WorldWideScience

Sample records for dewatered biosolids

  1. Experimental assessment of factors influencing dewatering properties of thermophilically digested biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianpeng; Mavinic, Donald S.; Kelly, Harlan G.; Ramey, William D.

    2003-07-01

    Beneficial land application of processed wastewater sludges (biosolids) is a cost-effective, and environmentally sustainable option for the final disposal of sludges, because nutrients and organic matters in the sludge are recovered and reused as a resource. Thermophilic sludge digestion produces Class A biosolids, which can be reused without restrictions. Recent experience from full-scale thermophilic sludge digestion facilities in North America revealed that, dewatering thermophilically digested biosolids required more polymers to condition than mesophilically digested biosolids. This paper reports a laboratory study that investigated factors having significant impacts on dewatering properties of digested biosolids, and assessed the relationship among digestion, dewatering properties, and characteristics of thermophilically digested biosolids. The experimental work used batch-operated, bench-scale aerobic sludge digesters. Dewaterability was measured as Capillary Suction Time (CST). The study found that feed sludge composition significantly affected dewaterability of digested sludge. Higher percentage of the secondary sludge in the feed sludge corresponded to more significant deterioration in dewaterability. The effect of thermophilic digestion temperatures on dewaterabilty was rapid, occurred within 3-hour of digestion, indicting a heat shock effect, rather than a microbiological effect. When a high shear was applied to the sludge in digesters, it resulted In a significant deterioration in dewaterability in the digested sludge. It appears there was a strong correlation between dewaterability and extracellular biopolymers. Enzymes (protease) treatment confirmed that role of extracellular proteins in affecting the dewatering properties of thermophilic biosolids, also revealed the complex nature of biopolymers' effect on dewaterability. Such effects might be due to protein-polysaccharides interactions, hydrogen bonding, or hydrophilic and hydrophobic

  2. Bacterial pathogen indicators regrowth and reduced sulphur compounds' emissions during storage of electro-dewatered biosolids.

    Science.gov (United States)

    Navab-Daneshmand, Tala; Enayet, Samia; Gehr, Ronald; Frigon, Dominic

    2014-10-01

    Electro-dewatering (ED) increases biosolids dryness from 10-15 to 30-50%, which helps wastewater treatment facilities control disposal costs. Previous work showed that high temperatures due to Joule heating during ED inactivate total coliforms to meet USEPA Class A biosolids requirements. This allows biosolids land application if the requirements are still met after the storage period between production and application. In this study, we examined bacterial regrowth and odour emissions during the storage of ED biosolids. No regrowth of total coliforms was observed in ED biosolids over 7d under aerobic or anaerobic incubations. To mimic on-site contamination during storage or transport, ED samples were seeded with untreated sludge. Total coliform counts decreased to detection limits after 4d in inoculated samples. Olfactometric analysis of ED biosolids odours showed that odour concentrations were lower compared to the untreated and heat-treated control biosolids. Furthermore, under anaerobic conditions, odorous reduced sulphur compounds (methanethiol, dimethyl sulphide and dimethyl disulphide) were produced by untreated and heat-treated biosolids, but were not detected in the headspaces above ED samples. The data demonstrate that ED provides advantages not only as a dewatering technique, but also for producing biosolids with lower microbial counts and odour levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Department of Biology, Western University, London, ON N6A 5B7 (Canada)

    2015-04-15

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with {sup 14}C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants.

  4. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    International Nuclear Information System (INIS)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R.; Topp, Edward

    2015-01-01

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with 14 C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants

  5. Prediction of dimethyl disulfide levels from biosolids using statistical modeling.

    Science.gov (United States)

    Gabriel, Steven A; Vilalai, Sirapong; Arispe, Susanna; Kim, Hyunook; McConnell, Laura L; Torrents, Alba; Peot, Christopher; Ramirez, Mark

    2005-01-01

    Two statistical models were used to predict the concentration of dimethyl disulfide (DMDS) released from biosolids produced by an advanced wastewater treatment plant (WWTP) located in Washington, DC, USA. The plant concentrates sludge from primary sedimentation basins in gravity thickeners (GT) and sludge from secondary sedimentation basins in dissolved air flotation (DAF) thickeners. The thickened sludge is pumped into blending tanks and then fed into centrifuges for dewatering. The dewatered sludge is then conditioned with lime before trucking out from the plant. DMDS, along with other volatile sulfur and nitrogen-containing chemicals, is known to contribute to biosolids odors. These models identified oxidation/reduction potential (ORP) values of a GT and DAF, the amount of sludge dewatered by centrifuges, and the blend ratio between GT thickened sludge and DAF thickened sludge in blending tanks as control variables. The accuracy of the developed regression models was evaluated by checking the adjusted R2 of the regression as well as the signs of coefficients associated with each variable. In general, both models explained observed DMDS levels in sludge headspace samples. The adjusted R2 value of the regression models 1 and 2 were 0.79 and 0.77, respectively. Coefficients for each regression model also had the correct sign. Using the developed models, plant operators can adjust the controllable variables to proactively decrease this odorant. Therefore, these models are a useful tool in biosolids management at WWTPs.

  6. Pharmaceutical and personal care products in tile drainage following surface spreading and injection of dewatered municipal biosolids to an agricultural field.

    Science.gov (United States)

    Edwards, M; Topp, E; Metcalfe, C D; Li, H; Gottschall, N; Bolton, P; Curnoe, W; Payne, M; Beck, A; Kleywegt, S; Lapen, D R

    2009-07-01

    Land application of municipal biosolids can be a source of environmental contamination by pharmaceutical and personal care products (PPCPs). This study examined PPCP concentrations/temporally discrete mass loads in agricultural tile drainage systems where two applications of biosolids had previously taken place. The field plots received liquid municipal biosolids (LMB) in the fall of 2005 at an application rate of approximately 93,500 L ha (-1), and a second land application was conducted using dewatered municipal biosolids (DMB) applied at a rate of approximately 8Mg dw ha (-1) in the summer of 2006 [corrected].The DMB land application treatments consisted of direct injection (DI) of the DMB beneath the soil surface at a nominal depth of approximately 0.11 m, and surface spreading (SS) plus subsequent tillage incorporation of DMB in the topsoil (approximately 0.10 m depth). The PPCPs examined included eight pharmaceuticals (acetaminophen, fluoxetine, ibuprofen, gemfibrozil, naproxen, carbamazepine, atenolol, sulfamethoxazole), the nicotine metabolite cotinine, and two antibacterial personal care products triclosan and triclocarban. Residues of naproxen, cotinine, atenolol and triclosan originating from the fall 2005 LMB application were detected in tile water nearly nine months after application (triclocarban was not measured in 2005). There were no significant differences (p>0.05) in PPCP mass loads among the two DMB land application treatments (i.e., SS vs. DI); although, average PPCP mass loads late in the study season (>100 days after application) were consistently higher for the DI treatment relative to the SS treatment. While the concentration of triclosan (approximately 14,000 ng g(-1) dw) in DMB was about twice that of triclocarban (approximately 8000 ng g(-1) dw), the average tile water concentrations for triclosan were much higher (43+/-5 ng L(-1)) than they were for triclocarban (0.73+/-0.14 ng L(-1)). Triclosan concentrations (maximum observed in 2006

  7. [Magnetic Fe₃O₄Microparticles Conditioning-Pressure Electro-osmotic Dewatering (MPEOD) of Sewage Sludge].

    Science.gov (United States)

    Qian, Xu; Wang, Yi-li; Zhao, Li

    2016-05-15

    For magnetic Fe₃O₄ microparticles conditioning--pressure electro-osmotic dewatering (MPEOD) process of activated sludge (AS), the effects of operating parameters (optimal dosage of Fe₃O₄, electric field duration, mechanical pressure and voltage) on the dewatering efficiency and energy consumption were investigated, and the optimal conditions were determined. Moreover, the properties of supernatant and sludge along MPEOD process were studied as well as the interaction force between the sludge biosolids. Taking the energy consumption into consideration, the results showed that the optimal dewatering effect for AS could be achieved with a magnetic Fe₃O₄ microparticles dosage of 0.15 g · g⁻¹, an electric field duration of 2 h, a mechanical pressure of 400-600 kPa and a voltage of 30-50 V. When MPEOD was conducted at 400 kPa and 50 V for 2 h, the sludge reduction rate reached 98.30%, the percentage of water removal was 99.34% and the moisture content of AS decreased from 99.18% to 44.46%. The corresponding consumption of energy was 0.013 3 kW · h · kg⁻¹. The coagulation mechanism played a slight role in the AS conditioning with magnetic Fe₃O₄ micro-particles. In fact, magnetic Fe₃O₄micro-particles could greatly decrease the acid-base interaction (WA) between AS biosolids, cause floc growth and enlarge pores in AS aggregates, which will be beneficial to AS dewatering. Compared to DLVO theory, the extended DLVO theory could accurately describe the aggregation and dispersion behavior of sludge particles.

  8. Characteristics of biosolids from sludge treatment wetlands for agricultural reuse

    DEFF Research Database (Denmark)

    Uggetti, Enrica; Ferrer, Ivet; Nielsen, Steen

    2012-01-01

    Sludge treatment wetlands (STW) consist of constructed wetlands systems specifically developed for sludge treatment over the last decades. Sludge dewatering and stabilisation are the main features of this technology, leading to a final product which may be recycled as an organic fertiliser or soi...... legal limits for land application of the sludge. Our results suggest that biosolids from the studied STW can be valorised in agriculture, especially as soil conditioner....

  9. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop.

    Science.gov (United States)

    Mantovi, Paolo; Baldoni, Guido; Toderi, Giovanni

    2005-01-01

    To evaluate the effects of repeated sewage sludge applications in comparison to mineral fertilisers on a winter wheat-maize-sugar beet rotation, a field experiment on a silty-loam soil, in the eastern Po Valley (Italy), was carried out since 1988. Municipal-industrial wastewater sludge as anaerobically digested, belt filtered (dewatered), and composted with wheat straw, has been applied at 5 and 10 Mg DM ha(-1)yr(-1). Biosolids gave crop yields similar to the highest mineral fertiliser dressing. However, with the higher rate of liquid and dewatered sludge, excessive N supply was harmful, leading to wheat lodging and poor quality of sugar beet and wheat crops. From this standpoint compost use was safer. Biosolids increased organic matter (OM), total N, and available P in the soil and reduced soil alkalinity, with more evident effects at the highest rate. Compost caused the most pronounced OM top soil accumulation. Significant accumulations of total Zn and Cu were detected in amended top soil, but no other heavy metals (Cd, Cr, Ni, Pb), whose total concentration remained well below the hazard limits. Biosolid applications significantly increased the content of N, P, Zn, and Cu in wheat grain, N and Cu in sugar beet roots, and only Cu in maize grain. The application of biosolids brought about notable benefits to soil fertility but it was associated with possible negative effects on water quality due to increased P availability and on soil ecology due to Zn accumulation.

  10. Sulfur flows and biosolids processing: Using Material Flux Analysis (MFA) principles at wastewater treatment plants.

    Science.gov (United States)

    Fisher, R M; Alvarez-Gaitan, J P; Stuetz, R M; Moore, S J

    2017-08-01

    High flows of sulfur through wastewater treatment plants (WWTPs) may cause noxious gaseous emissions, corrosion of infrastructure, inhibit wastewater microbial communities, or contribute to acid rain if the biosolids or biogas is combusted. Yet, sulfur is an important agricultural nutrient and the direct application of biosolids to soils enables its beneficial re-use. Flows of sulfur throughout the biosolids processing of six WWTPs were investigated to identify how they were affected by biosolids processing configurations. The process of tracking sulfur flows through the sites also identified limitations in data availability and quality, highlighting future requirements for tracking substance flows. One site was investigated in more detail showing sulfur speciation throughout the plant and tracking sulfur flows in odour control systems in order to quantify outflows to air, land and ocean sinks. While the majority of sulfur from WWTPs is removed as sulfate in the secondary effluent, the sulfur content of biosolids is valuable as it can be directly returned to soils to combat the potential sulfur deficiencies. Biosolids processing configurations, which focus on maximising solids recovery, through high efficiency separation techniques in primary sedimentation tanks, thickeners and dewatering centrifuges retain more sulfur in the biosolids. However, variations in sulfur loads and concentrations entering the WWTPs affect sulfur recovery in the biosolids, suggesting industrial emitters, and chemical dosing of iron salts are responsible for differences in recovery between sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Evaluating the effects of triclosan on 3 field crops grown in 4 formulations of biosolids.

    Science.gov (United States)

    Shahmohamadloo, René S; Lissemore, Linda; Prosser, Ryan S; Sibley, Paul K

    2017-07-01

    A growing body of evidence suggests that amending soil with biosolids can be an integral component of sustainable agriculture. Despite strong evidence supporting its beneficial use in agriculture, there are concerns that chemicals, such as pharmaceuticals and personal care products, could present a risk to terrestrial ecosystems and human health. Triclosan is one of the most commonly detected compounds in biosolids. To date, laboratory studies indicate that triclosan likely poses a de minimis risk to field crops; however, these studies were either conducted under unrealistic exposure conditions or only assessed 1 or 2 formulations of biosolids. The purpose of the present study was to characterize the effects of triclosan on field crops in soils amended with 4 different formulations of biosolids (liquid, dewatered, compost, and alkaline-hydrolyzed), containing both background and spiked triclosan concentrations, following best management practices used in the province of Ontario. Three crop species (corn, soybean, and spring wheat) were evaluated using several plant growth endpoints (e.g., root wet mass, shoot length, shoot wet/dry mass) in 70-d to 90-d potted soil tests. The results indicated no adverse impact of triclosan on any crop-biosolids combination. Conversely, amending soil with biosolids either enhanced or had no negative effect, on the growth of plants. Results of the present study suggest little risk of triclosan to crops in agricultural fields amended with biosolids. Environ Toxicol Chem 2017;36:1896-1908. © 2016 SETAC. © 2016 SETAC.

  12. A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment.

    Science.gov (United States)

    Rigby, Hannah; Clarke, Bradley O; Pritchard, Deborah L; Meehan, Barry; Beshah, Firew; Smith, Stephen R; Porter, Nichola A

    2016-01-15

    International controls for biosolids application to agricultural land ensure the protection of human health and the environment, that it is performed in accordance with good agricultural practice and that nitrogen (N) inputs do not exceed crop requirements. Data from the scientific literature on the total, mineral and mineralizable N contents of biosolids applied to agricultural land under a wide range of climatic and experimental conditions were collated. The mean concentrations of total N (TN) in the dry solids (DS) of different biosolids types ranged from 1.5% (air-dried lime-treated (LT) biosolids) to 7.5% (liquid mesophilic anaerobic digestion (LMAD) biosolids). The overall mean values of mineralizable N, as a proportion of the organic N content, were 47% for aerobic digestion (AeD) biosolids, 40% for thermally dried (TD) biosolids, 34% for LT biosolids, 30% for mesophilic anaerobic digestion (MAD) biosolids, and 7% for composted (Com) biosolids. Biosolids air-dried or stored for extended periods had smaller total and mineralizable N values compared to mechanically dewatered types. For example, for biosolids treated by MAD, the mean TN (% DS) and mineralizable N (% organic N) contents of air-dried materials were 3% and 20%, respectively, compared to 5% and 30% with mechanical dewatering. Thus, mineralizable N declined with the extent of biological stabilization during sewage sludge treatment; nevertheless, overall plant available N (PAN=readily available inorganic N plus mineralizable N) was broadly consistent across several major biosolids categories within climatic regions. However, mineralizable N often varied significantly between climatic regions for similar biosolids types, influencing the overall PAN. This may be partly attributed to the increased rate, and also the greater extent of soil microbial mineralization of more stable, residual organic N fractions in biosolids applied to soil in warmer climatic zones, which also raised the overall PAN

  13. Production of class a biosolids with anoxic low dose alkaline treatment and odor management

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Orf, M.M.; Brewster, J.; Oleszkiewicz, J.; Reimers, R.S.; Lagasse, P.; Amy, B.; Glindemann, D.

    2003-07-01

    The feasibility of full-scale anoxic disinfection of dewatered and digested sludge from Winnipeg, Manitoba with low lime doses and lagoon fly ash was investigated to determine if a class A product could be produced. Lime doses of 50g, 100g, and 200g per kg of biosolids (dry) were used along with fly ash doses of 500g. 1000g. and 1500g per kg of biosolids (dry). The mixed product was buried in eight-10 cubic meter trenches at the West End Water Pollution Control Center In Winnipeg. The trenches were backfilled with dirt and trapped to simulate anoxic conditions. Sampling cages were packed with the mixed product and pathogens non-indigenous to Winnipeg's biosolids. The cages were buried amongst the mixed biosolids in the trench. The non-indigenous pathogens spiked in the laboratory were the helminth Ascaris suum and the enteric virus reovirus. Samples were removed at days 12, 40, 69, 291, and 356 and were tested for the presence of fecal Coliform, Clostridium perfringens spores, Ascaris suum eggs, and reovirus. The pH, total solids, and free ammonia content of the mixed product were also determined for each sample. Odor was quantified for samples at both 291 and 356 days. Fecal Coliform bacteria and reovirus were completely inactivated for doses as low as 100g lime per kg biosolids (dry) and 50g lime + 500g fly ash per kg biosolids (dry). Spores of the bacteria C. perfringens experienced a 4-log reduction when treated with 100g lime per kg biosolids and a 5-log reduction when treated with doses as low as 50g lime + 500g fly ash per kg biosolids (dry) after 69 days. Ascaris eggs were completely inactivated in 5 gram packets for all treatments involving 100g lime per kg biosolids (dry) after 69 days. Class A pathogen requirements were met for all treatments involving a lime dose of at least 100g per kg biosolids. The odor potential from the produced biosolids is also assessed. (author)

  14. Effect of long-term application of biosolids for land reclamation on surface water chemistry.

    Science.gov (United States)

    Tian, G; Granato, T C; Pietz, R I; Carlson, C R; Abedin, Z

    2006-01-01

    Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in

  15. Highly efficient secondary dewatering of dewatered sewage sludge using low boiling point solvents.

    Science.gov (United States)

    He, Chao; Chena, Chia-Lung; Xu, Zhirong; Wang, Jing-Yuan

    2014-01-01

    Secondary dewatering of dewatered sludge is imperative to make conventional drying and incineration of sludge more economically feasible. In this study, a secondary dewatering of dewatered sludge with selected solvents (i.e. acetone and ethanol) followed by vacuum filtration and nature drying was investigated to achieve in-depth dewatering. After the entire secondary dewatering process, the sludge was shown to be odourless and the organic matter content was greatly retained. Increased mean particle size of sludge after solvent contact improved solid-liquid separation. With an acetone/sludge ratio of 3:1 (mL:g) in solvent contact and subsequent nature drying at ambient temperature after 24 h, the moisture content of sludge can be reduced to a level less than 20%. It is found that the polysaccharides were mainly precipitated by acetone, whereas the release ratios of protein and DNA were increased significantly as the added acetone volumes were elevated. During nature drying, accumulated evaporation rates of the sludge after solvent contact were 5-6 times higher than original dewatered sludge. Furthermore, sludge after acetone contact had better nature drying performance than ethanol. The two-stage dewatering involves solvent contact dewatering and solvent enhanced evaporation dewatering. Through selecting an appropriate solvent/sludge ratio as well as economical solvents and minimizing the solvent loss in a closed-pilot system, this dewatering process can be competitive in industrial applications. Therefore, this solvent-aided secondary dewatering is an energy-saving technology for effective in-depth dewatering of dewatered sludge and subsequent sludge utilization.

  16. Derivation of ecological criteria for copper in land-applied biosolids and biosolid-amended agricultural soils.

    Science.gov (United States)

    Lu, Tao; Li, Jumei; Wang, Xiaoqing; Ma, Yibing; Smolders, Erik; Zhu, Nanwen

    2016-12-01

    The difference in availability between soil metals added via biosolids and soluble salts was not taken into account in deriving the current land-applied biosolids standards. In the present study, a biosolids availability factor (BAF) approach was adopted to investigate the ecological thresholds for copper (Cu) in land-applied biosolids and biosolid-amended agricultural soils. First, the soil property-specific values of HC5 add (the added hazardous concentration for 5% of species) for Cu 2+ salt amended were collected with due attention to data for organisms and soils relevant to China. Second, a BAF representing the difference in availability between soil Cu added via biosolids and soluble salts was estimated based on long-term biosolid-amended soils, including soils from China. Third, biosolids Cu HC5 input values (the input hazardous concentration for 5% of species of Cu from biosolids to soil) as a function of soil properties were derived using the BAF approach. The average potential availability of Cu in agricultural soils amended with biosolids accounted for 53% of that for the same soils spiked with same amount of soluble Cu salts and with a similar aging time. The cation exchange capacity was the main factor affecting the biosolids Cu HC5 input values, while soil pH and organic carbon only explained 24.2 and 1.5% of the variation, respectively. The biosolids Cu HC5 input values can be accurately predicted by regression models developed based on 2-3 soil properties with coefficients of determination (R 2 ) of 0.889 and 0.945. Compared with model predicted biosolids Cu HC5 input values, current standards (GB4284-84) are most likely to be less protective in acidic and neutral soil, but conservative in alkaline non-calcareous soil. Recommendations on ecological criteria for Cu in land-applied biosolids and biosolid-amended agriculture soils may be helpful to fill the gaps existing between science and regulations, and can be useful for Cu risk assessments in

  17. EVALUATION OF THE BIOSOLIDS COMPOST MATURITY IN SOUTH ISFAHAN WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh, M. R. Shahmansouri, H. Pourmoghadas

    2008-04-01

    Full Text Available The composting process is a useful method of producing a stabilized material that can be used as a source of nutrients and soil conditioner. Maturity of compost is essential for its optimal use as a soil amendment and a source of plant nutrients as well. Immature composts pose problems of malodors and flies and phytotoxicity and pollution during use. Stability and maturity both are required for compost quality control. Compost maturity tests can be classified into physical, chemical, plant, and microbial activity assays. In this study, several methods of evaluating the stability and maturity of composted biosolids were compared based on chemical and biological properties. The sludge used of windrow composting was obtained from the drying beds of South Isfahan wastewater treatment plant. The results showed that, C/N ratio after 100 days of composting reached to 15/1; NH4/NO3 ratio decreased with increase of the time dewatered sludge compost, which this loss is 57.3%. The content of volatile solids, 28.8% decreased with composting time. The number of fecal coliforms in the initial sewage sludge compost was 17.9´106 and at the end of composting was 898MPN/g of total solids and the compost process provided class A pathogen criteria. Use of chemical and biological parameters exhibited three phases: rapid decomposition (day 40, stabilization (day 80 and maturation (day 100 in biosolids compost. Thus, the biosolid compost was mature and ready for use as an agricultural substrate after about 100 days of composting.

  18. Review of biosolids management options and co-incineration of a biosolid-derived fuel.

    Science.gov (United States)

    Roy, Murari Mohon; Dutta, Animesh; Corscadden, Kenny; Havard, Peter; Dickie, Lucas

    2011-11-01

    This paper reviews current biosolids management options, and identifies incineration as a promising technology. Incineration is attractive both for volume reduction and energy recovery. Reported emissions from the incineration of biosolids were compared to various regulations to identify the challenges and future direction of biosolids incineration research. Most of the gaseous and metal emissions were lower than existing regulations, or could be met by existing technologies. This paper also presents the results of an experimental study to investigate the potential use of biosolids for co-incineration with wood pellets in a conventional wood pellet stove. Pilot scale combustion tests revealed that co-incineration of 10% biosolids with 90% premium grade wood pellets resulted in successful combustion without any significant degradation of efficiency and emissions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Technological options for the management of biosolids.

    Science.gov (United States)

    Wang, Hailong; Brown, Sally L; Magesan, Guna N; Slade, Alison H; Quintern, Michael; Clinton, Peter W; Payn, Tim W

    2008-06-01

    Large quantities of biosolids (sewage sludge), which are produced from municipal wastewater treatment, are ever-increasing because of the commissioning of new treatment plants and continuous upgrades of the existing facilities. A large proportion of biosolids are currently landfilled. With increasing pressure from regulators and the general public, landfilling of biosolids is being phased out in many countries because of potential secondary pollution caused by leachate and the emission of methane, a potent greenhouse gas. Biosolids contain nutrients and energy that can be used beneficially. Significant efforts have been made recently to develop new technologies to manage biosolids and make useful products from them. In this paper, we provide a review of the technologies in biosolids management. A survey of literature was conducted. At present, the most common beneficial use of biosolids is agricultural land application because of inherent fertilizer values found in biosolids. Expansion of land application, however, may be limited in the future because of more stringent regulatory requirements and public concern about food chain contamination in some countries. Perceived as a green energy source, the combustion of biosolids has received renewed interest. Anaerobic digestion is generally a more effective method than incineration for energy recovery, and digested biosolids are suitable for further beneficial use through land application. Although conventional incineration systems for biosolid management generally consume more energy than they produce because of the high moisture content in the biosolids, it is expected that more combustion systems, either monocombustion or cocombustion, will be built to cope with the increasing quantity of biosolids. Under the increasingly popular low-carbon economy policy, biosolids may be recognized as a renewable fuel and be eligible for 'carbon credits'. Because ash can be used to manufacture construction materials, combustion can

  20. Comparison of Methods to Identify Pathogens and Associated Virulence Functional Genes in Biosolids from Two Different Wastewater Treatment Facilities in Canada.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available The use of treated municipal wastewater residues (biosolids as fertilizers is an attractive, inexpensive option for growers and farmers. Various regulatory bodies typically employ indicator organisms (fecal coliforms, E. coli and Salmonella to assess the adequacy and efficiency of the wastewater treatment process in reducing pathogen loads in the final product. Molecular detection approaches can offer some advantages over culture-based methods as they can simultaneously detect a wider microbial species range, including non-cultivable microorganisms. However, they cannot directly assess the viability of the pathogens. Here, we used bacterial enumeration methods together with molecular methods including qPCR, 16S rRNA and cpn60 gene amplicon sequencing and shotgun metagenomic sequencing to compare pre- and post-treatment biosolids from two Canadian wastewater treatment plants (WWTPs. Our results show that an anaerobic digestion WWTP was unsuccessful at reducing the live indicator organism load (coliforms, generic E. coli and Salmonella below acceptable regulatory criteria, while biosolids from a dewatering/pelletization WWTP met these criteria. DNA from other pathogens was detected by the molecular methods, but these species were considered less abundant. Clostridium DNA increased significantly following anaerobic digestion treatments. In addition to pathogen DNA, genes related to virulence and antibiotic resistance were identified in treated biosolids. Shotgun metagenomics revealed the widest range of pathogen DNA and, among the approaches used here, was the only approach that could access functional gene information in treated biosolids. Overall, our results highlight the potential usefulness of amplicon sequencing and shotgun metagenomics as complementary screening methods that could be used in parallel with culture-based methods, although more detailed comparisons across a wider range of sites would be needed.

  1. Potential Regrowth and Recolonization of Salmonellae and Indicators in Biosolids and Biosolid-Amended Soil

    Science.gov (United States)

    Zaleski, Kathleen J.; Josephson, Karen L.; Gerba, Charles P.; Pepper, Ian L.

    2005-01-01

    This study evaluated the potential for conversion of Class B to Class A biosolids with respect to salmonellae and fecal coliforms during solar drying in concrete lined drying beds. Anaerobically (8% solids) and aerobically (2% solids) digested Class B biosolids were pumped into field-scale drying beds, and microbial populations and environmental conditions were monitored. Numbers of fecal coliforms and salmonellae decreased as temperature and rate of desiccation increased. After 3 to 4 weeks, Class A requirements were achieved in both biosolids for the pathogens and the indicators. However, following rainfall events, significant increase in numbers was observed for both fecal coliforms and salmonellae. In laboratory studies, regrowth of fecal coliforms was observed in both biosolids and biosolid-amended soil, but the regrowth of salmonellae observed in the concrete-lined drying beds did not occur. These laboratory studies demonstrated that pathogens decreased in numbers when soil was amended with biosolids. Based on serotyping, the increased numbers of salmonellae seen in the concrete lined drying beds following rainfall events was most likely due to recolonization due to contamination from fecal matter introduced by animals and not from regrowth of salmonellae indigenous to biosolids. Overall, we conclude that the use of concrete-lined beds created a situation in which moisture added as rainfall accumulated in the beds, promoting the growth of fecal coliforms and salmonellae added from external sources. PMID:16000779

  2. Optimizing Waste Heat Recovery for Class A Biosolids Production from a Combined Cycle Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Soroushian, Fred

    2003-07-01

    The City of Corona serves a rapidly growing area of Southern California, The City operates three wastewater treatment plants (WWTPs) that produce reclaimed water for unrestricted reuse. The sludge from the three WWTPs is transported to a central sludge treatment facility located at WWTP No. 1. The sludge treatment facility consists of sludge receiving, thickening, anaerobic digestion, and dewatering. In the year 2000, the City was faced with two crises. First, the California power shortage and escalating cost of power severely impacted the industry and businesses. Second, bans on Class B biosolids land application and the shutdown of a local privatized composting facility where the bulk of the City's biosolids were processed or reused forced the City to transport bulk waste a much greater distance. To cost-effectively respond to these crises, the City decided to start generating and supplying power to its constituents by constructing a nominal 30-megawatt (MW) power plant. The feasibility study proved that locating the power plant at the City's largest WWTP produced significant synergies. The reclaimed water from the WWTP could be used for power plant cooling, the waste heat from the power plant could be recovered and used in Class A biosolids processes, the digester gas could be used for supplementing the fuel needs of the sludge dryer, and the combined facilities operation was more efficient than physically separate facilities. This paper presents the results of this analysis as well as the construction and operational aspects of the project. (author)

  3. A review on sludge dewatering indices.

    Science.gov (United States)

    To, Vu Hien Phuong; Nguyen, Tien Vinh; Vigneswaran, Saravanamuth; Ngo, Huu Hao

    2016-01-01

    Dewatering of sludge from sewage treatment plants is proving to be a significant challenge due to the large amounts of residual sludges generated annually. In recent years, research and development have focused on improving the dewatering process in order to reduce subsequent costs of sludge management and transport. To achieve this goal, it is necessary to establish reliable indices that reflect the efficiency of sludge dewatering. However, the evaluation of sludge dewaterability is not an easy task due to the highly complex nature of sewage sludge and variations in solid-liquid separation methods. Most traditional dewatering indices fail to predict the maximum cake solids content achievable during full-scale dewatering. This paper reviews the difficulties in assessing sludge dewatering performance, and the main techniques used to evaluate dewatering performance are compared and discussed in detail. Finally, the paper suggests a new dewatering index, namely the modified centrifugal index, which is demonstrated to be an appropriate indicator for estimating the final cake solids content as well as simulating the prototype dewatering process.

  4. Perfluorinated Compounds In Lime-Treated Biosolids

    Science.gov (United States)

    Land application of wastewater treatment residuals, or biosolids, is a common practice in the United States, about 50% of all biosolids being applied to agricultural land as a soil amendment. Incidents have been reported in Germany and the United States where biosolids containin...

  5. Wind erosion potential after land application of biosolids

    Science.gov (United States)

    PI, H.; Sharratt, B. S.; Schillinger, W. F.; Bary, A.; Cogger, C.

    2017-12-01

    The world population is currently 7.6 billion and, along with continued population growth, comes the challenge of disposing of wastewater and sewage sludge (biosolids). Applying biosolids to agricultural land to replace synthetic fertilizers represents a relatively safe method to recycle or sustainably use biosolids. While land application of biosolids is recognized as a sustainable management practice for enhancing soil health, no studies have determined the effects of biosolids on soil wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolid fertilizer to conventional and conservation tillage practices during the summer fallow phase of a winter wheat-summer fallow rotation in 2015 and 2016 in east-central Washington. Little difference in soil loss was observed between biosolid and synthetic fertilizer treatments, but this result appeared to be dependent on susceptibility of the soil to erosion. Regression analysis between soil loss from fertilizer or tillage treatments indicated that soil loss was lower from biosolid versus synthetic fertilizer and conservation versus conventional tillage at high erosion rates. This suggests that biosolids may reduce wind erosion under highly erodible conditions. Meanwhile, heavy metal concentrations in the windblown sediment were similar for the biosolid and synthetic fertilizer treatments whereas metal loss in windblown sediment was 10% lower from biosolid than synthetic fertilizer. Our results indicate that land application of biosolids did not accelerate the loss of metals or nutrients from soils during high winds. KeywordsLand application of biosolids; wind erosion; wind tunnel; sustainable agriculture

  6. Influence of Surface Biosolids Application on Infiltration

    Directory of Open Access Journals (Sweden)

    Richard E. Zartman

    2012-01-01

    Full Text Available Biosolids from waste water treatment facilities applied to soils not only add plant nutrients, but also increase infiltration and decrease runoff and erosion. Wet biosolids from New York, NY, were surface applied at 0 to 90 Mg ha−1 dry weight to soils near El Paso, Tex. Simulated rainfall intensities of 16.4 cm hr−1 for 30 minutes applied to 0.5 m2 soil plots yielded initial infiltration rates of ~16 cm hr−1 for all plots. Biosolids applications extended the duration of the initially high infiltration rates. After 30 minutes, infiltration rates for bare soil were 3 cm hr−1 without and 10 cm hr−1 with 90 Mg biosolids ha−1. Applied biosolids, plant litter, surface gravel, and plant base contributed surface cover, which absorbed raindrop energy and reduced erosion. Biosolids increased cumulative infiltration on the vegetated, wet soils more than for the dry or bare soils. Biosolids increased cumulative infiltration from 2 to 6 cm on a bare gravelly soil and from 9.3 to 10.6 cm on a vegetated soil.

  7. Characterization of changes in floc morphology, extracellular polymeric substances and heavy metals speciation of anaerobically digested biosolid under treatment with a novel chelated-Fe2+ catalyzed Fenton process.

    Science.gov (United States)

    He, Juanjuan; Yang, Peng; Zhang, Weijun; Cao, Bingdi; Xia, Hua; Luo, Xi; Wang, Dongsheng

    2017-11-01

    A novel chelated-Fe 2+ catalyzed Fenton process (CCFP) was developed to enhance dewatering performance of anaerobically digested biosolid, and changes in floc morphology, extracellular polymeric substances (EPS) and heavy metals speciation were also investigated. The results showed that addition of chelating agents caused EPS solubilization by binding multivalent cations. Like traditional Fenton, CCFP performed well in improving anaerobically digested sludge dewatering property. The highly active radicals (OH, O 2 - ) produced in classical Fenton and CCFP were responsible for sludge flocs destruction and consequently degradation of biopolymers into small molecules. Furthermore, more plentiful pores and channels were presented in cake after Fenton treatment, which was conducive to water drainage under mechanical compression. Additionally, a portion of active heavy metals in the form of oxidizable and reducible states were dissolved under CCFP. Therefore, CCFP could greatly simplify the operating procedure of Fenton conditioning and improve its process adaptability for harmless treatment of biological sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Advanced Dewatering Systems Development

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  9. Protecting groundwater resources at biosolids recycling sites.

    Science.gov (United States)

    McFarland, Michael J; Kumarasamy, Karthik; Brobst, Robert B; Hais, Alan; Schmitz, Mark D

    2013-01-01

    In developing the national biosolids recycling rule (Title 40 of the Code of Federal Regulation Part 503 or Part 503), the USEPA conducted deterministic risk assessments whose results indicated that the probability of groundwater impairment associated with biosolids recycling was insignificant. Unfortunately, the computational capabilities available for performing risk assessments of pollutant fate and transport at that time were limited. Using recent advances in USEPA risk assessment methodology, the present study evaluates whether the current national biosolids pollutant limits remain protective of groundwater quality. To take advantage of new risk assessment approaches, a computer-based groundwater risk characterization screening tool (RCST) was developed using USEPA's Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment program. The RCST, which generates a noncarcinogenic human health risk estimate (i.e., hazard quotient [HQ] value), has the ability to conduct screening-level risk characterizations. The regulated heavy metals modeled in this study were As, Cd, Ni, Se, and Zn. Results from RCST application to biosolids recycling sites located in Yakima County, Washington, indicated that biosolids could be recycled at rates as high as 90 Mg ha, with no negative human health effects associated with groundwater consumption. Only under unrealistically high biosolids land application rates were public health risks characterized as significant (HQ ≥ 1.0). For example, by increasing the biosolids application rate and pollutant concentrations to 900 Mg ha and 10 times the regulatory limit, respectively, the HQ values varied from 1.4 (Zn) to 324.0 (Se). Since promulgation of Part 503, no verifiable cases of groundwater contamination by regulated biosolids pollutants have been reported. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Impact of biosolids on the persistence and dissipation pathways of triclosan and triclocarban in an agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Scott, Andrew [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6 (Canada); Topp, Edward [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada)

    2009-11-15

    The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC) are widely used in many personal care products. Knowledge concerning the fate of these two compounds in different environmental matrices is scarce. In this study, the fate of TCS and TCC in soil following direct addition, or when residues were applied via either liquid municipal biosolids (LMB) or dewatered municipal biosolids (DMB) was investigated in laboratory dissipation experiments and under outdoor conditions using radioisotope methods. In laboratory incubations, {sup 14}C-TCC or {sup 14}C-TCS was added to microcosms containing a loam soil and the rate of {sup 14}CO{sub 2} accumulation and loss of solvent-extractable {sup 14}C were determined during incubation at 30 {sup o}C. Compared to when TCC or TCS was added directly to soil, both chemicals were mineralized more rapidly when applied in LMB, and both were mineralized more slowly when applied in DMB. The application matrix had no effect on the rate of removal of extractable residues. In field experiments, parent compounds were incorporated directly in soil, incorporated via LMB, or a single aggregate of amended DMB was applied to the soil surface. During the experiment soil temperatures ranged from 20 {sup o}C to 10 {sup o}C. Dissipation was much slower in the field than in the laboratory experiments. Removal of non-extractable residues was faster in the presence of LMB than the other treatments. Recovery of extractable and non-extractable residues suggested that there was little atmospheric loss of {sup 14}C. Triclocarban readily formed non-extractable residues with DMB whereas TCS did not. Overall, this study has identified that both the pathways and the kinetics of TCS and TCC dissipation in soil are different when the chemicals are carried in biosolids compared to when these chemicals are added directly to the soil.

  11. Impact of biosolids on the persistence and dissipation pathways of triclosan and triclocarban in an agricultural soil

    International Nuclear Information System (INIS)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Scott, Andrew; Lapen, David R.; Topp, Edward

    2009-01-01

    The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC) are widely used in many personal care products. Knowledge concerning the fate of these two compounds in different environmental matrices is scarce. In this study, the fate of TCS and TCC in soil following direct addition, or when residues were applied via either liquid municipal biosolids (LMB) or dewatered municipal biosolids (DMB) was investigated in laboratory dissipation experiments and under outdoor conditions using radioisotope methods. In laboratory incubations, 14 C-TCC or 14 C-TCS was added to microcosms containing a loam soil and the rate of 14 CO 2 accumulation and loss of solvent-extractable 14 C were determined during incubation at 30 o C. Compared to when TCC or TCS was added directly to soil, both chemicals were mineralized more rapidly when applied in LMB, and both were mineralized more slowly when applied in DMB. The application matrix had no effect on the rate of removal of extractable residues. In field experiments, parent compounds were incorporated directly in soil, incorporated via LMB, or a single aggregate of amended DMB was applied to the soil surface. During the experiment soil temperatures ranged from 20 o C to 10 o C. Dissipation was much slower in the field than in the laboratory experiments. Removal of non-extractable residues was faster in the presence of LMB than the other treatments. Recovery of extractable and non-extractable residues suggested that there was little atmospheric loss of 14 C. Triclocarban readily formed non-extractable residues with DMB whereas TCS did not. Overall, this study has identified that both the pathways and the kinetics of TCS and TCC dissipation in soil are different when the chemicals are carried in biosolids compared to when these chemicals are added directly to the soil.

  12. Land Application of Biosolids in the USA: A Review

    Directory of Open Access Journals (Sweden)

    Qin Lu

    2012-01-01

    Full Text Available Land application of biosolids has proven a cost-effective method of waste disposal by beneficially recycling organic matter and nutrients and improving soil quality; however, it may also pose potential threat to the environment and human health. The purpose of this paper is to provide information on recent research progresses and regulation efforts regarding land application of biosolids, including forms and types and nutrient values of biosolids, environmental and health concerns, and related best management practices (BMPs of biosolids application, with emphasis on its land application in agriculture. More research and regulations are expected to minimize potential risks of biosolids land application, especially its long-term impacts.

  13. Seeding effect on cocomposting wastewater biosolids with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Fang, M.; Wong, J.W.C. [Hong Kong Baptist University, Hong Kong (China). Dept. of Biology

    2001-10-01

    The seeding effect on fly ash-amended biosolids composting was evaluated by inoculating a mixture of ash and biosolids with seeding materials before composting. These inocula included thermophilic bacteria (Bacillus. brevis, B. coagulans, and B. licheniformis) isolated from the ash-biosolids compost, a commercial decomposter, and recycled biosolids compost. Although the addition of these microbial additives to the ash-biosolids compost improved the population of thermophilic bacteria at the early stage of composting, the improvement was negligible after 4 days of composting. Inoculation with isolated bacterial culture, milk powder, or the decomposter, only, did not effectively improve the decomposition of organic matter compared with those receiving inoculation of both microbial additives and milk powder together. The isolated Bacillus species was as efficient as the commercial decomposter in accelerating the decomposition rate during ash-amended biosolids composting as indicated by the high amounts of carbon dioxide evolved and cumulative weight loss. Taking into consideration the lower operating cost and acceptable decomposition efficiency, recycled biosolids compost seemed to be a promising additive to ash-amended biosolids compost to improve composting efficiency.

  14. Thermal dewatering of lignite: Phase III - final report

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, P J; Szladow, A J; Kybett, B D

    1981-01-01

    Phase III of this project extended the investigation of thermal dewatering on several lignite and peat samples at the temperature range up to 400 degrees C and investigated variables such as retention time, increased rates of heating and cooling, extent of trace element removal, effect of particle size and effect of dewatering under heavy and light oils. Lignites from three areas of Canada (Estevan and Coronach, Saskatchewan, and Onakawana, Ontario) and one peat sample (Garrick, Saskatchewan) were thermally dewatered. The equilibrium moisture values obtained for the dewatered products were as low as, or lower than those obtained in Phases I and II of this project (350 degrees C). However, the measured moisture contents of the thermally dewatered Saskatchewan lignites were somewhat higher than those measured in Phases I and II. The equilibrium moisture values and the moisture contents decreased with increasing temperature. An optimum balance between extent of dewatering and resulting steam pressures is obtained for a dewatering temperature between 300 and 350 degrees C. At these temperatures, residence times in the order of 15 minutes are required. (35 refs.)

  15. Biosolids, Soil, Crop, Ground-Water, and Streambed-Sediment Data for A Biosolids-Application Area Near Deer Trail, Colorado, 2001

    National Research Council Canada - National Science Library

    Yager, Tracy J; Smith, David B; Crock, James G

    2004-01-01

    .... Monitoring components were biosolids, soils, crops, ground water, and streambed sediment. The monitoring program addresses concerns from the public about chemical effects from applications of biosolids to farmland in the Deer Trail, Colorado, area...

  16. Tailings dewatering in the oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Longo, S.; Labelle, M. [Golder Paste Technology, Sudbury, ON (Canada); Wislesky, I. [Golder Associates Ltd., Calgary, AB (Canada)

    2010-07-01

    Alberta's Directive 074 was established to reduce fluid tailings produced during oil sands extraction processes. This PowerPoint presentation examined some of the dewatering strategies available for oil sands operators and provided recommendations for implementing a dewatering plan. Sites must be evaluated in order to determine their chemistry, mineralogy, and the total quantity of material to be handled. The availability of potential additives must also be considered. Process technologies must be selected in relation to the operator's depositional strategy. Each site will require its own unique dewatering and depositional strategy. Dewatering technologies include thickening; in-line flocculation; centrifuge; co-mingling; and various new technologies such as electro-osmosis. Laboratory testing programs include index tests, primary stream thickening, and mini-pilot plant testing. The performance of various testing formats was evaluated. Thickening and depositional techniques were reviewed. tabs., figs.

  17. Metal uptake by corn grown on media treated with particle-size fractionated biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weiping [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Chang, Andrew C.; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Zhang, Yongsong [School of Environmental and Natural Resources Sciences, Zhejiang University, Hangzhou, Zhejiang, 31009 (China)

    2008-03-15

    Particle-size of biosolids may affect plant uptake of heavy metals when the biosolids are land applied. In this study, corn (Zea mays L.) was grown on sand media treated with biosolids to study how particle-size of biosolids affected the plant uptake of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Two biosolids, the Nu-Earth biosolids and the Los Angeles biosolids, of dissimilar surface morphology were utilized. The former exhibited a porous and spongy structure and had considerably greater specific surface area than that of the latter, which was granular and blocky. The specific surface area of the Los Angeles biosolids was inversely proportional to its particle-size, while that of Nu-Earth biosolids did not change significantly with particle-size. For each biosolid, the metal concentrations were not affected by particle sizes. The biomass yields of plants grown on the treated media increased as the biosolid particle-size decreased, indicating that plant uptake of nutrients from biosolids was dependent on interactions at the root-biosolids interface. The effect of particle-size on a metal's availability to plants was element-specific. The uptake rate of Cd, Zn, Cu, and Ni was correlated with the surface area of the particles, i.e., smaller particles having higher specific area provided greater root-biosolids contact and resulted in enhanced uptake of Cd and Zn and slightly less increased uptake of Cu and Ni. The particle morphology of biosolids had limited influence on the plant tissue concentrations of Cr and Pb. For both types of biosolids, total metal uptake increased as biosolid particle-size decreased. Our research indicates that biosolid particle-size distribution plays a deciding role in plant uptake of heavy metals when they are land applied.

  18. Carbon storage in a heavy clay soil landfill site after biosolid application

    International Nuclear Information System (INIS)

    Bolan, N.S.; Kunhikrishnan, A.; Naidu, R.

    2013-01-01

    Applying organic amendments including biosolids and composts to agricultural land could increase carbon (C) storage in soils and contribute significantly to the reduction of greenhouse gas emissions. Although a number of studies have examined the potential value of biosolids as a soil conditioner and nutrient source, there has been only limited work on the impact of biosolid application on C sequestration in soils. The objective of this study was to examine the potential value of biosolids in C sequestration in soils. Two types of experiments were conducted to examine the effect of biosolid application on C sequestration. In the first laboratory incubation experiment, the rate of decomposition of a range of biosolid samples was compared with other organic amendments including composts and biochars. In the second field experiment, the effect of biosolids on the growth of two bioenergy crops, Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) on a landfill site was examined in relation to biomass production and C sequestration. The rate of decomposition varied amongst the organic amendments, and followed: composts > biosolids > biochar. There was a hundred fold difference in the rate of decomposition between biochar and other organic amendments. The rate of decomposition of biosolids decreased with increasing iron (Fe) and aluminum (Al) contents of biosolids. Biosolid application increased the dry matter yield of both plant species (by 2–2.5 fold), thereby increasing the biomass C input to soils. The rate of net C sequestration resulting from biosolid application (Mg C ha −1 yr −1 Mg −1 biosolids) was higher for mustard (0.103) than sunflower (0.087). Biosolid application is likely to result in a higher level of C sequestration when compared to other management strategies including fertilizer application and conservation tillage, which is attributed to increased microbial biomass, and Fe and Al oxide-induced immobilization of C. - Graphical

  19. Carbon storage in a heavy clay soil landfill site after biosolid application

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, N.S., E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Kunhikrishnan, A. [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Naidu, R. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia)

    2013-11-01

    Applying organic amendments including biosolids and composts to agricultural land could increase carbon (C) storage in soils and contribute significantly to the reduction of greenhouse gas emissions. Although a number of studies have examined the potential value of biosolids as a soil conditioner and nutrient source, there has been only limited work on the impact of biosolid application on C sequestration in soils. The objective of this study was to examine the potential value of biosolids in C sequestration in soils. Two types of experiments were conducted to examine the effect of biosolid application on C sequestration. In the first laboratory incubation experiment, the rate of decomposition of a range of biosolid samples was compared with other organic amendments including composts and biochars. In the second field experiment, the effect of biosolids on the growth of two bioenergy crops, Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) on a landfill site was examined in relation to biomass production and C sequestration. The rate of decomposition varied amongst the organic amendments, and followed: composts > biosolids > biochar. There was a hundred fold difference in the rate of decomposition between biochar and other organic amendments. The rate of decomposition of biosolids decreased with increasing iron (Fe) and aluminum (Al) contents of biosolids. Biosolid application increased the dry matter yield of both plant species (by 2–2.5 fold), thereby increasing the biomass C input to soils. The rate of net C sequestration resulting from biosolid application (Mg C ha{sup −1} yr{sup −1} Mg{sup −1} biosolids) was higher for mustard (0.103) than sunflower (0.087). Biosolid application is likely to result in a higher level of C sequestration when compared to other management strategies including fertilizer application and conservation tillage, which is attributed to increased microbial biomass, and Fe and Al oxide-induced immobilization of C

  20. Reducing biosolids disposal costs using land application in forested areas

    International Nuclear Information System (INIS)

    Huffines, R.L.

    1995-01-01

    Switching biosolids land application from a reclamation site to a forested site significantly reduced the cost of biosolids disposal at the Savannah River Site. Previous beneficial reuse programs focused on reclamation of existing borrow pits. While extremely beneficial, this program became very costly due to the regulatory requirements for groundwater monitoring, soil monitoring and frequent biosolids analyses. A new program was developed to reuse biosolids in forested areas where the biosolids could be used as a soil conditioner and fertilizer to enhance timber yield. The forested land application site was designed so that groundwater monitoring and soil monitoring could be eliminated while biosolids monitoring and site maintenance were minimized. Monitoring costs alone were reduced by 80%. Capital costs for site preparation were also significantly reduced since there was no longer a need for expensive groundwater monitoring wells

  1. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  2. Biosolids, Soil, Crop, Ground-Water, and Streambed-Sediment Data for a Biosolids-Application Area Near Deer Trail, Colorado, 2002-2003

    National Research Council Canada - National Science Library

    Yager, Tracy J; Smith, David B; Crock, James G

    2004-01-01

    .... Monitoring components were biosolids, soils, crops, ground water, and streambed sediments. The monitoring program addresses concerns from the public about chemical effects from applications of biosolids to farmland in the Deer Trail, Colorado, area...

  3. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons.

    Science.gov (United States)

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Chen, Chih-Yu; Choa, Ching-Guan; Hwu, Ching-Shyung; Lai, Nina

    2006-05-01

    This study selected biosolids from a petrochemical waste-water treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl2) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl2-immersed biosolids pyrolyzed at 500 degrees C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high.

  4. Phosphorous Speciation in WTR-treated Biosolids Using XANES

    Science.gov (United States)

    Zhang, T. Q.; Huff, D.; Lin, Z.-Q.

    2009-04-01

    The concept of co-application of biosolids and drinking water treatment residues (DWTRs) represents an environmentally sustainable and economically sound strategy for the management of municipal solid wastes. This study demonstrated the effectiveness of reducing water-soluble P in biosolids-amended agricultural soil by the addition of DWTRs. Results showed that total P in soil leachate was significantly reduced during the initial 42-days of a 200-day greenhouse study when biosolids (50 g kg-1) were applied along with DWTRs (40 g kg-1). Particulate P was the dominant fraction of P in the soil leachate, which decreases with increasing DWTR application rate. The application of DWTRs does not significantly decrease the growth and yield of wheat (Triticum aestivum L.). The primary P chemical composition in biosolids include cupper phytate [Cu(IP6)6], barium phytate [Ba6IP6], and cupper phosphate [Cu3(PO4)2]. The addition of DWTRs to biosolids alternated the P speciation, and the P speciation change became significant with increasing the incubation time of the mixture of biosolids and DWTRs. The chemical component of Cu3(PO4)2 became non significant (<5%) with the addition of DWTRs. During the 14-day incubation time period, the proportion of P that was adsorbed on amorphous Fe(OH)3 increased substantially from 8 to 46% and Ba6IP6 increased steadily from 30 to 50%, while the proportion of Cu(IP6)6 decreased significantly from 53 to 5%. The amorphous Fe(OH)3-adsorbed P and Ba6IP6 formed the dominant P chemical components in the mixture of biosolids and DWTRs.

  5. Operator assisted optimization of sludge dewatering

    DEFF Research Database (Denmark)

    Grüttner, Henrik

    1991-01-01

    by the operator. By graphical presentation and an advisory service these data are used to support the operator in his dewatering operations and to secure a running optimization of the sludge dewatering. Evaluations show that this system is a useful tool for data collection and presentation and that the data...

  6. Effects of some factors on electro-osmotic dewatering of Laterite ...

    African Journals Online (AJOL)

    ... effect on the EO process. The general effects were same for the two soil samples, but the rate of the effect varied, which implied that EO dewatering was site dependent. It was concluded that EO dewatering was a viable option for dewatering of tropical laterite. Keywords: Electro-osmosis, Soil Dewatering, Tropical Laterite, ...

  7. Environmental de-watering of fluid fine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.W. [Alberta Univ., Edmonton, AB (Canada). Geotechnical Center

    2010-07-01

    This presentation reported on a surface deposition method of dewatering mature fine tailings (MFT). MFTs typically have a solids content of 35 percent. Solids contents of 60 percent or greater have been shown to produce desirable physical properties. Dewatering was considered as a flux boundary problem. Dewatering a 1.0 meter thick profile of MFT with an initial solids content of 35 percent required approximately 200 mm per 1 m{sup 2} of water to exit the boundaries of the profile. The flux boundary conditions were driven by atmospheric forcing events associated with freeze-thaw effects and evaporative drying, and were also influenced by the drainage of liquid water caused by run-off and foundation seepage. The relative contributions of the dewatering mechanisms were discussed and quantified. tabs., figs.

  8. Interactions in Natural Colloid Systems "Biosolids" - Soil and Plant

    Science.gov (United States)

    Kalinichenko, Kira V.; Nikovskaya, Galina N.; Ulberg, Zoya R.

    2016-04-01

    The "biosolids" are complex biocolloid system arising in huge amounts (mln tons per year) from biological municipal wastewater treatment. These contain clusters of nanoparticles of heavy metal compounds (in slightly soluble or unsoluble forms, such as phosphates, sulphates, carbonates, hydroxides, and etc.), cells, humic substances and so on, involved in exopolysaccharides (EPS) net matrix. One may consider that biosolids are the natural nanocomposite. Due to the presence of nitrogen, phosphorus, potassium and other macro- and microelements (heavy metals), vitamins, aminoacids, etc., the biosolids are a depot of bioelements for plant nutrition. Thus, it is generally recognized that most rationally to utilize them for land application. For this purpose the biocolloid process was developed in biosolids system by initiation of microbial vital ability followed by the synthesis of EPS, propagation of ecologically important microorganisms, loosening of the structure and weakening of the coagulation contacts between biosolids colloids, but the structure integrity maintaining [1,2]. It was demonstrated that the applying of biosolids with metabolizing microorganisms to soil provided the improving soil structure, namely the increasing of waterstable aggregates content (70% vs. 20%). It occurs due to flocculation ability of biosolids EPS. The experimental modelling of mutual interactions in systems of soils - biosolids (with metabolizing microorganisms) were realized and their colloid and chemical mechanisms were formulated [3]. As it is known, the most harmonious plant growth comes at a prolonged entering of nutrients under the action of plant roots exudates which include pool of organic acids and polysaccharides [4]. Special investigations showed that under the influence of exudates excreted by growing plants, the biosolids microelements can release gradually from immobilized state into environment and are able to absorb by plants. Thus, the biosolids can serve as an active

  9. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Hung-Lung Chiang; Kuo-Hsiung Lin; Chih-Yu Chen; Ching-Guan Choa; Ching-Shyung Hwu; Nina Lai [China Medical University, Taichung (Taiwan). Department of Risk Management

    2006-05-15

    This study selected biosolids from a petrochemical wastewater treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl{sub 2}) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl{sub 2}-immersed biosolids pyrolyzed at 500{sup o}C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high. 18 refs., 9 figs., 3 tabs.

  10. Biosolids management strategies: an evaluation of energy production as an alternative to land application.

    Science.gov (United States)

    Egan, Maureen

    2013-07-01

    Currently, more than half of the biosolids produced within the USA are land applied. Land application of biosolids introduces organic contaminants into the environment. There are potential ecological and human health risks associated with land application of biosolids. Biosolids may be used as a renewable energy source. Nutrients may be recovered from biosolids used for energy generation for use as fertilizer. The by-products of biosolids energy generation may be used beneficially in construction materials. It is recommended that energy generation replace land application as the leading biosolids management strategy.

  11. Vegetational response to native seed treatment and biosolids application in the rehabilitation of a spoilpile at Cooranbong Colliery

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M.; Whitehead, J. [University of Newcastle, Callaghan, NSW (Australia). Dept. of Geography and Environmental Science

    1998-08-01

    This study addresses two challenges which the minerals industry faces in the rehabilitation of minespoils. The first is to re-establish a soil ecosystem that will sustainably support native vegetation. The second is to overcome seed dormancy mechanisms that often lead to the failure of native plant establishment on sites affected by mining. This paper outlines the results of the ongoing study on the rehabilitation of a coal stockpile at Cooranbong Colliery, Dora Creek, New South Wales. The trial was established to determine the benefits of utilising dewatered biosolids as a soil conditioner for the growth of native trees by direct seeding techniques, and also to investigate the effectiveness of seed treatments on seed germination rates. Two seed treatment techniques, new to attempts to re-establish native species on minespoils, were trialed using, in turn, hot water and smoke. 8 refs., 1 fig., 2 tabs.

  12. Evaluation of the potential for bioaerosols from land applied biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Benjamin; Brooks, John; Josephseon, Karen; Gerba, Charles; Pepper, Ian

    2003-07-01

    The overall objective of this study was to quantitatively and qualitatively document the potential hazards of biological aerosols derived from land applied biosolids, and ultimately develop risk assessment models and land-management strategies for safe, effective use of biosolids. The specific objectives were: i) Quantify bacterial and viral microorganisms emitted as bioaerosols from point sources of biosolids, and area (land-applied) sources of biosolids; ii) Develop risk assessment models based on a) hazard identification, b) dose response, c) exposure assessment; d) risk characterization. Research has consisted of laboratory studies at the University of Arizona and field studies at several regional U.S. locations. Bioaerosol samples have been collected via ''Impingement'' using SKC biosamplers. The biologicals monitored for included: i) viruses: enteroviruses, calciviruses; ii) phage e.g, MS2; iii) E. coil; iv) Salmonella; v) total coliforms; vi) Clostridium perfringens; vii) Aspergillus spp.; viii) Endotoxin. Air samples were collected at discrete distances torn both biosolid piles (point sources), or land applied biosolids (area sources). (author)

  13. LAND REMEDIATION WITH BIOSOLIDS - SLUDGE MAGIC - TIME BOMB?

    Science.gov (United States)

    Addition of biosolids to soils increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) and alters the chemistry and phytoavailability of these metals. This alteration in phytoavailability associated with biosolids amended soil was recognized and utilized by...

  14. Electroosmotically enhanced sludge dewatering-pilot-plant study

    CSIR Research Space (South Africa)

    Smollen, M

    1994-01-01

    Full Text Available role in determining the ease or difficulty of phase separation. It seems that the inefficiency of dewatering applied to gelatinous and fine-particle sludges can be overcome by mechanical dewatering enhanced by electroosmosis. A prototype pilot-plant...

  15. Effects of Biosolids Application on Pasture and Grape Vines in South-Eastern Australia

    Directory of Open Access Journals (Sweden)

    David Nash

    2011-01-01

    Full Text Available Biosolids were applied to a pasture and a vineyard in south-eastern Australia. At both sites, soil Cd, Cu, and Zn concentrations linearly increased with biosolids application rates although not to the extent of exceeding soil quality guidelines. Biosolids marginally increased soil C and N concentrations at the pasture site but significantly increased P concentrations. With lower overall soil fertility at the vineyard, biosolids increased C, N, and P concentrations. At neither site did biosolids application affect soil microbial endpoints. Biosolids increased pasture production compared to the unfertilised control but had little effect on grape production or quality. Interestingly, over the 3-year trial, there was no difference in pasture production between the biosolids treated plots and plots receiving inorganic fertiliser. These results suggest that biosolids could be used as a fertiliser to stimulate pasture production and as a soil conditioner to improve vineyard soils in this region.

  16. Optimizing MFT dewatering by controlling polymer mixing

    Energy Technology Data Exchange (ETDEWEB)

    Demoz, A.; Munoz, V.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    A method of controlling polymer mixing for the dewatering of mature fine tailings (MFT) was presented. The method was developed to accelerate water release from MFT and to recover more water for re-use. Dewatering rates are dependent upon hydrodynamic conditions as well as various physical mixing variables. The effect of mixing energy on the rate and amount of released water flocculated MFT was investigated using different impellers in order to determine the release water amount and capillary suction time. The mixing energy effect on the structure of the flocculated MFT was analyzed using rheology and stereo microscopy techniques. Batch mixing tests were conducted to determine dewatering characteristics. Flow was described using the Herschel-Bulkley model. Results of the study demonstrated a clear peak in the amount of water released with the mixing time. The effect was applicable to rim-ditch thin-lift, and dewatering by centrifugation. tabs., figs.

  17. Odour reduction strategies for biosolids produced from a Western Australian wastewater treatment plant: results from Phase I laboratory trials.

    Science.gov (United States)

    Gruchlik, Yolanta; Heitz, Anna; Joll, Cynthia; Driessen, Hanna; Fouché, Lise; Penney, Nancy; Charrois, Jeffrey W A

    2013-01-01

    This study investigated sources of odours from biosolids produced from a Western Australian wastewater treatment plant and examined possible strategies for odour reduction, specifically chemical additions and reduction of centrifuge speed on a laboratory scale. To identify the odorous compounds and assess the effectiveness of the odour reduction measures trialled in this study, headspace solid-phase microextraction gas chromatography-mass spectrometry (HS SPME-GC-MS) methods were developed. The target odour compounds included volatile sulphur compounds (e.g. dimethyl sulphide, dimethyl disulphide and dimethyl trisulphide) and other volatile organic compounds (e.g. toluene, ethylbenzene, styrene, p-cresol, indole and skatole). In our laboratory trials, aluminium sulphate added to anaerobically digested sludge prior to dewatering offered the best odour reduction strategy amongst the options that were investigated, resulting in approximately 40% reduction in the maximum concentration of the total volatile organic sulphur compounds, relative to control.

  18. Biosolid stockpiles are a significant point source for greenhouse gas emissions.

    Science.gov (United States)

    Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K

    2014-10-01

    The wastewater treatment process generates large amounts of sewage sludge that are dried and then often stored in biosolid stockpiles in treatment plants. Because the biosolids are rich in decomposable organic matter they could be a significant source for greenhouse gas (GHG) emissions, yet there are no direct measurements of GHG from stockpiles. We therefore measured the direct emissions of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) on a monthly basis from three different age classes of biosolid stockpiles at the Western Treatment Plant (WTP), Melbourne, Australia, from December 2009 to November 2011 using manual static chambers. All biosolid stockpiles were a significant point source for CH4 and N2O emissions. The youngest biosolids (nitrate and ammonium concentration. We also modeled CH4 emissions based on a first order decay model and the model based estimated annual CH4 emissions were higher as compared to the direct field based estimated annual CH4 emissions. Our results indicate that labile organic material in stockpiles is decomposed over time and that nitrogen decomposition processes lead to significant N2O emissions. Carbon decomposition favors CO2 over CH4 production probably because of aerobic stockpile conditions or CH4 oxidation in the outer stockpile layers. Although the GHG emission rate decreased with biosolid age, managers of biosolid stockpiles should assess alternate storage or uses for biosolids to avoid nutrient losses and GHG emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Ecological impacts of long-term application of biosolids to a radiata pine plantation

    International Nuclear Information System (INIS)

    Xue, Jianming; Kimberley, Mark O.; Ross, Craig; Gielen, Gerty; Tremblay, Louis A.; Champeau, Olivier; Horswell, Jacqui; Wang, Hailong

    2015-01-01

    Assessment of the ecological impact of applying biosolids is important for determining both the risks and benefits. This study investigated the impact on soil physical, chemical and biological properties, tree nutrition and growth of long-term biosolids applications to a radiata pine (Pinus radiata D. Don) plantation growing on a Sandy Raw Soil in New Zealand. Biosolids were applied to the trial site every 3 years from tree age 6 to 19 years at three application rates: 0 (Control), 300 (Standard) and 600 (High) kg nitrogen (N) ha −1 , equivalent to 0, 3 and 6 Mg ha −1 of dry biosolids, respectively. Tree nutrition status and growth have been monitored annually. Soil samples were collected 13 years after the first biosolids application to assess the soil properties and functioning. Both the Standard and High biosolids treatments significantly increased soil (0–50 cm depth) total carbon (C), N, and phosphorus (P), Olsen P and cation exchange capacity (CEC), reduced soil pH, but had no significant effects on soil (0–20 cm depth) physical properties including bulk density, total porosity and unsaturated hydraulic conductivity. The High biosolids treatment also increased concentrations of soil total cadmium (Cd), chromium (Cr), copper (Cu) and lead (Pb) at 25–50 cm depth, but these concentrations were still considered very low for a soil. Ecotoxicological assessment showed no significant adverse effects of biosolids application on either the reproduction of springtails (Folsomia candida) or substrate utilisation ability of the soil microbial community, indicating no negative ecological impact of bisolids-derived heavy metals or triclosan. This study demonstrated that repeated application of biosolids to a plantation forest on a poor sandy soil could significantly improve soil fertility, tree nutrition and pine productivity. However, the long-term fate of biosolids-derived N, P and litter-retained heavy metals needs to be further monitored in the receiving

  20. DEVELOPMENT OF DEWATERING AIDS FOR MINERALS AND COAL FINES

    Energy Technology Data Exchange (ETDEWEB)

    Roe-Hoam Yoon; Ramazan Asmatulu; Ismail Yildirim; William Jansen; Jinmig Zhang; Brad Atkinson; Jeff Havens

    2004-07-01

    MCT has developed a suite of novel dewatering chemicals (or aids) that are designed to cause a decrease in the capillary pressures of the water trapped in a filter cake by (1) decreasing the surface tension of water, (2) increasing the contact angles of the particles to be dewatered, and (3) causing the particles to coagulate, all at the same time. The decrease in capillary pressure in turn causes an increase in the rate filtration, an increase in throughput, and a decrease in pressure drop requirement for filtration. The reagents are used frequently as blends of different chemicals in order to bring about the changes in all of the process variables noted above. The minerals and coal samples tested in the present work included copper sulfide, lead sulfide, zinc sulfide, kaolin clay, talc, and silica. The laboratory-scale test work included studies of reagent types, drying cycle times, cake thickness, slurry temperature, conditioning intensity and time, solid content, and reagent dosages. To better understand the mechanisms involved, fundamental studies were also conducted. These included the measurements of the contact angles of the particles to be dewatered (which are the measures of particle hydrophobicity) and the surface tensions of the filtrates produced from dewatering tests. The results of the laboratory-scale filtration experiments showed that the use of the novel dewatering aids can reduce the moistures of the filter cake by 30 to 50% over what can be achieved using no dewatering aids. In many cases, such high levels of moisture reductions are sufficient to obviate the needs for thermal drying, which is costly and energy intensive. Furthermore, the use of the novel dewatering aids cause a substantial increase in the kinetics of dewatering, which in turn results in increased throughput. As a result of these technological advantages, the novel dewatering aids have been licensed to Nalco, which is one of the largest mining chemicals companies of the world. At

  1. The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.L.; Chaney, R.L. [Dept. of Agriculture, Beltsville, MD (United States); Angle, J.S. [Univ. of Maryland, College Park, MD (United States). Dept. of Agronomy; Ryan, J.A. [Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.

    1998-09-01

    A field study was conducted to assess the phytoavailability of Cd in long-term biosolids-amended plots managed at high and low pH. The experiment, established 13 to 15 yr prior to the present cropping, on a Christiana fine sandy loam soil used a variety of biosolids. Two of the biosolids had total Cd concentrations of 13.4 and 210 mg kg{sup {minus}1}. A Cd salt treatment, with Cd added to soil at a rate equivalent to the Cd added by the higher Cd biosolids applied at 100 Mg ha{sup {minus}1}, was also included. The lettuce (Lactuca sativa var. longifolia) cultivar (Paris Island Cos) used in the initial study was also used in the current study. Lettuce Cd was compared between treatments, and in relation to the soil Cd/soil organic C (OC) ratio. There has been no significant increase in plant Cd since the initial cropping. With 16% of the biosolids added OC remaining, lettuce grown on the soil amended with the more contaminated biosolids was not different than that of the initial cropping. Further, significantly less Cd was taken up by lettuce grown on biosolids-amended soil than lettuce grown on soil amended with equivalent rates of Cd salt. The Cd concentration in lettuce grown in the low Cd biosolids treatment was not different from the control. These results indicate that the potential hazards associated with food chain transfer of biosolids-applied Cd are substantially lower than equivalent Cd salt treatments, and that the hazards do not increase over time.

  2. Assessing Nutrients Availability of Irradiated and Non-Irradiated Biosolids for the Agriculture Re-use

    Energy Technology Data Exchange (ETDEWEB)

    Magnavacca, Cecilia; Sanchez, Monica

    2003-07-01

    Irradiation provides a fast and reliable means to disinfect biosolids generated by municipal wastewater treatment processes. The chemical integrity of some substances may be altered thus change the availability of plant nutrients. Chemical analyses on the biosolids showed a release of mineral forms of Nitrogen while Phosphorus chemical forms were not altered. Higher amounts of mineralized N were indirectly demonstrated in soils with irradiated biosolids by a respiration experiment, and higher nitrate concentrations were measured in the irradiated biosolids amended soils at field experiments. Crop field experiments (lettuce and sugarcane) confirmed that irradiated biosolids have higher fertilizing capability than equal amounts of non-irradiated biosolids. Maximum dose rate had no additive effect but a depleted result, thus marking the importance of the use of moderate biosolids rates. (author)

  3. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    International Nuclear Information System (INIS)

    Heemsbergen, Diane A.; McLaughlin, Mike J.; Whatmuff, Mark; Warne, Michael St.J.; Broos, Kris; Bell, Mike; Nash, David; Barry, Glenn; Pritchard, Deb; Penney, Nancy

    2010-01-01

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl 2 extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  5. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    Energy Technology Data Exchange (ETDEWEB)

    Heemsbergen, Diane A., E-mail: diane.heemsbergen@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); McLaughlin, Mike J., E-mail: mike.mclaughlin@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5064 (Australia); Whatmuff, Mark, E-mail: mark.whatmuff@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); NSW Department of Primary Industries, Locked Bag 4 Richmond, NSW 2753 (Australia); Warne, Michael St.J., E-mail: michael.warne@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Broos, Kris, E-mail: kris.broos@vito.b [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Bell, Mike, E-mail: Mike.Bell@dpi.qld.gov.a [Department of Primary Industries, Kingaroy, Queensland 4610 (Australia); Nash, David, E-mail: David.Nash@dpi.vic.gov.a [Department of Primary Industries, Ellinbank, Victoria 3821 (Australia); Barry, Glenn, E-mail: Glenn.Barry@nrw.qld.gov.a [Department of Natural Resources and Mines, Indooroopilly, Queensland 4068 (Australia); Pritchard, Deb, E-mail: D.Pritchard@curtin.edu.a [Curtin University of Technology, Muresk Institute, Northam, Western Australia 6401 (Australia); Penney, Nancy, E-mail: Nancy.Penney@WaterCorporation.com.a [Water Corporation of Western Australia, Leederville, Western Australia 6001 (Australia)

    2010-05-15

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl{sub 2} extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  6. Ecological impacts of long-term application of biosolids to a radiata pine plantation

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Jianming, E-mail: jianming.xue@scionresearch.com [Scion, Private Bag 29237, Christchurch (New Zealand); Kimberley, Mark O., E-mail: mark.kimberley@scionresearch.com [Scion, Private Bag 3020, Rotorua (New Zealand); Ross, Craig, E-mail: rossc@landcareresearch.co.nz [Landcare, Private Bag 11052, Palmerston North (New Zealand); Gielen, Gerty, E-mail: gerty.gielen@scionresearch.com [Scion, Private Bag 3020, Rotorua (New Zealand); Tremblay, Louis A., E-mail: louis.tremblay@cawthron.org.nz [Cawthron Institute, Private Bag 2, Nelson (New Zealand); School of Biological Sciences, University of Auckland, PO Box 92019, Auckland 1142 (New Zealand); Champeau, Olivier, E-mail: olivier.champeau@cawthron.org.nz [Cawthron Institute, Private Bag 2, Nelson (New Zealand); Horswell, Jacqui, E-mail: jacqui.horswell@esr.cri.nz [ESR, P O Box 50-348, Porirua (New Zealand); Wang, Hailong, E-mail: hailong@zafu.edu.cn [Scion, Private Bag 3020, Rotorua (New Zealand); Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang Agricultural and Forestry University, Lin' an, Hangzhou, Zhejiang Province 311300 (China)

    2015-10-15

    Assessment of the ecological impact of applying biosolids is important for determining both the risks and benefits. This study investigated the impact on soil physical, chemical and biological properties, tree nutrition and growth of long-term biosolids applications to a radiata pine (Pinus radiata D. Don) plantation growing on a Sandy Raw Soil in New Zealand. Biosolids were applied to the trial site every 3 years from tree age 6 to 19 years at three application rates: 0 (Control), 300 (Standard) and 600 (High) kg nitrogen (N) ha{sup −1}, equivalent to 0, 3 and 6 Mg ha{sup −1} of dry biosolids, respectively. Tree nutrition status and growth have been monitored annually. Soil samples were collected 13 years after the first biosolids application to assess the soil properties and functioning. Both the Standard and High biosolids treatments significantly increased soil (0–50 cm depth) total carbon (C), N, and phosphorus (P), Olsen P and cation exchange capacity (CEC), reduced soil pH, but had no significant effects on soil (0–20 cm depth) physical properties including bulk density, total porosity and unsaturated hydraulic conductivity. The High biosolids treatment also increased concentrations of soil total cadmium (Cd), chromium (Cr), copper (Cu) and lead (Pb) at 25–50 cm depth, but these concentrations were still considered very low for a soil. Ecotoxicological assessment showed no significant adverse effects of biosolids application on either the reproduction of springtails (Folsomia candida) or substrate utilisation ability of the soil microbial community, indicating no negative ecological impact of bisolids-derived heavy metals or triclosan. This study demonstrated that repeated application of biosolids to a plantation forest on a poor sandy soil could significantly improve soil fertility, tree nutrition and pine productivity. However, the long-term fate of biosolids-derived N, P and litter-retained heavy metals needs to be further monitored in the

  7. Increasing thermal drying temperature of biosolids reduced nitrogen mineralisation and soil N2O emissions

    DEFF Research Database (Denmark)

    Case, Sean; Gomez Muñoz, Beatriz; Magid, Jakob

    2016-01-01

    Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood. This will be o......Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood...

  8. A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids

    International Nuclear Information System (INIS)

    Donner, E.; Ryan, C.G.; Howard, D.L.; Zarcinas, B.; Scheckel, K.G.; McGrath, S.P.; Jonge, M.D. de; Paterson, D.; Naidu, R.; Lombi, E.

    2012-01-01

    The use of biosolids in agriculture continues to be debated, largely in relation to their metal contents. Our knowledge regarding the speciation and bioavailability of biosolids metals is still far from complete. In this study, a multi-technique approach was used to investigate copper and zinc speciation and partitioning in one contemporary and two historical biosolids used extensively in previous research and field trials. Using wet chemistry and synchrotron spectroscopy techniques it was shown that copper/zinc speciation in the biosolids was largely equivalent despite the biosolids being derived from different countries over a 50 year period. Furthermore, copper speciation was consistently dominated by sorption to organic matter whereas Zn partitioned mainly to iron oxides. These data suggest that the results of historical field trials are still relevant for modern biosolids and that further risk assessment studies should concentrate particularly on Cu as this metal is associated with the mineralisable biosolids fraction. - Highlights: ► Complementary techniques were used to investigate Cu and Zn speciation in biosolids. ► Historic and contemporary biosolids with differing metal contents were examined. ► Similarities in Cu/Zn speciation were observed irrespective of biosolids provenance. ► Key binding environments identified were organic matter for Cu and Fe oxides for Zn. ► Similarities show historic field trial results are still relevant for biosolids management. - Historic and contemporary biosolids show similarities in Cu/Zn speciation despite having very different total Zn/Cu contents.

  9. POC-scale testing of an advanced fine coal dewatering equipment/technique

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  10. Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes

    Science.gov (United States)

    Al-Gheethi, A. A.; Efaq, A. N.; Bala, J. D.; Norli, I.; Abdel-Monem, M. O.; Ab. Kadir, M. O.

    2018-05-01

    The reuse of treated sewage for irrigation is considered as an important alternative water source in the new water management strategy of the countries that face a severe deficiency of water resources such as the Middle East countries. The organic material and fertilizing elements contained in biosolids are essential for maintaining soil fertility. However, both treated sewage and biosolids contain a large diversity of pathogens that would be transmitted to the environment and infect human directly or indirectly. Therefore, those pathogens should be reduced from the treated sewage and biosolids before the reuse in the agriculture. This paper reviews the considerations for reuse of treated sewage and biosolids in agriculture and further treatments used for reduction of pathogenic bacteria. The treatment methods used for the reduction of pathogens in these wastes have reviewed. It appeared that the main concern associated with the reduction of pathogenic bacteria lies in their ability to regrow in the treated sewage and biosolids. Therefore, the effective treatment method is that it has the potential to destruct pathogens cells and remove the nutrients to prevent the regrowth or recontamination from the surrounded environment. The removal of nutrients might be applicable in the sewage but not in the biosolids due to high nutrient contents. However, the reduction of health risk in the biosolids might be carried out by regulating the biosolid utilization and selecting the plant species grown in the fertilized soil with biosolids.

  11. Maximizing the benefits of a dewatering system

    International Nuclear Information System (INIS)

    Matthews, P.; Iverson, T.S.

    1999-01-01

    The use of dewatering systems in the mining, industrial sludge and sewage waste treatment industries is discussed, also describing some of the problems that have been encountered while using drilling fluid dewatering technology. The technology is an acceptable drilling waste handling alternative but it has had problems associated with recycled fluid incompatibility, high chemical costs and system inefficiencies. This paper discussed the following five action areas that can maximize the benefits and help reduce costs of a dewatering project: (1) co-ordinate all services, (2) choose equipment that fits the drilling program, (3) match the chemical treatment with the drilling fluid types, (4) determine recycled fluid compatibility requirements, and (5) determine the disposal requirements before project start-up. 2 refs., 5 figs

  12. Dewaterability of thermophilically digested biosolids: effects of temperature and cellular polymeric substances

    International Nuclear Information System (INIS)

    Zhou, J.; Mavinic, D.S.; Kelly, H.G.; Ramey, W.D.

    2002-01-01

    Thermophilic processes digest sludge at high temperatures to produce Class A biosolids.Recent research work revealed that digestion temperature is the predominant factor affecting dewaterability of thermophilic biosolids. This paper presents findings of a laboratory study that investigated how various digestion temperatures affect dewaterability of digested biosolids, studied the phase partition of the substances affecting dewaterability in digested biosolids, and tested the role of cellular polymeric substances in affecting dewaterability.Secondary sludges were digested at 40-70 o C or 22 o C for up to 12 days. Centrate from thermophilically digested biosolids were treated with protease and boiling. This study found that, during the first few hours of digestion, higher temperatures resulted in more rapid and more significant deterioration in dewaterability than lower digestion temperatures. Continued digestion resulted in either improved (60 o C or 70 o C), or unchanged (40 o C or 50 o C), or gradually deteriorated dewaterability (22 o C). The substances affecting dewaterability were primarily located in the liquid phase of thermophilically digested biosolids. Boiling treatment did not result in significant changes in dewaterability. Protease treatment of the liquid phase of thermophilic biosolids improved dewaterability by 13-19%. Such an improvement confirmed the role of proteins in affecting dewaterability. (author)

  13. Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium.

    Science.gov (United States)

    Weggler, Karin; McLaughlin, Michael J; Graham, Robin D

    2004-01-01

    Increasing chloride (Cl) concentration in soil solution has been shown to increase cadmium (Cd) concentration in soil solution and Cd uptake by plants, when grown in phosphate fertilizer- or biosolid-amended soils. However, previous experiments did not distinguish between the effect of Cl on biosolid-borne Cd compared with soil-borne Cd inherited from previous fertilizer history. A factorial pot experiment was conducted with biosolid application rates of 0, 20, 40, and 80 g biosolids kg(-1) and Cl concentration in soil solution ranging from 1 to 160 mM Cl. The Cd uptake of wheat (Triticum aestivum L. cv. Halberd) was measured and major cations and anions in soil solution were determined. Cadmium speciation in soil solution was calculated using GEOCHEM-PC. The Cd concentration in plant shoots and soil solution increased with biosolid application rates up to 40 g kg(-1), but decreased slightly in the 80 g kg(-1) biosolid treatment. Across biosolid application rates, the Cd concentration in soil solution and plant shoots was positively correlated with the Cl concentration in soil solution. This suggests that biosolid-borne Cd is also mobilized by chloride ligands in soil solution. The soil solution CdCl+ activity correlated best with the Cd uptake of plants, although little of the variation in plant Cd concentrations was explained by activity of CdCl+ in higher sludge treatments. It was concluded that chlorocomplexation of Cd increased the phytoavailability of biosolid-borne Cd to a similar degree as soil (fertilizer) Cd. There was a nonlinear increase in plant uptake and solubility of Cd in biosolid-amended soils, with highest plant Cd found at the 40 g kg(-1) rate of biosolid application, and higher rates (80 g kg(-1)) producing lower plant Cd uptake and lower Cd solubility in soil. This is postulated to be a result of Cd retention by CaCO3 formed as a result of the high alkalinity induced by biosolid application.

  14. EFFECTS OF LIME (CAO) ON THE ENDOTOXIN LEVELS OF BIOSOLIDS

    Science.gov (United States)

    Lime addition is a common practice for treating biosolids in order to meet EPA 503 requirements for land application. Since this treatment kills the majority of microorganisms, will it increase the level of endotoxins present in biosolids? And, if endotoxin levels are increased, ...

  15. Effects of Biosolids at Varying Rates on Earthworms (Eisenia fetida and Springtails (Folsomia candida

    Directory of Open Access Journals (Sweden)

    N. Artuso

    2011-01-01

    Full Text Available Land spreading is a major option internationally for the disposal/use of treated sewage sludge (biosolids, but effects of this practice on soil organisms are largely unknown. This study investigated the effects of biosolids on two soil invertebrate species, earthworms (Eisenia fetida and Collembola (Folsomia candida, in laboratory tests. Five biosolids from different sewage works were assessed at rates equivalent to 0, 2, 5, 10, and 20 t ha−1. Biosolids applied at 2 and 5 t ha−1 did not cause mortality of adult earthworms but did at 10 and 20 t ha−1. At 5, 10 and 20 t ha−1, all biosolids had significantly fewer juvenile worms relative to controls. Increasing the rates from 2 to 10 t ha−1 did not impact on the number of adult Collembola, but at 20 t ha−1 there were significantly fewer adults. There were significantly fewer juvenile Collembola recorded for biosolids applied at the 2 t ha−1 when compared with controls, and also when biosolids were applied at 5, 10, and 20 t ha−1 relative to 2 t ha−1. Some significant difference between biosolids were observed, but generally, negative effects were not related to heavy metal concentrations in biosolids. It is recommended that possible detrimental mechanisms (e.g., ammonia production, lack of oxygen be investigated in future work. It is concluded that biosolids, applied at legal, low rates (about 2 t ha−1 are unlikely to be detrimental to earthworms or adult Collembola but can be detrimental to Collembola reproduction.

  16. Surface biosolids application: effects on infiltration, erosion, and soil organic carbon in Chihuahuan Desert grasslands and shrublands.

    Science.gov (United States)

    Moffet, C A; Zartman, R E; Wester, D B; Sosebee, R E

    2005-01-01

    Land application of biosolids is a beneficial-use practice whose ecological effects depend in part on hydrological effects. Biosolids were surface-applied to square 0.5-m2 plots at four rates (0, 7, 34, and 90 dry Mg ha(-1)) on each of three soil-cover combinations in Chihuahuan Desert grassland and shrubland. Infiltration and erosion were measured during two seasons for three biosolids post-application ages. Infiltration was measured during eight periods of a 30-min simulated rain. Biosolids application affected infiltration rate, cumulative infiltration, and erosion. Infiltration increased with increasing biosolids application rate. Application of biosolids at 90 dry Mg ha(-1) increased steady-state infiltration rate by 1.9 to 7.9 cm h(-1). Most of the measured differences in runoff among biosolids application rates were too large to be the result of interception losses and/or increased hydraulic gradient due to increased roughness. Soil erosion was reduced by the application of biosolids; however, the extent of reduction in erosion depended on the initial erodibility of the site. Typically, the greatest marginal reductions in erosion were achieved at the lower biosolids application rates (7 and 34 dry Mg ha(-1)); the difference in erosion between 34 and 90 dry Mg ha(-1) biosolids application rates was not significant. Surface application of biosolids has important hydrological consequences on runoff and soil erosion in desert grasslands that depend on the rate of biosolids applied, and the site and biosolids characteristics.

  17. The utilization of forward osmosis for coal tailings dewatering

    Science.gov (United States)

    The feasibility of dewatering coal tailings slurry by forward osmosis (FO) membrane process was investigated in this research. A prototype cell was designed and used for the dewatering tests. A cellulosic FO membrane (Hydration Technology Innovations, LLC, Albany, OR) was used fo...

  18. Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.

    Science.gov (United States)

    Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas

    2014-09-01

    This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment.

  19. Techno-economic evaluation of microalgae harvesting and dewatering systems

    NARCIS (Netherlands)

    Fasaei, F.; Bitter, J.H.; Slegers, P.M.; Boxtel, van A.J.B.

    2018-01-01

    Microalgal biomass is processed into products by two main process steps: 1) harvesting and dewatering; and 2) extraction, fractionation and conversion. The performance of unit operations for harvesting and dewatering is often expressed in qualitative terms, like “high energy consumption” and “low in

  20. Phytoextraction of heavy metals by willows growing in biosolids under field conditions.

    Science.gov (United States)

    Laidlaw, W S; Arndt, S K; Huynh, T T; Gregory, D; Baker, A J M

    2012-01-01

    Biosolids produced by sewage treatment facilities can exceed guideline thresholds for contaminant elements. Phytoextraction is one technique with the potential to reduce these elements allowing reuse of the biosolids as a soil amendment. In this field trial, cuttings of seven species/cultivars of Salix(willows) were planted directly into soil and into biosolids to identify their suitability for decontaminating biosolids. Trees were irrigated and harvested each year for three consecutive years. Harvested biomass was weighed and analyzed for the contaminant elements: As, Cd, Cu, Cr, Hg, Pb, Ni, and Zn. All Salix cultivars, except S. chilensis, growing in soils produced 10 to 20 t ha(-1) of biomass, whereas most Salix cultivars growing in biosolids produced significantly less biomass (metals from biosolids, driven by superior biomass increases and not high tissue concentrations. The willows were effectual in extracting the most soluble/exchangeable metals (Cd, 0.18; Ni, 0.40; and Zn, 11.66 kg ha(-1)), whereas Cr and Cu were extracted to a lesser degree (0.02 and 0.11 kg ha(-1)). Low bioavailable elements, As, Hg, and Pb, were not detectable in any of the aboveground biomass of the willows. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Dewatering blastholes cuts explosives costs

    Energy Technology Data Exchange (ETDEWEB)

    Pilshaw, S.R.

    1987-11-01

    Large mining operations often require a combination of presplitting and dewatering with blasthole pumps. Increasing the percentage of bulk ANFO in any blast will reduce cost and should increase profitability.

  2. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing

    International Nuclear Information System (INIS)

    Donner, E.; Scheckel, K.; Sekine, R.; Popelka-Filcoff, R.S.; Bennett, J.W.; Brunetti, G.; Naidu, R.; McGrath, S.P.; Lombi, E.

    2015-01-01

    Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that biosolids Ag concentrations have decreased significantly over recent decades. XANES revealed the importance of reduced-sulfur binding environments for Ag speciation in materials ranging from freshly produced sludge to biosolids weathered under ambient environmental conditions for more than 50 years. Isotopic dilution with 110m Ag showed that Ag was predominantly non-labile in both fresh and aged biosolids (13.7% mean lability), with E-values ranging from 0.3 to 60 mg/kg and 5 mM CaNO 3 extractable Ag from 1.2 to 609 μg/kg (0.002–3.4% of the total Ag). This study indicates that at the time of soil application, biosolids Ag will be predominantly Ag-sulfides and characterised by low isotopic lability. - Highlights: • Biosolids silver (Ag) concentrations appear to have decreased in recent decades. • Ag 2 S dominates Ag speciation in freshly produced sludge. • Ag 2 S is also the dominant species in aged biosolids. • Upon land application biosolids will mainly contain Ag-sulfides and have low isotopic lability. - Analysis of historic and contemporary biosolids from three continents indicated decreasing wastewater silver releases, and non-labile, extremely stable silver speciation

  3. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown.

    Science.gov (United States)

    Sharma, Bhavisha; Sarkar, Abhijit; Singh, Pooja; Singh, Rajeev Pratap

    2017-06-01

    Environmental and economic implications linked with the proper ecofriendly disposal of modern day wastes, has made it essential to come up with alternative waste management practices that reduce the environmental pressures resulting from unwise disposal of such wastes. Urban wastes like biosolids are loaded with essential plant nutrients. In this view, agricultural use of biosolids would enable recycling of these nutrients and could be a sustainable approach towards management of this hugely generated waste. Therefore biosolids i.e. sewage sludge can serve as an important resource for agricultural utilization. Biosolids are characterized by the occurrence of beneficial plant nutrients (essential elements and micro and macronutrients) which can make help them to work as an effective soil amendment, thereby minimizing the reliance on chemical fertilizers. However, biosolids might contain toxic heavy metals that may limit its usage in the cropland. Heavy metals at higher concentration than the permissible limits may lead to food chain contamination and have fatal consequences. Biosolids amendment in soil can improve physical and nutrient property of soil depending on the quantity and portion of the mixture. Hence, biosolids can be a promising soil ameliorating supplement to increase plant productivity, reduce bioavailability of heavy metals and also lead to effective waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Metal stress and decreased tree growth in response to biosolids application in greenhouse seedlings and in situ Douglas-fir stands

    International Nuclear Information System (INIS)

    Cline, Erica T.; Nguyen, Quyen T.N.; Rollins, Lucy; Gawel, James E.

    2012-01-01

    To assess physiological impacts of biosolids on trees, metal contaminants and phytochelatins were measured in Douglas-fir stands amended with biosolids in 1982. A subsequent greenhouse study compared these same soils to soils amended with fresh wastewater treatment plant biosolids. Biosolids-amended field soils had significantly higher organic matter, lower pH, and elevated metals even after 25 years. In the field study, no beneficial growth effects were detected in biosolids-amended stands and in the greenhouse study both fresh and historic biosolids amendments resulted in lower seedling growth rates. Phytochelatins – bioindicators of intracellular metal stress – were elevated in foliage of biosolids-amended stands, and significantly higher in roots of seedlings grown with fresh biosolids. These results demonstrate that biosolids amendments have short- and long-term negative effects that may counteract the expected tree growth benefits. - Highlights: ► Biosolids amendment increases soil metals over 25 years later. ► Douglas-fir growth benefits fail to materialize from biosolids amendments. ► Phytochelatins are elevated in foliage of trees and roots of greenhouse seedlings after new biosolids are added to soil. ► Biosolids connected to metal stress in Douglas-fir. - Biosolids applications increase bioindicators of intracellular metal stress and may counteract tree growth benefits.

  5. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  6. Dryland Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Biosolids Applications

    Directory of Open Access Journals (Sweden)

    Richard T. Koenig

    2011-01-01

    Full Text Available Applications of biosolids were compared to inorganic nitrogen (N fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L. cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Biosolids produced 0 to 1400 kg ha−1 (0 to 47% higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the biosolids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dryland production systems. Grain protein content with biosolids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with biosolids. Results indicate the potential to improve dryland winter wheat yields with biosolids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when biosolids are applied immediately before planting.

  7. Fate of {sup 14}C-triclocarban in biosolids-amended soils

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Elizabeth Hodges, E-mail: lizah@ufl.edu [Soil and Water Science Department, University of Florida, 408 Newell Hall, Gainesville, Florida, 32611 (United States); Department of Health Sciences, University of Alaska Anchorage, DPL 404, 3211 Providence Drive, Anchorage, AK 99508-4614 (United States); O' Connor, George A., E-mail: gao@ufl.edu [Soil and Water Science Department, P.O. Box 110510, University of Florida, Gainesville, FL 32611-01519 (United States); McAvoy, Drew C., E-mail: mcavoy.dc@pg.com [Environmental Safety Department, P.O. Box 538707, The Procter and Gamble Company, Cincinnati, OH, 45253-8707 (United States)

    2010-06-01

    Triclocarban (TCC) is an antibacterial compound commonly detected in biosolids at parts-per-million concentrations. Approximately half of the biosolids produced in the United States are land-applied, resulting in a systematic release of TCC into the soil environment. The extent of biosolids-borne TCC environmental transport and potential human/ecological exposures will be greatly affected by its bioavailability and the rate of degradation in amended soils. To investigate these factors, radiolabeled TCC ({sup 14}C-TCC) was incorporated into anaerobically digested biosolids, amended to two soils, and incubated under aerobic conditions. The evolution of {sup 14}CO2 (biodegradation) and changes in chemical extractability (bioavailability) was measured over time. Water extractable TCC over the study period was low and significantly decreased over the first 3 weeks of the study (from 14% to 4% in a fine sand soil and from 3 to < 1% in a silty clay loam soil). Mineralization (i.e. ultimate degradation), as measured by evolution of {sup 14}CO{sub 2}, was < 4% over 7.5 months. Methanol extracts of the amended soils were analyzed by radiolabel thin-layer chromatography (RAD-TLC), but no intermediate degradation products were detected. Approximately 20% and 50% of the radioactivity in the amended fine sand and silty clay loam soils, respectively, was converted to bound residue as measured by solids combustion. These results indicate that biosolids-borne TCC becomes less bioavailable over time and biodegrades at a very slow rate.

  8. Evaluation of Biosolids for Use in Biodegradable Transplant Containers

    OpenAIRE

    Stone, Peyton Franklin

    2017-01-01

    Sustainability practices are leading to the development and use of alternative products in the floriculture and wastewater industries, such as the use of biodegradable containers instead of plastic containers. The objective of this research was to evaluate the efficacy of using digested biosolids from a regional wastewater treatment plant as an ingredient in creating a biodegradable transplant biocontainer. The biosolids were tested for metals limits as specified by the U.S. EPA Part 503 Rule...

  9. Dewatering and Treatment of Septage Using Vertical Flow Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Yee Yong Tan

    2017-10-01

    Full Text Available The vertical flow constructed wetland (VFCW has become an attractive decentralised technology for septage treatment. One of the main purposes of the septage treatment is to reduce the volume of raw septage through dewatering, where the solids content is retained in the wetland bed and the water content is released. The retention of solids forms a layer of sludge deposit at the wetland surface, and the drained water, the so-called leachate, typically contains a lower solids content. This article reports the performance of dewatering and filtration of a pilot-scale VFCW designed for septage treatment. A comparison between two feeding strategies, hydraulic loading rate (HLR and solids loading rate (SLR, is presented. The dewatering efficiency through drainage was found to be dependent on the solids load. The removal of total solids (TS and chemical oxygen demand (COD were excellent as the quality of leachate showed that more than 90% of TS and COD were retained in the system. This study reveals that the feeding based on SLR delivered a more sustainable performance for dewatering and solids removal. The build-up of sludge deposit significantly deteriorated the dewatering efficiency through drainage, but it tended to improve the filtration capacity.

  10. Microalgae dewatering based on forward osmosis employing proton exchange membrane.

    Science.gov (United States)

    Son, Jieun; Sung, Mina; Ryu, Hoyoung; Oh, You-Kwan; Han, Jong-In

    2017-11-01

    In this study, electrically-facilitated forward osmosis (FO) employing proton exchange membrane (PEM) was established for the purpose of microalgae dewatering. An increase in water flux was observed when an external voltage was applied to the FO equipped with the PEM; as expected, the trend became more dramatic with both concentration of draw solution and applied voltage raised. With this FO used for microalgae dewatering, 247% of increase in flux and 86% in final biomass concentration were observed. In addition to the effect on flux improvement, the electrically-facilitated FO exhibited the ability to remove chlorophyll from the dewatered biomass, down to 0.021±0015mg/g cell. All these suggest that the newly suggested electrically-facilitated FO, one particularly employed PEM, can indeed offer a workable way of dewatering of microalgae; it appeared to be so because it can also remove the ever-problematic chlorophyll from extracted lipids in a simultaneous fashion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Macroinvertebrate community responses to a dewatering disturbance gradient in a restored stream

    Directory of Open Access Journals (Sweden)

    J. D. Muehlbauer

    2011-06-01

    Full Text Available Dewatering disturbances are common in aquatic systems and represent a relatively untapped field of disturbance ecology, yet studying dewatering events along gradients in non-dichotomous (i.e. wet/dry terms is often difficult. Because many stream restorations can essentially be perceived as planned hydrologic manipulations, such systems can make ideal test-cases for understanding processes of hydrological disturbance. In this study we used an experimental drawdown in a 440 ha stream/wetland restoration site to assess aquatic macroinvertebrate community responses to dewatering and subsequent rewetting. The geomorphic nature of the site and the design of the restoration allowed dewatering to occur predictably along a gradient and decoupled the hydrologic response from any geomorphic (i.e. habitat heterogeneity effects. In the absence of such heterogeneous habitat refugia, reach-scale wetted perimeter and depth conditions exerted a strong control on community structure. The community exhibited an incremental response to dewatering severity over the course of this disturbance, which was made manifest not as a change in community means but as an increase in community variability, or dispersion, at each site. The dewatering also affected inter-species abundance and distributional patterns, as dewatering and rewetting promoted alternate species groups with divergent habitat tolerances. Finally, our results indicate that rapid rewetting – analogous to a hurricane breaking a summer drought – may represent a recovery process rather than an additional disturbance and that such processes, even in newly restored systems, may be rapid.

  12. Microbiological and physico-chemical studies on irradiated dewatered sludge

    International Nuclear Information System (INIS)

    Hilmy, N.; Suwirma, S.; Harsoyo; Suhadi, F.

    1987-01-01

    Microbiological and physico-chemical studies on irradiated dewatered sludge. Microbiological and physico-chemical dewatered have been carried out and non-irradiated dewatered sludge of Jakarta city, collected during the rainy and dry season. Total bacterial counts of non-irradiated dewatered sludge with water content of around 20%, were found to be about 7x10 8 per g during the rainy season and 7x10 6 up to 1.3x10 8 per g during the dry season, while coliform fecal Streptococcus and Pseudomonas were found to be 1.6x10 4 to 1.0x10 7 , 3x10 5 , and 5x10 3 per g, respectively. No Salmonella, Shigella and Vibrio were detected in all of the samples observed. About 10% of the total number of coliforms were found to be Escherichia coli. A dose of 6 kGy could eliminate the coliform, E. Coli, fecal Streptococcus and Pseudomonas from all of the dewatered sludge observed. The nutrient value of the sludge was sufficient, i.e. total nitrogen content ranged between 1 and 4,42%, phosphorus between 1.55 and 2.36%, and potassium between 0,1 and 0,2% of dry matter. Heavy metal contents were found a little bit high to be applied as animal feed, but it is still acceptable for soil conditioner. Combining 3 months storage at ambient environment and irradiation dose of 2.5 kGy were found to work synergistically to eliminate coliforms and E. Coli from sludge. (author). 8 figs, 17 refs

  13. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    Science.gov (United States)

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a dry climate. However, the reclaimed water can also change biosolids properties, which will influence the effectiveness of willows to extract different metals. Copyright © 2015 Elsevier Ltd. All rights

  14. Persistence of Trace Organic Contaminants from a Commercial Biosolids-Based Fertilizer in Aerobic Soils

    OpenAIRE

    Banet, Travis A; Kim, Jihyun R; Mashtare, Michael L

    2016-01-01

    Municipal biosolids are recycled as agricultural fertilizers. Recent studies have raised concerns due to the presence of emerging contaminants in municipal biosolids. Previous research suggests that these contaminants have the potential to reside in biosolids-based fertilizers that are commercially distributed. Use of these products in urban/suburban areas may provide a pathway for these contaminants to enter ecosystems and impact human and environmental health. Soils from Purdue University’s...

  15. Sorption of Pharmaceuticals, Heavy Metals, and Herbicides to Biochar in the Presence of Biosolids.

    Science.gov (United States)

    Bair, Daniel A; Mukome, Fungai N D; Popova, Inna E; Ogunyoku, Temitope A; Jefferson, Allie; Wang, Daoyuan; Hafner, Sarah C; Young, Thomas M; Parikh, Sanjai J

    2016-11-01

    Agricultural practices are increasingly incorporating recycled waste materials, such as biosolids, to provide plant nutrients and enhance soil functions. Although biosolids provide benefits to soil, municipal wastewater treatment plants receive pharmaceuticals and heavy metals that can accumulate in biosolids, and land application of biosolids can transfer these contaminants to the soil. Environmental exposure of these contaminants may adversely affect wildlife, disrupt microbial communities, detrimentally affect human health through long-term exposure, and cause the proliferation of antibiotic-resistant bacteria. This study considers the use of biochar co-amendments as sorbents for contaminants from biosolids. The sorption of pharmaceuticals (ciprofloxacin, triclocarban, triclosan), and heavy metals (Cu, Cd, Ni, Pb) to biochars and biochar-biosolids-soil mixtures was examined. Phenylurea herbicide (monuron, diuron, linuron) sorption was also studied to determine the potential effect of biochar on soil-applied herbicides. A softwood (SW) biochar (510°C) and a walnut shell (WN) biochar (900°C) were used as contrasting biochars to highlight potential differences in biochar reactivity. Kaolinite and activated carbon served as mineral and organic controls. Greater sorption for almost all contaminants was observed with WN biochar over SW biochar. The addition of biosolids decreased sorption of herbicides to SW biochar, whereas there was no observable change with WN biochar. The WN biochar showed potential for reducing agrochemical and contaminant transport but may inhibit the efficacy of soil-applied herbicides. This study provides support for minimizing contaminant mobility from biosolids using biochar as a co-amendment and highlights the importance of tailoring biochars for specific characteristics through feedstock selection and pyrolysis-gasification conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science

  16. Electrical field: a historical review of its application and contributions in wastewater sludge dewatering.

    Science.gov (United States)

    Mahmoud, Akrama; Olivier, Jérémy; Vaxelaire, Jean; Hoadley, Andrew F A

    2010-04-01

    Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to

  17. Chemical composition of windblown dust emitted from agricultural soils amended with biosolids

    Science.gov (United States)

    Biosolids are increasingly being applied to agricultural lands in dry environments, but wind erosion of these lands might transport biosolid particulates offsite and impact environmental quality. Our objective was to use a wind tunnel to measure soil and windblown sediment concentrations of EPA-regu...

  18. Determination of Juice Removal Difficulty from Mash Cake in Cassava Mash Dewatering Operation

    Directory of Open Access Journals (Sweden)

    Oladele Peter KOLAWOLE

    2012-08-01

    Full Text Available Cassava processing equipment operators have limited knowledge; this militates against the success recorded in the research so far in cassava mash dewatering. New dewatering schemes to make food processing economical to handle are in progress. Common dewatering processes use a variety of mechanical means such as screw presses and belt presses. Experiments were conducted using three samples of TMS 4(2 1425 variety while evaluating the difficulty of separating juice from mash cake. Average specific cake resistance (a of 5×1011 m/kg was obtained confirming that it is moderately easy to dewatering.

  19. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    OpenAIRE

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; G?mez, Ignacio; Navarro-Pedre?o, Jose

    2016-01-01

    Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (ne...

  20. Enhanced Brine Dewatering System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Enhanced Brine Dewatering System (EBDS) is to provide an easily scalable means of completely recovering usable water from byproducts created by...

  1. Enhanced Brine Dewatering System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Enhanced Brine Dewatering System (EBDS) is to provide a scalable means of completely recovering usable water from byproducts created by reverse...

  2. Electric dewatering and drying of fine-grained products; Elektrisk afvanding og toerring af finkornede produkter

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, H.K.; Villumsen, A.

    2001-07-01

    The aim of the project was to elucidate four aspects related to using electric direct current to find an energy saving alternative to existing methods within dewatering of fine-grained products. The four aspects were a) electrophoresis forced sedimentation of chalk slurry, b) electro osmotic dewatering of chalk slurry, c) electro osmotic dewatering of agricultural chalk and d) electro osmotic dewatering of liquid organic wastes. (EHS)

  3. Copper and zinc fractionation in biosolid cultivated with Pennisetum purpureum in different periods

    Directory of Open Access Journals (Sweden)

    Ely S. A. de Oliveira

    Full Text Available ABSTRACT In order to reduce the effect of heavy metals on the biosolid, it is necessary to promote its phytoremediation. It is important to know the total content and chemical forms of these elements in the residue for analyzing its behavior and potential toxicity. Thus, the aim of this study was to evaluate the fractionation and behavior of Cu and Zn in biosolid cultivated with Pennisetum purpureum in different periods. The experiment was carried out using a randomized complete block design. The treatments, with five replicates, corresponded to Pennisetum purpureum cultivation in biosolid for 30, 60, 90, 120 and 150 days after planting. The total contents of Cu and Zn in the biosolid remained below the critical limits established by the CONAMA Resolution 357, and there was a reduction in these values with Pennisetum purpureum cultivation. Furthermore, the increment in the grass cultivation period caused intense reduction of Zn contents bound to organic matter, but there was an increase in soluble Zn and residual Zn. Additionally, there was an intense reduction in the content of Cu bound to sulfides. Therefore, for biosolid phytoremediation purposes, the grass should be cultivated for 150 days.

  4. Electro-dewatering of wastewater sludge: influence of the operating conditions and their interactions effects.

    Science.gov (United States)

    Mahmoud, Akrama; Olivier, Jérémy; Vaxelaire, Jean; Hoadley, Andrew F A

    2011-04-01

    Electric field-assisted dewatering, also called electro-dewatering (EDW), is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. The application of these additional fields can be applied to either or both dewatering stages (filtration and/or compression), or as a pre-or post-treatment of the dewatering process. In this study, the performance of the EDW on wastewater sludge was investigated. Experiments were carried out on a laboratory filtration/compression cell, provided with electrodes, in order to apply an electrical field. The chosen operating conditions pressure (200-1200 kPa) and voltage (10-50 V) are sufficient to remove a significant proportion of the water that cannot be removed using mechanical dewatering technologies alone. A response surface methodology (RSM) was used to evaluate the effects of the processing parameters of EDW on (i) the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of EDW and (ii) the energy consumption calculated for each additional mass of water removed. A two-factor central composite design was used to establish the optimum conditions for the EDW of wastewater sludge. Experiments showed that the use of an electric field combined with mechanical compression requires less than 10 and 25% of the theoretical thermal drying energy for the low and moderate voltages cases, respectively. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.

    Science.gov (United States)

    Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua

    2016-03-01

    Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.

    Science.gov (United States)

    Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk

    2014-12-01

    The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water.

  7. Mechanical dewatering of silage; Mechanische Entwaesserung von Silage

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Volkhard; Daries, Werner [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abteilung Technik der Aufbereitung, Lagerung und Konservierung; Rinder, Ralf [Anhydro GmbH, Kassel (Germany)

    2009-07-01

    The use of screw presses for dewatering of silage is energetically more efficient than thermal drying. Tests with two types of screw presses show that on dry matter flow rates of more than 1.0 tDM/h the specific energy consumption is less than 30 kWh/tDM. The water content of the silage is decreased by 5 to 20 % and the share of undesired ingredients by 2 to 30 %. Besides press design and plant species, in particular moisture content, chip size and density of silage are essentially for the dewatering success. (orig.)

  8. Potential Environmental Benefits from Blending Biosolids with Other Organic Amendments before Application to Land.

    Science.gov (United States)

    Paramashivam, Dharini; Dickinson, Nicholas M; Clough, Timothy J; Horswell, Jacqui; Robinson, Brett H

    2017-05-01

    Biosolids disposal to landfill or through incineration is wasteful of a resource that is rich in organic matter and plant nutrients. Land application can improve soil fertility and enhance crop production but may result in excessive nitrate N (NO-N) leaching and residual contamination from pathogens, heavy metals, and xenobiotics. This paper evaluates evidence that these concerns can be reduced significantly by blending biosolids with organic materials to reduce the environmental impact of biosolids application to soils. It appears feasible to combine organic waste streams for use as a resource to build or amend degraded soils. Sawdust and partially pyrolyzed biochars provide an opportunity to reduce the environmental impact of biosolids application, with studies showing reductions of NO-N leaching of 40 to 80%. However, other organic amendments including lignite coal waste may result in excessive NO-N leaching. Field trials combining biosolids and biochars for rehabilitation of degraded forest and ecological restoration are recommended. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Pervaporation applied for dewatering of reaction mixture during esterification

    OpenAIRE

    Krasiński Andrzej; Wierzba Patrycja; Grudzień Agata; Hajmowicz Halina; Zawada Krzysztof; Synoradzki Ludwik

    2016-01-01

    In this work the esterification of diethyl tartrate was studied. The research was focused on the enhancement of reversible reaction yield, which is accomplished by dewatering of the reaction mixture. The removal of water shifts the equilibrium towards the main product. Pervaporation was applied for this purpose, and results were compared to distillation. The advantages and limitations of both processes are discussed. The experimental part consists of dewatering of mixture after the reaction h...

  10. Establishment of Native Grasses with Biosolids on Abandoned Croplands in Chihuahua, Mexico

    Directory of Open Access Journals (Sweden)

    Pedro Jurado-Guerra

    2013-01-01

    Full Text Available The objective of the work was to evaluate establishment and forage production of native grasses with application of biosolids, a byproduct of waste-water treatment, at an abandoned field, in Ejido Nuevo Delicias, Chihuahua, Mexico. Four biosolids rates from 0 (control to 30 dry Mg ha−1 and two methods of application, surface applied (BioSur and soil incorporated (BioInc, were evaluated. Seedbed preparation included plowing and harrowing before rainfall. Field plots of 5 × 5 m were manually sown with a mix of blue grama (Bouteloua gracilis (50% and green sprangletop (Leptochloa dubia (50% in early August 2005. Experimental design was a randomized block with a split plot arrangement. Grass density, height, and forage production were estimated for three years. Data were analyzed with mixed linear models and repeated measures. Green sprangletop density increased under all biosolids rates regardless of method of application, while blue grama density slightly decreased. Biosolids were more beneficial for green sprangletop height than for blue grama height. Blue grama forage production slightly increased, while green sprangletop forage production increased the most at 10 Mg ha−1 biosolids rate under BioSur method. It was concluded that BioSur application at 10 and 20 Mg ha−1 rates had positive effects on the establishment and forage production of native grasses, especially green sprangletop.

  11. Use of biosolids to enhance rangeland forage quality.

    Science.gov (United States)

    McFarland, Michael J; Vasquez, Issaak Romero; Vutran, MaiAnh; Schmitz, Mark; Brobst, Robert B

    2010-05-01

    Biosolids land application was demonstrated to be a potentially cost-effective means for restoring forage productivity and enhancing soil-moisture-holding capacity on disturbed rangelands. By land-applying aerobically digested, anaerobically digested, composted, and lime-stabilized biosolids on rangeland test plots at rates of up to 20 times (20X) the estimated nitrogen-based agronomic rate, forage yields were found to increase from 132.8 kg/ha (118.2 lb/ac) (control plots) to 1182.3 kg/ha (1052.8 lb/ac). Despite the environmental benefits associated with increased forage yield (e.g., reduced soil erosion, improved drainage, and enhanced terrestrial carbon sequestration), the type of forage generated both before and after biosolids land application was found to be dominated by invasive weeds, all of which were characterized as having fair to poor nutritional value. Opportunistic and shallow rooting invasive weeds not only have marginal nutritional value, they also limit the establishment of native perennial grasses and thus biodiversity. Many of the identified invasive species (e.g., Cheatgrass) mature early, a characteristic that significantly increases the fuel loads that support the increased frequency and extent of western wildfires.

  12. Wind erosion potential of a winter wheat-summer fallow rotation after land application of biosolids

    Science.gov (United States)

    Pi, Huawei; Sharratt, Brenton; Schillinger, William F.; Bary, Andrew I.; Cogger, Craig G.

    2018-06-01

    Conservation tillage is a viable management strategy to control soil wind erosion, but other strategies such as land application of biosolids that enhance soil quality may also reduce wind erosion. No studies have determined the effects of biosolids on wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolids fertilizer to traditional (disk) and conservation (undercutter) tillage practices during the summer fallow phase of a winter wheat-summer fallow (WW-SF) rotation in 2015 and 2016 in east-central Washington. Soil loss ranged from 12 to 61% lower for undercutter than disk tillage, possibly due to retention of more biomass on the soil surface of the undercutter versus disk tillage treatment. In contrast, soil loss was similar to or lower for biosolids as compared with synthetic fertilizer treatment. Our results suggest that biosolids applications to agricultural lands will have minimal impact on wind erosion.

  13. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    Science.gov (United States)

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  14. Laboratory and field experience with rim ditch dewatering of MFT

    Energy Technology Data Exchange (ETDEWEB)

    Demoz, A.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre; Lahaie, R. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2010-07-01

    This PowerPoint presentation described a rim ditch method of dewatering mature fine tailings (MFT). Polymer additions were used to strengthen the MFT and to decrease the capillary suction time (CST). Laboratory and field-scale studies were conducted to demonstrate the dewatering method. The flocculants were added in a Komax inline mixer. Polymers were then injected into the tailings. The mixing processes were optimized in a series of laboratory studies and then demonstrated in the field tests. The tests showed that CST and high dewatering rates were consistently maintained using the method. MFT feeds were also consistent. Release water quality was improved using the method. The large-scale test site is now being monitored for compliance with Directive 74. tabs., figs.

  15. Inactivation of microorganisms in treated municipal wastewater and biosolids by gamma irradiation

    International Nuclear Information System (INIS)

    2009-01-01

    Increasing growth of the world's population, waste minimization policies and agricultural needs make the recycling of domestic wastewater quite a desirable practice. Factors like environmental and public health risks must be taken into account when considering treated wastewater for field irrigation and biosolids for land application. Pathogens present in wastewater and biosolids may remain active after treatment and there is always a great risk of transmission of infections via consuming crop and vegetables. Therefore it is very important to treat domestic wastewater properly before using it as an irrigation water and as a fertilizer. The work reported herein represents an evaluation of the variations in the population densities of below indicated pathogens monitored during a one year study in Ankara Central Municipal Wastewater Treatment Plant, and the efficiency of gamma irradiation for the inactivation of these important waterborne pathogens. Parasitological investigation Treated wastewater and biosolids - Cryptosporidium sp. - Giardia lamblia - Entamoeba histolytica - Cyclospora cayetanensis - Helminth ova Bacteriological investigation Treated wastewater - Total coliforms - Salmonella sp. - Fecal streptococci - Enterococcus sp. Biosolids - Fecal coliforms - Salmonella sp. (Includes 12 tables, 16 figures)

  16. Osmotic Effects in Sludge Dewatering

    DEFF Research Database (Denmark)

    Keiding, Kristian; Rasmussen, Michael R.

    2003-01-01

    A model of filtration dewatering is presented. The model is based on the d’Arcy flow equation in which the resistance to filtration is described by the Corzeny–Carman equation and the driving force is the difference between the external pressure and the osmotic pressure of the filter cake. It has...

  17. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    Science.gov (United States)

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  18. Community engagement in the management of biosolids: lessons from four New Zealand studies.

    Science.gov (United States)

    Goven, Joanna; Langer, E R Lisa; Baker, Virginia; Ataria, James; Leckie, Alan

    2012-07-30

    Biosolids management has been largely overlooked as an issue for environmental co-management, collaborative learning and public participation. This paper summarises four research projects on facilitating community involvement in biosolids management in New Zealand. The authors situate these studies both in relation to the New Zealand institutional and policy context for the management of biosolids and in relation to the themes of public participation and social learning in the literature on community involvement in environmental management. From the studies it can be concluded that: the incorporation of the knowledge and views of Māori is important from both public-participation and social-learning perspectives; both public-participation and social-learning approaches must consider the role of issue-definition in relation to willingness to participate; democratic accountability remains a challenge for both approaches; and locating biosolids management within an integrated water-and-wastewater or sustainable waste-management strategy may facilitate wider community participation as well as better-coordinated decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Desorption kinetics of ciprofloxacin in municipal biosolids determined by diffusion gradient in thin films.

    Science.gov (United States)

    D'Angelo, E; Starnes, D

    2016-12-01

    Ciprofloxacin (CIP) is a commonly-prescribed antibiotic that is largely excreted by the body, and is often found at elevated concentrations in treated sewage sludge (biosolids) at municipal wastewater treatment plants. When biosolids are applied to soils, they could release CIP to surface runoff, which could adversely affect growth of aquatic organisms that inhabit receiving water bodies. The hazard risk largely depends on the amount of antibiotic in the solid phase that can be released to solution (labile CIP), its diffusion coefficient, and sorption/desorption exchange rates in biosolids particles. In this study, these processes were evaluated in a Class A Exceptional Quality Biosolids using a diffusion gradient in thin films (DGT) sampler that continuously removed CIP from solution, which induced desorption and diffusion in biosolids. Mass accumulation of antibiotic in the sampler over time was fit by a diffusion transport and exchange model available in the software tool 2D-DIFS to derive the distribution coefficient of labile CIP (K dl ) and sorption/desorption rate constants in the biosolids. The K dl was 13 mL g -1 , which equated to 16% of total CIP in the labile pool. Although the proportion of labile CIP was considerable, release rates to solution were constrained by slow desorption kinetics (desorption rate constant = 4 × 10 -6 s -1 ) and diffusion rate (effective diffusion coefficient = 6 × 10 -9  cm 2  s -1 . Studies are needed to investigate how changes in temperature, water content, pH and other physical and chemical characteristics can influence antibiotic release kinetics and availability and mobility in biosolid-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other than...

  1. Earthworm bioassays and seedling emergence for monitoring toxicity, aging and bioaccumulation of anthropogenic waste indicator compounds in biosolids-amended soil

    Science.gov (United States)

    Kinney, Chad A.; Campbell, Bryan R.; Thompson, Regina; Furlong, Edward T.; Kolpin, Dana W.; Burkhardt, Mark R.; Zaugg, Steven D.; Werner, Stephen L.; Hay, Anthony G.

    2012-01-01

    Land application of biosolids (treated sewage sludge) can be an important route for introducing xenobiotic compounds into terrestrial environments. There is a paucity of available information on the effects of biosolids amendment on terrestrial organisms. In this study, the influence of biosolids and biosolids aging on earthworm (Eisenia fetida) reproduction and survival and lettuce (Lactuca sativa) seedling emergence was investigated. Earthworms were exposed to soils amended with varying quantities of biosolids (0, 1, 2, 3, or 4% dry mass). To investigate the influence of biosolids aging, the biosolids used in the study were aged for differing lengths of time (2 or 8 weeks) prior to exposure. All of the adult earthworms survived in the biosolids–amended soils at all concentrations that were aged for 2 weeks; however, only 20% of the adults survived in the soil amended with the highest concentration of biosolids and aged for 8 weeks. Reproduction as measured by mean number of juveniles and unhatched cocoons produced per treatment correlated inversely with biosolids concentration, although the effects were generally more pronounced in the 8-week aged biosolids–soil samples. Latent seedling emergence and reduced seedling fitness correlated inversely with biosolids concentration, but these effects were tempered in the 8-week aged versus the 2-week aged soil–biosolids mixtures. Anthropogenic waste indicator compounds (AWIs) were measured in the biosolids, biosolids–soil mixtures, and earthworm samples. Where possible, bioaccumulation factors (BAFs) were calculated or estimated. A wide variety of AWIs were detected in the biosolids (51 AWIs) and earthworm samples (≤ 19 AWI). The earthworms exposed to the 8-week aged biosolids–soil mixtures tended to accumulate greater quantities of AWIs compared to the 2-week aged mixture, suggesting that the bioavailability of some AWIs was enhanced with aging. The BAFs for a given AWI varied with treatment. Notably large

  2. Distribution and movement of nutrients and metals in a Pinus radiata forest soil following applications of biosolids

    International Nuclear Information System (INIS)

    McLaren, Ronald G.; Clucas, Lynne M.; Speir, Tom W.; Schaik, Andrew P. van

    2007-01-01

    Samples of biosolids, spiked with increasing amounts of Cu, Ni or Zn were applied to field plots in a Pinus radiata forest, and the nutrient and metal status of the forest litter and underlying mineral soil was monitored over a period of six years following application. The macronutrient status of the forest litter was changed markedly by the biosolids application, with substantial increases in N, P and Ca concentrations, and decreases in Mg and K. The C/N ratio of the litter was also decreased and pH was increased by the biosolids application. The metals applied with the biosolids were retained predominantly in the litter layer, and even with non-metal-spiked biosolids there were substantial increases in litter metal concentrations. There was also firm evidence of some movement of Cu, Ni and Zn into the underlying mineral soil. The potential environmental issues resulting from these changes in nutrient and metal status are discussed. - Biosolids application to forest soils results in substantial build-up of macronutrients and metals in the forest litter layer

  3. Distribution and movement of nutrients and metals in a Pinus radiata forest soil following applications of biosolids

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Ronald G. [Centre for Soil and Environmental Quality, Agriculture and Life Sciences Division, P.O. Box 84, Lincoln University Canterbury (New Zealand)]. E-mail: mclaren@lincoln.ac.nz; Clucas, Lynne M. [Centre for Soil and Environmental Quality, Agriculture and Life Sciences Division, P.O. Box 84, Lincoln University Canterbury (New Zealand); Speir, Tom W. [Institute of Environmental Science and Research Ltd, P.O. Box 50348, Porirua (New Zealand); Schaik, Andrew P. van [Institute of Environmental Science and Research Ltd, P.O. Box 50348, Porirua (New Zealand)

    2007-05-15

    Samples of biosolids, spiked with increasing amounts of Cu, Ni or Zn were applied to field plots in a Pinus radiata forest, and the nutrient and metal status of the forest litter and underlying mineral soil was monitored over a period of six years following application. The macronutrient status of the forest litter was changed markedly by the biosolids application, with substantial increases in N, P and Ca concentrations, and decreases in Mg and K. The C/N ratio of the litter was also decreased and pH was increased by the biosolids application. The metals applied with the biosolids were retained predominantly in the litter layer, and even with non-metal-spiked biosolids there were substantial increases in litter metal concentrations. There was also firm evidence of some movement of Cu, Ni and Zn into the underlying mineral soil. The potential environmental issues resulting from these changes in nutrient and metal status are discussed. - Biosolids application to forest soils results in substantial build-up of macronutrients and metals in the forest litter layer.

  4. Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon–aluminum–iron–starch flocculant

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qintie, E-mail: qintlin@163.com; Peng, Huanlong; Zhong, Songxiong; Xiang, Jiangxin

    2015-03-21

    Highlights: • Silicon, aluminum, and iron were grafted onto starch chains to synthesize CSiAFS. • The sludge dewatering performance of CSiAFS was superior to PAC, PAM, and FeCl{sub 3}. • CSiAFS exhibited a good dewatering efficiency over a wide range of pH (3.0–11.0). • CSiAFS had a discontinuous surface with channels which helped to sludge dewatering. - Abstract: Flocculation is one of the most widely used cost-effective pretreatment method for sludge dewatering, and a novel environmentally friendly and efficient flocculant is highly desired in the sludge dewatering field. In this study, a novel combined silicon–aluminum–ferric–starch was synthesized by grafting silicon, aluminum, and iron onto a starch backbone. The synthesized starch flocculant was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy, X-ray powder diffraction, and thermogravimetric analysis. The dewatering performance of secondary sludge was evaluated according to the capillary suction time, settling volume percentage, and specific resistance to filtration. The results indicated that the copolymer exhibited: (1) a good dewatering efficiency over a wide pH range of 3.0–11.0, (2) superior sludge dewatering performance compared to those of polyaluminum chloride (PACl), polyacrylamide (PAM), ferric chloride, and (3) a discontinuous surface with many channels or voids that helps to mobilize the impermeable thin layer of secondary sludge during filter pressing. Such a novel copolymer is a promising green flocculant for secondary sludge dewatering applications.

  5. Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering.

    Science.gov (United States)

    Ho, Tuan Anh; Greathouse, Jeffery A; Wang, Yifeng; Criscenti, Louise J

    2017-11-10

    The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of the aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.

  6. Fly Ash and Composted Biosolids as a Source of Fe for Hybrid Poplar: A Greenhouse Study

    Directory of Open Access Journals (Sweden)

    Kevin Lombard

    2011-01-01

    Full Text Available Soils of northwest New Mexico have an elevated pH and CaCO3 content that reduces Fe solubility, causes chlorosis, and reduces crop yields. Could biosolids and fly ash, enriched with Fe, provide safe alternatives to expensive Fe EDDHA (sodium ferric ethylenediamine di-(o-hydroxyphenyl-acetate fertilizers applied to Populus hybrid plots? Hybrid OP-367 was cultivated on a Doak sandy loam soil amended with composted biosolids or fly ash at three agricultural rates. Fly ash and Fe EDDHA treatments received urea ammonium nitrate (UAN, biosolids, enriched with N, did not. Both amendments improved soil and plant Fe. Heavy metals were below EPA regulations, but high B levels were noted in leaves of trees treated at the highest fly ash rate. pH increased in fly ash soil while salinity increased in biosolids-treated soil. Chlorosis rankings improved in poplars amended with both byproducts, although composted biosolids offered the most potential at improving Fe/tree growth cheaply without the need for synthetic inputs.

  7. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils

    International Nuclear Information System (INIS)

    Fuentes, David; Disante, Karen B.; Valdecantos, Alejandro; Cortina, Jordi; Ramon Vallejo, V.

    2007-01-01

    We investigated the response of Pinus halepensis seedlings to the application of biosolids enriched with Cu, Ni and Zn on three Mediterranean forest soils under semiarid conditions. One-year-old seedlings were planted in lysimeters on soils developed from marl, limestone and sandstone which were left unamended, amended with biosolids, or amended with biosolids enriched in Cu, Ni and Zn. Enriched biosolids increased plant heavy metal concentration, but always below phytotoxic levels. Seedlings receiving unenriched biosolids showed a weak reduction in Cu and Zn concentration in needles, negatively affecting physiological status during drought. This effect was alleviated by the application of enriched sludge. Sewage sludge with relatively high levels of Cu, Zn and Ni had minor effects on plant performance on our experimental conditions. Results suggest that micronutrient limitations in these soils may be alleviated by the application of biosolids with a higher Cu, Zn and Ni content than those established by current regulations. - Biosolid-borne Cu, Ni and Zn did not show negative effects on Pinus halepensis seedlings performance after application on three Mediterranean forest soils

  8. Physical and chemical properties of pyrolyzed biosolids for utilization in sand-based turfgrass rootzones

    Science.gov (United States)

    Biosolids are several forms of treated sewage sludge that are intended for use as soil conditioners for horticultural, agricultural and industrial crops. The objectives of this research were to determine the chemical and physical properties of biosolids pyrolyzed at several different temperatures, a...

  9. Effect of hydrothermal dewatering on the slurryability of brown coals

    International Nuclear Information System (INIS)

    Yu Yujie; Liu Jianzhong; Wang Ruikun; Zhou Junhu; Cen Kefa

    2012-01-01

    Highlights: ► Brown coals are upgraded by hydrothermal dewatering. ► The moisture content and oxygen functional groups decrease during the process. ► The point of zero charge and the contact angle rise as the temperature increases. ► The products were highly hydrophobic. ► The improvement on slurryability of solid products were examined. - Abstract: Two brown coals from China were dewatered under hydrothermal dewatering (HTD) conditions at 250–320 °C for 1 h in a 2 L autoclave. The hydrothermally dewatered products were used to prepare coal water slurry (CWS) with a lower viscosity than brown raw coal slurry. Moreover, the coal rank and heat value of the brown coal increased as the inherent moisture and oxygen content decreased during the HTD process. The maximum solid concentration of CWS prepared from XiMeng coal increased from 45.7% to 59.3%, whereas that of CWS prepared from BaoTou coal increased from 53.7% to 62.1%, after being dewatered at 320 °C. The improvement in the slurryability of brown coal significantly depended on the final temperature of the HTD process, the mechanism of which can be explained by the chemical analysis of oxygen functional groups, zeta potential, and the contact angle of the surface between coal and water. The oxygen functional groups, the oxygen/carbon ratio and hydrogen/carbon ratio in brown coal decreased, indicating that the coal rank was upgraded during the HTD process. As a result, both the point of zero charge and the contact angle increased, implying that the HTD products were highly hydrophobic.

  10. Dewatering of planned Key Lake open pits in northern Saskatchewan

    International Nuclear Information System (INIS)

    Unland, W.; Holl, N.

    1980-01-01

    The engineering design and experience gained so far with a dewatering system for an open-pit uranium mine planned at Key Lake in Northern Saskatchewan are presented. An extensive unconfined overburden aquifer is hydraulically connected with the underlying Athabasca Formation and basement rocks, both of relatively low hydraulic conductivity. The overburden aquifer is embedded in a bedrock trough, with the deepest depression between the planned pits. Hydrogeological data were used in a numerical dewatering model simulating groundwater flow at different stages of the pit development. Based on the model results, the enginering design had to provide for different pumping rates, varying between 1.0 and 0.21 m 3 /sec. This problem was solved by using a double line pressure system. The design concept for the complete peripheral discharge system and the well design used for 26 dewatering wells are discussed. (auth)

  11. Comparison of degradation between indigenous and spiked bisphenol A and triclosan in a biosolids amended soil.

    Science.gov (United States)

    Langdon, Kate A; Warne, Michael Stj; Smernik, Ronald J; Shareef, Ali; Kookana, Rai S

    2013-03-01

    This study compared the degradation of indigenous bisphenol A (BPA) and triclosan (TCS) in a biosolids-amended soil, to the degradation of spiked labelled surrogates of the same compounds (BPA-d16 and TCS-(13)C12). The aim was to determine if spiking experiments accurately predict the degradation of compounds in biosolids-amended soils using two different types of biosolids, a centrifuge dried biosolids (CDB) and a lagoon dried biosolids (LDB). The rate of degradation of the compounds was examined and the results indicated that there were considerable differences between the indigenous and spiked compounds. These differences were more marked for BPA, for which the indigenous compound was detectable throughout the study, whereas the spiked compound decreased to below the detection limit prior to the study completion. The rate of degradation for the indigenous BPA was approximately 5-times slower than that of the spiked BPA-d16. The indigenous and spiked TCS were both detectable throughout the study, however, the shape of the degradation curves varied considerably, particularly in the CDB treatment. These findings show that spiking experiments may not be suitable to predict the degradation and persistence of organic compounds following land application of biosolids. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Centrifuge - dewatering of oil sand fluid tailings: phase 2 field-scale test

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Jack T.C. [BGC Engineering Inc (Canada); O' Kane, Mike [O' Kane Consultants Inc (Canada); Donahue, Robert [Applied Geochemical Solutions Engineering (Canada); Lahaie, Rick [Syncrude Canada Ltd (Canada)

    2011-07-01

    In order to reduce the accumulation of oil sand fluid fine tailings (FFT) and to create trafficable surfaces for reclamation, Syncrude Canada Ltd. has been studying several tailings technologies. Centrifuge-dewatering is one such technology. This paper discusses the phase 2 field-scale tests for centrifuge-dewatering of oil sand FFT. In centrifuge-dewatering, FFT is diluted and treated with flocculant, then processed through a centrifuge plant and the high-density underflow is transported to a tailings deposit. This technology has evolved since 2005 from laboratory bench scale tests. More than 10,000 cubic meters of centrifuge cake was treated, produced and transported to ten different deposits over a 12-week period from August to October 2010. The amount of solids in FFT was increased from 30% to 50% by centrifuging. Sampled deposits were tested and instrumented for in situ strength. It can be concluded that the deposits can be strengthened and densified by natural dewatering processes like freeze-thaw action and evaporative drying.

  13. Field performance of de-watered fluid fine tailings for oil sands reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Ward Wilson, G.; Kabwe, Louis [University of Alberta (Canada); Donahue, Robert [Applied Geochemical Engineering Inc. (Canada); Lahaie, Rick [Syncrude Canada Ltd (Canada)

    2011-07-01

    This document presents research carried out by Syncrude Canada Ltd and its partners to evaluate several methods of de-watering fluid fine tailings to increase the solids content and at the same time produce a tailings profile which will permit final reclamation. Several de-watering methods are discussed in this paper, particularly in-line flocculation and centrifuged fluid fine tailings. First, in-line flocculation with organic polymers is discussed followed by thin left deposition, then the flocculation and centrifugation process to produce a paste- like material that is deposited in a thicker layer is presented. This document details the preliminary performance of both discussed methods; extensive instrumentation was used to measure de-watering rates due to consolidation, atmospheric drying, downward drainage to the foundation materials, and freeze/thaw consolidation. Finally, a summary of the measured results of de-watering rates and numerical model results obtained from the SoilCover model are presented and discussed.

  14. Rainfall-runoff of anthropogenic waste indicators from agricultural fields applied with municipal biosolids.

    Science.gov (United States)

    Gray, James L; Borch, Thomas; Furlong, Edward T; Davis, Jessica G; Yager, Tracy J; Yang, Yun-Ya; Kolpin, Dana W

    2017-02-15

    The presence of anthropogenic contaminants such as antimicrobials, flame-retardants, and plasticizers in runoff from agricultural fields applied with municipal biosolids may pose a potential threat to the environment. This study assesses the potential for rainfall-induced runoff of 69 anthropogenic waste indicators (AWIs), widely found in household and industrial products, from biosolids amended field plots. The agricultural field containing the test plots was treated with biosolids for the first time immediately prior to this study. AWIs present in soil and biosolids were isolated by continuous liquid-liquid extraction and analyzed by full-scan gas chromatography/mass spectrometry. Results for 18 AWIs were not evaluated due to their presence in field blank QC samples, and another 34 did not have sufficient detection frequency in samples to analyze trends in data. A total of 17 AWIs, including 4-nonylphenol, triclosan, and tris(2-butoxyethyl)phosphate, were present in runoff with acceptable data quality and frequency for subsequent interpretation. Runoff samples were collected 5days prior to and 1, 9, and 35days after biosolids application. Of the 17 AWIs considered, 14 were not detected in pre-application samples, or their concentrations were much smaller than in the sample collected one day after application. A range of trends was observed for individual AWI concentrations (typically from 0.1 to 10μg/L) over the course of the study, depending on the combination of partitioning and degradation mechanisms affecting each compound most strongly. Overall, these results indicate that rainfall can mobilize anthropogenic contaminants from biosolids-amended agricultural fields, directly to surface waters and redistribute them to terrestrial sites away from the point of application via runoff. For 14 of 17 compounds examined, the potential for runoff remobilization during rainstorms persists even after three 100-year rainstorm-equivalent simulations and the passage of a

  15. Rainfall-runoff of anthropogenic waste indicators from agricultural fields applied with municipal biosolids

    Science.gov (United States)

    Gray, James L.; Borch, Thomas; Furlong, Edward T.; Davis, Jessica; Yager, Tracy; Yang, Yun-Ya; Kolpin, Dana W.

    2017-01-01

    The presence of anthropogenic contaminants such as antimicrobials, flame-retardants, and plasticizers in runoff from agricultural fields applied with municipal biosolids may pose a potential threat to the environment. This study assesses the potential for rainfall-induced runoff of 69 anthropogenic waste indicators (AWIs), widely found in household and industrial products, from biosolids amended field plots. The agricultural field containing the test plots was treated with biosolids for the first time immediately prior to this study. AWIs present in soil and biosolids were isolated by continuous liquid-liquid extraction and analyzed by full-scan gas chromatography/mass spectrometry. Results for 18 AWIs were not evaluated due to their presence in field blank QC samples, and another 34 did not have sufficient detection frequency in samples to analyze trends in data. A total of 17 AWIs, including 4-nonylphenol, triclosan, and tris(2-butoxyethyl)phosphate, were present in runoff with acceptable data quality and frequency for subsequent interpretation. Runoff samples were collected 5 days prior to and 1, 9, and 35 days after biosolids application. Of the 17 AWIs considered, 14 were not detected in pre-application samples, or their concentrations were much smaller than in the sample collected one day after application. A range of trends was observed for individual AWI concentrations (typically from 0.1 to 10 μg/L) over the course of the study, depending on the combination of partitioning and degradation mechanisms affecting each compound most strongly. Overall, these results indicate that rainfall can mobilize anthropogenic contaminants from biosolids-amended agricultural fields, directly to surface waters and redistribute them to terrestrial sites away from the point of application via runoff. For 14 of 17 compounds examined, the potential for runoff remobilization during rainstorms persists even after three 100-year rainstorm-equivalent simulations and the

  16. Comparison of degradation between indigenous and spiked bisphenol A and triclosan in a biosolids amended soil

    International Nuclear Information System (INIS)

    Langdon, Kate A.; Warne, Michael StJ.; Smernik, Ronald J.; Shareef, Ali; Kookana, Rai S.

    2013-01-01

    This study compared the degradation of indigenous bisphenol A (BPA) and triclosan (TCS) in a biosolids-amended soil, to the degradation of spiked labelled surrogates of the same compounds (BPA-d 16 and TCS- 13 C 12 ). The aim was to determine if spiking experiments accurately predict the degradation of compounds in biosolids-amended soils using two different types of biosolids, a centrifuge dried biosolids (CDB) and a lagoon dried biosolids (LDB). The rate of degradation of the compounds was examined and the results indicated that there were considerable differences between the indigenous and spiked compounds. These differences were more marked for BPA, for which the indigenous compound was detectable throughout the study, whereas the spiked compound decreased to below the detection limit prior to the study completion. The rate of degradation for the indigenous BPA was approximately 5-times slower than that of the spiked BPA-d 16 . The indigenous and spiked TCS were both detectable throughout the study, however, the shape of the degradation curves varied considerably, particularly in the CDB treatment. These findings show that spiking experiments may not be suitable to predict the degradation and persistence of organic compounds following land application of biosolids. - Highlights: ► Degradation of indigenous and spiked compounds from biosolids were compared. ► Differences were observed for both the rate and pattern of degradation. ► Spiked bisphenol A entirely degraded however the indigenous compound remained. ► TCS was detectable during the experiment however the degradation patterns varied. ► Spiking experiments may not be suitable to predict degradation of organic compounds

  17. Amelioration of iron mine soils with biosolids: Effects on plant tissue metal content and earthworms.

    Science.gov (United States)

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-11-01

    The achievement of environmentally sound and economically feasible disposal strategies for biosolids is a major issue in the wastewater treatment industry around the world, including Swaziland. Currently, an iron ore mine site, which is located within a wildlife sanctuary, is being considered as a suitable place where controlled disposal of biosolids may be practiced. Therefore, this study was conducted to investigate the effects of urban biosolids on iron mine soils with regard to plant metal content and ecotoxicological effects on earthworms. This was done through chemical analysis of plants grown in biosolid-amended mine soil. Earthworm behaviour, reproduction and bioaccumulation tests were also conducted on biosolid-amended mine soil. According to the results obtained, the use of biosolids led to creation of soil conditions that were generally favourable to earthworms. However, plants were found to have accumulated Zn up to 346 mg kg -1 (in shoots) and 462 mg kg -1 (in roots). This was more than double the normal Zn content of plants. It was concluded that while biosolids can be beneficial to mine soils and earthworms, they can also lead to elevated metal content in plant tissues, which might be a concern to plant-dependant wildlife species. Nonetheless, it was not possible to satisfactorily estimate risks to forage quality since animal feeding tests with hyperaccumulator plants have not been reported. Quite possibly, there may be no cause for alarm since the uptake of metals from soil is greater in plants grown in pots in the greenhouse than from the same soil in the field since pot studies fail to mimic field conditions where the soil is heterogeneous and where the root system possesses a complex topology. It was thought that further field trials might assist in arriving at more satisfactory conclusions.

  18. Amendment of biosolids with waste materials and lime: Effect on geoenvironmental properties and leachate production.

    Science.gov (United States)

    Kayser, Claudia; Larkin, Tam; Singhal, Naresh

    2015-12-01

    Residuals from wastewater treatment operations (biosolids) were mixed with lime, fly ash, lime kiln dust, or two smelter slags to assess their efficacy as potential stabilisation agents by assessing their effects on the shear strength, compressibility, and solids content of mixtures. In addition, the minerals formed and leachate produced during stabilisation were determined. Tests were performed to explore the change of the geoenvironmental properties of the amended biosolids, while under pressure, at different scales using laboratory, pilot and field scale tests. The settlement characteristics of the amended biosolids under a range of applied pressures were determined using a consolidometer. All amended biosolids mixtures showed higher strength than the unamended biosolids, with mixtures containing a combination of 20% fly ash and 20% lime giving the highest (up to eightfold) increase in strength, and that with lime kiln dust and the smelter slags showing the lowest (up to twofold). The biosolids mixtures with only lime gave the second highest increase in strength (up to fourfold), but produced the largest amount of leachate, with higher level of dissolved calcium. The increase in strength correlated with availability of calcium oxide in the mixtures which lead to calcium carbonate formation, accompanied with higher leachate production and settlement during consolidation. Copper, nickel and zinc concentrations increased with alkaline additives and corresponded to higher pH and DOC levels. Nonetheless, concentrations were within the New Zealand regulatory limits for Class A landfills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Integrated, long term, sustainable, cost effective biosolids management at a large Canadian wastewater treatment facility.

    Science.gov (United States)

    Leblanc, R J; Allain, C J; Laughton, P J; Henry, J G

    2004-01-01

    The Greater Moncton Sewerage Commission's 115,000 m3/d advanced, chemically assisted primary wastewater treatment facility located in New Brunswick, Canada, has developed an integrated, long term, sustainable, cost effective programme for the management and beneficial utilization of biosolids from lime stabilized raw sludge. The paper overviews biosolids production, lime stabilization, conveyance, and odour control followed by an indepth discussion of the wastewater sludge as a resource programme, namely: composting, mine site reclamation, landfill cover, land application for agricultural use, tree farming, sod farm base as a soil enrichment, topsoil manufacturing. The paper also addresses the issues of metals, pathogens, organic compounds, the quality control program along with the regulatory requirements. Biosolids capital and operating costs are presented. Research results on removal of metals from primary sludge using a unique biological process known as BIOSOL as developed by the University of Toronto, Canada to remove metals and destroy pathogens are presented. The paper also discusses an ongoing cooperative research project with the Université de Moncton where various mixtures of plant biosolids are composted with low quality soil. Integration, approach to sustainability and "cumulative effects" as part of the overall biosolids management strategy are also discussed.

  20. Effect of land-applied biosolids on surface-water nutrient yields and groundwater quality in Orange County, North Carolina

    Science.gov (United States)

    Wagner, Chad R.; Fitzgerald, Sharon A.; McSwain, Kristen Bukowski; Harden, Stephen L.; Gurley, Laura N.; Rogers, Shane W.

    2015-01-01

    Land application of municipal wastewater biosolids is the most common method of biosolids management used in North Carolina and the United States. Biosolids have characteristics that may be beneficial to soil and plants. Land application can take advantage of these beneficial qualities, whereas disposal in landfills or incineration poses no beneficial use of the waste. Some independent studies and laboratory analysis, however, have shown that land-applied biosolids can pose a threat to human health and surface-water and groundwater quality. The effect of municipal biosolids applied to agriculture fields is largely unknown in relation to the delivery of nutrients, bacteria, metals, and contaminants of emerging concern to surface-water and groundwater resources. Therefore, the North Carolina Department of Environment and Natural Resources (NCDENR) collaborated with the U.S. Geological Survey (USGS) through the 319 Nonpoint Source Program to better understand the transport of nutrients and bacteria from biosolids application fields to groundwater and surface water and to provide a scientific basis for evaluating the effectiveness of the current regulations.

  1. Co-gasification of biosolids with biomass: Thermogravimetric analysis and pilot scale study in a bubbling fluidized bed reactor.

    Science.gov (United States)

    Yu, Ming Ming; Masnadi, Mohammad S; Grace, John R; Bi, Xiaotao T; Lim, C Jim; Li, Yonghua

    2015-01-01

    This work studied the feasibility of co-gasification of biosolids with biomass as a means of disposal with energy recovery. The kinetics study at 800°C showed that biomass, such as switchgrass, could catalyze the reactions because switchgrass ash contained a high proportion of potassium, an excellent catalyst for gasification. However, biosolids could also inhibit gasification due to interaction between biomass alkali/alkaline earth metals and biosolids clay minerals. In the pilot scale experiments, increasing the proportion of biosolids in the feedstock affected gasification performance negatively. Syngas yield and char conversion decreased from 1.38 to 0.47m(3)/kg and 82-36% respectively as the biosolids proportion in the fuel increased from 0% to 100%. Over the same range, the tar content increased from 10.3 to 200g/m(3), while the ammonia concentration increased from 1660 to 19,200ppmv. No more than 25% biosolids in the fuel feed is recommended to maintain a reasonable gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Proceedings of the 3. Canadian organic residuals and biosolids management conference[Manure, biosolids, and organic industrial/commercial residuals in land applications programs : improving beneficial reuse and protection of water quality

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The management of organic residuals in Canada is becoming more challenging and complex, both socially and politically. This conference provided a forum to exchange the latest information on technical legislative and public awareness issues associated with organic residuals and biosolids management in Canada. It was attended by producers, managers, practitioners and regulators from across Canada who discussed various initiatives regarding the production, management use and disposal of organic residuals including municipal wastewater treatment biosolids, animal manures and pulp and paper sludges. The sessions of the conference were entitled: biosolids management; quality issues; public perception and health issues; composting; treatment technologies; waste to energy; technology; and, land application. The conference featured 50 presentations, of which 5 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  3. METODE PELAKSANAAN DEWATERING YANG RAMAH LINGKUNGAN PADA PROYEK THE NEST CONDOTEL

    Directory of Open Access Journals (Sweden)

    I Wayan Intara

    2016-03-01

    Full Text Available Proyek Pembangunan The Nest Condotel merupakan salah satu upaya untuk memenuhi sarana dan prasarana pariwisata khusunya daerah Nusa Dua-Bali. Proyek ini dibangun di tengah-tengah pemukiman penduduk dan berdekatan dengan Pengolahan Limbah BTDC. Setelah dilaksanakan survei lapangan ada permasalahan yang dihadapi pada pembangunan proyek ini yaitu pada pengerjaan struktur basement. Kondisi muka air tanah lebih tinggi daripada rencana pemukaan galian lantai basement yang akan dibuat. Di samping itu, kondisi tanah yang kurang baik dengan kondisi tanah yang berpasir. Berdasarkan permasalahan di atas perlu adanya pemilihan perencanaan metode penanganan muka air tanah yang paling tepat dalam pekerjaan  galian basement. Dewatering adalah proses penurunan muka air tanah pada suatu area tertentu dengan cara pemompaan dari sebuah sumur ataupun saluran. Tujuannya adalah untuk menjaga area galian tetap kering dalam proses konstruksi dan menjaga kestabilan lereng galian. Pemompaan dilakukan melalui sumur-sumur dewatering (dewatering well atau well point atau saluran-saluran (sump dengan menggunakan pompa submersible (submersible pump. Dengan demikian penggalian basement bisa dikerjakan dengan baik. Penelitian ini adalah menentukan metode pelaksanaan pekerjaan dewatering yang paling tepat dari metode-metode pelaksanaan yang mungkin untuk dilaksankan berdasarkan biaya, waktu, dan dampak terhadap lingkungan. Metodelogi yang digunakan untuk analisis data adalah menganalisis metode-metode pelaksanaan yang ada dan dari hasil analisis akan ditetapkan metode pelaksanaan terbaik. Hasil analisis dari beberapa metode pelaksanaan yang ada untuk pekerjaan dewatering digunakan adalah predrainage dan open pumping, metode yang terpilih yaitu open pumping adalah metode terbaik untuk dilaksanakan pada proyek tersebut dengan biaya yang terendah, waktu pelaksanaan yang lebih cepat, dan dampak lingkungan yang dapat diminimalisir

  4. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    Science.gov (United States)

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  5. Dewatering of Yoghurt Using Permeable Membrane and Acrylic Superabsorbent Hydrogel

    Directory of Open Access Journals (Sweden)

    A. Ahmadpour

    2008-02-01

    Full Text Available Conventional processes of food dewatering, such as thermal, have undesirable and destruction effects on vitamins, aromatic compounds and pigments. In addition, they are accompanied with some technological complications and energy consumption. Thus, food concentration processes are directed to non-thermal techniques or methods with reduced heat effects. Superabsorbents are highly hydrophilic polymer networks which can absorb water and aqueous solutions some hundred times of their weights and retain them. These materials are subgroups of hydrogel family that are transformed into gels after absorbing water. In the present research, the possibilities of yoghurt dewatering using superabsorbents have been investigated for the first time in Iran and some remarkable results are obtained for this vital product. In the experiments carried out to investigate the effect of these absorbents on normal method of yoghurt concentration (use of permeable membrane, type of bed (wide and vertical and time are also studied. The percentage of total soluble solids and dry solids of dewatered samples were measured in different time intervals up to 180 min. The results showed that superabsorbent on a wide bed would reduce the concentration time to one third. In other words, in a certain time interval, more than 70% increase in yoghurt dry solids was observed compared to normal method. These results show that acrylic superabsorbent hydrogel can be applied as highly hydrophilic material in non-thermal food dewatering methods.

  6. Meat and bone meal and biosolids as slow-release phosphorus fertilizers

    Directory of Open Access Journals (Sweden)

    Anne Bøen

    2013-06-01

    Full Text Available Biosolids and meat and bone meal (MBM are commonly used as fertilizers in agriculture, often at application rates where total phosphorus (P far exceeds the annual demand. In a pot experiment, three biosolids and two types of MBM were tested at two commonly used application rates. Their contributions to P uptake in ryegrass (second and third season were compared with annual mineral P fertilization. The soil was analysed for extractable P (PAL and POlsen. Only soil amended with digested, limed biosolids provided a P uptake in ryegrass the third season comparable to annual NPK fertilization. Bone-rich MBM had considerable contributions to third season P uptake in soil with pH < 6. The product application rates did not influence P uptake significantly for any of the products. POlsen was found suitable to describe residual effects on soil P solubility, whereas the PAL-method was not applicable for MBM fertilized soils.

  7. Transesterification of Waste Activated Sludge for Biosolids Reduction and Biodiesel Production.

    Science.gov (United States)

    Maeng, Min Ho; Cha, Daniel K

    2018-02-01

      Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.

  8. Comparison of degradation between indigenous and spiked bisphenol A and triclosan in a biosolids amended soil

    Energy Technology Data Exchange (ETDEWEB)

    Langdon, Kate A., E-mail: Kate.Langdon@csiro.au [School of Agriculture, Food and Wine and Waite Research Institute, University of Adelaide, South Australia, 5005, Adelaide (Australia); Water for a Healthy Country Research Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PMB 2, Glen Osmond, South Australia, 5064, Adelaide (Australia); Warne, Michael StJ. [Water for a Healthy Country Research Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PMB 2, Glen Osmond, South Australia, 5064, Adelaide (Australia); Smernik, Ronald J. [School of Agriculture, Food and Wine and Waite Research Institute, University of Adelaide, South Australia, 5005, Adelaide (Australia); Shareef, Ali; Kookana, Rai S. [Water for a Healthy Country Research Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PMB 2, Glen Osmond, South Australia, 5064, Adelaide (Australia)

    2013-03-01

    This study compared the degradation of indigenous bisphenol A (BPA) and triclosan (TCS) in a biosolids-amended soil, to the degradation of spiked labelled surrogates of the same compounds (BPA-d{sub 16} and TCS-{sup 13}C{sub 12}). The aim was to determine if spiking experiments accurately predict the degradation of compounds in biosolids-amended soils using two different types of biosolids, a centrifuge dried biosolids (CDB) and a lagoon dried biosolids (LDB). The rate of degradation of the compounds was examined and the results indicated that there were considerable differences between the indigenous and spiked compounds. These differences were more marked for BPA, for which the indigenous compound was detectable throughout the study, whereas the spiked compound decreased to below the detection limit prior to the study completion. The rate of degradation for the indigenous BPA was approximately 5-times slower than that of the spiked BPA-d{sub 16}. The indigenous and spiked TCS were both detectable throughout the study, however, the shape of the degradation curves varied considerably, particularly in the CDB treatment. These findings show that spiking experiments may not be suitable to predict the degradation and persistence of organic compounds following land application of biosolids. - Highlights: ► Degradation of indigenous and spiked compounds from biosolids were compared. ► Differences were observed for both the rate and pattern of degradation. ► Spiked bisphenol A entirely degraded however the indigenous compound remained. ► TCS was detectable during the experiment however the degradation patterns varied. ► Spiking experiments may not be suitable to predict degradation of organic compounds.

  9. Evaluation of the potential for biosolids obtained from wastewater treatment for agricultural use and their effect on cultivation of red radish (Raphanus sativus L)

    International Nuclear Information System (INIS)

    Ramirez Pisco, Ramiro; Perez Arenas, Martha Ines

    2006-01-01

    This study was conducted in waste water treatment plant The Salitre, in Bogota, to evaluate the potential of the waste water treatment subproduct biosolids for application in agriculture by means of quantifying growth, development and production of cultivation of red radish, and to establish a possible alternative to the problem of final disposition of 3900 tons of this material generated monthly in the waste water treatment plant. The experimental design employed was a random blocks design, with five treatments and three replications, arranged in 2 m x 2 m plots. the treatments corresponded to mixtures of biosolids with soil in the following proportions: 100 % biosolid (equivalent to 294 ton ha-1), 75 % biosolid (220 ton ha-1), 50 % biosolid (147 ton ha-1), 25 % biosolid (73 ton ha-1) and. 100 % soil. Red radish raphanus sativus l. was planted. the variables evaluated were: germination percentage, dry weight of leaves and. roots, plant length, foliar area and production. Also, the accumulation of trace was measured in the harvested radishes, to determine risks of consumption. The results showed that the 50 % biosolid and 25 % biosolid, treatments were those that most favored growth, development and. production of cultivation radish, while the 75 % biosolid and 100 % biosolid treatments, showed lower development growth and production of the cultivar. The 100 % biosolid treatment resulted in low germination and also did not show root accumulation, that is the harvested product. The levels of accumulation of heavy metals surpassed the maximum levels with the 75 % biosolid and 100 % biosolid treatment. It was shown that the use of the biosolids in agriculture can produce a great risk, because despite having high nutrient (C,N, P, Ca, Na, Fe y Zn) and organic matter content, it also may slow growth and production of radish plants

  10. INTERLABORATORY VALIDATION OF USEPA METHOD 1680: FECAL COLIFORMS IN BIOSOLIDS BY MULTIPLE-TUBE FERMENTATION PROCEDURES

    Science.gov (United States)

    In the US, the use and disposal of biosolids (including domestic septage) are regulated under 40 CFR Part 503. Subpart D of this regulation protects public health and the environment through requirements designed to reduce the potential for contact with pathogens in biosolids app...

  11. Integrated, long term, sustainable, cost effective biosolids management at a large Canadian wastewater treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    LeBlance, R.J.; Allain, C.J.; Laughton, P.J.; Henry, J.G.

    2003-07-01

    The Greater Moncton Sewerage Commission's 115 000 m{sup 3}/d advanced, chemically assisted primary wastewater treatment facility located in New Brunswick, Canada, has developed an integrated, long term, sustainable, cost effective programme for the management and beneficial utilization of biosolids from lime stabilized raw sludge. The paper overviews biosolids production, lime stabilization, conveyance, and odour control followed by an indepth discussion of the wastewater sludge as a resource programme, namely: composting, mine site reclamation, landfill cover, land application for agricultural use, tree farming, sod farm base as a soil enrichment, topsoil manufacturing. The paper also addresses the issues of metals, pathogens, organic compounds, the quality control program along with the regulatory requirements. Biosolids capital and operating costs are presented. Research results on removal of metals from primary sludge using a unique biological process known as BIOSOL as developed by the University of Toronto, Canada to remove metals and destroy pathogens are presented. The paper also discusses an ongoing cooperative research project with the Universite de Moncton where various mixtures of plant biosolids are composted with low quality soil. Integration, approach to sustainability and ''cumulative effects'' as part of the overall biosolids management strategy is also discussed. (author)

  12. Helminth eggs as parasitic indicators of fecal contamination in agricultural irrigation water, biosolids, soils and pastures.

    Science.gov (United States)

    Campos, María Claudia; Beltrán, Milena; Fuentes, Nancy; Moreno, Gerardo

    2018-03-15

    A very common practice in agriculture is the disposal of wastewater and biosolids from water treatment systems due to their high nutrient content, which substantially improves crop yields. However, the presence of pathogens of fecal origin creates a sanitary risk to farmers and consumers. To determine the presence and concentration of helminth eggs in irrigation waters, biosolids, agricultural soils, and pastures. Water, biosolids, soil, and pasture samples were collected and analyzed for helminth egg detection, total eggs and viable eggs counts. The behavior of helminth eggs was evaluated in irrigation waters and dairy cattle grassland, where biosolids had been used as an organic amendment. Concentrations between 0.1-3 total helminth eggs/L, and 0.1-1 viable helminth eggs/L were found in water. In biosolids and soil, we found 3-22 total helminth eggs/4 g of dry weight, and 2-12 viable helminth eggs/4 g of dry weight, and in grass, we found <2-9 total helminth eggs/g of fresh weight, and <1-3 viable helminth eggs/g of fresh weight. The presence of helminth eggs in each matrix varied from days to months, which may represent a sanitary risk to farmers as well as to consumers. The presence of helminth eggs in the assessed matrixes confirms the sanitary risk of such practices. Therefore, it is important to control and incorporate regulations related to the use of wastewater and biosolids in agriculture.

  13. Wind erosion potential of a winter wheat–summer fallow rotation after land application of biosolids

    Science.gov (United States)

    While land application of biosolids is recognized as a sustainable management practice for enhancing soil health, no studies have determined the effects of biosolids on soil wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and bio...

  14. Effects of Biosolids and Manure Application on Microbial Water Quality in Rural Areas in the US

    Directory of Open Access Journals (Sweden)

    Amira Oun

    2014-11-01

    Full Text Available Most of the waterborne disease outbreaks observed in North America are associated with rural drinking water systems. The majority of the reported waterborne outbreaks are related to microbial agents (parasites, bacteria and viruses. Rural areas are characterized by high livestock density and lack of advanced treatment systems for animal and human waste, and wastewater. Animal waste from livestock production facilities is often applied to land without prior treatment. Biosolids (treated municipal wastewater sludge from large wastewater facilities in urban areas are often transported and applied to land in rural areas. This situation introduces a potential for risk of human exposure to waterborne contaminants such as human and zoonotic pathogens originating from manure, biosolids, and leaking septic systems. This paper focuses on waterborne outbreaks and sources of microbial pollution in rural areas in the US, characterization of the microbial load of biosolids and manure, association of biosolid and manure application with microbial contamination of surface and groundwater, risk assessment and best management practice for biosolids and manure application to protect water quality. Gaps in knowledge are identified, and recommendations to improve the water quality in the rural areas are discussed.

  15. Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis.

    Science.gov (United States)

    Citeau, M; Olivier, J; Mahmoud, A; Vaxelaire, J; Larue, O; Vorobiev, E

    2012-09-15

    Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m², 20, 30, and 50 V-for digested sludge dewatering; and 20, 40 and 80 A/m², 20, 30, and 50 V-for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated. The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. VALIDATION OF EPA METHOD 1682: SALMONELLA IN BIOSOLIDS BY MODIFIED, SEMISOLID RAPPAPORT-VASSILIADIS (MSRV) MEDIUM

    Science.gov (United States)

    Treated biosolids may be applied to land as a crop nutrient and soil conditioner. However, land application of biosolids may pose the risk of releasing pathogens into the environment if disinfection and use criteria established by EPA at 40 CFR part 503 are not met. Among these c...

  17. Biosolids applied to agricultural land: Influence on structural and functional endpoints of soil fauna on a short- and long-term scale.

    Science.gov (United States)

    Coors, Anja; Edwards, Mark; Lorenz, Pascale; Römbke, Jörg; Schmelz, Rüdiger M; Topp, Edward; Waszak, Karolina; Wilkes, Graham; Lapen, David R

    2016-08-15

    Biosolids have well-documented crop and soil benefits similar to other sources of organic amendment, but there is environmental concern due to biosolids-associated pollutants. The present study investigated two field sites that had received biosolids at commercial-scale rates in parallel to associated field sections which were managed similarly but without receiving biosolids (controls). The investigated endpoints were abundance and diversity of soil organisms (nematodes, enchytraeids and earthworms) and soil fauna feeding activity as measured by the bait lamina assay. Repeated sampling of one of the field sites following the only biosolids application demonstrated an enrichment effect typical for organic amendments, which was mostly exhausted after 44months. After an initial suppression, the proportion of free-living plant-parasitic nematodes tended to increase in the biosolids-amended soil over time. Yet, none of the endpoints at this site indicated significant negative effects resulting from the biosolids until 44months post application. In contrast to the repeatedly tilled first field site, the second one was left fallow after three biosolids applications, and was sampled 96months post last application. It was only at this field site that potential evidence for a long-term impact of biosolids was detected with regard to two endpoints: earthworm abundance and structure of the nematode assemblage. Agricultural management and correlation with abiotic soil parameters explained the observed difference in earthworm abundance. Yet, the development of a highly structured and mature nematode assemblage at the control but not at the biosolids-amended section of this fallow field could not be explained by such correlations nor by soil metal concentrations. Overall, the present study found only weak evidence for negative long-term impacts of biosolids applied at commercial rates on soil fauna. High-level community parameters such as the nematode structure index (SI

  18. Characterization and dewatering of flotation technological tailings

    Directory of Open Access Journals (Sweden)

    Grigorova I.

    2014-01-01

    Full Text Available The treatment of flotation tailings is today a subject of interest in mineral processing because of the potential of wasted materials as an actual mineral resource and because of environmental reasons. Decantation ponds are found at almost every mine in the world. They are large earth fill dams containing the residue of the milling process to extract metals from mined ores. Traditional wet tailings disposal has been problematic due to the risk of ground water contamination and the difficulty in rehabilitating storage sites. Tailings dams are at risk of failure due to leakage, instability, liquefaction, and poor design. In the last few years the use of paste technology in the disposal of mine tailings is increasingly studied as an option to conventional tailings dams. The Lucky Invest Concentrator is located in the Eastern Rhodopes Mountain of Bulgaria. Since 1959 lead-zinc ores are dressed. Finally, during the flotation cycle lead and zinc concentrates are produced. The final technological processing waste precipitates in tailing pond. Research and development program has started to established opportunities to obtain dry deposit of the ore processing residue and analyses the feature of new tailing disposal method. The tailings particle size distributions and chemical compositions were determined. The data from laboratory and pilot scale tests clearly illustrate that there are the possibilities to obtaine lead-zinc dewatered tailings. The experimental results show that new cyclone modifications have a potential in dewatering technology of flotation tailings. It appears that dewatering cyclones can be an approach on new tailings pond elimination technology.

  19. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    Science.gov (United States)

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2004-01-01

    The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations

  20. Influence of nanoparticles on the polymer-conditioned dewatering of wastewater sludges.

    Science.gov (United States)

    Boyle, N J; Evans, G M

    2013-01-01

    The effect of using small-scale, high surface area, nanoparticles to supplement polymer-conditioned wastewater sludge dewatering was investigated. Aerobically digested sludge and waste activated sludge sourced from the Hunter Valley, NSW, Australia, were tested with titanium dioxide nanoparticles. The sludge samples were dosed with the nanoparticles in an attempt to adsorb a component of the charged biopolymer surfactants present naturally in sludge. The sludge was conditioned with a cationic polymer. The dewatering characteristics were assessed by measuring the specific resistance to filtration through a modified time-to-filter testing apparatus. The solids content of the dosed samples was determined by a mass balance and compared to the original solids content in the activated sludge. Test results indicated that nanoparticle addition modified the structure of the sludge and provided benefits in terms of the dewatering rate. The samples dosed with nanoparticles exhibited faster water removal, indicating a more permeable filter cake and hence more permeable sludge. A concentration of 2-4% nanoparticles was required to achieve a noticeable benefit. As a comparison, the sludge samples were also tested with a larger particle size, powdered activated carbon (PAC). It was found that the PAC did provide some minor benefits to sludge dewatering but was outperformed by the nanoparticles. The solids content of the final sludge was increased by a maximum of up to 0.6%. The impact of the order sequence of particles and polymer was also investigated. It was found that nanoparticles added before polymer addition provided the best dewatering performance. This outcome was consistent with current theories and previous research through the literature. An economic analysis was undertaken to confirm the viability of the technology for implementation at a full-scale plant. It was found that, currently, this technology is unlikely to be favourable unless the nanoparticles can be

  1. Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis

    International Nuclear Information System (INIS)

    Hosseini Koupaie, E.; Eskicioglu, C.

    2015-01-01

    Highlights: • No potential health risk of land application of the regional biosolids. • More realistic risk assessment via probabilistic approach than that of deterministic. • Increasing the total hazard index with increasing fertilizer land application rate. • Significant effect of long-term biosolids land application of hazard index. • Greater contribution of rice ingestion than vegetable ingestion on hazard index. - Abstract: The objective of this study was to perform a probabilistic risk analysis (PRA) to assess the health risk of Cadmium (Cd), Copper (Cu), and Zinc (Zn) through the consumption of food crops grown on farm lands fertilized by biosolids. The risk analysis was conducted using 8 years of historical heavy metal data (2005–2013) of the municipal biosolids generated by a nearby treatment facility considering one-time and long-term biosolids land application scenarios for a range of 5–100 t/ha fertilizer application rate. The 95th percentile of the hazard index (HI) increased from 0.124 to 0.179 when the rate of fertilizer application increased from 5 to 100 t/ha at one-time biosolids land application. The HI at long-term biosolids land application was also found 1.3 and 1.9 times greater than that of one-time land application at fertilizer application rates of 5 and 100 t/ha, respectively. Rice ingestion had more contribution to the HI than vegetable ingestion. Cd and Cu were also found to have more contribution to the health risk associated to vegetable and rice ingestion, respectively. Results indicated no potential risk to the human health even at long-term biosolids land application scenario at 100 t/ha fertilizer application rate.

  2. Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Koupaie, E., E-mail: ehssan.hosseini.k@gmail.com; Eskicioglu, C., E-mail: cigdem.eskicioglu@ubc.ca

    2015-12-30

    Highlights: • No potential health risk of land application of the regional biosolids. • More realistic risk assessment via probabilistic approach than that of deterministic. • Increasing the total hazard index with increasing fertilizer land application rate. • Significant effect of long-term biosolids land application of hazard index. • Greater contribution of rice ingestion than vegetable ingestion on hazard index. - Abstract: The objective of this study was to perform a probabilistic risk analysis (PRA) to assess the health risk of Cadmium (Cd), Copper (Cu), and Zinc (Zn) through the consumption of food crops grown on farm lands fertilized by biosolids. The risk analysis was conducted using 8 years of historical heavy metal data (2005–2013) of the municipal biosolids generated by a nearby treatment facility considering one-time and long-term biosolids land application scenarios for a range of 5–100 t/ha fertilizer application rate. The 95th percentile of the hazard index (HI) increased from 0.124 to 0.179 when the rate of fertilizer application increased from 5 to 100 t/ha at one-time biosolids land application. The HI at long-term biosolids land application was also found 1.3 and 1.9 times greater than that of one-time land application at fertilizer application rates of 5 and 100 t/ha, respectively. Rice ingestion had more contribution to the HI than vegetable ingestion. Cd and Cu were also found to have more contribution to the health risk associated to vegetable and rice ingestion, respectively. Results indicated no potential risk to the human health even at long-term biosolids land application scenario at 100 t/ha fertilizer application rate.

  3. Selected personal care products and endocrine disruptors in biosolids: an Australia-wide survey.

    Science.gov (United States)

    Langdon, Kate A; Warne, Michael St J; Smernik, Ronald J; Shareef, Ali; Kookana, Rai S

    2011-02-15

    Personal care products (PCPs) and endocrine disrupting compounds (EDCs) are groups of organic contaminants that have been detected in biosolids around the world. There is a shortage of data on these types on compounds in Australian biosolids, making it difficult to gain an understanding of their potential risks in the environment following land application. In this study, 14 biosolids samples were collected from 13 Australian wastewater treatment plants (WWTPs) to determine concentrations of eight compounds that are PCPs and/or EDCs: 4-t-octylphenol (4tOP), 4-nonylphenol (4NP), triclosan (TCS), bisphenol A (BPA), estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2). Concentration data were evaluated to determine if there were any differences between samples that had undergone anaerobic or aerobic treatment. The concentration data were also compared to other Australian and international data. Only 4tOP, 4NP, TCS, and BPA were detected in all samples and E1 was detected in four of the 14 samples. Their concentrations ranged from 0.05 to 3.08 mg/kg, 0.35 to 513 mg/kg, treatment showed significantly higher concentrations of the compounds than those obtained from WWTPs that used aerobic treatment. Overall, 4NP, TCS and BPA concentrations in Australian biosolids were lower than global averages (by 42%, 12% and 62%, respectively) and 4tOP concentrations were higher (by 25%), however, of these differences only that for BPA was statistically significant. The European Union limit value for NP in biosolids is 50 mg/kg, which 4 of the 14 samples in this study exceeded. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Odorants and malodors associated with land application of biosolids stabilized with lime and coal fly ash.

    Science.gov (United States)

    Laor, Yael; Naor, Moshe; Ravid, Uzi; Fine, Pinchas; Halachmi, Ilan; Chen, Yona; Baybikov, Rima

    2011-01-01

    Malodor emissions limit public acceptance of using municipal biosolids as natural organic resources in agricultural production. We aimed to identify major odorants and to evaluate odor concentrations associated with land application of anaerobically digested sewage sludges (Class B) and their alkaline (lime and coal fly ash)-stabilized products (Class A). These two types of biosolids were applied at 12.6 tonnes ha(-1) (dry weight) to microplots of very fine clayey Vertisol in the Jezreel Valley, northern Israel. The volatile organic compounds (VOCs) emitted from the biosolids before and during alkaline stabilization and after incorporation into the soil were analyzed by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Odor concentrations at the plots were evaluated on site with a Nasal Ranger field olfactometer that sniffed over a defined land surface area through a static chamber. The odors emitted by anaerobically digested sewage sludges from three activated sludge water treatment plants had one characteristic chemical fingerprint. Alkaline stabilization emitted substantial odors associated with high concentrations of ammonia and release of nitrogen-containing VOCs and did not effectively reduce the potential odor annoyance. Odorous VOCs could be generated within the soil after biosolids incorporation, presumably because of anaerobic conditions within soil-biosolids aggregates. We propose that dimethyl disulfide and dimethyl trisulfide, which seem to be most related to the odor concentrations of biosolids-treated soil, be used as potential chemical markers for the odor annoyance associated with incorporation of anaerobically digested sewage sludges. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Biochar produced from biosolids using a single-mode microwave: Characterisation and its potential for phosphorus removal.

    Science.gov (United States)

    Antunes, Elsa; Schumann, James; Brodie, Graham; Jacob, Mohan V; Schneider, Philip A

    2017-07-01

    The amount of biosolids increases every year, and social and environmental concerns are also rising due to heavy metals and pathogen contamination. Even though biosolids are considered as a waste material, they could be used as a precursor in several applications, especially in agriculture due to the presence of essential nutrients. Microwave assisted pyrolysis (MWAP) is a promising technology to safely manage biosolids, while producing value-added products, such as biochar, that can be used to improve soil fertility. This study examined the impact of pyrolysis temperature between 300 °C and 800 °C on the chemical and physical properties of biochar obtained from biosolids via MWAP. Preliminary phosphorus adsorption tests were carried out with the biochar produced from biosolids. This research demonstrated that pyrolysis temperature affects biochar specific surface area, ash and volatiles content, but does not impact heavily on the pH, chemical composition and crystalline phases of the resultant biochar. Biochar yield decreases as the pyrolysis temperature increases. Phosphorus adsorption capacity of biochar was approximately around 15 mg/g of biochar. Biochar resulting from MWAP is a potential candidate for land application with an important role in water and nutrient retention, due to the high surface area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Application of a thermally assisted mechanical dewatering process to biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, A.; Arlabosse, P. [Universite de Toulouse, Mines Albi, CNRS, Campus Jarlard, F-81013 Albi cedex 09 (France); Ecole des Mines Albi, Centre RAPSODEE, Campus Jarlard, F-81013 Albi (France); Fernandez, A. [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31400 Toulouse (France); INRA, UMR792 Ingenierie des Systemes Biologiques et des Procedes, CNRS, UMR5504, F-31400 Toulouse (France)

    2011-01-15

    Thermally assisted mechanical dewatering (TAMD) is a new process for energy-efficient liquid/solids separation which enhances conventional-device efficiency. The main idea of this process is to supply a flow of heat in mechanical dewatering processes to favour the reduction of the liquid content. This is not a new idea but the proposed combination, especially the chosen operating conditions (T < 100 C and P < 3000 kPa) constitutes an original approach and a significant energy saving since the liquid is kept in liquid state. Response surface methodology was used to evaluate the effects of the processing parameters of TAMD on the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of TAMD. In this study, a two-factor central composite design was used to establish the optimum conditions for the TAMD of alfalfa biomass. Experiments were carried out on a laboratory compression cell. Experiments showed that the dewatering enhancement results only from thermal effects. With a moderate heat supply (T{sub piston} = 80 C), the dry solid content of the press cake can reach 66%, compared to 36% at ambient temperature. A significant regression model, describing changes on final dry solids content with respect to independent variables, was established with determination coefficient, R{sup 2}, greater than 88%. With an energy consumption of less than 150 kWh/m{sup 3}, the use of the TAMD process before a thermal drying process leads to an energy saving of at least 30% on the overall separation chain. (author)

  7. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine

    International Nuclear Information System (INIS)

    Ben Mordechay, Evyatar; Tarchitzky, Jorge; Chen, Yona; Shenker, Moshe; Chefetz, Benny

    2018-01-01

    Irrigation with treated wastewater (TWW) and application of biosolids to arable land expose the agro-environment to pharmaceuticals and personal care products (PPCPs) which can be taken up by crops. In this project, we studied the effect of a carrier medium (e.g., biosolids and TWW) on plant (tomato, wheat and lettuce) uptake, translocation and metabolism of carbamazepine as a model for non-ionic PPCPs. Plant uptake and bioconcentration factors were significantly lower in soils amended with biosolids compared to soils irrigated with TWW. In soils amended with biosolids and irrigated with TWW, the bioavailability of carbamazepine for plant uptake was moderately decreased as compared to plants grown in soils irrigated with TWW alone. While TWW acts as a continuous source of PPCPs, biosolids act both as a source and a sink for these compounds. Moreover, it appears that decomposition of the biosolids in the soil after amendment enhances their adsorptive properties, which in turn reduces the bioavailability of PPCPs in the soil environment. In-plant metabolism of carbamazepine was found to be independent of environmental factors, such as soil type, carrier medium, and absolute amount implemented to the soil, but was controlled by the total amount taken up by the plant. - Highlights: • Bioaccumulation of carbamazepine is higher in plants irrigated with TWW than in plants grown in soils applied with biosolids. • Application of composted biosolids reduces the bioavailability of carbamazepine originated from TWW irrigation. • Plant metabolism of carbamazepine is affected by the total amount taken-up by the plant. - Bioavailability of PPCPs originated from biosolids amendment is lower than the bioavailability of those introduced by irrigation with treated wastewater.

  8. Downward Movement of Potentially Toxic Elements in Biosolids Amended Soils

    Directory of Open Access Journals (Sweden)

    Silvana Irene Torri

    2012-01-01

    Full Text Available Potentially toxic elements (PTEs in soils are mainly associated with the solid phase, bound to the surface of solid components, or precipitated as minerals. For most PTEs, only a small portion is dissolved in the soil solution. However, there is an interest in following the fate of mobile PTEs in the environment, for a growing amount of evidence indicates that downward movement of PTEs may occur in biosolids amended soils, leading to groundwater contamination. Therefore, it is crucial to understand the factors that control the release of these elements after land application of biosolids, in order to overcome problems related to downward movement of PTEs in the soil profile.

  9. Electroosmotically enhanced dewatering/deliquoring of fine-particle coal: Final report, January 1--December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Sami, Sedat [Department of Civil Engineering and Mechanics, Southern Illinois Univ., Carbondale, IL (United States); Davis, Philip K. [Department of Civil Engineering and Mechanics, Southern Illinois Univ., Carbondale, IL (United States); Smith, James G. [Department of Electrical Engineering, Southern Illinois Univ., Carbondale, IL (United States)

    1989-03-01

    This research is an investigation of the use of electroosmosis to dewater/deliquor ultrafine coal. Post-beneficiation dewatering/deliquoring methods for ultrafine coal are inadequate and generally require subsequent thermal drying. Thermal drying is not only expensive and time consuming, it also does not recover liquids for reuse in beneficiation processes. The degree of difficulty associated with dewatering increases as surface forces become more important than gravimetric forces. Electroosmotic flow has advantages for dewatering because it is much less sensitive to pore size than hydraulic gradient flow for the 1 to 75 ..mu..m ultrafine size range. The first year of this project focused upon preparation of ultrafine coal samples, development of test equipment and test cells, identification of variables affecting electroosmosis, and trial runs. Techniques and procedures not previously used by researchers of electroosmotic dewatering have revealed important information about the dynamics of the electroosmosis process. The identification of the first few millimeters of the cathode region of the cell as the sink for most of the energy input into the process provides the potential for improving efficiency by concentrating the second year effort on intervention in that region. Information gathered about differences in FTIR spectra as a function of location in the dewatering cell will be investigated. Changes in pH with temperature and by the application of electroosmotic current flow will receive attention, as well. 178 refs., 16 figs.

  10. Modelling dewatering behaviour through an understanding of solids formation processes. Part II--solids separation considerations.

    Science.gov (United States)

    Dustan, A C; Cohen, B; Petrie, J G

    2005-05-30

    An understanding of the mechanisms which control solids formation can provide information on the characteristics of the solids which are formed. The nature of the solids formed in turn impacts on dewatering behaviour. The 'upstream' solids formation determines a set of suspension characteristics: solids concentration, particle size distribution, solution ionic strength and electrostatic surface potential. These characteristics together define the suspension's rheological properties. However, the complicated interdependence of these has precluded the prediction of suspension rheology from such a fundamental description of suspension characteristics. Recent shear yield stress models, applied in this study to compressive yield, significantly reduce the empiricism required for the description of compressive rheology. Suspension compressibility and permeability uniquely define the dewatering behaviour, described in terms of settling, filtration and mechanical expression. These modes of dewatering may be described in terms of the same fundamental suspension mechanics model. In this way, it is possible to link dynamically the processes of solids formation and dewatering of the resultant suspension. This, ultimately, opens the door to improved operability of these processes. In part I of this paper we introduced an integrated system model for solids formation and dewatering. This model was demonstrated for the upstream processes using experimental data. In this current paper models of colloidal interactions and dewatering are presented and compared to experimental results from batch filtration tests. A novel approach to predicting suspension compressibility and permeability using a single test configuration is presented and tested.

  11. Ultra scale-down device to predict dewatering levels of solids recovered in a continuous scroll decanter centrifuge.

    Science.gov (United States)

    Lopes, A G; Keshavarz-Moore, E

    2013-01-01

    During centrifugation operation, the major challenge in the recovery of extracellular proteins is the removal of the maximum liquid entrapped within the spaces between the settled solids-dewatering level. The ability of the scroll decanter centrifuge (SDC) to process continuously large amounts of feed material with high concentration of solids without the need for resuspension of feeds, and also to achieve relatively high dewatering, could be of great benefit for future use in the biopharmaceutical industry. However, for reliable prediction of dewatering in such a centrifuge, tests using the same kind of equipment at pilot-scale are required, which are time consuming and costly. To alleviate the need of pilot-scale trials, a novel USD device, with reduced amounts of feed (2 mL) and to be used in the laboratory, was developed to predict the dewatering levels of a SDC. To verify USD device, dewatering levels achieved were plotted against equivalent compression (Gtcomp ) and decanting (Gtdec ) times, obtained from scroll rates and feed flow rates operated at pilot-scale, respectively. The USD device was able to successfully match dewatering trends of the pilot-scale as a function of both Gtcomp and Gtdec , particularly for high cell density feeds, hence accounting for all key variables that influenced dewatering in a SDC. In addition, it accurately mimicked the maximum dewatering performance of the pilot-scale equipment. Therefore the USD device has the potential to be a useful tool at early stages of process development to gather performance data in the laboratory thus minimizing lengthy and costly runs with pilot-scale SDC. © 2013 American Institute of Chemical Engineers.

  12. Sustainable Biosolids/Renewable Energy Plant

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Steven D. [City of St. Petersburg, FL (United States); Smith, Arenee Fanchon Teena [City of St. Petersburg, FL (United States)

    2016-09-01

    In keeping with its designation as being Florida’s first “Green City”, the City's primary purpose of this project is to process and dispose of biosolids and yard wastes in a manner that results in the production of thermal, electrical, gas, or some other form of energy. This project was completed in two budget periods. Budget period one of the project consisted of a feasibility evaluation to determine potential applicable technologies, budget period two consisted of project design.

  13. A new dewatering technique for stingless bees honey

    Directory of Open Access Journals (Sweden)

    Ramli Ahmad Syazwan

    2017-01-01

    Full Text Available One of the problems faced in stingless bee honey storage is spoilage by the fermentation process occurs in honey due to its high water content. There are a few techniques available currently, but they are time consuming and there is excessive heat involved in the process. The temperature of the process must be kept low because excessive heat can deteriorate nutrition value and biochemical content in honey. Hence, a new method of honey dewatering was developed using a Low Temperature Vacuum Drying (LTVD with induced nucleation technique.The objective of this research is to investigate the performance of a LTVD with induced nucleation to reduce the water content in honey. First, the honey was placed in a pressure vessel, and then air was removed. Then, the honey was slightly heated at 30°C and the water content before and after the experiment was measured by a refractometer. The steps were repeated until the water content reached below 20%. It was found that the LTVD method improved the water removal rate significantly with an average of 0.15% of water content per minute. That is 3 times much faster than the conventional method of low temperature heating by Tabouret. Higher temperature during dewatering process improved the dewatering rate significantly. It can be concluded that LTVD is a promising option in tackling the high water content in stingless bee honey issue.

  14. 105-N Fuel Storage Basin dewatering conceptual plan

    International Nuclear Information System (INIS)

    Schilperoort, D.L.

    1996-11-01

    This conceptual plan discusses the processes that will be used for draining and disposing of water from the 105-N Fuel Storage Basin (N Basin), and includes a description of the activities to control surface contamination and potential high dose rates encountered during dewatering. The 105-N Fuel Storage Basin is located in the 100-N Area of the Hanford Site in Richland, Washington. The processes for water disposal include water filtration, water sampling and analysis, tanker loading and unloading, surface decontamination and sealing, and clean out and disposal of residual debris and sediments during final pumping to remove the N Basin water. Water disposal is critical for the deactivation of N Reactor. A Memorandum of Understanding (MOU) between the US Department of Energy (DOE) Environmental Restoration (ER) Program and DOE Waste Management (WM) Program establishes the 200 East Effluent Treatment Facility (ETF) as the final treatment and disposal site for N Basin water and identifies pre-treatment requirements. This MOU states that water delivery will be completed no later than October 31, 1996, and will require a revision due to the current de-watering schedule date. The current MOU requires four micron filtration prior to shipment to ETF. The MOU revision for delivery date extension seeks to have the filtration limit increased to five microns, which eliminates the need for a second filter system and simplifies dewatering. For the purposes of this plan, it will be assumed that five micron filtration will be used

  15. Nitric oxide emissions from soils amended with municipal waste biosolids

    International Nuclear Information System (INIS)

    Roelle, P.A.; Aneja, V.P.

    2002-01-01

    Land spreading nitrogen-rich municipal waste biosolids (NO 3 - -N -1 dry weight, NH 3 -N∼23,080mg Nkg -1 dry weight, Total Kjeldahl N∼41,700mg Nkg -1 dry weight) to human food and non-food chain land is a practice followed throughout the US. This practice may lead to the recovery and utilization of the nitrogen by vegetation, but it may also lead to emissions of biogenic nitric oxide (NO), which may enhance ozone pollution in the lower levels of the troposphere. Recent global estimates of biogenic NO emissions from soils are cited in the literature, which are based on field measurements of NO emissions from various agricultural and non-agricultural fields. However, biogenic emissions of NO from soils amended with biosolids are lacking. Utilizing a state-of-the-art mobile laboratory and a dynamic flow-through chamber system, in-situ concentrations of nitric oxide (NO) were measured during the spring/summer of 1999 and winter/spring of 2000 from an agricultural soil which is routinely amended with municipal waste biosolids. The average NO flux for the late spring/summer time period (10 June 1999-5 August 1999) was 69.4±34.9ngNm -2 s -1 . Biosolids were applied during September 1999 and the field site was sampled again during winter/spring 2000 (28 February 2000-9 March 2000), during which the average flux was 3.6±l.7ngNm -2 s -1 . The same field site was sampled again in late spring (2-9 June 2000) and the average flux was 64.8±41.0ng Nm -2 s -1 . An observationally based model, developed as part of this study, found that summer accounted for 60% of the yearly emission while fall, winter and spring accounted for 20%, 4% and 16% respectively. Field experiments were conducted which indicated that the application of biosolids increases the emissions of NO and that techniques to estimate biogenic NO emissions would, on a yearly average, underestimate the NO flux from this field by a factor of 26. Soil temperature and % water filled pore space (%WFPS) were observed

  16. Dissipation of contaminants of emerging concern in biosolids applied to non-irrigated farmland in eastern Colorado

    Science.gov (United States)

    Yager, Tracy; Furlong, Edward T.; Kolpin, Dana W.; Kinney, Chad A.; Zaugg, Steven D.; Burkhardt, Mark R.

    2013-01-01

    In 2007, a 1.5-year field-scale study was initiated by the U.S. Geological Survey to evaluate the dissipation of contaminants of emerging concern (CECs) following a first agronomic biosolids application to nonirrigated farmland. CECs with the greatest decrease in concentration in the surface biosolids at 180 days post-application included indole, d-limonene, p-cresol, phenol, and skatol. CECs that were present in the largest concentration in 180-day-weathered biosolids included stanols, nonylphenols, bisphenol A, bis(2-ethylhexyl) phthalate, hexahydrohexamethyl cyclopenta-benzopyran (HHCB), and triclosan. CECs that were detected in pre-application soil were 3-beta coprostanol, skatol, acetophenone, beta-sitosterol, beta-stigmastanol, cholesterol, indole, p-cresol, and phenol, most of which are biogenic sterols or fragrances that have natural plant sources in addition to anthropogenic sources, yet their concentrations increased (in some cases, substantially) following biosolids application. Preliminary data indicate the nonylphenols (including NPEO1, NPEO2), OPEO1, benzo[a]pyrene, diethyl phthalate, d-limonene, HHCB, triclosan, and possibly 3-beta coprostanol, skatol, beta-sitosterol, cholesterol, indole, and p-cresol, migrated downward through the soil by 468 days post-application, but indicated little uptake by mature wheat plants. This study indicates that some CECs are sufficiently persistent and mobile to be vertically transported into the soil column following biosolids applications to the land surface, even in semiarid regions.

  17. Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering.

    Science.gov (United States)

    Mahmoud, Akrama; Hoadley, Andrew F A; Conrardy, Jean-Baptiste; Olivier, Jérémy; Vaxelaire, Jean

    2016-10-15

    Electrically assisted mechanical dewatering, known as electro-dewatering (EDW), is an alternative emerging technology for energy-efficient liquid/solids separation in the dewatering of wastewater sludge. In this study, the performance of the electro-dewatering (EDW) process for activated wastewater sludge was investigated. The influence of the operating modes; being the timing of voltage (U-EDW) or current (I-EDW) application to either or both the filtration and compression stages, and the influence of the applied pressure (in successive 30 min pressure steps) were studied. The results showed that by delaying the application of the electric field to the filter cake compression stage, there was a potential saving in power consumption of around 10-12% in the case of U-EDW and about 30-46% in the case of I-EDW. The increase of the applied pressure from 0.5 to 12 bar during the filter cake compression stage leads to an increase in electro-dewatering kinetics. The results also reveal that at a low electric field level the increase of the processing pressure has a relatively pronounced effect on the dewatering process. At high levels of the electric field, a minimum processing pressure (4-6 bar) is required to improve the electrical contact between the electrode and the sludge and thus lower the energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Dust-associated microbiomes from dryland wheat fields differ with tillage practice and biosolids application

    Science.gov (United States)

    Schlatter, Daniel C.; Schillinger, William F.; Bary, Andy I.; Sharratt, Brenton; Paulitz, Timothy C.

    2018-07-01

    Wind erosion is a significant threat to the productivity and sustainability of agricultural soils. In the dryland winter wheat (Triticum aestivum L.)-fallow region of Inland Pacific Northwest of the USA (PNW), farmers increasingly use conservation tillage practices to control wind erosion. In addition, some farmers in this dry region apply municipal biosolids to soils as fertilizer and a source of stable organic matter. The impacts of soil management practices on emissions of dust microbiota to the atmosphere are understudied. We used high-throughput DNA sequencing to examine the impacts of conservation tillage and biosolids amendments on the transport of dust-associated fungal and bacterial communities during simulated high-wind events over two years at Lind, WA. The fungal and bacterial communities contained in windblown dust differed significantly with tillage (conservation vs. conventional) and fertilizer (synthetic vs. biosolids) treatments. However, the richness and diversity of fungal and bacterial communities of dust did not vary significantly with tillage or fertilizer treatments. Taxa enriched in dust from fields under conservation tillage represented many plant-associated taxa that likely grow on residue left on the soil surface, whereas taxa that were more abundant with conventional tillage were those that likely grow on buried plant residue. Dust from biosolids-amended fields harbored greater abundances of taxa that likely feed on introduced carbon. Most human-associated taxa that may pose a health risk were not present in dust after biosolids amendment, although members of Clostridiaceae were enriched with this treatment. Results show that tillage and fertilizer management practices impact the composition of bioaerosols emitted during high-wind events and have potential implications for plant and human health.

  19. Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis.

    Science.gov (United States)

    Hosseini Koupaie, E; Eskicioglu, C

    2015-12-30

    The objective of this study was to perform a probabilistic risk analysis (PRA) to assess the health risk of Cadmium (Cd), Copper (Cu), and Zinc (Zn) through the consumption of food crops grown on farm lands fertilized by biosolids. The risk analysis was conducted using 8 years of historical heavy metal data (2005-2013) of the municipal biosolids generated by a nearby treatment facility considering one-time and long-term biosolids land application scenarios for a range of 5-100 t/ha fertilizer application rate. The 95th percentile of the hazard index (HI) increased from 0.124 to 0.179 when the rate of fertilizer application increased from 5 to 100 t/ha at one-time biosolids land application. The HI at long-term biosolids land application was also found 1.3 and 1.9 times greater than that of one-time land application at fertilizer application rates of 5 and 100 t/ha, respectively. Rice ingestion had more contribution to the HI than vegetable ingestion. Cd and Cu were also found to have more contribution to the health risk associated to vegetable and rice ingestion, respectively. Results indicated no potential risk to the human health even at long-term biosolids land application scenario at 100 t/ha fertilizer application rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Phytoremediation of biosolids from an end-of-life municipal lagoon using cattail (Typha latifolia L.) and switchgrass (Panicum virgatum L.).

    Science.gov (United States)

    Jeke, Nicholson N; Hassan, Adenike O; Zvomuya, Francis

    2017-03-04

    Land spreading of biosolids as a disposal option is expensive and can disperse pathogens and contaminants in the environment. This growth room study examined phytoremediation using switchgrass (Panicum virgatum L.) and cattail (Typha latifolia L.) as an alternative to land spreading of biosolids. Seedlings were transplanted into pots containing 3.9 kg of biosolids (dry wt.). Aboveground biomass (AGB) was harvested either once or twice during each 90-day growth period. Switchgrass AGB yield was greater with two harvests than with one harvest during the first 90-day growth period, whereas cattail yield was not affected by harvest frequency. In the second growth period, harvesting frequency did not affect the yield of either plant species. However, repeated harvesting significantly improved nitrogen (N) and phosphorus (P) uptake by both plants in the first period. Phytoextraction of P was significantly greater for switchgrass (3.9% of initial biosolids P content) than for cattail (2.8%), while plant species did not have a significant effect on N phytoextraction. The trace element accumulation in the AGB of both plant species was negligible. Phytoextraction rates attained in this study suggest that phytoremediation can effectively remove P from biosolids and offers a potentially viable alternative to the disposal of biosolids on agricultural land.

  1. Dewatering behaviour of ultrafine hard coal particles

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.; Alizadeh, A.; Simonis, W.

    1986-03-01

    With decreasing particle diameter distribution the dewatering behaviour of coal gets increasingly complicated. A correlation between final moisture and content of particles below 25..mu..m in the course of centrifuging can be verified. This behaviour of the particles below 25..mu..m can be explained by the great specific surface, on the one hand, and by the distribution of the surface charge density, on the other hand. The charge density depends on the type of coal, on the minerals content and their make-up, as well as on the characteristics of the surrounding medium. The surface charge can be measured indirectly. Varying electrophoretic mobilities of the particles are observed in dependence on the type of raw material. In the neutral pH-range, minerals have a negative surface charge, while coal has a positive one. By way of adding reagents it is possible to invert the negative charges with complicated dewatering characteristics into positive charges. A similar influence will be exerted by changing the pH-value. 6 references.

  2. Reconstitution of dewatered food processing residuals with manure to increase energy production from anaerobic digestion

    International Nuclear Information System (INIS)

    Wall, David M.; Wu-Haan, Wei; Safferman, Steven I.

    2012-01-01

    Solid residuals generated from dewatering food processing wastewater contain organic carbon that can potentially be reclaimed for energy through anaerobic digestion. This results in the diversion of waste from a landfill and uses it for a beneficial purpose. Dewatering the waste concentrates the carbon, reducing transportation costs to a farm digester where it can be blended with manure to increase biogas yield. Polymers are often used in the dewatering of the food waste but little is known regarding their impact on biogas production. Four 2 dm 3 working volume, semi-continuous reactors, were used at a mesophilic temperature and a solids retention time (SRT) of 15 days. Reactors were fed daily with a blended feedstock containing a food processing sludge waste (FPSW)/manure ratio of 2.2:1 (by weight) as this produced the optimized carbon to nitrogen ratio. Results demonstrated that reconstitution of dewatered FPSW with dairy manure produced approximately 2 times more methane than animal manure alone for the same volume. However, only approximately 30% of volatile solids (VS) were consumed indicating energy potential still remained. Further, the efficiency of the conversion of VS to methane for the blended FPSW/manure was substantially less than for manure only. However, the overall result is an increase in energy production for a given tank volume, which can decrease life cycle costs. Because all FPSW is unique and the determination of dewatering additives is customized based on laboratory testing and field adjustment, generalizations are difficult and specific testing is required. -- Highlights: ► Energy production in anaerobic digestion can increase by co-blending food waste. ► Energy for transporting food waste to blend with manure is less when dewatered. ► Dewatered food waste in manure produced twice as much methane than manure. ► Efficiency of carbon to methane was low because of ammonium bicarbonate production. ► Carbon destruction was 30%, more

  3. An experimental investigation of microalgal dewatering efficiency of belt filter system

    Directory of Open Access Journals (Sweden)

    Anjali Sandip

    2015-11-01

    Full Text Available The objective of this study was to investigate the microalgal dewatering efficiency of a belt filter system for feed concentrations below 10 g dry wt./L. A prototype belt filtration system designed for 50 g dry wt./L microalgal feed concentration was used for this investigation. The highest concentration of microalgal suspension available for testing on the prototype belt filtration system was 6 g dry wt./L obtained from biomass settling tanks at the Lawrence, Kansas domestic wastewater treatment plant. For preparation of feed suspension with concentrations below 10 g dry wt./L, microalgal cultivation was followed by flocculation. A mixed laboratory culture of freshwater species dominated by three eukaryotic green microalgae (Chlorella vulgaris, Scenedesmus sp., and Kirchneriella sp. was cultivated in wastewater effluent. This was followed by flocculation which resulted in a microalgal feed suspension concentration of 4 g dry wt./L. Belt dewatering tests were conducted on microalgal suspensions with feed concentrations of 4 g dry wt./L and 6 g dry wt./L. The maximum microalgal recovery with the belt dewatering system was 46% from the 4 g dry wt./L, and 84% from the 6 g dry wt./L suspensions respectively. The results of this study indicate that microalgal suspension concentrations as low as 6 g dry wt./L can be recovered with a belt filter system improving the overall dewatering efficiency of the system.

  4. Detection and Occurrence of N-Nitrosamines in Archived Biosolids from the Targeted National Sewage Sludge Survey of the U.S. Environmental Protection Agency

    Science.gov (United States)

    2015-01-01

    The occurrence of eight carcinogenic N-nitrosamines in biosolids from 74 wastewater treatment plants (WWTPs) in the contiguous United States was investigated. Using liquid chromatography-tandem mass spectrometry, seven nitrosamines [(N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine, N-nitrosodi-n-propylamine (NDPA), N-nitrosodibutylamine, N-nitrosopyrrolidine, N-nitrosopiperidine (NPIP), and N-nitrosodiphenylamine (NDPhA)] were detected with varying detection frequency (DF) in 88% of the biosolids samples (n = 80), with five of the seven being reported here for the first time in biosolids. While rarely detected (DF 3%), NDMA was the most abundant compound at an average concentration of 504 ± 417 ng/g dry weight of biosolids. The most frequently detected nitrosamine was NDPhA (0.7—147 ng/g) with a DF of 79%, followed by NDPA (7–505 ng/g) and NPIP (51–1185 ng/g) at 21% and 11%, respectively. The DF of nitrosamines in biosolids was positively correlated with their respective n-octanol–water partition coefficients (R2 = 0.65). The DF and sum of mean concentrations of nitrosamines in biosolids increased with the treatment capacity of WWTPs. Given their frequent occurrence in nationally representative samples and the amount of U.S. biosolids being applied on land as soil amendment, this study warrants more research into the occurrence and fate of nitrosamines in biosolids-amended soils in the context of crop and drinking water safety. PMID:24697330

  5. The potential of public engagement in sustainable waste management: designing the future for biosolids in New Zealand.

    Science.gov (United States)

    Goven, Joanna; Lisa Langer, E R

    2009-02-01

    Strategies for beneficial use of biosolids in New Zealand and elsewhere are currently focused primarily on land application. The long-term success of these and other strategies is dependent not only on technical factors, but also on their environmental, economic, social and cultural sustainability. This paper briefly reviews the situation with respect to biosolids management in New Zealand, where land application is not yet widespread; the rise in public opposition to land application in the United States; and the biosolids industry's approach to public engagement. We argue that, at least until recently, the industry has misinterpreted the nature and meaning of public opposition and thus substituted public relations for public engagement. We argue that genuine public engagement is necessary and that its purpose cannot be to gain public acceptance for an already-decided-upon strategy. It therefore calls for humility among biosolids managers, including a willingness to open up the framing of 'the problem', to acknowledge areas of uncertainty, and to recognise the role of values in 'technical' decision-making. We then present and analyse an example of the use of the scenario workshop process for public participation in biosolids management policy in Christchurch, New Zealand, and conclude that scenario workshops and related methods represent an opportunity to enhance sustainable waste management when certain conditions are met.

  6. Tectonic controlled submarine slidings and dewatering structures

    Science.gov (United States)

    Yamamoto, Y.; Hirono, T.; Takahashi, M.

    2003-04-01

    Geologic structures associated with mass movements processes such as slumping, sliding, and creeping can be the key to understanding the tectonic or geologic constraints in the time they were formed. Because they are sensitively reflected by the paleo-topography which must be associated with active tectonics. It must be very useful if the direction of paleo-slope instability is known easily in a wide area. We paid attentions to convolute lamination and flame structure which might be associated with dewatering and loading, respectively. Some recent researches report the possibility that well regulated flame structures might be formed in relation to paleo-slope instability. However, there is an alternative idea that they were reflection of heterogeneous loading associated with ripple marks on the sandy layers. This controversy has not been settled. Accordingly, to evaluate the reliability of the relationship between formation of such structures with well regulated arrays and paleo-slope instability, the Pliocene Chikura Group in the southern part of the Boso Peninsula, central Japan, was studied. The Chikura Group overlying the Miura Group, Miocene accretionary prism, is composed of trench-fill sediments in the lowermost and of trench-slope basin sediments in the upper. The Chikura Group was deposited on an east-west extended sedimentary basin during east-west trending folds and faults development. These indicate the direction of paleo-slope in the Chikura Group due north or south. Flame structures and convolute laminations were recognized over 60 sites in the Chikura Group. They have well-regulated planar arrays which extend almost east west, perpendicular to the direction of paleo-slope instability. Some examples of such structures and slump deposit were observed in the same outcrop. Vergence of these slump deposits were toward north or south, and ridges of flame structures and convolute laminations extend east-west. Experimental study of direct imaging of

  7. Performance indicators and indices of sludge management in urban wastewater treatment plants.

    Science.gov (United States)

    Silva, C; Saldanha Matos, J; Rosa, M J

    2016-12-15

    Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine.

    Science.gov (United States)

    Ben Mordechay, Evyatar; Tarchitzky, Jorge; Chen, Yona; Shenker, Moshe; Chefetz, Benny

    2018-01-01

    Irrigation with treated wastewater (TWW) and application of biosolids to arable land expose the agro-environment to pharmaceuticals and personal care products (PPCPs) which can be taken up by crops. In this project, we studied the effect of a carrier medium (e.g., biosolids and TWW) on plant (tomato, wheat and lettuce) uptake, translocation and metabolism of carbamazepine as a model for non-ionic PPCPs. Plant uptake and bioconcentration factors were significantly lower in soils amended with biosolids compared to soils irrigated with TWW. In soils amended with biosolids and irrigated with TWW, the bioavailability of carbamazepine for plant uptake was moderately decreased as compared to plants grown in soils irrigated with TWW alone. While TWW acts as a continuous source of PPCPs, biosolids act both as a source and a sink for these compounds. Moreover, it appears that decomposition of the biosolids in the soil after amendment enhances their adsorptive properties, which in turn reduces the bioavailability of PPCPs in the soil environment. In-plant metabolism of carbamazepine was found to be independent of environmental factors, such as soil type, carrier medium, and absolute amount implemented to the soil, but was controlled by the total amount taken up by the plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Remote sensing of soybean stress as an indicator of chemical concentration of biosolid amended surface soils

    Science.gov (United States)

    Sridhar, B. B. Maruthi; Vincent, Robert K.; Roberts, Sheila J.; Czajkowski, Kevin

    2011-08-01

    The accumulation of heavy metals in the biosolid amended soils and the risk of their uptake into different plant parts is a topic of great concern. This study examines the accumulation of several heavy metals and nutrients in soybeans grown on biosolid applied soils and the use of remote sensing to monitor the metal uptake and plant stress. Field and greenhouse studies were conducted with soybeans grown on soils applied with biosolids at varying rates. The plant growth was monitored using Landsat TM imagery and handheld spectroradiometer in field and greenhouse studies, respectively. Soil and plant samples were collected and then analyzed for several elemental concentrations. The chemical concentrations in soils and roots increased significantly with increase in applied biosolid concentrations. Copper (Cu) and Molybdenum (Mo) accumulated significantly in the shoots of the metal-treated plants. Our spectral and Landsat TM image analysis revealed that the Normalized Difference Vegetative Index (NDVI) can be used to distinguish the metal stressed plants. The NDVI showed significant negative correlation with increase in soil Cu concentrations followed by other elements. This study suggests the use of remote sensing to monitor soybean stress patterns and thus indirectly assess soil chemical characteristics.

  10. [The characterization of biosolids produced by the San Fernando wastewater treatment plant in Itagui, Antioquia, Colombia].

    Science.gov (United States)

    Bedoya-Urrego, Katherine; Acevedo-Ruíz, José M; Peláez-Jaramillo, Carlos A; Agudelo-López, Sonia Del Pilar

    2013-01-01

    ABSTRACT Objective This study was aimed at evaluating pertinent physicochemical and microbiological (bacteria and parasites) parameters regarding the biosolids produced by the San Fernando wastewater treatment plant (WWTP) in Itagui, Antioquia, Colombia. Methods Twelve samples were collected and evaluated every month from January to December during 2010. The chemical, physical and microbiological tests followed the protocol described in Colombian technical guideline 5167. The protocol described in Mexican official Norm 004 (with some modifications) was used for identifying helminth ova and assessing their viability. Results All samples proved positive for Ascarislumbricoides, viable ova count ranging from 4 to 22 eggs/2gTS. Both Salmonella and Enterobacteriawere detected in all samples evaluated, the latter having 3,000 colony forming unit (CFU)/g minimum concentration. Biosolid sample values met the heavy metal concentration requirement established by national guidelines. There was no statistical association between rainfall and the pathogen's presence in the biosolids. Conclusion Our results suggested that the biosolids being produced by the San Fernando wastewater treatment plant (WWTP) could be used as organic fertilizer; however they should be treated/sanitized to meet the stipulations in Colombian technical guideline 5167.

  11. Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis.

    Science.gov (United States)

    Antunes, Elsa; Jacob, Mohan V; Brodie, Graham; Schneider, Philip A

    2017-12-01

    The contamination of water with silver has increased due to the widespread applications of products with silver employed as antimicrobial agent. Adsorption is a cost-effective method for silver removal from aqueous solution. In this study biochar, produced from the microwave assisted pyrolysis of biosolids, was used for silver removal from an aqueous solution. The adsorption kinetics, isotherms and thermodynamics were investigated to better understand the silver removal process by biochar. X-ray diffraction results demonstrated that silver removal was a combination two consecutive mechanisms, reduction and physical adsorption. The Langmuir model fitted the experimental data well, showing that silver removal was predominantly a surface mechanism. The thermodynamic investigation demonstrated that silver removal by biochar was an exothermic process. The final nanocomposite Ag-biochar (biochar plus silver) was used for methylene blue adsorption and photodegradation. This study showed the potential of using biochar produced from biosolids for silver removal as a promising solution to mitigate water pollution and an environmentally sustainable approach for biosolids management and re-use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Steroid hormones in biosolids and poultry litter: a comparison of potential environmental inputs.

    Science.gov (United States)

    Bevacqua, Christine E; Rice, Clifford P; Torrents, Alba; Ramirez, Mark

    2011-05-01

    Steroid hormones can act as potent endocrine disruptors when released into the environment. The main sources of these chemicals are thought to be wastewater treatment plant discharges and waste from animal feeding operations. While these compounds have frequently been found in wastewater effluents, few studies have investigated biosolids or manure, which are routinely land applied, as potential sources. This study assessed the potential environmental contribution of steroid hormones from biosolids and chicken litter. Hormone concentrations in samples of limed biosolids collected at a waste treatment plant over a four year period ranged from farms had averages of 41.4ng/g dry weight E1, 63.4ng/g dry weight progesterone, and 19.2ng/g dry weight E1-sulfate (E1-S). Other analytes studied were 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), testosterone, E2-3-sulfate (E2-3-S), and E2-17-sulfate (E2-17-3). Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Field Evaluation/Demonstration of a Multisegmented Dewatering System for Accreting Beach Sand in a High-Wave-Energy Environment

    National Research Council Canada - National Science Library

    Curtis, William

    1998-01-01

    This study documents the use of beach dewatering systems to accrete beach sand and minimize erosion, and to develop quantitative guidance for constructing and operating beach dewatering installations...

  14. Characterisation of Organomineral Fertilisers Derived from Nutrient-Enriched Biosolids Granules

    Directory of Open Access Journals (Sweden)

    Diogenes L. Antille

    2013-01-01

    Full Text Available Organomineral fertilisers (OMFs were produced by coating biosolids granules with urea and potash. Two OMF formulations with N : P2O5 : K2O compositions: 10 : 4 : 4 (OMF10 and 15 : 4 : 4 (OMF15 were developed for application in grassland and arable crops. Routine fertiliser analyses were conducted on four batches of OMF and biosolids granules and compared with a sample of urea to determine key physical and chemical properties of the materials which affect handling and spreading, soil behaviour, and fertiliser value. Bulk and particle densities were in the range of 608 to 618 kg m−3, and 1297 to 1357 kg m−3, respectively. Compression tests showed that OMF particles undergo deformation followed by multiple failures without disintegration of the granules when vertical load was applied. Static particle strength was between 1.18 and 4.33 N mm−2 depending on the particle diameter. The use of a model for fertiliser particle distribution studies showed that OMF granules should be between 1.10 and 5.50 mm in diameter with about 80% of the particles in the range of 2.25 to 4.40 mm to enable application at 18 m tramline spacing. This research utilises novel technology to improve the fertiliser value of biosolids, reduce disposal costs, and deliver a range of environmental benefits associated with recycling.

  15. Dewatering cuts drilling mud and disposal costs

    International Nuclear Information System (INIS)

    West, G.; Pharis, B.

    1991-01-01

    This paper reports on rig site dewatering of drilling fluids with recycling of processed water that can help an operator to comply with environmental rules by reducing volumes of waste and reducing long term liabilities. It can also reduce disposal costs and provide a cleaner drill site overall. Rig site dewatering is the process of injecting coagulants or flocculating chemicals into the mud entering a large clarifying centrifuge. This coagulates the fine, drilled particles allowing them to be separated from the fluid which can then be handled separately. Most of the environmental concerns during the 1980s involved hazardous materials and toxic wastes. Drilling fluids, many of which are chemically benign, have escaped many of the difficult-to-comply-with rules and regulations. During the 1990s, however, operators may be required to submit a written plan for liquid waste reduction for even nonhazardous materials. Many states and local agencies may institute total bans on oil field wastes. Drilling rigs typically produce about 1 bbl of liquid waste for every 1 ft of hole drilled. Thus, a typical drilling operation can produce a large quantity of waste

  16. Waste water from dewatering of peat

    International Nuclear Information System (INIS)

    Ringqvist, L.; Bergner, K.; Olsson, Tommy; Bystroem, P.

    1991-01-01

    The influence of waste water from mechanical dewatering of peat was tested on two species of stream invertebrates. We compared the effects of waste water from peat without any chemical treatment, and waste water from peat where one of the following treatments of the peat had preceded dewatering; a: acidification combined with addition of the cationic polymer Zetag 78 FS40, b: addition of aluminium in combination with the anionic polymer Magnafloc E10, c: polymerisation of the peat by acidification and addition of ferrous chloride and hydrogen peroxide. Waste water from Al/Magnafloc and from the polymerisation treatments had a higher content of suspended matter and a higher oxygen demand than those of other treatments. Total metal content of the water from all treatments was higher than in water from non-treated peat. Survival and growth of nymphs of the mayfly Heptagenia fuscogrisa and the stonefly Nemoura cinerea were compared in waste water from the different treatments. In all tests, the waste water was diluted to 5% (volume) with unchlorinated tapwater and pH was between 7.0-8.0 in all treatments during the experiment. The nymphs were fed with birch leaves that had been incubated in natural stream water for one month. Under these conditions, we did not find any significant effect of waste water on either survival or growth of these two species

  17. Characteristics of sustainable bio-solid fuel produced from sewage sludge as a conventional fuel substitute

    International Nuclear Information System (INIS)

    Jung, Bongjin; Nam, Wonjun; Lee, Na-Yeon; Kim, Kyung-Hoon

    2010-01-01

    Safely final disposal of sewage sludge which is being increased every year has already become serious problems. As one of the promising technologies to solve this problem, thermal drying method has been attracting wide attention due to energy recovery from sewage sludge. This paper describes several characteristics of sustainable bio-solid fuel, as a conventional fuel substitute, produced from sewage sludge drying and granulation plant having the treatment capacity of 10 ton/ day. This plant has been successfully operated many times and is now designing for scale-up. Average moisture content of twelve kinds of bio-solid fuels produced from the plant normally less than 10 wt% and average shape of them is mainly composed of granular type having a diameter of 2-8 mm for easy handling and transportation to the final market destinations. Average higher heating value, which is one of the important properties to estimate the possibility of available energy, of bio-solid fuels is about 3800 kcal/ kg as dry basis. So they can be utilized to supply energy in the coal power plant and cement kiln etc. as a conventional fuel substitute for a beneficial reuse. Characteristics including proximate analysis, ultimate analysis, contents of heavy metals, wettability etc. of bio-solid fuels have been also analyzed for the environmentally safe re utilization. (author)

  18. Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering.

    Science.gov (United States)

    Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu

    2018-04-01

    The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Contaminant risks from biosolids land application Contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia

    International Nuclear Information System (INIS)

    Bright, D.A.; Healey, N.

    2003-01-01

    The risks of organic contaminants in sewage sludges are evaluated. - This study examines the potential for environmental risks due to organic contaminants at sewage sludge application sites, and documents metals and various potential organic contaminants (volatile organics, chlorinated pesticides, PCBs, dioxins/furans, extractable petroleum hydrocarbons, PAHs, phenols, and others) in current production biosolids from five wastewater treatment plants (WWTPs) within the Greater Vancouver Regional District (GVRD). There has been greater focus in Europe, North America and elsewhere on metals accumulation in biosolids-amended soil than on organic substances, with the exception of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Another objective, therefore, was to evaluate the extent to which management of biosolids re-use based on metal/metalloid levels coincidentally minimizes environmental risks from organic contaminants. Historical-use contaminants such as chlorophenols, PCBs, and chlorinated pesticides were not detected at environmentally relevant concentrations in any of the 36 fresh biosolids samples, and appear to have virtually eliminated from sanitary collection system inputs. The few organic contaminants found in freshly produced biosolids samples that exhibited high concentrations relative to British Columbia and Canadian soil quality benchmarks included p-cresol, phenol, phenanthrene, pyrene, naphthalene, and heavy extractable petroleum hydrocarbons (HEPHs-nCl9-C34 effective carbon chain length). It was concluded that, with the exception of these petroleum hydrocarbon constituents or their microbial metabolites, the mixing of biosolids with uncontaminated soils during land application and based on the known metal concentrations in biosolids from the Greater Vancouver WWTPs investigated provides adequate protection against the environmental risks associated with organic substances such as dioxins and furans, phthalate esters, or volatile

  20. Beneficial reuse of precast concrete industry sludge to produce alkaline stabilized biosolids.

    Science.gov (United States)

    Gowda, C; Seth, R; Biswas, N

    2008-01-01

    The precast concrete industry generates waste called concrete sludge during routine mixer tank washing. It is highly alkaline and hazardous, and typically disposed of by landfilling. This study examined the stabilization of municipal sewage sludge using concrete sludge as an alkaline agent. Sewage sludge was amended with 10 to 40% of concrete sludge by wet weight, and 10 and 20% of lime by dry weight of the sludge mix. Mixes containing 30 and 40% of concrete sludge with 20% lime fulfilled the primary requirements of Category 1 and 2 (Canada) biosolids of maintaining a pH of 12 for at least 72 hours. The heavy metals were below Category 1 regulatory limits. The 40% concrete sludge mix was incubated at 52 degrees C for 12 of the 72 hours to achieve the Category 1 and 2 regulations of less than 1000 fecal coliform/g solids. The nutrient content of the biosolids was 8.2, 10 and 0.6 g/kg of nitrogen, phosphorus and potassium respectively. It can be used as a top soil or augmented with potassium for use as fertilizer. The study demonstrates that concrete sludge waste can be beneficially reused to produce biosolids, providing a long-term sustainable waste management solution for the concrete industry.

  1. Long-term use of biosolids as organic fertilizers in agricultural soils: potentially toxic elements occurrence and mobility.

    Science.gov (United States)

    Marguí, E; Iglesias, M; Camps, F; Sala, L; Hidalgo, M

    2016-03-01

    The presence of potentially toxic elements (PTEs) may hinder a more widespread application of biosolids in agriculture. At present, the European Directive 86/278/CEE limit the total concentrations of seven metals (Cu, Cr, Ni, Pb, Zn, Cd and Hg) in agricultural soils and in sewage sludges used as fertilizers but it has not taken into consideration the potential impacts of other emerging micropollutants that may be present in the biosolids as well as their mobility. The aim of this study was to evaluate the accumulation and mobility of 13 elements (including regulated metals and other inorganic species) in agricultural soils repeatedly amended with biosolids for 15 years. Firstly, three digestions programs using different acid mixtures were tested to evaluate the most accurate and efficient method for analysis of soil and sludge. Results demonstrated that sewage sludge application increased concentrations of Pb and Hg in soil, but values did not exceed the quality standard established by legislation. In addition, other elements (As, Co, Sb, Ag, Se and Mn) that at present are not regulated by the Spanish and European directives were identified in the sewage sludge, and significant differences were found between Ag content in soils amended with biosolids in comparison with control soils. This fact can be related to the increasing use of silver nanoparticles in consumer products due to their antibacterial properties. Results from the leaching tests show up that, in general, the mobility degree for both regulated and non-regulated elements in soils amended with biosolids was quite low (<10 %).

  2. Influence of biochar on volatile fatty acids accumulation and microbial community succession during biosolids composting.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Awasthi, Sanjeev Kumar; Wang, Quan; Wang, Zhen; Lahori, Altaf Hussain; Ren, Xiuna; Chen, Hongyu; Wang, Meijing; Zhao, Junchao; Zhang, Zengqiang

    2018-03-01

    The impact of biochar amendment on volatile fatty acids (VFAs) and odor generation during the biosolids-wheat straw composting was investigated. Five treatments were design using the same mixture of biosolids-wheat straw with different dosage of biochar blending (2%, 4%, 8% and 12% on dry weight basis) and without biochar applied treatment served as control. The results of VFAs and Odour Index (OI) profile designated that compost with 8-12% biochar became more rapidly humified with less quantity of VFAs and OI generation content compared to control. Consequently, the VFAs degrading and total bacterial abundance are also significantly higher recorded in 8-12% biochar than 2% biochar and control. In addition, 8-12% biochar applied treatment has significantly maximum close correlation among the all physicochemical and gaseous emission parameters. Finally, results designated that higher dosage of biochar (8-12% biochar) was more feasible approach for biosolids composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ecotoxicological assessment of dewatered drinking water treatment residue for environmental recycling.

    Science.gov (United States)

    Yuan, Nannan; Wang, Changhui; Wendling, Laura A; Pei, Yuansheng

    2017-09-01

    The beneficial recycle of drinking water treatment residue (DWTR) in environmental remediation has been demonstrated in many reports. However, the lack of information concerning the potential toxicity of dewatered DWTR hinders its widespread use. The present study examined the ecotoxicity of dewatered aluminum (Al) and iron (Fe) DWTR leachates to a green alga, Chlorella vulgaris. Data from the variations of cell density and chlorophyll a content suggested that algal growth in DWTR leachates was inhibited. The algal cellular oxidation stress was initially induced but completely eliminated within 72 h by antioxidant enzymes. The expression of three photosynthesis-related algae genes (psaB, psbC, and rbcL) also temporarily decreased (within 72 h). Moreover, the algal cells showed intact cytomembranes after exposure to DWTR leachates. Further investigation confirmed that inhibition of algal growth was due to DWTR-induced phosphorus (P) deficiency in growth medium, rather than potentially toxic contaminants (e.g. copper and Al) contained in DWTR. Interestingly, the leachates could potentially promote algal growth via increasing the supply of new components (e.g. calcium, kalium, magnesium, and ammonia nitrogen) from DWTR. In summary, based on the algae toxicity test, the dewatered Fe/Al DWTR was nontoxic and its environment recycling does not represent an ecotoxicological risk to algae.

  4. Use of nuclear receptor luciferase-based bioassays to detect endocrine active chemicals in a biosolids-biochar amended soil.

    Science.gov (United States)

    Anderson, Carolyn G; Joshi, Geetika; Bair, Daniel A; Oriol, Charlotte; He, Guochun; Parikh, Sanjai J; Denison, Michael S; Scow, Kate M

    2017-08-01

    Biosolids are a potentially valuable source of carbon and nutrients for agricultural soils; however, potential unintended impacts on human health and the environment must be considered. Virtually all biosolids contain trace amounts endocrine-disrupting chemicals derived from human use of pharmaceuticals and personal care products (PPCPs). One potential way to reduce the bioavailability of PPCPs is to co-apply biosolids with biochar to soil, because biochar's chemical (e.g., aromaticity) and physical properties (e.g., surface area) give it a high affinity to bind many organic chemicals in the environment. We developed a soil-specific extraction method and utilized a luciferase-based bioassay (CALUX) to detect endocrine active chemicals in a biosolids-biochar co-amendment soil greenhouse study. Both biochar (walnut shell, 900 °C) and biosolids had positive impacts on carrot and lettuce biomass accumulation over our study period. However, the walnut shell biochar stimulated aryl hydrocarbon receptor activity, suggesting the presence of potential endocrine active chemicals in the biochar. Since the biochar rate tested (100 t ha -1 ) is above the average agronomic rate (10-20 t ha -1 ), endocrine effects would not be expected in most environmental applications. The effect of high temperature biochars on endocrine system pathways must be explored further, using both quantitative analytical tools to identify potential endocrine active chemicals and highly sensitive bioanalytical assays such as CALUX to measure the resulting biological activity of such compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Brominated flame retardants in U.S. biosolids from the EPA national sewage sludge survey and chemical persistence in outdoor soil mesocosms

    Science.gov (United States)

    Venkatesan, Arjun K.; Halden, Rolf U.

    2014-01-01

    We determined national baseline levels and release inventories of 77 traditional and novel brominated flame retardants (BFRs) in biosolids composites (prepared from 110 samples) from the U.S. Environmental Protection Agency’s 2001 national sewage sludge survey (NSSS). Additionally, analyses were performed on archived samples from a 3-year outdoor mesocosm study to determine the environmental persistence of BFRs in biosolids-amended soil. The total polybrominated diphenylether (PBDE) concentration detected in biosolids composites was 9,400±960 μg/kg dry weight, of which deca-BDE constituted 57% followed by nona- and penta-BDE at 18 and 13%, respectively. The annual mean loading rate estimated from the detected concentrations and approximate annual biosolids production and disposal numbers in the U.S., of the sum of PBDEs and non-BDE BFRs was calculated to be 47,900–60,100 and 12,900–16,200 kg/year, of which 24,000–36,000 and 6,400–9,700 kg/year are applied on land, respectively. Mean concentration of PBDEs were higher in the 2001 samples compared to levels reported in EPA’s 2006/7 Targeted NSSS, reflecting on-going efforts in phasing-out PBDEs in the U.S. In outdoor soil mesocosms, >99% of the initial BFRs mass in the biosolids/soil mixtures (1:2) persisted over the monitoring duration of three years. Estimates of environmental releases may be refined in the future by analyzing individual rather than composited samples, and by integrating currently unavailable data on disposal of biosolids on a plant-specific basis. This study informs the risk assessment of BFRs by furnishing national inventories of BFR occurrence and environmental release via biosolids application on land. PMID:24607311

  6. Pervaporation applied for dewatering of reaction mixture during esterification

    Directory of Open Access Journals (Sweden)

    Krasiński Andrzej

    2016-03-01

    Full Text Available In this work the esterification of diethyl tartrate was studied. The research was focused on the enhancement of reversible reaction yield, which is accomplished by dewatering of the reaction mixture. The removal of water shifts the equilibrium towards the main product. Pervaporation was applied for this purpose, and results were compared to distillation. The advantages and limitations of both processes are discussed. The experimental part consists of dewatering of mixture after the reaction had reached the equilibrium, and was subsequently fed to the test rig equipped with a single zeolite membrane purchased from Pervatech B.V. Results show a significant conversion increase as a result of water removal by pervaporation. Compared to distillation no addition of organics is necessary to efficiently remove water above the azeotrope. Nevertheless, some limitations and issues which call for optimisation are pointed out. A simple numerical model is proposed to support design and sizing of the pervaporation system. Various modes of integrated system operation are also briefly discussed.

  7. Centrifugal dewatering of acid casein curd: effect of casein manufacturing and centrifugation variables on curd compression in a laboratory centrifuge.

    Science.gov (United States)

    Munro, P A; Van Til, H J

    1988-10-20

    Data relevant to curd compression in a horizontal, solid bowl decanter centrifuge have been obtained by studying the dewatering of acid casein curd in a batch laboratory centrifuge. Analysis of curd compression under centrifugal force predicts a moisture content gradient in the dewatered curd from a maximum at the curd-liquid interface to a minimum at the centrifuge bowl wall. This moisture content gradient was also measured experimentally, and its practical implications are discussed. Increases in centrifugal force, centrifugation time, and centrifugation temperature all caused a marked de crease in dewatered curd moisture content, whereas in creases in precipitation pH and maximum washing temperature caused a smaller decrease in dewatered curd moisture content.

  8. Dewatering of ultrafine coal: Final report, August 1984-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Shiao-Hung; Klinzing, G.E.; Morsi, B.I.; Tierney, J.W.; Badgujar, M.; Binkley, T.; Cheng, Yisun; Huang, Suxuan; Qamar, I.; Venkatadri, R.

    1986-12-01

    The surfactant, Aerosol-OT, was used to wash distilled water cakes. In previous studies, cakes were washed with Triton X-114. The dewatering performance and influence on cake structure of the two reagents are compared. Also, filter cakes were analyzed using an image analysis system and micrographic analysis of coal particles was initiated. In the area of theoretical modelling, the concept of bond-flow correlation greatly improved the network model predicting the experimental desaturation curves. Predicted results for treated cakes suggested that the effect of the presence of surface-active agents was adequately accounted for. The effects of the various operating conditions on the filtration/dewatering characteristics of the 10 ..mu..m coal particles were assessed and comparisons with the -32 mesh coal were made as to its trends in response to changes in the operating conditions. 20 refs., 75 figs., 17 tabs.

  9. IMPLICATIONS OF BIOSOLIDS/COMPOST UTILIZATION ON THE RISK OF SOIL METALS

    Science.gov (United States)

    This presentation summarizes the current work on the fundamental changes in soil mineralogical accomplished by additions of biosolids and P to the system which results in changes in phytoavailability/bioavailability. The concepts of phytoavailability/bioavailability are rather s...

  10. Influence of thermal hydrolysis-anaerobic digestion treatment of wastewater solids on concentrations of Triclosan, Triclocarban, and their transformation products in biosolids

    Science.gov (United States)

    The growing concern worldwide regarding the presence of emerging contaminants in biosolids calls for a better understanding of how different treatment technologies at water resource recovery facilities (WRRFs) can influence concentrations prior to biosolids land application. This study focuses on t...

  11. Dewatering tailings impoundments : interior drains

    International Nuclear Information System (INIS)

    Charlie, W.A.; Doehring, D.O.; Durnford, D.S.

    1984-01-01

    For the design of a new uranium tailings impoundment in the western United States, it was proposed that an interior drainage system be considered to economically and reliably minimize potential short- and long-term environmental impacts. The objectives were to decrease the effective hydraulic head on the clay liner, to dewater and stabilize the tailings, and to increase the amount of water recycled to the mill. In addition, desaturation of the impoundment would induce capillary pressure (negative porewater pressure), further reducing the potential movement of dissolved pollutants. This paper presents saturated and unsaturated seepage principles and reviews the concept, criteria and design of the various interior drainage systems considered

  12. Released fraction of polychlorinated biphenyls from soil-biosolid system using a leaching procedure and its comparison with bioavailable fraction determined by wheat plant uptake.

    Science.gov (United States)

    Jachero, Lourdes; Leiva, Claudio; Ahumada, Inés; Richter, Pablo

    2017-11-01

    The bioavailability of polychlorinated biphenyls (PCBs) in soils amended with biosolids was estimated using an aqueous leaching process of the compounds combined with rotating disk sorptive extraction (RDSE), and compared with bioavailability determined through of PCB absorption in wheat plants growing in the same soil-biosolid matrix. The matrices consisted of soil amended with biosolids at doses of 30, 90, and 200 Mg/ha, which increase concomitantly the organic matter content of the matrix. Considering that PCBs were natively absent in both the biosolids and soil used, the compounds were spiked in the biosolids and aged for 10 days. For each biosolid dose, the aqueous leaching profile was studied and equilibrium time was calculated to be 33 h. The leaching fractions determined by RDSE, considering total PCBs studied, were 12, 7, and 6% and the bioavailable fractions absorbed by the wheat root were found to be 0.5, 0.3, and 0.2% for 30, 90, and 200 Mg/ha doses, respectively. Both fractions leachable and bioavailable decrease with both increasing hydrophobicity of the compound (Kow) and increasing in the biosolid dose. It was found that both fractions (leaching and bioavailable) correlated according to the bivariate least squares regression, represented by a coefficient of correlation of 0.86. Therefore, the application of the chemical method involving a leaching procedure is an alternative to estimate the bioavailable fraction of PCBs in wheat plants in a simpler and in a shorter time.

  13. Locally produced natural conditioners for dewatering of faecal sludge.

    Science.gov (United States)

    Gold, Moritz; Dayer, Pauline; Faye, Marie Christine Amie Sene; Clair, Guillaume; Seck, Alsane; Niang, Seydou; Morgenroth, Eberhard; Strande, Linda

    2016-11-01

    In urban areas of low-income countries, treatment of faecal sludge (FS) is insufficient or non-existent. This results in large amounts of FS being dumped into the environment. Existing treatment technologies for FS, such as settling-thickening tanks and drying beds, are land intensive which is limiting in urban areas. Enhanced settling and dewatering by conditioning was evaluated in order to reduce the treatment footprint (or increase treatment capacity). Conventional wastewater conditioners, such as commercially available lime and polymers, are expensive, and commonly rely on complex supply chains for use in low-income countries. Therefore, the treatment performance of five conditioners which could be produced locally was evaluated: Moringa oleifera seeds and press cake, Jatropha curcas seeds, Jatropha Calotropis leaves and chitosan. M. oleifera seeds and press cake, and chitosan improved settling and dewatering and had a similar performance compared to lime and polymers. Optimal dosages were 400-500 kg M. oleifera/t TS, 300-800 kg lime/t TS and 25-50 kg polymer solution/t TS. In comparison, chitosan required 1.5-3.75 kg/t TS. These dosages are comparable to those recommended for wastewater (sludge). The results indicate that conditioning of FS can reduce total suspended solids (TSS) in the effluent of settling-thickening tanks by 22-81% and reduce dewatering time with drying beds by 59-97%. This means that the area of drying beds could be reduced by 59-97% with end-use as soil conditioner, or 9-26% as solid fuel. Least expensive options and availability will depend on the local context. In Dakar, Senegal, chitosan produced from shrimp waste appears to be most promising.

  14. Beneficial effect of mixture of additives amendment on enzymatic activities, organic matter degradation and humification during biosolids co-composting.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Awasthi, Sanjeev Kumar; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Zhang, Zengqiang

    2018-01-01

    The objective of this study was to identify the effect of mixture of additives to improve the enzymatic activities, organic matter humification and diminished the bioavailability of heavy metals (HMs) during biosolids co-composting. In this study, zeolite (Z) (10%, 15% and 30%) with 1%lime (L) (dry weight basis of biosolids) was blended into the mixture of biosolids and wheat straw, respectively. The without any amendment and 1%lime applied treatments were run for comparison (Control). The Z+L addition resulted rapid organic matter degradation and humification with maximum enzymatic activities. In addition, higher dosage of Z+1%L amendment reduced the bioavailability of HMs (Cu and Zn) and improved the end product quality as compared to control and 1%L applied treatments. However, the 30%Z+1%L applied treatment showed maximum humification and low bioavailability of HMs but considering the economic feasibility and compost quality results, the treatment with 10%Z+1%L is recommended for biosolids co-composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance.

    Science.gov (United States)

    Jin, Lingyun; Zhang, Guangming; Zheng, Xiang

    2015-02-01

    A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.

  16. Full-scale performance of selected starch-based biodegradable polymers in sludge dewatering and recommendation for applications.

    Science.gov (United States)

    Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias

    2018-01-01

    Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.

  17. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge

    DEFF Research Database (Denmark)

    Hansen, H.K.; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2003-01-01

    . Casagrande's coefficients were determined for the four materials at different water contents. The experiments in this work showed that chalk could be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM by electroosmosis....... The process was not optimised indicating that higher dry matter contents could be achieved by electroosmosis. It was possible to relate Casagrande's coefficient directly to the electroosmotic coefficient obtained by dewatering experiments....

  18. Model test on partial expansion in stratified subsidence during foundation pit dewatering

    Science.gov (United States)

    Wang, Jianxiu; Deng, Yansheng; Ma, Ruiqiang; Liu, Xiaotian; Guo, Qingfeng; Liu, Shaoli; Shao, Yule; Wu, Linbo; Zhou, Jie; Yang, Tianliang; Wang, Hanmei; Huang, Xinlei

    2018-02-01

    Partial expansion was observed in stratified subsidence during foundation pit dewatering. However, the phenomenon was suspected to be an error because the compression of layers is known to occur when subsidence occurs. A slice of the subsidence cone induced by drawdown was selected as the prototype. Model tests were performed to investigate the phenomenon. The underlying confined aquifer was generated as a movable rigid plate with a hinge at one end. The overlying layers were simulated with remolded materials collected from a construction site. Model tests performed under the conceptual model indicated that partial expansion occurred in stratified settlements under coordination deformation and consolidation conditions. During foundation pit dewatering, rapid drawdown resulted in rapid subsidence in the dewatered confined aquifer. The rapidly subsiding confined aquifer top was the bottom deformation boundary of the overlying layers. Non-coordination deformation was observed at the top and bottom of the subsiding overlying layers. The subsidence of overlying layers was larger at the bottom than at the top. The layers expanded and became thicker. The phenomenon was verified using numerical simulation method based on finite difference method. Compared with numerical simulation results, the boundary effect of the physical tests was obvious in the observation point close to the movable endpoint. The tensile stress of the overlying soil layers induced by the underlying settlement of dewatered confined aquifer contributed to the expansion phenomenon. The partial expansion of overlying soil layers was defined as inversed rebound. The inversed rebound was induced by inversed coordination deformation. Compression was induced by the consolidation in the overlying soil layers because of drainage. Partial expansion occurred when the expansion exceeded the compression. Considering the inversed rebound, traditional layer-wise summation method for calculating subsidence should be

  19. Fundamental study for improvement of dewatering of fine coal/refuse. Final report, August 1981-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, S.H.; Klinzing, G.E.; Morsi, B.I.; Tierney, J.W.; Binkley, T.; Chi, S.M.; Huang, S.; Qamar, I.; Venkatadri, R.

    1984-12-01

    Fine coal in slurry form must be dewatered to minimize handling and transportation problems and be reduced to a desirable level for subsequent preparation of coal/water mixtures as a substitute utility fuel. The current practice is inadequate for the dewatering of fine coal, particularly for coal particles with sizes smaller than 400 mesh. Therefore, it is most desirable to develop improved mechanical methods for reducing the moisture content of fine coal. In the light of this, a fundamental study of the dewatering of fine coal/refuse was initiated in June 1979 and continued through 1984. The overall objective of the study is to seek improved methods of dewatering through a better understanding of the filtration and post-filtration processes. As a first step, efforts have been focused on the mechanism of dewatering in terms of the basic properties of coal (and refuse) particles and the microstructures of filter cakes, and their relations to filtration rate and final moisture content. Pittsburgh seam-Bruceton Mine coal was used as a base coal. During the past year, filter cakes from coals with widely varying size ranges were micrographically characterized. The effects of a number of surface active agents and of entrapped air bubbles on the filter cake properties were also studied. Modules of the network model for calculating single phase and two phase permeabilities were formulated and tested. The report is divided into four parts: summary and deliverables; work forecast for 1984-1985; detailed description of technical progress; and appendices. 21 refs., 55 figs., 17 tabs.

  20. Cleaning and dewatering fine coal

    Science.gov (United States)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    2017-10-17

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.

  1. Effect of biosolids application on soil chemical properties and uptake ...

    African Journals Online (AJOL)

    Effect of biosolids application on soil chemical properties and uptake of some heavy metals by Cercis siliquastrum. ... and municipal solid waste compost (50% CM + 50% MC) at three levels of 0, 2.5 and 5 kg/shrub and three replicates in calcareous sandy loam soil at the botanical garden of Mobarekeh steel company.

  2. Rapid determination of natural and synthetic hormones in biosolids and poultry manure by isotope dilution GC-MS/MS.

    Science.gov (United States)

    Albero, Beatriz; Sánchez-Brunete, Consuelo; Miguel, Esther; Aznar, Ramón; Tadeo, José L

    2014-04-01

    The release of hormones into the environment due to land application of biosolids and manure is a cause of concern for their potential impacts. This paper presents the development of a rapid and sensitive method, based on extraction, for the analysis of 13 hormones in biosolids and poultry manure. A simultaneous derivatization of hydroxyl and ketone groups was carried out for the determination of hormones by GC–MS/MS. The method was validated in three matrices (sewage sludge, manure, and broiler litter). Recoveries from spiked samples at three concentration levels (50, 25, and 10 ng/g) ranged from 76 to 124% with relative SDs ≤ 16%. Method detection limits for the three matrices were in the range of 0.5–3.0 ng/g dry weight. The optimized method was applied to biosolid and poultry manure samples collected in Spain. Only seven of the 13 studied hormones were detected in the different samples. trans-Androsterone was detected at high levels (up to 3.1 μg/g in biosolid samples). Estrone and estradiol were the two hormones detected at higher levels in layer manure, whereas estrone and 4-androstene-3,17-dione presented the highest levels in broiler litter.

  3. Effect of biosolids application on the growth of Jacaranda mimosifolia (Gualanday) and under physical and chemical conditions of a degraded soil

    International Nuclear Information System (INIS)

    Ramirez, R; Velasquez, D C; Acosta, E

    2007-01-01

    The biosolids are organic materials, derived from wastewater treatment of domestic and industrial sewage. one of the main problems of wastewater treatment plants is the final destination of the biosolids, their deposit in sanitary fillers, the incineration and land application are the main methods of dispose; the first two methods are expensive, while the last one, is gaining acceptance, because the biosolids are a resource that can be used as supplementary organic fertilizer. furthermore, land application of biosolids can help to improve declined soil fertility in degraded soils, but it can be generated contamination problems. the aims of this study were to investigate the effect of biosolids application on the growth of Jacaranda mimosifolia (Gualanday) and the changes on physical and chemical conditions of a degraded soil. this arboreal specie was planted in a degraded soil amended with biosolids, and was grown in a greenhouse. the treatments corresponded to contents of organic matter in the mixture (soil-biosolid) of 0 %, 2 %, 4 % and 8 %, in a completely randomized design with four treatments and ten replications. monthly samplings were realized to get information about the variables: survival height and diameter of stem, and number of leaves. the dry biomass was evaluated at the end of the study. the physical and chemical analyses were made at the beginning of the experiment and three months later. the chemical analyses included ph, oxidable organic carbon, Al, Ca, Mg, K, Fe, Mn, Cu, Zn, P, S, B, N0 3 , NH 4 + , and the physical analyses included aggregate stability, bulk density, real water retention. the statistical analysis between treatments was realized every month, by analysis of variance and Duncan's multiple range test, using a 95 % confidence level. the treatment with a 2 % of organic matter was not affected the plant growth and was similar with the untreated control. The treatments with a 4 % and 8 % of organic matter caused a lower survival a lower

  4. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water.

    Science.gov (United States)

    Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Fang, Min; Czajkowski, Kevin P

    2010-08-15

    Many pharmaceuticals and personal care products (PPCPs) are commonly found in biosolids and effluents from wastewater treatment plants. Land application of these biosolids and the reclamation of treated wastewater can transfer those PPCPs into the terrestrial and aquatic environments, giving rise to potential accumulation in plants. In this work, a greenhouse experiment was used to study the uptake of three pharmaceuticals (carbamazepine, diphenhydramine, and fluoxetine) and two personal care products (triclosan and triclocarban) by an agriculturally important species, soybean (Glycine max (L.) Merr.). Two treatments simulating biosolids application and wastewater irrigation were investigated. After growing for 60 and 110 days, plant tissues and soils were analyzed for target compounds. Carbamazepine, triclosan, and triclocarban were found to be concentrated in root tissues and translocated into above ground parts including beans, whereas accumulation and translocation for diphenhydramine and fluoxetine was limited. The uptake of selected compounds differed by treatment, with biosolids application resulting in higher plant concentrations, likely due to higher loading. However, compounds introduced by irrigation appeared to be more available for uptake and translocation. Degradation is the main mechanism for the dissipation of selected compounds in biosolids applied soils, and the presence of soybean plants had no significant effect on sorption. Data from two different harvests suggest that the uptake from soil to root and translocation from root to leaf may be rate limited for triclosan and triclocarban and metabolism may occur within the plant for carbamazepine.

  5. Generalized first-order kinetic model for biosolids decomposition and oxidation during hydrothermal treatment.

    Science.gov (United States)

    Shanableh, A

    2005-01-01

    The main objective of this study was to develop generalized first-order kinetic models to represent hydrothermal decomposition and oxidation of biosolids within a wide range of temperatures (200-450 degrees C). A lumping approach was used in which oxidation of the various organic ingredients was characterized by the chemical oxygen demand (COD), and decomposition was characterized by the particulate (i.e., nonfilterable) chemical oxygen demand (PCOD). Using the Arrhenius equation (k = k(o)e(-Ea/RT)), activation energy (Ea) levels were derived from 42 continuous-flow hydrothermal treatment experiments conducted at temperatures in the range of 200-450 degrees C. Using predetermined values for k(o) in the Arrhenius equation, the activation energies of the various organic ingredients were separated into 42 values for oxidation and a similar number for decomposition. The activation energy values were then classified into levels representing the relative ease at which the organic ingredients of the biosolids were oxidized or decomposed. The resulting simple first-order kinetic models adequately represented, within the experimental data range, hydrothermal decomposition of the organic particles as measured by PCOD and oxidation of the organic content as measured by COD. The modeling approach presented in the paper provide a simple and general framework suitable for assessing the relative reaction rates of the various organic ingredients of biosolids.

  6. Acceleration of organic removal and electricity generation from dewatered oily sludge in a bioelectrochemical system by rhamnolipid addition.

    Science.gov (United States)

    Zhang, Yunshu; Zhao, Qingliang; Jiang, Junqiu; Wang, Kun; Wei, Liangliang; Ding, Jing; Yu, Hang

    2017-11-01

    Conversion of biomass energy of dewatered oily sludge to electricity is the rate-limiting process in bioelectrochemical system (BES). In this study, 2mgg -1 rhamnolipids were added to dewatered oily sludge, resulting in a significant enhancement in maximum power density from 3.84±0.37 to 8.63±0.81Wm -3 , together with an increase in total organic carbon (TOC) and total petroleum hydrocarbon (TPH) removal from 24.52±4.30 to 36.15±2.79mgg -1 and 29.51±3.30 to 39.80±2.47mgg -1 , respectively. Rhamnolipids can also enhance the solubilization and promote the hydrolysis of dewatered oily sludge with increases in SOCD from 14.93±2.44 to 18.40±0.08mgg -1 and VFAs from 1.02±0.07 to 1.39±0.12mgg -1 . Furthermore, bacteria related to substrate degradation were predominant in dewatered oily sludge, and bacteria related to the sulfate/sulfide cycle were significantly enriched by rhamnolipid addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of phytoextraction on heavy metal concentrations and pH of pore-water of biosolids determined using an in situ sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, T.T. [Applied Ecology Research Group, School of Botany, University of Melbourne, Parkville, VIC 3010 (Australia)], E-mail: t.huynh11@pgrad.unimelb.edu.au; Laidlaw, W.S. [Applied Ecology Research Group, School of Botany, University of Melbourne, Parkville, VIC 3010 (Australia); Singh, B. [Faculty of Agriculture, Food and Natural Resources, University of Sydney, Sydney, NSW 2006 (Australia); Gregory, D. [Research and Technology Division, Melbourne Water, Melbourne, VIC 3001 (Australia); Baker, A.J.M. [Applied Ecology Research Group, School of Botany, University of Melbourne, Parkville, VIC 3010 (Australia)

    2008-12-15

    Heavy metal concentrations and pH of pore-water in contaminated substrates are important factors in controlling metal uptake by plants. We investigated the effects of phytoextraction on these properties in the solution phase of biosolids and diluted biosolids in a 12-month phytoextraction column experiment. Phytoextraction using Salix and Populus spp. temporarily decreased pore-water pH of the substrates over the experimental period followed by a return to initial pH conditions. Salix x reichardtii and Populus balsamifera effectively extracted Ni, Zn and Cd and actively mobilized these metals from the solid to the solution phase. S. x reichardtii had the stronger effect on mobilization of metals due to its larger root system. Phytoextraction did not affect Cu in the solution phase of the biosolids. Heavy metals were leached down to lower depths of the columns during the phytoextraction process. - Salix x reichardtii and Populus balsamifera extracted Ni, Zn and Cd and mobilized these metals in biosolids during phytoextraction.

  8. Effects of phytoextraction on heavy metal concentrations and pH of pore-water of biosolids determined using an in situ sampling technique

    International Nuclear Information System (INIS)

    Huynh, T.T.; Laidlaw, W.S.; Singh, B.; Gregory, D.; Baker, A.J.M.

    2008-01-01

    Heavy metal concentrations and pH of pore-water in contaminated substrates are important factors in controlling metal uptake by plants. We investigated the effects of phytoextraction on these properties in the solution phase of biosolids and diluted biosolids in a 12-month phytoextraction column experiment. Phytoextraction using Salix and Populus spp. temporarily decreased pore-water pH of the substrates over the experimental period followed by a return to initial pH conditions. Salix x reichardtii and Populus balsamifera effectively extracted Ni, Zn and Cd and actively mobilized these metals from the solid to the solution phase. S. x reichardtii had the stronger effect on mobilization of metals due to its larger root system. Phytoextraction did not affect Cu in the solution phase of the biosolids. Heavy metals were leached down to lower depths of the columns during the phytoextraction process. - Salix x reichardtii and Populus balsamifera extracted Ni, Zn and Cd and mobilized these metals in biosolids during phytoextraction

  9. VOLATILE ORGANO-METALLOIDS IN BIO-SOLID MATERIALS: ANALYSIS BY VACUUM DISTILLATION-GC/MS

    Science.gov (United States)

    An analytical method based on vacuum distillation-gas chromatography-mass spectrometry (VD-GC-MS)was developed for determining volatile organo-metalloid contaminants in bio-solid materials. Methodperformance was evaluated for dimethylselenide (DMSe), dimethyldisel...

  10. Transfer of wastewater associated pharmaceuticals and personal care products to crop plants from biosolids treated soil.

    Science.gov (United States)

    Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Sridhar, B B Maruthi

    2012-11-01

    The plant uptake of emerging organic contaminants such as pharmaceuticals and personal care products (PPCPs) is receiving increased attention. Biosolids from municipal wastewater treatment have been previously identified as a major source for PPCPs. Thus, plant uptake of PPCPs from biosolids applied soils needs to be understood. In the present study, the uptake of carbamazepine, diphenhydramine, and triclocarban by five vegetable crop plants was examined in a field experiment. At the time of harvest, three compounds were detected in all plants grown in biosolids-treated soils. Calculated root concentration factor (RCF) and shoot concentration factor (SCF) are the highest for carbamazepine followed by triclocarban and diphenhydramine. Positive correlation between RCF and root lipid content was observed for carbamazepine but not for diphenhydramine and triclocarban. The results demonstrate the ability of crop plants to accumulate PPCPs from contaminated soils. The plant uptake processes of PPCPs are likely affected by their physico-chemical properties, and their interaction with soil. The difference uptake behavior between plant species could not solely be attributed to the root lipid content. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Synthetic organic chemicals in earthworms from agriculture soil amended with municipal biosolids

    Science.gov (United States)

    Introduction: Biosolids resulting from municipal wastewater treatment are known to contain residues of pharmaceuticals, personal care products (PPCPs) and other synthetic organic compounds. Many of these are contaminants of emerging concern for their potential endocrine disruption of fish and wildli...

  12. Efficient Calculation of Dewatered and Entrapped Areas Using Hydrodynamic Modeling and GIS

    International Nuclear Information System (INIS)

    Richmond, Marshall C.; Perkins, William A.

    2009-01-01

    River waters downstream of a hydroelectric project are often subject to rapidly changing discharge. Abrupt decreases in discharge can quickly dewater and expose some areas and isolate other areas from the main river channel, potentially stranding or entrapping fish, which often results in mortality. A methodology is described to estimate the areas dewatered or entrapped by a specific reduction in upstream discharge. A one-dimensional hydrodynamic model was used to simulate steady flows. Using flow simulation results from the model and a geographic information system (GIS), estimates of dewatered and entrapped areas were made for a wide discharge range. The methodology was applied to the Hanford Reach of the Columbia River in central Washington State. Results showed that a 280 m 3 /s discharge reduction affected the most area at discharges less than 3400 m 3 /s. At flows above 3400 m 3 /s, the affected area by a 280 m 3 /s discharge reduction (about 25 ha) was relatively constant. A 280 m 3 /s discharge reduction at lower flows affected about twice as much area. The methodology and resulting area estimates were, at the time of writing, being used to identify discharge regimes, and associated water surface elevations, that might be expected to minimize adverse impacts on juvenile fall chinook salmon (Oncorhynchus tshawytscha) that rear in the shallow near-shore areas in the Hanford Reach

  13. Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant

    DEFF Research Database (Denmark)

    Kjellerup, B. V.; Keiding, Kristian; Nielsen, Per Halkjær

    2001-01-01

    dewaterability. The monitoring program revealed that a deterioration of the floc strength and the settling properties in the process tanks was closely connected to downstream dewatering problems and poor effluent quality. Particularly severe problems were observed a few weeks after the production at the factory......A large industrial activated sludge wastewater treatment plant had temporary problems with settling and dewatering of the sludge. Microscopical investigations revealed that the poor settling properties were not due to presence of filamentous bacteria, but poor floc properties. In order...... to characterise the changes in floc properties that led to settling and dewatering problems and to find reasons for this taking place, a comprehensive monitoring program was conducted during more than one year. The monitoring program included various measurements of floc settleability, floc strength and sludge...

  14. A Case Study on Stratified Settlement and Rebound Characteristics due to Dewatering in Shanghai Subway Station

    OpenAIRE

    Wang, Jianxiu; Huang, Tianrong; Sui, Dongchang

    2013-01-01

    Based on the Yishan Metro Station Project of Shanghai Metro Line number 9, a centrifugal model test was conducted to investigate the behavior of stratified settlement and rebound (SSR) of Shanghai soft clay caused by dewatering in deep subway station pit. The soil model was composed of three layers, and the dewatering process was simulated by self-invention of decompressing devise. The results indicate that SSR occurs when the decompression was carried out, and only negative rebound was found...

  15. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, H.K.; Kristensen, I.V.; Ottosen, L.M.; Villumsen, A. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark)

    2001-07-01

    Electroosmotic dewatering has been tested in laboratory cells for 4 different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material. Casagrande's coefficients for the three materials where determined at different water contents. In the electroosmotic experiments shown in this work chalk can be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM. The process was not optimised indicating that higher dry matter contents could be achieved. (orig.)

  16. The toxicity of silver to soil organisms exposed to silver nanoparticles and silver nitrate in biosolids-amended field soil.

    Science.gov (United States)

    Jesmer, Alexander H; Velicogna, Jessica R; Schwertfeger, Dina M; Scroggins, Richard P; Princz, Juliska I

    2017-10-01

    The use of engineered silver nanoparticles (AgNPs) is widespread, with expected release to the terrestrial environment through the application of biosolids onto agricultural lands. The toxicity of AgNPs and silver nitrate (AgNO 3 ; as ionic Ag + ) to plant (Elymus lanceolatus and Trifolium pratense) and soil invertebrate (Eisenia andrei and Folsomia candida) species was assessed using Ag-amended biosolids applied to a natural sandy loam soil. Bioavailable Ag + in soil samples was estimated using an ion-exchange technique applied to KNO 3 soil extracts, whereas exposure to dispersible AgNPs was verified by single-particle inductively coupled plasma-mass spectrometry and transmission electron microscopy-energy dispersive X-ray spectroscopy analysis. Greater toxicity to plant growth and earthworm reproduction was observed in AgNP exposures relative to those of AgNO 3 , whereas no difference in toxicity was observed for F. candida reproduction. Transformation products in the AgNP-biosolids exposures resulted in larger pools of extractable Ag + than those from AgNO 3 -biosolids exposures, at similar total Ag soil concentrations. The results of the present study reveal intrinsic differences in the behavior and bioavailability of the 2 different forms of Ag within the biosolids-soils pathway. The present study demonstrates how analytical methods that target biologically relevant fractions can be used to advance the understanding of AgNP behavior and toxicity in terrestrial environments. Environ Toxicol Chem 2017;36:2756-2765. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC.

  17. Monitoring and optimizing the co-composting of dewatered sludge: a mixture experimental design approach.

    Science.gov (United States)

    Komilis, Dimitrios; Evangelou, Alexandros; Voudrias, Evangelos

    2011-09-01

    The management of dewatered wastewater sludge is a major issue worldwide. Sludge disposal to landfills is not sustainable and thus alternative treatment techniques are being sought. The objective of this work was to determine optimal mixing ratios of dewatered sludge with other organic amendments in order to maximize the degradability of the mixtures during composting. This objective was achieved using mixture experimental design principles. An additional objective was to study the impact of the initial C/N ratio and moisture contents on the co-composting process of dewatered sludge. The composting process was monitored through measurements of O(2) uptake rates, CO(2) evolution, temperature profile and solids reduction. Eight (8) runs were performed in 100 L insulated air-tight bioreactors under a dynamic air flow regime. The initial mixtures were prepared using dewatered wastewater sludge, mixed paper wastes, food wastes, tree branches and sawdust at various initial C/N ratios and moisture contents. According to empirical modeling, mixtures of sludge and food waste mixtures at 1:1 ratio (ww, wet weight) maximize degradability. Structural amendments should be maintained below 30% to reach thermophilic temperatures. The initial C/N ratio and initial moisture content of the mixture were not found to influence the decomposition process. The bio C/bio N ratio started from around 10, for all runs, decreased during the middle of the process and increased to up to 20 at the end of the process. The solid carbon reduction of the mixtures without the branches ranged from 28% to 62%, whilst solid N reductions ranged from 30% to 63%. Respiratory quotients had a decreasing trend throughout the composting process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Prediction and verification of centrifugal dewatering of P. pastoris fermentation cultures using an ultra scale-down approach.

    Science.gov (United States)

    Lopes, A G; Keshavarz-Moore, E

    2012-08-01

    Recent years have seen a dramatic rise in fermentation broth cell densities and a shift to extracellular product expression in microbial cells. As a result, dewatering characteristics during cell separation is of importance, as any liquor trapped in the sediment results in loss of product, and thus a decrease in product recovery. In this study, an ultra scale-down (USD) approach was developed to enable the rapid assessment of dewatering performance of pilot-scale centrifuges with intermittent solids discharge. The results were then verified at scale for two types of pilot-scale centrifuges: a tubular bowl equipment and a disk-stack centrifuge. Initial experiments showed that employing a laboratory-scale centrifugal mimic based on using a comparable feed concentration to that of the pilot-scale centrifuge, does not successfully predict the dewatering performance at scale (P-value centrifuge. Initial experiments used Baker's yeast feed suspensions followed by fresh Pichia pastoris fermentation cultures. This work presents a simple and novel USD approach to predict dewatering levels in two types of pilot-scale centrifuges using small quantities of feedstock (centrifuge needs to be operated, reducing the need for repeated pilot-scale runs during early stages of process development. Copyright © 2012 Wiley Periodicals, Inc.

  19. Sludge dewatering on filters aiming the utilization as fuel; Desaguamento de lodos em filtro visando aproveitamento como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Paschoalim, Luis Gustavo; Neves, Jose Mangolini

    1993-12-31

    This work presents modern methodologies for sludge dewatering and alternatives for environmental disposal of the so obtained cakes. Among the possible alternatives, special emphasis is given to the characterization and study of the variables which determine the behaviour of dewatering operation of sludges form pulp and paper industries. Results are presents for bench scale tests and pilot plant tests 28 refs., 9 figs., 7 tabs.

  20. Sludge dewatering on filters aiming the utilization as fuel; Desaguamento de lodos em filtro visando aproveitamento como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Paschoalim, Luis Gustavo; Neves, Jose Mangolini

    1992-12-31

    This work presents modern methodologies for sludge dewatering and alternatives for environmental disposal of the so obtained cakes. Among the possible alternatives, special emphasis is given to the characterization and study of the variables which determine the behaviour of dewatering operation of sludges form pulp and paper industries. Results are presents for bench scale tests and pilot plant tests 28 refs., 9 figs., 7 tabs.

  1. Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses.

    Science.gov (United States)

    Zhao, Song; Zhou, Xiehong; Wang, Chuanyi; Jia, Hanzhong

    2017-08-24

    Pyrolysis is potentially an effective treatment of waste oil residues for recovery of petroleum hydrocarbons, and the addition of biomass is expected to improve its dewatering and pyrolysis behavior. In this study, the dewatering and low-temperature co-pyrolysis of oil-containing sludge in the presence of various agricultural biomasses, such as rice husk, walnut shell, sawdust, and apricot shell, were explored. As a result, the water content gradually decreases with the increase of biomass addition within 0-1.0 wt % in original oily sludge. Comparatively, the dewatering efficiency of sludge in the presence of four types of biomasses follows the order of apricot shell > walnut shell > rice husk > sawdust. On the other hand, rice husk and sawdust are relatively more efficient in the recovery of petroleum hydrocarbons compared with walnut shell and apricot shell. The recovery efficiency generally increased with the increase in the biomass content in the range of 0-0.2 wt %, then exhibited a gradually decreasing trend with the increase in the biomass content from 0.2 to 1.0 wt %. The results suggest that optimum amount of biomass plays an important role in the recovery efficiency. In addition, the addition of biomass (such as rice husk) also promotes the formation of C x H y and CO, increasing the calorific value of pyrolysis residue, and controlled the pollution components of the exhaust gas discharged from residue incineration. The present work implies that biomass as addictive holds great potential in the industrial dewatering and pyrolysis of oil-containing sludge.

  2. Optimal dewatering schemes in the foundation design of an electronuclear plant

    International Nuclear Information System (INIS)

    Galeati, G.; Gambolati, G.

    1988-01-01

    A three-dimensional finite element model combined with an optimization approach based on linear mixed integer programming is developed and applied to assist in the design of the dewatering system for the electronuclear plant to be built by the Italian Electric Agency (ENEL) in Trino Vercellese, northwestern Italy. The foundations site is encompassed by a 25- to 35-m deep plastic wall with the purpose of protecting the unconfined aquifer from the significant water table lowering required by the construction project. To reduce further the propagation of the depression cone a large amount of the water pumped out is reinjected through ad hoc recharge ditches. The finite element optimization model includes both the natural and the artificial constraints and provides several optimal withdrawal strategies for the dewatering system design concerning the distribution of the abstraction wells and the corresponding pumping rates. Physical and economical objective functions are explored and the related solutions are discussed

  3. Effects of applying biosolids to soils on the adsorption and bioavailability of 17α-ethinylestradiol and triclosan in wheat plants.

    Science.gov (United States)

    Cantarero, Romina; Richter, Pablo; Brown, Sally; Ascar, Loreto; Ahumada, Inés

    2017-05-01

    Biosolids contain inorganic and organic contaminants, including pharmaceutical and personal care products (PPCPs) that have accounted for a series of emerging contaminants, such as triclosan (TCS) and the hormone 17α-ethinylestradiol (EE2). The general aim of this study was to evaluate the effects of biosolid application on EE2 and TCS adsorption and bioavailability in soils through testing with wheat plants. For the bioavailability study, sand and two soils, Lampa and Lo Prado, were used. The sand and soils were treated using two biosolid application rates (0 and 90 mg ha -1 ), and the EE2 and TCS concentrations in the biosolids were determined as 0.54 ± 0.06 and 8.31 ± 0.19 mg kg -1 , respectively. The concentration observed in wheat plants indicated that EE2 and TCS are mainly concentrated in the roots rather than in the shoots. Furthermore, the bioavailability of the compounds in plants depends on the properties of the contaminants and the soil. Adsorption studies showed that increasing the soil organic matter content increases the adsorption of TCS and EE2 on these substrates and that both compounds follow the Freundlich adsorption model. The desorption procedure indicated that availability for both TCS and EE2 depended on the soil type because TCS and EE2 were small in the Lampa soil with and without biosolid application and TCS increased by nearly 50% in the Lo Prado soil. The Lo Prado soil had an acidic pH (5.9) and the Lampa soil had a neutral pH of 7.3, and the organic carbon content was smaller.

  4. Vibrating membrane filtration as improved technology for microalgae dewatering

    OpenAIRE

    Nurra, C.; Clavero, E.; Salvadó, J.; Torras, C.

    2014-01-01

    10.1016/j.biortech.2014.01.115 The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean ...

  5. THE PHYTOAVAILABILITY OF CADMIUM TO LETTUCE IN LONG-TERM BIOSOLIDS-AMENDED SOILS

    Science.gov (United States)

    A field study was conducted to assess the phytoavailability of Cd in long-term biosolids-amended field plots managed at high and low pH. The experiment, established 13-15 yr prior to the present cropping, on a Christiana fine sandy loam soil (a clayey, kaolinitic, mesic Typic Pa...

  6. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per minute...

  7. Physical, chemical and dewatering characteristics of Ba/RaSO4 sludges from uranium milling

    International Nuclear Information System (INIS)

    Skeaff, J.M.; Campbell, H.W.

    1980-01-01

    There is concern that long-term environmental pollution caused by radionuclide-bearing acid drainage could occur upon the abandonment of uranium tailings areas. One source of dissolved radionuclides could be the Ba/RaSO 4 sludges formed in most tailings ponds. Prior to discharge to open watercourses, uranium tailings decants are usually treated with barium chloride to coprecipitate dissolved radium. The resulting sludge is allowed to settle in ponds, the size and retention time of which will depend on the mine site. It may be necessary for environmental reasons to remove these sludges for permanent disposal. CANMET has awarded a contract to Kilborn Ltd. of Toronto to study methods for the recovery and dewatering of these sludges. To provide data for the Kilborn contract on the physical, chemical and dewatering of Ba/RaSO 4 sludges presently being produced at uranium mine/mill sites, samples were taken from the operational settling ponds at Rio Algom Mines Ltd., Elliot Lake. Dewatering characterization has also been conducted on two pilot plant facility sludges, one produced at the Wastewater Technology Centre's pilot plant at Rio Algom Mines, and the other from the pilot scale settling ponds designed by James F. MacLaren Ltd. for Rio Algom. The chemical and radionuclide analyses for the CANMET sludge are also reported

  8. Demonstration of FBRM as process analytical technology tool for dewatering processes via CST correlation.

    Science.gov (United States)

    Cobbledick, Jeffrey; Nguyen, Alexander; Latulippe, David R

    2014-07-01

    The current challenges associated with the design and operation of net-energy positive wastewater treatment plants demand sophisticated approaches for the monitoring of polymer-induced flocculation. In anaerobic digestion (AD) processes, the dewaterability of the sludge is typically assessed from off-line lab-bench tests - the capillary suction time (CST) test is one of the most common. Focused beam reflectance measurement (FBRM) is a promising technique for real-time monitoring of critical performance attributes in large scale processes and is ideally suited for dewatering applications. The flocculation performance of twenty-four cationic polymers, that spanned a range of polymer size and charge properties, was measured using both the FBRM and CST tests. Analysis of the data revealed a decreasing monotonic trend; the samples that had the highest percent removal of particles less than 50 microns in size as determined by FBRM had the lowest CST values. A subset of the best performing polymers was used to evaluate the effects of dosage amount and digestate sources on dewatering performance. The results from this work show that FBRM is a powerful tool that can be used for optimization and on-line monitoring of dewatering processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Dewatering behavior of fine oil sands tailings : A summary of laboratory results

    NARCIS (Netherlands)

    Yao, Y.; van Tol, A.F.; van Paassen, L.A.; Vardon, P.J.; Sego, D.C.; Wilson, G.W.; Beier, N.A.

    2016-01-01

    To evaluate the disposal technology for fine oil sands tailings, the appropriate engineering properties of the tailings should be ascertained. A laboratory study was conducted by Delft University of Technology (the Netherlands) on the geotechnical properties and dewatering behavior of the fine oil

  10. A Decontamination Process to Remove Metals and Stabilise Montreal Sewage Sludge

    Directory of Open Access Journals (Sweden)

    G. Mercier

    2002-01-01

    Full Text Available The Montreal Urban Community (MUC treatment plant produces approximately 270 tons of dry sludge daily (tds/day during physicochemical wastewater treatment. The sludges are burned and contribute to the greenhouse effect by producing atmospheric CO2. Moreover, the sludge emanates a nauseating odour during its thermal stabilisation and retains unpleasant odours for the part (25% that is dried and granulated. To solve this particular problem, the treatment plant authorities are currently evaluating an acidic chemical leaching (sulfuric or hydrochloric acid process at a pH between 2 and 3, using an oxidizing agent such as ferric chloride or hydrogen peroxide (METIX-AC technology, patent pending; [20]. They could integrate it to a 70 tds/day granulated sludge production process. Verification of the application of METIX-AC technology was carried out in a pilot plant set up near the sludge production plant of the MUC. The tests showed that METIX-AC technology can be advantageously integrated to the process used at the MUC. The residual copper (274 ± 58 mg/kg and cadmium (5.6 ± 2.9 mg/kg concentrations in the treated sludge meet legislation standards. The results have also shown that odours have been significantly eliminated for the dewatered, decontaminated, and stabilized biosolids (> 97% compared to the non-decontaminated biosolids. A high rate of odour elimination also was obtained for the liquid leached biosolids (> 93%, compared to the untreated liquid biosolids. The fertilising value (N and P is well preserved by the METIX-AC process. Dissolved organic carbon measurements have showed that little organic matter is brought in solution during the treatment. In fact, the average concentration of dissolved organic carbon measured in the treated liquid phase is 966 ± 352 mg/l, whereas it is 1190 ± 325 mg/l in untreated sludge. The treated sludge was first conditioned with an organic polymer and a coagulant aid. It was successfully dewatered with

  11. Fundamental study for improvement of dewatering of fine coal/refuse. Annual report, August 1982-August 1983

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, S.H.; Klinzing, G.E.; Morsi, B.J.; Tierney, J.W.; Adams, J.; Bhat, N.; Binkley, T.; Chi, S.M.; Kakwani, R.; Qamar, I.

    1983-09-01

    The overall objective of the study is to seek improved methods of dewatering through a better understanding of the filtration and post-filtration processes. As a first step, efforts have been focused on the mechanism of dewatering in terms of basic properties of coal (and refuse) particles and microstructures of filter cakes, and their relations to filtration rate and final moisture content. Pittsburgh seam-Bruceton Mine coal was used as a base coal with experiments also being conducted with Upper Freeport and Illinois No. 6 coals. During the past year, filter cakes from the above coals with widely varied size ranges were micrographically characterized. The effects of a number of surface active agents and of entrapped air bubbles on the filter cake properties were also studied. A module of the network model for calculating single phase permeabilities was completed and tested. The report is divided into four parts: summary and deliverables; work forecast for the 1983-84; detailed descriptions of technical progress for particle/filter cake characterization; theoretical modeling, and enhanced dewatering methods; and appendices. 11 references, 35 figures, 11 tables.

  12. Isolation and Characterization of Polyacrylamide-Degrading Bacteria from Dewatered Sludge

    Directory of Open Access Journals (Sweden)

    Feng Yu

    2015-04-01

    Full Text Available Polyacrylamide (PAM is a water-soluble polymer that is widely used as a flocculant in sewage treatment. The accumulation of PAM affects the formation of dewatered sludge and potentially produces hazardous monomers. In the present study, the bacterial strain HI47 was isolated from dewatered sludge. This strain could metabolize PAM as its sole nutrient source and was subsequently identified as Pseudomonas putida. The efficiency of PAM degradation was 31.1% in 7 days and exceeded 45% under optimum culture condition (pH 7.2, 39 °C and 100 rpm. The addition of yeast extract and glucose improved the bacterial growth and PAM degradation. The degraded PAM samples were analyzed by gel-filtration chromatography, Fourier transform infrared and high-performance liquid chromatography. The results showed that high-molecular-weight PAM was partly cleaved to small molecular oligomer derivatives and part of the amide groups of PAM had been converted to carboxyl groups. The biodegradation did not accumulate acrylamide monomers. Based on the SDS-PAGE and N-terminal sequencing results, the PAM amide groups were converted into carboxyl groups by a PAM-induced extracellular enzyme from the aliphatic amidase family.

  13. Permanganate/bisulfite (PM/BS) conditioning-horizontal electro-dewatering (HED) of activated sludge: Effect of reactive Mn(III) species.

    Science.gov (United States)

    Guo, Xinxin; Wang, Yili; Wang, Dongsheng

    2017-11-01

    A novel activated sludge (AS) conditioning method through permanganate/bisulfate (PM/BS) process was proposed. The method involved a new conditioner of reactive Mn(III) intermediate. Moreover, a Mn(III) conditioning-horizontal electro-dewatering (Mn(III) C-HED) process was established to improve AS dewatering performance. Underlying mechanisms were unraveled by investigating changes in physicochemical characteristics, scanning electron microscope (SEM) morphology, and transformation of water and organic matters. The optimum dewatering conditions for Mn(III) C-HED process with the final water content of 86.94% were determined as the combination of KMnO 4 0.01 mol/L AS and NaHSO 3 0.05 mol/L AS at 20 V for 120 min. Results showed that Mn(III) C-HED process effectively reduced free water and bound water with the corresponding removal ratios of 51.68% and 87.62% at the anode-side as well as 36.55% and 85.08% at the cathode-side, respectively. During the PM/BS process, the produced Mn(III), Mn 2+ , and MnO 2 exerted chemical and physical effects on AS conditioning and dewatering. Mn(III) disintegrated extracellular polymeric substances (EPS) fractions and cells in AS, as well as induced partial bound water release. Additionally, flocculation effect induced by Mn 2+ and MnO 2 skeleton building also benefited AS dewatering. AS cells were further disrupted under the effect of a horizontal electric field. Accordingly, EPS within the AS matrix was solubilized, tightly bound (TB)-EPS or loosely bound (LB)-EPS was converted to their corresponding outer EPS fractions, and AS dewaterability improved. Additionally, changes in pH and temperature at HED stage damaged the AS cells and changed the floc properties, thereby leading to easy separation of liquid and AS particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A novel acrylamide-free flocculant and its application for sludge dewatering.

    Science.gov (United States)

    Lu, Lianghua; Pan, Zhida; Hao, Nan; Peng, Wenqing

    2014-06-15

    In the present research, copolymers of methyl acrylate (MA) with anionic or cationic monomers were synthesized via emulsion polymerization, and used as sludge dewatering aids in wastewater treatment. The copolymerization of different stoichiometry of two monomers afforded a variety of water soluble copolymers with charge densities ranging from 40% to 80%, which align with the charge density of current flocculant products. These copolymers resemble current commercial products, but provide a greener solution by eliminating acrylamide monomer, which is a suspected carcinogen. High molecular weight copolymers were achieved by applying powder-like synthesis process with intrinsic viscosity of final products as high as 12.98 dl/g for anionic flocculant and 10.74 dl/g for cationic flocculant. The copolymers of methyl acrylate and [2-(Acryloyloxy)ethyl]trimethylammonium chloride (AETAC) with 55% charge density exhibited comparable performance in clay settling test, real water jar test, and sludge dewatering, when compared to AM-based commercial product in the real wastewater treatment application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Final Report: Conceptual Design of an Electron Accelerator for Bio-Solid Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Charles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-09-20

    Several studies have identified electron beam (EB) irradiation of municipal wastewater and bio-solids as an effective and promising approach to the environmental remediation of the enormous quantities of human waste created by a growing world-wide population and increased urbanization. However, despite the technical success of experimental and pilot programs over the last several decades, the technique is still not in commercial use anywhere in the world. In addition, the report also identifies the need for “Financial and infrastructure participation from a utility for demonstration project” and “Education and awareness of safety of utilizing electron beam technology” as two additional roadblocks preventing technology adoption of EB treatment for bio-solids. In this concept design, we begin to address these barriers by working with Metropolitan Water Reclamation District of Greater Chicago (MWRD) and by the applying the latest accelerator technologies developed at Fermilab and within the DOE Office of Science laboratory complex.

  16. Dewatering properties of differently treated sewage sludge

    International Nuclear Information System (INIS)

    Zehnder, H.J.

    1977-01-01

    A study on dewatering properties of radiosterilized sewage sludge of different type and origin was carried out. For comparison, also heat-treated (pasteurized) sludge was investigated. The specific filtration resistance of irradiated sewage sludge was lowered in all types of sludge examined. In general, pasteurization increased this parameter. The settling properties of irradiated digested sewage sludge was slightly improved, mainly in the first hours after treatment. Microbial effects may mask the real sedimentation relations especcially in aerobically stabilized sludges. A pasteurization treatment of sewage sludge caused an increased content of soluble substances and suspended particles in the supernatant water. The supernatant water from irradiated sludge showed a smaller increase

  17. STANDARDIZATION AND VALIDATION OF METHODS FOR ENUMERATION OF FECAL COLIFORM AND SALMONELLA IN BIOSOLIDS

    Science.gov (United States)

    Current federal regulations require monitoring for fecal coliforms or Salmonella in biosolids destined for land application. Methods used for analysis of fecal coliforms and Salmonella were reviewed and a standard protocol was developed. The protocols were then evaluated by testi...

  18. Sludge, biosolids, and the propaganda model of communication.

    Science.gov (United States)

    Rampton, Sheldon

    2002-01-01

    The Water Environment Federation's elaborate effort to rename sewage sludge as "biosolids" is an example in practice of the "propaganda model" of communications, which sees its task as indoctrinating target audiences with ideas favorable to the interests of the communicators. The propaganda model assumes that members of the public are irrational and focuses therefore on symbolic and emotional aspects of communication. This approach to communicating arouses public resentment rather than trust. In place of a "propaganda model," public officials should adopt a "democratic model," which assumes that audiences are rational and intellectually capable of meaningful participation in decision-making.

  19. Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation.

    Science.gov (United States)

    Prosser, R S; Sibley, P K

    2015-02-01

    Amending soil with biosolids or livestock manure provides essential nutrients in agriculture. Irrigation with wastewater allows for agriculture in regions where water resources are limited. However, biosolids, manure and wastewater have all been shown to contain pharmaceuticals and personal care products (PPCPs). Studies have shown that PPCPs can accumulate in the tissues of plants but the risk that accumulated residues may pose to humans via consumption of edible portions is not well documented. This study reviewed the literature for studies that reported residues of PPCPs in the edible tissue of plants grown in biosolids- or manure-amended soils or irrigated with wastewater. These residues were used to determine the estimated daily intake of PPCPs for an adult and toddler. Estimated daily intake values were compared to acceptable daily intakes to determine whether PPCPs in plant tissue pose a hazard to human health. For all three amendment practices, the majority of reported residues resulted in hazard quotients plants to concentrations of PPCPs that would not be considered relevant based on concentrations reported in biosolids and manure or unrealistic methods of exposure, which lead to artificially elevated plant residues. Our assessment indicates that the majority of individual PPCPs in the edible tissue of plants due to biosolids or manure amendment or wastewater irrigation represent a de minimis risk to human health. Assuming additivity, the mixture of PPCPs could potentially present a hazard. Further work needs to be done to assess the risk of the mixture of PPCPs that may be present in edible tissue of plants grown under these three amendment practices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Application of municipal biosolids to dry-land wheat fields - A monitoring program near Deer Trail, Colorado (USA). A presentation for an international conference: "The Future of Agriculture: Science, Stewardship, and Sustainability", August 7-9, 2006, Sacramento, CA

    Science.gov (United States)

    Crock, James G.; Smith, David B.; Yager, Tracy J.B.

    2006-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of non-irrigated farmland and rangeland near Deer Trail, Colorado. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring ground water at part of this site. In 1999, the USGS began a more comprehensive study of the entire site to address stakeholder concerns about the chemical effects of biosolids applications. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study included biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock ground water, and stream bed sediment. Streams at the site are dry most of the year, so samples of stream bed sediment deposited after rain were used to indicate surface-water effects. This presentation will only address biosolids, soil, and crops. More information about these and the other monitoring components are presented in the literature (e.g., Yager and others, 2004a, b, c, d) and at the USGS Web site for the Deer Trail area studies at http://co.water.usgs.gov/projects/CO406/CO406.html. Priority parameters identified by the stakeholders for all monitoring components, included the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity, regulated by Colorado for biosolids to be used as an agricultural soil amendment. Nitrogen and chromium also were priority parameters for ground water and sediment components. In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids

  1. An environmental isotope study of a major dewatering operation at Sishen mine, northern Cape Province

    International Nuclear Information System (INIS)

    Verhagen, B.T.; Smith, P.E.; Dziembowski, Z.; Oosthuizen, J.H.

    1978-01-01

    Geohydrological studies using environmental isotopes of the Sishen iron ore mine were started after major rainfalls in 1973/74 produced flooding of the open cast workings. The mine is underlain by dolomite which has been extensively karstified and geohydrologically compartmentalized by several dykes. Major dewatering takes place in a pit called Hill 2 by pumping an array of large diameter boreholes at a combined rate of 2000 m 3 h -1 . The probable recharge areas (dolomites, superficial Kalahari Beds) were isotopically surveyed to assess their relative importance to the dewatering problem. Several major pumping outlets at the mine were regularly sampled for isotopic and chemical analysis and from the data a preliminary mixing model is proposed. The data also show that with the total pumped volume up to March 1978, no very recent (i.e. post bomb) water has reached the dewatering points. On this basis a minimum storage of 0.75 x 10 8 m 3 is derived compared to a classical calculation of 10 8 m 3 for the compartment. Isotopic composition and response differ for waters on either side of a dyke crossing the mining area, corroborating classical evidence suggesting that the dyke acts as an aquiclude. (orig.) [de

  2. An environmental isotope study of a major dewatering operation at Sishen mine, northern Cape Province

    International Nuclear Information System (INIS)

    Verhagen, B.Th.; Smith, P.E.; Oosthuizen, J.H.

    1979-01-01

    Geohydrological studies using environmental isotopes of the Sishen iron ore mine were started after major rainfalls in 1973/74 produced flooding of the open cast workings. The mine is underlain by dolomite which has been extensively karstified and geohydrologically compartmentalized by several dykes. Major dewatering takes place in a pit called Hill 2 by pumping an array of large-diameter boreholes at a combined rate of 2000m 3 h -1 . The probable recharge areas (dolomites, superficial Kalahari Beds) were isotopically surveyed to assess their relative importance to the dewatering problem. Several major pumping outlets at the mine were regularly sampled for isotopic and chemical analysis and from the data a preliminary mixing model is proposed. The data also show that, with the total pumped volume up to March 1978, no very recent (i.e. post-bomb) water has reached the dewatering points. On this basis a minimum storage of 0.75x10 8 m 3 is derived compared with a classical calculation of 10 8 m 3 for the compartment. Isotopic composition and response differ for waters on either side of a dyke crossing the mining area, corroborating classical evidence suggesting that the dyke acts as an aquiclude. (author)

  3. Effects of phytoextraction on heavy metal concentrations and pH of pore-water of biosolids determined using an in situ sampling technique.

    Science.gov (United States)

    Huynh, T T; Laidlaw, W S; Singh, B; Gregory, D; Baker, A J M

    2008-12-01

    Heavy metal concentrations and pH of pore-water in contaminated substrates are important factors in controlling metal uptake by plants. We investigated the effects of phytoextraction on these properties in the solution phase of biosolids and diluted biosolids in a 12-month phytoextraction column experiment. Phytoextraction using Salix and Populus spp. temporarily decreased pore-water pH of the substrates over the experimental period followed by a return to initial pH conditions. Salixxreichardtii and Populus balsamifera effectively extracted Ni, Zn and Cd and actively mobilized these metals from the solid to the solution phase. S.xreichardtii had the stronger effect on mobilization of metals due to its larger root system. Phytoextraction did not affect Cu in the solution phase of the biosolids. Heavy metals were leached down to lower depths of the columns during the phytoextraction process.

  4. Design of the Nonlinear Pin Rubber Forming Equipment Integrating the Functions of Extruding, Dewatering, Drying & Expanding

    Directory of Open Access Journals (Sweden)

    Yuefeng Yuan

    2014-12-01

    Full Text Available The top priority of car-tire suppliers is to improve wetland grip force of the using tires, reduce the rolling resistance and the rolling noise of tires. It is urgent for the tire industry to research and develop high-performance tires to solve the above problems. They must use the high- performance synthetic rubber and auxiliary rubber to develop the most advanced manufacturing technologies and equipment. Silica, a kind of important tire auxiliary rubber, can significantly reduce the rolling resistance of tires, improve the grip force and properties resistant to ice, wetness or slippery of tires. In this paper, based on the conventional tire rubber forming technologies of extrusion, dewatering, drying and expanding, a study is made on the conical screw, the dewatering barrel, the drying barrel, the pin layout scheme, the expanding die head, cutter and the control system. The nonlinear pin rubber forming equipment integrating the functions of extrusion, dewatering, drying and expanding is designed and applied to tire auxiliary rubber forming. The experiment shows that the forming device can realize the one-step forming, with high forming efficiency, low cost and less labor.

  5. Device for dewatering of raw biomass. Anordning foer avvattning och uppluckring av raa biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Kubat, J; Aabom, J J.V.; Klason, T C.F.; Bultzingsloewen, F von

    1993-09-27

    This invention concerns a device for loosening of raw biomass through roll dewatering. It is primarily applicable for comminuted and milled raw wood. The invention is of special interest for the production of pulverized wood fuel

  6. Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: Field and greenhouse studies

    Science.gov (United States)

    The presence of perfluoroalkyl acids (PFAAs) in biosolids destined for use in agriculture has raised concerns about their potential to enter the terrestrial food chain via bioaccumulation in edible plants. Uptake of PFAAs by greenhouse lettuce ( Lactuca sativa) and tomato (Lycope...

  7. A comparison of the economic benefits of centralized and distributed model predictive control strategies for optimal and sub-optimal mine dewatering system designs

    International Nuclear Information System (INIS)

    Romero, Alberto; Millar, Dean; Carvalho, Monica; Maestre, José M.; Camacho, Eduardo F.

    2015-01-01

    Mine dewatering can represent up to 5% of the total energy demand of a mine, and is one of the mine systems that aim to guarantee safe operating conditions. As mines go deeper, dewatering pumping heads become bigger, potentially involving several lift stages. Greater depth does not only mean greater dewatering cost, but more complex systems that require more sophisticated control systems, especially if mine operators wish to gain benefits from demand response incentives that are becoming a routine part of electricity tariffs. This work explores a two stage economic optimization procedure of an underground mine dewatering system, comprising two lifting stages, each one including a pump station and a water reservoir. First, the system design is optimized considering hourly characteristic dewatering demands for twelve days, one day representing each month of the year to account for seasonal dewatering demand variations. This design optimization minimizes the annualized cost of the system, and therefore includes the investment costs in underground reservoirs. Reservoir size, as well as an hourly pumping operation plan are calculated for specific operating environments, defined by characteristic hourly electricity prices and water inflows (seepage and water use from production activities), at best known through historical observations for the previous year. There is no guarantee that the system design will remain optimal when it faces the water inflows and market determined electricity prices of the year ahead, or subsequent years ahead, because these remain unknown at design time. Consequently, the dewatering optimized system design is adopted subsequently as part of a Model Predictive Control (MPC) strategy that adaptively maintains optimality during the operations phase. Centralized, distributed and non-centralized MPC strategies are explored. Results show that the system can be reliably controlled using any of these control strategies proposed. Under the operating

  8. Effect of TiO2 nanoparticles on UASB biomass activity and dewatered sludge.

    Science.gov (United States)

    Yadav, Tushar; Mungray, Alka A; Mungray, Arvind K

    2017-02-01

    The accumulation of the nanowastes in the wastewater treatment plants has raised several concerns; therefore, it is an utmost priority to study the nanoparticle (NP) toxicity in such systems. In this work, the effect of TiO 2 NPs on up-flow anaerobic sludge blanket (UASB) microflora and their photocatalytic effect on dewatered sludge were studied. We observed 99.98% removal of TiO 2 NPs by sludge biomass within 24 h, though negligible toxicity was found up to 100 mg/L TiO 2 concentration on extracellular polymeric substances (EPS), volatile fatty acid and biogas generation. The low toxicity corresponds to the agglomeration of TiO 2 NPs in UASB sludge. Alterations in dewatered sludge biochemical composition and increase in cell damage were observed upon exposure to sunlight as evidenced by FTIR and fluorescent microscopy, respectively. Results suggest the negligible toxicity of TiO 2 NPs on UASB biomass activity; however, once exposed to open environment and sunlight, they may exert detrimental effects.

  9. Influence of long-term land application of class B biosolids on soil bacterial diversity

    Science.gov (United States)

    This project evaluated the influence of annual land applications of Class B biosolids on soil bacterial diversity monitored over a 20 year period. Each annual land application was followed by a cotton crop. The study was initiated in 1986 at the University of Arizona Marana Agricultural Center, 21 m...

  10. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure

    Science.gov (United States)

    Kinney, C.A.; Furlong, E.T.; Kolpin, D.W.; Burkhardt, M.R.; Zaugg, S.D.; Werner, S.L.; Bossio, J.P.; Benotti, M.J.

    2008-01-01

    Analysis of earthworms offers potential for assessing the transfer of organic anthropogenic waste indicators (AWIs) derived from land-applied biosolid or manure to biota. Earthworms and soil samples were collected from three Midwest agricultural fields to measure the presence and potential for transfer of 77 AWIs from land-applied biosolids and livestock manure to earthworms. The sites consisted of a soybean field with no amendments of human or livestock waste (Site 1), a soybean field amended with biosolids from a municipal wastewater treatment plant (Site 2), and a cornfield amended with swine manure (Site 3). The biosolid applied to Site 2 contained a diverse composition of 28 AWIs, reflecting the presence of human-use compounds. The swine manure contained 12 AWIs, and was dominated by biogenic sterols. Soil and earthworm samples were collected in the spring (about 30 days after soil amendment) and fall (140-155 days after soil amendment) at all field sites. Soils from Site 1 contained 21 AWIs and soil from Sites 2 and 3 contained 19 AWIs. The AWI profiles at Sites 2 and 3 generally reflected the relative composition of AWIs present in waste material applied. There were 20 AWIs detected in earthworms from Site 1 (three compounds exceeding concentrations of 1000 ??g/kg), 25 AWIs in earthworms from Site 2 (seven compounds exceeding concentrations of 1000 ??g/kg), and 21 AWIs in earthworms from Site 3 (five compounds exceeding concentrations of 1000 ??g/kg). A number of compounds thatwere present in the earthworm tissue were at concentrations less than reporting levels in the corresponding soil samples. The AWIs detected in earthworm tissue from the three field sites included pharmaceuticals, synthetic fragrances, detergent metabolites, polycyclic aromatic hydrocarbons (PAHs), biogenic sterols, disinfectants, and pesticides, reflecting a wide range of physicochemical properties. For those contaminants detected in earthworm tissue and soil, bioaccumulation factors

  11. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils

    Science.gov (United States)

    Crop uptake of perfluoroalkyl acids (PFAAs) from biosolids-amended soil has been identified as a potential pathway for PFAA entry into the terrestrial food chain. This study compared the uptake of PFAAs in greenhouse-grown radish (Raphanus sativus), celery (Apium graveolens var.d...

  12. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing.

    Science.gov (United States)

    Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that...

  13. Environmental control of drilling mud discharge through dewatering in cold weather climates: effect of ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wojtanowicz, A. K. [Louisiana State Univ., Baton Rouge, LA (United States); Ye, Y. [Jianghan Petroleum Institute, Beijing, (China)

    1998-05-01

    Results of an experimental study of the effects of drilling mud temperature upon dewatering performance at various temperatures were presented. Three temperature ranges (from flowline temperature to room temperature, from room temperature to freezing point, and freeze/thaw, i.e. from -20 degrees C to 12 degrees C) were considered. Both unweighted and weighted fresh water muds and weighted salt water mud were tested using a sealed laboratory batch reactor, to prevent rapid vaporization of separated water at temperatures above 60 degrees C. Deep freezing was achieved by using ice or ice-salt baths. Net water removal was measured with a bench-top plate press under constant expression pressure of 270 kPa. Results showed that the freeze/thaw treatment process proved to be very effective, enhancing water removal by 34 to 39 per cent, and reducing waste mud volume by 64 to 72 per cent. No advantage to dewatering hot drilling mud from active systems was observed at temperatures above 21 degrees C. It was suggested that at temperatures under 21 degrees C, the waste drilling mud diverted from an active system should be dewatered when its temperature is still over 40 degrees C. to reduce the amount of chemicals needed for separation enhancement. 14 refs., 4 tabs., 4 figs.

  14. A BETTER INDICATOR STUDY EXAMINES ALTERNATIVE BIOLOGICAL INDICATORS OF DISINFECTION IN LIME-TREATED BIOSOLIDS

    Science.gov (United States)

    Under the current regulations (CFR 503), Class B biosolids may be land applied with certain site restrictions. One method for achieving Class B status is to raise the pH of the sludge to >12 for a minimum of 2 hours with an alkaline material (normally lime). Alternately, a Clas...

  15. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products.

    Science.gov (United States)

    Wang, Liping; Li, Aimin

    2015-01-01

    Hydrothermal treatment coupled with mechanical expression at increased temperature in two separate cells respectively is effective for the dewatering of excess sludge with low energy consumption. The objectives of this study were to evaluate the dewatering performance and the characteristics of obtained products (hydrothermal sludge, hydrochar and filtrate). The results showed that harsher hydrothermal treatment (temperature from 120 to 210 °C and residence time from 10 to 90 min) led to greater water removal (from 7.44 to 96.64% reduction of total water) and mechanical pressure became less significant as it increased. The whole expression stage was completely described by the modified Terzaghi-Voigt rheological model. The role of tertiary consolidation stage in the water removal was reduced with hydrothermal treatment being stronger. The hydrothermal treatment is mainly a devolatilization process. The observed changes in H/C and O/C for hydrothermal sludge suggested dehydration was the major reaction mechanism and decarboxylation only occurred significantly at higher temperature. The higher heating value correlated well with carbon content of sludge, which was increased by 4.8% for hydrothermal sludge at 210 °C for 60 min and significantly decreased by 15.4% for hydrochar after 6.0 MPa for 20 min. The solubilization and decomposition of proteins, polysaccharides and DNA were determined to be temperature and residence time dependent. The improvement of dewaterability was closely correlated to the variation of these biopolymers. The filtrates collected above 150 °C were found to be acidic. The increase of humic substances and the melanoidins formed by Maillard reaction were largely responsible for the filtrate color.

  16. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    Science.gov (United States)

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.

  17. Network model for fine coal dewatering. Part I. The model

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, I.; Tierney, J.W.; Chiang, S.H.

    1985-08-01

    There is a body of well established research in filtration and related subjects, but much of it has been empirical - based on correlations from experimental data. This approach has the disadvantage that it lacks generality, and it is difficult to predict the behavior of new or different systems. A more general method for studying dewatering is needed-one which will include the microscopic characteristics of the filter cake, which, like other porous media, contains a complicated network of interconnected pores through which the fluid must flow. These pores play an important role in dewatering because they give rise to capillary forces when one fluid is displacing another. In this report, we describe a network model which we believe satisfies these requirements. In the main body of this report, the model is described in detail. Background information is given where appropriate, and a brief description is given of the experimental work being done in our laboratories to verify the model. A detailed description of the experimental procedures and results is given in other DOE reports. The computer programs which are needed to solve the model are described in detail in the Appendices and are accompanied by flow charts, sample problems, and sample outputs. Sufficient detail is given in order to use the model programs on other computer systems. 32 refs., 7 figs., 5 tabs.

  18. Procedure of dewatering by pressing of biomass pulp, especially a peat cake. Saett att genom pressning avvattna en kaka av biomassa, foeretraedesvis en torvkaka

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, S

    1988-05-24

    The pulp is dewatered by pressing above 90 degrees C, the pulp water being displaced by warmer water under successively increased pressure. A device designed like a closed washing press is used. The pulp is subjected to dewatering, washing or displacement by warmer water and thus heating, and calendering. (O.S.).

  19. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.

    Science.gov (United States)

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-01-01

    An iron ore mine site in Swaziland is currently (2015) in a derelict state as a consequence of past (1964-1988) and present (2011 - current) iron ore mining operations. In order to control problems associated with mine wastes, the Swaziland Water Services Corporation (SWSC) recently (2013) proposed the application of biosolids in sites degraded by mining operations. It is thought that this practice could generally improve soil conditions and enhance plant reestablishment. More importantly, the SWSC foresees this as a potential solution to the biosolids disposal problems. In order to investigate the effects of biosolids and plants in soil physicochemical conditions of iron mine soils, we conducted two plant growth trials. Trial 1 consisted of tailings that received biosolids and topsoil (TUSB mix) while in trial 2, tailings received biosolids only (TB mix). In the two trials, the application rates of 0 (control), 10, 25, 50, 75 and 100 t ha(-1) were used. After 30 days of equilibration, 25 seeds of Cynodon dactylon were sown in each pot and thinned to 10 plants after 4 weeks. Plants were watered twice weekly and remained under greenhouse conditions for 12 weeks, subsequent to which soils were subjected to chemical analysis. According to the results obtained, there were significant improvements in soil parameters related to fertility such as organic matter (OM), water holding capacity (WHC), cation exchange capacity (CEC), ammonium [Formula: see text] , magnesium (Mg(2+)), calcium (Ca(2+)) and phosphorus ( [Formula: see text] ). With regard to heavy metals, biosolids led to significant increases in soil total concentrations of Cu, Zn, Cd, Hg and Pb. The higher concentrations of Zn and Cu in treated tailings compared to undisturbed adjacent soils are a cause for concern because in the field, this might work against the broader objectives of mine soil remediation, which include the recolonization of reclaimed sites by soil-dwelling organisms. Therefore, while

  20. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals

    International Nuclear Information System (INIS)

    Ge, Lichao; Zhang, Yanwei; Xu, Chang; Wang, Zhihua; Zhou, Junhu; Cen, Kefa

    2015-01-01

    This study investigates the influence of hydrothermal dewatering performed at different temperatures on the combustion characteristics of Chinese low-rank coals with different coalification maturities. It was found that the upgrading process significantly decreased the inherent moisture and oxygen content, increased the calorific value and fixed carbon content, and promoted the damage of the hydrophilic oxygen functional groups. The results of oxygen/carbon atomic ratio indicated that the upgrading process converted the low-rank coals near to high-rank coals which can also be gained using the Fourier transform infrared spectroscopy. The thermogravimetric analysis showed that the combustion processes of upgraded coals were delayed toward the high temperature region, and the upgraded coals had higher ignition and burnout temperature. On the other hand, based on the higher average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and the Da Tong bituminous coal. In ignition segment, the activation energy increased after treatment but decreased in the combustion stage. The changes in coal compositions, microstructure, rank, and combustion characteristics were more notable as the temperature in hydrothermal dewatering increased from 250 to 300 °C or coals of lower ranks were used. - Highlights: • Typical Chinese lignites with various ranks are upgraded by hydrothermal dewatering. • Upgraded coals exhibit chemical compositions comparable with that of bituminous coal. • FTIR show the change of microstructure and improvement in coal rank after upgrading. • Upgraded coals exhibit difficulty in ignition but combust easily. • More evident effects are obtained for raw brown coal with relative lower rank.

  1. Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal: Second quarterly progress report period ending 31 March 1989

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-04-18

    Battelle, in cooperation with the Electric Power Research Institute (EPRI), Ashbrook-Simon-Hartley (ASH), Kaiser Engineers (KE), Lewis Corporation, and Prof. S.H. Chiang of the University of Pittsburgh, is developing an advanced process for the dewatering of fine and ultrafine coals. The advanced process, called Electroacoustic Dewatering (EAD), capitalizes on the adaptation of synergistic effects of electric and acoustic fields to a commercial belt filter press design that is used in many other applications. The EAD equipment is described. 2 figs.

  2. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    Science.gov (United States)

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals

  3. Improved anaerobic biodegradation of biosolids by the addition of food waste as a co-substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.-W.; Han, S.-K.; Song, Y.-C.; Baek, B.-C.; Yoo, K.-S.; Lee, J.-J.; Shin, H.-S.

    2003-07-01

    The temperature phased anaerobic digestion (TPAD) process was applied to increase the performance of anaerobic treatment of biosolids. Previously obtained results indicate that this system showed the advantages of thermophilic and mesophilic anaerobic digestion process. By comparing the performance of each reactor of the system, it was illustrated that the main stage of methane production was the thermophilic reactor which has faster microbial metabolism. However, the result revealed that substrate characteristics of low VS/TS limited the system performance. Therefore, to evaluate the effect of food waste as a co-substrate for improving anaerobic biodegradability, biochemical methane potential (BMP) tests were conducted in thermophilic conditions with biomass of thermophilic reactor. It was confirmed that the co-digestion of sewage sludge mixed with food waste had a distinct improvement on biodegradability. The most significant advantages were the preferable environment provided by food waste for the growth and activity of anaerobes and the mutual assistance between biosolids and food waste. (author)

  4. Ground movement and deformation due to dewatering and open pit excavation

    International Nuclear Information System (INIS)

    Liu, B.; Yang, J.; Zhang, J.

    1996-01-01

    In the application of stochastic medium theory, it is assumed that ground movement process has the property of Markov Process. Based on superposition principle and rock consolidation principle, the ground movement and deformation due to dewatering and open pit excavation can be calculated. The comparison between the field measurements in Morwell Open Pit, Latrobe Valley (Victoria, Australia) and the calculated results shows the validity of the method in this paper. 5 refs

  5. Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level

    Science.gov (United States)

    Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki

    2017-10-01

    Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.

  6. Bacterial populations within copper mine tailings: long-term effects of amendment with Class A biosolids

    Science.gov (United States)

    This study evaluates the effect of surface application of dried Class A biosolids on microbial populations within copper mine tailings. Methods and Results: Mine tailing sites were established at ASARCO Mission Mine close to Sahuarita, Arizona. Site 1 (Dec. 1998) was amended with 248 tons ha-1 of C...

  7. Earthworms (Oligochaeta: Acanthodrilidae and Lumbricidae) associated with Hornsby Bend Biosolids Management Plant, Travis County, Texas, USA

    Science.gov (United States)

    Earthworm populations were surveyed in soils from a variety of habitats associated with the Hornsby Bend Biosolids Management Plant, Austin, Texas, from November 2009 through March 2010. Seven species of terrestrial Oligochaeta, including one species new to science, are reported from two families, ...

  8. Improvements in or relating to dewatering of materials

    International Nuclear Information System (INIS)

    Lane, E.S.; Lyon, C.E.; Simpson, M.P.; Wace, P.F.

    1980-01-01

    A process is described for the dewatering of a gel precipitated gel body having an open porous network comprising contacting the gel body containing water with an organic liquid capable of extracting water from the gel body thereby to extract water from the gel body, the organic liquid and conditions under which the contacting is effected being chosen such that organic liquid permeates the gel body so as to maintain an open porous network as water is extracted and such that an open porous network remains after removal of organic liquid. Examples are given of the use of the process in the preparation of spherical particles of (U,Th)O 2 and (U,Pu)O 2 . (author)

  9. Factors Affecting Distribution of Estrogenicity in the Influents, Effluents, and Biosolids of Canadian Wastewater Treatment Plants.

    Science.gov (United States)

    Shieh, Ben H H; Louie, Alvin; Law, Francis C P

    2016-05-01

    Canadian wastewater treatment plants (WWTPs) release significant amounts of estrogenic chemicals to nearby surface waters. Environmental estrogens have been implicated as the causative agents of many developmental and reproductive problems in animals, including fish. The goals of this study were to assess the estrogenic activity in the influents, effluents, and biosolids of thirteen Canadian WWTPs using the yeast estrogen screen (YES) bioassay and to investigate whether factors, such as wastewater treatment method, sample storage, extraction efficiency, population, and summer/winter temperature had any effects on the distribution of estrogenicity in the WWTPs. Results of the study showed that estrogenicity from the influent to the effluent decreased in seven WWTPs, increased in two WWTPs, and did not change in four WWTPs during the winter. Estrogenic concentrations generally decreased in the order of biosolids > influents > effluents and ranged from 1.57 to 24.6, 1.25E-02 to 3.84E-01, and 9.46E-03 to 3.90E-01 ng estradiol equivalents/g or ml, respectively. The estrogenicity in the final effluents, but not those in the influents and biosolids, was significantly higher in the summer than the winter. Among the WWTP treatment methods, advanced, biological nutrient removal appeared to be the most effective method to remove estrogenic chemicals from wastewaters in Canada. Our studies help to identify factors or mechanisms that affect the distribution of estrogenicity in WWTPs, providing a better understanding on the discharges of estrogenic chemicals from WWTPs.

  10. Effects of gamma-radiation at pilot plant level as compared to effects of pasteurization on the dewatering of sewage sludges

    International Nuclear Information System (INIS)

    Groneman, A.F.

    1975-01-01

    Dewatering and disposal of sludge are costly and time consuming processes. At a pilot plant near Munich efforts were made to estimate the effects of ionizing radiation on dewatering characteristics of different sludges, used for recycling in agriculture. The ease with which sludge drains on drying beds and in mechanical devices is reflected in the value of the specific resistance to filtration. A dose of 300 krad, delivered at an average dose rate of 62 krad per hour in the irradiation plant, was effective for disinfection and reduced the specific resistance to filtration in sludges from the waste water works at Geiselbullach and Starnberg from 24.2 x 10 9 sec 2 /g and 18.0 x 10 9 sec 2 /g to 9.7 x 10 9 sec 2 /g and 5.6 x 10 9 sec 2 /g, respectively. These improved dewatering properties were associated with a clear increase of the compressibility of the anaerobically digested sludges. Pasteurization at 70 0 C during 30 minutes drastically deteriorated the dewatering properties, raising the specific resistance to values approximately 4 times as high as the specific resistance in irradiated sludges. Information obtained from filterability tests was confirmed by plant operators who noticed that irradiated sludges dewatered much better than untreated sludges in drying beds. Experimental evidence indicated that the conditioning effect of gamma irradiation persisted for more than 20 days suggesting that permanent changes were induced in the physical-chemical properties of the domestic, anaerobically digested sludges. Measurements of electrophoretic mobilities showed that the negative electrostatic charges of colloidal particles in sludges were reduced by gamma irradiation whereas pasteurization increased this negative electrostatic charge. Evidence indicated that the specific resistance was considerably increased by effects of the recirculating pumping. This pumping is done to obtain a homogeneous irradiation dose for disinfection. Alternative designs for irradiation

  11. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.

    Science.gov (United States)

    Broadhurst, C Leigh; Chaney, Rufus L; Davis, Allen P; Cox, Albert; Kumar, Kuldip; Reeves, Roger D; Green, Carrie E

    2015-01-01

    Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH>6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.

  12. Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow

    Science.gov (United States)

    Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.

    2011-12-01

    Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference

  13. Decide, design, and dewater de waste: A blueprint from Fitzpatrick

    International Nuclear Information System (INIS)

    Robert, D.E.

    1994-01-01

    Using a different process to clean concentrated waste tanks at the James A. FitzPatrick nuclear power plant in New York saved nearly half million dollars. The plan essentially allowed processing concentrator bottoms as waste sludge (solidification versus dewatering) that could still meet burial ground requirements. The process reduced the volume from 802.2 to 55 cubic feet. This resin throwaway system eliminated chemicals in the radwaste systems and was designed to ease pressure on the pradwaste processing system, reduce waste and improve plant chemistry. This article discusses general aspects of the process

  14. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring.

    Science.gov (United States)

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-11-15

    Conventional wastewater treatment generates large amounts of organic matter-rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation-RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  15. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    Directory of Open Access Journals (Sweden)

    Beatriz Temporal-Lara

    2016-11-01

    Full Text Available Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine for proper maturation of the compost. Adequate (near real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68, humification ratio (RPD = 2.23, total exchangeable carbon (RPD = 2.07 and total organic carbon (RPD = 1.66 with a modular and cost-effective visible and near infrared (VNIR spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  16. Insight into effects of electro-dewatering pretreatment on nitrous oxide emission involved in related functional genes in sewage sludge composting.

    Science.gov (United States)

    Wang, Ke; Wu, Yiqi; Wang, Zhe; Wang, Wei; Ren, Nanqi

    2018-05-26

    Electro-dewatering (ED) pretreatment could improve sludge dewatering performance and remove heavy metal, but the effect of ED pretreatment on nitrous oxide (N 2 O) emission and related functional genes in sludge composting process is still unknown, which was firstly investigated in this study. The results revealed that ED pretreatment changed the physicochemical characteristics of sludge and impacted N 2 O related functional genes, resulting in the reduction of cumulative N 2 O emission by 77.04% during 60 days composting. The higher pH and NH 4 + -N, but lower moisture, ORP and NO 2 - -N emerged in the composting of ED sludge compared to mechanical dewatering (MD) sludge. Furthermore, ED pretreatment reduced amoA, hao, narG, nirK and nosZ in ED sludge on Day-10 and Day-60 of composting. It was found that nirK reduction was the major factor impacting N 2 O generation in the initial composting of ED sludge, and the decline of amoA restricted N 2 O production in the curing period. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Diptera of sanitary importance associated with composting of biosolids in Argentina

    Directory of Open Access Journals (Sweden)

    Valeria Alejandra Labud

    2003-12-01

    Full Text Available OBJECTIVE: Odorous compounds produced at the biosolids composting plant in Bariloche (NW Patagonia attract a variety of insects, mainly belonging to the order Diptera. In order to characterize these flies, collected specimens were taxonomically identified, their community characteristics were described and their sanitary and synanthropic importance and autochthonous or introduced character were determined. METHODS: Sampling was performed from October 1999 until March 2000. Adults were collected using an entomological net, and larvae and puparia were obtained from the composting material and incubated to obtain adults. Richness, abundance and sex ratio were calculated. RESULTS: A total of 9 taxa of Diptera were identified: Sarconesia chlorogaster, Phaenicia sericata, Calliphora vicina, Cochliomya macellaria, Ophyra sp, Muscina stabulans, Musca domestica, Sarcophaga sp and Fannia sp. Specimens of Anthomyiidae, Acaliptratae and one larva of Eristalis tenax were also found. Ophyra sp. was the most abundant taxa. All the captured Diptera belonged to introduced taxa. Most of them are considered to be eusynanthropic and/or hemisynanthropic and have sanitary importance as they may cause myiasis and pseudomyiasis. The high number of females registered and the finding of immature stages indicated that flies can develop their complete life cycle on biosolid composting windrows. CONCLUSIONS: The characterization of flies obtained in this study may be useful for defining locations of urban or semi-urban composting facilities. It also highlights the importance of sanitary precautions at such plants.

  18. Dewatering of sludge using the hydrosoft high-pressure process; Entwaessern von Schlaemmen mit dem Hydrosoft-Hochdruckverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Eder, C.; Eder, G. [Christian Eder Technology GbR, Neunkirchen (Germany)

    1999-07-01

    The hydrosoft process permits to dewater sludge, especially also sludge from municipal sewage treatment plant, until it contains a high proportion of dry substance. For existing dewatering systems equipped with the long-lived chamber filter presses, too, the dry matter content of the filter cake can be substantially increased using the hydrosoft process; only the pump system must be retrofitted. As a preliminary measure, tests with mobile pilot plants should be carried out. (orig.) [German] Mit dem Hydrosoft-Verfahren besteht die Moeglichkeit Schlaemme, insbesondere auch Schlaemme aus kommunalen Klaeranlagen, auf hohe Trockensubstanz-Gehalte zu entwaessern. Auch bei bestehenden Entwaesserungsanlagen, die mit den langlebigen Kammerfilterpressen ausgeruestet sind, koennen die Trockensubstanzgehalte der Filterkuchen mit dem Hydrosoft-Verfahren, fuer das dann nur noch das Pumpsystem nachgeruestet werden muss, wesentlich angehoben werden. Vorausgehen sollten jeweils Vorversuche mit mobilen Versuchsanlagen. (orig.)

  19. A case study on stratified settlement and rebound characteristics due to dewatering in Shanghai subway station.

    Science.gov (United States)

    Wang, Jianxiu; Huang, Tianrong; Sui, Dongchang

    2013-01-01

    Based on the Yishan Metro Station Project of Shanghai Metro Line number 9, a centrifugal model test was conducted to investigate the behavior of stratified settlement and rebound (SSR) of Shanghai soft clay caused by dewatering in deep subway station pit. The soil model was composed of three layers, and the dewatering process was simulated by self-invention of decompressing devise. The results indicate that SSR occurs when the decompression was carried out, and only negative rebound was found in sandy clay, but both positive and negative rebound occurred in the silty clay, and the absolute value of rebound in sandy clay was larger than in silty clay, and the mechanism of SSR was discussed with mechanical sandwich model, and it was found that the load and cohesive force of different soils was the main source of different responses when decompressed.

  20. Fate of synthetic musks in a domestic wastewater treatment plant and in an agricultural field amended with biosolids

    International Nuclear Information System (INIS)

    Yang, J.-J.; Metcalfe, Chris D.

    2006-01-01

    Synthetic musks are widely used as fragrance ingredients in personal care products, and they enter domestic wastewater treatment plants (WWTPs) through discharges into municipal sewage systems. Samples of aqueous sewage and biosolids collected from the Peterborough Wastewater Treatment Plant (WWTP), Ontario, Canada were analyzed for 11 synthetic musk compounds using GC/MS. The results showed that 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta[g]-2-benzopyrane (HHCB, 173.1 ± 43.4 ng/L) and 7-acetyl-1,1,3,4,4,6-hexamethyl-tetrahydronaphthalene (AHTN, 41.6 ± 15.8 ng/L) were the dominant fragrances in sewage, but other polycyclic musks and nitro musks were present at lower concentrations. The concentrations of HHCB and AHTN in the aqueous phase of the sewage were highly correlated with both BOD 5 and TOC. The overall removal efficiency of synthetic musks from the aqueous sewage in the WWTP ranged from 43.3% to 56.9%, but removal occurred mainly by partitioning into the biosolids. Based on a mass balance model, the daily input and output of HHCB and AHTN in the Peterborough WWTP were 47 g and 46 g, respectively. In an agricultural field amended with biosolids from the Peterborough WWTP, HHCB and AHTN were detected in soil immediately after application at mean concentrations of 1.0 and 1.3 μg/kg, respectively, but concentrations declined relatively rapidly over the next 6 weeks, post-application

  1. Determination of inorganic and organic priority pollutants in biosolids from meat processing industry

    International Nuclear Information System (INIS)

    Sena, Rennio F. de; Tambosi, Jose L.; Floriani, Silvia L.; Virmond, Elaine; Schroeder, Horst Fr.; Moreira, Regina F.P.M.; Jose, Humberto J.

    2009-01-01

    The biosolids (BS) generated in the wastewater treatment process of a meat processing plant were monitored and the priority pollutant content was characterized. The trace metal and organic pollutant content - polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) - were determined quantitatively and compared to guideline limits established by the US EPA and EU. PCBs were not detected in the solid samples, while trace metals, PAHs and PCDD/PCDF were detected in concentrations below the limits established by international standards. Toxic equivalent factors were evaluated for the biosolids, and the results proved that these wastes can be safely deposited on land or used in combustion/incineration plants. Since no previous data were found for meat processing waste, comparisons were made using municipal sewage sludge data reported in the literature. Since, this report monitored part of the priority pollutants established by the US EPA for meat and poultry processing wastewater and sludge, the results verified that low pollution loads are generated by the meat processing plant located in the southern part of Brazil. However, the BS generated in the treatment processes are in accordance with the limits established for waste disposal and even for soil fertilizer.

  2. Characterization of Environmental Nano- and Macrocolloid Particles Extracted from Selected Soils and Biosolids

    Directory of Open Access Journals (Sweden)

    J. L. Ghezzi

    2014-01-01

    Full Text Available Environmental nanoparticles found in soil systems and biosolids may pose a considerable risk to groundwater quality as contaminant carriers. Little effort has been invested in the characterization of natural nanocolloids compared to corresponding macrocolloids. This study involved physicochemical, mineralogical, and morphological characterizations of nanocolloids and macrocolloids fractionated from three Kentucky soils and one biosolid. Particle size and morphology were investigated using scanning/transmission electron microscopy and dynamic light scattering. Mineralogical composition was determined by X-ray diffraction and thermogravimetric and Fourier-transform infrared spectroscopy analyses. Zeta potentials and cation exchange capacities assessed surface charge and chemical reactivity. The estimated average hydrodynamic diameter of nanoparticles was nearly twice the ideal 100 nm range, apparently due to irregular particle shapes and partial aggregation. Nanoparticles were also found attached to surfaces of macrocolloids, forming macro-nano aggregates and obscuring some of their physical and chemical characteristics. However, nanocolloids exhibited greater surface reactivity, likely due to their smaller size, poor crystallinity, and morphological shape distortions. In spite of some behavior modification due to nanoaggregation phenomena, nanocolloids appeared to be much more potent vectors of contaminant transport in subsurface environments than their macrosize fractions. Nevertheless, their heterogeneous nature brings to light important considerations in addressing pollution prevention and remediation challenges.

  3. Effects of gamma irradiation on physical-chemical properties and dewatering characteristics of sludges

    International Nuclear Information System (INIS)

    Groneman, A.F.

    1976-01-01

    Separation of solids from liquids is a paramount operation in the processes applied in treating sewage and waste waters. Therfore, studies were undertaken to investigate effects of gamma irradiation on the physical-chemical properties of sludges and the de-watering characteristics of anaerobically digested sludge and aerobically activated sludge. A dose of 300 krad reduced the specific resistance of anaerobically digested sludges from 33 x 10 sec 2 /g to approximately 10 x 10 9 sec 2 /g. This conditioning effect was little influenced by the presence of oxygen or nitrogen. Pasteurization increased the specific resistance to filtration up to 48 x 10 9 sec 2 /g. Dewatering characteristics of raw sludge were not affected by irradiation in the presence of oxygen but a slight conditioning effect was noticed when the sludge was irradiated under deaerated conditions. Experimental evidence indicated that gamma irradiation detached organic substances from the sludge flocks resulting in a decrease of the specific resistance and an increase in the Total Organic Carbon (TOC) and the Chemical Oxygen Demand (COD) in the filtrates. Elutriation reduced but did not eliminate the conditioning effect of gamma irradiation. (author)

  4. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride.

    Science.gov (United States)

    Wu, Yan; Zhang, Panyue; Zhang, Haibo; Zeng, Guangming; Liu, Jianbo; Ye, Jie; Fang, Wei; Gou, Xiying

    2016-04-01

    Rice husk biochar modified by FeCl3 (MRB-Fe) was used to enhance sludge dewaterability in this study. MRB-Fe preparation conditions and dosage were optimized. Mechanisms of MRB-Fe improving sludge dewaterability were investigated. The optimal modification conditions were: FeCl3 concentration, 3mol/L; ultrasound time, 1h. The optimal MRB-Fe dosage was 60% DS. Compared with raw sludge, the sludge specific resistance to filtration (SRF) decreased by 97.9%, the moisture content of sludge cake decreased from 96.7% to 77.9% for 6min dewatering through vacuum filtration under 0.03MPa, the SV30% decreased from 96% to 60%, and the net sludge solids yield (YN) increased by 28 times. Positive charge from iron species on MRB-Fe surface counteracted negative charge of sludge flocs to promote sludge settleability and dewaterability. Meanwhile, MRB-Fe kept a certain skeleton structure in sludge cake, making the moisture pass through easily. Using MRB-Fe, therefore, for sludge conditioning and dewatering is promising. Copyright © 2016. Published by Elsevier Ltd.

  5. Biosolids recycling : a proposed methodology for the assessment of the impact on groundwater

    OpenAIRE

    Robins, N.S.

    2005-01-01

    A groundwater risk assessment protocol is needed for land restoration schemes using recycled biosolids. A hydrogeological risk assessment for the Darnconner site in East Ayrshire [NS5723 to NS5823] has been used as a case study to develop the protocol. The proposed outline for developing the protocol included the following components: 1. Gather available geological information for the site and environs from 1: 50 000 scale geological maps and more detailed information where ava...

  6. A Case Study on Stratified Settlement and Rebound Characteristics due to Dewatering in Shanghai Subway Station

    Directory of Open Access Journals (Sweden)

    Jianxiu Wang

    2013-01-01

    Full Text Available Based on the Yishan Metro Station Project of Shanghai Metro Line number 9, a centrifugal model test was conducted to investigate the behavior of stratified settlement and rebound (SSR of Shanghai soft clay caused by dewatering in deep subway station pit. The soil model was composed of three layers, and the dewatering process was simulated by self-invention of decompressing devise. The results indicate that SSR occurs when the decompression was carried out, and only negative rebound was found in sandy clay, but both positive and negative rebound occurred in the silty clay, and the absolute value of rebound in sandy clay was larger than in silty clay, and the mechanism of SSR was discussed with mechanical sandwich model, and it was found that the load and cohesive force of different soils was the main source of different responses when decompressed.

  7. Long term insight into biodiversity of a smelter wasteland reclaimed with biosolids and by-product lime.

    Science.gov (United States)

    Siebielec, Sylwia; Siebielec, Grzegorz; Stuczyński, Tomasz; Sugier, Piotr; Grzęda, Emilia; Grządziel, Jarosław

    2018-09-15

    Smelter wastelands containing high amounts of zinc, lead, cadmium, and arsenic constitute a major problem worldwide. Serious hazards for human health and ecosystem functioning are related to a lack of vegetative cover, causing fugitive dust fluxes, runoff and leaching of metals, affecting post-industrial ecosystems, often in heavily populated areas. Previous studies demonstrated the short term effectiveness of assisted phytostabilisation of zinc and lead smelter slags, using biosolids and liming. However, a long term persistence of plant communities introduced for remediation and risk reduction has not been adequately evaluated. The work was aimed at characterising trace element solubility, plant and microbial communities of the top layer of the reclaimed zinc and lead smelter waste heaps in Piekary Slaskie, Poland, 20 years after the treatment and revegetation. The surface layer of the waste heaps treated with various rates of biosolids and the by-product lime was sampled for measuring chemical and biochemical parameters, which are indicative for metals bioavailability as well as for microorganisms activity. Microbial processes were characterised by enzyme activities, abundance of specific groups of microorganisms and identification of N fixing bacteria. Plant communities of the area were characterised by a percent coverage of the surface and by a composition of plant species and plant diversity. The study provides a strong evidence that the implemented remediation approach enables a sustainable functioning of the ecosystem established on the toxic waste heaps. Enzyme activities and the count of various groups of microorganisms were the highest in areas treated with both biosolids and lime, regardless their rates. A high plant species diversity and microbial activities are sustainable after almost two decades from the treatment, which is indicative of a strong resistance of the established ecosystem to a metal stress and a poor physical quality of the

  8. Combined treatment of solar energy and gamma irradiation to eliminate pathogenic bacteria in dewatered sludge

    International Nuclear Information System (INIS)

    Hilmy, N.; Harsoyo, S.; Suwirma, S.

    1987-01-01

    Combined treatment of solar energy and gamma irradiation to eliminate pathogenic bacteria in dewatered sludge. A combined treatment of solar energy and gamma irradiation has been done to eliminate the pathogenic microbes contaminating dewatered sludge. Samples were collected during dry season, i.e. from June to September 1985. To reduce the water content from 70% to 20%, solar energy from sun rays was used, i.e. from 9 a.m. to 2 p.m. for 4 days. Total bacterial count coliform bacteria Escherichia coli, Fecal Streptococcus, Enterobacteriaceae, and Pseudomonas sp were found to be 7.4x10 8 per g, 4.1x10 3 per g, 4.5x10 2 per g, 3.1x10 5 per g, 3.6x10 4 per g, and 5.4x10 3 per g of samples respectively. The combined treatment could reduce the irradiation dose needed to eliminate the pathogenic microbes of samples investigated from 6 to 2 kGy. (author). 5 figs, 11 refs

  9. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation.

    Science.gov (United States)

    Yu, Hang; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Yunshu; Zheng, Zhen; Hao, Xiaodi

    2015-10-01

    Bioelectrochemically-assisted anaerobic composting process (AnCBE) with dewatered sludge as the anode fuel was constructed to accelerate composting of dewatered sludge, which could increase the quality of the compost and harvest electric energy in comparison with the traditional anaerobic composting (AnC). Results revealed that the AnCBE yielded a voltage of 0.60 ± 0.02 V, and total COD (TCOD) removal reached 19.8 ± 0.2% at the end of 35 d. The maximum power density was 5.6 W/m(3). At the end of composting, organic matter content (OM) reduction rate increased to 19.5 ± 0.2% in AnCBE and to 12.9 ± 0.1% in AnC. The fuzzy comprehensive assessment (FCA) result indicated that the membership degree of class I of AnCBE compost (0.64) was higher than that of AnC compost (0.44). It was demonstrated that electrogenesis in the AnCBE could improve the sludge stabilization degree, accelerate anaerobic composting process and enhance composting maturity with bioelectricity generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Biosolids effectiveness to yield ryegrass based on their nitrogen content Eficiência de biossólidos na produção de azevém baseado no conteúdo de nitrogênio

    Directory of Open Access Journals (Sweden)

    Rodrigo Studart Corrêa

    2005-06-01

    Full Text Available Biosolids have been reported to increase yields and supply plant nutrients. However, complying with health and environmental standards is necessary before applying biosolids to land. Thus, sludge stabilization is required to make biosolids safe enough for their agricultural use. Side effects of stabilization processes on agronomic features of sewage sludge are not quite known, although their understanding is essential for biosolids management. Based on a model equivalent to the Mitscherlich equation, effects of the most common processes for sludge stabilization were evaluated (composting, liming, heat-drying and solar irradiation in relation to the agronomic effectiveness of biosolids to yield Lolium perenne L. on two tropical soils, with NH4H2PO4 as a reference. Sewage stabilization processes have affected the ability of biosolids to promote plant growth. Their effectiveness was usually higher than fertilizer in a Spodosol and lower in an Oxisol. Solar-irradiated sludge presented the highest effectiveness among the biosolids and reached peak yields at the lowest application rate independent on soil type. Biosolids could efficiently substitute fertilizers and even yield more plant dry matter than the NH4H2PO4 reference, depending on the biosolid and soil type.Biossólidos têm sido citados como capazes de aumentar a produção de culturas e suprir nutrientes para plantas. Questões sanitárias e ambientais demandam que eles sejam estabilizados para que sejam usados na agricultura. Os efeitos dos processos de estabilização sobre as propriedades agronômicas de biossólidos não são completamente conhecidos, apesar de essenciais para o seu manejo. Baseado em um modelo equivalente à equação de Mitscherlich, este trabalho avaliou os efeitos dos processos mais comuns para a estabilização de lodos de esgotos (compostagem, caleação, secagem térmica e irradiação solar sobre a eficiência agronômica de biossólidos na produção de Lolium

  11. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend.

    Science.gov (United States)

    Liang, C; Das, K C; McClendon, R W

    2003-01-01

    To understand the relationships between temperature, moisture content, and microbial activity during the composting of biosolids (municipal wastewater treatment sludge), well-controlled incubation experiments were conducted using a 2-factor factorial design with six temperatures (22, 29, 36, 43, 50, and 57 degrees C) and five moisture contents (30, 40, 50, 60, and 70%). The microbial activity was measured as O2 uptake rate (mg g(-1) h(-1)) using a computer controlled respirometer. In this study, moisture content proved to be a dominant factor impacting aerobic microbial activity of the composting blend. Fifty percent moisture content appeared to be the minimal requirement for obtaining activities greater than 1.0 mg g(-1) h(-1). Temperature was also documented to be an important factor for biosolids composting. However, its effect was less influential than moisture content. Particularly, the enhancement of composting activities induced by temperature increment could be realized by increasing moisture content alone.

  12. Preconcentration of a low grade uranium ore in CPDU and laboratory investigation to optimize the dewatering conditions of the preconcentration products

    International Nuclear Information System (INIS)

    Cristovici, M.A.; Berry, T.F.; Raicevic, M.M.; Brady, E.L.; Bredin, E.L.; Leigh, G.W.; Rouleau, J.P.

    1982-04-01

    A process consisting of pyrite flotation and magnetic concentration of radionuclides was developed by CANMET over several years, to preconcentrate low grade uranium ores prior to leaching. When the economics of the preconcentration-leaching technology was compared with the leaching of the entire ore after pyrite flotation (Base Case variant), the preconcentration method appeared to be economically less advantageous than expected, due to the high cost of dewatering the preconcentration products. Further investigations examined in-depth the metallurgy and dewatering of the two variants: preconcentration and base case. A typical low grade uranium ore from Elliot Lake area was used. The metallurgy was compared based on data from continuous operation (CPDU). In the preconcentration variant the amount of ore directed to leaching was reduced to more than one third of that processed in the base case, while the radionuclide concentration became more than three times higher. However, by preconcentration 7% of the uranium was lost before leaching. Systematic laboratory-scale settling and filter tests optimized the dewatering conditions of the preconcentration technology to the extent that rates similar to those of the base case were obtained

  13. Modelagem do processo de desidratação de lodo anaeróbio em leitos de secagem simulados Anaerobic sludge dewatering process modeling in simulated drying beds

    Directory of Open Access Journals (Sweden)

    Sérgio R. A. Soares

    2001-05-01

    Full Text Available O emprego de leitos de secagem para a desidratação de lodo de descarte de reatores UASB, constitui excelente alternativa, face a sua simplicidade operacional e aos reduzidos custos de implantação. Este trabalho apresenta uma análise dos fenômenos que influenciam o processo de desidratação de lodo anaeróbio, a partir de simulação de leitos de secagem. Neste sentido, são feitas considerações sobre as características e o comportamento do lodo durante cada fase da secagem. Sugere-se também, um modelo matemático para representar o processo de secagem, obtido a partir dos dados experimentais.The employment of drying beds is an excellent option for dewatering of UASB reactor discarded sludge, because of their simple operation and low construction costs. This paper presents an anaerobic sludge dewatering process analysis of the most influential phenomenon based on drying beds simulation. Therefore, some considerations were made about sludge characteristics and behavior during each dewatering stage. A mathematical model for dewatering process representation obtained from experimental data is also suggested.

  14. Application of Fuzzy Synthetic Evaluation in Selection of Best Sludge Dewatering Option in Ghods Town WWTP in Tehran

    Directory of Open Access Journals (Sweden)

    Masoud Taheriyoun

    2015-03-01

    Full Text Available The design and upgrade of sludge treatment systems generally depend on the decision made regarding the appropriate system from among the options available. The selection process has become increasingly important and complex due to recent technological developments that have led to increased diversity in the available options which offer a wide variety of capabilities. The multi-criteria decision making method is one of the techniques recently developed which takes into account all the criteria involved in the decision making process. The Ghods Town WWTP in the west of Tehran located in the vicinity of residential areas has given rise to claims by citizens due to the odors emitted by the sludge sand drying bed, which justifies the replacement of the present sludge dewatering system. For this purpose, the multi-criteria decision making method based on the fuzzy synthetic evaluation method was used to identify the optimal sludge dewatering system appropriate for the WWTP under consideration. Furthermore, weighting of the subjective (social, environmental, and administrative criteria was accomplished using the analytical hierarchy process and the objective (i.e., economic criteria were weighted using the entropy concept. In this method, the triangular fuzzy membership function was also used to take into account the uncertainty associated with each of the decision making parameters. Based on the results obtained, the belt filter press dewatering system and the filter press were identified as the preferred solutions.

  15. Pharmaceutical and personal care products in tile drainage following land application of municipal biosolids.

    Science.gov (United States)

    Lapen, D R; Topp, E; Metcalfe, C D; Li, H; Edwards, M; Gottschall, N; Bolton, P; Curnoe, W; Payne, M; Beck, A

    2008-07-25

    Land application of municipal biosolids (sewage) is a common farming practice in many parts of the world. There is potential for transport of pharmaceuticals and personal care products (PPCPs) from agricultural fields to adjacent surface waters via tile drainage systems. In this study, liquid municipal biosolids (LMB) (total solids=11,933 mg L(-1)), supplemented with selected PPCPs and the fluorescent dye tracer rhodamine WT (RWT), were applied to tile drained fields using two land application approaches. Objectives included evaluating the relative benefits of land application practices with respect to reducing PPCP loadings to tile drains, evaluating PPCP persistence in tile water, and determining whether rhodamine WT can be used to estimate PPCP mass loads in tile. The PPCPs examined included an antibacterial agent used in personal care products (triclosan), a metabolite of nicotine (cotinine), and a variety of drugs including two sulfonamide antimicrobials (sulfapyridine, sulfamethoxazole), a beta-blocker (atenolol), an anti-epileptic (carbamazepine), an antidepressant (fluoxetine), analgesic/anti-inflammatories (acetaminophen, naproxen, ibuprofen), and a lipid-regulator (gemfibrozil). Maximum observed PPCP concentrations in the spiked LMB were about 10(3) ng g(-1) dry weight. PPCPs were shown to move rapidly via soil macropores to tile drains within minutes of the land application. Maximum observed PPCP concentrations in tile effluent associated with the LMB application-induced tile flow event were approximately 10(1) to 10(3) ng L(-1). PPCP mass loads, for the application-induced tile-hydrograph event, were significantly (ptile water during several precipitation-induced tile flow events that occurred post-application, included: triclosan (max. approximately 1.5 x 10(2) ng L(-1)), carbamazepine (max. approximately 7 x 10(1) ng L(-1)), atenolol (max approximately 4 x 10(1) ng L(-1)), and cotinine (max approximately 2 x 10(1) ng L(-1)). In spite of their presence

  16. Ultrasound technology effect on wastewater sludge treatment; Efecto de los ultrasonidos en el tratamiento de lodos de depuradora de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Mesas Diaz, J. A.

    2003-07-01

    The ultrasound technology has been used since long time ago in the medicine, food industry, cosmetics and cleaning systems; but during the last few years is when this technology has stated to be used in the wastewater and sludge treatment industry. The application of low frequency and high intensity ultrasound in the wastewater and sludge treatment has numerous benefits. The ultrasound technology improves the aerobic and anaerobic digestion process, increases the biogas production, improves the sludge dewatering, reduces the polymer consumption, reduces the final biosolids production, reduces or removes the bulking and foaming problems,and enhances nutrient removal (N, P). (Author) 7 refs.

  17. Dewatering e bonifica dell’ area ˝ex Whitehead Motofides˝ (Pisa, Italia

    Directory of Open Access Journals (Sweden)

    Nicola Conti

    2014-12-01

    Full Text Available In 2007 the activities for the remediation of the “ex-Whitehead Motofides area” (in Marina di Pisa, Italy started. In order to allow the contaminated soil excavation in dry conditions a dewatering system was necessary. The water pumped through this system was then treated in an adequate plant. Acque Industriali realized and managed the whole system. The dewatering system was made of suction pins fixed to a depth of 5.5 m, connected by a junction manifold to the suction and booster vacuum assisted pump, which allowed the groundwater release toward the plant. The treatment plant, entirely designed by Acque Industriali and called ITAM (Impianto di Trattamento Acque di Falda Mobile, which means movable groundwater treatment, was realized and set up at the end of 2008. It consisted of a pre-treatment section, made of reinforced concrete, prefabricated nitrogen sweep elements, and a physical chemical treatment plant, in a continuous loop, completely made on skid. The plant, with 25 m3/h of maximum potential, was able to remove possible sedimentable or in suspension material particles from water, iron, manganese, residual organic substances such as hydrocarbons, solvents (chlorinated and not, PCBs, and partly heavy metals. Totally, 98,167 m3 of groundwater were managed in about 25 months of activity. The analytic input and output results confirmed extremely high and satisfactory pollutant removal efficiency. The concentration values of the pollutants, in fact, were always lower than the limits imposed by law.

  18. Hot dewatering and resin encapsulation of intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Rickman, J.; Birch, D.

    1985-01-01

    The chemistry of the processes involved in the hot dewatering and encapsulation of alumino-ferric hydroxide floc in epoxide resin have been studied. Pretreatment of the floc to reduce resin attack and hydrolysis and to increase the dimensional stability of the solidified wasteform has been evaluated. It has been demonstrated that removal of ammonium nitrate from the floc and control of the residual water in the resin are important factors in ensuring dimensional stability of the solidified resin. Resin systems have been identified which, together with the appropriate waste pretreatment have successfully encapsulated a simulated magnox sludge producing a stable wasteform having mechanical and physical properties comparable with the basic resin. (author)

  19. Phytoaccumulation of antimicrobials from biosolids: impacts on environmental fate and relevance to human exposure.

    Science.gov (United States)

    Aryal, Niroj; Reinhold, Dawn M

    2011-11-01

    Triclocarban and triclosan, two antimicrobials widely used in consumer products, can adversely affect ecosystems and potentially impact human health. The application of biosolids to agricultural fields introduces triclocarban and triclosan to soil and water resources. This research examined the phytoaccumulation of antimicrobials, effects of plant growth on migration of antimicrobials to water resources, and relevance of phytoaccumulation in human exposure to antimicrobials. Pumpkin, zucchini, and switch grass were grown in soil columns to which biosolids were applied. Leachate from soil columns was assessed every other week for triclocarban and triclosan. At the end of the trial, concentrations of triclocarban and triclosan were determined for soil, roots, stems, and leaves. Results indicated that plants can reduce leaching of antimicrobials to water resources. Pumpkin and zucchini growth significantly reduced soil concentrations of triclosan to less than 0.001 mg/kg, while zucchini significantly reduced soil concentrations of triclocarban to 0.04 mg/kg. Pumpkin, zucchini, and switch grass accumulated triclocarban and triclosan in mg per kg (dry) concentrations. Potential human exposure to triclocarban from consumption of pumpkin or zucchini was substantially less than exposure from product use, but was greater than exposure from drinking water consumption. Consequently, research indicated that pumpkin and zucchini may beneficially impact the fate of antimicrobials in agricultural fields, while presenting minimal acute risk to human health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. An assessment of filter aids and filter cloths in the dewatering of intermediate level wastes

    International Nuclear Information System (INIS)

    Knibbs, R.H.; Hudson, B.C.; Blackwell, J.C.W.

    1984-12-01

    This report considers a range of filter cloths and precoat materials intended for use in dewatering intermediate level radioactive wastes, and their interaction when used on a rotary drum vacuum filter. The report outlines the advantages and disadvantages of various grades and types of precoat and shows that grades with permeabilities in the intermediate range, 3 to 4 x 10 -12 m 2 , give satisfactory filtrate quality together with ease of operation. The work on filter cloths shows that: radiation damage is not a limiting factor as regards operational life for any of the cloths examined; polyester-based cloths are unsuitable due to their poor resistance to alkali attack; polyamide cloths are satisfactory; and stainless steel Dutch weave cloths are satisfactory and have the added advantage of high strength. The report also briefly considers the radiation resistance of two elastomeric membranes used on the 'epidermal' filter and shows that the natural latex rubber membrane is considerably more resistant to radiation than the silicone rubber membrane and has an estimated operational life of at least 1200 hours when dewatering Magnox silo sludge or α-contaminated alumino ferric flocs. (author)

  1. Efficient nitrogen recycling through sustainable use of organic wastes in agriculture - an Australian case study

    Science.gov (United States)

    Rigby, Hannah; Landman, Michael; Collins, David; Walton, Katrina; Penney, Nancy; Pritchard, Deborah

    2014-05-01

    to nutrient losses to air and water. This paper discusses the sustainable recycling N resources in biosolids and biowastes in agriculture in Australia using specific recent research examples from Western Australia, including lime amended biosolids, alum sludge and dewatered biosolids cake, and from Tasmania, papermill sludge. The primary focus is the N fertiliser replacement value of different biosolids and biowaste types under different environmental conditions, and management issues relating to the sustainable recycling of N. Experimental work included field trials and soil incubation studies. The findings are compared with research findings conducted in different climatic regions and soil types across Australia (Queensland, Victoria, New South Wales) and internationally.

  2. Inactivation of Adenovirus Type 5, Rotavirus WA and Male Specific Coliphage (MS2 in Biosolids by Lime Stabilization

    Directory of Open Access Journals (Sweden)

    Aaron B. Margolin

    2007-03-01

    Full Text Available The use of lime to reduce or eliminate pathogen content is a cost-effective treatment currently employed in many Class B biosolids production plants in the United States. A bench scale model of lime stabilization was designed to evaluate the survival of adenovirus type 5, rotavirus Wa, and the male specific bacteriophage, MS2, in various matrices. Each virus was initially evaluated independently in a reverse osmosis treated water matrix limed with an aqueous solution of calcium hydroxide for 24-hr at 22 ± 5°C. In all R/O water trials, adenovirus type 5, rotavirus Wa and MS2 were below detectable levels (<100.5 TCID50/mL and <1 PFU/mL respectively following 0.1-hr of liming. Adenovirus type 5, rotavirus Wa, and MS2, were inoculated into composted, raw and previously limed matrices, representative of sludge and biosolids, to achieve a final concentration of approximately 104 PFU or TCID50/mL. Each matrix was limed for 24-hr at 22 ± 5°C and 4 ± 2°C. In all trials virus was below detectable levels following a 24-hr incubation. The time required for viral inactivation varied depending on the temperature and sample matrix. This research demonstrates reduction of adenovirus type 5, rotavirus Wa, and male-specific bacteriophage, in water, sludge and biosolids matrices following addition of an 8% calcium hydroxide slurry to achieve a pH of 12 for 2-hr reduced to 11.5 for 22-hr by addition of 0.1 N HCl. In these trials, MS2 was a conservative indicator of the efficacy of lime stabilization of adenovirus Type 5 and rotavirus Wa and therefore is proposed as a useful indicator organism.

  3. Efficient dewatering of bark in heated presses. Survey and pilot-scale trials; Effektivare avvattning av bark i vaermda pressar. Problemkartering samt foersoek i pilotskala

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Martin; Stenstroem, Stig (Lund Inst. of Technology, Lund (SE))

    2007-12-15

    Dewatering and drying of biofuels such as bark and GROT have received increased importance due to an increased interest to use these products as energy sources. In Sweden there are about 30 bark presses installed, however the amount of available information is very limited about dewatering of bark. The goal with this work is to increase the knowledge about dewatering of bark. Two separate goals have been defined in the project: A. Survey about problems related to dewatering of bark and compilation of operating experiences at Swedish mills. B. Study how different parameters affect bark dewatering at pilot scale experiments. Study different techniques for heating bark and the bark pressing process. The results will mainly be of interest for mills which are handling bark, for municipal power plants who buy wet forest residues (bark, GROT etc.) and for manufacturers of industrial bark pressing equipment. The results show that the dry matter content for birch- and pine bark normally are so high that pressing does not result in dewatering of the barks. Both dry and wet debarking is used and these bark fractions should be pressed separately. On line measurement of the dry matter content for the bark should be used as a standard tool on the bark press. This will facilitate improved control of the bark press during the year. Other conclusions are that smaller bark particles result in an increased dry matter content, large bark- and wood pieces decrease the dewatering in the bark press and that the total residence time in the press nip should be at least 30 seconds. The most common method to take care of bark water is to send it to the evaporators or to the water purification plant. Maintenance of the bark press appears not to be a big problem. Hot pressing can be accomplished in different ways, either the bark press can be heated or the bark can be heated in different ways. The alternatives that have been studied in this project are steaming the bark, heating the bark using

  4. Membrane biological reactors to remove nitrate, digest biosolids, and eliminate water flushing requirements within replicated recirculation systems culturing rainbow trout

    Science.gov (United States)

    Nutrients, particularly nitrate (NO3), can accumulate to very high levels within low exchange recirculation aquaculture systems (RAS) and negatively impact a number of cultured species. To prevent the harmful effects of nitrate accumulation and to dispose of concentrated waste biosolids, many RAS ar...

  5. Reduction of sludge production from WWTP using thermal pretreatment and enhanced anaerobic methanisation.

    Science.gov (United States)

    Graja, S; Chauzy, J; Fernandes, P; Patria, L; Cretenot, D

    2005-01-01

    The objective of the study presented here was to investigate the performance of an enhanced two-step anaerobic process for the treatment of WWTP sludge. This process was developed to answer the urgent need currently faced by WWTP operators to reduce the production of biosolids, for which disposal pathways are facing increasing difficulties. A pilot plant was operated on a full-scale WWTP (2,500 p.e.) over a period of 4 months. It consisted of a thermal pre-treatment of excess sludge at 175 degrees C and 40 min, followed by dewatering and methanisation of the centrate in a fixed-film reactor. The thermal lysis had a two-fold enhancing effect on sludge reduction efficiency: firstly, it allowed a decrease of the HRT in the methaniser to 2.9 days and secondly, it yielded biosolids with a high dewaterability. This contributed to further reductions in the final volume of sludge to be disposed of. The two-step process achieved a sludge reduction efficiency of 65% as TSS, thus giving an interesting treatment option for WWTP facing sludge disposal problems.

  6. Characterization of fluoroquinolone resistance and qnr diversity in Enterobacteriaceae from municipal biosolids.

    Directory of Open Access Journals (Sweden)

    Ella eKaplan

    2013-06-01

    Full Text Available Municipal biosolids produced during activated sludge treatment applied in waste water treatment plants, are significant reservoirs of antibiotic resistance, since they assemble both natural and fecal microbiota, as well as residual concentrations of antibiotic compounds. This raises major concerns regarding the environmental and epidemiological consequences of using them as fertilizers for crops. The second generation fluoroquinolone ciprofloxacin is probably the most abundant antibiotic compound detected in municipal biosolids due to its widespread use and sorption properties. Although fluoroquinolone resistance was originally thought to result from mutations in bacterial gyrase and topoisomerase IV genes, it is becoming apparent that it is also attributed to plasmid-associated resistance factors, which may propagate environmental antibiotic resistance. The objective of this study was to assess the impact of the activated sludge process on fluoroquinolone resistance. The scope of resistances and mobile genetic mechanisms associated with fluoroquinolone resistance were evaluated by screening large collections of ciprofloxacin-resistant Enterobacteriaceae strains from sludge (n=112 and from raw sewage (n=89. Plasmid-mediated quinolone resistance determinants (qnrA, B and S were readily detected in isolates from both environments, the most dominant being qnrS. Interestingly, all qnr variants were significantly more abundant in sludge isolates than in the isolates from raw sewage. Almost all of ciprofloxacin-resistant isolates were resistant to multiple antibiotic compounds. The sludge isolates were on the whole resistant to a broader range of antibiotic compounds than the raw sewage isolates; however this difference was not statistically significant. Collectively, this study indicates that the activated sludge selects for multiresistant bacterial strains, and that mobile quinolone-resistance elements may have a selective advantage in the activated

  7. Dewatering treatments to increase dry matter content of the brown seaweed, kelp (Laminaria digitata ((Hudson) JV Lamouroux)).

    Science.gov (United States)

    Gallagher, Joe A; Turner, Lesley B; Adams, Jessica M M; Dyer, Philip W; Theodorou, Michael K

    2017-01-01

    Macroalgal water content is an on-going problem for the use of readily accessible seaweeds in sustainable biorefining, including fuel production. Silage is a reduced-water, compactable, easily stored, transportable material. Ensiling could establish a non-seasonal supply of preserved algal biomass, but requires high initial dry matter content to mitigate environmental pollution risks from effluent. This study investigated potential dewatering methods for kelp harvested throughout the year. Treatments included air-drying, osmotic media and acids. Significant interactions between treatment and harvest-time were observed for traits of interest. Fresh weight loss during treatment was composed of changes in water and dry matter content. Air-drying gave reliable increase in final dry matter content; in summer and autumn 30% dry matter content was reached after 24h. Dilute hydrochloric acid reduced stickiness and rendered material suitable for dewatering by screw-pressing; it may be possible to use the consequent pH reduction to promote efficient preservation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering

    Science.gov (United States)

    Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao

    2017-06-01

    High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.

  9. The exploitation of swamp plants for dewatering liquid sewage sludge

    Directory of Open Access Journals (Sweden)

    Jiří Šálek

    2006-01-01

    Full Text Available The operators of little rural wastewater treatment plants have been interested in economic exploitation of sewage sludge in local conditions. The chance is searching simply and natural ways of processing and exploitation stabilized sewage sludge in agriculture. Manure substrate have been obtained by composting waterless sewage sludge including rest plant biomass after closing 6–8 years period of filling liquid sewage sludge to the basin. Main attention was focused on exploitation of swamp plants for dewatering liquid sewage sludge and determination of influence sewage sludge on plants, intensity and course of evapotranspiration and design and setting of drying beds. On the base of determined ability of swamp plants evapotranspiration were edited suggestion solutions of design and operation sludge bed facilities in the conditions of small rural wastewater treatment plant.

  10. Performance of Sandy Dry Beds for sludge dewatering

    International Nuclear Information System (INIS)

    Al-Muzaini, S.

    2003-01-01

    Sludge produced by the Jahra treatment plant was assessed. The assessment was directed at determining the performance of sand drying beds. The assessment of quality of the sludge produced was based on the standards for land application of sewage sludge. Analyses were carried out for trace heavy metals and bacteria. The results of analyses showed that the sludge produced was high in organic matter and sand content but low in heavy metals. The collected data indicated that the sand drying beds at the Jahra treatment plant are at present inadequate to handle the projected sludge production. The investigation showed that the sand drying beds are fully used and the plant will require 3-4 times the capacity of the existing drying beds when the plant becomes fully operational. In addition, these sand drying beds are subjected to uncontrollable conditions such as temperature, rainfall and sludge drainage rate. Thus, sand drying beds have become less popular as a dewatering system. This paper evaluates the performance of the existing sand drying beds and suggests the most appropriate technology to alleviate the above mentioned problems. (author)

  11. The use of geotextile tube containers for dewatering the Restigouche open pit zinc mine and settling pond basin in New Brunswick, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Douheret [Terratube, Saint-Romuald, PQ (Canada)

    2010-07-01

    This PowerPoint presentation discussed the use of geotextile tube containers for the dewatering of an open pit zinc mine and settling pond in New Brunswick (NB). The zinc and lead mine closed in 1996 and will be re-opened in 2007. Remediation of the site has been challenged by severe discharge criteria for treated water, as well as by the different types of wastewater produced at the site, which is located in a mountainous area with no impermeable soil. The remediation projects include an open pit cleaning procedure where water is removed and the mine is then desludged. A wastewater treatment plant will then be installed. More than 32,000 m{sup 3} of sludge has accumulated at the bottom of the pit. The zinc content of the sludge was estimated at 2.5 ppm. The water management phase of the project will include batch treatments and the addition of 140 metric tonnes of lime to raise the pH and to precipitate metal ions. The sludge management program included the use of mechanical dewatering, the construction of a storage area, and the use of geocontainers for dewatering and temporary containment. Seventeen geotextile containers were used to reduce the zinc content of the water to less than the 250 ppb authorized by environmental agencies. The containers were changed once every 2 months. tabs., figs.

  12. Feasibility study of green wastes composting with digested and dewatering sludge from municipal wastewater treatment plant in Iran

    Directory of Open Access Journals (Sweden)

    Neamat Jaafarzadeh Haghighi Fard

    2015-09-01

    Full Text Available Background: Composting as a waste management technology is becoming more widespread. The purpose of this study was to assess the feasibility and to find the most effective composting process for the ratio of green waste, digested and dewatered sludge from Chonibieh wastewater treatment plant in the west region of Ahvaz. Methods: The composting time was 23 days and the evaluated parameters in this period of the study were organic carbon, total nitrogen, phosphorus, carbon to nitrogen ratio (C/N, moisture content and pH. The C/N ratio was maintained at 30 with weight:weight ratio of 1:1, 1:2, 1:3 (digested and dewatered sludge to green waste. Results: It was observed that vessel R3 produced higher quality of compost with final total nitrogen (1.28%, final total phosphorus (0.71%, final total organic carbon (TOC (25.78% and C/N (20.65% within the 23 days of composting. While vessel R1 produced higher final total nitrogen and total phosphorus with lower amount of total coliform indicating suitable quality of composting. Therefore, the results showed that the characteristics of dewatered sludge mixed with green waste proportion of green waste significantly influenced the compost quality and process dynamics. The results also showed that the quality of final products in all the conditions was in agreement with Global Organic Textile Standard (GOTS and World Health Organization (WHO guidelines. However, the moisture content ratios were lower than the mentioned guidelines. With regards to microbial quality, all three ratios were in agreement with US Environmental Protection Agency (EPA and Iranian guidelines. Conclusion: It is suggested that the final product of composting can be safely used in farmland and green space.

  13. Predicting spread of invasive exotic plants into de-watered reservoirs following dam removal on the Elwha River, Olympic National Park, Washington

    Science.gov (United States)

    Woodward, Andrea; Torgersen, Christian E.; Chenoweth, Joshua; Beirne, Katherine; Acker, Steve

    2011-01-01

    The National Park Service is planning to start the restoration of the Elwha River ecosystem in Olympic National Park by removing two high head dams beginning in 2011. The potential for dispersal of exotic plants into dewatered reservoirs following dam removal, which would inhibit restoration of native vegetation, is of great concern. We focused on predicting long-distance dispersal of invasive exotic plants rather than diffusive spread because local sources of invasive species have been surveyed. We included the long-distance dispersal vectors: wind, water, birds, beavers, ungulates, and users of roads and trails. Using information about the current distribution of invasive species from two surveys, various geographic information system techniques and models, and statistical methods, we identified high-priority areas for Park staff to treat prior to dam removal, and areas of the dewatered reservoirs at risk after dam removal.

  14. Eliminación de patógenos en biosólidos por estabilización alcalina Eliminating pathogens in biosolids by alkaline stabilization

    Directory of Open Access Journals (Sweden)

    Patricia Torres Lozada

    2009-07-01

    Full Text Available La Planta de Tratamiento de Aguas Residuales de Cañaveralejo -PTAR-C de Cali- Colombia, produce alrededor de 100 t/día de biosólidos que, aunque no tienen restricción por metales pesados, son clase B por el nivel de microorganismos patógenos y parásitos. En un diseño completamente al azar, conformado por seis tratamientos con su respectivo duplicado, se evaluó la estabilización alcalina con dosis del 9% peso a peso de cal viva e hidratada, aplicada a pilas de 0.5 t de biosólidos húmedos (66.5% y secos a temperatura ambiente (25 - 31°C durante 72 h (humedad 50.1%. Con la estabilización alcalina el pH aumentó a valores superiores a 12 unidades durante el tiempo suficiente para garantizar la reducción de patógenos y parásitos, alcanzando un material clase A; sin embargo, el biosólido seco facilitó la formación de grumos que dificultaron las labores de homogenización del sustrato con los alcalinizantes, factor indeseable para la eficiente reducción de patógenos.The Cañaveralejo wastewater treatment plant (PTAR-C based in Cali-Colombia, produces almost 100 t-day-1 of biosolids. Although do not have heavy metals restrictions, it is class B for high contents of pathogens microorganisms and parasites. The alkali stabilization was done with a 9% of dose (w/w of quicklime and hydrated lime applied to different 0.5 ton piles of wet biosolids (66.5% humidity and dry biosolids an environmental temperature (25-31°C for 72 hours (50.1% humidity. The experiment had a completely randomized design and it was composed by 6 treatments with their respective duplicated. With the alkali stabilization, the pH increments above 12 units during enough time to assure pathogens and parasites reduction in order to achieve a class A material level. On the other hand, the dry biosolids facilitate the conditions for lumps formation that reduce the homogenization of the substrate with the alkali material, which it is and undesirable factor for pathogen

  15. Environmental control of drilling mud discharge through dewatering in cold weather climates

    International Nuclear Information System (INIS)

    Wojtanowicz, A.K.

    1991-01-01

    The paper presents results of an experimental study into the effect of drilling mud temperature upon the dewatering performance. Three temperature ranges were considered: from flowline temperature to room temperature, from room temperature to freezing point, and the freeze (4 degrees F)/thaw (54 degrees F) cycle. The tested drilling fluids included unweighted and weighted fresh water muds and a weighted salt water mud. a sealed laboratory batch reactor was used in the experiments to prevent rapid vaporization of separated water at temperatures above 140 degrees F. Also, ice or ice-salt baths were utilized for deep freezing. The dewaterability (net water removal) was measured with a bench-top plate press under constant expression pressure 30 psi

  16. Detecting Dewatering of Peatland Pastures Using Sentinel-1 Satellite Radar Interferometry.

    Science.gov (United States)

    Heuff, F.; Samiei-Esfahany, S.; van Leijen, F. J.; Hanssen, R. F.

    2017-12-01

    The Netherlands are famous for their polders and the draining of soils to be used as pastures. Around 30% of the pastures are situated on peat soils, mostly in the western part of the Netherlands. Peat is composed of organic materials that oxidize and emit greenhouse gases when exposed to air. Oxidation of peat soils results in volume reduction and subsequent subsidence. As a result, the groundwater level rises relative to the surface. Consequently, the soil needs to be dewatered to keep it sufficiently dry for farming, resulting in more oxidation, and therefore more subsidence. This process is bound to continue until the peat soils have disappeared completely. The societal cost of land subsidence due to peat soils are estimated to be 5200 million euro for urban areas and 200 million euro for peatland pastures, for a period until 2050. Measuring the subsidence is not straightforward, if not impossible, with conventional geodetic means as soft soils make it impossible to install fixed benchmarks for repeated surveying. Also, due to the very fast temporal decorrelation over pastures, conventional InSAR approaches cannot measure a signal due to loss of coherence. Here we deploy a complete set of available SAR data from Sentinel-1, Radarsat-2 and TerraSAR-X to estimate the spatio-temporally varying subsidence signal due to the dewatering of peatland pastures over the western part of the Netherlands. We compute the InSAR coherence matrix for all possible interferometric combination, and compute an equivalent single-master stack to estimate the subsidence. Using terrain and land-use defined coherence estimation areas we optimize the phase estimation over areas severely affected by temporal decorrelation. This leads to a first estimate of deformation signals correlated with ancient shallow soil structures due to fluviatile structures. We use the methodology to investigate the effect of advanced local drainage schemes to slow down the subsidence phenomena.

  17. Composting municipal biosolids in polyethylene sleeves with forced aeration: Process control, air emissions, sanitary and agronomic aspects.

    Science.gov (United States)

    Avidov, R; Saadi, I; Krassnovsky, A; Hanan, A; Medina, Sh; Raviv, M; Chen, Y; Laor, Y

    2017-09-01

    Composting in polyethylene sleeves with forced aeration may minimize odor emissions, vectors attraction and leachates associated with open windrows. A disadvantage of this technology is the lack of mixing during composting, potentially leading to non-uniform products. In two pilot experiments using biosolids and green waste (1:1; v:v), thermophilic conditions (>45°C) were maintained for two months, with successful control of oxygen levels and sufficient moisture. Emitted odors declined from 1.5-3.8×10 5 to 5.9×10 3 -2.3×10 4 odor units m -3 -air in the first 3weeks of the process, emphasizing the need of odor control primarily during this period. Therefore, composting might be managed in two phases: (i) a closed sleeve for 6-8weeks during which the odor is treated; (ii) an open pile (odor control is not necessary). Reduction of salmonella, E. coli and coliforms was effective initially, meeting the standards of "Class A" biosolids; however, total and fecal coliforms density increased after opening the second sleeve and exceeded the standard of 1000 most probable number (MPN) per g dry matter. Compost maturity was achieved in the open piles following the two sleeves and the final compost was non-phytotoxic and beneficial as a soil additive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolids Fixação de nitrogênio e crescimento de Alnus Rubra fertilização com uréia ou biosólidos

    Directory of Open Access Journals (Sweden)

    Linda S. Gaulke

    2006-08-01

    Full Text Available Nitrogen fertilization of forests using biosolids offers a potentially environmentally friendly means to accelerate tree growth. This field study was designed to analyze the effects of nitrogen fertilization on the symbiotic, nitrogen (N-fixing relationship between Alnus rubra Bong. (red alder and Frankia. Anaerobically digested, class B biosolids and synthetic urea (46% N were applied at rates of 140, 280 and 560 kg ha-1 available N to a well-drained, sandy, glacial outwash soil in the Indianola series (mixed, mesic Dystric Xeropsamments. Plots were planted with A. rubra seedlings. At the end of each of two growing seasons trees were harvested and analyzed for the rate of N fixation (as acetylene reduction activity, biomass and foliar N. At year 1, there was no N fixation for trees grown with urea amendments, but control (17 µmol C2H4 g-1 hr-1 and biosolids (26-45 µmol C2H4 g-1 hr-1 trees were fixing N. At the end of year 2, all trees in all treatments were fixing N (7 µmol C2H4 g-1 hr-1, 4-16 µmol C2H4 g-1 hr-1, and 20-29 µmol C2H4 g-1 hr-1 for control, urea and biosolids respectively. Trees grown with biosolids amendments were larger overall (year 1 shoot biomass 10 g, 5 g, and 23 g for control, urea, and biosolids respectively, year 2 shoot biomass 50 g, 51 g, and 190 g for control, urea, and biosolids respectively with higher concentrations of foliar N for both years of the study (year 1 foliar N 26 g kg-1, 27 g kg-1, and 40 g kg-1 for control, urea, and biosolids respectively, year 2 foliar N 17 g kg-1, 19 g kg-1, and 23 g kg-1 for control, urea, and biosolids respectively. Trees grown with urea amendments appeared to use the urea N over Frankia supplied N, whereas the biosolids trees appeared to be able to use both N in biosolids and N from Frankia. The results from this study indicated that the greater growth of A. rubra may have been responsible for the observed higher N demand. Biosolids may have supplied other nutrients to the

  19. Dewatering of contaminated river sediments

    Science.gov (United States)

    Church, Ronald H.; Smith, Carl W.; Scheiner, Bernard J.

    1994-01-01

    Dewatering of slurries has been successfully accomplished by the proper use of polymers in flocculating the fine particulate matter suspended in mineral processing streams. The U.S. Bureau of Mines (USBM) entered into a cooperative research effort with the U.S. Army Corps of Engineers (Corps) for the purpose of testing and demonstrating the applicability of mining flocculation technology to dredging activities associated with the removal of sediments from navigable waterways. The Corps has the responsibility for maintaining the navigable waterways in the United States. Current technology relies primarily on dredging operations which excavate the material from the bottom of waterways. The Corps is testing new dredging technology which may reduce resuspension of sediments by the dredging operation. Pilot plant dredging equipment was tested by the Corps which generated larger quantities of water when compared to conventional equipment, such as the clam shell. The transportation of this 'excess' water adds to the cost of sediment removal. The process developed by the USBM consists of feed material from the barge being pumped through a 4-in line by a centrifugal pump and exiting through a 4-in PVC delivery system. A 1,000-gal fiberglass tank was used to mix the polymer concentrate. The polymer was pumped through a 1-in line using a variable speed progressive cavity pump and introduced to the 4-in feed line prior to passing through a 6-in by 2-ft static mixer. The polymer/feed slurry travels to the clarifying tank where the flocculated material settled to the bottom and allowed 'clean' water to exit the overflow. A pilot scale flocculation unit was operated on-site at the Corps' 'Confined Disposal Facility' in Buffalo, NY.

  20. Modelling the risk of nitrate leaching from two soils amended with five different biosolids Modelagem do risco de lixiviação de nitrato em dois solos tratados com cinco diferentes biossólidos

    Directory of Open Access Journals (Sweden)

    Rodrigo Studart Corrêa

    2005-07-01

    Full Text Available High N concentrations in biosolids are one of the strongest reasons for their agricultural use. However, it is essential to understand the fate of N in soils treated with biosolids for both plant nutrition and managing the environmental risk of NO3--N leaching. This work aimed at evaluating the risk of NO3--N leaching from a Spodosol and an Oxisol, each one treated with 0.5-8.0 dry Mg ha-1 of fresh tertiary sewage sludge, composted biosolids, limed biosolids, heat-dried biosolids and solar-irradiated biosolids. Results indicated that under similar application rates NO3--N accumulated up to three times more in the 20 cm topsoil of the Oxisol than the Spodosol. However, a higher water content held at field capacity in the Oxisol compensated for the greater nitrate concentrations. A 20 % NO3--N loss from the root zone in the amended Oxisol could be expected. Depending on the biosolids type, 42 to 76 % of the NO3--N accumulated in the Spodosol could be expected to leach down from the amended 20 cm topsoil. NO3--N expected to leach from the Spodosol ranged from 0.8 (composted sludge to 3.5 times (limed sludge the amounts leaching from the Oxisol treated alike. Nevertheless, the risk of NO3--N groundwater contamination as a result of a single biosolids land application at 0.5-8.0 dry Mg ha-1 could be considered low.Concentrações altas de nitrogênio (N em biossólidos são uma das maiores razões para a utilização agronômica deles. Entretanto, é essencial entender o destino do N em solos tratados com biossólidos, tanto por motivos de nutrição vegetal quanto para manejar o risco ambiental representado pela lixiviação de nitrato. Este trabalho teve como objetivo avaliar o risco de lixiviação de nitrato em um Espodossolo e em um Latossolo, cada um tratado com doses de 0,5 a 8,0 Mg ha-1 de biossólido fresco, biossólido compostado, biossólido caleado, biossólido seco a calor e biossólido irradiado por sol. Os resultados mostraram que

  1. Development of producing equipment of mixed butane-air with low dew point. Energy saving dewatering apparatus and 6A-Gas producing apparatus utilizing vaporization latent heat of butane and potential heat of air

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Jin; Okada, Hiroto; Taniue, Nobuo; Tanoue, Keiju; Yamada, Tatsuhiko; Maekawa, Hisami; Murakami, Keiji

    1988-02-10

    A producing equipment of mixed butane-air with low dew point was developed. The dewatering was made during the period from the middle of May to the middle of October with high atmospheric humidity. The production capacity of the mixed gas is 3000 Nm/sup 3/ of 22% of butane and 78% of air per hour. The designed dew point is 18/sup 0/C or less under the pressure of 0.7 kg/cm/sup 2/G. The saturation temperature is 7.5/sup 0/C after the liquid butane is evacuated by a regulating valve. The air introduced into the dehumidifier through finned tubes is cooled to dewater based on those data. The partially vaporized butane is completely gasified by hot water in a vaporizer and mixed with the dewatered air by a venture mixer to produce the mixed butane-air. When the dewatering is incomplete, the spray nozzle must be just exchanged. The dew point of the produced gas was sufficiently below the designed value. The investment cost is low. The total operating cost is reduced by the remarkably decreased fuel cost though the power cost is increased. The noise level is low and the heat control is easy. (11 figs, 4 tabs, 1 photo)

  2. Vibrating membrane filtration as improved technology for microalgae dewatering.

    Science.gov (United States)

    Nurra, Claudia; Clavero, Ester; Salvadó, Joan; Torras, Carles

    2014-04-01

    The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean pore sizes (from 7000Da to 0.2μm) were tested and compared in both filtration set-ups. Experiments were carried-out with Nannochloropsis gaditana and Phaeodactylum tricornutum microalgae. It has been demonstrated that, even if the choice of the membrane depends on its cut-off, its material and the type of microalgae filtrated, dynamic filtration is always the best technology over a conventional one. If with conventional filtration permeability values were in the vicinity of 10L/h/m(2)/bar in steady state phase, with dynamic filtration these values increased to 30L/h/m(2)/bar or more. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Heavy Metal Displacement in Chelate-Assisted Phytoremediation of Biosolids Soil

    Science.gov (United States)

    Kirkham, M. B.; Liphadzi, M. S.

    2005-05-01

    Heavy metals in biosolids (sewage sludge) applied to land contaminate the soil. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with biosolids following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals, as affected by a chelate, in soil (Haynie very fine sandy loam) from a 25-year old sludge farm. Soil columns (105 cm long; 39 cm in diameter) either had a plant (hybrid poplar; Populus deltoides Marsh. x P. nigra L.) or no plant. When the poplars were 144 days old, the tetrasodium salt of the chelating agent EDTA (ethylenediamine-tetraacetic acid) was irrigated onto the soil at a rate of 1 g per kg of soil. Drainage water, soil, and plants were analyzed for three toxic heavy metals (Cd, Ni, Pb) and four essential heavy metals (Cu, Fe, Mn, Zn). Without EDTA, concentrations of the seven heavy metals in the leachate from columns with or without plants were low or below detection limits. With or without plants, the EDTA mobilized all heavy metals and increased their concentration in drainage water. Without plants, the concentrations of Cd, Cu, Fe, Pb, and Zn in the leachate from columns with EDTA were above drinking-water standards. (There is no drinking-water standard for Ni.) The presence of poplar plants in the soil reduced the concentrations of Cu, Fe, and Zn in the leachate so it fell within drinking-water standards. Concentrations of Cd and Pb in the leachate remained above drinking-water standards with or without plants. At harvest (124 days after the EDTA application), total concentration of each heavy metal in the soil at different depths in the columns with EDTA was similar to that in the columns without EDTA. The chelate did not affect the concentration of heavy metals in the roots, stems, or leaves

  4. Factors related to the attraction of flies at a biosolids composting facility (Bariloche, Argentina)

    International Nuclear Information System (INIS)

    Laos, F.; Semenas, L.; Labud, V.

    2004-01-01

    The composting process is used to treat biosolids from the Wastewater Treatment Plant of Bariloche (NW Patagonia, Argentina). Since 1998, an odourless, innocuous and stable organic amendment has been produced at the Biosolids Composting Plant of Bariloche. However, volatile compounds produced during this process, attract different vectors, mainly insects belonging to the Order Diptera, particularly in summer. To evaluate factors associated with the attraction of Diptera to composting windrows, volatile compounds, wind velocity, ambient and windrow temperatures were measured and their relationships with the taxa of flies found were determined. Sampling was conducted several months on newly formed windrows during 3 weeks of the thermophilic composting period. Composite samples from each windrow were taken on the first day of each sampling week, from November 1999 to March 2000 to analyze volatile compounds using an 'electronic nose'. Windrow and ambient temperatures and wind velocity were recorded on three consecutive days of each week, from January to March 2000; also the capture of flies was performed in this period. A weekly mean value was calculated for each environmental variable. Canonical Correspondence Analysis was employed to determine relationships between taxa of flies and the studied factors. The electronic nose discriminated among odours emitted, differentiating windrows by the bulking agent employed and by week of the thermophilic composting period. Ambient temperatures increased slightly during the sampling weeks; the highest values of wind velocity were registered during the second sampling week while windrow temperatures were sustained approximately 60 degree sign C. Canonical Correspondence Analysis showed that attraction of flies to composting windrows was related to minimum and maximum ambient temperatures and volatile compounds for Muscina stabulans, Fannia sp. and Acaliptratae and to wind velocity for Ophyra sp., Sarcophaga sp., Cochliomyia

  5. Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids

    International Nuclear Information System (INIS)

    Heemsbergen, Diane A.; Warne, Michael St.J.; Broos, Kris; Bell, Mike; Nash, David; McLaughlin, Mike; Whatmuff, Mark; Barry, Glenn; Pritchard, Deb; Penney, Nancy

    2009-01-01

    To protect terrestrial ecosystems and humans from contaminants many countries and jurisdictions have developed soil quality guidelines (SQGs). This study proposes a new framework to derive SQGs and guidelines for amended soils and uses a case study based on phytotoxicity data of copper (Cu) and zinc (Zn) from field studies to illustrate how the framework could be applied. The proposed framework uses normalisation relationships to account for the effects of soil properties on toxicity data followed by a species sensitivity distribution (SSD) method to calculate a soil added contaminant limit (soil ACL) for a standard soil. The normalisation equations are then used to calculate soil ACLs for other soils. A soil amendment availability factor (SAAF) is then calculated as the toxicity and bioavailability of pure contaminants and contaminants in amendments can be different. The SAAF is used to modify soil ACLs to ACLs for amended soils. The framework was then used to calculate soil ACLs for copper (Cu) and zinc (Zn). For soils with pH of 4-8 and OC content of 1-6%, the ACLs range from 8 mg/kg to 970 mg/kg added Cu. The SAAF for Cu was pH dependant and varied from 1.44 at pH 4 to 2.15 at pH 8. For soils with pH of 4-8 and OC content of 1-6%, the ACLs for amended soils range from 11 mg/kg to 2080 mg/kg added Cu. For soils with pH of 4-8 and a CEC from 5-60, the ACLs for Zn ranged from 21 to 1470 mg/kg added Zn. A SAAF of one was used for Zn as it concentrations in plant tissue and soil to water partitioning showed no difference between biosolids and soluble Zn salt treatments, indicating that Zn from biosolids and Zn salts are equally bioavailable to plants

  6. Diagnose foliar em mudas de pinhão-manso (Jatropha Curcas L. produzidas com biossólido Foliar analysis of jatropha (Jatropha curcas L. seedlings grown with biosolid

    Directory of Open Access Journals (Sweden)

    Alirio C. D. Maldonado Reginaldo de Camargo

    2013-03-01

    Full Text Available O uso do biossólido na agricultura tem-se mostrado a melhor alternativa ambiental e econômica para o destino do lodo de esgoto. O objetivo deste trabalho foi avaliar o potencial nutricional do biossólido para produção de mudas de pinhão-manso em tubetes. O experimento foi realizado em casa de vegetação tendo, como substrato, esterco bovino, vermiculita e biossólido. O delineamento experimental foi o de blocos casualizados com três repetições em esquema fatorial 5 x 2, correspondendo às concentrações de biossólido no substrato (0, 10, 20, 30 e 40% e ao tratamento ou não das sementes de pinhão-manso com fungicida. Aos 60 dias foi realizada análise foliar. Relativo às concentrações de biossólido verificou-se efeito significativo para os macronutrientes N, P, Ca, Mg e S e micronutrientes B, Cu, Mn e Zn. O tratamento de sementes teve efeito significativo para o Zn. As folhas apresentaram concentração de macronutrientes com a seguinte ordem: N > K > Mg > Ca > P > S. O acúmulo de micronutrientes apresentou a seguinte ordem: Fé > Mn >Zn > B > Cu. Há grande contribuição do biossólido nos teores de nitrogênio, enxofre e micronutrientes foliares, em plantas de pinhão-manso.The use of biosolids in agriculture has proven to be the best alternative for the environmental and economic destination of sewage sludge. The objective of this study was to evaluate the nutritional potential of biosolids to produce jatropha seedlings in polytube. The experiment was conducted in a greenhouse using as substrate manure, biosolids and vermiculite. The experimental design was in randomized block with three replications in a 5 x 2 factorial, corresponding to the substrate concentrations in sewage sludge (0, 10, 20, 30 and 40%, and the treatment or not of the seeds of jatropha with fungicide. At 60 days, leaf analysis was performed. Regarding the biosolids concentrations, significant effect was verified for the macronutrients N, P, Ca, Mg and S

  7. Utilização do biossólido da CAESB na produção de milho no Distrito Federal Use of biosolids for corn (Zea mays, L. production in the Federal District

    Directory of Open Access Journals (Sweden)

    Jorge Lemainski

    2006-08-01

    activities. The Companhia de Saneamento Ambiental do Distrito Federal (CAESB processes 400 t of biosolids a day that is rich in mineral nutrients and organic matter. Despite the lack of local agronomic criteria for use, biosolids has found a growing demand in grain, fruit crops, coffee and pastures cultivation. To evaluate the immediate (first year and residual (second year effects on corn production, humid biosolids (water content 900 g kg-1 was applied onto a dystrophic clayey Red Latosol at rates of 7.5, 15, 30, and 45 t ha-1 and compared to a mineral fertilizer mixture applied in equivalent N, P2O5 and K2O amounts. Both biosolids and mineral fertilizer were applied once before the first crop. A random block design was used with three replications. Corn yields in the first and second crops seasons amounted to, respectively, 7.41 and 5.70 t ha-1 of grains (at the rate of 30 t ha-1 of biosolids and 7.38 and 5.88 t ha-1 (at the rate of 45 t ha-1. All grain yields were higher than average Brazilian standards for corn and showed the immediate and residual effects of biosolids as fertilizer. Based on the second degree equation adjusted to average data: Y = 768.24** + 320.56**x - 4.2335**x², R² = 0.9995 (Y, yield and x, biosolids rate, the estimated maximum corn productivity (6.84 t ha-1 would be obtained at a rate of 37.8 t ha-1. The best cost-benefit ratio (1.90, average of two growing seasons was obtained with the application of 30 t ha-1. The biosolids were on average 21 % more efficient than mineral fertilizers. Results indicate that the CAESB biosolids have a good potential to be used as fertilizer for corn production in the Federal District.

  8. Consolidation theory and its applicability to the dewatering and covering of uranium-mill tailings

    International Nuclear Information System (INIS)

    Gates, T.E.

    1982-11-01

    This report is a review and evaluation of soil consolidation theories applicable for evaluating settlement during dewatering and subsequent covering of uranium-mill tailings. Such theories may be used to predict both consolidation and water flow related effects in uranium-mill tailings during drainage, following sluicing into burial pits. A consolidation theory to be useful must consider the effect of time-dependent loads, nonhomogeneous soil mass, nonlinear variation of soil properties with the stress-state parameters, large strain, and saturated and unsaturated flow. Constitutive relations linking the stress-deformation-state variables with void ratio should be adopted for predicting both consolidation and fluid-flow interaction in unsaturated uranium-mill tailings

  9. Upgrading of brown coal by slurry-dewatering; Kattan no yuchu dassui ni yoru clean kotai nenryo no seizo

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, O.; Shimizu, T.; Inoue, T.; Shigehisa, T.; Deguchi, T.; Katsushima, S. [Kobe Steel, Ltd., Kobe (Japan)

    1996-10-28

    This paper describes an outline of solid fuel production process from brown coal and the investigation results of its elemental techniques. Dried coal is produced by this process which consists of a dewatering of crushed brown coal in oil-based solvent, a solid and liquid separation of slurry, and a remained oil recovery by heating. This process is characterized by the higher thermal efficiency compared with usual drying and the restraint of spontaneous combustion of product coal. It was revealed that solid fuel with low moisture, low ash, low sulfur, and suppressed spontaneous combustion property can be produced from Australian brown coal through this process. From the comparison between kerosene and fuel oil A, it was confirmed that the oil content during dewatering was smaller and the oil recovery by heating was easier by using a solvent with lower boiling point. It was also confirmed that the spontaneous combustion property can be suppressed using small amount of asphalt by solving asphalt in the solvent and adsorbing asphalt on the surface of brown coal. From these results, low rank coals including brown coal, which are difficult to use, are expected to be used as clean coal with low ash and low sulfur through this process. 2 refs., 7 figs., 2 tabs.

  10. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    Science.gov (United States)

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sand to Root Transfer of PAHs and PCBs by Carrots Grown on Sand with Pure Substances and Biosolids Amended Sand

    OpenAIRE

    Sablayrolles, Caroline; Montréjaud-Vignoles, Mireille; Silvestre, Jérôme; Patria, Lucie

    2006-01-01

    A study on behaviour of trace organic compounds (Polycyclic Aromatic Hydrocarbons, PAH, and Polychlorinated Biphenyls, PCB) in a sand-plant system has been carried out, with the reclamation of wastewater treatment plant biosolids for agriculture in mind. Carrot plants (Daucus carota) were grown on soilless culture (sand), to provide optimal transfer conditions, in plant containers inside a temperature regulated greenhouse. There were two types of experiment. The trace organic compounds have i...

  12. Assessment of technical-scale dewatering results in decanters on the basis of measurements of water types in sewage sludge; Bestimmung grosstechnischer Entwaesserungsergebnisse in Dekantern basierend auf der Messung der Wasserarten von Klaerschlaemmen

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, J.; Dichtl, N. [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    1999-07-01

    In a sewage sludge suspension, three water portions can be measured and distinguished from each other. The free water portion is not bound to sludge particles and can be separated by mechanical dewatering. The interstitial water portion bound by capillary forces and bound water (on surfaces and in cells) remain in the sludge cake after dewatering. The described measuring system for thermo-gravimetric determination of the water portions of sewage sludge was adjusted and calibrated at Braunschweig Technical University and permits prognosticating the maximum attainable content of solids through mechanical dewatering in high-performance decanters. (orig.) [German] In einer Klaerschlammsuspension koennen drei Wasseranteile messtechnisch unterschieden werden. Der freie Wasseranteil ist nicht an die Schlammpartikel gebunden und ist bei einer maschinellen Entwaesserung abtrennbar. Der kapillar gehaltene Zwischenraumwasseranteil und das gebundene Wasser (auf Oberflaechen und in Zellen) verbleibt nach der Entwaesserung im Schlammkuchen. Die an der TU Braunschweig angepasste und kalibrierte Messanlage zur thermo-gravimetrischen Bestimmung der Wasseranteile eines Klaerschlammes ermoeglicht es, den maximal bei der maschinellen Entwaesserung in Hochleistungsdekantern erreichbaren Feststoffgehalt zu prognostizieren. (orig.)

  13. Seguimiento a patógenos presentes en biosólido empleado como enmienda para revegetalizar un talud Follow-up to pathogens present in biosolids used as emendation to reforest a slope

    Directory of Open Access Journals (Sweden)

    Idalia Jacqueline López Sánchez

    2010-07-01

    Full Text Available Con el fin de evaluar la factibilidad del uso del biosólido como enmienda orgánica para el establecimiento de vegetación y el control de procesos erosivos superficiales activos, se seleccionó un corte de carretera ubicado sobrela Variante a Caldas (Antioquia. Para darle amarre y cobertura al suelo, se sembraron dos especies vegetales tipo pasto Brachiaria Decumbens y Kikuyo (Pennisetum clandestinum, utilizando biosólido proveniente de la PTAR San Fernando, mezclado con suelo de la zona. Se evaluó el comportamiento de bioindicadores de riesgo ambiental: coliformes totales, coliformes fecales, Salmonella-Shiguella, en las aguas de escorrentía y en el suelo del talud en el tiempo. Ambas especies se adaptaron bien amarrando el suelo; la cobertura fue total y permanente. Los resultados muestran la factibilidad del uso del biosólido como enmienda. Sin embargo, la permanencia de los parámetros microbiológicos medidos durante el tiempo de evaluación evidencia la necesidad de sanitizar el biosólido antes de usarlo, ya que estos patógenos constituyen un riesgo ambiental.In order to evaluate the feasibility of biosolids use as an organic emendation for reforestation and controlling active superficial erosive processes, a part of the highway -located near to the alternative route to Caldas (Antioquia. With the purpose of preventing erosion, two types of plants Brachiaria Decumbens and kikuyu grass (Pennisetum clandestinum were planted, using biosolids from San Fernando Water Treatment Plant, mixed with soil from the site. The behavior of some environmental risk bioindicators: total coliforms, fecal coliforms, Salmonella-Shiguella, were evaluated, in runoff waters and in the slope soil across the time. Both plant species adapted well to soil; the coverage was complete and permanent. Results show the feasibility of bio-solid as emendation. However, microbiological specifications measured during the evaluation time, showed the need for sanitizing

  14. Efecto del secado térmico y el tratamiento alcalino en las características microbiológicas y químicas de biosólidos de plantas de tratamiento de aguas residuales domésticas Effect of thermal drying and alkaline treatment on the microbiological and chemical characteristics of biosolids from domestic wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Jorge Silva-Leal

    2013-01-01

    Full Text Available We evaluated the effect of thermal drying (60 to 75 ºC and times from 0 to 12.58 h and alkaline treatment (Ca(OH2 and CaO at doses from 8 to 10%. on the microbiological and chemical characteristics of biosolids from the Cañaveralejo WWTP. The results showed that in thermal drying all temperatures studied were sufficient to achieve the sanitation of biosolids. In the alkaline treatment the two types of lime showed the total elimination of fecal coliforms, E. coli and helminth eggs, however, the process of alkalization of biosolids had significant influences on organic carbon and calcium.

  15. Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora.

    Science.gov (United States)

    Kraas, Marco; Schlich, Karsten; Knopf, Burkhard; Wege, Franziska; Kägi, Ralf; Terytze, Konstantin; Hund-Rinke, Kerstin

    2017-12-01

    The use of silver nanoparticles (AgNPs) in consumer products such as textiles leads to their discharge into wastewater and consequently to a transfer of the AgNPs to soil ecosystems via biosolids used as fertilizer. In urban wastewater systems (e.g., sewer, wastewater treatment plant [WWTP], anaerobic digesters) AgNPs are efficiently converted into sparingly soluble silver sulfides (Ag 2 S), mitigating the toxicity of the AgNPs. However, long-term studies on the bioavailability and effects of sulfidized AgNPs on soil microorganisms are lacking. Thus we investigated the bioavailability and long-term effects of AgNPs (spiked in a laboratory WWTP) on soil microorganisms. Before mixing the biosolids into soil, the sludges were either anaerobically digested or directly dewatered. The effects on the ammonium oxidation process were investigated over 140 d. Transmission electron microscopy (TEM) suggested an almost complete sulfidation of the AgNPs analyzed in all biosolid samples and in soil, with Ag 2 S predominantly detected in long-term incubation experiments. However, despite the sulfidation of the AgNPs, soil ammonium oxidation was significantly inhibited, and the degree of inhibition was independent of the sludge treatment. The results revealed that AgNPs sulfidized under environmentally relevant conditions were still bioavailable to soil microorganisms. Consequently, Ag 2 S may exhibit toxic effects over the long term rather than the short term. Environ Toxicol Chem 2017;36:3305-3313. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  16. Use of a water treatment sludge in a sewage sludge dewatering process

    Science.gov (United States)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  17. Nitrogen behaviour during thermal drying of mechanically dewatered biosludge from pulp and paper industry.

    Science.gov (United States)

    Mustonen, Kati; Deviatkin, Ivan; Havukainen, Jouni; Horttanainen, Mika

    2018-04-01

    An ongoing call to implement a circular economy is underway in the European Union, and a specific attention has been placed on the forest industry, which seeks additional recycling routes for its side streams, including biosludge. Biosludge is often dried and incinerated, thus wasting the nitrogen contained therein. This paper describes a study in which the release of nitrogen during thermal drying, the impact of the drying temperatures of 130°C, 180°C, and 210°C on the mass of ammonia released, and the potential for recovery of nitrogen from biosludge were examined. The results indicate that 1310-1730 mg kgTS -1 of nitrogen was released, which corresponded to 56-74% of the soluble nitrogen in biosolids or 4.0-5.3% of the total nitrogen. Of this released nitrogen, 83-85% was identified in condensate and absorbing water, thus indicating a high potential for recovering nitrogen from biosludge.

  18. STABILIZATION OF DEWATERED SEWAGE SLUDGE BY AEROBIC COMPOSTING METHOD: USING SAWDUST AS BULKING AGENTS

    Directory of Open Access Journals (Sweden)

    A PARVARESH

    2002-12-01

    Full Text Available Introduction. Sludge production from municipal wastewater treatment plants should have quality standards before disposal in to the environment. Environmental specialists classified sewage sludge as a hazardous waste because of high organic compounds and pathogenic microorganisms. They belive that sewage should be stabilized before disposal and so composting of sewage sludge is an effective and economical method to stabilize. Sewage sludge compost could be used to improve soil structure and enrich the soil with nutrients. Methods. To evaluate the optimum conditions of aerobic compost, the mixture of dewatered sewage sludge from Isfahan municipal waste water treatment plant and sawdust as bulking agent were used. Pilot scale study were performed in Isfahan municipal waste water treatment plant. To perform this research project, the dewatered sewage sludge with humidity between 78 to 82 percent were mixed with sawdust. Turning over method of the piles with one week interval were applied to aerate the mixture. Temperature of the piles were monitored at different depths daily. Other parameters such as N, G, organic matters and pH were determined weekly. Total and fecal coli form, and salmonella were determined at the beginning and end of the composting process, also heavy metals were measured at the same time. Results. The results of this study showed that after days, temperature of the mixture reached up to 55 G, and were stabled for 15 days. Humidity, organic matter, organic carbon and GIN ratio of the mixture decreased over the period of the study, due to increasing the temperature. Also organic matter and humidity mainly decreased in thermofilic phase. The number of total and fecal coliform and also salmonella decreased to A class standards of US.EPA at the end of the operation. Discussion. The results of the study also showed that, this type of composting method is reliable, and simple to schedule, with high flexibility and low odor

  19. Nitrogen fixation and growth response of Alnus rubra amended with low and high metal content biosolids Crescimento e fixação de nitrogênio por Alnus rubra cultivado sob fertilização com biosólidos com altos e baixos teores de metais

    Directory of Open Access Journals (Sweden)

    Linda S. Gaulke

    2006-08-01

    Full Text Available Forest application of biosolids offers a potential environmentally friendly alternative to landfilling. This two-year investigation was designed to analyze the effects of elevated soil metal concentration resulting from the land application of biosolids on the symbiotic, nitrogen (N fixing relationship between Alnus rubra Bong. (red alder and Frankia. High metal biosolids and a modern-day composted biosolid applied at high loading rates of 250, 500, and 1000 Mg ha-1, were used to represent a worst-case scenario for metal contamination. The high metal biosolids were obtained before the current regulations were formulated and had been lagooned prior to use in this study. Total cadmium (Cd, lead (Pb and zinc (Zn in the high metal biosolids were 45, 958, and 2623 mg kg-1 respectively. These metal concentrations are above current regulatory limits in the US. The compost was made using biosolids that are currently produced and had Cd, Pb and Zn of 0.8, 20 and 160 mg kg-1 respectively. Trees were harvested and analyzed for rate of N fixation (as measured by acetylene reduction activity, biomass, and foliar metals. Soils were analyzed for available N, total carbon and N, pH and total Cd, Pb and Zn. Rates of N fixation were not affected by soil amendment. In year 2, shoot biomass of trees grown in both the compost and high metal amendments were higher than the control. Shoot biomass increased with increasing amount of compost amendments, but decreased with increasing amount of high metal amendments. There was no relationship between soil metal concentration and plant biomass. Foliar Cd and Pb were below detection for all trees and foliar Zn increased with increasing amount of both compost and high metal amendment, with concentrations of 249 mg kg-1 for trees grown in the compost amendment and 279 mg kg-1 for the high metal amendment. The results from this study indicate that the growth of A. rubra benefited from both types of biosolids used in the study

  20. Soil Nutrient Availability, Plant Nutrient Uptake, and Wild Blueberry (Vaccinium angustifolium Ait. Yield in Response to N-Viro Biosolids and Irrigation Applications

    Directory of Open Access Journals (Sweden)

    Aitazaz A. Farooque

    2012-01-01

    Full Text Available We compared the impact of surface broadcasted N-Viro biosolids and inorganic fertilizer (16.5% Ammonium sulphate, 34.5% Diammonium phosphate, 4.5% Potash, and 44.5% s and/or clay filler applications on soil properties and nutrients, leaf nutrient concentration, and the fruit yield of lowbush blueberry under irrigated and nonirrigated conditions during 2008-2009 at Debert, NS, Canada. Application rates of N-Viro biosolids were more than double of inorganic fertilizer applied at a recommended N rate of 32 kg ha−1. The experimental treatments NI: N-Viro with irrigation, FI: inorganic fertilizer with irrigation, N: N-Viro without irrigation, and F: inorganic fertilizer without irrigation (control were replicated four times under a randomized complete block design. The NI treatment had the highest OM (6.68% followed by FI (6.32%, N (6.18%, and F (4.43% treatments during the year 2008. Similar trends were observed during 2009 with the highest soil OM values (5.50% for NI treatment. Supplemental irrigation resulted in a 21% increase in the ripe fruit yield. Nonsignificant effect of fertilizer treatments on most of the nutrient concentrations in soil and plant leaves, and on ripe fruits yield reflects that the performance of N-Viro was comparable with that of the inorganic fertilizer used in this study.

  1. Acidic minespoil reclamation with alkaline biosolids

    International Nuclear Information System (INIS)

    Drill, C.; Lindsay, B.J.; Logan, T.L.

    1998-01-01

    The effectiveness of an alkaline stabilized biosolids product, N-Viro Soil (NVS), was studied at a wild animal preserve in Cumberland, OH. The preserve occupies land that was strip mined for high-sulfur coal. While most of the land has been conventionally reclaimed, several highly acidic hot spots remain. Two of these hot spots were studied through concurrent field, greenhouse, and laboratory projects. In April 1995, NVS was applied at rates ranging from 0--960 mt/ha (wet wt.) to plots at the two sites. The plots were seeded using a standard reclamation mix and soil samples were analyzed for chemical characteristics before and after application and also in 1996 and 1997. Soil pH increased from 3.5 to about 11 in the amended plots and soil EC values increased from 21.0 mmho/cm to a maximum of 6.0 mmho/cm in the amended plots immediately after application. Soil Cu and Zn concentrations also increased in the NVS amended plots, but this did not affect plant germination or growth. By the summer of 1996, soil pH values had decreased to 7.3--8.7 and EC values decreased to 0.34--1.36 mmho/cm to the amended plots. Soil samples were collected in September 1995 for physical analyses. N-Viro Soil improved the moisture retention and water conductivity properties of the spoil. The plots were monitored for growth during the summer of 1995 and plant biomass and soil samples were taken in 1996 and 1997 for trace element and nutrient analysis. NVS did not significantly increase trace element concentrations in the biomass. The addition of NVS to acid mine spoil improves the chemical and physical properties of the spoil material thus aiding vegetative establishment and growth. NVS improves the chemical nature of the spoil by increasing pH and providing micro and macronutrients and improves the physical properties of the spoil with the addition of organic matter

  2. EVALUACION DEL POTENCIAL DE LOS BIOSÓLIDOS PROCEDENTES DEL TRATAMIENTO DE AGUAS RESIDUALES PARA USO AGRÍCOLA Y SU EFECTO SOBRE EL CULTIVO DE RABANO ROJO (Raphanus sativus L.. EVALUATION OF THE POTENTIAL FOR BIOSOLIDS OBTAINED FROM WASTEWATER TREATMENT FOR AGRICULTURAL USE AND THEIR EFFECT ON CULTIVATION OF RED RADISH (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Ramiro Ramírez Pisco

    2006-12-01

    de nutrientes (C, N, P, K, Ca, Na, Fe y Zn y materia orgánica, la presencia de metales pesados, o su inadecuada aplicación, puede ir en detrimento del crecimiento y producción de las plantas de rábano.This study was conducted in waste water treatment plant “The Salitre”, in Bogotá, to evaluate the potential of the waste water treatment subproduct “biosolids”, for application in agriculture by means of quantifying growth, development and production of cultivation of red radish, and to establish a possible alternative to the problem of final disposition of 3900 tons of this material generated monthly in the waste water treatment plant. The experimental design employed was a random blocks design, with five treatments and three replications, arranged in 2 m x 2 m plots. The treatments corresponded to mixtures of biosolids with soil in the following proportions: 100 % biosolid (equivalent to 294 ton Ha-1, 75 % biosolid (220 ton Ha-1, 50 % biosolid (147 ton ha-1, 25 % biosólido (73 ton ha-1 and 100 % soil. Red radish Raphanus sativus L. was planted. The variables evaluated were: germination percentage, dry weight of leaves and roots, plant length, foliar area and production. Also, the accumulation of trace was measured in the harvested radishes, to determine risks of consumption. The results showed that the 50 % biosolid and 25 % biosolid, treatments were those that most favored growth, development and production of cultivation radish, while the 75 % biosolid and 100 % biosolid treatments, showed lower development growth and production of the cultivar. The 100 % biosolid treatment resulted in low germination and also did not show root accumulation, that is the harvested product. The levels of accumulation of heavy metals surpassed the maximum levels with the 75 % biosolid and 100 % biosolid treatment. It was shown that the use of the biosolids in agriculture can produce a great risk, because despite having high nutrient (C, N, P, Ca, Na, Fe y Zn and organic

  3. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Grundl, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric C.D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States)

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  4. Assessment of the flotability of chalcopyrite, molybdenite and pyrite using biosolids and their main components as collectors for greening the froth flotation of copper sulphide ores.

    OpenAIRE

    Sobarzo, Francisco; Herrera Urbina, Ronaldo; Higueras Higueras, Pablo Leon; Sáez Navarrete, César; Godoy Faúndez, Alex; Reyes Bozo, Lorenzo; Vásquez Bestagno, Jorge

    2014-01-01

    Biosolids and representative compounds of their main components ? humic acids, sugars, and proteins ? have been tested as possible environment-friendly collectors and frothers for the flotation of copper sulphide ores. The floatability of chalcopyrite and molybdenite ? both valuable sulphide minerals present in these ores ? as well as non-valuable pyrite was assessed through Hallimond tube flotation tests. Humic acids exhibit similar collector ability for chalcopyrite and molybdenite as that ...

  5. Thermal oxidation of biosolids : the green technology has come of age in large cities[Manure, biosolids, and organic industrial/commercial residuals in land applications programs : improving beneficial reuse and protection of water quality

    Energy Technology Data Exchange (ETDEWEB)

    Puchajda, B.; Oleszkiewicz, J. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering

    2007-07-01

    Biosolids management and disposal that is safe and effective by public standards is difficult, particularly for large communities. Land application, landfilling and thermal oxidation with energy recovery (TOER) are the three most popular forms of solids disposal. This paper focused on different aspects of the TOER technology such as energy recovery; air pollution; volume reduction; impact of solids management on waste water treatment plants; process economics; ash residue management; and recycling of nutrients and heavy metals. The thermal oxidation process was described in detail. Societal and environmental impacts were also identified and common factors in mono-incineration, co-combustion and alternative thermal process technologies were presented. The paper also provided examples of successfully operating incineration installations in Europe and North America. It was concluded that the key assets of TOER include volume reduction; decreased liability and product safety; and beneficial use of ash in construction, with future potential for metals and phosphorus recovery. 32 refs., 2 tabs., 12 figs.

  6. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  7. Dewatering and RCRA partial closure action on solar evaporation ponds, Rocky Flats Plant, Golden, Colorado

    International Nuclear Information System (INIS)

    1991-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (DOE/EA-0487) on its proposal to partially close five solar evaporation ponds at the Rocky Flats Plant (RFP) pursuant to the requirements of the Resource Conservation and Recovery Act (RCRA). This proposal would be known as a RCRA partial closure and would be accomplished by dewatering the ponds, where necessary, and converting any remaining sludge or evaporator concentrate to a solid wasteform (pondcrete and saltcrete). The pond sites would be stabilized to prevent erosion or other disturbance to the soil and to prevent infiltration of rain or snowmelt. The solid wasteform would be transported offsite for disposal. The five solar ponds (designated 207-A, 207-B (north, center, and south), and 207-C), are the only solar evaporation ponds that exist at the RFP. A finding of no significant impact is included

  8. Brominated diphenyl ether levels. A comparison of tributary sediments versus biosolid material

    Energy Technology Data Exchange (ETDEWEB)

    Kolic, T.M.; MacPherson, K.A.; Reiner, E.J. [Ontario Ministry of the Environment, Laboratory Services Branch, Toronto, ON (Canada); Ho, T.; Kleywegt, S. [Ontario Ministry of the Environment, Standards Development Branch, Toronto, ON (Canada); Dove, A.; Marvin, C. [Environment Canada, Burlington, ON (Canada)

    2004-09-15

    PBDEs are persistent in the environment, have low water solubility and are known to have a tendency to bioaccumulate in wildlife and humans. There are 209 possible PBDE congeners. There has been concern over the bioaccumulation of these compounds since they have been found in mother's milk. Some of the brominated diphenyl ethers are known to metabolize into hydroxylated compounds and these metabolites are known to compete with and reduce thyroxine (T4) from binding to the thyroxine binding protein, transthyretin. This disrupts the thyroid hormone system interaction that has recently been notable amongst women in the form of hypothyroidism that can affect the fetus development in the form of neurodevelopmental deficits. There have been reports of estrogenic activities regarding PBDEs and their hydroxylated counterparts. Information such as this is indicative that PBDEs are endocrine disruptors. Due to their lipophilic nature, PBDEs have a high binding affinity to particulates and accumulate in sediments. Various reports on sediments and sludge type matrices have been reported in Austria, Switzerland, Netherlands and Canada. The following paper is a presentation of levels of PBDEs found in Tributary sediments and their comparison of levels to nearby biosolid sampling locations along Lake Ontario.

  9. Avaliação agronômica de biossólidos tratados por diferentes métodos químicos para aplicação na cultura do milho Agronomic evaluation of biosolids treated by different chemical methods for cultivation of maize

    Directory of Open Access Journals (Sweden)

    Ivaldete T. Barros

    2011-06-01

    Full Text Available A presença de patógenos e metais potencialmente tóxicos, são as principais limitações do lodo de esgoto para a reciclagem agrícola. Este trabalho avaliou a aplicação de biossólidos, tratados quimicamente, em um Latossolo Vermelho distrófico, na produção de matéria seca e na absorção de nutrientes pela cultura de milho. O lodo de esgoto foi tratado com cal, hipoclorito de sódio, peróxido de hidrogênio, ácido acético e peracético. Nos biossólidos tratados com os ácidos orgânicos fez-se a neutralização com cal. Os biossólidos foram aplicados em vasos, na dose de 50 t ha-1, cultivado com milho pelo período de 55 dias, quando foram determinadas a produção de matéria seca e concentração de nutrientes na parte aérea das plantas. A maior produção de matéria seca foi observada no tratamento com ácido peracético e a menor no tratamento com cal. A aplicação de biossólido aumentou os teores dos macronutrientes na parte aérea das plantas. Os teores de Zn, Cu, Mn, Fe e Pb nas plantas, estiveram abaixo dos limites fitotóxicos. Os biossólidos mostraram ser uma importante fonte de nutrientes para o desenvolvimento da cultura de milho. Os tratamentos alternativos do lodo podem ser eficientes no controle de patógenos e facilitam a reciclagem agrícola de biossólidos.The presence of pathogens and potentially toxic metals are the main limitations for the agronomic recycling of sewage sludge. This study evaluated the application of biosolids, chemically treated in a distrophic Red Latosol in the production and in the absorption of nutrients by the maize crop. The sludge was treated with lime, sodium hypochlorite, hydrogen peroxide, peracetic and acetic acids. Biosolids treated with organic acids were neutralized with lime. The biosolids were applied in pots at a dose equivalent to 50 t ha-1 and maize was grown for a period of 55 days, and later the dry matter production and concentrations of nutrients were determined in

  10. Effect of thinning, fertilization with biosolids, and weather on interannual ring specific gravity and carbon accumulation of a 55-year-old Douglas-fir stand in western Washington

    Energy Technology Data Exchange (ETDEWEB)

    Kantavichai, R.; Briggs, D.G.; Turnblom, E.C. [Washington Univ., Seattle, WA (United States). School of Forest Resources

    2010-01-15

    Soil moisture deficits (SMD) cause trees to conserve water by closing stomata, which in turn limits the uptake of atmospheric carbon dioxide (CO{sub 2}) and curtails photosynthesis and wood formation. This study investigated the combined effect of temperature, precipitation, SMD, and various silviculture treatments on interannual ring specific gravity (SG). A model was developed to predict post-treatment interannual ring SG from the treatment and environmental variables. The study assumed that thinning the stand would increase SG, while fertilization with biosolids would decrease SG. The SGs associated with each treatment were then used to calculate the dry mass and carbon content associated with stem growth. Results were then compared with estimates taken from standard publications. The experiment was conducted on a 55-year old Douglas fir stand. Twelve rings were used to assess the effect of the treatments. The study showed that use of the published average to consider only carbon sequestered by tree growth distorts the comparison of management regimes. The thinning process produced logs from which long-term structures were built, and continue to sequester carbon. When product pools of stored carbon are combined with forest carbon pools, thinning and biosolids treatment regimes are preferable to other carbon storage regimes. 40 refs., 6 tabs., 2 figs.

  11. Polybrominated diphenyl ethers, perfluorinated alkylated substances, and metals in tile drainage and groundwater following applications of municipal biosolids to agricultural fields.

    Science.gov (United States)

    Gottschall, N; Topp, E; Edwards, M; Russell, P; Payne, M; Kleywegt, S; Curnoe, W; Lapen, D R

    2010-01-15

    Polybrominated diphenyl ethers (PBDEs), perfluorinated alkylated substances (PFAS), and metals were monitored in tile drainage and groundwater following liquid (LMB) and dewatered municipal biosolid (DMB) applications to silty-clay loam agricultural field plots. LMB was applied (93,500 L ha(-1)) in late fall 2005 via surface spreading on un-tilled soil (SS(LMB)), and a one-pass aerator-based pre-tillage prior to surface spreading (AerWay SSD) (A). The DMB was applied (8 Mg d wha(-1)) in early summer 2006 on the same plots by injecting DMB beneath the soil surface (DI), and surface spreading on un-tilled soil (SS(DMB)). Key PBDE congeners (BDE-47, -99, -100, -153, -154, -183, -209) comprising 97% of total PBDE in LMB, had maximum tile effluent concentrations ranging from 6 to 320 ng L(-1) during application-induced tile flow. SS(LMB) application-induced tile mass loads for these PBDE congeners were significantly higher than those for control (C) plots (no LMB) (p0.05). PBDE mass loss via tile (0-2h post-application) as a percent of mass applied was approximately 0.04-0.1% and approximately 0.8-1.7% for A and SS(LMB), respectively. Total PBDE loading to soil via LMB and DMB application was 0.0018 and 0.02 kg total PBDE ha(-1)yr(-1), respectively. Total PBDE concentration in soil (0-0.2m) after both applications was 115 ng g(-1)dw, (sampled 599 days and 340 days post LMB and DMB applications respectively). Of all the PFAS compounds, only PFOS (max concentration=17 ng L(-1)) and PFOA (12 ng L(-1)) were found above detectable limits in tile drainage from the application plots. Mass loads of metals in tile for the LMB application-induced tile hydrograph event, and post-application concentrations of metals in groundwater, showed significant (pA>C for tile and SS(LMB) and A>C for groundwater for most results). Following DMB application, no significant differences in metal mass loads in tile were found between SS(DMB) and DI treatments (PBDE/PFAS were not measured). But for

  12. New mechanistically based model for predicting reduction of biosolids waste by ozonation of return activated sludge.

    Science.gov (United States)

    Isazadeh, Siavash; Feng, Min; Urbina Rivas, Luis Enrique; Frigon, Dominic

    2014-04-15

    Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Biosolids conditioning and the availability of Cu and Zn for rice Condicionamento de biossólidos e a disponibilidade de Cu e Zn para arroz

    Directory of Open Access Journals (Sweden)

    Adriana Marlene Moreno Pires

    2003-02-01

    Full Text Available Sewage treatment process is a factor to be considered for biosolid use in agriculture. The greatest sewage treatment facility of São Paulo State (Barueri/SP altered in the year 2000 of its sludge treatment. The addition of ferric chloride and calcium oxide was substituted by the addition of polymers. This change can modify heavy metal phytoavailability. A green house experiment, using 2 soils treated with biosolids (three with and one without polymers with and without polymers was performed to evaluate Cu and Zn phytoavailability using rice (Oryza sativa L. as test plant. Three kilograms of two soils (Haphorthox abd Hapludox were placed in pots and the equivalent to 50 Mg ha-1 (dry basis of biosolid was added and incorporated. The statistical design adopted was completely randomized experiment, with five treatments (control plus four different biossolids each soil and four replications. Soil pH before and after harvesting, Cu and Zn concentrations in shoot were evaluated. Tukey (5% was used to compare the results. DTPA, HCl 0.1 mol L-1 and Mehlich 3 were used to estimate soil available Cu and Zn. Amounts extracted were correlated to those presented in rice shoot, to evaluate the efficiency of predicting Cu and Zn phytoavailabilities. Biosolids with polymers presented higher Cu and Zn phytoavailabilities, possibly due to the lower pH of these residues. In this case soil presented lowest values of pH and plant shoot had highest. All extractants were representative of Cu and Zn availability to rice plants.O processo gerador do biossólido é um fator a ser considerado na avaliação do uso agrícola deste resíduo. Em 2000, a adição de cloreto férrico+cal virgem durante o tratamento do esgoto foi substituída pela adição de polieletrólitos na maior Estação de Tratamento de Esgotos de São Paulo (Barueri, o que pode gerar mudanças na fitodisponibilidade dos metais pesados. Um experimento em casa de vegetação, com dois solos (Latossolo

  14. Investigation of Parameters Affecting Gypsum Dewatering Properties in a Wet Flue Gas Desulphurization Pilot Plant

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Kiil, Søren

    2012-01-01

    of impurities (0.002 M Al2F6; 50 g quartz/L; 0.02 M Al3+, and 0.040 M Mg2+) were investigated. In addition, slurry from a full-scale wet FGD plant, experiencing formation of flat shaped crystals and poor gypsum dewatering properties, was transferred to the pilot plant to test if the plant would now start...... to time. In this work, the particle size distribution, morphology, and filtration rate of wet FGD gypsum formed in a pilot-scale experimental setup, operated in forced oxidation mode, have been studied. The influence of holding tank residence time (10–408 h), solids content (30–169 g/L), and the presence...... to produce low quality gypsum. The crystals formed in the pilot plant, on the basis of the full-scale slurry did, however, show acceptable filtration rates and crystal morphologies closer to the prismatic crystals from after pilot plant experiments with demineralized water. The gypsum slurry filtration rates...

  15. Applicability of industrial wastewater as carbon source for denitrification of a sludge dewatering liquor.

    Science.gov (United States)

    Chen, Jiazhong; Lee, Yoomin; Oleszkiewicz, Jan A

    2013-01-01

    The applicability of four industrial waste streams from potato processing, canola processing and oil refining, biodiesel production (glycerol), and glycol as substitutes to methanol and ethanol in denitrification of anaerobically digested sludge dewatering liquor (centrate) was evaluated in bench-scale sequencing batch reactors. It was found that glycerol was the best substitute with the specific denitrification rate (SDNR) of 13 mg NO3-N/(g VSS x h) followed by potato processing wastewater at 12mg NO3-N/(g VSS x h). Both substrates produced faster SDNR than methanol's 10mg NO3-N/(g VSS x h); however, they were inferior to ethanol's 17 mg NO3-N/(g VSS x h). Glycol had SDNR of 8 mg NO3-N/(g VSS x h) and demonstrated a very fast acclimation rate, i.e. the response in increased denitrification rate was visible in three days following glycol addition. Canola processing and oil refining wastewater was considered an inappropriate carbon source due to a low SDNR of 5 mg NO3-N/(g VSS x h) and apparent inhibitory effect on nitrification.

  16. Brown Coal Dewatering Using Poly (Acrylamide-Co-Potassium Acrylic Based Super Absorbent Polymers

    Directory of Open Access Journals (Sweden)

    Sheila Devasahayam

    2015-09-01

    Full Text Available With the rising cost of energy and fuel oils, clean coal technologies will continue to play an important role during the transition to a clean energy future. Victorian brown coals have high oxygen and moisture contents and hence low calorific value. This paper presents an alternative non evaporative drying technology for high moisture brown coals based on osmotic dewatering. This involves contacting and mixing brown coal with anionic super absorbent polymers (SAP which are highly crossed linked synthetic co-polymers based on a cross-linked copolymer of acryl amide and potassium acrylate. The paper focuses on evaluating the water absorption potential of SAP in contact with 61% moisture Loy Yang brown coal, under varying SAP dosages for different contact times and conditions. The amount of water present in Loy Yang coal was reduced by approximately 57% during four hours of SAP contact. The extent of SAP brown coal drying is directly proportional to the SAP/coal weight ratio. It is observed that moisture content of fine brown coal can readily be reduced from about 59% to 38% in four hours at a 20% SAP/coal ratio.

  17. Application of a three-dimensional network model to coal dewatering

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, I.

    1986-01-01

    A bond-flow correlated network model has been successfully used to calculate equilibrium desaturation curves, single phase permeabilities and two phase flow properties (dewatering curves) for coal filter cakes. A new method of pore volume assignment is presented in which the pore volume occupied by the large pores (which give a capillary pressure less than 0.5 psia) is assigned to the nodes and the rest is distributed to the bonds according to the pore size distribution. The micrographic pore size distribution, used as an input, is determined experimentally. Equilibrium desaturation curves for -32 mesh, -200 mesh and -100 + 200 mesh coal cakes (Pittsburgh Seam Coal), formed with distilled water, have been calculated. The results for six -32 mesh coal cakes formed with surfactants show that the effect of surfactants can be accounted for by modifying one of the model parameters - the entry diameter constant. A correlation is presented to estimate the modified entry diameter constant using experimentally determined surface tension and contact angle values. The size distribution of particles in dispersed state has been correlated with that in the cake which in turn has been correlated with the pore size distribution. An equilibrium desaturation curve has been successfully calculated for -32 mesh Pittsburgh Seam coal using the pore size distribution estimated from the dispersed particle size distribution. Calculated single phase permeabilities, using a bond-flow correlated network and a simple cubic lattice, agree with the experimental values better than a bond-correlated network using a face-centered cubic lattice.

  18. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community.

    Science.gov (United States)

    Fu, Xiaoyong; Cui, Guangyu; Huang, Kui; Chen, Xuemin; Li, Fusheng; Zhang, Xiaoyu; Li, Fei

    2016-03-01

    In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.

  19. Evaluación de la mineralización de biosólidos de plantas de tratamiento de aguas residuales domésticas Evaluation of mineralization rates of biosolids from domestic wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Jorge A. Silva

    2013-04-01

    Full Text Available Los biosólidos procedentes del tratamiento de aguas residuales municipales tienen alto potencial de aplicación agrícola por sus contenidos de materia orgánica y nutrientes. En esta investigación se evaluó la mineralización de los biosólidos provenientes de la Planta de tratamiento de Aguas Residuales de Cañaveralejo, Cali- Colombia, mediante el ajuste de modelos de regresión; se realizó el seguimiento del contenido de NH4+, NO3- y NO2- durante 126 días para tres tipos de biosólidos: deshidratado, secado térmicamente y alcalinizado, los cuales fueron aplicados a un suelo Vertic Endoaquepts en dosis de 35.4, 36.4 y 54.5 t ha-1 respectivamente. Para el ajuste de las curvas de regresión, se consideraron los modelos simple exponencial, doble exponencial, hiperbólico, parabólico y algunos modelos estadísticos regulares. Los resultados mostraron que el modelo parabólico propuesto por Broadbent presentó el mejor ajuste para describir el proceso de mineralización del suelo evaluado; el modelo exponencial de Stanford & Smith, se mostró como una segunda opción de modelación, permitiendo corroborar el incremento del nitrógeno orgánico N0 cuando se realiza la aplicación de los biosólidos y el incremento de la mineralización con relación al tratamiento testigo.The biosolids from wastewater Treatment plants have high potential of agricultural application due to the contents of organic matter and nutrients. The mineralization of biosolids from the Cañaveralejo Wastewater Treatment Plant, Cali-Colombia, was evaluated by fitting regression models. The content of NH4+, NO3- and NO2- were monitored during 126 days for three types of biosolids: dehydrated, thermally dried and alkalinized, which were applied to a Vertic Endoaquepts soil using doses of 35.4, 36.4 and 54.5 t ha-1 respectively. To adjust the regression curves, the models used were: simple exponential, double exponential, hyperbolic, parabolic and some regular statistical

  20. Characteristics of water obtained by dewatering cyanobacteria-containing sludge formed during drinking water treatment, including C-, N-disinfection byproduct formation.

    Science.gov (United States)

    Xu, Hangzhou; Pei, Haiyan; Jin, Yan; Xiao, Hongdi; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2017-03-15

    This is the first study to systematically investigate the characteristics of the water obtained by dewatering cyanobacteria-containing sludge generated in the drinking water treatment plant, including formation of C- and N-disinfection by-products (DBPs). Results showed that this 'dewatering water' (DW) had different properties when the sludge was stored at different times. The content of dissolved organic matter (DOM) and microcystins (MCs) in the DW were low when the sludge was treated or disposed of within 4 days; correspondingly, the C-, N-DBP production was also low. However, due to the damage of algal cells to some extent, the DOM and MC levels increased significantly for storage time longer than 4 days; the production of C-, N-DBPs also increased. There were also obvious differences in the characteristics of the DW from sludges generated with different coagulant species. Due to the better protective effect of FeCl 3 and polymeric aluminium ferric chloride (PAFC) flocs, the DOM and MC levels and the production of C-, N-DBPs in the DW with FeCl 3 and PAFC coagulation were lower than those with AlCl 3 coagulation, even though the sludges were stored for the same amount of time. Furthermore, because of the formation of Al and Fe hydroxides, precipitated onto the surface of flocs, the soluble Al and Fe in the DW decreased with increased storage time, especially in the first four days. Overall, this study revealed the trends in variation of DW quality for cyanobacteria-containing sludges formed with different coagulants, then FeCl 3 and PAFC coagulants are recommended and sludge should be treated or disposed of within 4 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    International Nuclear Information System (INIS)

    Bayat, Belgin; Sari, Bulent

    2010-01-01

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric acid

  2. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Belgin, E-mail: bbayat@cu.edu.tr [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey); Sari, Bulent [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey)

    2010-02-15

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric

  3. Effect of Long-Term Freezing and Freeze–Thaw Cycles on Indigenous and Inoculated Microorganisms in Dewatered Blackwater

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Müller, Karoline; Jensen, Pernille Erland

    2012-01-01

    Wastewater treatment in many Arctic regions is inadequate, even nonexisting. Natural freezing of wastewater in those areas may be beneficial for reduction of microorganisms. The aim of this study was to investigate the effect of long-term freezing, and repeated freezing and thawing, on indigenous...... coliforms, fecal streptococci, and antibiotic-resistant (AR) bacteria, and inoculated Salmonella Enteriditis and E. coli bacteriophage ΦX174 in dewatered blackwater. At the end of the long-term freezing experiment (10 months), an MPN recovery study was done, including the microbial groups that had shown...... the largest reduction, using tryptone soy broth at incubation temperatures of 10 and 20 °C overnight for the coliforms and AR bacteria, and buffered peptone water at incubation temperature of 37 °C for 18–20 h for Salmonella. Fecal streptococci were more resistant to long-term freezing than the coliform group...

  4. Ukraine biosolids incineration project generates electricity while solving disposal problems

    Energy Technology Data Exchange (ETDEWEB)

    Kosanke, J. [Quality Recycling Ltd., Henderson, NC (United States)

    2008-07-15

    This article described an innovative Waste-to-Energy (WtE) system that is currently being installed in the city of Odessa in the Ukraine. The city has a population of 1 million and is a major seaport on the Black Sea. Sewage sludge will be used as a biomass fuel to power an electrical generation plant. The system includes a clean-burning rotary cascading bed combustor (RCBC) linked to a boiler and an electricity-generating steam turbine. The RCBC spins in order to keep fuel cascading for maximum combustion, and is expected to burn over 50,000 tons of dewatered sewage sludge per year while generating 33,507,000 kWh of electricity per individual location. Eleven systems will be installed at major sewage processing modules in the Ukraine. A pilot program is also being conducted to test and monitor the system under United States emissions and operational standards. The RCBC is also being used to combust fuels derived from municipal solid waste (MSW) at a site in Kansas. Other fuels that can be cleanly burned using the RCBC system included high sulfur bituminous coal; anthracite coal waste; carpet and carpet scrap, and tires and rubber wastes. Studies have demonstrated that some toxic wastes can be removed using the RCBC system. It was concluded that burning negative value fuels can allow some power plants to earn revenues from disposal fees. 3 figs.

  5. Effect of plants on the bioavailability of metals and other chemical properties of biosolids in a column study.

    Science.gov (United States)

    Huynh, Trang T; Laidlaw, W Scott; Singh, Balwant; Zhang, Hao; Baker, Alan J M

    2012-10-01

    The effects of metal-accumulating plants (Salix x reichardtii and Populus balsamifera) on the chemical properties and dynamics of metals in biosolids were investigated using different techniques including diffusive gradients in thin films (DGT), sequential extraction procedures and partitioning coefficient (K(d)). Plants could effectively extract Cd, Ni, and Zn and decreased dissolved organic carbon (DOC). The presence of plants increased the potential bioavailability of these metals, as assessed by an increase in the ratio of metal measured by DGT and metals in the solution. The plants affected the Cd, Ni, and Zn pools (soluble/exchangeable; Fe/Mn oxide and organic matter bound) characterised by sequential extraction and K(d) but did not reduce the total metals in either substrate. However, plants had no effect on Cu, presumably because of the effective buffering of available Cu by organic matter in both solution and solid phases. A high density of plant roots was associated with increased leaching of metals.

  6. Development of Graft Copolymer Flocculant Based on Acrylamide and Acrylic Acid for the dewatering of coal

    International Nuclear Information System (INIS)

    Mahmoud, G.A.; Abdel Khalek, M.A

    2012-01-01

    Most coal preparation processes were carried out in water medium. The water content of coal product has a negative impact on handling and specific energy value. The moisture content may be attributed to the proportion of fine coal, which presents the greatest dewatering problem. A novel polymeric flocculant has been developed by graft copolymerization of acrylamide (AAm) with acrylic acid (AAc) using gamma irradiation technique. The grafted copol621621ymer P(AAm/AAc) was characterized by Fourier-transform infrared spectroscopy (FTIR), and thermo-gravimetric analysis (TGA). The effects of reaction parameters, such as total absorbed dose, and monomer concentration on grafting yield were investigated. The flocculation performance of the graft copolymer P(AAm/AAc) was investigated in coal suspension. It was observed that the grafting ratio was one of the key factors for the flocculating effects. The copolymers with various grafting ratios showed different flocculating properties. It was found that as the grafting ratio increased, the flocculating effect also increased. The flocculation performance of the grafted copolymer was better than that of the commercial flocculant, poly-acrylamide (Magnafloc 1011).

  7. Mine dewatering and impact assessment in an arid area: Case of Gulf region.

    Science.gov (United States)

    Yihdego, Yohannes; Drury, Len

    2016-11-01

    Analytical and empirical solution coupled with water balance method were used to predict the ground water inflow to a mine pit excavated below the water table, final pit lake level/recovery and radius of influence, through long-term and time variant simulations. The solution considers the effect of decreased saturated thickness near the pit walls, distributed recharge to the water table and upward flow through the pit bottom. The approach is flexible to accommodate the anisotropy/heterogeneity of the real world. Final pit void water level was assessed through scenarios to know whether it will be consumed by evaporation and a shallow lake will form or not. The optimised radius of influence was estimated which is considered as crucial information in relation to the engineering aspects of mine planning and sustainable development of the mine area. Time-transient inflow over a period of time was estimated using solutions, including analytical element method (AEM). Their primary value is in providing estimates of pit inflow rates to be used in the mine dewatering. Inflow estimation and recovery helps whether there is water to supplement the demand and if there is any recovery issue to be dealt with in relation to surface and groundwater quality/eco-system, environmental evaluations and mitigation. Therefore, this method is good at informing decision makers in assessing the effects of mining operations and developing an appropriate water management strategy.

  8. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils.

    Science.gov (United States)

    Wen, Bei; Wu, Yali; Zhang, Hongna; Liu, Yu; Hu, Xiaoyu; Huang, Honglin; Zhang, Shuzhen

    2016-09-01

    The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P distribution of PFOS and PFOA in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Design and construction of solidification and dewatering facility at Alabama Power Company's Farley Nuclear Plant

    International Nuclear Information System (INIS)

    Farnsworth, P.

    1988-01-01

    The approximate total cost of the structure and supporting piping systems is estimated to be 4.1 million dollars. Total dose savings per year could be as high as 70 man Rem for resin processing alone. The ability to store refueling equipment, process contaminated oils, load and unload trucks and containers regardless of weather conditions and support repair work on equipment greatly enhances the cost effectiveness of the project. It will take at least one year of operation of the facility to accurately assess the true cost savings to Alabama Power Company. The morale factor for the Waste and Decon Group has escalated measurably due to the dose reduction to our personnel. Plant and company management are well pleased due to the possibility of a spill or release to the environment has been eliminated which was on intangible cost. Facility construction has been completed as of this date and resin transfer anticipated within the next few days. Some of the problems encountered in planning and constructing this solidification and dewatering facility are presented. A safety evaluation for the facility is included in the appendix

  10. Dewatering of Chlorella pyrenoidosa using diatomite dynamic membrane: filtration performance, membrane fouling and cake behavior.

    Science.gov (United States)

    Zhang, Yalei; Zhao, Yangying; Chu, Huaqiang; Zhou, Xuefei; Dong, Bingzhi

    2014-01-01

    The diatomite dynamic membrane (DDM) was utilized to dewater Chlorella pyrenoidosa of 2 g dry weight/L under continuous-flow mode, whose ultimate algae concentration ranged from 43 g to 22 g dry weight/L of different culture time. The stable flux of DDM could reach 30 L/m(2) h over a 24 h operation time without backwash. Influences of extracellular organic matters (EOM) on filtration behavior and membrane fouling were studied. The DDM was divided into three sub-layers, the slime layer, the algae layer and the diatomite layer from the outside to the inside of the cake layer based on components and morphologies. It was found that EOM caused membrane fouling by accumulating in the slime and algae layers. The DDM intercepted polysaccharides, protein-like substances, humic-like substances and some low-MW organics. Proteins were indicated the major membrane foulants with increased protein/polysaccharide ratio from the slime layer to the diatomite layer as culture time increased. This method could be applied to subsequent treatment of microalgae coupling technology of wastewater treatment or microalgae harvesting for producing biofuel. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Heavy metals in Oxisols amended with biosolids and cropped with maize in a long-term experiment Metais pesados em latossolos tratados com biossólido e cultivados com milho em experimento de longa duração

    Directory of Open Access Journals (Sweden)

    Katarzyna Wójcik Oliveira

    2005-08-01

    Full Text Available Biosolids comprise organic matter and plant nutrients, but are also a source of heavy metals hazardous to soils, plants and humans. The aim of this work was to evaluate accumulation, movement in the soil profile and availability to maize plants of heavy metals in two oxisols amended with biosolids for five years. The experiment was carried out in Jaboticabal, SP, Brazil, under field conditions, using a split-plot design. Biosolids were added to the soils at four different rates, 0.0 (control with mineral fertilization, 2.5; 5.0 and 10.0 t ha-1, dry weight basis, annualy for three years. In the fourth and fifth years, the 2.5 t ha-1 treatment rate was increased to 20.0 t ha-1. In the fifth year, soil samples were collected at 0-20 and 20-40 cm depths and analyzed for Cu, Ni, Mn, Pb and Zn total and extractable (Mehlich 1 contents. Biosolids increased the concentration of Ni and Zn in the Typic Eutrorthox, and of Ni, Pb, Zn and Cu in the Typic Haplorthox, but values did not exceed critical limits established by legislation. The elements generally accumulated in the 0-20 cm depth. Lead and Ni concentrations in grains were below detection limits. In general, heavy metals contents in maize plants were not affected by application of biosolids. Mehlich 1 extractant was not efficient in predicting the availability of Ni, Mn, and Pb to maize plants.O biossólido contém em sua composição matéria orgânica e nutrientes das plantas, mas também metais pesados danosos para solos, plantas e a saúde humana. O objetivo deste trabalho foi avaliar o acúmulo de metais pesados e sua mobilidade no perfil do solo, assim como a disponibilidade para plantas de milho cultivadas em Latossolo Vermelho distrófico (LVd e Latossolo Vermelho eutroférrico (LVef tratados com doses crescentes de biossólido durante cinco anos. O experimento foi conduzido em Jaboticabal, SP, Brasil, em condições de campo, utilizando-se delineamento de parcelas subdivididas com cinco

  12. Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology.

    Science.gov (United States)

    Hong, Chen; Haiyun, Wu

    2010-07-01

    Central-composite design (CCD) and response surface methodology (RSM) were used to optimize the parameters of volatile fatty acid (VFA) production from food wastes and dewatered excess sludge in a semi-continuous process. The effects of four variables (food wastes composition in the co-substrate of food wastes and excess sludge, hydraulic retention time (HRT), organic loading rate (OLR), and pH) on acidogenesis were evaluated individually and interactively. The optimum condition derived via RSM was food wastes composition, 88.03%; HRT, 8.92 days; OLR, 8.31 g VSS/ld; and pH 6.99. The experimental VFA concentration was 29,099 mg/l under this optimum condition, which was well in agreement with the predicted value of 28,000 mg/l. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Feasibility of vermicomposting dewatered sludge from paper mills using Perionyx excavatus

    Directory of Open Access Journals (Sweden)

    Puspanjali Sonowal

    2013-06-01

    Full Text Available India has a large network of pulp and paper mills of varying capacity. On an industrial scale the sludge from paper and pulp mills is disposed of either as landfill or incinerated. Both methods result in the loss of a valuable resource and have obvious environmental and economic disadvantages. The solid waste from pulp and paper mills is a source of organic matter and its proper disposal and management is the responsibility of the industry. As composting/vermicomposting could be used to transform this waste trials were carried out to determine the feasibility of converting dewatered sludge (DS into a value added end product using an earthworm, Perionyx excavatus. The vermicomposting of the waste resulted in an increase in its electrical conductivity (EC, ash content, total nitrogen (TN, total phosphorous (TP and available phosphorous (AP, respectively, and a decrease in total organic carbon (TOC, biochemical oxygen demand (BOD, chemical oxygen demand (COD, oxygen uptake rate (OUR and evolution of carbon dioxide (CO2. Overall, the best treatment was T5 in which there was a 76.1% increase in TP, 58.7% in TN, 74.5% decrease in TOC , and a reduction of 6.7 fold in the production of CO2 and 10.7 fold in BOD, respectively. Our trials demonstrate that vermicomposting using an epigeic earthworm, Perionyx excavatus, is an alternate and environmentally safe way of recycling paper mill sludge if it is mixed with an appropriate amount of cow dung and food processing waste. Overall T5 was the best combination of paper mill sludge and waste for vermicomposting followed by T3, T2, T4 and T1, respectively.

  14. Reproduction Symposium: does grazing on biosolids-treated pasture pose a pathophysiological risk associated with increased exposure to endocrine disrupting compounds?

    Science.gov (United States)

    Evans, N P; Bellingham, M; Sharpe, R M; Cotinot, C; Rhind, S M; Kyle, C; Erhard, H; Hombach-Klonisch, S; Lind, P M; Fowler, P A

    2014-08-01

    Biosolids (processed human sewage sludge), which contain low individual concentrations of an array of contaminants including heavy metals and organic pollutants such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), and polychlorinated dibenzodioxins/polychlorinated dibenzofurans known to cause physiological disturbances, are increasingly being used as an agricultural fertilizer. This could pose a health threat to both humans and domestic and wild animal species. This review summarizes results of a unique model, used to determine the effects of exposure to mixtures of environmentally relevant concentrations of pollutants, in sheep grazed on biosolids-treated pastures. Pasture treatment results in nonsignificant increases in environmental chemical (EC) concentrations in soil. Whereas EC concentrations were increased in some tissues of both ewes and their fetuses, concentrations were low and variable and deemed to pose little risk to consumer health. Investigation of the effects of gestational EC exposure on fetal development has highlighted a number of issues. The results indicate that gestational EC exposure can adversely affect gonadal development (males and females) and that these effects can impact testicular morphology, ovarian follicle numbers and health, and the transcriptome and proteome in adult animals. In addition, EC exposure can be associated with altered expression of GnRH, GnRH receptors, galanin receptors, and kisspeptin mRNA within the hypothalamus and pituitary gland, gonadotroph populations within the pituitary gland, and regional aberrations in thyroid morphology. In most cases, these anatomical and functional differences do not result in altered peripheral hormone concentrations or reproductive function (e.g., lambing rate), indicating physiological compensation under the conditions tested. Physiological compensation is also suggested from studies that indicate that EC effects may be greater when exposure occurs either

  15. New mechanistically based model for predicting reduction of biosolids waste by ozonation of return activated sludge

    International Nuclear Information System (INIS)

    Isazadeh, Siavash; Feng, Min; Urbina Rivas, Luis Enrique; Frigon, Dominic

    2014-01-01

    Highlights: • Biomass inactivation followed an exponential decay with increasing ozone doses. • From pure cultures, inactivation did not result in significant COD solubilization. • Ozone dose inactivation thresholds resulted from floc structure modifications. • Modeling description of biomass inactivation during RAS-ozonation was improved. • Model best describing inactivation resulted in best performance predictions. - Abstract: Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data

  16. New mechanistically based model for predicting reduction of biosolids waste by ozonation of return activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Isazadeh, Siavash; Feng, Min; Urbina Rivas, Luis Enrique; Frigon, Dominic, E-mail: dominic.frigon@mcgill.ca

    2014-04-01

    Highlights: • Biomass inactivation followed an exponential decay with increasing ozone doses. • From pure cultures, inactivation did not result in significant COD solubilization. • Ozone dose inactivation thresholds resulted from floc structure modifications. • Modeling description of biomass inactivation during RAS-ozonation was improved. • Model best describing inactivation resulted in best performance predictions. - Abstract: Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data.

  17. Multi-criteria analysis for site selection for the reuse of reclaimed water and biosolids

    Directory of Open Access Journals (Sweden)

    António Albuquerque

    2015-01-01

    Full Text Available Low pH soils with insufficient organic matter can benefit from the application of reclaimed water (RW and biosolids. The presence of nutrients also aids plant growth. This paper presents the results of two integrated research studies, both carried out in the Beira Interior Region (Covilhã, Portugal; one used RW for irrigation, the other applied paper mill sludge to agricultural land. In both cases, multiple criteria based on GIS tools were used for site selection. In the first study, the characteristics of RW analyzed over 2 years were found suitable for crop irrigation. The RW had moderate organic content, low electrical conductivity (CE, high nutrient content (N, P, and low concentrations of nitrate, metals and phytotoxic elements (Al, B, Cl and Na. The multi-criteria analysis was carried out taking into account environmental, technical and economic criteria and a suitable area of 30.5 ha was found for RW irrigation. In the second work, the paper mill sludge was considered suitable for application to agricultural land. Its concentrations of N, P and heavy metals did not a present risk for soil contamination and were suitable for soil improvement and crop production. A multi-criteria analysis based on similar criteria was conducted and a suitable area of 253 ha was found for sludge application.

  18. Cinética de degradação da matéria orgânica de biossólidos após aplicação no solo e relação com a composição química inicial Degradation kinetics of biosolids organic matter after soil application and its relationship with initial chemical composition

    Directory of Open Access Journals (Sweden)

    Cristiano Alberto de Andrade

    2006-01-01

    Full Text Available O objetivo deste estudo foi avaliar a degradação de biossólidos após aplicação no solo, relacionando com a composição química inicial da matéria orgânica (MO desses resíduos. Foram utilizados quatro biossólidos e um composto orgânico à base de lodo de esgoto, provenientes de diferentes sistemas de tratamento de esgotos e/ou estabilização do lodo e/ou condicionamento químico para desidratação e/ou etapa complementar visando à melhor adequação ao uso agrícola. A degradação dos biossólidos foi determinada com quantificação do CO2 emanado a partir de experimento de incubação de misturas de amostras de um Latossolo, com dose dos resíduos correspondente a 40 t ha-1. As taxas de degradação da fração orgânica dos resíduos variaram entre 5% e 22%. De modo geral, a degradação da fração orgânica dos biossólidos foi descrita por equação de cinética química com duas fases: a primeira fase caracterizou-se pela elevada velocidade de degradação de compostos orgânicos presentes em quantidades limitadas, cuja exaustão do substrato ocorreu em poucos dias (2 a 20 dias; a segunda fase caracterizouse pela redução da velocidade da reação de degradação e aumento da quantidade de carbono mineralizado (65% do total de C mineralizado no período. A proteína bruta, expressa como porcentagem do conteúdo orgânico dos resíduos, foi o parâmetro que melhor correlacionou com a taxa de degradação dos biossólidos no fim de 70 dias de incubação (r = 0,999 e Prob. > t inferior a 10-4, sendo promissora sua utilização na previsão da taxa de degradação da MO de biossólidos após aplicação no solo. A participação do compartimento protéico foi crescente com o tempo de incubação, comprovando que no início do período de avaliação outros compostos orgânicos mais lábeis funcionaram como fonte de carbono e de energia para a microbiota edáfica.The aim of this study was to evaluate biosolids degradation

  19. Effect of biodegradation on the consolidation properties of a dewatered municipal sewage sludge.

    Science.gov (United States)

    O'Kelly, Brendan C

    2008-01-01

    The effect of biodegradation on the consolidation characteristics of an anaerobically digested, dewatered municipal sewage sludge was studied. Maintained-load oedometer consolidation tests that included measurement of the pore fluid pressure response were conducted on moderately degraded sludge material and saturated bulk samples that had been stored under static conditions and allowed to anaerobically biodegrade further (simulating what would happen in an actual sewage sludge monofill or lagoon condition). Strongly degraded sludge material was produced after a storage period of 13 years at ambient temperatures of 5-15 degrees C, with the total volatile solids reducing from initially 70% to 55%. The sludge materials were highly compressible, although impermeable for practical purposes. Primary consolidation generally occurred very slowly, which was attributed to the microstructure of the solid phase, the composition and viscosity of the pore fluid, ongoing biodegradation and the high organic contents. The coefficient of primary consolidation values decreased from initially about 0.35m2/yr to 0.003-0.03m2/yr with increasing effective stress (sigmav'=3-100kPa). Initially, the strongly degraded sludge material was slightly more permeable, although both the moderately and strongly degraded materials became impermeable for practical purposes (k=10(-9)-10(-12)m/s) below about 650% and 450% water contents, respectively. Secondary compression became more dominant with increasing effective stress with a mean secondary compression index (Calphae) value of 0.9 measured for both the moderately and strongly degraded materials.

  20. Fate of the antiretroviral drug tenofovir in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)

    2010-10-15

    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  1. Determination of fluorotelomer alcohols and their degradation products in biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Hongna; Wen, Bei; Hu, Xiaoyu; Wu, Yali; Luo, Lei; Chen, Zien; Zhang, Shuzhen

    2015-07-24

    Degradation of fluorotelomer alcohols (FTOHs) was recognized as an additional source of perfluorocarboxylic acids (PFCAs). Quantification of FTOHs and their degradation products can help shed light on the sources and fates of PFCAs in the environment. In this study, an analytical method was developed for the determination of 6:2 and 8:2 FTOHs, and their degradation products of poly- and perfluorinated acids, including fluorotelomer saturated and unsaturated carboxylic acids (FTCAs and FTUCAs), secondary polyfluorinated alcohols and PFCAs in biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The extract efficiencies of different methods including ethyl acetate and methanol (MeOH) for FTOHs and acetonitrile, MeOH, methyl tert-butyl ether (MTBE), NaOH-MeOH and NaOH-MTBE for poly- and perfluorinated acids were tested. The results showed that 6:2 and 8:2 FTOHs and their degradation products could be simultaneously and satisfactorily extracted by MeOH, cleaned up by Envi-Carb graphitized carbon and solid phase extraction, respectively, and determined by UPLC-MS/MS separately. NaOH in the extractant caused the conversion of 6:2 FTCA and 8:2 FTCA into the corresponding FTUCAs. The selected methods have matrix recoveries ranged from 52% to 102%, and detection limits of 0.01-0.46ng/g dry weight for FTOHs and their degradation products in soil and plant. The optimized method was applied successfully to quantify FTOHs and their degradation products in two biosolids-amended soils and plants. The total concentrations of FTOHs in the soils were 44.1±5.8 and 82.6±7.1ng/g, and in plants tissues 3.58±0.25 and 8.33±0.66ng/g. The total concentrations of poly- and perfluorinated acids in the soils were 168.0±13.2 and 349.6±11.2ng/g, and in plants tissues 78.0±6.4 and 75.5±5.3ng/g. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    Energy Technology Data Exchange (ETDEWEB)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  3. Paste pumping and deposition field trials and concepts on Syncrude's dewatered mature fine tailings MFT centrifuge cake

    Energy Technology Data Exchange (ETDEWEB)

    Lahaie, R. [Syncrude Canada Ltd., Edmonton, AB (Canada); Ahmed, I.; Labelle, M.; Brown, R. [Golder Paste Technology, Sudbury, ON (Canada)

    2009-07-01

    This presentation discussed a paste pumping and deposition field study conducted on dewatered mature fine tailings (MFT) located at Syncrude's Mildred Lake operation. Bench scale rheological examinations of centrifuge cakes and design field testing are used to determine the pumpability of MFT centrifuge cakes. The study included a transportation assessment for the conveyor and positive displacement pumps and pipelines, as well as geotechnical and environmental analyses of bulk materials. Flocculant optimization and centrifuge operational parameter assessments were conducted. Pressure differential and flow rate data were captured in the field studies in order to determine pipeline friction loss. The study showed that pipe friction factors can be obtained using the Bingham plastic model. A natural deposition angle was determined for the MFT centrifuged cake. The study showed that the cake must be sheared in order to reduce yield stress before pumping. It was concluded that displacement pumps can be used to reduced pipeline friction factors. tabs., figs.

  4. Exploiting the energy potential of waste activated sludge with MicroSludge[Manure, biosolids, and organic industrial/commercial residuals in land applications programs : improving beneficial reuse and protection of water quality

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, R.; Laliberte, S. [Paradigm Environmental Technologies, Vancouver, BC (Canada); Nemeth, L. [Earth Tech Canada Inc., Burnaby, BC (Canada)

    2007-07-01

    When waste activated sludge (WAS) is efficiently converted to biogas through anaerobic digestion, the energy potential and economic value of WAS can be exploited. This paper discussed the chemical and pressure pre-treatment process using MicroSludge. MicroSludge uses alkaline pre-treatment to weaken cell membranes and a high-pressure homogenizer to liquefy the cells, enabling the anaerobic digester to work at a higher rate and more efficiently, destroying pathogens and generating less biosolids for disposal, with corresponding higher volumes of methane from which to generate added electrical power and/or produce added heat. MicroSludge was demonstrated at the Chilliwack waste water treatment plant (WWTP), located 115 km east of Vancouver. The paper provided a description of the Chilliwack WWTP and discussed the application of MicroSludge at a full-scale prototype plant. The MicroSludge plant was capable of pre-treating all of the waste secondary sludge generated at the Chilliwack WWTP prior to anaerobic digestion. The paper also discussed digester hydraulic retention time; scanning electron microscope images; temperature; pH; mass loading of primary sludge and waste activated sludge; total volatile solids concentrations; and digester gas composition. Operating and maintenance costs were also outlined along with electrical power costs, maintenance costs and chemical costs. Last, the paper presented the energy benefits for WWTPs when using MicroSludge. It was concluded that the economic benefits of MicroSludge are greater for plants with higher biosolids disposal costs and higher electrical utility costs. 6 refs., 8 tabs., 10 figs.

  5. EFECTO DE LA APLICACIÓN DE BIOSOLIDOS EN EL CRECIMIENTO DE Jacaranda mimosifolia (Gualanday Y EN LAS CONDICIONES FÍSICAS Y QUÍMICAS DE UN SUELO DEGRADADO EFFECT OF BIOSOLIDS APPLICATION ON THE GROWTH OF Jacaranda mimosifolia (Gualanday AND UNDER PHYSICAL AND CHEMICAL CONDITIONS OF A DEGRADED SOIL

    Directory of Open Access Journals (Sweden)

    Ramiro Ramirez Pisco

    2007-06-01

    estabilidad de agregados y la retención de humedad, y disminuyéndose la densidad aparente y densidad real.The biosolids are organic materials, derived from wastewater treatment of domestic and industrial sewage. One of the main problems of wastewater treatment plants is the final destination of the biosolids. Their deposit in sanitary fillers, the incineration and land application are the main methods of dispose; the first two methods are expensive, while the last one, is gaining acceptance, because the biosolids are a resource that can be used as supplementary organic fertilizer. Furthermore, land application of biosolids can help to improve declined soil fertility in degraded soils, but it can be generated contamination problems. The aims of this study were to investigate the effect of biosolids application on the growth of Jacaranda mimosifolia (Gualanday and the changes on physical and chemical conditions of a degraded soil. This arboreal specie was planted in a degraded soil amended with biosolids, and was grown in a greenhouse. The treatments corresponded to contents of organic matter in the mixture (soil-biosolid of 0 %, 2 %, 4 % and 8 %, in a completely randomized design with four treatments and ten replications. Monthly samplings were realized to get information about the variables: survival, height and diameter of stem, and number of leaves. The dry biomass was evaluated at the end of the study. The physical and chemical analyses were made at the beginning of the experiment and three months later. The chemical analyses included pH, oxidable organic carbon, Al, Ca, Mg, K, CICE, Fe, Mn, Cu, Zn, P, S, B, NO3-, NH4+, and the physical analyses included aggregate stability, bulk density, real density and water retention. The statistical analysis between treatments was realized every month, by analysis of variance and Duncan's multiple range test, using a 95 % confidence level. The treatment with a 2 % of organic matter was not affected the plant growth and was similar

  6. Groundwater Sustainability through a Novel Dewatering Technology

    Science.gov (United States)

    Jin, Y.; Holzbecher, E.; Ebneth, S.

    2012-12-01

    Groundwater plays a key role in the hydrologic cycle and ecosystem balances. Over the past decades, groundwater is intensively extracted in order to keep construction or mining sites dry. For the latter purpose the pumped water is usually discharged into a nearby surface water body or injected into an aquifer distant from the abstraction sites. As a result, aquifers are depleted and the local eco-system is disrupted as a consequence of falling groundwater tables. Given ongoing pressure on aquifer from abstraction sites, it is vital to bring up adequate attention on groundwater conservation. We demonstrate a novel technique, Düsensauginfiltration (DSI, translated as 'nozzel-suction-infiltration'), which avoids water conveyance but still lowers the groundwater table locally. The method combines abstraction of groundwater at the upper part of the aquifer with injection in the same borehole, but at a greater depth. Hence no water is withdrawn from the system. The method is already used practically in Germany, Netherlands, and China, however, it is not yet fully scientifically understood and evaluated. Currently, two tests sites in Germany, for single and multi well respectively, are selected, at which the DSI technology is currently examined. The project is cooperated with a leading dewatering company (Hoelscher Wasserbau GmbH) and funded by Deutsche Bundesstiftung Umwelt (DBU). To provide the basic principle of the method, we present numerical models solving the differential equation, which is derived from Darcy's Law and mass conservation, describing groundwater flow. We set up stationary numerical models in 2D (vertical cross section for single well case) and 3D (multi well case and/or when ambient groundwater flow is considered) using COMSOL Multiphysics. Since our model region only involves the saturated part of the unconfined aquifer, the numerical model solves a free boundary problem using hydraulic pressure as unknown variable. Two physical modes are included

  7. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.

    2016-01-01

    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  8. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, County Durham, UK

    International Nuclear Information System (INIS)

    Mayes, W.M.; Large, A.R.G.; Younger, P.L.

    2005-01-01

    Although quarrying is often cited as a potential threat to wetland systems, there is a lack of relevant, quantitative case studies in the literature. The impact of pumped groundwater discharged from a quarry into a wetland area was assessed relative to reference conditions in an adjacent fen wetland that receives only natural runoff. Analysis of vegetation patterns at the quarry wetland site, using Detrended Correspondence Analysis and the species indicator values of Ellenberg, revealed a clear disparity between community transitions in the quarry wetland and the reference site. Limited establishment of moisture-sensitive taxa, the preferential proliferation of robust wetland species and an overall shift towards lower species diversity in the quarry wetland were explicable primarily by the physico-chemical environment created by quarry dewatering. This encompassed high pH (up to 12.8), sediment-rich effluent creating a nutrient-poor substrate with poor moisture retention in the quarry wetland, and large fluctuations in water levels. - High pH, sediment-rich runoff from a quarry constrains floristic diversity in an adjacent wetland

  9. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, County Durham, UK

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, W.M. [Institute for Research on Environment and Sustainability, University of Newcastle, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: w.m.mayes@ncl.ac.uk; Large, A.R.G. [School of Geography, Politics and Sociology, University of Newcastle, Newcastle upon Tyne NE1 7RU (United Kingdom); Younger, P.L. [Institute for Research on Environment and Sustainability, University of Newcastle, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2005-12-15

    Although quarrying is often cited as a potential threat to wetland systems, there is a lack of relevant, quantitative case studies in the literature. The impact of pumped groundwater discharged from a quarry into a wetland area was assessed relative to reference conditions in an adjacent fen wetland that receives only natural runoff. Analysis of vegetation patterns at the quarry wetland site, using Detrended Correspondence Analysis and the species indicator values of Ellenberg, revealed a clear disparity between community transitions in the quarry wetland and the reference site. Limited establishment of moisture-sensitive taxa, the preferential proliferation of robust wetland species and an overall shift towards lower species diversity in the quarry wetland were explicable primarily by the physico-chemical environment created by quarry dewatering. This encompassed high pH (up to 12.8), sediment-rich effluent creating a nutrient-poor substrate with poor moisture retention in the quarry wetland, and large fluctuations in water levels. - High pH, sediment-rich runoff from a quarry constrains floristic diversity in an adjacent wetland.

  10. WtF‐Nano: One‐Pot Dewatering and Water‐Free Topochemical Modification of Nanocellulose in Ionic Liquids or γ‐Valerolactone

    Science.gov (United States)

    Laaksonen, Tiina; Helminen, Jussi K. J.; Lemetti, Laura; Långbacka, Jesper; Rico del Cerro, Daniel; Hummel, Michael; Rantamäki, Antti H.; Kakko, Tia; Kemell, Marianna L.; Wiedmer, Susanne K.; Heikkinen, Sami; Kilpeläinen, Ilkka

    2017-01-01

    Abstract Ionic liquids are used to dewater a suspension of birch Kraft pulp cellulose nanofibrils (CNF) and as a medium for water‐free topochemical modification of the nanocellulose (a process denoted as “WtF‐Nano”). Acetylation was applied as a model reaction to investigate the degree of modification and scope of effective ionic liquid structures. Little difference in reactivity was observed when water was removed, after introduction of an ionic liquid or molecular co‐solvent. However, the viscoelastic properties of the CNF suspended in two ionic liquids show that the more basic, but non‐dissolving ionic liquid, allows for better solvation of the CNF. Vibrio fischeri bacterial tests show that all ionic liquids in this study were harmless. Scanning electron microscopy and wide‐angle X‐ray scattering on regenerated samples show that the acetylated CNF is still in a fibrillar form. 1 D and 2 D NMR analyses, after direct dissolution in a novel ionic liquid electrolyte solution, indicate that both cellulose and residual xylan on the surface of the nanofibrils reacts to give acetate esters. PMID:29112334

  11. Observations of ebb flows on tidal flats: Evidence of dewatering?

    Science.gov (United States)

    Rinehimer, J. P.; Thomson, J. M.; Chickadel, C.

    2010-12-01

    Incised channels are a common morphological feature of tidal flats. When the flats are inundated, flows are generally forced by the tidally varying sea surface height. During low tide, however, these channels continue to drain throughout flat exposure even without an upstream source of water. While the role of porewater is generally overlooked due to the low permeability of marine muds, it remains the only potential source of flows through the channels during low tide. In situ and remotely sensed observations (Figure 1) at an incised channel on a tidal flat in Willapa Bay from Spring 2010 indicate that dewatering of the flats may be driving these low tide flows. High resolution Aquadopp ADCP velocity profiles are combined with observations from tower-based infrared (IR) video to produce a complete time series of surface velocity measurements throughout low tide. The IR video observations provide a measurement of surface currents even when the channel depth is below the blanking distance of the ADCP (10 cm). As the depth within the channel drops from 50 cm to 10 cm surface velocities increase from 10 cm/s to 60 cm/s even as the tide level drops below the channel flanks and the flats are dry. As the drainage continues, the temperature of the flow rises throughout low tide, mirroring temperatures within the sediment bed on the tidal flat. Drainage salinity falls despite the lack of any freshwater input to the flat indicating that less saline porewater may be the source. The likely source of the drainage water is from the channel flanks where time-lapse video shows slumping and compaction of channel sediments. Velocity profiles, in situ temperatures, and IR observations also are consistent with the presence of fluid muds and a hyperpycnal, density driven outflow at the channel mouth highlighting a possible pathway for sediment delivery from the flats to the main distributary channels of the bay. Figure 1: Time series of tidal flat channel velocities and temperatures

  12. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    International Nuclear Information System (INIS)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb; Jacqueline G. Broder

    2002-01-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility hydrolysis production has been completed to produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material was used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary co-fire test results indicate that the blending of lignin and bio-solids with the Colbert coal blend generally reduces NO(sub x) emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. The final co-fire testing report is being prepared at EERC and will be completed by the end of the second quarter of 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been

  13. Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants.

    Science.gov (United States)

    Verplanck, Philip L; Furlong, Edward T; Gray, James L; Phillips, Patrick J; Wolf, Ruth E; Esposito, Kathleen

    2010-05-15

    A primary pathway for emerging contaminants (pharmaceuticals, personal care products, steroids, and hormones) to enter aquatic ecosystems is effluent from sewage treatment plants (STP), and identifying technologies to minimize the amount of these contaminants released is important. Quantifying the flux of these contaminants through STPs is difficult. This study evaluates the behavior of gadolinium, a rare earth element (REE) utilized as a contrasting agent in magnetic resonance imaging (MRI), through four full-scale metropolitan STPs that utilize several biosolids thickening, conditioning, stabilization, and dewatering processing technologies. The organically complexed Gd from MRIs has been shown to be stable in aquatic systems and has the potential to be utilized as a conservative tracer in STP operations to compare to an emerging contaminant of interest. Influent and effluent waters display large enrichments in Gd compared to other REEs. In contrast, most sludge samples from the STPs do not display Gd enrichments, including primary sludges and end-product sludges. The excess Gd appears to remain in the liquid phase throughout the STP operations, but detailed quantification of the input Gd load and residence times of various STP operations is needed to utilize Gd as a conservative tracer.

  14. Restoration of high zinc and lead tailings with municipal biosolids and lime: a field study.

    Science.gov (United States)

    Brown, Sally; Svendsen, Alex; Henry, Chuck

    2009-01-01

    A field study was conducted to test the ability of biosolids (BS) and different types of lime to increase soil pH, neutralize subsoil acidity, and restore a vegetative cover to alluvial mine tailings in Leadville, CO. The tailings had soil pH of 5.2 and total Cd, Pb, and Zn of 75+/-20, 2600+/-1100, and 6700+/-1900 mg kg(-1). Types of lime included agricultural lime (AL), sugar beet lime (SBL), and lime kiln dust (LKD) applied at 224 Mg ha(-1) calcium carbonate equivalent. Plots were established in 2000 and monitored intermittently through 2007. All amendments increased pH in surface and subsurface depths, with LKD, LKD+BS, and SBL+BS being the most effective. Amendments also reduced 0.01 mol L(-1) Ca(NO3)2 extractable Zn and Cd compared to the control. Plant growth was sparse on all treatments with limited yield for three of four harvests. Poor growth may have been related to elevated electrical conductivity (EC). All amendments except LKD alone (5.79 dS m(-1)) increased EC compared to the control treatment (5.28 dS m(-1)). Electrical conductivity was highest in 2002 which had the lowest summer rainfall. In 2005 EC in all treatments except the SBL+BS was similar in the surface soil. Aboveground plant tissue concentrations of Zn and Cd were also elevated. Limited precipitation and high electrical conductivity may be responsible for poor plant growth. Higher rainfall for the last sampling period resulted in significant growth in the LKD+BS, SBL+BS, and LKD alone treatments.

  15. MEJORAMIENTO DE LA CALIDAD MICROBIOLÓGICA DE BIOSÓLIDOS GENERADOS EN PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES DOMÉSTICAS MELHORAMENTO DA QULIDADE MICROBIOLÓGICA DE BIOSÓLIDOS GERADOS EM PLANTAS DE TRATAMENTO DE ÁGUAS RESIDUAIS MICROBIOLOGICAL QUALITY IMPROVEMENT OF BIOSOLIDS FROM DOMESTIC WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    PATRICIA TORRES

    2009-07-01

    Full Text Available Uno de los principales problemas de calidad que presentan los biosólidos de plantas de tratamiento de aguas residuales domésticas –PTAR– es el contenido de microorganismos patógenos que los clasifica en muchos casos como Clase B con restricción para uso agrícola. Este estudio evaluó la estabilización alcalina de los biosólidos de la PTAR Cañaveralejo (Cali, Colombia para mejorar su calidad microbiológica, empleando dos tipos de cal (hidratada y viva en dosis entre 8 y 25 % y dos tipos de ceniza con dosis entre 8 y 40 % en unidades experimentales de 0,2 m2 con un tiempo de contacto de 13 días. Los resultados mostraron que con cal se logró reducción total de las variables de respuesta evaluadas (coliformes fecales, Salmonella sp y huevos de helmintos, mientras que el poder alcalinizante de las cenizas evaluadas fue insuficiente. El biosólido higienizado con cal presenta alto potencial de uso agrícola por su calidad microbiológica y por el contenido final de materia orgánica y nutrientes (N, P que pueden beneficiar los suelos, pero es recomendable evaluar la optimización a escala piloto de la dosificación de cal y la aplicación del biosólido en diferentes tipos de suelos y cultivos para precisar los beneficios o medidas preventivas antes de la aplicación.One of the main quality problems of biosolids from domestic wastewater treatment plants –WWTP– is the high concentration of pathogens, often classified as a class B, with restriction for use in agriculture. This study evaluated the alkali stabilization of biosolids from Cañaveralejo wastewater treatment plant (PTAR-C, located in Cali, Colombia, in order to improve their microbiological quality using two types of lime (quick and hydrated with doses between 8 to 25 % and two types of ash with 8 to 40 % as doses, in experimental units 0,2 m2 with 13 days of contact time. The results showed that both type of lime reached the total reduction of evaluated monitoring

  16. Nitrogen dynamics model for a pilot field-scale novel dewatered alum sludge cake-based constructed wetland system.

    Science.gov (United States)

    Kumar, J L G; Zhao, Y Q; Hu, Y S; Babatunde, A O; Zhao, X H

    2015-01-01

    A model simulating the effluent nitrogen (N) concentration of treated animal farm wastewater in a pilot on-site constructed wetland (CW) system, using dewatered alum sludge cake (DASC) as wetland substrate, is presented. The N-model was developed based on the Structural Thinking Experiential Learning Laboratory with Animation software and is considering organic nitrogen, ammonia nitrogen (NH3) and nitrate nitrogen (NO3-N) as the major forms of nitrogen involved in the transformation chains. Ammonification (AMM), ammonia volatilization, nitrification (NIT), denitrification, plant uptake, plant decaying and uptake of inorganic nitrogen by algae and bacteria were considered in this model. pH, dissolved oxygen, temperature, precipitation, solar radiation and nitrogen concentrations were considered as forcing functions in the model. The model was calibrated by observed data with a reasonable agreement prior to its applications. The simulated effluent detritus nitrogen, NH4-N, NO3-N and TN had a considerably good agreement with the observed results. The mass balance analysis shows that NIT accounts for 65.60%, adsorption (ad) (11.90%), AMM (8.90%) followed by NH4-N (Plants) (5.90%) and NO3-N (Plants) (4.40%). The TN removal was found 52% of the total influent TN in the CW. This study suggested an improved overall performance of a DASC-based CW and efficient N removal from wastewater.

  17. Behaviour of enzymatic activities and root elongation in Argiudoll soils from the Argentine Humid Pampa treated with biosolids Comportamiento de actividades enzimáticas y elongación de raíces en suelos Argiudoles de la Pampa Húmeda, Argentina, tratados con biosólidos

    Directory of Open Access Journals (Sweden)

    E.B.R. Perotti

    2008-06-01

    Full Text Available The incorporation of biosolids to soil is a strategy aiming at the re-location of these materials in the environment with a useful end: soil fertilization. In this work, the response of two Argiudoll soils (one with more than 100 years of agriculture and the other, a virgin one to biosolid incorporation was studied under laboratory conditions. To measure this response, soil enzymatic biodescriptors, such as dehydrogenase and urease activities, and tests related to plant physiology (the root elongation test were employed. The addition of the biosolid to both soils had a stimulating effect though different on each soil according to the added dose. Adjustment of the regression line for dehydrogenase activity with root elongation was positive and statistically significant (pLa incorporación de biosólidos al suelo es una estrategia que tiene como objetivo la reubicación de estos materiales en el ambiente con un fin útil, como es la fertilización del suelo. En este trabajo se estudió, en condiciones controladas de laboratorio, la respuesta de dos suelos Argiudoles (uno con más de 100 años de agricultura y otro virgen frente a la perturbación físico-química y biótica que genera la incorporación de un biosólido. Para medir esta respuesta se emplearon dos biodescriptores edáficos (las actividades deshidrogenasa y ureasa y un tercero referido a la fisiología vegetal, la prueba de elongación de raíces. La incorporación del biosólido en ambos suelos, en general no deprimió el funcionamiento de las actividades enzimáticas estudiadas; contrariamente, según la dosis aportada tuvo un efecto estimulante, aunque diferente, entre ambos suelos. El ajuste de la recta de regresión de la actividad deshidrogenasa con la elongación de las plántulas fue positivo y altamente significativo, lo que indica la complementaridad de ambos descriptores. Los resultados obtenidos sugieren que los biodescriptores empleados resultaron aptos para estudiar el

  18. PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments

    International Nuclear Information System (INIS)

    Chen Hong; Zhang Can; Han Jianbo; Yu Yixuan; Zhang Peng

    2012-01-01

    Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in influents, effluents and sludges were investigated by analyzing the samples from twelve wastewater treatment plants (WWTPs) in China. The highest concentrations of PFOS and PFOA in influents were found to occur in municipal and industrial WWTPs, respectively. Relative to PFOS and PFOA concentrations in influents, elevated concentrations were observed in effluents from WWTPs applying anaerobic–anoxic–oxic wastewater treatment process. Importantly, application of previously reported organic carbon normalized partition coefficients (K OC ) derived from sediment-based sorption experiments appear to underestimate the PFOS and PFOA levels in biosolids quantified in the current study. PFOS and PFOA levels in effluents were found to be approximately 27 and 2 times higher than those detected in the effluent-receiving seawater, respectively. However, their levels in this area of seawater haven't exceeded the provisional short-term health advisories in drinking water issued by U.S. EPA yet. - Highlights: ► Levels of PFOS and PFOA in influents, effluents and sludge from Chinese WWTPs were examined. ► Municipal sewage was the main source for PFOS in Chinese WWTPs, while industrial sewage for PFOA. ► PFOS and PFOA concentrations in effluents were much higher than those in receiving seawater. - Levels of PFOS and PFOA in influent, effluent and sludge samples from Chinese WWTPs were examined and found much higher than those in receiving seawater.

  19. Influence of organic amendment on fate of acetaminophen and sulfamethoxazole in soil

    International Nuclear Information System (INIS)

    Li, Juying; Ye, Qingfu; Gan, Jay

    2015-01-01

    Land application of biosolids or compost constitutes an important route of soil contamination by emerging contaminants such as acetaminophen and sulfamethoxazole. Using "1"4C labeling, we evaluated the influence of biosolids and compost on individual fate processes of acetaminophen and sulfamethoxazole in soil. The amendment of biosolids or compost consistently inhibited the mineralization of both compounds but simultaneously enhanced the dissipation of their extractable residues or parent form. Immediately after treatment, the majority of "1"4C-residue became non-extractable, reaching 80.3–92.3% of the applied amount at the end of 84-d incubation. Addition of biosolids or compost appreciably accelerated the formation of bound residue, likely due to the fact that the organic material provided additional sites for binding interactions or introduced exogenous microorganisms facilitating chemical transformations. This effect of biosolids or compost should be considered in risk assessment of these and other emerging contaminants. - Highlights: • "1"4C Labeling was used to understand the fate processes of acetaminophen and sulfamethoxazole in aerobic soil. • Majority of acetaminophen and sulfamethoxazole quickly became non-extractable or mineralized. • Biosolids or compost amendment inhibited mineralization. • Biosolids or compost appreciably enhanced the formation of bound residue. - Biosolids or compost amendment inhibited mineralization of acetaminophen and sulfamethoxazole and appreciably enhanced the formation of bound residue.

  20. The disc method. A new method for selecting facilitations in flocculating sludge to be dewatered in centrifuges; Metodo de disco. Un nuevo metodo para la seleccion de floculantes en la floculacion de lodos a deshidratar en centrifugas

    Energy Technology Data Exchange (ETDEWEB)

    Canga Rodriguez, J.; Gutierrez Lavin, A.

    2002-07-01

    An experimental protocol was designed at a laboratory scale, in view of achieving the selection with different poly electrolytes related to the chemical conditioning (flocculation) of sewage sludge before dewatering it in a drying centrifuge. The method is based on a new parameter of quality of the formed floc, which measures its compaction when is submitted to a fix external strength. Some experimental tests have been introduced, whose results are numbers, avoiding all subjective aspects related to direct observation of flocs. (Author) 8 refs.

  1. Nutrient, metal and microbial loss in surface runoff following treated sludge and dairy cattle slurry application to an Irish grassland soil

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, D.P. [Teagasc, Environment Research Centre, Johnstown Castle, Co. Wexford (Ireland); Civil Engineering, National University of Ireland, Galway, Co. Galway (Ireland); Healy, M.G. [Civil Engineering, National University of Ireland, Galway, Co. Galway (Ireland); Fleming, G.T.A. [Microbiology, National University of Ireland, Galway, Co. Galway (Ireland); Grant, J. [Teagasc, Ashtown, Co. Dublin (Ireland); Wall, D. [Teagasc, Environment Research Centre, Johnstown Castle, Co. Wexford (Ireland); Morrison, L. [Earth and Ocean Sciences and Ryan Institute, National University of Ireland, Galway, Co. Galway (Ireland); Cormican, M. [School of Medicine, National University of Ireland, Galway, Co. Galway (Ireland); Fenton, O., E-mail: owen.fenton@teagasc.ie [Teagasc, Environment Research Centre, Johnstown Castle, Co. Wexford (Ireland)

    2016-01-15

    Treated municipal sewage sludge (“biosolids”) and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising from the land application of four types of treated biosolids and DCS to field micro-plots at three time intervals (24, 48, 360 h) after application. Losses from biosolids-amended plots or DCS-amended plots followed a general trend of highest losses occurring during the first rainfall event and reduced losses in the subsequent events. However, with the exception of total and faecal coliforms and some metals (Ni, Cu), the greatest losses were from the DCS-amended plots. For example, average losses over the three rainfall events for dissolved reactive phosphorus and ammonium-nitrogen from DCS-amended plots were 5 and 11.2 mg L{sup −1}, respectively, which were in excess of the losses from the biosolids plots. When compared with slurry treatments, for the parameters monitored biosolids generally do not pose a greater risk in terms of losses along the runoff pathway. This finding has important policy implications, as it shows that concern related to the reuse of biosolids as a soil fertiliser, mainly related to contaminant losses upon land application, may be unfounded. - Highlights: • This study investigated surface runoff of contaminants from biosolids in field plots. • Contaminants investigated were nutrients, metals, microbes and trace elements. • Compared to slurry, biosolids do not pose a greater risk of contaminant losses. • Fears concerning contaminant losses from land applied biosolids may be unfounded.

  2. Nutrient, metal and microbial loss in surface runoff following treated sludge and dairy cattle slurry application to an Irish grassland soil

    International Nuclear Information System (INIS)

    Peyton, D.P.; Healy, M.G.; Fleming, G.T.A.; Grant, J.; Wall, D.; Morrison, L.; Cormican, M.; Fenton, O.

    2016-01-01

    Treated municipal sewage sludge (“biosolids”) and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising from the land application of four types of treated biosolids and DCS to field micro-plots at three time intervals (24, 48, 360 h) after application. Losses from biosolids-amended plots or DCS-amended plots followed a general trend of highest losses occurring during the first rainfall event and reduced losses in the subsequent events. However, with the exception of total and faecal coliforms and some metals (Ni, Cu), the greatest losses were from the DCS-amended plots. For example, average losses over the three rainfall events for dissolved reactive phosphorus and ammonium-nitrogen from DCS-amended plots were 5 and 11.2 mg L −1 , respectively, which were in excess of the losses from the biosolids plots. When compared with slurry treatments, for the parameters monitored biosolids generally do not pose a greater risk in terms of losses along the runoff pathway. This finding has important policy implications, as it shows that concern related to the reuse of biosolids as a soil fertiliser, mainly related to contaminant losses upon land application, may be unfounded. - Highlights: • This study investigated surface runoff of contaminants from biosolids in field plots. • Contaminants investigated were nutrients, metals, microbes and trace elements. • Compared to slurry, biosolids do not pose a greater risk of contaminant losses. • Fears concerning contaminant losses from land applied biosolids may be unfounded.

  3. Unified Modeling of Filtration and Expression of Biological Sludge

    DEFF Research Database (Denmark)

    Sørensen, Peter Borgen

    Dewatering is a costly operation in both industry, e.g . when dewatering drilling mud, harbor sludge or biomass, and at municipal wastewater treatment plants when dewatering biological sludges. In practice, design and operation of dewatering equipment are mostly based on empirical knowledge, and ......, and normally results are not satisfactory, e.g. in terms of cake solids or capacity of equipment. Thus, there is a need for theoretical and technical developments to improve dewatering performance, based on better scientific knowledge and well defined principles and rules....

  4. Evaluation of Pathogen Removal in a Solar Sludge Drying Facility Using Microbial Indicators

    Directory of Open Access Journals (Sweden)

    D. İpek Kurtböke

    2010-02-01

    Full Text Available South East Queensland is one of the fastest growing regions in Australia with a correspondingly rapid increase in sewage production. In response, local councils are investing in more effective and sustainable options for the treatment and reuse of domestic and industrial effluents. A novel, evaporative solar dryer system has been installed on the Sunshine Coast to convert sewage sludge into a drier, usable form of biosolids through solar radiation exposure resulting in decreased moisture concentration and pathogen reduction. Solar-dried biosolids were analyzed for selected pathogenic microbial, metal and organic contaminants at the end of different drying cycles in a collaborative study conducted with the Regional Council. Although fecal coliforms were found to be present, enteroviruses, parasites, E. coli, and Salmonella sp. were not detected in the final product. However, elevated levels of zinc and copper were still present which restricted public use of the biosolids. Dilution of the dried biosolids with green waste as well as composting of the biosolids is likely to lead to the production of an environmentally safe, Class A end-product.

  5. Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Li, Jiao; Guo, Di; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Sun, Xining; Zhang, Zengqiang

    2017-08-01

    The influence of biochar amended dewatered fresh sewage sludge (DFSS)-wheat straw co-composting on nutrients transformation and end products quality was investigated. This is the first study to examine the biochar applied compost quality with different kgha -1 TKN on Brassica rapa L. growth. Seven mixtures were composted over 8-weeks period in 130-L reactor using the same DFSS with different concentration of biochar (2%, 4%, 6%, 8%, 12% and 18% on dry weight basis) and without additive added treatment served as control. The results indicated that compost with 8-12% biochar became more humified within 35days of composting, and the compost maturity parameters also showed that this could be much more feasible approach to increased water-soluble nutrients including NO 3 , DOC, DON, PO 4 3- , K + and Na + , but bioavailability of Cu, Zn, Ni and Pb content reduced as compared to control. Finally, results showed that 8-12% biochar was recommended for DFSS composting and 150kgha -1 TKN of compost dosages for organic farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil

    International Nuclear Information System (INIS)

    Judy, Jonathan D.; Kirby, Jason K.; Creamer, Courtney; McLaughlin, Mike J.; Fiebiger, Cathy; Wright, Claire; Cavagnaro, Timothy R.; Bertsch, Paul M.

    2015-01-01

    We investigated effects of Ag_2S engineered nanomaterials (ENMs), polyvinylpyrrolidone (PVP) coated Ag ENMs (PVP-Ag), and Ag"+ on arbuscular mycorrhizal fungi (AMF), their colonization of tomato (Solanum lycopersicum), and overall microbial community structure in biosolids-amended soil. Concentration-dependent uptake was measured in all treatments. Plants exposed to 100 mg kg"−"1 PVP-Ag ENMs and 100 mg kg"−"1 Ag"+ exhibited reduced biomass and greatly reduced mycorrhizal colonization. Bacteria, actinomycetes and fungi were inhibited by all treatment classes, with the largest reductions measured in 100 mg kg"−"1 PVP-Ag ENMs and 100 mg kg"−"1 Ag"+. Overall, Ag_2S ENMs were less toxic to plants, less disruptive to plant-mycorrhizal symbiosis, and less inhibitory to the soil microbial community than PVP-Ag ENMs or Ag"+. However, significant effects were observed at 1 mg kg"−"1 Ag_2S ENMs, suggesting that the potential exists for microbial communities and the ecosystem services they provide to be disrupted by environmentally relevant concentrations of Ag_2S ENMs. - Highlights: • PVP-Ag and Ag"+ inhibited AMF colonization more readily than Ag_2S ENMs. • Impact of PVP-Ag ENMs and Ag"+ on microbial communities larger than for Ag_2S ENMs. • Significant changes in microbial communities in response to Ag_2S ENMs at 1 mg kg"−"1. - Although Ag_2S ENMs are less toxic to soil microorganisms than pristine nanomaterials or ions, some effects are observed on soil microbial communities at relevant concentrations.

  7. Biogas treatment using an anaerobic biosystem[Manure, biosolids, and organic industrial/commercial residuals in land applications programs : improving beneficial reuse and protection of water quality

    Energy Technology Data Exchange (ETDEWEB)

    Soreanu, G.; Al-Jamal, M.; Beland, M. [Environment Canada, Burlington, ON (Canada). Wastewater Technology Centre

    2007-07-01

    A common practice to stabilize biosolids prior to land application involves the anaerobic digestion of municipal sludge or other organic wastes. The biogas generated by the anaerobic process can be recovered and used as a green renewable fuel source. However, due to the presence of harmful by-products such as hydrogen sulphide (H{sub 2}S) and siloxanes, its use is limited in practical applications. H{sub 2}S causes sulphur oxide emissions and is extremely toxic, odorous, and highly corrosive causing damages to combined heat and power engines, thereby reducing their operating life cycle. This paper discussed the results of a study that investigated the removal of H{sub 2}S from biogas using a bioreactor packed with polypropylene spheres inoculated with anaerobically digested sludge. The paper identified the material and methodology used for the study as well as the key control parameters utilized during the biological H{sub 2}S removal process, including the composition of a nutritive solution and the temperature of a filter bed. The paper discussed the preliminary results that were determined under different operating conditions. It was concluded that the production of biomass in the reactor was insignificant and no pressure drop was registered during the experiments. 14 refs., 2 tabs., 4 figs.

  8. Nutrient, metal and microbial loss in surface runoff following treated sludge and dairy cattle slurry application to an Irish grassland soil.

    Science.gov (United States)

    Peyton, D P; Healy, M G; Fleming, G T A; Grant, J; Wall, D; Morrison, L; Cormican, M; Fenton, O

    2016-01-15

    Treated municipal sewage sludge ("biosolids") and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising from the land application of four types of treated biosolids and DCS to field micro-plots at three time intervals (24, 48, 360 h) after application. Losses from biosolids-amended plots or DCS-amended plots followed a general trend of highest losses occurring during the first rainfall event and reduced losses in the subsequent events. However, with the exception of total and faecal coliforms and some metals (Ni, Cu), the greatest losses were from the DCS-amended plots. For example, average losses over the three rainfall events for dissolved reactive phosphorus and ammonium-nitrogen from DCS-amended plots were 5 and 11.2 mg L(-1), respectively, which were in excess of the losses from the biosolids plots. When compared with slurry treatments, for the parameters monitored biosolids generally do not pose a greater risk in terms of losses along the runoff pathway. This finding has important policy implications, as it shows that concern related to the reuse of biosolids as a soil fertiliser, mainly related to contaminant losses upon land application, may be unfounded. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of citric acid on metals mobility in pruning wastes and biosolids compost and metals uptake in Atriplex halimus and Rosmarinus officinalis.

    Science.gov (United States)

    Tapia, Y; Eymar, E; Gárate, A; Masaguer, A

    2013-05-01

    To assess metal mobility in pruning waste and biosolids compost (pH 6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g L(-1), pH 2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7 ± 0.1-3.3 ± 0.1 mg kg(-1)), Fe (49.2 ± 5.2-76.8 ± 6.8 mg kg(-1)), and Mn (7.2 ± 1.1-11.4 ± 0.7 mg kg(-1)) in leaves of R. officinalis, whereas the concentration of only Mn (25.4 ± 0.3-42.2 ± 2.9 mg kg(-1)) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.

  10. Efecto del Compost de Biosólidos en la producción de plantines de Austrocedrus Chilensis (ciprés de la cordillera Effect of Biosolids Compost on seedling production of Austrocedrus Chilensis (ciprés de la cordillera

    Directory of Open Access Journals (Sweden)

    Gustavo Basil

    2009-06-01

    Full Text Available La utilización de compost de residuos urbanos como sustrato en contenedores es una alternativa interesante a nivel económico y ambiental, dado que reduciría el uso de turba y «tierra negra» en la producción de plantines, y la disposición de residuos en vertederos. En el presente trabajo se estudió el efecto de 0, 30 y 50% de compost de biosólidos en el crecimiento inicial (primer año de ciprés de la cordillera, y el efecto durante los dos años siguientes de un tratamiento único con 50% de compost en el crecimiento posterior y el estado nutricional de los plantines. Se determinó diámetro y altura a 18, 25 y 37 meses, biomasa aérea y radicular a 25 y 37 meses, y concentración foliar de C, N, P, K, Ca y Mg a 37 meses. A pesar de que los tres tratamientos iniciales fueron homogeneizados al año en un único tratamiento con 50% de compost, se encontraron diferencias significativas de diámetro, altura y biomasa aérea y radicular entre los tratamientos originales en todas las fechas analizadas, correspondiendo los mayores valores a los tratamientos con compost. Al finalizar el ensayo, las concentraciones foliares de nutrientes fueron muy similares en todos los plantines, excepto Mg que fue mayor en el tratamiento original con 50% de compost. Los resultados muestran la importancia de los primeros meses de crecimiento en el desarrollo posterior de los plantines de ciprés y el valor potencial de los compost de biosólidos como sustrato para la producción de esta especie en contenedores.Using composts of urban waste, including biosolids, as substrates for containerized plant production is a sound economic and environmental alternative, since it could reduce the use of peat- and «black earth»-based media, and the disposal of organic wastes in landfills. The objectives of this work were to study the effect of 0, 30 and 50% biosolids compost on the initial growth (first year of cypress (Austrocedrus chilensis D. Don, and the effect

  11. Ultra high temperature gasification of municipal wastewater primary biosolids in a rotary kiln reactor for the production of synthesis gas.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Primary Fine-Sieved Solids (PFSS) are produced from wastewater by the use of micro-sieves, in place of primary clarification. Biosolids is considered as a nuisance product, however, it contains significant amounts of energy, which can be utilized by biological (anaerobic digestion) or thermal (combustion or gasification) processes. In the present study, an semi-industrial scale UHT rotary kiln gasifier, operating with electric energy, was employed for the gasification of PFSS (at 17% moisture content), collected from a municipal wastewater treatment plant. Two gasification temperatures (950 and 1050 °C) had been tested, with minimal differences, with respect to syngas yield. The system appears to reach steady state after about 30-40 min from start up. The composition of the syngas at near steady state was measured approximately as 62.4% H 2 , 30.0% CO, 2.4% CH 4 and 3.4% CO 2 , plus 1.8% unidentified gases. The potential for electric energy production from the syngas produced is theoretically greater than the electric energy required for gasification. Theoretically, approximately 3.8 MJ/kg PFSS of net electric energy may be produced. However, based on the measured electric energy consumption, and assuming that all the syngas produced is used for electric energy production, addition of excess electric energy (about 0.43 MJ/kg PFSS) is required to break even. The latter is probably due to heat losses to the environment, during the heating process. With the improvement of energy efficiency, the process can be self sustained, form the energy point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. 77 FR 67777 - National Oil and Hazardous Substance Pollution Contingency Plan; National Priorities List...

    Science.gov (United States)

    2012-11-14

    ... vegetable pickling waste, apple pulp, digester sludge, barrels of spent extracts, brine, the dewatering of... Michigan in Ottawa County. The Site consists of a site entrance, former lagoon area, dewatering lagoons... Company as a municipal garbage dump, liquid waste dewatering facility, and headquarters for its hauling...

  13. Condicionadores químicos de solo e retenção e distribuição de cádmio, zinco e cobre em latossolos tratados com biossólido Soil amendments and heavy metal retention and distribution in oxisols treated with biosolids

    Directory of Open Access Journals (Sweden)

    Maria Lucia Silveira

    2008-06-01

    disposal of biosolids. However, depending on the origin (urban and/or domestic and the treatment system, biosolids may contain high amounts of heavy metals, which can gradually build up in the soil. Soil chemical amendments in contaminated areas can reduce the bioavailability and mobility of heavy metals and, consequently, minimize the risks of their adverse effects on the environment. The objective of this study was to evaluate the effects of four chemical amendments [calcium carbonate (CaCO3, calcium sulfate (CaSO4, monobasic potassium phosphate (KH2PO4 and synthetic hydroxyapatite (HA] on Zn, Cu, and Cd retention and distribution in Oxisols amended with biosolid. Due to the low solubility, HA was equilibrated at pH 4, 5, and 6. Surface soil samples (0-20 cm of a Rhodic Acrudox (RA and a Typic Haplorthox (HP were used. Two grams of each soil sample were equilibrated in a dual- diffusion chamber with 2 g of heavily contaminated with heavy metals. The suspension was constantly stirred for a more uniform mixing of the solutions. When the equilibrium was reached (after approximately seven days, the solution was centrifuged, filtered and acidified. Copper, Zn, and Cd concentrations in solution were determined. The solid phases (soil and biosolid were freeze-dried and sequential extractions of Zn, Cu and Cd were performed. The chemical amendments were efficient in Zn, Cd and, to a lesser extent, Cu immobilization. Calcium carbonate followed by HA (pH 6 was, in general, the most efficient treatment in reducing metal concentrations in solution. No heavy metal immobilization was obtained by HA equilibrated at pH 4 and 5. Chemical amendments markedly reduced the amounts of metals associated with the exchangeable fraction and increased the surface oxide/carbonate pool, especially in the treatments with CaCO3 and HA (pH 6.

  14. The antihistamine diphenhydramine is extremely persistent in agricultural soil

    International Nuclear Information System (INIS)

    Topp, Edward; Sumarah, Mark W.; Sabourin, Lyne

    2012-01-01

    The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT 50 ) of 14 C-diphenhydramine residues at 30 °C ranged from 88 ± 28 days in the clay loam to 335 ± 145 days in the loam soil. Mineralization of 14 C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation. -- Highlights: ► Diphenhydramine is a widely used antihistamine drug, is found in biosolids, and in runoff from biosolids-fertilized fields. ► The persistence of 14 C-diphenhydramine was evaluated in soils. ► Half lives ranged from 88 to 335 days. Diphenhydramine-N-oxide was the only detected transformation product. ► Soil-bound residues was a major sink.

  15. The antihistamine diphenhydramine is extremely persistent in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Edward, E-mail: ed.topp@agr.gc.ca; Sumarah, Mark W.; Sabourin, Lyne

    2012-11-15

    The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT{sub 50}) of {sup 14}C-diphenhydramine residues at 30 Degree-Sign C ranged from 88 {+-} 28 days in the clay loam to 335 {+-} 145 days in the loam soil. Mineralization of {sup 14}C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation. -- Highlights: Black-Right-Pointing-Pointer Diphenhydramine is a widely used antihistamine drug, is found in biosolids, and in runoff from biosolids-fertilized fields. Black-Right-Pointing-Pointer The persistence of {sup 14}C-diphenhydramine was evaluated in soils. Black-Right-Pointing-Pointer Half lives ranged from 88 to 335 days. Diphenhydramine-N-oxide was the only detected transformation product. Black-Right-Pointing-Pointer Soil-bound residues was a major sink.

  16. Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties

    International Nuclear Information System (INIS)

    Silvestre, G.; Illa, J.; Fernández, B.; Bonmatí, A.

    2014-01-01

    Highlights: • Thermophilic anaerobic codigestion of sewage sludge and grease waste (GW) doubles methane yield. • High GW doses in the influent leads to instability and LCFA accumulation in the effluent. • GW addition promotes acetoclastic activity whilst worsening the hydrogenothrophic activity. • The mesophilic codigestion with GW performs better than the thermophilic one. - Abstract: Thermophilic co-digestion of sewage sludge with three different doses of trapped grease waste (GW) from the pre-treatment of a WWTP has been assessed in a CSTR bench-scale reactor. After adding 12% and 27% of grease waste (on COD basis), the organic loading rate increased from 2.2 to 2.3 and 2.8 kg COD m −3 d −1 respectively, and the methane yield increased 1.2 and 2.2 times. Further GW increase (37% on COD basis) resulted in an unstable methane yield and in long chain fatty acids (LCFA) accumulation. Although this inestability, the presence of volatile fatty acids in the effluent was negligible, showing good adaptation to fats of the thermophilic biomass. Nevertheless, the presence of LCFA in the effluent worsens its dewatering properties. Specific methanogenic activity tests showed that the addition of grease waste ameliorates the acetoclastic activity in detriment of the hydrogenotrophic activity, and suggests that the tolerance to LCFA can be further enhanced by slowly increasing the addition of lipid-rich materials

  17. Filtros plantados com macrófitas de fluxo vertical aplicados na mineralização e desaguamento de lodo de tanque séptico Vertical flow constructed wetlands for septic sludge mineralization and dewatering

    Directory of Open Access Journals (Sweden)

    Carla Suntti

    2011-03-01

    Full Text Available O lodo acumulado no interior de tanques sépticos deve passar por um tratamento antes de sua adequada disposição final, pois apresenta uma fração da matéria orgânica não estabilizada, elevado teor de umidade e organismos patogênicos. Como alternativa para o tratamento do lodo, os filtros plantados com macrófitas são uma tecnologia promissora. Para se avaliar o potencial dos filtros no desaguamento e mineralização do lodo de tanque séptico, foram construídos dois filtros pilotos (F1 e F2 aplicando-se duas taxas de sólidos totais (ST - F1: 250 kgST.m-2.ano-1; F2: 125 kgST.m-2.ano-1. Os resultados revelaram que o F2 apresentou melhor desempenho em relação ao F1 em termos de remoção de sólidos totais (96%, demanda química de oxigênio (99% e nitrogênio amoniacal (72%. O F2 proporcionou melhor desaguamento, com 67% de umidade no lodo acumulado no leito e 33% de sólidos totais.The accumulated sludge in septic tanks has to be treated before the adequate final disposal, because of its high concentration of non-established organic matter, elevated content of moisture and pathogenic organisms. As an alternative to the treatment of sludge, the vertical flow constructed wetlands are a promising technology. To evaluate the potential of the filters in dewatering and mineralization of septic tank sludge, two pilot-scale constructed wetlands (CW1 and CW2 were implanted according with two total solids loads (TS - CW1: 250 kgTS.m-2.year-1; CW2: 125kgTS.m-2.year-1. The results demonstrated that the CW2 had better efficiencies compared with CW1, in terms of total solids (96%, chemical oxygen demand (99% and ammonia (72% removal. CW2 also provided a better dewatering, with moisture of 67% in accumulated sludge and 33% of total solids.

  18. Heat pump applications using municipal effluent : Joint Abbottsford mission environmental system J.A.M.E.S. water pollution control centre[This study contributes to the Georgia Basin Ecosystem Initiative, a partnership that provides tools, support and framework for action towards sustainability in the Georgia Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    The results of the study indicate that the biosolids process heating and biosolids drying had the biggest potential. Until the cost of natural gas doubles compared to the rates in the Spring of 2000, it is deemed that a heat pump system at Joint Abbottsford Mission Environmental System (JAMES) would not represent a cost-effective option. This conclusion is based on the following: (1) most of the plant's heating needs can be met by the volume of digester gas produced at the plant, (2) natural gas is used as a supplemental heating fuel, (3) a significant initial capital cost in the range of 210, 000 dollars would be required for a 330 kW system used for heating biosolids, whereas the continued use of natural gas and digester gas at the plant does not require additional capital cost, and (4) natural gas is still relatively inexpensive (based on rates in the Spring of 2000). The study also includes the evaluation of a conceptual process for biosolids drying, with the aim of reducing haulage costs. It is estimated that the potential savings would be approximately 400,000 dollars annually, despite the high initial capital cost of 5 to 10 million dollars. The cost effectiveness of biosolids drying will change as a result of the recent plant expansion that was completed in December 2000 that impacts on the quantities of biosolids and biogas produced. Once a reasonable track record for the upgraded plant is available in approximately six months, it is recommended that the biosolids process be re-evaluated at that time. The conclusions of the JAMES treatment plant should not be used to rule out the use of heat pump for other wastewater treatment plants. For those wastewater treatment plants that do not produce digester gas, heat pumps would be more cost effective, as well as being considered for a new wastewater treatment plant heating system, and not for a retrofit of an existing plant. refs., tabs., figs.

  19. Nuclear dewatering

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The Sizewell 'B' Nuclear Power Station, the first in a new family of PWR (Pressurised Water Reactor) stations in the UK, is currently under construction on the Suffolk coast. One of the first civil engineering tasks associated with the power station construction was the necessity to lower the water table by 17-18 m over an area of approximately 8 hectares to allow the excavation for the foundations to be carried out in the dry. The way chosen to do this was to construct a diaphragm wall around the site area. This had the least effect on surrounding sites -the Sizewell-A station and various nature reserves and wetlands. The reasons for the choice of method are discussed. Following the construction of the wall the water was pumped out from within the diaphragm wall in January 1988. (author)

  20. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    Science.gov (United States)

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  1. Efecto del secado térmico y el tratamiento alcalino en las características microbiológicas y químicas de biosólidos de plantas de tratamiento de aguas residuales domésticas

    Directory of Open Access Journals (Sweden)

    Jorge Silva-Leal

    2013-01-01

    Full Text Available We evaluated the effect of thermal drying (60 to 75 ºC and times from 0 to 12.58 h and alkaline treatment (Ca(OH2 and CaO at doses from 8 to 10%. on the microbiological and chemical characteristics of biosolids from the Cañaveralejo WWTP. The results showed that in thermal drying all temperatures studied were sufficient to achieve the sanitation of biosolids. In the alkaline treatment the two types of lime showed the total elimination of fecal coliforms, E. coli and helminth eggs, however, the process of alkalization of biosolids had significant influences on organic carbon and calcium.

  2. Diptera of sanitary importance associated with composting of biosolids in Argentina Dípteros de importancia sanitaria asociados al compostaje de biosólidos en Argentina

    Directory of Open Access Journals (Sweden)

    Valeria Alejandra Labud

    2003-12-01

    Full Text Available OBJECTIVE: Odorous compounds produced at the biosolids composting plant in Bariloche (NW Patagonia attract a variety of insects, mainly belonging to the order Diptera. In order to characterize these flies, collected specimens were taxonomically identified, their community characteristics were described and their sanitary and synanthropic importance and autochthonous or introduced character were determined. METHODS: Sampling was performed from October 1999 until March 2000. Adults were collected using an entomological net, and larvae and puparia were obtained from the composting material and incubated to obtain adults. Richness, abundance and sex ratio were calculated. RESULTS: A total of 9 taxa of Diptera were identified: Sarconesia chlorogaster, Phaenicia sericata, Calliphora vicina, Cochliomya macellaria, Ophyra sp, Muscina stabulans, Musca domestica, Sarcophaga sp and Fannia sp. Specimens of Anthomyiidae, Acaliptratae and one larva of Eristalis tenax were also found. Ophyra sp. was the most abundant taxa. All the captured Diptera belonged to introduced taxa. Most of them are considered to be eusynanthropic and/or hemisynanthropic and have sanitary importance as they may cause myiasis and pseudomyiasis. The high number of females registered and the finding of immature stages indicated that flies can develop their complete life cycle on biosolid composting windrows. CONCLUSIONS: The characterization of flies obtained in this study may be useful for defining locations of urban or semi-urban composting facilities. It also highlights the importance of sanitary precautions at such plants.OBJETIVO: Los compuestos odoríferos producidos en la Planta de Compostaje de Biosólidos de Bariloche (NO Patagonia atraen diferentes insectos, principalmente moscas (Orden Diptera. Con el objeto de caracterizarlas, se colectaron especímenes que fueron identificados taxonómicamente. Se describieron sus características comunitarias y se determinó su importancia

  3. The impact of peroxydisulphate and peroxymonosulphate on disintegration and settleability of activated sludge.

    Science.gov (United States)

    Wacławek, Stanisław; Grübel, Klaudiusz; Černík, Miroslav

    2016-01-01

    Chemical treatment processes have mostly been considered as an efficient way for biosolid minimization. The improvement of sludge dewatering was more a welcome side-effect of these sequential processes. In this study, heat-activated sodium peroxydisulphate (PDS) and potassium peroxymonosulphate (MPS) were applied in order to disintegrate waste activated sludge (WAS). PDS and MPS treatment of WAS results in the polymer transfer of organic matter from the solid phase to the liquid phase. Our research work was done for chemical disintegration of WAS by PDS and MPS in doses of 0.2%, 0.4%, 0.6%, 0.8% and 1% (169.5, 339.0, 508.5, 678.0 and 847.5 mg [Formula: see text]) activated at temperatures of 60°C and 90°C for 30 min. The application of these methods causes the soluble chemical oxygen demand value to increase in the supernatant. In addition, there was a positive influence on the sludge volume index which decreased for the highest doses of PDS of over 63% and 77% and MPS of over 78% and 82% through heat activation at temperatures of 60°C and 90°C, respectively. Furthermore, MPS was more successful in the floc particle destruction, therefore it caused a higher sludge settlement acceleration (sedimentation/compaction speed) than PDS. The experimental results demonstrated that the application of heat-activated PDS and MPS may become a novel effective way of processing sewage sludge.

  4. Effect of an organic amendment on availability and bio-accessibility of some metals in soils of urban recreational areas

    Energy Technology Data Exchange (ETDEWEB)

    Florido, Maria del Carmen; Madrid, Fernando [Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Apartado 1052, 41080 Sevilla (Spain); Madrid, Luis, E-mail: madrid@irnase.csic.e [Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Apartado 1052, 41080 Sevilla (Spain)

    2011-02-15

    A composted biosolid from wastewater treatment was added to soils of two public parks of Sevilla, and successive samples were taken during one year. In one of the parks, a second addition of biosolid was carried out after the first year. The soil contents in metals (pseudo-total) and their plant-available and oral bio-accessible fractions were significantly altered when the soils were amended with biosolid. Increase of the bio-accessible metal contents represents a deterioration of the environmental quality of recreational areas, where hand-to-mouth transfer of pollutants to children is likely to occur, although part of the metals added might be leached by rainfall or irrigation. The limits established in several countries for metal contents of soils in recreational areas are often exceeded after application of the biosolid. A careful study of the metal contents of recycled wastes is thus recommended before being used for green area maintenance. - Research highlights: Metal bio-accessibility in urban soils is significant for quality of life of citizens. Some metal-rich amendments can alter metal availability in urban soils. Metal contents of amendments in recreational areas must then be kept to a minimum. A case study of a composted biosolid used in urban green areas of Sevilla is given. - Metal-containing amendments can deteriorate the environmental quality of soils of urban recreational areas.

  5. Effect of an organic amendment on availability and bio-accessibility of some metals in soils of urban recreational areas

    International Nuclear Information System (INIS)

    Florido, Maria del Carmen; Madrid, Fernando; Madrid, Luis

    2011-01-01

    A composted biosolid from wastewater treatment was added to soils of two public parks of Sevilla, and successive samples were taken during one year. In one of the parks, a second addition of biosolid was carried out after the first year. The soil contents in metals (pseudo-total) and their plant-available and oral bio-accessible fractions were significantly altered when the soils were amended with biosolid. Increase of the bio-accessible metal contents represents a deterioration of the environmental quality of recreational areas, where hand-to-mouth transfer of pollutants to children is likely to occur, although part of the metals added might be leached by rainfall or irrigation. The limits established in several countries for metal contents of soils in recreational areas are often exceeded after application of the biosolid. A careful study of the metal contents of recycled wastes is thus recommended before being used for green area maintenance. - Research highlights: → Metal bio-accessibility in urban soils is significant for quality of life of citizens. → Some metal-rich amendments can alter metal availability in urban soils. → Metal contents of amendments in recreational areas must then be kept to a minimum. → A case study of a composted biosolid used in urban green areas of Sevilla is given. - Metal-containing amendments can deteriorate the environmental quality of soils of urban recreational areas.

  6. Recovery, restoration, and development of an enhancement plan for the Leading Creek watershed after dewatering of the Meigs number-sign 31 coal mine in Ohio

    International Nuclear Information System (INIS)

    Cherry, D.S.; Hassel, J.H. Van; Yeager, M.M.; Babendreier, J.E.; Currie, R.J.; Astin, L.E.; Lynde, S.R.

    1995-01-01

    Following the flooding of the Meigs number-sign 31 deep coal mine in Meigs County, Ohio, a proactive plan was developed to evaluate effects of initial dewatering, recovery, and development of a watershed enhancement plan. Approximately half of the 31-mile Leading Creek mainstem received coal mine discharge of high conductivity, low pH, high metals and total suspended solids loading. Most forms of aquatic life were depleted in the impacted areas of the creek. After three years since the incident, many forms of benthic macroinvertebrates and fish have returned to the creek, and sediments have been purged of metal loading by storm water events. The enhancement plan involves a reconnaissance of the creek and tributaries pinpointing areas of agricultural sedimentation and abandoned mined land (AML) influences in the lower half. Research activities involved sampling water and sediment in 10 stations of the creek and 17 major tributaries. The tributaries were addressed as point source discharges with water/sediment toxicity testing conducted. In-situ testing included growth impairment evaluation of Asian clams at 27 stations in the watershed. Several tributaries were intermittently toxic depending upon rainfall and the degree of AML input. Benthic macroinvertebrate assembles in most tributaries were stressed and comprised 0--3 taxa. Erosion/sedimentation loading was being addressed by hydrological modeling of the creek, land use management/habitat assessment, and data management by geographic information systems

  7. A high-fidelity model for coupling flow and mechanical deformation of the porous paper web - a key to improved understanding of dewatering and rewet at the press section in paper making

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trebotich, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Xu, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Turpin, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-05

    The U.S. pulp and paper industry is the third-largest manufacturing user of energy, with an energy demand of 2,540 trillion Btu in 2010. Within the papermaking process, drying consumes over 400 trillion Btu annually which makes it one of the largest energy saving opportunities. In the 2014 Forest Products Industry Technology Roadmap, it is concluded that increasing the paper web solid content entering the dryer section from the current 45- 55 percent to approaching 65 percent, which would save 1.0 MMBtu per ton or 20 percent of the energy used in drying, is one of the most needed technology breakthroughs to achieve a more sustainable approach for manufacturing pulp and paper products. Achieving such significant energy savings highly depends on understanding the fundamental dynamics of the wet press process and then developing optimized solutions for design of more energy-efficient press processes and equipment. The objective of this project is to develop reliable computational capabilities to accurately simulate the flow of water from/to the porous pulp medium (dewatering/rewetting) during the pressing process in paper making.

  8. Perfluoroalkyl acid distribution in various plant compartments ...

    Science.gov (United States)

    Crop uptake of perfluoroalkyl acids (PFAAs) from biosolids-amended soil has been identified as a potential pathway for PFAA entry into the terrestrial food chain. This study compared the uptake of PFAAs in greenhouse-grown radish (Raphanus sativus), celery (Apium graveolens var.dulce), tomato (Lycopersicon lycopersicum), and sugar snap pea (Pisum sativum var. macrocarpon) from an industrially impacted biosolids-amended soil, a municipal biosolids­ amended soil, and a control soil. Individual concentrations of PFAAs, on a dry weight basis, in mature, edible portions of crops grown in soil amended with PFAA industrially impacted biosolids were highest for perfluorooctanoate (PFOA; 67 ng/g) in radish root, perfluorobutanoate (PFBA;232 ng/g) in celery shoot, and PFBA (150 ng/g) in pea fruit. Comparatively, PFAA concentrations in edible compartments of crops grown in the municipal biosolids-amended soil and in the control soil were less than 25 ng/g. Bioaccumulation factors (BAFs) were calculated for the root, shoot, and fruit compartments (as applicable) of all crops grown in the industrially impacted soil. BAFs were highest for PFBA in the shoots of all crops, as well as in the fruit compartment of pea. Root­ soil concentration factors (RCFs) for tomato and pea were independent of PFAA chain length, while radish and celery RCFs showed a slight decrease with increasing chain length. Shoot-soil concentration factors (SCFs) for all crops showed a decrease with incre

  9. THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    International Nuclear Information System (INIS)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb; Jacqueline G. Broder

    2001-01-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed

  10. Dewaterability of five sewage sludges in Guangzhou conditioned with Fenton's reagent/lime and pilot-scale experiments using ultrahigh pressure filtration system.

    Science.gov (United States)

    Liang, Jialin; Huang, Shaosong; Dai, Yongkang; Li, Lei; Sun, Shuiyu

    2015-11-01

    Sludge conditioning with Fenton's reagent and lime is a valid method for sludge dewatering. This study investigated the influence of different organic matter content sludge on sludge dewatering and discussed the main mechanism of sludge conditioning by combined Fenton's reagent and lime. The results indicated that the specific resistance to filterability (SRF) of sludge was reduced efficiently by approximately 90%, when conditioned with Fenton's reagent and lime. Through single factor experiments, the optimal conditioning combinations were found. In addition, the relationship between VSS% and consumption of the reagents was detected. Furthermore, it was also demonstrated that the SRF and filtrate TOC values had a significant correlation with VSS% of sludge (including raw and conditioned). The main mechanism of sludge dewatering was also investigated. Firstly, it revealed that the dewaterability of sludge was closely correlated to extracellular polymeric substances (EPS) and bound water contents. Secondly, the results of scanning electron microscopy (SEM) stated that sludge particles were to be smaller and thinner after conditioning. And this structure could easily form outflow channels for releasing free water. Additionally, with the ultrahigh pressure filtration system, the water content of sludge cake conditioned with Fenton's reagent and lime could be reduced to below 50%. Moreover, the economic assessment shows that Fenton's reagent and lime combined with ultrahigh pressure filtration system can be an economical and viable technology for sewage sludge dewatering. Finally, three types of sludge were classified: (1) Fast to dewater; (2) Moderately fast to dewater; (3) Slow to dewater sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    International Nuclear Information System (INIS)

    Black, Amanda; McLaren, Ronald G.; Reichman, Suzanne M.; Speir, Thomas W.; Condron, Leo M.

    2011-01-01

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids ± metals, comparing total metal, Ca(NO 3 ) 2 , EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO 3 ) 2 (r 2 = 0.72) which also provided the best estimate of Zn bioavailability (r 2 = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd. - Highlights: → A meta-analysis evaluated the efficacy of soil metal bioavailability assays. → DGT could explain 49% of shoot Cd concentration. → There is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd.

  12. CARACTERIZAÇÃO E POTENCIAL DE SUBSTRATOS FORMULADOS COM BIOSSÓLIDO NA PRODUÇÃO DE MUDAS DE Schinus terebinthifolius Raddi. e Handroanthus heptaphyllus (Vell. Mattos

    Directory of Open Access Journals (Sweden)

    Alan Henrique Marques de Abreu

    2017-01-01

    Full Text Available The properly composted sewage sludge (biosolid presents significant amounts of organic matter and nutrients to the plant growth in its composition. Therefore, its utilization in a substrate composition for the seedlings production comes to represent, more than an environment benefit, a great choice from the technical and economical angle. This project aims to characterize biosolid substrates and commercial substrate chemically and physically, and to estimate their potential to generate Schinus terebinthifolius Raddi. and Handroanthus heptaphyllus (Vell. Mattos seedlings. Different volumetric proportions of biosolid (BIO mixed with commercial substrate (SC were tested for tube seedlings production, consisting in the following formulas: T1 = 0% BIO + 100% SC; T2 = 25% BIO + 75% SC; T3 = 50% BIO + 50% SC; T4 = 100% BIO + 0% SC. A hundred and thirty-four days after sowing, the following morphological parameters were evaluated, height (H, diameter (D, aerial part dry matter, (MSPA, root dry matter (MSR, height diameter ratio (HD, the ratio of aerial part dry matter and root dry matter (MSPAMSR, and the Dickson Quality Index (IQD. The bigger the substrates biosolid proportion was, the bigger the nutrient level was, mainly of N, P, K, and a bigger capacity of water retention was also found. The biosolid presented high potential for substrate composition in seedling production in the related species. The best results for Schinus terebinthifolius growth were observed in T3 and T4 treatments; for the Handroanthus heptaphyllus , the best results were observed in the T3 treatment.

  13. Plant available nitrogen from anaerobically digested sludge and septic tank sludge applied to crops grown in the tropics.

    Science.gov (United States)

    Sripanomtanakorn, S; Polprasert, C

    2002-04-01

    Agricultural land is an attractive alternative for the disposal of biosolids since it utilises the recyclable nutrients in the production of crops. In Thailand and other tropical regions, limited field-study information exists on the effect of biosolids management strategies on crop N utilisation and plant available N (PAN) of biosolids. A field study was conducted to quantify the PAN of the applied biosolids, and to evaluate the N uptake rates of some tropical crops. Sunflower (Helianthus annuus) and tomato (Lycopersicon esculentum) were chosen in this study. Two types of biosolids used were: anaerobically digested sludge and septic tank sludge. The soil is acid sulfate and is classified as Sulfic Tropaquepts with heavy clay in texture. The anaerobically digested sludge applied rates were: 0, 156 and 312 kg N ha(-1) for the sunflower plots, and 0, 586, and 1172 kg N ha(-1) for the tomato plots. The septic tank sludge applied rates were: 0, 95 and 190 kg N ha(-1) for the sunflower plots, and 0, 354 and 708 kg N ha(-1) for the tomato plots, respectively. The results indicated the feasibility of applying biosolids to grow tropical crops. The applications of the anaerobically digested sludge and the septic tank sludge resulted in the yields of sunflower seeds and tomato fruits and the plant N uptakes comparable or better than that applied with only the chemical fertiliser. The estimated PAN of the anaerobically digested sludge was about 27-42% of the sludge organic N during the growing season. For the septic tank sludge, the PAN was about 15-58% of the sludge organic N. It is interesting to observe that an increase of the rate of septic tank sludge incorporated into this heavy clay soil under the cropping system resulted in the decrease of N mineralisation rate. This situation could cause the reduction of yield and N uptake of crops.

  14. Volume reduction of filter media at Susquehanna steam and electric station

    International Nuclear Information System (INIS)

    Boris, G.F.; Hettinger, J.

    1990-01-01

    This paper describes the joint efforts between Pennsylvania Power ampersand Light (PPQL) and Scientific Ecology Group, Inc. (SEG) to reduce the volume of waste shipped to the burial site by the Susquehanna Steam and Electric Station (SSES) and the resulting savings realized as a result. The filter media used at SSES for its radwaste filters is composed of a mix of anion and cation powered resins, powered carbon, diatomaceous earth and a fibrous overlay. Due to the nature of this waste stream, dewatering was difficult using systems previously available in the industry. Thus, processing was accomplished by decanting (to concentrate the waste) and solidification. In the continuing effort to dewater wastes of this nature, SEG developed a new fabric filter dewatering system (RDU). To investigate its potential use in large containers, this dewatering system was installed in drum-size high integrity containers and used to test its dewatering capabilities on actual SSES waste. Promising results from these tests warranted a full-scale test. This proved successful and implementation of this processing scheme was immediate. Cost savings were substantial in transportation, burial and processing costs as well as personnel exposure. Also, additional waste volume reduction was found due to the volume reduction capability of the dewatering system (equivalent volume of new filter media approximately 1.2 times that of dewatered product volume). Additional savings resulted from SSES's continuing effort to minimize radwaste generation. Combined, these have reduced the number of shipments of filter media in 1989 to sixty percent of the number made in 1988 and have reduced costs by approximately fifty percent. 4 figs., 1 tab

  15. Quantification of viable but nonculturable Salmonella spp. and Shigella spp. during sludge anaerobic digestion and their reactivation during cake storage.

    Science.gov (United States)

    Fu, B; Jiang, Q; Liu, H-B; Liu, H

    2015-10-01

    The presence of viable but nonculturable (VBNC) bacterial pathogens which often fail to be detected by cultivation and can regain the cultivability if the living conditions improve were reported. The objective of this study was to determine the occurrence of VBNC Salmonella spp. and Shigella spp. in the biosolids during anaerobic digestion and its reactivation during the cake storage. The occurrence of VBNC Salmonella spp. and Shigella spp. during mesophilic, temperature-phased, thermophilic anaerobic digestion of sewage sludge and the subsequent storage were studied by RT-qPCR and most probable number (MPN) method. The VBNC incidence of Salmonella spp. and Shigella spp. during thermophilic digestion was four orders of magnitude higher than those of mesophilic digestion. Accordingly, higher resuscitation ratio of VBNC pathogens was also achieved in thermophilic digested sludge. As a result, the culturable Salmonella typhimurium contents in thermophilic digested sludge after cake storage were two orders of magnitude higher than mesophilic digestion. Both quantitative PCR and reverse transcription quantitative PCR assay results showed the two bacterial counting numbers remained stable throughout the cake storage. The results indicate that the increase in the culturable Salmonella spp. and Shigella spp. after centrifugal dewatering was attributed to the resuscitation from the VBNC state to the culturable state. Thermophilic anaerobic digestion mainly induced Salmonella spp. and Shigella spp. into VBNC state rather than killed them, suggesting that the biological safety of sewage sludge by temperature-phased anaerobic digestion should be carefully assessed. © 2015 The Society for Applied Microbiology.

  16. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.

    Science.gov (United States)

    Judy, Jonathan D; Kirby, Jason K; McLaughlin, Mike J; McNear, David; Bertsch, Paul M

    2016-07-01

    Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg(-1) on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg(-1), a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Bio solid Recycling To Enhance Carbon Sequestration In Mountainous Lebanese Conditions

    International Nuclear Information System (INIS)

    Attalah, T; Jamous, C; Debs, P.; Darwish, T.

    2012-01-01

    In Lebanon, the great majority of wastewater is dumped wildly into streams, wells or the sea. Eventually treated sludge will be produced across the country and disposed of, to a great extent, on land. This disposal obeys rules and regulations in most countries. In this work, on the results of the application of a biosolid on the carbon balance in two contrasting soils are reported. The biosolid that originated from a small plant treating domestic wastewaters did not contain high concentrations of heavy metals. Biosolids were applied in two levels (S1: 3.75 tons ha - 1 and S2: 7.50 tons ha - 1) to a loamy sand (Kfarhim) and acalcareous loam (Baakline). The incorporation in early October was immediately followed by the sowing of a barley cover crop. Sludges increased the barley production in the fast draining loamy sand only. In parallel, the in-situ decomposition studied during the rainy seasons gave a carbon loss of 21.8% (Baakline) and 29.1% (Kfarhim) of the initial sludge Cn. In the short-term, studies showed that 15 to 31% of the carbon of biosolids will remain in soils. This could significantly contribute to carbon sequestration, particularly in slow-draining soils. (author)

  18. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Black, Amanda, E-mail: amanda.black@lincoln.ac.nz [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); McLaren, Ronald G. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); Reichman, Suzanne M. [School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne 3001 (Australia); Speir, Thomas W. [Institute of Environmental Science and Research Ltd (ESR), PO Box 50348, Porirua 5240 (New Zealand); Condron, Leo M. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand)

    2011-06-15

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids {+-} metals, comparing total metal, Ca(NO{sub 3}){sub 2}, EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO{sub 3}){sub 2} (r{sup 2} = 0.72) which also provided the best estimate of Zn bioavailability (r{sup 2} = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd. - Highlights: > A meta-analysis evaluated the efficacy of soil metal bioavailability assays. > DGT could explain 49% of shoot Cd concentration. > There is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd.

  19. Dewatering of sludges

    International Nuclear Information System (INIS)

    Bode, P.

    1984-01-01

    A filter rig has been designed and built. Simulated magnox and alumino ferric hydroxide sludges have been successfully filtered on this equipment and both types of sludge produced a clear filtrate and a cake. The flow rates were low. The cake often partially remained adhered to the filter membrane instead of dropping clear during the filter cleaning cycle. This filtration technique can only be used on sludges which form a non-binding cake. Permeability of the membrane can be altered by stretching. Irradiation of the membrane showed that it should withstand 20 to 50 M.rads. (author)

  20. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Inaguma, Masahiko; Takahara, Nobuaki; Hara, Satomi.

    1996-01-01

    In a processing device for filtering laundry liquid wastes and shower drains incorporated with radioactive materials, a fiber filtration device is disposed and an activated carbon filtration device is also disposed subsequent to the fiber filtration device. In addition, a centrifugal dewatering device is disposed for dewatering spent granular activated carbon in the activated carbon filtration device, and a minute filtering device is disposed for filtering the separated dewatering liquid. Filtrates filtered by the minute filtration device are recovered in a collecting tank. Namely, at first, suspended solid materials in laundry liquid wastes and shower drains are captured, and then, ingredients concerning COD are adsorbed in the activated carbon filtration device. The radioactive liquid wastes of spent granular activated carbon in the activated carbon filtration device are reduced by dewatering them by the centrifugal dewatering device, and then the granular activated carbon is subjected to an additional processing. Further, it is separated by filtration using the minute filtration device and removed as cakes. Since the filtrates are recovered to the collecting tank and filtered again, the water quality of the drains is not degraded. (N.H.)

  1. Biological risk associated to bio-treatments: monitoring and modeling bacterial dispersion into the atmosphere in a soil bioremediation plant and in a wastewater treatment plant

    OpenAIRE

    Tarasiuk, Olga

    2014-01-01

    Wastewater is a mixture of domestic, municipal and industrial waste dissolved in water. The biggest fraction of wastewater is sanitary sewer water. Before its release in rivers or sea, water must be cleaned and all harmful bacteria must be killed. Biosolids are nutrient-rich organic waste obtained following wastewater treatment and used beneficially as fertilizer. Routinely, biosolids are deposited in agricultural areas or incinerated. For this reason the level of microbial pathogens in the b...

  2. 77 FR 10809 - Endangered and Threatened Wildlife and Plants; Endangered Status and Designations of Critical...

    Science.gov (United States)

    2012-02-23

    ... streams into intermittent streams, large reservoirs, or dewatered channels, thus eliminating suitable... either dewater channels or reduce flows to low levels or pools within an active channel therefore... River has undergone sedimentation, riparian habitat degradation, and extensive water diversion and at...

  3. The Ecology and Environmental Impacts of Hydrilla

    Science.gov (United States)

    1992-10-15

    in the dewatered areas. The drawdown also encouraged the germination of waterhyacinth seeds in the dewatered areas. Plant Analysis The productivity of...controls hydrilla in most situations. Sonar is the DowElanco registered trademark for products containing the active ingredient fluridone . Sonar aquatic

  4. APPLICATION OF ESSENTIAL OILS EXTRACTED FROM PEELS OF ORANGES AS A PARTIAL SUBSTITUTE OF FLOCCULANT

    Directory of Open Access Journals (Sweden)

    Anna Kowalczyk

    2016-05-01

    Full Text Available The study attempts to determine the optimum conditions of the process of mechanical dewatering of municipal sewage sludge and reduction of odours emitted during this process. The process of dewatering of municipal sewage sludge was carried out using laboratory sedimentation centrifuge of MPW-350 type. Municipal sewage sludge stabilized during anaerobic digestion, taken from Wastewater Treatment Plant Jamno. The dewatering process was aided by cationic flocculant Praestol 855BS of real solution concentration 0.3% and essential oil from orange, which was extracted from orange peels in the process of steam distillation. Constant parameters of dewatering process were: pH, temperature, colour, texture, smell, water content and dry matter content. Independent variables of dewatering process were: centrifugation time (in the range 1–10 min, centrifugation speed (in the range 1000–3000 rotations/min and dose of mixture of flocculant Praestol 855BS (79% + essential oil of orange (21% in the range 0–48 ml/dm3. Water content in the sludge after the process, dry matter content in the effluent and the duration of the smell of oil in the sediment were determined. Studies showed that the essential oil from orange may be used as a partial substitute of flocculant Praestol 855BS in the process of centrifugal sedimentation. Essential oil of orange significantly reduces unpleasant odours which are emitted from sludge during mechanical dewatering. Simultaneous application of both reagents, ie. flocculant Praestol 855BS 79%, and essential oil of orange 21% of volume is recommended.

  5. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    Science.gov (United States)

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  6. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Erratum: Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    Science.gov (United States)

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-10-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. © 2010 SETAC.

  8. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    Science.gov (United States)

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-07-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. (c) 2010 SETAC.

  9. The efficiency of concentration methods used to detect enteric viruses in anaerobically digested sludge

    Directory of Open Access Journals (Sweden)

    Tatiana Prado

    2013-02-01

    Full Text Available The presence of enteric viruses in biosolids can be underestimated due to the inefficient methods (mainly molecular methods used to recover the viruses from these matrices. Therefore, the goal of this study was to evaluate the different methods used to recover adenoviruses (AdV, rotavirus species A (RVA, norovirus genogroup II (NoV GII and the hepatitis A virus (HAV from biosolid samples at a large urban wastewater treatment plant in Brazil after they had been treated by mesophilic anaerobic digestion. Quantitative polymerase chain reaction (PCR was used for spiking experiments to compare the detection limits of feasible methods, such as beef extract elution and ultracentrifugation. Tests were performed to detect the inhibition levels and the bacteriophage PP7 was used as an internal control. The results showed that the inhibitors affected the efficiency of the PCR reaction and that beef extract elution is a suitable method for detecting enteric viruses, mainly AdV from biosolid samples. All of the viral groups were detected in the biosolid samples: AdV (90%, RVA, NoV GII (45% and HAV (18%, indicating the viruses' resistance to the anaerobic treatment process. This is the first study in Brazil to detect the presence of RVA, AdV, NoV GII and HAV in anaerobically digested sludge, highlighting the importance of adequate waste management.

  10. Technical report on treatment of radioactive slurry liquid waste

    International Nuclear Information System (INIS)

    Jeong, Gyeong Hwan; Jo, Eun Sung; Park, Seung Kook; Jung, Ki Jung

    1999-06-01

    By literature survey, this report deals with the technology on typical pre-treatment and filtration of radioactive slurry liquid waste, produced during the operation of TRIGA Mark-II, III research reactor, and produced during the decommission/decontamination of TRIGA Mark-II, III research reactor. It is reviewed pre-treatment procedure, both physical and chemical that optimise the dewatering characteristics, and also surveyed types of dewatering devices based on centrifuges, vacuum and pressure filters with particular reference to various combined field approaches using two or more complementary driving forces to achieve better performance. Dewatering operations and devises on filtration of radioactive slurry liquid waste are also analysed. (author)

  11. Volume reduction and encapsulation process for water containing low-level radioactive waste

    International Nuclear Information System (INIS)

    Fox, D.W.; Miller, G.P.; Weech, M.E.

    1984-01-01

    Solutions or slurries of waste material in water are dewatered and encapsulated within a polymer for disposal, comprising the operations of removing water therefrom with azeotropic mixture evaporation and encasing the dewatered waste residue in an organic polymer. The method and system disclosed are especially useful for the safe disposal of radioactive waste

  12. ESTABILIZACIÓN ALCALINA DE BIOSÓLIDOS COMPOSTADOS DE PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES DOMÉSTICAS PARA APROVECHAMIENTO AGRÍCOLA ALKALI STABILIZATION OF COMPOSTED BIOSOLIDS FROM DOMESTIC WASTEWATER TREATMEN PLANTS FOR AGRICULTURE PURPOSE

    Directory of Open Access Journals (Sweden)

    Patricia Torres Lozada

    2008-06-01

    Full Text Available Uno de los limitantes del aprovechamiento agrícola de lodos y biosólidos producidos por plantas de tratamiento de aguas residuales domésticas - PTAR es su calidad microbiológica y parasitológica. Se evaluó la estabilización alcalina del compost obtenido a partir la planta de tratamiento de aguas residuales Cañaveralejo de Cali, Colombia (PTAR-C, utilizando ceniza de calderas de una industria papelera, Cal Hidratada (CH y Cal Viva (CV, en combinaciones con el compost del 8, 15 y 30% para CH y ceniza y de 15% para CV, en proporciones peso a peso. Durante 13 días se monitoreó temperatura, pH, humedad, coliformes fecales y huevos de helmintos. Los resultados obtenidos mostraron que CV y CH al 15% lograron elevar el pH a 12 unidades por más de 72 horas y obtener cero huevos de helmintos viables, lo que muestra una eficiente reducción de patógenos y el alcance de estándares para compost clase A, lo que no se alcanzó con la ceniza en las proporciones evaluadas. En términos de humedad, CV al 15% presentó mejor desempeño que CH, la cual requirió un 30% y de 3 a 5 días para reducir la humedad hasta el 20% sugerido para la aplicación agrícola de compost. Es recomendable evaluar rangos entre 8 y 15% de CV y CH, otras cenizas alcalinas y mezclas para reducir tiempos de tratamiento, requerimientos de área y costos, además considerar la remoción de otros indicadores en plantas y humanos como fitopatógenos y Salmonella.The limitation for agriculture use of sludge and biosolids from wastewater treatment plants is the microbiological and parasitological quality. Alkali stabilization was evaluated in produced compost from biosolids of Cañaveralejo wastewater treatment plant (PTAR-C, based in Cali, Colombia . Ashes, quick and slake lime were applied to compost. Doses of 8, 15 and 30% of ash and hydrated lime and 15% of quick lime were the concentration (in weight used; during 13th days TºC, pH, humidity, faecal coliforms and helmints

  13. Bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy.

    Science.gov (United States)

    Razmjou, Amir; Liu, Qi; Simon, George P; Wang, Huanting

    2013-11-19

    The feasibility of bilayer polymer hydrogels as draw agent in forward osmosis process has been investigated. The dual-functionality hydrogels consist of a water-absorptive layer (particles of a copolymer of sodium acrylate and N-isopropylacrylamide) to provide osmotic pressure, and a dewatering layer (particles of N-isopropylacrylamide) to allow the ready release of the water absorbed during the FO drawing process at lower critical solution temperature (32 °C). The use of solar concentrated energy as the source of heat resulted in a significant increase in the dewatering rate as the temperature of dewatering layer increased to its LSCT more rapidly. Dewatering flux rose from 10 to 25 LMH when the solar concentrator increased the input energy from 0.5 to 2 kW/m(2). Thermodynamic analysis was also performed to find out the minimum energy requirement of such a bilayer hydrogel-driven FO process. This study represents a significant step forward toward the commercial implementation of hydrogel-driven FO system for continuous production of fresh water from saline water or wastewaters.

  14. PENERAPAN ELEKTROOSMOSIS UNTUK PENGERINGAN SLUDGE DARI PENGOLAHAN LIMBAH CAIR

    Directory of Open Access Journals (Sweden)

    Darmawan Darmawan

    2013-11-01

    Full Text Available APPLICATION OF ELECTROOSMOSIS FOR DEWATERING OF SLUDGE FROM WASTE WATER TREATMENT. Wastewater treatment produces semi-solid residue (sludge that must be handled carefully during dumping and discharge to avoid polluting the environment. A low cost and easy treatment of dewatering is needed. This research aimed to apply electroosmosis technique for dewatering sludge in order to seek for parameters that can efficiently reduce water content of sludge, including range of voltage, type of electrodes, and distance between electrodes; and to determine the effect of electroosmosis processes on changes of chemical characteristics of sludge. The results showed that: (1 electroosmosis dewatering occurred on the sludge taken from waste water treatment of landfill but not on sludge from water purification plant (PDAM, (2 direct current voltage of 30 volts was the optimum voltage, (3 copper rod cathode provided electroosmosis process as good as stainless steel cathode and both were better than the woven stainless steel cathode, (4 the dewatering time to reduce 1200% (w/w water content to about 400% was about 40 hours for sludge of 2500 cm3 in volume (laboratory bench scale, (5 the anode need to reinserted gradually approaching the cathode due to current lost when the water content at the anode point reached 400% and sludge at the point shrink, and (6 some chemical elements in the sludge decreased significantly after treatment. Pengolahan limbah cair menghasilkan residu berupa bahan semi padat yang dikenal sebagai sludge. Sludge tersebut juga perlu dikelola penyimpanan dan pembuangannya agar tidak mencemari lingkungan. Salah satu pengelolaan sludge yang perlu dilakukan adalah pengeringan (dewatering. Salahsatu teknik dewatering yang mungkin diterapkan ialah teknik elektroosmosis, yaitu teknik yang memanfaatkan adanya pergerakan air pada media poros di dalam medan istrik searah. Penelitian ini bertujuan untuk mencari parameter sistem dewatering secara

  15. Toxicity of engineered nanomaterials and their transformation products following wastewater treatment on A549 human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Yanjun Ma

    2014-01-01

    Full Text Available Here we characterize the toxicity of environmentally-relevant forms of engineered nanomaterials (ENMs, which can transform during wastewater treatment and persist in aqueous effluents and biosolids. In an aerosol exposure scenario, cytotoxicity and genotoxicity of effluents and biosolids from lab-scale sequencing batch reactors (SBRs to A549 human lung epithelial cells were examined. The SBRs were dosed with nanoAg, nano zero-valent iron (NZVI, nanoTiO2 and nanoCeO2 at sequentially increasing concentrations from 0.1 to 20 mg/L. Toxicities were compared to outputs from SBRs dosed with ionic/bulk analogs, undosed SBRs, and pristine ENMs. Pristine nanoAg and NZVI showed significant cytotoxicity to A549 cells in a dose-dependent manner from 1 to 67 μg/mL, while nanoTiO2 and nanoCeO2 only exerted cytotoxicity at 67 μg/mL. Only nanoAg induced a genotoxic response, at 9, 33 and 53 μg/mL. However, no significant cytotoxic or genotoxic effects of the SBR effluents or biosolids containing nanomaterials were observed.

  16. Determination of chemical elements in Eucalyptus grandis, manured with Ballad's, by neutrons activation analysis

    International Nuclear Information System (INIS)

    Mateus, Natalina de Fatima; Madi Filho, Tufic

    2007-01-01

    The biosolid is a mud resulting from the biological treatment of wasted liquids. It is considered as a profitable alternative and important to minimize the environmental impact generated by the sewage thrown in to sanitary lands, in forest cultures like the Eucalyptus grandis. The objective of this work was to detect which chemical elements are present in Eucalyptus grandis samples, fertilized with different quantities of biosolid. The eucalyptuses of Estacao Experimental de Ciencias Florestais of Itatinga were planted in March of 1998 and collected with five years old. The used biosolid was produced by Station of Treatment of Sewer of Barueri - SP, classified as kind B. For the determination of the presence and quantity of chemical elements in the eucalyptus samples, an analysis technique by neutronic activation (NAA) was used followed by gamma rays spectroscopy. The samples were irradiated in the Nuclear Reactor IEA-R1 of IPEN-SP, followed by the measure of induced gamma rays activity, using a Detector HPGe. The presence, mainly of Br, Mn, Na and K, was detected in all analyzed samples. (author)

  17. Caracterización y evaluación de biosólidos producidos por digestión anaerobia de residuos agroindustriales Characterization and evaluation of biosolids produced by anaerobic digestion of agroindustrial residues

    Directory of Open Access Journals (Sweden)

    Amabelia del Pino

    2012-12-01

    Full Text Available El objetivo de este trabajo fue la caracterización y evaluación de los biosólidos (lodos producidos en un reactor piloto alimentado con residuos agroindustriales. La caracterización química de los lodos y la estimación de la variabilidad de los parámetros se realizó a partir de muestras tomadas durante cinco semanas. En las muestras se determinó pH, materia seca (MS y contenidos totales de C, N, P, K, Na, Ca, Mg, Cu, Fe, Mn y Zn. Para estudiar los patrones de descomposición y liberación de nutrientes de los lodos se incubaron dos suelos de diferente textura con dosis de lodo equivalentes a 80 y 160 kg ha-1 de N, comparándose con dosis iguales de N como fertilizante y un tratamiento testigo sin agregados. En el experimento de incubación se determinó la respiración del suelo y liberación de nutrientes durante 115 días. El contenido promedio de MS de los lodos fue 5,2%, el pH alcalino y las mayores concentraciones de nutrientes correspondieron a N, P y Ca. Hubo variabilidad entre muestreos, aunque los coeficientes de variación fueron menores a 20%. Los niveles de Na y micronutrientes no estuvieron en el rango considerado como riesgo para el ambiente. El agregado de lodo promovió la actividad microbiana del suelo. En el suelo limoso se perdió como CO2 aproximadamente un tercio y en el franco arenoso un quinto del C agregado. El N del lodo se mineralizó rápidamente, llegando a niveles similares de N mineral a los suelos fertilizados. El agregado de lodo incrementó el contenido de P disponible, N mineral, Ca y Mg intercambiables, por lo tanto se concluye que fue beneficioso para la fertilidad del suelo.The objective of this study was to characterize and evaluate the biosolids (slurry produced in a pilot reactor feed with agroindustrial residues. The chemical characterization of the biosolids and variability estimation were conducted on slurry samples taken during five weeks. Samples were analyzed for dry matter (DM, pH, and

  18. Persistence and dissipation pathways of the antidepressant sertraline in agricultural soils

    International Nuclear Information System (INIS)

    Li, Hongxia; Sumarah, Mark W.; Topp, Edward

    2013-01-01

    Sertraline is a widely-used antidepressant that is one of the selective serotonin reuptake inhibitors. It has been detected in biosolids and effluents from sewage treatment plants. Since sertraline can reach agriculture land through the application of municipal biosolids or reclaimed water, the persistence and dissipation pathways of 3 H-sertraline were determined in laboratory incubations using three agriculture soils varying in textures and properties. The total solvent extractable radioactivity decreased in all three soils with times to dissipate 50% of material (DT 50 ) ranging from 48.1 ± 3.5 (loam soil) to 84.5 ± 13.8 (clay soil) days. Two hydroxylated sertraline transformation products were identified in all three soils by high performance liquid chromatography with time-of-flight mass spectrometry (HPLC–TOF-MS), but the accumulation did not exceed 10% of the initial parent concentration. The addition of liquid municipal biosolids to the loam soil had no effect on the rate of sertraline dissipation, or production of transformation products. In summary, sertraline was persistent in agricultural soils with major dissipation pathways including the production of non-extractable soil-bound residues, and accumulation of hydroxylated transformation products. The biologically active sertraline transformation product norsertraline was not detected in soil. - Highlights: • The antidepressant drug sertraline is carried in biosolids used as fertilizers. • The persistence of this drug in agricultural soils was determined using radioisotope methods. • The half-life ranged from about 50 to 85 days. • Hydroxylated transformation products accumulated to less than 10% of the concentration of the added parent

  19. Persistence and dissipation pathways of the antidepressant sertraline in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongxia; Sumarah, Mark W.; Topp, Edward, E-mail: ed.topp@agr.gc.ca

    2013-05-01

    Sertraline is a widely-used antidepressant that is one of the selective serotonin reuptake inhibitors. It has been detected in biosolids and effluents from sewage treatment plants. Since sertraline can reach agriculture land through the application of municipal biosolids or reclaimed water, the persistence and dissipation pathways of {sup 3}H-sertraline were determined in laboratory incubations using three agriculture soils varying in textures and properties. The total solvent extractable radioactivity decreased in all three soils with times to dissipate 50% of material (DT{sub 50}) ranging from 48.1 ± 3.5 (loam soil) to 84.5 ± 13.8 (clay soil) days. Two hydroxylated sertraline transformation products were identified in all three soils by high performance liquid chromatography with time-of-flight mass spectrometry (HPLC–TOF-MS), but the accumulation did not exceed 10% of the initial parent concentration. The addition of liquid municipal biosolids to the loam soil had no effect on the rate of sertraline dissipation, or production of transformation products. In summary, sertraline was persistent in agricultural soils with major dissipation pathways including the production of non-extractable soil-bound residues, and accumulation of hydroxylated transformation products. The biologically active sertraline transformation product norsertraline was not detected in soil. - Highlights: • The antidepressant drug sertraline is carried in biosolids used as fertilizers. • The persistence of this drug in agricultural soils was determined using radioisotope methods. • The half-life ranged from about 50 to 85 days. • Hydroxylated transformation products accumulated to less than 10% of the concentration of the added parent.

  20. Comparison of macrostickies measurement methods

    Science.gov (United States)

    Mahendra R. Doshi; William J. Moore; R.A. Venditti; K. Copeland; H.-M. Chang; Hans-Joachim Putz; Thierry Delagoutte; Carl Houtman; Freya Tan; Lisa Davie; Gregg Sauve; Tim Dahl; Dave Robinson

    2003-01-01

    Pulp containing PSA was prepared in the laboratory and blended with sticky-free pulp in four different proportions. The four pulps were then dewatered and shipped to four laboratories for the evaluation of macro stickies in terms of mm2/kg. Also, five pulp samples from specific locations in a deinking mill were dewatered and shipped to the same four laboratories....

  1. Cutting down operating costs at sewage treatment plant through aimed application of new characterization methods; Betriebskostenreduzierung auf Klaeranlagen durch gezielte Anwendung neuer Charakterisierungsmethoden

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H.; Potthoff, A. [Fraunhofer-Institut fuer Keramische Technologien und Sinterwerkstoffe (IKTS), Dresden (Germany); Friedrich, E. [Ingenieurgesellschaft fuer Wasser und Entsorgung mbH, Radebeul (Germany)

    1999-07-01

    Mechanical dewatering of sewage sludge is state of the art. Because of increasing cost, more stringent regulations (act on waste recycling 'Kreislaufwirtschaftsgesetz' and the technical code on municipal waste), and the lack of landfill space, expensive thermal processing techniques are gaining ever greater weight. To assure that disposal costs remain reasonable, mechanical dewatering must be more and more enhanced. The following need to be optimized and enhanced: sludge properties, conditioning, and dewatering. (orig.) [German] Klaerschlaemme maschinell zu entwaessern ist Stand der Technik. Steigende Kosten, verschaerfte Bestimmungen (Kreislaufwirtschaftsgesetz, TA Siedlungsabfall) und fehlende Deponien geben den teuren thermischen Behandlungsverfahren ein immer groesseres Gewicht. Damit die Entsorgung bezahlbar bleibt, muss immer staerker mechanisch entwaessert werden. Optimiert und verbessert werden muessen die Schlammeigenschaften, die Konditionierung und die Entwaesserung. (orig.)

  2. Consolidation of tailings

    International Nuclear Information System (INIS)

    Nelson, J.D.; Wardwell, R.E.; Abt, S.R.; Staub, W.P.

    1983-09-01

    The integrity of cover systems placed on tailings impoundments will be affected by the potential for differential settlement of the tailings surface. Settlement of the sand fraction will occur relatively rapidly. The slimes will take longer time for consolidation and will produce greater settlement. This report reviews the phenomenon of consolidation for saturated and unsaturated tailings. The effect of load application by cover placement and the extent to which dewatering of tailings will cause consolidation are considered. In addition, the feasibility of inducing consolidation by alternative means and the potential applicability of these methods to tailings impoundments reclamation are discussed. Differential settlement of the tailings will cause tensile strain to be developed in covers. This strain could be large enough to cause cracking within a relatively brittle compacted clay. Dewatering of tailings by drainage can cause settlement even greater than that by placement of a cover material. Dewatering of the tailings would also increase the stability of the tailings surface, thereby enhancing reclamation operations. Consequently, in view of the enhanced surface stability and the fact that a portion of the differential settlement can be accomplished prior to cover placement, dewatering of tailings impoundments during operations may have benefical effects

  3. Seasonal changes in bacterial counts and radiation-disinfection of sewage sludge

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Ito, Hitoshi; Takehisa, Masaaki; Iizuka, Hiroshi.

    1981-01-01

    The effect of radiation on sewage sludge was investigated to disinfect it. The results obtained were as follows: 1. In either activated sludge or digested sludge dewatered by centrifugation, total bacteria and coliforms were up to 3.0 x 10 9 /g and 3.5 x 10 8 /g, respectively. In the activated sludge which was dewatered by a filter-press with calcium oxide and iron chloride, total bacteria were up to 3.0 x 10 5 /g, while coliforms were hardly detected. 2. The fraction of coliforms was somewhat more in centrifuged sludge than in raw sludge. 3. The radiosensitivity of coliforms in raw sludge differed between samples. Namely, some sludge was sterilized with 0.5 Mrad while others were not sterilized even with 1.0 Mrad. On the other hand, coliforms in dewatered sludge were sterilized with 0.5 Mrad without seasonal change, but total bacteria were more radioresistant and more than 13 Mrad was required to reduce it to an undetectable level. From these results it is concluded that the dewatered sludge should be irradiated at 0.5 Mrad to eliminate the coliforms in it. (author)

  4. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge

  5. Enhancing the dewatering properties of sludge through aimed building-up of floc structures on the basis of detailed morphological analyses; Verbesserung der Entwaesserungseigenschaften von Schlaemmen durch den gezielten Aufbau von Flockenstrukturen auf der Basis detaillierter morphologischer Analysen

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, M.; Ay, P. [Brandenburgische Technische Univ. Cottbus (Germany). Lehrstuhl Aufbereitungstechnik

    1999-07-01

    Aimed building-up of aggregates as they originate in flocculation processes, for instance in sewage and sludge treatment, have especially lately been meeting with increasing resonance: they permit to influence, inter alia, important properties (e.g., the dewatering properties) of such systems. As conventional mathematical methods for the characterization of flocs - as a basis for process optimization - are inadequate or flawed, a concept for the effective characterization of the inner getup of such structures needs to be sought. One approach is cluster analysis, which is demonstrated and discussed in the present paper by means of the evaluation of sectional views of floc structures. (orig.) [German] Der gezielte Aufbau von Aggregaten, wie sie bei Flockungsprozessen z.B. in der Abwasser- und Schlammbehandlung entstehen, findet besonders in juengerer Zeit zunehmend Beachtung, da sich damit unter anderem wichtige Eigenschaften (z.B. die Entwaesserungseigenschaften) dieser Systeme beeinflussen lassen. Da herkoemmliche mathematische Methoden zur Charakterisierung von Flocken - als Basis fuer eine Prozessoptimierung - nur unzureichend bzw. fehlerbehaftet sind, ergibt sich daraus die Notwendigkeit, nach einem Konzept zur effektiven Charakterisierung des inneren Aufbaus solcher Strukturen zu suchen. Ein Ansatz ist die Clusteranalyse, die im Beitrag durch die Auswertung von Schnittbildern von Flockenstrukturen vorgestellt und diskutiert wird. (orig.)

  6. A comparison of the efficacy and ecosystem impact of residual-based and topsoil-based amendments for restoring historic mine tailings in the Tri-State mining district.

    Science.gov (United States)

    Brown, Sally; Mahoney, Michele; Sprenger, Mark

    2014-07-01

    A long-term research and demonstration site was established on Pb and Zn mine wastes in southwestern Missouri in 1999. Municipal biosolids and lime and composts were mixed into the wastes at different loading rates. The site was monitored intensively after establishment and again in 2012. A site restored with topsoil was also included in the 2012 sampling. Initial results including plant, earthworm and small mammal assays indicate that the bioaccessibility of metals had been significantly reduced as a result of amendment addition. The recent sampling showed that at higher loading rates, the residual mixtures have maintained a vegetative cover and are similar to the topsoil treatment based on nutrient availability and cycling and soil physical properties including bulk density and water holding capacity. The ecosystem implications of restoration with residuals versus mined topsoil were evaluated. Harvesting topsoil from nearby farms would require 1875 years to replace based on natural rates of soil formation. In contrast, diverting biosolids from combustion facilities (60% of biosolids generated in Missouri are incinerated) would result in greenhouse gas savings of close to 400 Mg CO2 per ha. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Environmental and stewardship implications for the large scale conversion of municipal and agricultural organic waste to energy in Canada[Manure, biosolids, and organic industrial/commercial residuals in land applications programs : improving beneficial reuse and protection of water quality

    Energy Technology Data Exchange (ETDEWEB)

    Falletta, P.; Zhu, H. [Environment Canada, Burlington, ON (Canada). Wastewater Technology Centre; Oleszkiewicz, J. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering

    2007-07-01

    The move towards environmental sustainability in the Canadian industrial, agricultural and municipal sectors coupled with the requirements for Canada to meet its Kyoto obligations for reduction of greenhouse gas (GHG) emissions have led to the need to examine the feasibility of harvesting the energy contained in waste biomass. This paper discussed the current and projected Canadian inventories of municipal biosolids, municipal solid waste, food industry wastes and animal manure; anaerobic digestion; considerations and challenges in the management of waste biomass; and current technologies available for energy recovery for each of these waste streams. The paper also discussed the environmental, technical, economic, societal and regulatory issues which are likely to be triggered as alternative methods to traditional disposal practices. The research and action needed to bring Canada to the forefront of environmental sustainability in waste biomass management was also discussed. The paper made several recommendations in terms of regulations, demonstration projects and public education. It was concluded that the biggest factor in the adoption of technologies for waste management is cost. It was concluded that there is no one perfect solution to the management of organic wastes in Canada. A detailed analysis that takes into consideration all of the technical, societal, environmental, economic, and regulatory issues must be performed to determine the right choice of technology. 4 tabs.

  8. Operational strategy, economic and environmental performance of sludge treatment reed bed systems - based on 28 years of experience

    DEFF Research Database (Denmark)

    Nielsen, S.; Larsen, Julie Dam

    2016-01-01

    Sludge treatment reed bed (STRB) systems have been used for dewatering and mineralisation of sludge in Europe since 1988. STRB systems provide substantial environmental, economic, and operational benefits compared to mechanical sludge dewatering solutions such as belt presses and centrifuges....... They require less energy, no chemicals, reduce the sludge volume and produce bio solids with dry solid contents up to 20-40% under Danish climate conditions, depending on the sludge quality. Experience has shown that sludge treated in STRBs represents a high quality product with a low content of pathogens...... compared to conventional mechanical dewatering devices, delivering an economic break-even of about 3-5 years. This paper provides an overview of the operation and maintenance costs and environmental benefits of a typical STRB based on the experiences gained from the operation of a large number of STRBs...

  9. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  10. A study on the treatment of radioactive slurry liquid waste

    International Nuclear Information System (INIS)

    Jeong, Gyeong Hwan; Chung, U. S.; Baik, S. T.; Park, S. K.; Moon, J.S.; Jung, K.J.

    1998-12-01

    The influence of anionic flocculants on the dewatering of radioactive slurries has been investigated in a laboratory-scale vacuum filtration unit. Simultaneously the influence of certain surfactants on the dewatering of radioactive slurries with anionic flocculants has also been investigated. Test results show that the flocculated filter cake generally contains higher residual water than the unflocculated cake. The non-ionic surfactant Triton X-100 was effective in reducing the moisture content of the cake

  11. Development of harvesting and up concentration technologies for microalgae as an ingredient in fish feed

    DEFF Research Database (Denmark)

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Per

    2014-01-01

    andfish oil. In applications of algae in fish feed, it is essential to produce a product comparable to fish proteinand fish oil both in terms of quality and costs.Downstream processing of microalgae includes harvest, dewatering, cell rupture, fractionation and drying.The dewatering and drying which...... ingredients forfish feed. Further we evaluate the chemical composition of six different microalgae species including;Nanochloropsis limnethica, Chlorella sorokiniana, Phaeodactylum tinctorium, Dunaliella salina,Nannochloropsis salina and Nannochloropsis occulata ....

  12. A study on the treatment of radioactive slurry liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gyeong Hwan; Chung, U. S.; Baik, S. T.; Park, S. K.; Moon, J.S.; Jung, K.J

    1998-12-01

    The influence of anionic flocculants on the dewatering of radioactive slurries has been investigated in a laboratory-scale vacuum filtration unit. Simultaneously the influence of certain surfactants on the dewatering of radioactive slurries with anionic flocculants has also been investigated. Test results show that the flocculated filter cake generally contains higher residual water than the unflocculated cake. The non-ionic surfactant Triton X-100 was effective in reducing the moisture content of the cake.

  13. Recycling of nutrients through struvite precipitation from digestions residues; Aatervinning av naering genom struvitfaellninggsaemnen fraan roetrest

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, Liisa; Loewgren, Sofia; Thelin, Gunnar (Ekobalans Fenix AB, Lund (Sweden))

    2010-05-15

    The aim of the project which is described in this report was to gather information about struvite precipitation and studies that have been performed within this area, and also to investigate struvite precipitation in four different digestates through laboratory experiments. Digestates from biogas plants with household waste, beet, manure and distillery residues as raw materials were used in this study. Struvite, MgNH{sub 4}PO{sub 4}-6H{sub 2}O, is a white crystal powder which is soluble at low pH and precipitates at pH 7-11. For struvite to precipitate the solution also has to be over saturated and the influence of other competitive ions has to be low. Many studies in struvite precipitation have been done as laboratory trials and in pilot plants. The experiments were performed on for example digestates from sewage treatment plants. The reactors were stirred or aerated and the solutions were either dewatered or non dewatered. The experiments were performed both with and without the addition of phosphate. A few full scale plants are also described in this report. Most of them consist of a fluidized bed and are connected to sewage treatment plants. Dewatered sewage sludge is most commonly used but there are also examples of non dewatered sludge. Some of the products from the full scale plants are sold as fertilizers. MgCl{sub 2}-6H{sub 2}O is the most common magnesium additive in the studies that have been summarized in this report, but for example Mg(OH){sub 2} has also been used in a few cases. The laboratory experiments in this report were performed on non dewatered and dewatered digestates. The dewatering was performed by filtration in three steps, except for the digestate from distillery residues which was centrifuged. The experiments were performed with and without phosphate addition. First, a few trials on synthetic solutions were performed to verify the chosen experimental conditions. All of the trials, with the synthetic and digestate solutions, were

  14. Evaluation of Management of Water Release for Painted Rocks Reservoir, Bitterroot River, Montana, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lere, Mark E. (Montana Department of Fish, Wildlife and Parks, Missoula, MT)

    1984-11-01

    Baseline fisheries and habitat data were gathered during 1983 and 1984 to evaluate the effectiveness of supplemental water releases from Painted Rocks Reservoir in improving the fisheries resource in the Bitterroot River. Discharge relationships among main stem gaging stations varied annually and seasonally. Flow relationships in the river were dependent upon rainfall events and the timing and duration of the irrigation season. Daily discharge monitored during the summers of 1983 and 1984 was greater than median values derived at the U.S.G.S. station near Darby. Supplemental water released from Painted Rocks Reservoir totaled 14,476 acre feet in 1983 and 13,958 acre feet in 1984. Approximately 63% of a 5.66 m{sup 3}/sec test release of supplemental water conducted during April, 1984 was lost to irrigation withdrawals and natural phenomena before passing Bell Crossing. A similar loss occurred during a 5.66 m{sup 3}/sec test release conducted in August, 1984. Daily maximum temperature monitored during 1984 in the Bitterroot River averaged 11.0, 12.5, 13.9 and 13.6 C at the Darby, Hamilton, Bell and McClay stations, respectively. Chemical parameters measured in the Bitterroot River were favorable to aquatic life. Population estimates conducted in the Fall, 1983 indicated densities of I+ and older rainbow trout (Salmo gairdneri) were significantly greater in a control section than in a dewatered section (p < 0.20). Numbers of I+ and older brown trout (Salmo trutta) were not significantly different between the control and dewatered sections (p > 0.20). Population and biomass estimates for trout in the control section were 631/km and 154.4 kg/km. In the dewatered section, population and biomass estimates for trout were 253/km and 122.8 kg/km. The growth increments of back-calculated length for rainbow trout averaged 75.6 mm in the control section and 66.9mm in the dewatered section. The growth increments of back-calculated length for brown trout averaged 79.5 mm in the

  15. Total concentration and speciation of heavy metals in biosolids from urban origin; Concentracion total y especiacion de metales pesados en biosolidos de origen urbano origin

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Flores, Eduardo [Laboratorio de Ingenieria Ambiental, Instituto Tecnologico de Puebla, Puebla, Puebla (Mexico)]. E-mail: egonz1962@yahoo.com.mx; Tornero Campante, Mario Alberto [Colegio de Postgraduados - Campus Puebla, San Pedro Cholula, Puebla (Mexico); Angeles Cruz, Yolanda [Laboratorio de Ingenieria Ambiental, Instituto Tecnologico de Puebla, Puebla, Puebla (Mexico); Bonilla y Fernandez, Noemi [Departamento de Agroecologia y Ambiente, Instituto de Ciencias - Benemerita Universidad Autonoma de Puebla, Puebla, Puebla (Mexico)

    2009-02-15

    The analysis of heavy metals is a very important task to asses the potential environmental and health risk associated with biosolids deposition in agricultural soil. However, it is widely accepted that determination of total concentration of heavy metals does not give an accurate estimation of the potential environmental impact. So, it is necessary to apply speciation studies to obtain suitable information about their bioavailability. This study was carried out on sewage sludge samples collected in a municipal waste-water treatment plant, located in Puebla City (Mexico). They are used for amendment agricultural soil. The speciation of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) was made using a sequential extraction procedure. The aim was to determine their concentration in bioavailability fractions. It was got the total concentration of heavy metals using acid digestion in a closed system and was determined with atomic absorption spectrometry. The total concentrations of heavy metals were lower than that established by Mexican legislation. The heavy metals are mainly associated with the mineral fraction and organic matter and consequently they show low bioavailability. [Spanish] El analisis de metales pesados es una actividad importante cuando se quiere valorar el potencial riesgo ambiental y de salud asociado con la utilizacion de biosolidos en suelos agricolas. Sin embargo, es ampliamente aceptado que la determinacion del contenido total no da una valoracion apropiada del impacto ambiental causado. Por lo tanto, es necesario realizar estudios de especiacion para obtener informacion mas detallada sobre su biodisponibilidad. Este estudio se llevo a cabo con muestras de lodos residuales producidos en una planta de tratamiento de aguas residuales ubicada en la ciudad de Puebla (Mexico). Estos biosolidos son utilizados para enmendar suelos agricolas. La especiacion de metales pesados (Cd, Cr, Cu, Ni, Pb y Zn) se realizo usando un procedimiento de extraccion secuencial

  16. Comparative analysis of metagenomes of Italian top soil improvers

    International Nuclear Information System (INIS)

    Gigliucci, Federica; Brambilla, Gianfranco; Tozzoli, Rosangela; Michelacci, Valeria; Morabito, Stefano

    2017-01-01

    Biosolids originating from Municipal Waste Water Treatment Plants are proposed as top soil improvers (TSI) for their beneficial input of organic carbon on agriculture lands. Their use to amend soil is controversial, as it may lead to the presence of emerging hazards of anthropogenic or animal origin in the environment devoted to food production. In this study, we used a shotgun metagenomics sequencing as a tool to perform a characterization of the hazards related with the TSIs. The samples showed the presence of many virulence genes associated to different diarrheagenic E. coli pathotypes as well as of different antimicrobial resistance-associated genes. The genes conferring resistance to Fluoroquinolones was the most relevant class of antimicrobial resistance genes observed in all the samples tested. To a lesser extent traits associated with the resistance to Methicillin in Staphylococci and genes conferring resistance to Streptothricin, Fosfomycin and Vancomycin were also identified. The most represented metal resistance genes were cobalt-zinc-cadmium related, accounting for 15–50% of the sequence reads in the different metagenomes out of the total number of those mapping on the class of resistance to compounds determinants. Moreover the taxonomic analysis performed by comparing compost-based samples and biosolids derived from municipal sewage-sludges treatments divided the samples into separate populations, based on the microbiota composition. The results confirm that the metagenomics is efficient to detect genomic traits associated with pathogens and antimicrobial resistance in complex matrices and this approach can be efficiently used for the traceability of TSI samples using the microorganisms’ profiles as indicators of their origin. - Highlights: • Sludge- and green- based biosolids analysed by metagenomics. • Biosolids may introduce microbial hazards in the food chain. • Metagenomics enables tracking biosolids’ sources.

  17. Comparative analysis of metagenomes of Italian top soil improvers

    Energy Technology Data Exchange (ETDEWEB)

    Gigliucci, Federica, E-mail: Federica.gigliucci@libero.it [Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome (Italy); Department of Sciences, University Roma,Tre, Viale Marconi, 446, 00146 Rome (Italy); Brambilla, Gianfranco; Tozzoli, Rosangela; Michelacci, Valeria; Morabito, Stefano [Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome (Italy)

    2017-05-15

    Biosolids originating from Municipal Waste Water Treatment Plants are proposed as top soil improvers (TSI) for their beneficial input of organic carbon on agriculture lands. Their use to amend soil is controversial, as it may lead to the presence of emerging hazards of anthropogenic or animal origin in the environment devoted to food production. In this study, we used a shotgun metagenomics sequencing as a tool to perform a characterization of the hazards related with the TSIs. The samples showed the presence of many virulence genes associated to different diarrheagenic E. coli pathotypes as well as of different antimicrobial resistance-associated genes. The genes conferring resistance to Fluoroquinolones was the most relevant class of antimicrobial resistance genes observed in all the samples tested. To a lesser extent traits associated with the resistance to Methicillin in Staphylococci and genes conferring resistance to Streptothricin, Fosfomycin and Vancomycin were also identified. The most represented metal resistance genes were cobalt-zinc-cadmium related, accounting for 15–50% of the sequence reads in the different metagenomes out of the total number of those mapping on the class of resistance to compounds determinants. Moreover the taxonomic analysis performed by comparing compost-based samples and biosolids derived from municipal sewage-sludges treatments divided the samples into separate populations, based on the microbiota composition. The results confirm that the metagenomics is efficient to detect genomic traits associated with pathogens and antimicrobial resistance in complex matrices and this approach can be efficiently used for the traceability of TSI samples using the microorganisms’ profiles as indicators of their origin. - Highlights: • Sludge- and green- based biosolids analysed by metagenomics. • Biosolids may introduce microbial hazards in the food chain. • Metagenomics enables tracking biosolids’ sources.

  18. An Investigation on In-Vessel Composting of Pistachio Residuals with Different Additions

    OpenAIRE

    M Jalili; M Mokhtari; AA Ebrahimi; F Boghri

    2016-01-01

    Background and Objective: About 1.35×105 tons of pistachio waste are produced in annually Iran that can result in environmental problems if managed improperly. . The purpose of this study was to investigate in-vessel composting of pistachio residuals with addition of cow manure and dewatered sludge as a recycling alternative. Materials and Methods: Pistachios wastes were combined with weight ratio of 5.5:10 (dewatered sludge: pistachio waste) and weight ratio of 1:10 (Cow manure: pi...

  19. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S; Cook, J; Juratovac, J; Goodwillie, J; Burke, T

    2011-10-25

    Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities

  20. Developing agricultural opportunities on mine tailings : the Green Mines green energy initiative

    Energy Technology Data Exchange (ETDEWEB)

    Tisch, B.; Spiers, G.; Beckett, P.; Lock, A. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-02-15

    The goal of the Green Mines green energy initiative is to advance mine reclamation through the beneficial use of organic residuals for the sustainable establishment of bioenergy crops and other productive land uses. Target organic residuals include: source separated organic compost; papermill biosolids; leaf and yard waste compost; and municipal wastewater biosolids. This presentation discussed the Green Mines green energy initiative with particular reference to potential uses; current participants; scope of the initiative; and progress to date. The presentation also discussed a column study that involved adding filter, filter fabric, silica sand and polyethylene beads to the base of columns. Unoxidized tailings were slurried and pumped into columns and then the oxidized tailings were dried and homogenized. The results of acidic copper/nickel tailings with lime and no lime were also discussed. A summary of findings from the column study was offered. It was found that nutrient management must be considered and organic covers appear to increase metal and arsenic leaching from unlimed tailings. The presentation also made reference to demonstration field plots; biosolids delivery; tilling; monitoring; biomass sampling; and harvesting. The presentation concluded with a discussion of next steps which involve completing construction of the current suite of field plots and implementing full monitoring. figs.