 was down-regulated in the kidney of diabetic rats. The levels of FPG, FINS, HOMA-IR, TG, TC, Scr, 24 h U-PRO, KM/BM, MGA and MGV significantly decreased and the histopathology of renal tissues were significantly improved in all treatment groups compared with diabetic group. The expression of SIRT1 mRNA and protein markedly increased in rhein treatment groups and pioglitazone treatment group compared with diabetic group. The indicators in high-dose rhein treatment group were improved more significantly than those in the other groups. Correlation analysis showed that the expression of SIRT1 was negatively correlated with 24 h U-PRO and MGV. The expression of SIRT1 was

  3. Increase of ATP-sensitive potassium (KATP channels in the heart of type-1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Chen Zhih-Cherng

    2012-01-01

    Full Text Available Abstract Background An impairment of cardiovascular function in streptozotocin (STZ-diabetic rats has been mentioned within 5 days-to-3 months of induction. ATP-sensitive potassium (KATP channels are expressed on cardiac sarcolemmal membranes. It is highly responsive to metabolic fluctuations and can have effects on cardiac contractility. The present study attempted to clarify the changes of cardiac KATP channels in diabetic disorders. Methods Streptozotocin-induced diabetic rats and neonatal rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr were used to examine the effect of hyperglycemia on cardiac function and the expression of KATP channels. KATP channels expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of KATP channels by Western blot and Northern blot analysis. Results The result shows diazoxide produced a marked reduction of heart rate in control group. Furthermore, the methods of Northern blotting and Western blotting were employed to identify the gene expression of KATP channel. Two subunits of cardiac KATP channel (SUR2A and kir 6.2 were purchased as indicators and showed significantly decreased in both diabetic rats and high glucose treated rat cardiac myocytes. Correction of hyperglycemia by insulin or phlorizin restored the gene expression of cardiac KATP in these diabetic rats. Conclusions Both mRNA and protein expression of cardiac KATP channels are decreased in diabetic rats induced by STZ for 8 weeks. This phenomenon leads to result in desensitization of some KATP channel drugs.

  4. Effect of aluminum chloride on blood glucose level and lipid profile in normal, diabetic and treated diabetic rats.

    Science.gov (United States)

    Konda, Venugopala Rao; Eerike, Madhavi; Chary, R Prasanth; Arunachalam, Ruckmani; Yeddula, Venkata Ramana; Meti, Vinayak; Devi, T Sobita

    2017-01-01

    The objectives of the study were to assess evaluate the effects of aluminum chloride (AlCl 3 ) on blood glucose and lipid levels in normal, diabetic, and glibenclamide-treated diabetic rats. Forty-two male Wistar rats were divided into seven groups of six each. Group I was normal control, Groups II and III were given AlCl 3 50 and 100 mg/kg, and Group IV to VII were administered with streptozotocin (STZ) (60 mg/kg) intraperitoneally. Group IV was diabetic control, Group V in addition was given AlCl 3 50 mg/kg, Group VI glibenclamide (10 mg/kg), and Group VII glibenclamide and AlCl 3 (50 mg/kg) per-oral daily for 28 days. Blood glucose and lipid levels were estimated at base line, after diabetes was set in and on the last day of study. Histopathological changes in pancreas, liver, and kidney were studied. No significant change was observed in blood glucose and lipid levels in Group I. Group II and III showed a dose-dependent significant increase in blood glucose was observed. Group V had a reduction in blood glucose but not to the nondiabetic level. Group VI had significant reduction in blood sugar. In Group VII, treated with glibenclamide and AlCl 3 , there was no significant change in blood glucose reduction compared to Group VI. Lipid levels were reduced in groups treated with AlCl 3 and glibenclamide and not in other groups. Gross tissue damage was seen in pancreas in STZ group and in liver and kidney in AlCl 3 groups. AlCl 3 administration in Wistar rats caused in significant hyperglycemia in normal rats, hypoglycemia in diabetic rats, and did not influenced hypoglycemic effect of glibenclamide and in addition, resulted in reduction in lipid levels.

  5. Acute effects of low-level laser therapy (660 nm) on oxidative stress levels in diabetic rats with skin wounds.

    Science.gov (United States)

    Denadai, Amanda Silveira; Aydos, Ricardo Dutra; Silva, Iandara Schettert; Olmedo, Larissa; de Senna Cardoso, Bruno Mendonça; da Silva, Baldomero Antonio Kato; de Carvalho, Paulo de Tarso Camillo

    2017-09-01

    Laser therapy influences oxidative stress parameters such as the activity of antioxidant enzymes and the production of reactive oxygen species. To analyze the effects of low-level laser therapy on oxidative stress in diabetics rats with skin wounds. Thirty-six animals were divided into 4 groups: NDNI: non-diabetic rats with cutaneous wounds that not received laser therapy; NDI: non-diabetic rats with cutaneous wounds that received laser therapy; DNI: diabetic rats with skin wounds who did not undergo laser therapy; DI: rats with diabetes insipidus and cutaneous wounds and received laser therapy. The animals were treated with LLLT (660 nm, 100 mW, 6 J/cm, spot size 0.028 cm). On the day of killing the animals, tissue-wrapped cutaneous wounds were collected and immediately frozen, centrifuged, and stored to analyze malondialdehyde (MDA) levels. Significant difference was observed within the groups of MDA levels (ANOVA, p = 0.0001). Tukey's post-hoc test showed significantly lower values of MDA in irradiated tissues, both in diabetic and non-diabetic rats. ANOVA of the diabetic group revealed a significant difference (p < 0.01) when all groups, except NDI and DI, were compared. LLLT was effective in decreasing MDA levels in acute surgical wounds in diabetic rats.

  6. Effect of naringerin on biochemical parameters in the streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Ana Angélica Henrique Fernandes

    2009-02-01

    Full Text Available Amongst the numerous co-adjuvant therapies which could influence the incidence and progression of diabetic complications, antioxidants and flavonoids are currently being tested in clinical trials. We investigated the effect of naringerin on biochemical parameters in streptozotocin-induced (STZ - 60 mg/kg, i.p. diabetic rats. Male rats were divided into four groups: G1: untreated controls; G2: normal rats receiving naringerin; G3: untreated diabetics; G4: diabetics rats receiving naringerin. The naringerin (50mg/kg, i.p, decreased the hyperglycaemia and hyperlipidaemia associated with STZ-diabetes. The concentrations of serum insulin in treated diabetic rats tended to be increased. Naringerin treatment prevents STZ-induced changes in the activities of ALT, AST and LDH in the liver and heart, indicating the protective effect of naringerin against the hepatic and cardiac toxicity caused by STZ. The glycogen level in cardiac and hepatic tissues elevated with naringerin in diabetic rats. The naringerin can improve the glucose and lipid metabolism and is beneficial in preventing diabetic complications.Dentre as numerosas terapias para minimizar as complicações diabéticas, os antioxidantes e flavonoides são testados na clínica médica. Foi analisado o efeito da naringerina sobre os parâmetros bioquímicos em ratos diabéticos induzidos por estreptozotocina (STZ - 60mg/kg, i.p.. Ratos machos foram divididos em 4 grupos: G1: controle não tratado; G2: ratos normais que receberam naringerina; G3: diabéticos não tratados; G4: ratos diabéticos que receberam naringerina. Naringerina (50mg/kg, i.p., decresceu a hiperglicemia e a hiperlipidemia em ratos diabéticos. A concentração sérica de insulina em ratos tratados tendeu aumentar. A naringerina preveniu as alterações, provocadas pela estreptozotocina, na atividade hepática e cardíaca de ALT, AST e LDH, indicando o efeito protetor da naringerina sobre estes tecidos, contra toxicidade

  7. Dietary ascorbic acid normalizes ribosomal efficiency for collagen production in skin of streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Schneir, M.; Imberman, M.; Ramamurthy, N.; Golub, L.

    1987-01-01

    The objective of this study was to quantify the contribution of both ribosome amount and ribosomal efficiency to decreased collagen production in skin of diabetic rats and diabetic rats treated with dietary ascorbic acid. Male Sprague-Dawley rats were distributed equally into the following categories: non-diabetic controls; diabetics; ascorbic acid-treated diabetics. On day-20, all rats were injected with ( 3 H)proline and killed after 2 h. Absolute rate of collagen production, ribosome content, and ribosomal efficiency of collagen production were quantified. Also ribosomal efficiency was quantified for ribosomes in sucrose-gradient fractionated post-mitochondrial supernatants. The results indicate that decreased ribosomal efficiency was responsible for 70% of the decreased collagen production with 30% caused by decreased ribosome content, when measured for total skin or sucrose gradient-isolated ribosomes. At both levels of analysis, ascorbic acid treatment normalized ribosomal efficiency, indicating diabetes-mediated decreased ribosomal efficiency for collagen production is related to a co-translational event, such as procollagen underhydroxylation

  8. Anti-Diabetic Potential of Ocimum gratissimum Leaf Fractions in Fortified Diet-Fed Streptozotocin Treated Rat Model of Type-2 Diabetes

    Directory of Open Access Journals (Sweden)

    Stanley I. R. Okoduwa

    2017-10-01

    Full Text Available Background: Ocimum gratissimum (OG is used in the traditional management of diabetes in Nigeria. This study investigated the anti-diabetic potential of OG leaf fractions (OGLF in a rat model of Type-2 diabetes (T2D. Method: Methanol crude extract of OG leaf was fractionated with solvents of increasing order of polarity (n-hexane, chloroform, ethyl-acetate, n-butanol and water. The anti-diabetic potential of the fractions was evaluated in vivo. T2D was induced in Albino Wistar rats and treated with OGLF. Result: The T2D rats showed significant elevation in serum levels of fasting blood glucose (FBG, liver and kidney function biomarkers. At 4-weeks of intervention with OGLF, the untreated diabetic control group maintained severe hyperglycaemia in the presence of 61.7% serum insulin, 17.3% pancreatic β-cell function (HOMA-β and 51.5% Insulin sensitivity. The glucose tolerance ability was enhanced in the n-butanol-fraction (OGb treated group. With 74.8% available serum insulin and 38.6% improvement in insulin sensitivity, the OGb treated group had a 63.5% reduction in FBG and it was found to be most effective as it ameliorates a majority of the changes caused in the studied parameters in diabetic rats. Conclusions: The data from this study suggest that OGb fraction is a potential candidate for the development of an effective drug for the management of T2D.

  9. Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Zhen-Zhen eKou

    2014-01-01

    Full Text Available Diabetic polyneuropathy (DPN presents as a wide variety of sensorimotor symptoms and affects approximately 50% of diabetic patients. Changes in the neural circuits may occur in the early stages in diabetes and are implicated in the development of DPN. Therefore, we aimed to detect changes in the expression of isolectin B4 (IB4, the marker for nonpeptidergic unmyelinated fibers and their cell bodies and calcitonin gene-related peptide (CGRP, the marker for peptidergic fibers and their cell bodies in the dorsal root ganglion (DRG and spinal cord of streptozotocin (STZ-induced type 1 diabetic rats showing alterations in sensory and motor function. We also used cholera toxin B subunit (CTB to show the morphological changes of the myelinated fibers and motor neurons. STZ-induced diabetic rats exhibited hyperglycemia, decreased body weight gain, mechanical allodynia and impaired locomotor activity. In the DRG and spinal dorsal horn, IB4-labeled structures decreased, but both CGRP immunostaining and CTB labeling increased from day 14 to day 28 in diabetic rats. In spinal ventral horn, CTB labeling decreased in motor neurons in diabetic rats. Treatment with intrathecal injection of insulin at the early stages of DPN could alleviate mechanical allodynia and impaired locomotor activity in diabetic rats. The results suggest that the alterations of the neural circuits between spinal nerve and spinal cord via the DRG and ventral root might be involved in DPN.

  10. Genistein preserves the lungs of ovariectomized diabetic rats: addition to apoptotic and inflammatory markers in the lung

    Directory of Open Access Journals (Sweden)

    Faeze Daghigh

    2017-12-01

    Full Text Available Objective(s: The role of isoflavones in pulmonary structure and function during menopause is not well studied. Moreover, the important role of estrogen in the physiological function of respiratory system has been revealed. Genistein, as an isoflavone, mimics estrogenic in diabetic and ovariectomized rats. Here, we hypothesized that genistein would reverse changes in the protein expression levels related to estrogen deficiency in the lung of ovariectomized diabetic rats. Materials and Methods: Wistar female rats were assigned to four experimental groups (n=10 in each group: sham, rats underwent laparotomy without removing the ovaries; OVX, rats that underwent ovariectomy; OVX.D, rats underwent bilateral ovariectomy and were fed a high-fat diet (HFD; OVX.D.G, ovariectomized diabetic rats with genistein administration (1 mg/kg /day. After ovariectomy, rats continued to feed HFD for a 4-week period. After 4 weeks of HFD feeding, a single dose of 30 mg/kg of streptozotocin was administered in the diabetic group. Genistein was administered for eight weeks. At the end of the experiment, lung tissue was removed and Western blotting technique and hematoxylin-eosin staining were used for evaluation of the lung. Results: Treatment with genistein significantly decreased inflammatory and apoptotic biomarkers in the ovariectomized diabetic rats compared to non-treated animals (P

  11. Protective effects of methanolic extract of Juglans regia L. leaf on streptozotocin-induced diabetic peripheral neuropathy in rats.

    Science.gov (United States)

    Nasiry, Davood; Khalatbary, Ali Reza; Ahmadvand, Hassan; Talebpour Amiri, Fereshteh; Akbari, Esmaeil

    2017-10-02

    Oxidative stress has a pivotal role in the pathogenesis and development of diabetic peripheral neuropathy (DPN), the most common and debilitating complications of diabetes mellitus. There is accumulating evidence that Juglans regia L. (GRL) leaf extract, a rich source of phenolic components, has hypoglycemic and antioxidative properties. This study aimed to determine the protective effects of Juglans regia L. leaf extract against streptozotocin-induced diabetic neuropathy in rat. The DPN rat model was generated by intraperitoneal injection of a single 55 mg/kg dose of streptozotocin (STZ). A subset of the STZ-induced diabetic rats intragastically administered with GRL leaf extract (200 mg/kg/day) before or after the onset of neuropathy, whereas other diabetic rats received only isotonic saline as the same volume of GRL leaf extract. To evaluate the effects of GRL leaf extract on the diabetic neuropathy various parameters, including histopathology and immunohistochemistry of apoptotic and inflammatory factors were assessed along with nociceptive and biochemical assessments. Degeneration of the sciatic nerves which was detected in the STZ-diabetic rats attenuated after GRL leaf extract administration. Greater caspase-3, COX-2, and iNOS expression could be detected in the STZ-diabetic rats, which were significantly attenuated after GRL leaf extract administration. Also, attenuation of lipid peroxidation and nociceptive response along with improved antioxidant status in the sciatic nerve of diabetic rats were detected after GRL leaf extract administration. In other word, GRL leaf extract ameliorated the behavioral and structural indices of diabetic neuropathy even after the onset of neuropathy, in addition to blood sugar reduction. Our results suggest that GRL leaf extract exert preventive and curative effects against STZ-induced diabetic neuropathy in rats which might be due to its antioxidant, anti-inflammatory, and antiapoptotic properties. Protection against

  12. The Antidiabetic Effect of Low Doses of Moringa oleifera Lam. Seeds on Streptozotocin Induced Diabetes and Diabetic Nephropathy in Male Rats

    Science.gov (United States)

    Al-Malki, Abdulrahman L.; El Rabey, Haddad A.

    2015-01-01

    The antidiabetic activity of two low doses of Moringa seed powder (50 and 100 mg/kg body weight, in the diet) on streptozotocin (STZ) induced diabetes male rats was investigated. Forty rats were divided into four groups. The diabetic positive control (STZ treated) group showed increased lipid peroxide, increased IL-6, and decreased antioxidant enzyme in the serum and kidney tissue homogenate compared with that of the negative control group. Immunoglobulins (IgA, IgG), fasting blood sugar, and glycosylated hemoglobin (HbA1c) were also increased as a result of diabetes in G2 rats. Moreover albumin was decreased, and liver enzymes and α-amylase were not affected. In addition, the renal functions and potassium and sodium levels in G2 were increased as a sign of diabetic nephropathy. Urine analysis showed also glucosuria and increased potassium, sodium, creatinine, uric acid, and albumin levels. Kidney and pancreas tissues showed also pathological alteration compared to the negative control group. Treating the diabetic rats with 50 or 100 mg Moringa seeds powder/kg body weight in G3 and G4, respectively, ameliorated the levels of all these parameters approaching the negative control values and restored the normal histology of both kidney and pancreas compared with that of the diabetic positive control group. PMID:25629046

  13. Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats.

    Science.gov (United States)

    Stefanello, Naiara; Schmatz, Roberta; Pereira, Luciane Belmonte; Rubin, Maribel A; da Rocha, João Batista Teixeira; Facco, Graziela; Pereira, Maria Ester; Mazzanti, Cinthia Melazzo de Andrade; Passamonti, Sabina; Rodrigues, Marília Valvassori; Carvalho, Fabiano Barbosa; da Rosa, Michelle Melgarejo; Gutierres, Jessie Martins; Cardoso, Andréia Machado; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2014-03-01

    Diabetes mellitus (DM) is associated with brain alterations that may contribute to cognitive dysfunctions. Chlorogenic acid (CGA) and caffeine (CA), abundant in coffee (CF), are natural compounds that have showed important actions in the brain. The present study aimed to evaluate the effect of CGA, CA, and CF on acetylcholinesterase (AChE), Na(+), K(+)-ATPase, aminolevulinate dehydratase (δ-ALA-D) activities and TBARS levels from cerebral cortex, as well as memory and anxiety in streptozotocin-induced diabetic rats. Animals were divided into eight groups (n = 5-10): control; control/CGA 5 mg/kg; control/CA 15 mg/kg; control/CF 0.5 g/kg; diabetic; diabetic/CGA 5 mg/kg; diabetic/CA 15 mg/kg; and diabetic/CF 0.5 g/kg. Our results demonstrated an increase in AChE activity and TBARS levels in cerebral cortex, while δ-ALA-D and Na(+), K(+)-ATPase activities were decreased in the diabetic rats when compared to control water group. Furthermore, a memory deficit and an increase in anxiety in diabetic rats were observed. The treatment with CGA and CA prevented the increase in AChE activity in diabetic rats when compared to the diabetic water group. CGA, CA, and CF intake partially prevented cerebral δ-ALA-D and Na(+), K(+)-ATPase activity decrease due to diabetes. Moreover, CGA prevented diabetes-induced TBARS production, improved memory, and decreased anxiety. In conclusion, among the compounds studied CGA proved to be a compound which acts better in the prevention of brain disorders promoted by DM.

  14. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats.

    Science.gov (United States)

    Ajiboye, Basiru Olaitan; Adeleke Ojo, Oluwafemi; Adeyonu, Oluwatosin; Imiere, Oluwatosin; Emmanuel Oyinloye, Babatunji; Ogunmodede, Oluwafemi

    2018-03-01

    Purpose: Diabetes mellitus is one of the major endocrine disorders, characterized by impaired insulin action and deficiency. Traditionally, Artocarpus heterophyllus stem bark has been reputably used in the management of diabetes mellitus and its complications. The present study evaluates the ameliorative activity of ethanol extract of Artocarpus heterophyllus stem bark in alloxan-induced diabetic rats. Methods: Diabetes mellitus was induced by single intraperitoneal injection of 150 mg/kg body weight of alloxan and the animals were orally administered with 50, 100 and 150 mg/kg body weight ethanol extract of Artocarpus heterophyllus stem bark once daily for 21 days. Results: At the end of the intervention, diabetic control rats showed significant (pArtocarpus heterophyllus stem bark most especially at 150 mg/kg body weight which exhibited no significant (p>0.05) different with non-diabetic rats. Conclusion: The results suggest that ethanol extract of Artocarpus heterophyllus stem bark may be useful in ameliorating complications associated with diabetes mellitus patients.

  15. Hypoglycemic activity of Cassia javanica Linn. in normal and streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Urmila C Kumavat

    2012-01-01

    Full Text Available In present work, one of the ornamentals and medicinally less known plant Cassia javanica has been explored for hypoglycemic potential. It aimed to check the hypoglycemic effect of C. javanica leaves on normal and streptozotocin (STZ-induced diabetic rats by acute and sub-acute studies. Prior to the hypoglycemic study, acute oral toxicity testing of drug was performed. Later, the effects of single and multiple doses of test drug were studied using various parameters. Dried powdered leaf material was used as an oral drug. The preliminary phytochemistry of drug was done by standard qualitative tests. Diabetes was induced in rats by single intraperitoneal injection of STZ. Single and multiple doses of test drug (0.5 g/kg body weight/day were given to normal and diabetic rats. The parameters studied were blood glucose, serum cholesterol, serum triglycerides, and serum proteins. The results of test drug were compared with standard hypoglycemic drug-glibenclamide (0.01 g/kg/day. Statistical analysis was done by ′Student′s ′t′ test′ and one way ANOVA test. In preliminary phytochemistry, antidiabetic compounds were detected. Unlike acute, subacute treatment of test drug showed highly significant reduction (37.62% in blood glucose level of diabetic rats in ten days. This effect was considerably good in comparison with standard drug (63.51%. The test drug and standard drug exhibited insignificant change in the abnormal levels of serum metabolites of diabetic rats. Preclinically, C. javanica was proved to be effective hypoglycemic agent.

  16. Antigen-induced pleural eosinophilia is suppressed in diabetic rats: role of corticosteroid hormones

    Directory of Open Access Journals (Sweden)

    Bruno L Diaz

    1997-12-01

    Full Text Available Previous studies have evidenced for the existence of interactive regulatory mechanisms between insulin and steroid hormones in different systems. In this study, we have investigated whether endogenous corticosteroids could be implicated in the hyporeactivity to antigen challenge observed in sensitized diabetic rats. Alloxinated rats showed a long-lasting increase in the blood glucose levels and a reduction in the number of pleural mast cells at 48 and 72 hr, but not at 24 hr after alloxan administration. In parallel, they also showed a significant elevation in the plasma levels of corticosterone together with an increase in the adrenal/body weight ratio. Antigen-evoked eosinophil accumulation appeared significantly reduced in rats pretreated with dexamethasone as well as in those rendered diabetic 72 hr after alloxan. In the same way, naive animals treated with dexamethasone also responded with a significant decrease in the number of pleural mast cells. Interestingly, when sensitized diabetic rats were pretreated with the steroid antagonist RU 38486 a reversion of the reduction in the allergen-induced eosinophil accumulation was noted. We conclude that the down-regulation of the allergic inflammatory response in diabetic rats is close-related to reduction in mast cell numbers and over expression of endogenous corticosteroids.

  17. Balanites aegyptiaca ameliorates insulin secretion and decreases pancreatic apoptosis in diabetic rats: Role of SAPK/JNK pathway.

    Science.gov (United States)

    Hassanin, Kamel M A; Mahmoud, Mohamed O; Hassan, Hossam M; Abdel-Razik, Abdel-Razik H; Aziz, Lourin N; Rateb, Mostafa E

    2018-06-01

    SAPK-JNK pathway performs a significant role in the pathogenesis of type 2 diabetes. Balanites aegyptiaca (BA) is used as an anti-diabetic agent in folk medicine however its hypoglycemic mechanism is not fully elucidated. The current study aimed to evaluate the effect of crude extract, butanol, and dichloromethane fractions from BA on the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK-JNK) pathway in experimental diabetic rats. Six groups of male Wistar rats were included: normal control, diabetic, diabetic rats treated with crude, butanol or dichloromethane fraction from BA (50 mg/kg BW) and diabetic rats treated with gliclazide as a reference drug for one month. Our results suggested a protective role of treatment of diabetic rats with BA against oxidative stress-induced SAPK-JNK pathway. Moreover, BA treatment produced a reduction in plasma glucose, HbA 1c , lactic acid, lipid profile, malondialdehyde levels and produced an increase in insulin, reduced glutathione levels, catalase and superoxide dismutase activities compared with untreated diabetic rats. Moreover, it decreased apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase 1, protein 53 and increased insulin receptor substrate 1 in rat pancreas while it increased glucose transporter 4 in rat muscle. Analysis of BA extracts by LC-HRMS revealed the presence of different saponins with reported hypoglycemic effect. In conclusion, BA exerted hypoglycemic, hypolipidemic, insulinotropic and antioxidant effects. Additionally, it reduced apoptosis in pancreatic β-cells and increased glucose uptake in muscle. These results suggest that the hypoglycemic effect of BA is due to the inhibition of the SAPK-JNK pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Prediction of Methionine and Homocysteine levels in Zucker diabetic fatty (ZDF) rats as a T2DM animal model after consumption of a Methionine-rich diet

    OpenAIRE

    Han, Nayoung; Chae, Jung-woo; Jeon, Jihyun; Lee, Jaeyeon; Back, Hyun-moon; Song, Byungjeong; Kwon, Kwang-il; Kim, Sang Kyum; Yun, Hwi-yeol

    2018-01-01

    Background Although alterations in the methionine metabolism cycle (MMC) have been associated with vascular complications of diabetes, there have not been consistent results about the levels of methionine and homocysteine in type 2 diabetes mellitus (T2DM). The aim of the current study was to predict changes in plasma methionine and homocysteine concentrations after simulated consumption of methionine-rich foods, following the development of a mathematical model for MMC in Zucker Diabetic Fat...

  19. Raw Camel Milk Properties on Alloxan-Induced Diabetic Wistar Rats

    Directory of Open Access Journals (Sweden)

    Kebir Nasr-Eddine

    2017-03-01

    Full Text Available Background and aims: Diabetes is one of the most frequent and serious chronic diseases in humans all over the world. The aim of our study was to evaluate the antidiabetic activity of camel milk on serum glucose and lipid profile of alloxan-induced diabetic rats.

  20. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of (1-/sup 14/C)arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva.

  1. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of [1- 14 C]arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva. (author)

  2. The effect of food hardness on the development of dental caries in alloxan-induced diabetic rats.

    Science.gov (United States)

    Nakahara, Yutaka; Sano, Tomoya; Kodama, Yasushi; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2013-01-01

    We have previously shown that dental caries may be produced in diabetic rodent models fed with noncariogenic standard diets; however, many studies usually add large amounts of sugar to the diet to induce dental caries. Moreover, the physical properties of cariogenic diets have been reported as an important factor in the formation of caries. The aim of this study was to clarify the effect of the hardness of non-cariogenic diets on the development of dental caries in diabetic rodents. Seven-week-old female F344 rats were divided into 4 groups: intact rats fed with a standard pelletized or powdered diet and alloxan-induced diabetic rats fed with a standard pelletized or powdered diet. All of the rats were sacrificed at 52 weeks of age for morphological examinations on their dental tissue. Dental caries had developed and extended to all the molars in the diabetic rats that were fed with both the pelletized and powdered diets. Moreover, the lesion was significantly enhanced in the powdered diet group compared to that in the pelletized diet group. In conclusion, food hardness is an important factor influencing the development of dental caries in diabetic rats.

  3. The Effect of Food Hardness on the Development of Dental Caries in Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Yutaka Nakahara

    2013-01-01

    Full Text Available We have previously shown that dental caries may be produced in diabetic rodent models fed with noncariogenic standard diets; however, many studies usually add large amounts of sugar to the diet to induce dental caries. Moreover, the physical properties of cariogenic diets have been reported as an important factor in the formation of caries. The aim of this study was to clarify the effect of the hardness of non-cariogenic diets on the development of dental caries in diabetic rodents. Seven-week-old female F344 rats were divided into 4 groups: intact rats fed with a standard pelletized or powdered diet and alloxan-induced diabetic rats fed with a standard pelletized or powdered diet. All of the rats were sacrificed at 52 weeks of age for morphological examinations on their dental tissue. Dental caries had developed and extended to all the molars in the diabetic rats that were fed with both the pelletized and powdered diets. Moreover, the lesion was significantly enhanced in the powdered diet group compared to that in the pelletized diet group. In conclusion, food hardness is an important factor influencing the development of dental caries in diabetic rats.

  4. Antidiabetic effects of Artemisia sphaerocephala Krasch. gum, a novel food additive in China, on streptozotocin-induced type 2 diabetic rats.

    Science.gov (United States)

    Xing, Xiao-Hui; Zhang, Zheng-Mao; Hu, Xin-Zhong; Wu, Rui-Qin; Xu, Chao

    2009-09-25

    Since ancient times, practicians of traditional Chinese medicine have discovered that Artemisia sphaerocephala Krasch. (Asteraceae) seed powder was useful for the treatment of diabetes. Artemisia sphaerocephala Krasch. gum (ASK gum), which is extracted from seed powder of the plant, is a novel food additive favored by the food industry in China. The objective of this study was to determine the antidiabetic function of ASK gum on type 2 diabetes. Type 2 diabetic rat model was induced with high fat diet and low dose of streptozotocin (STZ). The effects of ASK gum on hyperglycemia, hyperlipemia, insulin resistance, and liver fat accumulation in type 2 diabetic rats were evaluated. The results were compared to those of normal rats and diabetic rats treated with metformin. The addition of ASK gum to the rats' food supply significantly lowered fasting blood glucose, glycated serum protein, serum cholesterol, and serum triglyceride in type 2 diabetic rats, and significantly elevated liver glucokinase, liver glycogen, and serum high density protein cholesterol in the diabetic rats. ASK gum significantly reduced insulin resistance and liver fat accumulation of type 2 diabetes. Artemisia sphaerocephala Krasch. gum can alleviate hyperglycemia, hyperlipemia and insulin resistance of type 2 diabetes.

  5. The carotid body of the spontaneous insulin-dependent diabetic rat

    Directory of Open Access Journals (Sweden)

    Clarke J.A.

    1999-01-01

    Full Text Available The carotid bodies from adult spontaneous insulin-dependent diabetic rats (strain BB/S were perfusion-fixed at normal arterial blood pressure with 3% phosphate-buffered glutaraldehyde and compared with the organs from control rats (strain BB/Sc prepared in the same way. Serial 5-µm sections were cut, stained, and using an interactive image analysis system, were analysed to determine the volumes of the carotid body and its vascular and extravascular compartments. There was no evidence of systemic arterial disease in the carotid stem arteries in either group of animals, and the microvasculature of the organs appeared normal by light microscopy. The volume of the carotid body was unchanged 3 months after the onset of diabetes but was increased at 6 months. The total vascular volume of the organ was unchanged, but the volume of the small vessels (5-12 µm was increased. In the control group the small vessels comprised 5% of the total volume of the carotid body, or about 44% of the vascular compartment. The percentage of small vessels increased at 3 months in the diabetic group, but had returned to normal at 6 months. The extravascular volume followed the same pattern as the total carotid body volume and so did not change appreciably when expressed as a percentage of the total volume of the organ. The increase in size of the carotid body in diabetic rats is due, therefore, to an augmented extravascular volume. In one diabetic specimen the carotid sinus nerve showed signs of diabetic neuropathy, axonal swelling and intramyelinic oedema. The clinical implications of these results are discussed.

  6. Hydro-alcoholic Extract of Commiphora mukul Gum Resin May Improve Cognitive Impairments in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Salehi

    2015-02-01

    Full Text Available Background Diabetes causes cognitive impairment. Medicinal plants due to different mechanisms, such as antioxidant activities may improve diabetes and relieve its symptoms. Commiphora mukul (Burseraceae has a significant antioxidant activity. Objectives This study aimed to examine the effect of hydro- alcoholic extract of C. mukul on passive-avoidance learning and memory in streptozotocin (STZ induced diabetic male rats. Materials and Methods Thirty-two adult male Wistar rats were randomly allocated to four groups: normal, diabetic, normal + extract of C. mukul and diabetic + extract of C. mukul groups with free access to regular rat diet. Diabetes was induced in male rats by single interaperitoneal injection of 60 mg/kg STZ. After the confirmation of diabetes, 300 mg/kg C. mukul extract was orally administered to the extract-treated groups. Control groups received normal saline at the same time. Passive-avoidance memory was tested eight weeks after the STZ treatment, and blood glucose and body weight were measured in all groups at the beginning and end of the experiment. Results In the present study, diabetes decreased learning and memory. Although the administration of C. mukul extract did not affect the step-through latency (STLa and the number of trials of the diabetic groups during the first acquisition trial, a significant decrease was observed in STLr and also a significant increase in time spent in the dark compartment (TDC and number of crossing (NOC in the retention test (after 24 and 48 hours. Although no significant difference was observed in body weight of diabetic + extract of C. mukul (DE and diabetic control (DC groups, the plasma glucose of DE group was significantly lower in comparison to DC group. Conclusions Commiphora mukul extract can improve passive-avoidance learning and memory impairments in the STZ-induced diabetic rats. This improvement may be due to the antioxidant, acetylcholinesterase inhibitory activity, anti

  7. Sensory nerve conduction in the caudal nerves of rats with diabetes Condução nervosa sensorial no nervo caudal de ratos com diabetes experimental

    OpenAIRE

    Celina Cordeiro de Carvalho; Juliana Netto Maia; Otávio Gomes Lins; Sílvia Regina Arruda de Moraes

    2011-01-01

    PURPOSE: To investigate sensory nerve conduction of the caudal nerve in normal and diabetic rats. METHODS: Diabetes was induced in twenty 8-weeks old Wistar male rats. Twenty normal rats served as controls. Caudal nerve conduction studies were made before diabetes induction and the end of each week for six consecutive weeks. The caudal nerve was stimulated distally and nerve potentials were recorded proximally on the animal's tail using common "alligator" clips as surface electrodes. RESULTS:...

  8. Antidiabetic, antioxidant and antihyperlipidemic status of Heliotropium zeylanicum extract on streptozotocin-induced diabetes in rats.

    Science.gov (United States)

    Murugesh, Kandasamy; Yeligar, Veerendra; Dash, Deepak Kumar; Sengupta, Pinaki; Maiti, Bhim Chandra; Maity, Tapan Kumar

    2006-11-01

    The potential role of the methanolic extract of Heliotropium zeylanicum (BURM.F) LAMK (MEHZ) in the treatment of diabetes along with its antioxidant and antihyperlipidemic effects was studied in streptozotocin-induced diabetic rats. Oral administration of (MEHZ) 150 and 300 mg/kg/d for 14 d significantly decreased the blood glucose level and considerably increased the body weight, food intake, and liquid intake of diabetic-induced rats. MEHZ significantly decreased thiobarbituric acid reactive substances and significantly increased reduced glutathione, superoxide dismutase and catalase in streptozotocin-induced diabetic rats at the end of 14 d of treatment. The study also investigated the antihyperlipidemic potential of MEHZ. The results show that the active fraction of MEHZ is promising for development of a standardized phytomedicine for the treatment of diabetes mellitus.

  9. Suv39h1 Protects from Myocardial Ischemia-Reperfusion Injury in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2014-04-01

    Full Text Available Background: Patients with diabetes are at increased risk of ischemic events. Suv39h1 is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9, which is associated with the suppression of inflammatory genes in diabetes. However, the role of Suv39h1 in myocardial ischemia/reperfusion (I/R injury under diabetic condition has not been evaluated. Methods: To generate diabetic model, male SD rats were fed with 60% fat diet followed by intraperitoneal injection with 40mg/kg streptozotocin. Adenovirus encoding Suv39h1 gene was used for Suv39h1 overexpression. Each rat received injections of adenovirus at five myocardial sites. Three days after gene transfection, each rat was subjected to left main coronary artery occlusion and reperfusion. After 30 min ischemia and reperfusion for 4 h, the rats were euthanized for real-time PCR, Western blot, immunohistochemical staining, and morphometric analysis. Results: Delivery of Ad-Suv39h1 into the hearts of diabetic rats could markedly increase Suv39h1 expression. Up-regulation of Suv39h1 significantly reduced infarct size and tissue damage after I/R injury, which was associated with protection from apoptosis of cardiac myocytes and reduction of inflammatory response. In addition, compared with injury group, Ad-Suv39h1 led to a decreased activity of mitogen-activated protein kinase family and its down-steam transcriptional factor NF-κB. Conclusion: Overexpression of Suv39h1 results in the de-activation of proinflammatory pathways and reduced apoptosis and myocardial injury. Therefore, Suv39h1 might represent a novel therapeutic strategy to reduce I/R injury under diabetic condition.

  10. Melanocortin 4 Receptor Activation Attenuates Mitochondrial Dysfunction in Skeletal Muscle of Diabetic Rats.

    Science.gov (United States)

    Zhang, Hao-Hao; Liu, Jiao; Qin, Gui-Jun; Li, Xia-Lian; Du, Pei-Jie; Hao, Xiao; Zhao, Di; Tian, Tian; Wu, Jing; Yun, Meng; Bai, Yan-Hui

    2017-11-01

    A previous study has confirmed that the central melanocortin system was able to mediate skeletal muscle AMP-activated protein kinase (AMPK) activation in mice fed a high-fat diet, while activation of the AMPK signaling pathway significantly induced mitochondrial biogenesis. Our hypothesis was that melanocortin 4 receptor (MC4R) was involved in the development of skeletal muscle injury in diabetic rats. In this study, we treated diabetic rats intracerebroventricularly with MC4R agonist R027-3225 or antagonist SHU9119, respectively. Then, we measured the production of reactive oxygen species (ROS), the levels of malondialdehyde (MDA) and glutathione (GSH), the mitochondrial DNA (mtDNA) content and mitochondrial biogenesis, and the protein levels of p-AMPK, AMPK, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), sirtuin 1 (SIRT1), and manganese superoxide dismutase (MnSOD) in the skeletal muscle of diabetic rats. The results showed that there was significant skeletal muscle injury in the diabetic rats along with serious oxidative stress and decreased mitochondrial biogenesis. Treatment with R027-3225 reduced oxidative stress and induced mitochondrial biogenesis in skeletal muscle, and also activated the AMPK-SIRT1-PGC-1α signaling pathway. However, diabetic rats injected with MC4R antagonist SHU9119 showed an aggravated oxidative stress and mitochondrial dysfunction in skeletal muscle. In conclusion, our results revealed that MC4R activation was able to attenuate oxidative stress and mitochondrial dysfunction in skeletal muscle induced by diabetes partially through activating the AMPK-SIRT1-PGC-1α signaling pathway. J. Cell. Biochem. 118: 4072-4079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Protective Effect of Ethyl Acetate Fraction of Stereospermum Suaveolens Against Hepatic Oxidative Stress in STZ Diabetic Rats.

    Science.gov (United States)

    Balasubramanian, Thirumalaiswamy; Senthilkumar, G P; Karthikeyan, M; Chatterjee, Tapan Kumar

    2013-07-01

    Stereospermum suaveolens is a folk remedy for the treatment of diabetes and liver disorders in southern parts of India. In the present study, the protective effect of the ethyl acetate fraction of ethanol extract from S. suaveolens against hepatic oxidative stress was evaluated in streptozotocin (STZ)-induced diabetic rats for 14 days. The ethyl acetate fraction was administered orally to the STZ diabetic rats at the doses of 200 and 400 mg/kg. Blood glucose level was measured according to glucose oxidase method. In order to determine hepatoprotective activity, changes in the levels of serum biomarker enzymes such as aspartate transaminase (AST), alanine transaminase (ALT), and serum alkaline phosphatase (SALP) were assessed in the ethyl acetate fraction treated diabetic rats and were compared with the levels in diabetic control rats. In addition, the antioxidant activity of ethyl acetate fraction was evaluated using various hepatic parameters such as thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). It was found that administration of ethyl acetate fraction (200 and 400 mg/kg) produced a significant (P SALP, while elevating the GSH levels, and SOD and CAT activities in diabetic rats. Histopathologic studies also revealed the protective effect of ethyl acetate fraction on the liver tissues of diabetic rats. It was concluded from this study that the ethyl acetate fraction from ethanol extract of S. suaveolens modulates the activity of enzymatic and nonenzymatic antioxidants and enhances the defense against hepatic oxidative stress in STZ-induced diabetic rats.

  12. Effect of carbamylated erythropoietin on retinopathy of diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Lin Jiang

    2017-01-01

    Objective:To study the effect of carbamylated erythropoietin (CEPO) on retinopathy of diabetic rats.Methods: Male SD rats were selected as experimental animals and randomly divided into control group, DM group and CEPO group, and diabetic animal models were established and then given CEPO intervention. 2 weeks after intervention, the retina was collected to detect the expression of angiogenesis molecules, apoptosis molecules and oxidative stress pathway molecules.Results: HIF-1α, VEGF, Ang-1, Bax, Caspase-3, Nrf-2, ARE, HO-1 and NQO-1 mRNA expression in retina of DM group were significantly higher than those of control group while TKLK, PEDF, Bcl-2 and Survivin mRNA expression were significantly lower than those of control group; HIF-1α, VEGF, Ang-1, TKLK and PEDF mRNA expression in retina of CEPO group were not significantly different from those of DM group, Bcl-2, Survivin, Nrf-2, ARE, HO-1 and NQO-1 mRNA expression were significantly higher than those of DM group, and Bax and Caspase-3 mRNA expression were significantly lower than those of DM group.Conclusion:CEPO can reduce the apoptosis and oxidative stress injury of the retina tissue in diabetic rats without affecting the angiogenesis.

  13. Attenuation of Diabetic Nephropathy in Otsuka Long-Evans Tokushima Fatty (OLETF Rats with a Combination of Chinese Herbs (Tangshen Formula

    Directory of Open Access Journals (Sweden)

    Haojun Zhang

    2011-01-01

    Full Text Available Diabetic nephropathy is one of the most significant microvascular complications in patients with type 2 diabetics. The concise mechanism of diabetic nephropathy is unknown and there is no successful treatment. The objective of study was to investigate effects of Chinese herbs (Tangshen Formula on diabetic nephropathy in Otsuka Long-Evans Tokushima Fatty (OLETF rats. OLETF rats and LETO rats were divided into four groups: LETO control, OLETF diabetics, OLETF diabetics treated with Tangshen Formula, and OLETF diabetics treated with Monopril. Body weight, blood glucose, and 24 h urinary proteins were measured once every four weeks. Blood samples and kidney tissues were obtained for analyses of total cholesterol, triglyceride, whole blood viscosity, plasma viscosity, and pathohistological examination at 36 and 56 weeksrespectively. Untreated OLETF rats displayed diabetic nephropathy over the study period. Treatment of OLETF rats with Tangshen Formula attenuated the increases in blood glucose, body weight, 24 h urinary protein content, serum total cholesterol, whole blood viscosity and plasma viscosity at certain time. Treatment with Tangshen Formula also reduced glomerulosclerotic index and interstitial fibrotic index seen in OLETF rats. In conclusion, Tangshen Formula could attenuate the development of diabetic nephropathy in OLETF rat diabetic model.

  14. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats

    Science.gov (United States)

    Fortes, Marco Aurélio S; Pinheiro, Carlos Hermano J; Guimarães-Ferreira, Lucas; Vitzel, Kaio F; Vasconcelos, Diogo A A; Curi, Rui

    2015-01-01

    The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals. PMID:26197932

  15. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    Science.gov (United States)

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  16. The effect of alloxan diabetes on the activity of some mixed function oxidases in male rats.

    Science.gov (United States)

    Nedjar, A; Stoytchev, T

    1990-01-01

    The effect of alloxan-induced diabetes on the duration of hexobarbital sleep (HB sleep) the activity of ethylmorphine-N-demethylase (EMND), aniline hydroxylase (AH), the content of microsomal cytochrome P-450 and b5, on the activity of ethoxycumarine-0-deethylase (ECOD) and ethoxyresorufine-0-deethylase (EROD) after induction with beta naphthoflavone (beta-NF), as well as the activity of benzphetamine-N-demethylase and pentoxyresorufine-O-dealkylase (PROD) after induction with phenobarbital (PB), was studied in experiments on male Wistar rats. In rats with alloxan diabetes there was a significant prolongation of HB sleep (by 106%) and inhibition of the liver EMND (by 54%), while the AH activity increased by 131%, with a parallel rise in the content of microsomal cytochromes P-450 (by 67%) and b5 (by 113%). In rats with alloxan diabetes the enzyme-inducing effect of beta-NF with respect to the activities of EROD and ECOD is reduced, although diabetes by itself causes a rise in the ECOD activity in untreated animals. When induced with PB, the PROD and benzphetamine-N-demethylase activity in diabetic rats is lower than in the healthy animals. However, if the enzyme activity after the application of inducers is referred to the respective starting enzyme activities of the two groups of animals, it is found that the enzyme-inducing effect of PB is preserved and even slightly potentiated in the diabetic rats compared with the healthy ones: the increases in the benzphetamine-N-demethylase activity is by 60% in the diabetic rats, compared with a rise of 28% in the healthy animals, of the PROD activity 19 times for the diabetic compared with 16 times increase for the healthy rats.

  17. Hypoglycemic Interactive Effects of Ginger Eextract and Eendurance Training in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    S.A. Hosseini

    2017-10-01

    Full Text Available Aims: Diabetes is a metabolic disorder that results in hyperglycemia due to non-regulation of blood glucose. The aim of this study was to evaluate the hypoglycemic interactive effects of Ginger extract and endurance training in diabetic rats. Materials & Methods: In this experimental study, 40 streptozotocin-induced diabetic rats were randomly divided into four groups (control, endurance training, Ginger extract and endurance training with Ginger extract. The training groups ran 8 to 16 meters per minute for four weeks, five sessions per week, and each session for 30 minutes on treadmill. Ginger extract groups received daily 100 mg/kg Ginger extract intraperitoneal for four weeks. At the end, levels of fasting glucose, insulin and insulin resistance were measured. Data were analyzed by SPSS 21 software using dependent T-test, one way ANOVA and Tukey's post hoc test. Findings: Levels of fasting glucose, insulin and insulin resistance in endurance training group, Ginger extract group and endurance training with Ginger extract group were significantly lower than control group. Also, levels of fasting glucose, insulin and insulin resistance in endurance training with Ginger extract group were significantly lower than endurance training group and Ginger extract group (p<0.01. Conclusion: Endurance training with use of Ginger extract has hypoglycemic interactive effects on improving glucose indices in diabetic rats, leading to a decrease in levels of fasting glucose, insulin and insulin resistance in streptozotocin-induced diabetic rats.

  18. Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats.

    Science.gov (United States)

    Arun, N; Nalini, N

    2002-01-01

    In the traditional system of medicine, Ayurveda, several spices and herbs are thought to possess medicinal properties. Among the spices, turmeric rhizomes (Curcuma longa. Linn.) are used as flavoring and coloring agents in the Indian diet everyday. In this research, we studied the effect of turmeric and its active principle, curcumin, on diabetes mellitus in a rat model. Alloxan was used to induce diabetes. Administration of turmeric or curcumin to diabetic rats reduced the blood sugar, Hb and glycosylated hemoglobin levels significantly. Turmeric and curcumin supplementation also reduced the oxidative stress encountered by the diabetic rats. This was demonstrated by the lower levels of TBARS (thiobarbituric acid reactive substances), which may have been due to the decreased influx of glucose into the polyol pathway leading to an increased NADPH/NADP ratio and elevated activity of the potent antioxdiant enzyme GPx. Moreover, the activity of SDH (sorbitol dehydrogenase), which catalyzes the conversion of sorbitol to fructose, was lowered significantly on treatment with turmeric or curcumin. These results also appeared to reveal that curcumin was more effective in attenuating diabetes mellitus related changes than turmeric.

  19. Effect Of Aloe Vera Juice On Hyperglycemia And ATHEROGENICITY In Diabetic Rats

    International Nuclear Information System (INIS)

    ABDEL-AZIZ, A.F.; EZZ-ELARAB, A.; EL-SHERBINY, E.M.; MORSI, R.M.

    2009-01-01

    Diabetes mellitus is the most prevalent chronic disease and cause death in many countries. The present study aims to study the efficacy of Aloe vera whole leaf juice filtrate to ameliorate the glucose level and lipid profile status in four groups of female diabetic rats. Serum glucose, total cholesterol, HDL-cholesterol, anti-atherogenic index (AAI), TBARs and insulin levels were determined in all groups. There was very highly significant increase in serum glucose, cholesterol, and TBARs levels in diabetic group as compared to the control. Oral administration of Aloe vera juice filtrate resulted in a very highly significant decrease in serum glucose, cholesterol and TBARs levels when compared to that of diabetic group. Serum HDL-cholesterol, insulin level and anti-atherogenic index were very highly significantly decreased in diabetic rats as compared to the control, whereas these parameters were highly significantly increased after the oral administration of Aloe vera juice filtrate as compared to diabetic group

  20. Comparative effects of mature coconut water (Cocos nucifera and glibenclamide on some biochemical parameters in alloxan induced diabetic rats

    Directory of Open Access Journals (Sweden)

    P. P. Preetha

    2013-03-01

    Full Text Available In the present study, comparative effects of mature coconut water (Cocos nucifera L., Arecaceae and glibenclamide in alloxan induced diabetic rats were evaluated. Diabetes mellitus was induced in Sprague-Dawly rats using alloxan monohydrate (150 mg kg-1 body weight. Treatment with lyophilized form of mature coconut water and glibenclamide in diabetic rats reduced the blood glucose and glycated hemoglobin along with improvement in plasma insulin level. Elevated levels of liver function enzymes markers like alkaline phosphatase, serum glutamate oxaloacetate transaminase and serum glutamate pyruvate transaminase in diabetic rats were significantly reduced on treatment with mature coconut water. In addition to this, diabetic rats showed altered levels of blood urea, serum creatinine, albumin, albumin/globulin ratio which were significantly improved by treatment with mature coconut water and glibenclamide. Activities of nitric oxide synthase in liver and plasma L-arginine were reduced significantly in alloxan induced diabetic rats while treatment with mature coconut water reversed these changes. The overall results show that mature coconut water has significant beneficial effects in diabetic rats and its effects were comparable to that of glibenclamide, a well known antidiabetic drug.

  1. Rosa damascena Mill. Essential Oil Has Protective Effect Against Testicular Damage in Diabetic Rats.

    Science.gov (United States)

    Hamedi, Somayeh; Shomali, Tahoora; Haghighat, Aliakbar

    2018-05-04

    This study investigates the protective effect of Rosa damascena essential oil on diabetes-induced testicular damage in rats. Thirty-six male Wistar rats were randomly divided into 6 equal groups: Group I: negative control (no treatment); Group II: positive control (diabetic by alloxan injection); Groups III-VI that rendered diabetic and received, respectively, 50, 100, 200, and 400 µg/kg/day rose oil, orally for 28 days. Rose oil did not significantly change body weight and blood glucose level as compared to positive control. Serum testosterone level of rose oil-treated rats remained statistically the same with both negative and positive control groups (Groups I and II). Rats treated with rose oil especially at 2 higher dosages (Groups V and VI) had higher sperm count and increased diameters of seminiferous tubules as compared to Group II. Rose oil even at the lowest dosage significantly increased cell count of spermatogonia, primary spermatocytes, Sertoli cells, and Leydig cells, with better outcomes for higher dosages. It appears that short-term repeated dose administration of rose oil can dose-dependently improve structural deteriorations of testes and epididymal sperm count in diabetic rats.

  2. Constitutive nitric oxide synthase (cNOS activity in Langerhans islets from streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Fonovich de Schroeder T.M.

    1998-01-01

    Full Text Available Nitric oxide synthase activity was measured in Langerhans islets isolated from control and streptozotocin diabetic rats. The activity of the enzyme was linear up to 150 µg of protein from control rats and was optimal at 0.1 µM calcium, when it was measured after 45 min of incubation at 37oC in the presence of 200 µM arginine. Specific activity of the enzyme was 25 x 10-4 nmol [3H]citrulline 45 min-1 mg protein-1. Streptozotocin diabetic rats exhibited less enzyme activity both in total pancreas homogenate and in isolated Langerhans islets when compared to control animals. Nitric oxide synthase activity measured in control and diabetic rats 15 days after the last streptozotocin injection in the second group of animals corresponded only to a constitutive enzyme since it was not inhibited by aminoguanidine in any of the mentioned groups. Hyperglycemia in diabetic rats may be the consequence of impaired insulin release caused at least in part by reduced positive modulation mediated by constitutive nitric oxide synthase activity, which was dramatically reduced in islets severely damaged after streptozotocin treatment.

  3. Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats.

    Science.gov (United States)

    Liang, Bin; Guo, Zhengdong; Xie, Fang; Zhao, Ainong

    2013-10-03

    Hericium erinaceus, as a commonly used medicine or food, has attracted much attention due to its health effects when used as a home remedy for some diseases. The aim of this work was to investigate the hypoglycemic and hypolipidemic effects of aqueous extract of Hericium erinaceus (AEHE) in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats by the administration of STZ (55 mg/kg BW.) intraperitoneally. AEHE (100 and 200 mg/kg BW.) was administered for a period of 28 days. The effects of AEHE on glucose, insulin, and lipid files in blood, and oxidative stress parameters in the liver were evaluated. The body weights of rats were recorded at day 0, 14 and 28th days. The administration of AEHE for 28 days in STZ diabetic rats resulted in a significant decrease in serum glucose level and a significant rise in serum insulin level. AEHE treatment attenuated lipid disorders. In addition, AEHE administration increased the activities of CAT, SOD, and GSH-Px, and GSH level, and reduced MDA level in the liver tissue significantly. Our results suggest that AEHE possesses hypoglycemic, hypolipidemic, and antioxidant properties in STZ-induced diabetes rats.

  4. The granule cell density of the dentate gyrus following administration of Urtica dioica extract to young diabetic rats.

    Science.gov (United States)

    Fazeli, S A; Gharravi, A M; Ghafari, S; Jahanshahi, M; Golalipour, M J

    2008-08-01

    Urtica dioica L. Stinging nettle has long been known worldwide as a medicinal plant. To study the benefits of the nettle in diabetic encephalopathy, the granule cell density of the dentate gyrus of diabetic rats was studied following administration of Urtica dioica extract. A total of 24 male albino Wistar rats were allocated equally to normal, diabetic, preventive and treatment groups. Hyperglycaemia was induced by streptozotocin (80 mg/kg) in the animals of the diabetic and treatment groups. One week after injection of the streptozotocin the animals in the treatment group received a hydroalcoholic extract of Urtica dioica (100 mg/kg/day) for 4 weeks intraperitoneally. The rats of the preventive group received hydroalcoholic extract of U. dioica (100 mg/kg/day) IP for the first 5 days and an injection of streptozotocin (80 mg/kg) on the 6th day. After 5 weeks of study all the rats were sacrificed and coronal sections were taken from the dorsal hippocampal formation of the right cerebral hemispheres and stained with cresyl violet. The area densities of the granule cells were measured and compared in the four groups. The density was lower in the diabetic rats compared with the controls (p > 0.05). The preventive group showed lower cell density than the controls (p > 0.05). The densities in the treated rats were higher than in the diabetic rats (p > 0.05). Furthermore, the control and treated rats showed similar densities (p > 0.05). It seems that U. dioica extract can help compensate for granule cell loss in the diabetic rat dentate gyrus, which can ameliorate cognitive impairment in diabetes. However, preventive use of the extract showed no significant benefit.

  5. Healing potential of Iranian traditional medicinal plants on burn wounds in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    A Ghasemi Pirbalouti

    2011-10-01

    Full Text Available Malva sylvestris, Punica granatum, Amygdalus communis, Arnebia euchroma and Scrophularia deserti are important medicinal plants in Iranian traditional medicine (Unani whose have been used as remedy against edema, burn, and wound and for their carminative, antimicrobial and anti-inflammatory activities. The ethanol extracts of M. sylvestris and P. granatum flowers, A. communis leaves, A. euchroma roots and S. deserti stems were used to evaluate the burn healing activity in alloxan-induced diabetic rats. Burns were induced in Wistar rats divided into nine groups as following; Group-I: normal rats were treated with simple ointment base (control, Group-II: diabetic rats were treated with simple ointment base (control, Groups-III and -VII: diabetic rats were treated with simple ointment base containing of extracts (diabetic animals, Groups VIII: diabetic rats were treated with simple ointment base containing of mixed extracts, Group-IX: diabetic rats received the standard drug (Silver Sulfadiazine. The efficacy of treatments was evaluated based on wound area, epithelialization time and histopathological characteristics. Wound contraction showed that there is high significant difference between the different groups (p<0.001. At the 18th day, A. euchroma, S. deserti, A. communis and mixed extract ointment treated groups healed 80-90%. At the 9th and 18th days the experiment, the best results were obtained with A. communis and standard drug, when compared to the other groups as well as to the controls. It may be concluded that almond leaves (sweet and bitter formulated in the simple ointment base is effective in the treatment of burns and thus supports its traditional use.

  6. Effect of Urtica dioica on morphometric indices of kidney in streptozotocin diabetic rats--a stereological study.

    Science.gov (United States)

    Golalipour, Mohammad Jafar; Gharravi, Anneh Mohammad; Ghafari, Sorya; Afshar, Mohammad

    2007-11-01

    The aim of the present study was to investigate the effect of Urtica dioica on Morphometric indices of kidney in diabetic rats. Thirty male adult albino wistar rats of 125-175 g divided into control, diabetic and Urtica dioica treatment groups. In treatment Group, diabetic rats received 100 mg kg(-1) daily hydroalcoholic extract of U. dioica intraperitoneally for 4 weeks. After the animals had been sacrified, the kidneys were removed and fixed by formaldehyde, cut horizontally into 1 mm slices and processed, Stained with H and E. Stereological study performed using light microscope and the image projected on a table of olysa software. Cavalieri principle was used to estimate the volume of cortex, medulla and whole kidney. All the grouped data statistically evaluated using Student's t-test, expressed as the Mean +/- SE. Ration of kidney weight/body weight in diabetes (0.51) and diabetes-extract group (0.67) were higher then control group (0.42). Ratio of kidney volume/body weight in diabetes (350) and diabetes-extract group (348) were higher then control group (323). Volume Ratio of cortex/medulla in diabetes-extract group (1.65) was higher then control (1.34) and diabetes group (1.33). Glomerular area and diameter and proximal tubule diameter in diabetes-Extract group was higher than control and diabetes groups. This study revealed that Urtica dioica has no effect on renal morphometric indices in induced diabetic rats.

  7. Renal Podocyte Injury in a Rat Model of Type 2 Diabetes Is Prevented by Metformin

    Directory of Open Access Journals (Sweden)

    Junghyun Kim

    2012-01-01

    Full Text Available Hyperglycemia promotes oxidative stress and hence generation of reactive oxygen species (ROS, which is known to play a crucial role in the pathogenesis of diabetic nephropathy. Metformin, an oral hypoglycemic drug, possesses antioxidant effects. The aim of this paper is to investigate the protective effects of metformin on the injury of renal podocytes in spontaneously diabetic Torii (SDT rats, a new model for nonobese type 2 diabetes. Metformin (350 mg/kg/day was given to SDT rats for 17 weeks. Blood glucose, glycated haemoglobin (HbA1c, and albuminuria were examined. Kidney histopathology, renal 8-hydroxydeoxyguanosine (8-OHdG levels and apoptosis were examined. In 43-week-old SDT rats, severe hyperglycemia was developed, and albuminuria was markedly increased. Diabetes induced significant alterations in renal glomerular structure. In addition, urinary and renal 8-OHdG levels were highly increased, and podocyte loss was shown through application of the TUNEL and synaptopodin staining. However, treatment of SDT rats with metformin restored all these renal changes. Our data suggested that diabetes-induced podocyte loss in diabetic nephropathy could be suppressed by the antidiabetes drug, metformin, through the repression of oxidative injury.

  8. The Effects of Creatine Monohydrate on Permeability of Coronary Artery Endothelium and Level of Blood Lipoprotein in Diabetic Rats.

    Science.gov (United States)

    Rahmani, Asghar; Asadollahi, Khairollah; Soleimannejad, Kourosh; Khalighi, Zahra; Mohsenzadeh, Yosouf; Hemati, Ruhollah; Moradkhani, Atefeh; Abangah, Ghobad

    2016-09-01

    Creatine monohydrate has beneficial effects on serum glucose. This study aimed to investigate the effects of creatine on serum biochemical markers and permeability of coronary arteries among diabetic rats. 32 Wistar rats, which weighed 150-200 grams were randomly divided into 4 groups including: group I, control; group II, creatine monohydrate; group III, diabetic rats; and group IV, diabetic rats + creatine. Creatine monohydrate was applied by 400 mg/kg/daily for 5 months. Animals' weights and blood samples were taken before and after the study. Endothelial permeability rate was measured by Evans Blue method. Data were analysed by SPSS 16. At the end of fifth month, rats' weights in diabetic group under treatment with creatine, compared to those without, increased significantly (pcreatine (pcreatine compared to untreated groups, closed to the intact group (pcreatine monohydrate caused an improvement of serum biochemical markers associated with diabetes and reduced the permeability rate of coronary arteries among diabetic rats. © 2016 by the Association of Clinical Scientists, Inc.

  9. Characterization of upper thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in diabetic rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise M; Qin, Chao; Wu, Mingyuan

    2011-01-01

    The aim of the present study was to examine spinal processing of cardiac and somatic nociceptive input in rats with STZ-induced diabetes. Type 1 diabetes was induced with streptozotocin (50mg/kg) in 14 male Sprague-Dawley rats and citrate buffer was injected in 14 control rats. After 4-11weeks...

  10. Molecular mechanisms of the antiglycative and cardioprotective activities of Psidium guajava leaves in the rat diabetic myocardium.

    Science.gov (United States)

    Soman, Sowmya; Rajamanickam, Chellam; Rauf, Arun A; Madambath, Indira

    2016-12-01

    Antiglycative potential of Psidium guajava L. (Myrtaceae) leaves has been established. However, the molecular basis of its antiglycative potential remains unknown. The ethyl acetate fraction of P. guajava leaves (PGEt) was evaluated to determine the cardioprotective effect and its mechanism of action compared to quercetin. After the induction of diabetes by streptozotocin (55 mg/kg body weight), PGEt and quercetin (50 mg/kg body weight) was administered for 60 days. Rats were grouped as follows: Group C: Control, Group D: Diabetic, Group D + E: Diabetic rats treated with PGEt, Group D + Q: Diabetic rats treated with quercetin. The antiglycative potential was evaluated by assaying glycosylated haemoglobin, serum fructosamine and advanced glycation end product levels. The differential receptor for advanced glycation end products and nuclear factor kappa B (NFκB) protein levels was determined by western blot and the transcript level changes of connective tissue growth factor (CTGF), brain natriuretic peptide (BNP) and TGF-β1 in heart tissue were assessed by RT-PCR analysis. Glycated haemoglobin and serum fructosamine levels were found to be enhanced in diabetic rats when compared with control. Administration of PGEt significantly reduced the glycated haemoglobin and fructosamine levels to a larger extent than quercetin treated diabetic rats. PGEt reduced the translocation of NFκB from cytosol to nucleus when compared with diabetic rats. Expression of TGF-β1, CTGF and BNP was downregulated in PGEt treated groups compared with diabetic controls. Administration of PGEt ameliorated diabetes associated changes in the myocardium to a greater extent than quercetin.

  11. Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus.

    Science.gov (United States)

    Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V

    2017-08-01

    Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.

  12. Effect of dietary fish oil and corn oil on blood biochemical factors in diabetic Rat

    Directory of Open Access Journals (Sweden)

    Mehdi Shariati

    2005-09-01

    Full Text Available Background: The potential role of omega – 3 (ω-3 and omega-6 (ω-6 fatty acids on blood biochemical factors are in interest and controversy. Some experiences showed that omega – 3 (ω-3 and omega-6 (ω-6 fatty acids have a potential effect on triglyceride, LDL-cholesterol, HDL-cholesterol and total cholesterol levels in diabetes mellitus. Methods: Male rats were divided into four groups (one normal group and three diabetic groups. Induction of diabetes was done by streptozotocin [50mg/kg, s.c. (STZ]. In diabetic groups, one group was Control, received STZ alone, and the other diabetic groups were fed with fish oil or corn oil for 8 weeks after 4 weeks of induction of diabetes. Plasma glucose, total cholesterol, triglyceride, LDL- choleserol and HDL-cholesterol were measured at 4 and 8 weeks after intervention. Results: Fish oil and corn oil diets had an inhibitory effect on increased plasma glucose in diabetic rat by 46.8% and 40.7%, respectively. Diabetic rats in the control group demonstrated increased plasma total cholesterol, triglyceride and LDL-cholesterol levels, but plasma total cholesterol, triglyceride and LDL-cholesterol levels were significantly decreased and HDL-cholesterol level was increased by both diets in interventional groups. Conclusion: Corn oil and fish oil supplementation have a role on plasma glucose and lipid profile in diabetic rats. To understand the functional mechanisms of these diets, further studies remain to be accomplished.

  13. Hypoglycemic Effects of Achillea Wilhelmsii in Normal and Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    H Sadeghi

    2009-04-01

    Full Text Available ABSTRACT Introduction & Objective: Diabetes mellitus is a syndrome, initially characterized by a loss of glucose homeostasis resulting from defects in Insulin secretion, insulin action both is resulting in impaired metabolism of glucose and other energy yielding fuels as lipids and protein. Several medicinal herbs have been described with hypoglycemic effects. These include: Allium Sativum, Trigonella Foenum, Marus nigra, Ocimum Sanctum, and Astragalus Ovinus. The main purpose of the present study was to determine the effect of Achillea Wilhelmsii C. Koch on blood glucose levels of diabetic rats induced by stereptozotocine (STZ. Materials & Methods: In this experimental research, forty-eight male Wistar rats were divided into two groups: non-diabetic (normal and STZ-induced diabetic mice. Each group was further divided into four groups: control (induced by normal saline and treatment received 100, 200.and 300 mg/kg aqueous- alcoholic extract of Achillea Wilhelmsii C. Koch daily for one month. The blood glucose level was measured and Data were analyzed by t-test and ANOVA. Results: At the end of first month, significant decrease was observed in blood glucose level in diabetic rats which received 100 mg/kg (p<0/001, 200mg/kg(p<0/01, 300mg/kg (p<0/001 of aqueous alcoholic extract of Achillea Wilhelmsii C. Koch in comparison with control groups. The extract had not have any significant effects on the blood glucose level of normal groups except in those which received 300mg/kg of the extract. Conclusion: The results of this study showed that aqueous- alcoholic extract of Achillea Wilhelmsii C. Koch have a significant effect on reducing the blood glucose level of diabetic rats.

  14. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats.

    Science.gov (United States)

    Moubarz, Gehan; Embaby, Mohamed A; Doleib, Nada M; Taha, Mona M

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes.

  15. Diabetes Enhances Dental Caries and Apical Periodontitis in Caries-Susceptible WBN/KobSlc Rats

    OpenAIRE

    Kodama, Yasushi; Matsuura, Masahiro; Sano, Tomoya; Nakahara, Yutaka; Ozaki, Kiyokazu; Narama, Isao; Matsuura, Tetsuro

    2011-01-01

    Many epidemiologic studies have suggested that diabetes may be an important risk factor for periodontal disease. To determine whether diabetes induces or enhances periodontal disease or dental caries, dental tissue from diabetic male and nondiabetic female WBN/KobSlc rats and male and female age-matched nondiabetic F344 rats was analyzed morphologically and morphometrically for these 2 types of lesions. Soft X-ray examination revealed that the incidence and severity of both molar caries and a...

  16. Protective effect of pomegranate juice on retinal oxidative stress in streptozotocin-induced diabetic rats

    OpenAIRE

    Betul Tugcu; Senay Asik Nacaroglu; Asuman Gedikbasi; Mehmet Uhri; Nur Acar; Hakan Ozdemir

    2017-01-01

    AIM: To investigate the effect of pomegranate juice (PJ) intake on overall oxidation status in retinas of diabetic rats. METHODS: Twenty-seven rats were divided into four groups as control (CO), diabetic (DM), control treated with PJ (CO-PJ), and diabetic treated with PJ (DM-PJ).The retina tissues were used to determine 8-hydroxy-2’-deoxyguanosine (8OHdG), malondialdehyde (MDA), reduced glutathione (GSH) levels, and the enzyme activities of superoxide dismutase (SOD) and glutathione peroxi...

  17. Expression of glucocorticoid receptor and glucose transporter-1 during placental development in the diabetic rat

    Directory of Open Access Journals (Sweden)

    Ramazan Demir

    2011-07-01

    Full Text Available In various tissues, glucocorticoids (GCs are known to downregulate glucose transport systems; however, their effects on glucose transporters (GLUTs in the placenta of a diabetic rat are unknown. Glucocorticoid hormone action within the cell is regulated by the glucocorticoid receptor (GR. Thus, this study was designed to investigate the relationship between GR and glucose transporter expression in the placenta of the diabetic rat. Our immunohistochemical results indicated that GR and glucose transporter protein 1 (GLUT 1 are expressed ubiquitously in the trophoblast and endothelial cells of the labyrinthine zone, where maternal fetal transport takes place in the rat placenta. Expression of GR in the junctional zone of the rat placenta was detected in giant cells, and in some spongiotrophoblast cells, but not in the glycogen cells. GLUT 1 was present, especially in glycogen cells during early pregnancy, and in the spongiotrophoblast cells of the junctional zone during late pregnancy. Amounts of GR and GLUT 1 protein were increased towards the end of gestation both in the control and the diabetic placenta. However, at days 17 and 19 of gestation, only the placental GR protein was significantly increased in the streptozotocin-induced diabetic rats compared to control rats. Diabetes led to a significant decrease in placental weight at gestation day 15. In contrast, at gestational days 17 and 21, the weights of the diabetic placenta were significantly increased as compared with the controls. Moreover, diabetes induced fetus intrauterine growth retardation at gestational days 13, 17 and 21. In conclusion, the localization pattern of GR and GLUT 1 proteins in the same cell types led us to believe that there might be a relationship between GR and GLUT 1 expressions at the cellular level. GLUT 1 does not play a pivotal role in diabetic pregnancies. However, placental growth abnormalities during diabetic pregnancy may be related to the amount of GR

  18. Evaluation of anti-diabetic effects of hydroalcoholic extract of green tea and cinnamon on streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Ghasem Shokri

    2015-06-01

    Full Text Available Today diabetes is one of the most common diseases in the world that affects half of the world population. The use of medicinal herbs especially green tea and cinnamon has been taken into consideration for relieving the symptoms of diabetes, but there were some different ideas about their effectiveness. So, this study was conducted to evaluate the effect of cinnamon and green tea extract, individually and in combination, on blood glucose and weight loss in diabetic mice with Streptozotocin (STZ. The experiment was performed on 50 Wistar rats.  A total of 50 rats were divided into 10 groups of 5 and STZ was injected at the dose of 40 mg/kg/day for 5 days intraperitoneally. After diabetes induction, three groups received, 50, 100 and 200 mg doses of green tea extract,  three groups received 50, 100 and 200 mg doses of cinnamon extract  and three final groups received 50, 100 and 200 mg doses of  cinnamon  and green tea in combination by gavages daily for 6 weeks. After each period of treatments, blood glucose and the weight of animals were determined. At the end of the sixth week, blood glucose and weight loss were improved in diabetic rats in a dose-dependent manner and the dose of 200 mg/kg extract cinnamon with green tea had the most appropriate synergic effect.

  19. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Aires, M.B. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Santos, J.R.A. [Departamento de Enfermagem, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Souza, K.S.; Farias, P.S. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Santos, A.C.V. [Departamento de Enfermagem, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Fioretto, E.T. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Maria, D.A. [Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP (Brazil)

    2015-07-10

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers.

  20. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    International Nuclear Information System (INIS)

    Aires, M.B.; Santos, J.R.A.; Souza, K.S.; Farias, P.S.; Santos, A.C.V.; Fioretto, E.T.; Maria, D.A.

    2015-01-01

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers

  1. Evaluation of cell proliferation and apoptosis in placentas of rats with severe diabetes

    Directory of Open Access Journals (Sweden)

    Marilza Vieira Cunha Rudge

    2012-04-01

    Full Text Available The aim of this work was to analyze the cell proliferation and apoptosis indexes on the 18th and 21st days of pregnancy of diabetic rats and to correlate with maternal glycemia and perinatal outcomes. Placentas from 20 Wistar rats were collected and divided into four experimental groups: control and diabetic of 18 and 21 days of pregnancy. The cell proliferation was analyzed using the PCNA expression and apoptosis by the TUNEL method. It was observed that PCNA and TUNEL indexes decreased from day 18 to 21 of pregnancy in the placentas of diabetic rats and these values were lower than control groups. Diabetic dams presented higher percentage of small for pregnancy age (SPA fetuses. However, there was no difference between the PCNA and TUNEL indexes in SPA and N-SPA fetuses in all the groups and these indexes were not correlated to maternal glycemic. Thus, placental cell proliferation and apoptosis did not interfere in the intrauterine growth restriction.

  2. Effects of galangal extract on cognitive dysfunction and nerve pathological change in rats with diabetic encephalopathy

    Directory of Open Access Journals (Sweden)

    Dao-Rui Yu

    2016-09-01

    Full Text Available Objective: To evaluate the effects of galangal extract on cognitive dysfunction and nerve pathological change in rats with diabetic encephalopathy. Methods: Sixty male SD rats were given high sugar and fat diet except the control group. Fifty days later, the animals were injected with STZ 30 mg/kg through intraperitoneal to establish type 2 diabetes model. Rats were divided into control group, model group, Metformin group, oxiracetam group, galangal extract high and low dose group. After 4-week administration, Morris water maze was utilized to investigate the effects of different galangal extract on learning and memory ability in rats. After behavioral testing, the blood sugar level was detected. Meanwhile, spectrophotometer was used to measure the superoxide dismutase (SOD activity and maleic dialdehyde (MDA content of brain tissue. HE staining was used to observe the morphological changes in the hippocampus. Results: Galangal extract can significantly reduce swimming time and swimming distance of diabetic encephalopathy rat model, lower fasting blood glucose while increase body weight. At the same time, SOD activity and MDA content of rat brain were reduced. The morphology of neurons in hippocampus was improved and neuronal nuclear condensation was reduced correspondingly. Conclusions: Galangal extract can significantly improve cognitive ability in diabetic rats, reduce hippocampal pathological changes and have some prevention or treatment effects on of diabetes encephalopathy

  3. Protective effect of the daming capsule on impaired baroreflexes in STZ-induced diabetic rats with hyperlipoidemia

    Directory of Open Access Journals (Sweden)

    Lu Guan-Yi

    2010-12-01

    Full Text Available Abstract Background The Daming capsule (DMC is a traditional Chinese medicine used to treat hyperlipoidemia. Both clinic trials and studies on animal models have demonstrated that DMC is beneficial against diabetic symptoms. Impairment of the baroreflex can cause life-threatening arrhythmias and sudden cardiac death in patients with diabetes mellitus (DM. This study was designed to elucidate the effects of DMC on baroreflexes in streptozocin (STZ-induced diabetic rats with hyperlipoidemia. Methods Wistar rats were randomly divided into three groups: untreated controls, rats pretreated STZ and high lipids (a diabetes model or DM rats, and DM rats treated with DMC. The baroreflex sensitivity was examined during intravenous injection of phenylephrine (PE or sodium nitroprusside (SNP and quantified by the change in heart rate over the change in mean arterial blood pressure (ΔHR/ΔMABP. Morphological remodeling of baroreceptors was analyzed by transmission electron microscopy (TEM. The mRNA levels and expression of GluR2 and a GABAA receptor subunit were measured by quantitative RT-PCR and Western blotting. Results Compared to untreated DM rats, DMC significantly elevated the ratio of ΔHR/ΔMABP by enhancing the compensatory reduction in HR (-ΔHR in response to PE-induced hypertension (+ΔMABP (P P P A receptor expression. Conclusion The Daming capsule partially reversed the parasympathetic baroreflex impairment observed in STZ-induced diabetic rats with hyperlipoidemia. Treatment with DMC also prevented the degeneration of neurons and myelinated axons in the brain stem NAm and reversed the down-regulation of GluR2 mRNA. Rescue of NAm function may contribute to the medicinal properties of DMC in diabetic rats.

  4. Cerebellar Insulin/IGF-1 signaling in diabetic rats: Effects of exercise training.

    Science.gov (United States)

    Borges, Mariana Eiras; Ribeiro, Alessandra Mussi; Pauli, José Rodrigo; Arantes, Luciana Mendonça; Luciano, Eliete; de Moura, Leandro Pereira; de Almeida Leme, José Alexandre Curiacos; Medeiros, Alessandra; Bertolini, Natália Oliveira; Sibuya, Clarice Yoshiko; Gomes, Ricardo José

    2017-02-03

    The Diabetes Mellitus (DM) is a chronic disease associated with loss of brain regions such as the cerebellum, increasing the risk of developing neurodegenerative diseases such as Parkinson's disease (PD). In the brain of diabetic and PD organisms the insulin/IGF-1 signaling is altered. Exercise training is an effective intervention for the prevention of neurodegerative diseases since it release neurotrophic factors and regulating insulin/IGF-1 signaling in the brain. This study aimed to evaluate the proteins involved in the insulin/IGF-1 pathway in the cerebellum of diabetic rats subjected to exercise training protocol. Wistar rats were distributed in four groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). Diabetes was induced by Alloxan (ALX) (32mg/kgb.w.). The training program consisted in swimming 5days/week, 1h/day, during 6 weeks, supporting an overload corresponding to 90% of the anaerobic threshold. At the end, cerebellum was extracted to determinate the protein expression of GSK-3β, IRβ and IGF-1R and the phosphorylation of β-amyloid, Tau, ERK1+ERK2 by Western Blot analysis. All dependent variables were analyzed by one-way analysis of variance with significance level of 5%. Diabetes causes hyperglycemia in both diabetic groups; however, in TD, there was a reduction in hyperglycemia compared to SD. Diabetes increased Tau and β-amyloid phosphorylation in both SD and TD groups. Furthermore, aerobic exercise increased ERK1+ERK2 expression in TC. The data showed that in cerebellum of diabetic rats induced by alloxan there are some proteins expression like Parkinson cerebellum increased, and the exercise training was not able to modulate the expression of these proteins. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Antiobesity, antioxidant and antidiabetic activities of red Ginseng plant extract in obese diabetic rats

    Directory of Open Access Journals (Sweden)

    Mostafa Abbas Shalaby

    2013-06-01

    Full Text Available Aim: This study aimed to investigate the effects of red ginseng extract (RGE on adiposity index, some serum biochemical parameters and tissue antioxidant activity in obese diabetic rats. Materials and Methods: Five groups of male Sprague-Dawley rats were used. Group (1 was negative control and the other 4 groups were fed on high fat-diet for 6 weeks to induce obesity. The obese rats were then rendered diabetic by intraperitoneal injection of alloxan for 5 days. Group (2 was kept obese diabetic (positive control and the other 3 groups were orally given RGE at 100, 200 and 400 mg /kg /day, respectively, for 4 weeks. Blood samples were collected for biochemical analyses and kidneys were taken to assay of activities of antioxidant enzymes. Results: oral dosage of RGE to obese diabetic rats significantly (P < 0.05 reduced adiposity index; decreased serum levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT, gamma- glutamyl transpeptidase (GGT enzymes, total cholesterol (TC, triglycerides (TG, and low density lipoproteins (LDL-c and improved atherogenic index. Blood glucose and leptin hormone decreased, but insulin increased by administration of RGE. it increased activities of superoxide dismutase (SOD, glutathione peroxidase (GPx and catalase (CAT antioxidant enzymes in kidneys tissues. Conclusion: Red ginseng extract produces antiobesity, antioxidant, and antidiabetic activities in obese diabetic rats. The study suggests that red ginseng plant may be beneficial for the treatment of patients who suffer from obesity associated with diabetes. [J Intercult Ethnopharmacol 2013; 2(3.000: 165-172

  6. Hyperbaric Oxygen therapy effects on bone regeneration in Type 1 diabetes mellitus in rats.

    Science.gov (United States)

    Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Linhares, Camila Rodrigues Borges; Bergamini, Mariana Lobo; Rocha, Flaviana Soares; Morais, Richarlisson Borges de; Balbi, Ana Paula Coelho; Hiraki, Karen Renata Nakamura; Dechichi, Paula

    2018-01-29

    The aim of this study was evaluate the effect of HBO on diabetic rats. Twenty rats were distributed into four groups (n = 5): Control (C); Control + HBO (CH); Diabetes (D) and Diabetes + HBO (DH). Diabetes was induced by streptozotocin, and bone defects were created in both femurs in all animals. HBO therapy began immediately after surgery and was performed daily in the CH and DH groups. After 7 days, the animals were euthanized. The femurs were removed, demineralized, embedded in paraffin, and histologic images were analyzed. Qualitative histologic analyses showed more advanced stage bone regeneration in control groups (C and CH) compared with diabetic groups (D and DH). Histomorphometric analysis showed significantly increased bone neoformation in CH compared with the other groups (p  0.05). The mast cell population increased in CH compared with the other groups (C, D, and DH) (p < 0.05). The mast cell population did not differ between D and DH Groups. This study showed that HBO therapy improved early bone regeneration in diabetic rats and increased the mast cell population only in non-diabetic animals. HBO was shown to be important treatment for minimizing deleterious effects of diabetes on bone regeneration.

  7. Merit of Ginseng in the Treatment of Heart Failure in Type 1-Like Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Tsai

    2014-01-01

    Full Text Available The present study investigated the merit of ginseng in the improvement of heart failure in diabetic rats and the role of peroxisome proliferator-activated receptors δ (PPARδ. We used streptozotocin-induced diabetic rat (STZ-rat to screen the effects of ginseng on cardiac performance and PPARδ expression. Changes of body weight, water intake, and food intake were compared in three groups of age-matched rats; the normal control (Wistar rats received vehicle, STZ-rats received vehicle and ginseng-treated STZ-rats. We also determined cardiac performances in addition to blood glucose level in these animals. The protein levels of PPARδ in hearts were identified using Western blotting analysis. In STZ-rats, cardiac performances were decreased but the food intake, water intake, and blood glucose were higher than the vehicle-treated control. After a 7-day treatment of ginseng in STZ-rats, cardiac output was markedly enhanced without changes in diabetic parameters. This treatment with ginseng also increased the PPARδ expression in hearts of STZ-rats. The related signal of cardiac contractility, troponin I phosphorylation, was also raised. Ginseng-induced increasing of cardiac output was reversed by the cotreatment with PPARδ antagonist GSK0660. Thus, we suggest that ginseng could improve heart failure through the increased PPARδ expression in STZ-rats.

  8. Protective Effect of Ethyl Acetate Fraction of Stereospermum Suaveolens Against Hepatic Oxidative Stress in STZ Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Thirumalaiswamy Balasubramanian

    2013-07-01

    Full Text Available Stereospermum suaveolens is a folk remedy for the treatment of diabetes and liver disorders in southern parts of India. In the present study, the protective effect of the ethyl acetate fraction of ethanol extract from S. suaveolens against hepatic oxidative stress was evaluated in streptozotocin (STZ-induced diabetic rats for 14 days. The ethyl acetate fraction was administered orally to the STZ diabetic rats at the doses of 200 and 400 mg/kg. Blood glucose level was measured according to glucose oxidase method. In order to determine hepatoprotective activity, changes in the levels of serum biomarker enzymes such as aspartate transaminase (AST, alanine transaminase (ALT, and serum alkaline phosphatase (SALP were assessed in the ethyl acetate fraction treated diabetic rats and were compared with the levels in diabetic control rats. In addition, the antioxidant activity of ethyl acetate fraction was evaluated using various hepatic parameters such as thiobarbituric acid reactive substances (TBARS, reduced glutathione (GSH, superoxide dismutase (SOD, and catalase (CAT. It was found that administration of ethyl acetate fraction (200 and 400 mg/kg produced a significant (P<0.001 fall in fasting blood glucose level, TBARS, bilirubin, AST, ALT, and SALP, while elevating the GSH levels, and SOD and CAT activities in diabetic rats. Histopathologic studies also revealed the protective effect of ethyl acetate fraction on the liver tissues of diabetic rats. It was concluded from this study that the ethyl acetate fraction from ethanol extract of S. suaveolens modulates the activity of enzymatic and nonenzymatic antioxidants and enhances the defense against hepatic oxidative stress in STZ-induced diabetic rats.

  9. The potential osteogenic effects of systemic lep tin and insulin administration in streptozotocin-induced diabetic female rats

    International Nuclear Information System (INIS)

    Gad, Hayam I.

    2007-01-01

    To evaluate the effect of leptin administration on some biochemical parameters of bone turnover in diabetic rats using either leptin alone or a combination of leptin and insulin. The study was carried out on 32 female Wistar rats supplied by Medical College animal house at King Khalid Hospital, Kingdom of Saudi Arabia during the period from March to December 2006. Rats were divided into 4 groups (8 rats each), controls, non-treated diabetic, leptin-treated diabetic and leptin plus insulin-treated diabetic rats. After induction of diabetes by 6 weeks, treatment with leptin either alone or combined with insulin was continued for 2 weeks more. At the end of treatment, serum samples were taken to measure levels of bone alkaline phosphate (BAP), alkaline phosphates, osteocalcin, insulin like growth factor-1 (IGF-1), parathyroid hormone (PTH), glucose, creatinine, calcium, calcium ions (Ca2+), and phosphorous using enzyme-linked immunoassay (ELISA) and spectrophotometric methods. Body weight and urinary calcium excretion were also measured. Combined leptin and insulin treatment produced a significant increase of serum BAP and a decrease of urinary calcium and serum glucose as compared to rats treated by leptin only, and a significant increase of BAP, alkaline phosphates, IGF-1, and glucose and a decrease in osteocalcin as compared to control rats. Positive correlations were detected between serum IGF-1 levels and each of BAP, alkaline phosphatase and osteocalcin in diabetic rats treated by leptin, and those with leptin plus insulin. Combined leptin plus insulin treatment can offer extra gain of bone formation over leptin treatment alone. Confirmation of these preliminary observations must await careful long-term studies of bone turnover experimental diabetes. (author)

  10. Insulin and vanadium protect against osteoarthritis development secondary to diabetes mellitus in rats.

    Science.gov (United States)

    El Karib, Abbas O; Al-Ani, Bahjat; Al-Hashem, Fahaid; Dallak, Mohammad; Bin-Jaliah, Ismaeel; El-Gamal, Basiouny; Bashir, Salah O; Eid, Refaat A; Haidara, Mohamed A

    2016-07-01

    Diabetic complications such as cardiovascular disease and osteoarthritis (OA) are among the common public health problems. The effect of insulin on OA secondary to diabetes has not been investigated before in animal models. Therefore, we sought to determine whether insulin and the insulin-mimicking agent, vanadium can protect from developing OA in diabetic rats. Type 1 diabetes mellitus (T1DM) was induced in Sprague-Dawley rats and treated with insulin and/or vanadium. Tissues harvested from the articular cartilage of the knee joint were examined by scanning electron microscopy, and blood samples were assayed for oxidative stress and inflammatory biomarkers. Eight weeks following the induction of diabetes, a profound damage to the knee joint compared to the control non-diabetic group was observed. Treatment of diabetic rats with insulin and/or vanadium differentially protected from diabetes-induced cartilage damage and deteriorated fibrils of collagen fibers. The relative biological potencies were insulin + vanadium > insulin > vanadium. Furthermore, there was about 2- to 5-fold increase in TNF-α (from 31.02 ± 1.92 to 60.5 ± 1.18 pg/ml, p 1) and IL-6 (from 64.67 ± 8.16 to 338.0 ± 38.9 pg/ml, p 1) cytokines and free radicals measured as TBARS (from 3.21 ± 0.37 to 11.48 ± 1.5 µM, p 1) in the diabetic group, which was significantly reduced with insulin and or vanadium. Meanwhile, SOD decreased (from 17.79 ± 8.9 to 8.250.29, p 1) and was increased with insulin and vanadium. The relative potencies of the treating agents on inflammatory and oxidative stress biomarkers were insulin + vanadium > insulin > vanadium. The present study demonstrates that co-administration of insulin and vanadium to T1DM rats protect against diabetes-induced OA possibly by lowering biomarkers of inflammation and oxidative stress.

  11. Effect of Omega-3 Fatty Acids on Erythrocyte Membrane in Diabetic Rats

    OpenAIRE

    Hussein, Jihan; Mostafa, Ehab; El-Waseef, Maha; El-Khayat, Zakarya; Badawy, Ehsan; Medhat, Dalia

    2011-01-01

    Background: Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia resulting from defects in insulin secretion, almost always with a major contribution from insulin resistance which may be affected by cell membrane fatty acids and phospholipids fractions.Aim: To evaluate the effects of omega-3 fatty acids on erythrocyte membrane and also in decreasing oxidative stress in diabetic rats.Material and Methods: Sixty healthy male albino rats weighting 180-200 g divided int...

  12. Effects of multiple low dose radiation on spleen T lymphocyte subgroups in eight-week diabetic rats

    International Nuclear Information System (INIS)

    Guan Feng; Li Yanbo; Zhao Hongguang; Guo Wei; Wang Zhicheng; Gong Shouliang; Guo Caixia

    2008-01-01

    Objective: To explore the changes of spleen lymphocyte subgroups in diabetic rats after multiple low dose radiation (LDR). Methods: The experiment was divided into normal control group, pure diabetes mellitus (DM) group, and DM plus different doses of irradiation groups (the irradiation doses were 0.025, 0.050 and 0.075 Gy, respectively). The diabetic rat model was induced by intraperitoneal injection of streptozotocin. After the diabetic rats were irradiated 15 times, the percentages of spleen CD4 + and CD8 + T cells and ratio of CD4 + /CD8 + T cells were detected with flow cytometry on the fourth weekend. Results: The diabetic rats manifested obvious polydipsia, polyphagia, polyuria and weight loss. On the fourth weekend after irradiation, as compared with normal control group, the percentage of spleen CD4 + T cells increased significantly (P + T cells decreased significantly (P + /CD8 + T cells was increased significantly (P + T cells were declined markedly in both 0.050 and 0.075 Gy plus DM groups (P + T cells increased significantly in LDR plus DM groups (P + /CD8 + T cells was declined obviously (P<0.01). Conclusion: The multiple LDR could regulate the immune function in diabetic rats, and rectificate the immunological imbalance in order to protect body. (authors)

  13. Expression and mechanism of high mobility group box protein-1 in retinal tissue of diabetic rats

    Directory of Open Access Journals (Sweden)

    Shuang Jiang

    2016-05-01

    Full Text Available AIM:To investigate the expression and mechanism of high mobility group box protein-1(HMGB1in the retina of diabetic rats. METHODS:Sixty SD rats were randomly divided into diabetic group and control group. Diabetic rat model was produced by intraperitioneal injection of 1% STZ with 60mg/Kg weight. The rats in control group received intraperitioneal injection of normal saline with same dosage. After injection, the rats were sacrificed and eyeballs were enucleated for HE staining, the retina fluorescence angiography, TUNEL and Western Blot detection at 1, 2 and 4mo for the expressions of HMGB1 and NF-κB. RESULTS:Compared with the control group, the retinal cells disorder, cell densities decreases, microvasculars occlusion were founded with inner and outer nuclear layer thinning and ganglion cell apoptosis. The fluorescence angiography showed that peripheral capillaries became circuitous and vascular occlusion and non-perfusion area could be seen. The expressions of HMGB1 and NF-κB were higher than those of control with time dependence and they had significant positive correlations(PCONCLUSION:The expression of HMGB1 increases in diabetic rat retina, which may involve in the occurrence of diabetic retinopathy through the NF- κB pathway.

  14. Strengthening of antioxidant defense by Azadirachta indica in alloxan-diabetic rat tissues

    Directory of Open Access Journals (Sweden)

    Sweta Shailey

    2012-01-01

    Full Text Available Background: Azadirachta indica has been reported to correct altered glycaemia in diabetes. Objective: The aqueous extract of A. indica leaf and bark has been evaluated for its effect on antioxidant status of alloxan diabetic rats and compared with insulin treatment. Materials and Methods: The oral effective dose of A. indica leaf (500 mg/kg body weight and A. indica bark (100 mg/kg body weight were given once daily for 21 days to separate groups of diabetic rats. At the end of the experimental period blood glucose level and activity of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione reductase (GR, glucose-6-phosphate dehydrogenase (G-6-PD, and membrane lipid peroxidation were determined in different fractions of liver and kidney tissues. Results: Diabetic rats showed high blood glucose (P<0.01, increased level of malondialdehyde (P<0.05 and a significant decrease in the activity of antioxidant enzymes. Treatment with insulin, A. indica leaf extract (AILE, and A. indica bark extract (AIBE restored the above altered parameters close to the control ones. Conclusions: Both AILE and AIBE were found significantly effective in reducing hyperglycemia-induced oxidative stress. The findings suggest further investigations for the possible use of A. indica as alternative medicine to prevent long-term complications of diabetes.

  15. Enhanced synthesis and secretion of apolipoprotein E from sciatic nerves of streptozotocin-induced diabetic rats after injury

    International Nuclear Information System (INIS)

    Ishibashi, S.; Yamada, N.; Oka, Y.

    1988-01-01

    To elucidate the pathogenesis of diabetic neuropathy, synthesis and secretion of apolipoprotein E (apo E) from sciatic nerves after injury was studied in normal and streptozotocin-induced diabetic rats. Seven, 14, 28, 45 and 59 days after making crush injury on sciatic nerves with concomitant administration of streptozotocin (50 mg/kg body weight), the nerves were taken out and incubated with [ 35 S]methionine. The [ 35 S]labeled apo E was precipitated with specific antiserum. The amounts of apo E secreted into medium by nerves of diabetic rats were 7 times greater than those of non-diabetic rats 7 days after injury. This enhanced secretion of apo E was relatively selective for this protein, since the ratio of the immunoprecipitable apo E to the TCA preciptitable protein in the medium increased in diabetic rats. Intriguing possibility deduced from these results is that the secretion of apo E is involved in the development of diabetic neuropathy

  16. Stem Cell Therapy for Diabetic Erectile Dysfunction in Rats: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Mingchao Li

    Full Text Available Stem cell therapy is a novel method for the treatment of diabetic erectile dysfunction (ED. Many relative animal studies have been done to evaluate the efficacy of this therapy in rats.This meta-analysis was performed to compare the efficacy of different stem cell therapies, to evaluate the influential factors and to determine the optimal stem cell therapeutic strategy for diabetic ED.We searched the studies analyzing the efficacy of stem cell therapy for diabetic ED in rats published before September 30, 2015 in PubMed, Web of Science and EBSCO. A random effects meta-analysis was conducted to assess the outcomes of stem cell therapy. Subgroup analysis was also performed by separating these studies based on their different characteristics. Changes in the ratio of intracavernous pressure (ICP to mean arterial pressure (MAP and in the structure of the cavernous body were compared.10 studies with 302 rats were enrolled in this meta-analysis. Pooled analysis of these studies showed a beneficial effect of stem cell therapy in improving erectile function of diabetic rats (SMD 4.03, 95% CI = 3.22 to 4.84, P< 0.001. In the stem cell therapy group, both the smooth muscle and endothelium content were much more than those in control group. There was also significant increase in the expression of endothelial nitric oxide synthase (eNOS and neuronal nitric oxide synthase (nNOS, the ratio of smooth muscle to collagen, as well as the secretion of vascular endothelial growth factor (VEGF. Besides, apoptotic cells were reduced by stem cell treatment. The subgroup analysis indicated that modified stem cells were more effective than those without modification.Our results confirmed that stem cell therapy could apparently improve the erectile function of diabetic rats. Some specific modification, especially the gene modification with growth factors, could improve the efficacy of stem cell therapy. Stem cell therapy has potential to be an effective therapeutic

  17. Effect of continuous irradiation with low dose X-rays on the reproductive complications in male diabetic rats

    International Nuclear Information System (INIS)

    Zhao Hongguang; Xu Songbai; Li Pengwu; Wang Zhicheng; Lin Chenghe; Gong Shouliang

    2009-01-01

    Objective: To explore the effects of 75 mGy irradiation on the apoptosis of spermatogenic cells and antioxidant capacity of serum and testis and hormone levels in male rats with diabetes mellitus (DM). Methods: Rats were injected intraperitoneally with streptozotocin (STZ) to develop diabetes. The diabetic rats were irradiated with 75 mGy X-rays every other day for 4 weeks. Their survival rate and body weight were recorded 12 weeks after development of diabetes. The apeptosis percentage of germ cells was measured with flow cytometry and TUNEL method. The changes of anti-oxidation and gonadal hormone levels in serum and testis were measured with kits. Results: After the rats suffered from diabetes for 12 weeks, the survival rate in DM group was 25% (6/24), 100% in normal control group (16116). The survival rate in 75 mGy + DM group (9/16,56.25%) was obviously higher than that in the DM group (χ 2 = 4.00,P < 0.05). Meanwhile, the percentage of apaptotic spermatogenic cells in the diabetic rats was significantly larger than those in the normal control and irradiation groups (F = 5.496, P < 0.05). MDA and NO levels in serum and testis of diabetic rats were higher in varying degrees than that in the normal control, while the serum and testis MDA content in the 75 mGy + DM group were lower than those in the DM group especially in the testis (F = 10.644, P < 0.01). 75 mGy X-ray irradiation decreased NO content in the diabetic rats serum significantly (F = 14.379, P < 0.05) and increased NOS activity and TS, FSH level (F = 9.676, 43.194 and 5.282, respectively, P < 0.05 and P < 0.01). Conclusions: LDR could decrease the MDA level and NO content, and increase the antioxidant enzyme activity and TS and FSH levels in testis and serum of diabetic rats. (authors)

  18. Effects of diabetes and gender on mechanical properties of the arterial system in rats: aortic impedance analysis.

    Science.gov (United States)

    Chang, Kuo-Chu; Hsu, Kwan-Lih; Tseng, Yung-Zu

    2003-01-01

    We determined the effects of diabetes and gender on the physical properties of the vasculature in streptozotocin (STZ)-treated rats based on the aortic input impedance analysis. Rats given STZ 65 mg/kg i.v. were compared with untreated age-matched controls. Pulsatile aortic pressure and flow signals were measured and were then subjected to Fourier transformation for the analysis of aortic input impedance. Wave transit time was determined using the impulse response function of the filtered aortic input impedance spectra. Male but not female diabetic rats exhibited an increase in cardiac output in the absence of any significant changes in arterial blood pressure, resulting in a decline in total peripheral resistance. However, in each gender group, diabetes contributed to an increase in wave reflection factor, from 0.47 +/- 0.04 to 0.84 +/- 0.03 in males and from 0.46 +/- 0.03 to 0.81 +/- 0.03 in females. Diabetic rats had reduced wave transit time, at 18.82 +/- 0.60 vs 21.34 +/- 0.51 msec in males and at 19.63 +/- 0.37 vs 22.74 +/- 0.57 msec in females. Changes in wave transit time and reflection factor indicate that diabetes can modify the timing and magnitude of the wave reflection in the rat arterial system. Meanwhile, diabetes produced a fall in aortic characteristic impedance from 0.023 +/- 0.002 to 0.009 +/- 0.001 mmHg/min/kg/ml in males and from 0.028 +/- 0.002 to 0.014 +/- 0.001 mmHg/min/kg/ml in females. With unaltered aortic pressure, both the diminished aortic characteristic impedance and wave transit time suggest that the muscle inactivation in diabetes may occur in aortas and large arteries and may cause a detriment to the aortic distensibility in rats with either sex. We conclude that only rats with male gender diabetes produce a detriment to the physical properties of the resistance arterioles. In spite of male or female gender, diabetes decreases the aortic distensibility and impairs the wave reflection phenomenon in the rat arterial system.

  19. Hypersensitivity to norepinephrine in vasa deferentia from diabetic rats. Possible participation of metabolic products of arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Peredo, H; Agostini, M D; Gimeno, M F; Borda, E S

    1984-08-01

    Contractile responses to norepinephrine of the vas deferens isolated from normal and diabetic rats as well as tissue radio-conversion of exogenous arachidonic acid, were studied. Vasa deferentia from rats with acute streptozotocin-induced diabetes showed hypersensitivity to exogenous norepinephrine (NE). This increased contractile response was associated with the interaction of the agonist with alpha adrenoceptors. Inhibitors of cyclooxygenase increased and inhibitors of lipoxygenase(s) abolished the enhanced response to NE of diabetic vas deferens. Vasa deferentia from both normal and diabetic rats, converted (1-/sup 14/C)-arachidonic acid (AA) into PGF, PGE, PGD and thromboxane (TX) B2, but the % of AA metabolites formed was significantly higher in the diabetic than in the normal condition. Moreover, the predominant prostanoid generated by tissue preparations from diabetic animals was PGD2. Taken together the present experimental findings indicate that preparations from rats with acute streptozotocin-induced diabetes have an augmented reactivity towards NE, which appeared associated with changes in metabolites of AA generated via cyclooxygenase and lipoxygenase catalized pathways.

  20. Analysis of protein profiles in diabetic rat blood plasma that induced by alloxan

    Science.gov (United States)

    Hidayati, Dewi; Abdulgani, Nurlita; Setiyawan, Hengki; Trisnawati, Indah; Ashuri, Nova Maulidina; Sa'adah, Noor Nailis

    2017-06-01

    Proteomics is the study to identify the proteins involved in physiological metabolic pathway. The protein profiles of blood plasma from alloxan-induced diabetic rats has investigated using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Data were analyzed descriptively based on variations of the type and intensity of the protein. There were identified the similarity of protein variant between diabetic and control rats included ankyrin (200kDa), IgG (150kDa), nephrin (136 kDa), IDE (112 kDA), albumin (66 kDa), prealbumin (55 kDA), CICP (43 kDa), ApoA-V (39 kDa), GAPDH (35 kDa), C-RP (27,1 kDa), leptin (16 kDa) and apelin (13 kDa). However, the apelin profile at diabetic rats shows the higher intensity than control.

  1. Mild Oxidative Damage in the Diabetic Rat Heart Is Attenuated by Glyoxalase-1 Overexpression

    Directory of Open Access Journals (Sweden)

    Casper G. Schalkwijk

    2013-07-01

    Full Text Available Diabetes significantly increases the risk of heart failure. The increase in advanced glycation endproducts (AGEs and oxidative stress have been associated with diabetic cardiomyopathy. We recently demonstrated that there is a direct link between AGEs and oxidative stress. Therefore, the aim of the current study was to investigate if a reduction of AGEs by overexpression of the glycation precursor detoxifying enzyme glyoxalase-I (GLO-I can prevent diabetes-induced oxidative damage, inflammation and fibrosis in the heart. Diabetes was induced in wild-type and GLO-I transgenic rats by streptozotocin. After 24-weeks of diabetes, cardiac function was monitored with ultrasound under isoflurane anesthesia. Blood was drawn and heart tissue was collected for further analysis. Analysis with UPLC-MSMS showed that the AGE Nε-(1-carboxymethyllysine and its precursor 3-deoxyglucosone were significantly elevated in the diabetic hearts. Markers of oxidative damage, inflammation, and fibrosis were mildly up-regulated in the heart of the diabetic rats and were attenuated by GLO-I overexpression. In this model of diabetes, these processes were not accompanied by significant changes in systolic heart function, i.e., stroke volume, fractional shortening and ejection fraction. This study shows that 24-weeks of diabetes in rats induce early signs of mild cardiac alterations as indicated by an increase of oxidative stress, inflammation and fibrosis which are mediated, at least partially, by glycation.

  2. Protective Effects of Vitamin C (Ascorbic Acid in Lead Acetate Exposed Diabetic Male Rats: Evaluation of Blood Biochemical Parameters and Testicular Histopathology

    Directory of Open Access Journals (Sweden)

    Alireza AYOUBI

    2015-01-01

    Full Text Available The aim of this study was to investigate the protective effects of vitamin C against lead toxicity by measuring the blood parameters and studying histopathology of testis in diabetic male rats. Wister rats (42 were randomly assigned into7 groups: I healthy; II fed lead acetate only; III vitamin C administered only; IV diabetic; V diabetic rats administered by vitamin C; VI diabetic rats given lead acetate and VII diabetic rats received lead acetate and vitamin C. The diabetic and lead groups had higher glucose, cholesterol, LDL, triglycerides and lower insulin and HDL concentration than the control group. It was found that vitamin C administration led to a lower level of blood glucose, cholesterol, LDL and triglycerides and higher HDL concentration in diabetic rats significantly. It was concluded that the antioxidant property of vitamin C resulted in reducing the oxidative stress complications of toxic levels of lead acetate in diabetic rats.

  3. Sustained glucagon-like peptide 1 expression from encapsulated transduced cells to treat obese diabetic rats.

    Science.gov (United States)

    Moralejo, Daniel; Yanay, Ofer; Kernan, Kelly; Bailey, Adam; Lernmark, Ake; Osborne, William

    2011-04-01

    Obesity and type 2 diabetes (T2D) are two prevalent chronic diseases that have become a major public health concern in industrialized countries. T2D is characterized by hyperglycemia and islet beta cell dysfunction. Glucagon-like peptide 1 (GLP-1) promotes β cell proliferation and neogenesis and has a potent insulinotropic effect. Leptin receptor deficient male rats are obese and diabetic and provide a model of T2D. We hypothesized that their treatment by sustained expression of GLP-1 using encapsulated cells may prevent or delay diabetes onset. Vascular smooth muscle cells (VSMC) retrovirally transduced to secrete GLP-1 were seeded into TheraCyte(TM) encapsulation devices, implanted subcutaneously and rats were monitored for diabetes. Rats that received cell implants showed mean plasma GLP-1 level of 119.3 ± 10.2pM that was significantly elevated over control values of 32.4 ± 2.9pM (P<0.001). GLP-1 treated rats had mean insulin levels of 45.9 ± 2.3ng/ml that were significantly increased over control levels of 7.3±1.5ng/ml (P<0.001). In rats treated before diabetes onset elevations in blood glucose were delayed and rats treated after onset became normoglycemic and showed improved glucose tolerance tests. Untreated diabetic rats possess abnormal islet structures characterized by enlarged islets with α-cell infiltration and multifocal vacuolization. GLP-1 treatment induced normalization of islet structures including a mantle of α-cells and increased islet mass. These data suggest that encapsulated transduced cells may offer a potential long term treatment of patients. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Effects of garlic extract on TNF-α expression and oxidative stress status in the kidneys of rats with STZ + nicotinamide-induced diabetes.

    Science.gov (United States)

    Ziamajidi, Nasrin; Nasiri, Abolfazl; Abbasalipourkabir, Roghayeh; Sadeghi Moheb, Somayeh

    2017-12-01

    Allium sativum L. (Liliaceae) (garlic) is a medicinal plant that is widely used in herbal medicine. Nephropathy is a complication of diabetes that is induced by long-term hyperglycaemia. The effects of aqueous extract of garlic (AGE) on the expression of tumour necrosis factor-alpha (TNF-α) and oxidative stress status were studied in the kidneys of rats with streptozotocin (STZ) + nicotinamide-induced diabetes. Twenty-four Wistar rats were divided into four groups: control rats, rats with STZ + nicotinamide-induced diabetes that received a single dose of STZ (65 mg/kg) and nicotinamide (110 mg/kg) intraperitoneally, diabetic rats that were treated with garlic (2 g/kg/d, gavage), and normal rats that received garlic (2 g/kg/d, gavage). The glucose level was determined in the start of study, 7 d after induction of diabetes and 33 d after treatment with garlic. At the end of the treatment period, urea, uric acid and creatinine levels were estimated in sera. Malondialdehyde (MDA), total oxidant status (TOS), nitric oxide (NO) levels and TNF-α gene and protein expression were measured in the renal tissues of the rats. The glucose, uric acid, and urea levels increased in the serum of diabetic rats compared with control rats, and decreased in garlic-treated diabetic rats compared with diabetic rats (p garlic-treated diabetic rats compared with diabetic rats (p garlic, it was close to the normal level (p garlic extract has hypoglycaemic, antioxidant and anti-inflammatory properties; therefore, it can be useful for the alleviation of diabetic complications.

  5. Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Ozsoy-Sacan, Ozlem; Yanardag, Refiye; Orak, Haci; Ozgey, Yasemin; Yarat, Aysen; Tunali, Tugba

    2006-03-08

    Parsley (Petroselinum crispum) is one of the medicinal herbs used by diabetics in Turkey. The aim of this study is to investigate the effects of parsley (2g/kg) and glibornuride (5mg/kg) on the liver tissue of streptozotocin-induced diabetic rats. Swiss albino rats were divided into six groups: control; control+parsley; control+glibornuride; diabetic; diabetic+parsley; diabetic+glibornuride. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Parsley extract and glibornuride were given daily to both diabetic and control rats separately, until the end of the experiment, at day 42. The drugs were administered to one diabetic and one control group from days 14 to 42. On day 42, liver tissues were taken from each rat. In STZ-diabetic group, blood glucose levels, serum alkaline phosphatase activity, uric acid, sialic acid, sodium and potassium levels, liver lipid peroxidation (LPO), and non-enzymatic glycosylation (NEG) levels increased, while liver glutathione (GSH) levels and body weight decreased. In the diabetic group given parsley, blood glucose, serum alkaline phosphatase activity, sialic acid, uric acid, potassium and sodium levels, and liver LPO and NEG levels decreased, but GSH levels increased. The diabetic group, given glibornuride, blood glucose, serum alkaline phosphatase activity, serum sialic acid, uric acid, potassium, and liver NEG levels decreased, but liver LPO, GSH, serum sodium levels, and body weight increased. It was concluded that probably, due to its antioxidant property, parsley extract has a protective effect comparable to glibornuride against hepatotoxicity caused by diabetes.

  6. Protective Effect of Ethanol Extracts of Hericium erinaceus on Alloxan-Induced Diabetic Neuropathic Pain in Rats

    Directory of Open Access Journals (Sweden)

    Zhang Yi

    2015-01-01

    Full Text Available We investigated the effects of Hericium erinaceus (HEE on alloxan induced diabetic neuropathic pain in laboratory rats. Alloxan induced diabetic rats were administered orally HEE. After 6 weeks of treatments, treatment with HEE 40 mg/kg in diabetic animals showed significant increase in pain threshold and paw withdrawal threshold and significant decrease in serum glucose and urine glucose. We also observed a significant increase in lactate dehydrogenase (LDH, Lipid peroxidation (LPO, glutathione peroxidase (GPx activity, glutathione reductase (GR activity, catalase (CAT activity, Na+K+ATPase activity, and glutathione S transferase (GST activity along with significant decreased levels of glutathione (GSH content in diabetic rats. The total antioxidant status (TAOS in the HEE-treated groups was significantly lower than that in the alloxan-treated group. HEE can offer pain relief in diabetic neuropathic pain. The improvement in diabetic state after HEE treatment along with the antioxidant activity could be the probable way by which it had alleviated diabetic neuropathy.

  7. Protective Effect of Ethanol Extracts of Hericium erinaceus on Alloxan-Induced Diabetic Neuropathic Pain in Rats

    Science.gov (United States)

    Yi, Zhang; Shao-long, Yang; Ai-hong, Wang; Zhi-chun, Sun; Ya-fen, Zhuo; Ye-ting, Xu; Yu-ling, He

    2015-01-01

    We investigated the effects of Hericium erinaceus (HEE) on alloxan induced diabetic neuropathic pain in laboratory rats. Alloxan induced diabetic rats were administered orally HEE. After 6 weeks of treatments, treatment with HEE 40 mg/kg in diabetic animals showed significant increase in pain threshold and paw withdrawal threshold and significant decrease in serum glucose and urine glucose. We also observed a significant increase in lactate dehydrogenase (LDH), Lipid peroxidation (LPO), glutathione peroxidase (GPx) activity, glutathione reductase (GR) activity, catalase (CAT) activity, Na+K+ATPase activity, and glutathione S transferase (GST) activity along with significant decreased levels of glutathione (GSH) content in diabetic rats. The total antioxidant status (TAOS) in the HEE-treated groups was significantly lower than that in the alloxan-treated group. HEE can offer pain relief in diabetic neuropathic pain. The improvement in diabetic state after HEE treatment along with the antioxidant activity could be the probable way by which it had alleviated diabetic neuropathy. PMID:25960754

  8. Reticuloendothelial hyperphagocytosis occurs in streptozotocin-diabetic rats. Studies with colloidal carbon, albumin microaggregates, and soluble fibrin monomers

    International Nuclear Information System (INIS)

    Cornell, R.P.

    1982-01-01

    In contrast to previous studies of diabetic humans and animals, which reported unchanged or depressed function, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon, 125 I-albumin microaggregates, and 125 I-fibrin monomers were observed in rats as early as 14 days after the induction of diabetes with streptozotocin (STZ). The fact that enhanced phagocytosis by RE macrophages was prevented by chronic insulin replacement therapy indicates that the diabetic internal environment of hyperglycemia and hypoinsulinemia was perhaps responsible for the observed changes. Experiments involving organ localization of intravenously administered particles, perfusion of isolated livers, and microscopic examination of the liver all suggested that increased Kupffer cell activity was the primary event in RES hyperphagocytosis by STZ-diabetic rats. Both hypertrophy and hyperplasia of Kupffer cells were apparent in livers of STZ-diabetic animals as evidenced by photomicrographs and hepatic cell quantification. Plasma fibronectin, which binds fibrin monomers to RE macrophages before phagocytosis, was significantly decreased in the circulation of STZ-diabetic rats, but the level of cell-associated fibronectin was not measured. Renal localization of urea-soluble 125 I-fibrin monomers exceeded splenic and pulmonary uptake in normal control rats and was enhanced in animals with STZ-diabetes. Changes in fibronectin levels, fibrin monomer localization, and Kupffer cell size and numbers in experimental diabetes in rats may have implications for the pathogenesis of vascular disease involving phagocytic mesangial and foam cells in diabetic humans

  9. Reticuloendothelial hyperphagocytosis occurs in streptozotocin-diabetic rats. Studies with colloidal carbon, albumin microaggregates, and soluble fibrin monomers.

    Science.gov (United States)

    Cornell, R P

    1982-02-01

    In contrast to previous studies of diabetic humans and animals, which reported unchanged or depressed function, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon, 125I-albumin microaggregates, and 125I-fibrin monomers were observed in rats as early as 14 days after the induction of diabetes with streptozotocin (STZ). The fact that enhanced phagocytosis by RE macrophages was prevented by chronic insulin replacement therapy indicates that the diabetic internal environment of hyperglycemia and hypoinsulinemia was perhaps responsible for the observed changes. Experiments involving organ localization of intravenously administered particles, perfusion of isolated livers, and microscopic examination of the liver all suggested that increased Kupffer cell activity was the primary event in RES hyperphagocytosis by STZ-diabetic rats. Both hypertrophy and hyperplasia of Kupffer cells were apparent in livers of STZ-diabetic animals as evidenced by photomicrographs and hepatic cell quantification. Plasma fibronectin, which binds fibrin monomers to RE macrophages before phagocytosis, was significantly decreased in the circulation of STZ-diabetic rats, but the level of cell-associated fibronectin was not measured. Renal localization of urea-soluble 125I-fibrin monomers exceeded splenic and pulmonary uptake in normal control rats and was enhanced in animals with STZ-diabetes. Changes in fibronectin levels, fibrin monomer localization, and Kupffer cell size and numbers in experimental diabetes in rats may have implications for the pathogenesis of vascular disease involving phagocytic mesangial and foam cells in diabetic humans.

  10. Structural and Ultrastructural Analysis of Cerebral Cortex, Cerebellum, and Hypothalamus from Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Juan P. Hernández-Fonseca

    2009-01-01

    Full Text Available Autonomic and peripheral neuropathies are well-described complications in diabetes. Diabetes mellitus is also associated to central nervous system damage. This little-known complication is characterized by impairment of brain functions and electrophysiological changes associated with neurochemical and structural abnormalities. The purpose of this study was to investigate brain structural and ultrastructural changes in rats with streptozotocin-induced diabetes. Cerebral cortex, hypothalamus, and cerebellum were obtained from controls and 8 weeks diabetic rats. Light and electron microscope studies showed degenerative changes of neurons and glia, perivascular and mitochondrial swelling, disarrangement of myelin sheath, increased area of myelinated axons, presynaptic vesicle dispersion in swollen axonal boutoms, fragmentation of neurofilaments, and oligodendrocyte abnormalities. In addition, depressive mood was observed in diabetic animals. The brain morphological alterations observed in diabetic animals could be related to brain pathologic process leading to abnormal function, cellular death, and depressive behavioral.

  11. EVALUATION OF THE POSSIBLE ANTIOXIDANT EFFECTS OF NIGELLA SATIVA AND CURCUMA LONGA IN AMELIORATING DIABETIC NEPHROPATHY IN RATS

    International Nuclear Information System (INIS)

    OSMAN, N.N.; FARAG, M.F.S.; DARWISH, M.M

    2009-01-01

    Chronic hyperglycemia in diabetes leads to the overproduction of free radicals and the evidence is increasing because these radicals are responsible for the development of diabetic nephropathy. Diabetic nephropathy is an important microvascular complication and one of the main causes of end stage renal disease. The aim of the present study was to test the hypothesis that combined treatment with Nigella sativa (NS) and Curcuma longa (CL) is more effective than each of them alone in improving renal function and oxidative stress in alloxan-induced diabetic rats.Diabetes was induced in male albino rats with a single intravenous injection of alloxan (150 mg/kg). Two weeks after alloxan injection, rats were divided into five groups; control, diabetic and diabetic rats received either NS (10ml/kg/day), or CL (80mg/kg/day) and their combination by gastric intubation for 4 weeks.Diabetic rats exhibited many symptoms including loss of body weight, hyperglycemia, polyuria, renal enlargement and renal dysfunction. Significant increase in TBARS (lipid peroxidation marker) was observed in diabetic kidney. This was accompanied by a significant decrease in GSH content, SOD and CAT activities in the kidneys. Daily oral ingestion of NS and/or CL extract for 4 weeks has attenuated the oxidative stress in the kidney and reversed the adverse effect of diabetes in rats by lowering blood glucose levels, increased plasma insulin and restored body weight loss and renal function.These results confirm the role of oxidative stress in the development of diabetic nephropathy and point to the possible anti-oxidative mechanism being responsible for the nephroprotective action of NS and CL.

  12. Peroxisome proliferator-activated receptor ligands regulate lipid content, metabolism, and composition in fetal lungs of diabetic rats.

    Science.gov (United States)

    Kurtz, M; Capobianco, E; Careaga, V; Martinez, N; Mazzucco, M B; Maier, M; Jawerbaum, A

    2014-03-01

    Maternal diabetes impairs fetal lung development. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors relevant in lipid homeostasis and lung development. This study aims to evaluate the effect of in vivo activation of PPARs on lipid homeostasis in fetal lungs of diabetic rats. To this end, we studied lipid concentrations, expression of lipid metabolizing enzymes and fatty acid composition in fetal lungs of control and diabetic rats i) after injections of the fetuses with Leukotriene B4 (LTB4, PPARα ligand) or 15deoxyΔ(12,14)prostaglandin J2 (15dPGJ2, PPARγ ligand) and ii) fed during pregnancy with 6% olive oil- or 6% safflower oil-supplemented diets, enriched with PPAR ligands were studied. Maternal diabetes increased triglyceride concentrations and decreased expression of lipid-oxidizing enzymes in fetal lungs of diabetic rats, an expression further decreased by LTB4 and partially restored by 15dPGJ2 in lungs of male fetuses in the diabetic group. In lungs of female fetuses in the diabetic group, maternal diets enriched with olive oil increased triglyceride concentrations and fatty acid synthase expression, while those enriched with safflower oil increased triglyceride concentrations and fatty acid transporter expression. Both olive oil- and safflower oil-supplemented diets decreased cholesterol and cholesteryl ester concentrations and increased the expression of the reverse cholesterol transporter ATP-binding cassette A1 in fetal lungs of female fetuses of diabetic rats. In fetal lungs of control and diabetic rats, the proportion of polyunsaturated fatty acids increased with the maternal diets enriched with olive and safflower oils. Our results revealed important changes in lipid metabolism in fetal lungs of diabetic rats, and in the ability of PPAR ligands to modulate the composition of lipid species relevant in the lung during the perinatal period.

  13. Genomic and metabolic disposition of non-obese type 2 diabetic rats to increased myocardial fatty acid metabolism.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available Lipotoxicity of the heart has been implicated as a leading cause of morbidity in Type 2 Diabetes Mellitus (T2DM. While numerous reports have demonstrated increased myocardial fatty acid (FA utilization in obese T2DM animal models, this diabetic phenotype has yet to be demonstrated in non-obese animal models of T2DM. Therefore, the present study investigates functional, metabolic, and genomic differences in myocardial FA metabolism in non-obese type 2 diabetic rats. The study utilized Goto-Kakizaki (GK rats at the age of 24 weeks. Each rat was imaged with small animal positron emission tomography (PET to estimate myocardial blood flow (MBF and myocardial FA metabolism. Echocardiograms (ECHOs were performed to assess cardiac function. Levels of triglycerides (TG and non-esterified fatty acids (NEFA were measured in both plasma and cardiac tissues. Finally, expression profiles for 168 genes that have been implicated in diabetes and FA metabolism were measured using quantitative PCR (qPCR arrays. GK rats exhibited increased NEFA and TG in both plasma and cardiac tissue. Quantitative PET imaging suggests that GK rats have increased FA metabolism. ECHO data indicates that GK rats have a significant increase in left ventricle mass index (LVMI and decrease in peak early diastolic mitral annular velocity (E' compared to Wistar rats, suggesting structural remodeling and impaired diastolic function. Of the 84 genes in each the diabetes and FA metabolism arrays, 17 genes in the diabetes array and 41 genes in the FA metabolism array were significantly up-regulated in GK rats. Our data suggest that GK rats' exhibit increased genomic disposition to FA and TG metabolism independent of obesity.

  14. Hypoglycemic and hypolipidemic effects of methanol seed extract of Citrus paradisi Macfad (Rutaceae) in alloxan-induced diabetic Wistar rats.

    Science.gov (United States)

    Adeneye, A A

    2008-01-01

    Alcohol decoction of Citrus paradisi Macfad (Rutaceae) seed is reputed for the local management of array of human diseases including, anemia, diabetes mellitus and obesity by some Yoruba herbalists (SouthWest, Nigeria). Despite its historic use, scientific evaluation of its folkloric use in the management of diabetes mellitus is scarce. The present study was designed at investigating the glucose and lipid lowering effects of methanol seed extract of Citrus paradisi Macfad (MECP) in alloxan-induced diabetic rats. In addition, the phytochemical analysis of the extract was also conducted using standard procedures. Young adult, male, alloxan-induced diabetic rats were randomly divided into groups I - VI with 12 rats in each group. Group I rats were the normal untreated rats while group II rats served as the diabetic untreated rats while Rats in groups III - VI served as diabetic rats treated with 100, 300 and 600 mg/kg/day MECP and 20 mg/kg/ day metformin, respectively, for 30 days. On the 15th and respectively, 31st day, blood samples from the fasted rats were obtained for fasting plasma glucose (FPG), plasma triglycerides (TG), total cholesterol (TC), high density lipoprotein- cholesterol (HDL-c), low density lipoprotein-cholesterol (LDL-c) and very low density lipoprotein-cholesterol (VLDL-c) from the sacrificed rats. Oral treatment with 100 - 600 mg/kg/day MECP, for 30 days, resulted in significant (p extract also caused significant (p extract could be due to any or a combination of these phytochemical constituents. Results of this study lend support to the traditional use of grapefruit seeds in the management of type 1 diabetic patients and may suggest a role in orthodox management of the disease.

  15. Leptin reverses hyperglycemia and hyperphagia in insulin deficient diabetic rats by pituitary-independent central nervous system actions.

    Directory of Open Access Journals (Sweden)

    Alexandre A da Silva

    Full Text Available The hypothalamic-pituitary-adrenal (HPA axis has been postulated to play a major role in mediating the antidiabetic effects of leptin. We tested if the pituitary is essential for the chronic central nervous system mediated actions of leptin on metabolic and cardiovascular function in insulin-dependent diabetic and non-diabetic rats. Male 12-week-old hypophysectomized Sprague-Dawley rats (Hypo, n = 5 were instrumented with telemetry probes for determination of mean arterial pressure (MAP and heart rate (HR 24-hrs/day and an intracerebroventricular (ICV cannula was placed into the brain lateral ventricle for continuous leptin infusion. In additional groups of Hypo and control rats (n = 5/group, diabetes was induced by single injection of streptozotocin (50 mg/kg, IP. Hypo rats were lighter, had lower MAP and HR (83±4 and 317±2 vs 105±4 mmHg and 339±4 bpm, with similar caloric intake per kilogram of body weight and fasting plasma glucose levels (84±4 vs 80±4 mg/dl compared to controls. Chronic ICV leptin infusion (7 days, 0.62 μg/hr in non-diabetic rats reduced caloric intake and body weight (-10% in Hypo and control rats and markedly increased HR in control rats (~25 bpm while causing only modest HR increases in Hypo rats (8 bpm. In diabetic Hypo and control rats, leptin infusion reduced caloric intake, body weight and glucose levels (323±74 to 99±20 and 374±27 to 108±10 mg/dl, respectively; however, the effects of leptin on HR were abolished in Hypo rats. These results indicate that hypophysectomy attenuates leptin's effect on HR regulation without altering leptin's ability to suppress appetite or normalize glucose levels in diabetes.

  16. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine.

    Science.gov (United States)

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.

  17. Behavioral and endocrine responses of rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain)

    NARCIS (Netherlands)

    Bohus, B.; Wimersma Greidanus, T.B. van; Wied, D. de

    Behavioral and endocrine profiles were established of homozygous (HO-DI) and heterozygous (HE-DI) rats with hereditary hypothalamic diabetes insipidus in comparison to Wistar strain rats. HO-DI rats were inferior in acquiring and maintaining active and passive avoidance behavior. Behavioral deficits

  18. Effect of streptozotocin-induced diabetes on myocardial blood flow reserve assessed by myocardial contrast echocardiography in rats

    Directory of Open Access Journals (Sweden)

    Weytjens Caroline

    2008-09-01

    Full Text Available Abstract The role of structural and functional abnormalities of small vessels in diabetes cardiomyopathy remains unclear. Myocardial contrast echocardiography allows the quantification of myocardial blood flow at rest and during dipyridamole infusion. The aim of the study was to determine the myocardial blood flow reserve in normal rats compared with Streptozotocin-induced diabetic rats using contrast echocardiography. Methods We prospectively studied 40 Wistar rats. Diabetes was induced by intravenous streptozotocin in 20 rats. All rats underwent baseline and stress (dipyridamole: 20 mg/kg high power intermittent imaging in short axis view under anaesthesia baseline and after six months. Myocardial blood flow was determined and compared at rest and after dipyridamole in both populations. The myocardial blood flow reserve was calculated and compared in the 2 groups. Parameters of left ventricular function were determined from the M-mode tracings and histological examination was performed in all rats at the end of the study. Results At six months, myocardial blood flow reserve was significantly lower in diabetic rats compared to controls (3.09 ± 0.98 vs. 1.28 ± 0.67 ml min-1 g-1; p Conclusion In this animal study, diabetes induced a functional alteration of the coronary microcirculation, as demonstrated by contrast echocardiography, a decrease in capillary density and of the cardiac systolic function. These findings may offer new insights into the underlying mechanisms of diabetes cardiomyopathy.

  19. Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: effect of resistance exercise training.

    Science.gov (United States)

    Molanouri Shamsi, M; Hassan, Z H; Gharakhanlou, R; Quinn, L S; Azadmanesh, K; Baghersad, L; Isanejad, A; Mahdavi, M

    2014-05-01

    Skeletal muscle atrophy is associated with type-1 diabetes. Skeletal muscle is the source of pro- and anti-inflammatory cytokines that can mediate muscle hypertrophy and atrophy, while resistance exercise can modulate both muscle mass and muscle cytokine expression. This study determined the effects of a 5-week resistance exercise training regimen on the expression of muscle cytokines in healthy and streptozotocin-induced diabetic rats, with special emphasis on interleukin-15 (IL-15), a muscle-derived cytokine proposed to be involved in muscle hypertrophy or responses to stress. Induction of diabetes reduced muscle weight in both the fast flexor hallucis longus (FHL) and slow soleus muscles, while resistance training preserved FHL muscle weight in diabetic rats. IL-15 protein content was increased by training in both FHL and soleus muscles, as well as serum, in normal and diabetic rats. With regard to proinflammatory cytokines, muscle IL-6 levels were increased in diabetic rats, while training decreased muscle IL-6 levels in diabetic rats; training had no effect on FHL muscle IL-6 levels in healthy rats. Also, tumor necrosis factor-alpha (TNF-α) and IL-1β levels were increased by diabetes, but not changed by training. In conclusion, we found that in diabetic rats, resistance training increased muscle and serum IL-15 levels, decreased muscle IL-6 levels, and preserved FHL muscle mass.

  20. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat.

    Science.gov (United States)

    Visser, J T J; Lammers, K; Hoogendijk, A; Boer, M W; Brugman, S; Beijer-Liefers, S; Zandvoort, A; Harmsen, H; Welling, G; Stellaard, F; Bos, N A; Fasano, A; Rozing, J

    2010-12-01

    Impaired intestinal barrier function is observed in type 1 diabetes patients and animal models of the disease. Exposure to diabetogenic antigens from the intestinal milieu due to a compromised intestinal barrier is considered essential for induction of the autoimmune process leading to type 1 diabetes. Since a hydrolysed casein (HC) diet prevents autoimmune diabetes onset in diabetes-prone (DP)-BioBreeding (BB) rats, we studied the role of the HC diet on intestinal barrier function and, therefore, prevention of autoimmune diabetes onset in this animal model. DP-BB rats were fed the HC diet from weaning onwards and monitored for autoimmune diabetes development. Intestinal permeability was assessed in vivo by lactulose-mannitol test and ex vivo by measuring transepithelial electrical resistance (TEER). Levels of serum zonulin, a physiological tight junction modulator, were measured by ELISA. Ileal mRNA expression of Myo9b, Cldn1, Cldn2 and Ocln (which encode the tight junction-related proteins myosin IXb, claudin-1, claudin-2 and occludin) and Il-10, Tgf-ß (also known as Il10 and Tgfb, respectively, which encode regulatory cytokines) was analysed by quantitative PCR. The HC diet reduced autoimmune diabetes by 50% in DP-BB rats. In DP-BB rats, prediabetic gut permeability negatively correlated with the moment of autoimmune diabetes onset. The improved intestinal barrier function that was induced by HC diet in DP-BB rats was visualised by decreasing lactulose:mannitol ratio, decreasing serum zonulin levels and increasing ileal TEER. The HC diet modified ileal mRNA expression of Myo9b, and Cldn1 and Cldn2, but left Ocln expression unaltered. Improved intestinal barrier function might be an important intermediate in the prevention of autoimmune diabetes by the HC diet in DP-BB rats. Effects on tight junctions, ileal cytokines and zonulin production might be important mechanisms for this effect.

  1. Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Mathew Jobin

    2009-04-01

    Full Text Available Abstract Acetylcholine (ACh, the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS. Previous reports from our laboratory on streptozotocin (STZ induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax and affinity (Kd of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.

  2. Hypoglycemic and antilipidemic properties of kombucha tea in alloxan-induced diabetic rats.

    Science.gov (United States)

    Aloulou, Ahmed; Hamden, Khaled; Elloumi, Dhouha; Ali, Madiha Bou; Hargafi, Khaoula; Jaouadi, Bassem; Ayadi, Fatma; Elfeki, Abdelfattah; Ammar, Emna

    2012-05-16

    Diabetes has become a serious health problem and a major risk factor associated with troublesome health complications, such as metabolism disorders and liver-kidney dysfunctions. The inadequacies associated with conventional medicines have led to a determined search for alternative natural therapeutic agents. The present study aimed to investigate and compare the hypoglycemic and antilipidemic effects of kombucha and black tea, two natural drinks commonly consumed around the world, in surviving diabetic rats. Alloxan diabetic rats were orally supplied with kombucha and black tea at a dose of 5 mL/kg body weight per day for 30 days, fasted overnight, and sacrificed on the 31st day of the experiment. Their bloods were collected and submitted to various biochemical measurements, including blood glucose, cholesterol, triglcerides, urea, creatinine, transaminases, transpeptidase, lipase, and amylase activities. Their pancreases were isolated and processed to measure lipase and α-amylase activities and to perform histological analysis. The findings revealed that, compared to black tea, kombucha tea was a better inhibitor of α-amylase and lipase activities in the plasma and pancreas and a better suppressor of increased blood glucose levels. Interestingly, kombucha was noted to induce a marked delay in the absorption of LDL-cholesterol and triglycerides and a significant increase in HDL-cholesterol. Histological analyses also showed that it exerted an ameliorative action on the pancreases and efficiently protected the liver-kidney functions of diabetic rats, evidenced by significant decreases in aspartate transaminase, alanine transaminase, and gamma-glytamyl transpeptidase activities in the plasma, as well as in the creatinine and urea contents. The findings revealed that kombucha tea administration induced attractive curative effects on diabetic rats, particularly in terms of liver-kidney functions. Kombucha tea can, therefore, be considered as a potential strong

  3. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model.

    Science.gov (United States)

    Grama, Charitra N; Suryanarayana, Palla; Patil, Madhoosudan A; Raghu, Ganugula; Balakrishna, Nagalla; Kumar, M N V Ravi; Reddy, Geereddy Bhanuprakash

    2013-01-01

    Curcumin, the active principle present in the yellow spice turmeric, has been shown to exhibit various pharmacological actions such as antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic activities. Previously we have reported that dietary curcumin delays diabetes-induced cataract in rats. However, low peroral bioavailability is a major limiting factor for the success of clinical utilization of curcumin. In this study, we have administered curcumin encapsulated nanoparticles in streptozotocin (STZ) induced diabetic cataract model. Oral administration of 2 mg/day nanocurcumin was significantly more effective than curcumin in delaying diabetic cataracts in rats. The significant delay in progression of diabetic cataract by nanocurcumin is attributed to its ability to intervene the biochemical pathways of disease progression such as protein insolubilization, polyol pathway, protein glycation, crystallin distribution and oxidative stress. The enhanced performance of nanocurcumin can be attributed probably to its improved oral bioavailability. Together, the results of the present study demonstrate the potential of nanocurcumin in managing diabetic cataract.

  4. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model.

    Directory of Open Access Journals (Sweden)

    Charitra N Grama

    Full Text Available Curcumin, the active principle present in the yellow spice turmeric, has been shown to exhibit various pharmacological actions such as antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic activities. Previously we have reported that dietary curcumin delays diabetes-induced cataract in rats. However, low peroral bioavailability is a major limiting factor for the success of clinical utilization of curcumin. In this study, we have administered curcumin encapsulated nanoparticles in streptozotocin (STZ induced diabetic cataract model. Oral administration of 2 mg/day nanocurcumin was significantly more effective than curcumin in delaying diabetic cataracts in rats. The significant delay in progression of diabetic cataract by nanocurcumin is attributed to its ability to intervene the biochemical pathways of disease progression such as protein insolubilization, polyol pathway, protein glycation, crystallin distribution and oxidative stress. The enhanced performance of nanocurcumin can be attributed probably to its improved oral bioavailability. Together, the results of the present study demonstrate the potential of nanocurcumin in managing diabetic cataract.

  5. Effects of diets with different content in protein and fiber on embryotoxicity induced by experimental diabetes in rats.

    Science.gov (United States)

    Giavini, E; Airoldi, L; Broccia, M L; Roversi, G D; Prati, M

    1993-01-01

    Three groups of streptozotocin-diabetic rats were maintained during pregnancy on three hyperproteic diets with different protein contents. These differences were compensated by an equal quantity of fiber (group 1: protein 55.0%, fiber 4.5%; group 2: 45.0%, 14.0%; group 3: 35.0%, 24.0%). Three groups of nondiabetic pregnant rats were fed with the same diets and served as control. The differences of the daily protein intake among the diabetic groups were less pronounced than those expected on the basis of the diet composition, and the embryopathic effects (reduced fetal weight, increased in malformation and resorption rate) were not statistically different among the three groups of diabetic animals. The frequency of congenital malformations was higher than that observed in a previous experiment in diabetic rats maintained on a standard diet, but much lower than that observed in animals fed on a purified, fiber-poor, normoproteic diet. When the caloric intake of the diabetic rats in the different groups was determined it was found to be similar for all of them and also similar to the caloric intake of the rats given a standard nonteratogenic diet (in previous experiments), while the rats maintained on a normoproteic, teratogenic diet increased their caloric intake. These results seem to indicate that the diet composition greatly influences the intake of food and calories of pregnant diabetic rats and this may play a role in modulating the embryopathic effect of diabetes.

  6. Thujone improves glucose homeostasis in streptozotocin-induced diabetic rats through activation of Akt/GSK-3AND#946; signaling pathway

    OpenAIRE

    Hakam Hasan Alkhateeb

    2015-01-01

    Objective: Thujone, a main constituent of medicinal herbs, has been shown to have antidiabetic properties. Therefore the primary objective of this study was to investigate the mechanism(s) by which thujone ameliorates diabetes and insulin resistance in streptozotocin (STZ)-induced diabetic rats. Methods: Male Sprague-Dawley rats were rendered diabetic by a single intraperitoneal injection of STZ (55 mg/kg). Thereafter, rats were randomly divided into three groups: normal control rats; STZ...

  7. The effect of Stevia rebaudiana on serum omentin and visfatin level in STZ-induced diabetic rats.

    Science.gov (United States)

    Akbarzadeh, Samad; Eskandari, Fatemeh; Tangestani, Hadis; Bagherinejad, Somaieh Tangerami; Bargahi, Afshar; Bazzi, Parviz; Daneshi, Adel; Sahrapoor, Azam; O'Connor, William J; Rahbar, Ali Reza

    2015-03-01

    Recently the role of adipocytokines in relationship to incidence of diabetes has been demonstrated. One of the medicinal plants that are used in the treatment of diabetes is stevia. This study investigates the effect of stevia on serum omentin and visfatin levels as novel adipocytokines in diabetic induced rats to find potential mechanisms for the anti hyperglycemic effect of stevia. Forty male wistar rats weighing 180-250 g were induced with diabetes by intraperitoneal injection of streptozotocin (STZ). The animals were divided into 5 groups of 8. Rats in group 1 (non-diabetic control) and group 2 (diabetic control) were treated with distilled water, and the rats in the treated groups, group 3 (T250), group 4 (T500), and group 5 (T750) were treated with stevia, gavaged every day at 9 a.m. in doses of 250, 500, and 750 mg/kg, respectively. At the end of the study significant reductions in fasting blood sugar (FBS), the homeostasis model assessment insulin resistance (HOMA-IR), triglyceride (TG), alkaline phosphatase (ALP), and Omentin level were found in groups 3 and 4 in comparison with group 2. Pancreatic histopathology slides demonstrated that stevia extract did not induce any increase in the number of β-cells. The conclusion is that prescription of stevia in the doses of 250 and 500 mg/kg/d decreases the omentin level indirectly via activating insulin sensitivity and lowering blood glucose in STZ-induced diabetic rats.

  8. Hyperoxic preconditioning fails to confer additional protection against ischemia-reperfusion injury in acute diabetic rat heart.

    Science.gov (United States)

    Pourkhalili, Khalil; Hajizadeh, Sohrab; Akbari, Zahra; Dehaj, Mansour Esmaili; Akbarzadeh, Samad; Alizadeh, Alimohammad

    2012-01-01

    Experimental studies show that detrimental effects of ischemia-reperfusion (I/R) injury can be attenuated by hyperoxic preconditioning in normal hearts, however, there are few studies about hyperoxia effects in diseased myocardium. The present study was designed to assess the cardioprotective effects of hyperoxia pretreatment (≥ 95 % O2) in acute diabetic rat hearts. Normal and one week acute diabetic rats were either exposed to 60 (H60) and 180 (H180) min of hyperoxia or exposed to normal atmospheric air (21 % O2). Then hearts were isolated immediately and subjected to 30 min of regional ischemia followed by 120 min of reperfusion. Infarct size, cardiomyocyte apoptosis, enzymes release and ischemia induced arrhythmias were determined. Heart of diabetic control rats had less infarct size and decreased LDH and CK-MB release compared to normal hearts. 60 and 180 min of hyperoxia reduced myocardial infarct size and enzymes release in normal hearts. 180 min of hyperoxia also decreased cardiomyocytes apoptosis in normal state. On the other hand, protective values of hyperoxia were not significantly different in diabetic hearts. Moreover, hyperoxia reduced severity of ventricular arrhythmias in normal rat hearts whereas; it did not confer any additional antiarrhythmic protection in diabetic hearts. These findings suggest that diabetic hearts are less susceptible to ischemia-induced arrhythmias and infarction. Hyperoxia greatly protects rat hearts against I/R injury in normal hearts, however, it could not provide added cardioprotective effects in acute phase of diabetes.

  9. Huperzine A Ameliorates Cognitive Deficits in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Xiao-Yuan Mao

    2014-05-01

    Full Text Available The present study was designed to probe the effects of Huperzine A (HupA on diabetes-associated cognitive decline (DACD using a streptozotocin (STZ-injected rat model. Diabetic rats were treated with HupA (0.05 and 0.1 mg/kg for seven weeks. Memory functions were evaluated by the water maze test. Nissl staining was selected for detecting neuronal loss. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF were analyzed by ELISA and real-time PCR, respectively. The activities of choline acetylase (ChAT, Acetylcholinesterase (AChE, malondialdehyde (MDA, superoxide dismutase (SOD, glutathione peroxidase (GSH-Px, catalase (CAT, NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 were measured using corresponding kits. After seven weeks, diabetic rats exhibited remarkable reductions in: body weight, percentage of time spent in target quadrant, number of times crossing the platform, ChAT and BDNF levels, SOD, GSH-Px and CAT accompanied with increases in neuronal damage, plasma glucose levels, escape latency, mean path length, AChE, MDA level as well as CAT, NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 in cerebral cortex and hippocampus. Supplementation with HupA significantly and dose-dependently reversed the corresponding values in diabetes. It is concluded that HupA ameliorates DACD via modulating BDNF, oxidative stress, inflammation and apoptosis.

  10. Huperzine A Ameliorates Cognitive Deficits in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Mao, Xiao-Yuan; Cao, Dan-Feng; Li, Xi; Yin, Ji-Ye; Wang, Zhi-Bin; Zhang, Ying; Mao, Chen-Xue; Zhou, Hong-Hao; Liu, Zhao-Qian

    2014-01-01

    The present study was designed to probe the effects of Huperzine A (HupA) on diabetes-associated cognitive decline (DACD) using a streptozotocin (STZ)-injected rat model. Diabetic rats were treated with HupA (0.05 and 0.1 mg/kg) for seven weeks. Memory functions were evaluated by the water maze test. Nissl staining was selected for detecting neuronal loss. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF) were analyzed by ELISA and real-time PCR, respectively. The activities of choline acetylase (ChAT), Acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 were measured using corresponding kits. After seven weeks, diabetic rats exhibited remarkable reductions in: body weight, percentage of time spent in target quadrant, number of times crossing the platform, ChAT and BDNF levels, SOD, GSH-Px and CAT accompanied with increases in neuronal damage, plasma glucose levels, escape latency, mean path length, AChE, MDA level as well as CAT, NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 in cerebral cortex and hippocampus. Supplementation with HupA significantly and dose-dependently reversed the corresponding values in diabetes. It is concluded that HupA ameliorates DACD via modulating BDNF, oxidative stress, inflammation and apoptosis. PMID:24857910

  11. Immunoneutralization of endogenous glucagon-like peptide-2 reduces adaptive intestinal growth in diabetic rats

    DEFF Research Database (Denmark)

    Hartmann, Bolette; Thulesen, Jesper; Hare, Kristine Juul

    2002-01-01

    in the proximal part of the small intestine (10.84+/-0.44 mm(2)). Antibody treatment had no effect on body weight, blood glucose concentrations and food intake. Thus, blocking of endogenous GLP-2 in a model of adaptive intestinal growth reduces the growth response, providing strong evidence for a physiological......Supraphysiological doses of glucagon-like peptide-2 (GLP-2) have been shown to induce intestinal growth by increasing villus height and crypt depth and by decreasing apoptosis, but a physiological effect of GLP-2 has not yet been demonstrated. Earlier, we found elevated levels of endogenous GLP-2...... in untreated streptozotocin diabetic rats associated with marked intestinal growth. In the present study, we investigated the role of endogenous GLP-2 for this adaptive response. We included four groups of six rats: (1) diabetic rats treated with saline, (2) diabetic rats treated with non-specific antibodies...

  12. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes.

    Science.gov (United States)

    Maciejczyk, Mateusz; Kossakowska, Agnieszka; Szulimowska, Julita; Klimiuk, Anna; Knaś, Małgorzata; Car, Halina; Niklińska, Wiesława; Ładny, Jerzy Robert; Chabowski, Adrian; Zalewska, Anna

    2017-01-01

    Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ-) induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4) and diabetic groups (STZ2, STZ4). The secretory function of salivary glands-nonstimulated and stimulated salivary flow, α -amylase, total protein-and salivary exoglycosidase activities-N-acetyl- β -hexosaminidase (HEX, HEX A, and HEX B), β -glucuronidase, α -fucosidase, β -galactosidase, and α -mannosidase-was estimated both in the parotid and submandibular glands of STZ-diabetic and control rats. The study has demonstrated that the activity of most salivary exoglycosidases is significantly higher in the parotid and submandibular glands of STZ-diabetic rats as compared to the healthy controls and that it increases as the disease progresses. Reduced secretory function of diabetic salivary glands was also observed. A significant inverse correlation between HEX B, α -amylase activity, and stimulated salivary flow in diabetic parotid gland has also been shown. Summarizing, STZ-induced diabetes leads to a change in the lysosomal exoglycosidase profile and reduced function of the salivary glands.

  13. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mateusz Maciejczyk

    2017-01-01

    Full Text Available Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ- induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4 and diabetic groups (STZ2, STZ4. The secretory function of salivary glands—nonstimulated and stimulated salivary flow, α-amylase, total protein—and salivary exoglycosidase activities—N-acetyl-β-hexosaminidase (HEX, HEX A, and HEX B, β-glucuronidase, α-fucosidase, β-galactosidase, and α-mannosidase—was estimated both in the parotid and submandibular glands of STZ-diabetic and control rats. The study has demonstrated that the activity of most salivary exoglycosidases is significantly higher in the parotid and submandibular glands of STZ-diabetic rats as compared to the healthy controls and that it increases as the disease progresses. Reduced secretory function of diabetic salivary glands was also observed. A significant inverse correlation between HEX B, α-amylase activity, and stimulated salivary flow in diabetic parotid gland has also been shown. Summarizing, STZ-induced diabetes leads to a change in the lysosomal exoglycosidase profile and reduced function of the salivary glands.

  14. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high-fat diet-streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Naidu, Parim Brahma; Ponmurugan, Ponnusamy; Begum, Mustapha Sabana; Mohan, Karthick; Meriga, Balaji; RavindarNaik, Ramavat; Saravanan, Ganapathy

    2015-12-01

    Diabetes is often connected with significant morbidity, mortality and also has a pivotal role in the development of cardiovascular diseases. Diet intervention, particularly naturaceutical antioxidants have anti-diabetic potential and avert oxidative damage linked with diabetic pathogenesis. The present study investigated the effects of diosgenin, a saponin from fenugreek, on the changes in lipid profile in plasma, liver, heart and brain in high-fat diet-streptozotocin (HFD-STZ)-induced diabetic rats. Diosgenin was administered to HFD-STZ induced diabetic rats by orally at 60 mg kg(-1) body weight for 30 days to assess its effects on body weight gain, glucose, insulin, insulin resistance and cholesterol, triglycerides, free fatty acids and phospholipids in plasma, liver, heart and brain. The levels of body weight, glucose, insulin, insulin resistance, cholesterol, triglycerides, free fatty acids, phospholipids, VLDL-C and LDL-C were increased significantly (P rats. Administration of diosgenin to HFD-STZ diabetic rats caused a decrease in body weight gain, blood glucose, insulin, insulin resistance and also it modulated lipid profile in plasma and tissues. The traditional plant fenugreek and its constituents mediate its anti-diabetic potential through mitigating hyperglycaemic status, altering insulin resistance by alleviating metabolic dysregulation of lipid profile in both plasma and tissues. © 2014 Society of Chemical Industry.

  15. Antioxidant Protective Effect of Glibenclamide and Metformin in Combination with Honey in Pancreas of Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Omotayo Owomofoyon Erejuwa

    2010-05-01

    Full Text Available Hyperglycemia exerts toxic effects on the pancreatic β-cells. This study investigated the hypothesis that the common antidiabetic drugs glibenclamide and metformin, in combination with tualang honey, offer additional protection for the pancreas of streptozotocin (STZ-induced diabetic rats against oxidative stress and damage. Diabetes was induced in male Sprague Dawley rats by a single dose of STZ (60 mg/kg; ip. Diabetic rats had significantly elevated levels of lipid peroxidation (TBARS, up-regulated activities of superoxide dismutase (SOD and glutathione peroxidase (GPx while catalase (CAT activity was significantly reduced. Glibenclamide and metformin produced no significant effects on TBARS and antioxidant enzymes except GPx in diabetic rats. In contrast, the combination of glibenclamide, metformin and honey significantly up-regulated CAT activity and down-regulated GPx activity while TBARS levels were significantly reduced. These findings suggest that tualang honey potentiates the effect of glibenclamide and metformin to protect diabetic rat pancreas against oxidative stress and damage.

  16. MR angiography, MR imaging and proton MR spectroscopy in-vivo assessment of skeletal muscle ischemia in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Stefano Delli Pizzi

    Full Text Available To prospectively evaluate the feasibility of using magnetic resonance (MR techniques for in-vivo assessing a rat diabetic model of limb ischemia. Unilateral hind limb ischemia was induced by ligation of the iliac-femoral artery in male streptozotocin-treated and non-diabetic control rats. Four weeks after ligation, rats underwent MR Angiography (MRA, T(1-weighted and Short Time Inversion Recovery (STIR sequences and muscle Proton MR Spectroscopy ((1H-MRS on both hind limbs. After MR examinations, immunoblotting and immunofluorescence analysis were performed. MRA showed a signal void due to flow discontinuation distal to the artery ligation. T(1-weighted and STIR images showed, respectively, the presence of tissue swelling (p = 0.018 for non-diabetic; p = 0.027 for diabetic rats and signal hyperintensity in tissue affected by occlusion. Mean total creatine/water for the occluded limb was significantly lower than for the non-occluded limbs in both non-diabetic (5.46×10(-4 vs 1.14×10(-3, p = 0.028 and diabetic rats (1.37×10(-4 vs 1.10×10(-3; p = 0.018. MR Imaging and (1H-MRS changes were more pronounced in diabetic than in non-diabetic occluded limbs (p = 0.032. MR findings were confirmed by using histological findings. Combined MR techniques can be used to demonstrate the presence of structural and metabolic changes produced by iliac-femoral artery occlusion in rat diabetic model of limb ischemia.

  17. Biomechanical and morphological remodelings of gastrointestinal tract in STZ-induced diabetic rats

    DEFF Research Database (Denmark)

    Sha, Hong; Zhao, Jingbo; Liu, Gui-Fang

    2012-01-01

    AIM: The aim of the study was to investigate the biomechanical and morphometrical remodeling of gastrointestinal (GI) tract in streptozotocin (STZ) induced diabetic rats. METERIALS AND METHODS: Eighteen SD male rats of diabetic group(DM, a single tail vein injection 40mg/kg of STZ, 9 rats...... in the esophageal, jejunal and colonic segments. RESULTS: The blood glucose level, the wet weight per unit to body weight ratio, wall thickness, opening angle, absolute value of residual strain in DM group were significantly higher than those in C0N group (Pstiffness of the esophageal......, jejunal, colonic wall in circumferential direction and the esophageal, colonic wall in longitudinal direction increased in DM group compared those with CON group (P

  18. Ameliorative Activity of Ethanol Extract of Artocarpus heterophyllus Stem Bark on Pancreatic β-Cell Dysfunction in Alloxan-Induced Diabetic Rats.

    Science.gov (United States)

    Ajiboye, Basiru O; Ojo, Oluwafemi A; Adeyonu, Oluwatosin; Imiere, Oluwatosin D; Fadaka, Adewale O; Osukoya, Adetutu O

    2017-10-01

    This study sought to investigate the ameliorative effects of ethanol extract Artocarpus heterophyllus (EAH) in alloxan-induced diabetic rats. The rats were divided into 6 groups, with groups 1 and 2 serving as nondiabetic and diabetic control, respectively; group 3 serving as diabetic rats treated with 5 mg/kg glibenclamide; and groups 4 to 6 were diabetic rats treated with 50, 100, and 150 mg/kg of EAH, respectively. Assays determined were serum insulin, lipid peroxidation, and antioxidant enzyme activities. EAH stem bark reduced fasting blood glucose and lipid peroxidation levels and increased serum insulin levels and activities of antioxidant enzymes. Data obtained demonstrated the ability of EAH stem bark to ameliorate pancreatic β-cell dysfunction in alloxan-induced diabetic rats.

  19. Spirulina platensis Extract Supplementation Attenuates Diabetic Complication in Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    Ibrahim, R.M.; Sherif, N.H

    2014-01-01

    Diabetes mellitus, a metabolic disorder, is becoming a major health problem. Although there are a number of drugs available on the market, long time use may cause a number of side effects. Spirulina is a microscopic and filamentous cyanobacterium that contains essential amino acids, essential fatty acids, vitamins, minerals and anti-oxidative components. The objective of this study was to analyze the possible hypo glycemic and hypolipidaemic effects of Spirulina intake against streptozotocin and/or radiation induced diabetes in male albino rats. In the experiment, a total of 60 rats were used and the rats were divided into six groups of ten rats each: group I, normal untreated rats (control) ; group II, animals of this group received only Spirulina (15 mg/kg) for 30 consecutive days; group III, animals were injected intraperitoneally with a freshly prepared solution of streptozotocin(STZ) (45 mg/kg i.p.) in 0.1 M citrate buffer, ph 4.5 for 30 consecutive days ; group IV, as group II then given Spirulina for 30 days , group V, same as group III then exposed to 6 Gy gamma radiation as a single dose shot ; and group VI, Spirulina + diabetic irradiated group, rats were given orally Spirulina (15 mg/kg) then injected in - traperitoneally with (STZ) followed by irradiation at a dose level of 6 Gy as a single dose shot. The results revealed that animal treated with STZ or/and exposed to gamma radiation showed an increase in fasting blood sugar (FBS), glycosylated haemoglobin (HbA1c), total cholesterol (TC), triglyceride (Tg), low density lipoprotein (LDL), plasma insulin and C- peptide in compared to control. Also, a marked increase in the liver tissue of thiobarbituric acid reactive substance (TBARS) and a decrease in glutathione (GSH) and catalase (CAT) was observed. Oral pretreatment of rats with aqueous extract of Spirulina (SPE) counteracted STZ or/and radiation induced lipid peroxidation and encouraging hypoglycemic and hypolipidaemic properties of the treated

  20. Ghrelin ameliorates nerve growth factor Dysmetabolism and inflammation in STZ-induced diabetic rats.

    Science.gov (United States)

    Zhao, Yuxing; Shen, Zhaoxing; Zhang, Dongling; Luo, Huiqiong; Chen, Jinliang; Sun, Yue; Xiao, Qian

    2017-06-01

    Diabetic encephalopathy is characterized by cognitive impairment and neuroinflammation, deficient neurotrophic support, and neuronal and synaptic loss. Ghrelin, a 28 amino acid peptide, is associated with neuromodulation and cognitive improvement, which has been considered as a potential protective agent for several neurodegenerative diseases. Here we sought to investigate the role of ghrelin in preventing diabetic-related neuropathology. We found that ghrelin attenuated astrocytic activation and reduced levels of interleukin-6 and tumor necrosis factor-α in streptozotocin-induced diabetic rats. In addition, ghrelin inhibited p38 mitogen-associated protein kinase activation. The upregulation of nerve growth factor (NGF) precursor and matrix metalloproteinase (MMP)-9 and downregulation of mature NGF and MMP-7 in the diabetic brain were reversed by ghrelin. Treatment with ghrelin elevated synaptophysin expression and synaptic density in diabetic rats. Taken together, our results demonstrate that ghrelin ameliorates diabetes-related neurodegeneration by preventing NGF dysmetabolism and synaptic degeneration through regulating MMP levels as well as inhibiting neuroinflammation.

  1. Influence of kaempferol, a flavonoid compound, on membrane-bound ATPases in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Al-Numair, Khalid S; Veeramani, Chinnadurai; Alsaif, Mohammed A; Chandramohan, Govindasamy

    2015-01-01

    Kaempferol is a flavonoid found in many edible plants (e.g. tea, cabbage, beans, tomato, strawberries, and grapes) and in plants or botanical products commonly used in traditional medicine. Numerous preclinical studies have shown that kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, and antidiabetic activities. The present study investigates the effect of kaempferol on membrane-bound ATPases in erythrocytes and in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into adult male albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 d to normal and STZ-induced diabetic rats. The effects of kaempferol on membrane-bound ATPases (total ATPase, Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and Mg(2+)-ATPase) activity in erythrocytes and in liver, kidney, and heart were determined. In our study, diabetic rats had significantly (p kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) for a period of 45 d resulted in significant (p kaempferol has the potential to restore deranged activity of membrane-bound ATPases in STZ-induced diabetic rats. Further detailed investigation is necessary to discover kaempferol's action mechanism.

  2. Evaluation of the Hypoglycaemic Activity of Petiveria alliacea (Guinea Hen Weed) Extracts in Normoglycaemic and Diabetic Rat Models.

    Science.gov (United States)

    Christie, S-L; Levy, A

    2013-11-01

    Petiveria alliacea (P alliacea) has ethno-traditional use as a hypoglycaemic agent in Jamaica and is yet to be scientifically validated as such. Therefore, extracts of aerial parts of the plant were evaluated for hypoglycaemic activity in normoglycaemic and diabetic rats. Aqueous and hexane extracts prepared from leaves of P alliacea were tested for hypoglycaemic activity. An acute administration of the extracts (200 and 400 mg/kg body weight) was evaluated in normoglycaemic rats. Additionally, the hypoglycaemic effect of sub-chronic administration was assessed in streptozotocin-induced diabetic rats. Blood glucose was recorded using a glucometer and test strips. Data were analysed using Student's t-test (p ≤ 0.05). The aqueous and hexane extracts demonstrated no significant reduction of fasting blood glucose (FBG) and no significant improvement of glucose tolerance in normal rats. The aqueous extract (400 mg/kg body weight) increased FBG from 4.75 ± 0.28 mmol/L to 5.88 ± 0.46 when compared to control (p ≤ 0.001). In diabetic rats, the hexane extract (400 mg/kg body weight) caused reduction of FBG after two weeks of treatment (p ≤ 0.010), but this was not sustained. The aqueous extract showed no reduction of FBG in diabetic rats. The aqueous extract of P alliacea demonstrated a hyperglycaemic effect in normoglycaemic rats and showed no hypoglycaemic activity in diabetic rats. The hexane extract caused no hypoglycaemic action in normal rats and failed to sustain an initial hypoglycaemic action in diabetic rats. This study presents evidence that does not support significant hypoglycaemic activity of P alliacea; this could hold significant implications for its use in ethno-traditional medicine.

  3. Combined effects of treatment with vitamin C, vitamin E and selenium on the skin of diabetic rats.

    Science.gov (United States)

    Sokmen, B B; Basaraner, H; Yanardag, R

    2013-04-01

    The aim of this study was to investigate the effects of vitamin C, vitamin E and selenium (Se) on the skin tissue of streptozotocin-induced diabetic rats. Swiss albino rats were divided into four groups: control, control + antioxidants, diabetic, diabetic + antioxidants groups. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin. Vitamin C (250 mg/kg), vitamin E (250 mg/kg) and Se (0.2 mg/kg) were given by gavage technique to rats of one diabetic and one control group for 30 days. In the diabetic group, the levels of serum urea and creatinine, skin lipid peroxidation and nonenzymatic glycosylation levels increased, but skin glutathione levels decreased. Treatment with vitamin C, vitamin E and Se reversed these effects. The present study showed that vitamin C, vitamin E and Se exerted antioxidant effects and consequently may prevent skin damage caused by streptozotocin-induced diabetes.

  4. High dietary fat-induced obesity in Wistar rats and type 2 diabetes in nonobese Goto-Kakizaki rats differentially affect retinol binding protein 4 expression and vitamin A metabolism.

    Science.gov (United States)

    Shirai, Tomomi; Shichi, Yuta; Sato, Miyuki; Tanioka, Yuri; Furusho, Tadasu; Ota, Toru; Tadokoro, Tadahiro; Suzuki, Tsukasa; Kobayashi, Ken-Ichi; Yamamoto, Yuji

    2016-03-01

    Obesity is a major risk factor for type 2 diabetes, which is caused mainly by insulin resistance. Retinol binding protein 4 (RBP4) is the only specific transport protein for retinol in the serum. RBP4 level is increased in the diabetic state and high-fat condition, indicating that retinol metabolism may be affected under these conditions. However, the precise effect of diabetes and high fat-induced obesity on retinol metabolism is unknown. In this study, we examined differences in retinol metabolite levels in rat models of diet-induced obesity and type 2 diabetes (Goto-Kakizaki [GK] rat). Four-week-old male Wistar and GK rats were given either a control diet (AIN-93G) or a high-fat diet (HFD, 40% fat kJ). After 15 weeks of feeding, the RBP4 levels increased by 2-fold in the serum of GK rats but not HFD-fed rats. The hepatic retinol concentration of HFD-fed rats was approximately 50% that of the controls (P type 2 diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The Role of Yeast Beta Glucan on Blood Coagulation in Streptozotocin-Induced Diabetes and Irradiated Rats

    International Nuclear Information System (INIS)

    El-Kashoury, M.M.A.; Abdel Fattah, S.M.; Ramadan, L.A.; El-Denshary, E.S.

    2016-01-01

    Clotting abnormalities are observed after exposure to ionizing radiation as well as in diabetes melittus. The objective of this study is to elucidate the role of yeast beta glucan (YBG) in the modulation of some biochemical variations observed in γ-irradiated, diabetic and diabeticγγ-irradiated rats. Gamma-irradiation was performed through the whole body exposure of rats to 6 Gy administered in four fractions of 1.5 Gy two times per week for two weeks. Diabetes was induced by a single intraperitoneal injection of streptozotocin (55 mg/kg body weight). YBG was given orally to male albino rats (1 g/kg body weight) for two weeks post irradiation and/or induction of diabetes. Animals were divided into 4 main groups: 1- control, 2- γ-irradiated, 3- diabetic and 4- diabetic-γ-irradiated rats. Each group was subdivided into 2 subgroups (a) untreated and (b) treated. The 3rd and 14th day, after the last dose of radiation in the irradiated groups and after the induction of diabetes in diabetic groups, were chosen to evaluate the effect of oral YBG in irradiated and/or diabetic rats. The results revealed that the body weight decreased significantly in irradiated, diabetic and diabetic–irradiated rats. The loss of weight was accompanied by a reduction in the pancreas weight. Glucose concentration was significantly increased in diabetic group at the two time intervals. It is worth noting that, radiation ameliorated blood glucose level in diabetic-γ-irradiated group. Radiation exposure and/or diabetes caused an oxidative stress manifested by a significant increase of malondialdhyde (MDA) accompanied by a significant decrease in glutathione (GSH) level. This oxidative stress caused disturbances in the measured clotting parameters by enhancing platelet aggregation (PA) induced by arachidonic acid and increased thrombin level as concluded from the significant shortening of prothrombin time (PT) and activated partial thromboplastin time (APTT). Also, exposure to radiation

  6. A Chinese 2-herb formula (NF3) promotes hindlimb ischemia-induced neovascularization and wound healing of diabetic rats.

    Science.gov (United States)

    Tam, Jacqueline Chor-Wing; Ko, Chun-Hay; Lau, Kit-Man; To, Ming-Ho; Kwok, Hin-Fai; Chan, Yuet-Wa; Siu, Wing-Sum; Etienne-Selloum, Nelly; Lau, Ching-Po; Chan, Wai-Yee; Leung, Ping-Chung; Fung, Kwok-Pui; Schini-Kerth, Valérie B; Lau, Clara Bik-San

    2014-01-01

    Diabetic foot ulcer is closely associated with peripheral vascular disease. Enhancement of tissue oxidative stress, reduction of nitric oxide (NO) and angiogenic growth factors, and abnormal matrix metalloproteinase (MMP) activity are pathophysiological factors in post-ischemic neovascularization and diabetic wound healing. Our previous study demonstrated that the Chinese 2-herb formula, NF3, showed significant wound healing effects on diabetic foot ulcer rats. A novel rat diabetic foot ulcer with hindlimb ischemia model was established in order to strengthen our claims on the diabetic wound healing and post-ischemic neovascularization effects of NF3. Our results demonstrate that NF3 can significantly reduce the wound area of the diabetic foot ulcer rat with hindlimb ischemia by 21.6% (phealing and post-ischemic neovascularization in diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Islet transplantation in diabetic rats normalizes basal and exercise-induced energy metabolism

    NARCIS (Netherlands)

    Houwing, Harmina; Benthem, L.; Suylichem, P.T.R. van; Leest, J. van der; Strubbe, J.H.; Steffens, A.B.

    Transplantation of islets of Langerhans in diabetic rats normalizes resting glucose and insulin levels, but it remains unclear whether islet transplantation restores resting and exercise-induced energy metabolism. Therefore, we compared energy metabolism in islet transplanted rats with energy

  8. Effects of Phenolic Compounds of Fermented Thai Indigenous Plants on Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Chaiyavat Chaiyasut

    2011-01-01

    Full Text Available We investigated the effects of antioxidant activity of fermentation product (FP of five Thai indigenous products on oxidative stress in Wistar rats with streptozotocin (STZ-induced diabetes type II. The rats were fed with placebo and with the FP (2 and 6 mL/kg body weight/day for 6 weeks. Rutin, pyrogallol and gallic acid were main compounds found in the FP. Plasma glucose levels in diabetic rats receiving the higher dose of the FP increased less when compared to the diabetic control group as well as the group receiving the lower FP dose (13.1%, 29%, and 21.1%, respectively. A significant dose-dependent decrease in plasma levels of thiobarbituric acid reactive substance (P<.05 was observed. In addition, the doses of 2 and 6 mL FP/kg/day decreased the levels of erythrocyte ROS in diabetic rats during the experiment, but no difference was observed when compared to the untreated diabetic rat group. Results imply that FP decreased the diabetes-associated oxidative stress to a large extent through the inhibition of lipid peroxidation. The FP also improved the abnormal glucose metabolism slightly but the difference was not statistically significant. Thus, FP may be a potential therapeutic agent by reducing injury caused by oxidative stress associated with diabetes.

  9. Streptozotocin diabetes attenuates the effects of nondepolarizing neuromuscular relaxants on rat muscles.

    Science.gov (United States)

    Huang, Lina; Chen, Dan; Li, Shitong

    2014-12-01

    The hypothesis of this study was that diabetes-induced desensitization of rat soleus (SOL) and extensor digitorum longus (EDL) to non-depolarizing muscle relaxants (NDMRs) depends on the stage of diabetes and on the kind of NDMRs. We tested the different magnitude of resistance to vecuronium, cisatracurium, and rocuronium at different stages of streptozotocin (STZ)-induced diabetes by the EDL sciatic nerve-muscle preparations, and the SOL sciatic nerve-muscle preparations from rats after 4 and 16 weeks of STZ treatment. The concentration-twitch tension curves were significantly shifted from those of the control group to the right in the diabetic groups. Concentration giving 50% of maximal inhibition (IC50) was larger in the diabetic groups for all the NDMRs. For rocuronium and cisatracurium in both SOL and EDL, IC50 was significantly larger in diabetic 16 weeks group than those in the diabetic 4 weeks group. For SOL/EDL, the IC50 ratios were significantly largest in the diabetic 16 weeks group, second largest in the diabetic 4 weeks group, and smallest for the control group. Diabetes-induced desensitization to NDMRs depended on the stage of diabetes and on the different kind of muscles observed while was independent on different kind of NDMRs. The resistance to NDMRs was stronger in the later stage of diabetes (16 versus 4 weeks after STZ treatment). Additionally, when monitoring in SOL, diabetes attenuated the actions of neuromuscular blockade more intensely than that in EDL. Nonetheless, the hyposensitivity to NDMRs in diabetes was not relevant for the kind of NDMRs.

  10. Influence of irradiation on collagen content during wound healing in diabetic rats

    Directory of Open Access Journals (Sweden)

    Almeida Solange Maria de

    2002-01-01

    Full Text Available The aim of the present experimental research was to investigate the effects of electron irradiation on the collagen content and on the organization of the granulation tissue of skin, in diabetic rats. In this study, 48 Wistar rats were assigned to 4 groups: control, irradiated, diabetic and irradiated diabetic. First, diabetes mellitus was induced in the last two groups, by means of a single intravenous injection of streptozotocin. Fifteen days later, all animals underwent a surgery in order to create an excisional wound on their anterior dorsal skin. On the third post-operative day, only an approximately 1-cm-wide area around the wounds was exposed to 1 Gy of 6 MeV electron beam radiation, which was delivered in a single dose. Wound healing was examined by means of polarized light microscopy at 4-, 7-, 13- and 21-day time intervals after wounding. Based upon an essentially qualitative evaluation, it was possible to conclude that local electron irradiation and diabetes' associated dysfunctions caused a decrease in the collagen content of newly-formed tissue, which was more pronounced in irradiated diabetic animals. The macromolecular organization of granulation tissue was delayed in irradiated, diabetic and irradiated diabetic animals, in relation to what was observed in control animals.

  11. Characterization of the Prediabetic State in a Novel Rat Model of Type 2 Diabetes, the ZFDM Rat.

    Science.gov (United States)

    Gheni, Ghupurjan; Yokoi, Norihide; Beppu, Masayuki; Yamaguchi, Takuro; Hidaka, Shihomi; Kawabata, Ayako; Hoshino, Yoshikazu; Hoshino, Masayuki; Seino, Susumu

    2015-01-01

    We recently established a novel animal model of obese type 2 diabetes (T2D), the Zucker fatty diabetes mellitus (ZFDM) rat strain harboring the fatty mutation (fa) in the leptin receptor gene. Here we performed a phenotypic characterization of the strain, focusing mainly on the prediabetic state. At 6-8 weeks of age, fa/fa male rats exhibited mild glucose intolerance and severe insulin resistance. Although basal insulin secretion was remarkably high in the isolated pancreatic islets, the responses to both glucose stimulation and the incretin GLP-1 were retained. At 10-12 weeks of age, fa/fa male rats exhibited marked glucose intolerance as well as severe insulin resistance similar to that at the earlier age. In the pancreatic islets, the insulin secretory response to glucose stimulation was maintained but the response to the incretin was diminished. In nondiabetic Zucker fatty (ZF) rats, the insulin secretory responses to both glucose stimulation and the incretin in the pancreatic islets were similar to those of ZFDM rats. As islet architecture was destroyed with age in ZFDM rats, a combination of severe insulin resistance, diminished insulin secretory response to incretin, and intrinsic fragility of the islets may cause the development of T2D in this strain.

  12. Effects of telmisartan on the expression of NADPH oxidase subunits in the myocardium of type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Jia-wei LI

    2011-10-01

    Full Text Available Objective To explore the effect of telmisartan on the expression of NADPH oxidase subunits p22phox and NOX4 in the myocardiam of type 2 diabetic rats.Methods Thirty-six male Wistar rats were randomly divided into two groups: normal control group(group A,n=10,diabetic model group(n=26.Type 2 diabetic model was established by high-fat and high-sugar diet followed by intraperitoneal injection of a low dose of streptozotocin(STZ.After the model was reproduced successfully,20 diabetic rats were randomly divided into diabetic subgroup(group B,n=10 and telmisartan-treated subgroup(group C,n=10.Rats in group C were orally administered telmisartan(5mg/kg/d,and rats in group A and B were given equivalent volume of normal saline.All rats were sacrificed 12 weeks after treatment.The mRNA expressions of myocardial p22phox and NOX4 were detected by real-time fluorescence quantitative PCR,and the protein expressions of myocardial connective tissue growth factor(CTGF and copper-zinc-superoxide dismutase(Cu-Zn-SOD were detected by immunohistochemical staining.Results Compared with group A,the ratio of heart/body weight,the mRNA expression of myocardial p22phox and NOX4,and the protein expression of myocardial CTGF increased significantly in group B,and the protein expression of myocardial Cu-Zn-SOD decreased significantly(P 0.05.Conclusions Telmisartan can down-regulate the over-expression of myocardial NOX4 and p22phox mRNA in type 2 diabetic rats,lessen the myocardial damage induced by oxidative stress,thus plays a protective role in the myocardium of diabetic rats.

  13. Blood-ocular and blood-brain barrier function in streptozocin-induced diabetes in rats

    International Nuclear Information System (INIS)

    Maeepea, O.; Karlsson, C.; Alm, A.

    1984-01-01

    Edetic acid labeled with chromium 51 was injected intravenously in normal rats and in rats with streptozocin-induced diabetes. One hour after the injection the animals were killed and the concentrations of edetic acid 51Cr in vitreous body, retina, and brain were determined. No significant difference was observed between the two groups for either tissue. In a second series, a mixture of tritiated 1-glucose and aminohippuric acid tagged with carbon 14 was injected instead of edetic acid. A substantial accumulation of aminohippuric acid 14C compared with tritiated 1-glucose was observed in the vitreous body and the brain of diabetic rats in comparison with the control group. It is concluded that untreated streptozocin-induced diabetes in rats for one to two weeks will not cause a generalized increase in the permeability of the blood-ocular or the blood-brain barriers, but organic acids may accumulate in the vitreous body as well as in the brain as a consequence of reduced outward transport through these barriers

  14. Periodontitis promotes the diabetic development of obese rat via miR-147 induced classical macrophage activation.

    Science.gov (United States)

    Xu, Ran; Zeng, Guang; Wang, Shuyong; Tao, Hong; Ren, Le; Zhang, Zhe; Zhang, Qingna; Zhao, Jinxiu; Gao, Jing; Li, Daxu

    2016-10-01

    Emerging evidence has indicated the bad effect of periodontal inflammation on diabetes control. However, the exact regulatory mechanisms within the association between periodontitis and diabetic development remain unclear. This study aims to investigate the function of microRNAs in regulating periodontitis-induced inflammation in an obese rat model. Experimental periodontitis was introduced into OLETF and LETO rat. Intraperitoneal glucose tolerance test was performed to detect diabetic development. Serum cytokines levels and microRNAs expression were detected by ELISA and RT-PCR analysis respectively. And, macrophages were isolated for gain- and loss-of-function studies, to investigate the regulatory mechanism of miR-147 in periodontitis-induced inflammation. Periodontitis induced proinflammatory response with classical activated macrophages in both rats, but distinctively aggravated the impaired glucose tolerance of OLETF rat with spontaneous type 2 diabetes. Analysis for serum microRNAs expression showed the distinctive and synergistic upregulation of miR-147 with periodontitis-induced effects in rats, while further experiments demonstrated the positive regulatory mechanism of miR-147 on classical activated macrophages with overexpressed proinflammatory markers, showing M1 phenotype. This study provided new evidence for the positive effect of periodontal inflammation on diabetic development, while the regulatory mechanism of miR-147 on classical macrophage activation, was verified, and presumed to contribute to the impaired glucose tolerance aggravated by periodontitis in obese rats. Besides, this study indicated the application of miR-147 for therapeutic approach in the treatment of diabetes with periodontitis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Aloe vera gel improves behavioral deficits and oxidative status in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Tabatabaei, Seyed Reza Fatemi; Ghaderi, Shahab; Bahrami-Tapehebur, Mohammad; Farbood, Yaghoob; Rashno, Masome

    2017-12-01

    Oxidative stress has a major role in progression of diabetes-related behavioral deficits. It has been suggested that Aloe vera has anti-diabetic, antioxidative, and neuroprotective effects. The present study was designed to determine the effects of Aloe vera gel on behavioral functions, oxidative status, and neuronal viability in the hippocampus of streptozotocin (STZ)-induced diabetic rats. Fifty five adult male Wistar rats were randomly divided into five groups, including: control (normal saline 8ml/kg/day; P.O.), diabetic (normal saline 8ml/kg/day; P.O.), Aloe vera gel (100mg/kg/day; P.O.), diabetic+Aloe vera gel (100mg/kg/day; P.O.) and diabetic+NPH insulin (10 IU/kg/day; S.C.). All treatments were started immediately following confirmation of diabetes in diabetic groups and were continued for eight weeks. Behavioral functions were evaluated by employing standard behavioral paradigms. Additionally, oxidative status and neuronal viability were assessed in the hippocampus. The results of behavioral tests showed that diabetes enhanced anxiety/depression-like behaviors, reduced exploratory and locomotor activities, decreased memory performance, and increased stress related behaviors. These changes in diabetic rats were accompanied by increasing oxidative stress and neuronal loss in the hippocampus. Interestingly, eight weeks of treatment with Aloe vera gel not only alleviated all the mentioned deficits related to diabetes, but in some aspects, it was even more effective than insulin. In conclusion, the results suggest that both interrelated hypoglycemic and antioxidative properties of Aloe vera gel are possible mechanisms that improve behavioral deficits and protect hippocampal neurons in diabetic animals. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Furan-induced hepatotoxic and hematologic changes in diabetic rats: the protective role of lycopene.

    Science.gov (United States)

    Baş, Hatice; Pandır, Dilek; Kalender, Suna

    2016-09-01

    Furan forms as a result of thermal treatment of food and induces harmful effects on organisms. In our work, lycopene, furan, and a combination of the two were given to diabetic male rats for 28 days. Hematological changes, total protein and cholesterol, triglyceride, and albumin levels, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase activities of the serum, malondialdehyde levels, glutathione peroxidase, catalase, glutathione-S-transferase, superoxide dismutase activities, DNA damage in liver tissues and hepatic histopathological alterations were compared to a control group. There were significant changes in the liver function tests, DNA damage, activities of antioxidant enzymes, and malondialdehyde levels between diabetic control and non-diabetic control groups, between diabetic control and diabetic lycopene groups, and also between diabetic furan and diabetic control groups. In diabetic lycopene and diabetic furan + lycopene treated groups we designated the preventive effects of lycopene against diabetes and furan, however, on the analysed parameters only. In spite of some pathological alterations designated in diabetic furan treated group's liver, fewer pathological alterations were observed in furan+lycopene treated groups at the end of week 4. Consequently, lycopene significantly reduced furan- and diabetes-induced toxicity in rat liver.

  17. Effects of Icariside II on Corpus Cavernosum and Major Pelvic Ganglion Neuropathy in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Guang-Yi Bai

    2014-12-01

    Full Text Available Diabetic erectile dysfunction is associated with penile dorsal nerve bundle neuropathy in the corpus cavernosum and the mechanism is not well understood. We investigated the neuropathy changes in the corpus cavernosum of rats with streptozotocin-induced diabetes and the effects of Icariside II (ICA II on improving neuropathy. Thirty-six 8-week-old Sprague-Dawley rats were randomly distributed into normal control group, diabetic group and ICA-II treated group. Diabetes was induced by a one-time intraperitoneal injection of streptozotocin (60 mg/kg. Three days later, the diabetic rats were randomly divided into 2 groups including a saline treated placebo group and an ICA II-treated group (5 mg/kg/day, by intragastric administration daily. Twelve weeks later, erectile function was measured by cavernous nerve electrostimulation with real time intracorporal pressure assessment. The penis was harvested for the histological examination (immunofluorescence and immunohistochemical staining and transmission electron microscopy detecting. Diabetic animals exhibited a decreased density of dorsal nerve bundle in penis. The neurofilament of the dorsal nerve bundle was fragmented in the diabetic rats. There was a decreased expression of nNOS and NGF in the diabetic group. The ICA II group had higher density of dorsal nerve bundle, higher expression of NGF and nNOS in the penis. The pathological change of major pelvic nerve ganglion (including the microstructure by transmission electron microscope and the neurite outgrowth length of major pelvic nerve ganglion tissue cultured in vitro was greatly attenuated in the ICA II-treated group (p < 0.01. ICA II treatment attenuates the diabetes-related impairment of corpus cavernosum and major pelvic ganglion neuropathy in rats with Streptozotocin-Induced Diabetes.

  18. Oxidative Damage to the Salivary Glands of Rats with Streptozotocin-Induced Diabetes-Temporal Study: Oxidative Stress and Diabetic Salivary Glands.

    Science.gov (United States)

    Knaś, M; Maciejczyk, M; Daniszewska, I; Klimiuk, A; Matczuk, J; Kołodziej, U; Waszkiel, D; Ładny, J R; Żendzian-Piotrowska, M; Zalewska, A

    2016-01-01

    Objective. This study evaluated oxidative damage caused to the salivary glands in streptozotocin-induced diabetes (DM). Materials and Methods. Rats were divided into 4 groups: groups 1 and 2, control rats, and groups 3 and 4, DM rats. 8-Hydroxy-2'-deoxyguanosine (8-OHdG), protein carbonyl (PC), 4-hydroxynonenal protein adduct (4-HNE), oxidized and/or MDA-modified LDL-cholesterol (oxy-LDL/MDA), 8-isoprostanes (8-isoP), and oxidative stress index (OSI) were measured at 7 (groups 1 and 3) and 14 (groups 2 and 4) days of experiment. Results. The unstimulated salivary flow in DM rats was reduced in the 2nd week, while the stimulated flow was decreased throughout the duration of the experiment versus control. OSI was elevated in both diabetic glands in the 1st and 2nd week, whereas 8-isoP and 8-OHdG were higher only in the parotid gland in the second week. PC and 4-HNE were increased in the 1st and 2nd week, whereas oxy-LDL/MDA was increased in the 2nd week in the diabetic parotid glands. Conclusions. Diabetes induces oxidative damage of the salivary glands, which seems to be caused by processes taking place in the salivary glands, independently of general oxidative stress. The parotid glands are more vulnerable to oxidative damage in these conditions.

  19. Oxidative Damage to the Salivary Glands of Rats with Streptozotocin-Induced Diabetes-Temporal Study: Oxidative Stress and Diabetic Salivary Glands

    Directory of Open Access Journals (Sweden)

    M. Knaś

    2016-01-01

    Full Text Available Objective. This study evaluated oxidative damage caused to the salivary glands in streptozotocin-induced diabetes (DM. Materials and Methods. Rats were divided into 4 groups: groups 1 and 2, control rats, and groups 3 and 4, DM rats. 8-Hydroxy-2′-deoxyguanosine (8-OHdG, protein carbonyl (PC, 4-hydroxynonenal protein adduct (4-HNE, oxidized and/or MDA-modified LDL-cholesterol (oxy-LDL/MDA, 8-isoprostanes (8-isoP, and oxidative stress index (OSI were measured at 7 (groups 1 and 3 and 14 (groups 2 and 4 days of experiment. Results. The unstimulated salivary flow in DM rats was reduced in the 2nd week, while the stimulated flow was decreased throughout the duration of the experiment versus control. OSI was elevated in both diabetic glands in the 1st and 2nd week, whereas 8-isoP and 8-OHdG were higher only in the parotid gland in the second week. PC and 4-HNE were increased in the 1st and 2nd week, whereas oxy-LDL/MDA was increased in the 2nd week in the diabetic parotid glands. Conclusions. Diabetes induces oxidative damage of the salivary glands, which seems to be caused by processes taking place in the salivary glands, independently of general oxidative stress. The parotid glands are more vulnerable to oxidative damage in these conditions.

  20. Intermittent Fasting Modulation of the Diabetic Syndrome in Streptozotocin-Injected Rats

    OpenAIRE

    Louiza Belkacemi; Ghalem Selselet-Attou; Emeline Hupkens; Evrard Nguidjoe; Karim Louchami; Abdullah Sener; Willy J. Malaisse

    2012-01-01

    This study investigates the effects of intermittent overnight fasting in streptozotocin-induced diabetic rats (STZ rats). Over 30 days, groups of 5-6 control or STZ rats were allowed free food access, starved overnight, or exposed to a restricted food supply comparable to that ingested by the intermittently fasting animals. Intermittent fasting improved glucose tolerance, increased plasma insulin, and lowered Homeostatis Model Assessment index. Caloric restriction failed to cause such benefic...