WorldWideScience

Sample records for developing tumor therapeutics

  1. Therapeutics targeting tumor immune escape: towards the development of new generation anticancer vaccines.

    Science.gov (United States)

    Mocellin, Simone; Nitti, Donato

    2008-05-01

    Despite the evidence that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells evade immune surveillance in most cases. Considering that anticancer vaccination has reached a plateau of results and currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed at reverting the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted. In addition, the latest therapeutic strategies devised to overcome tumor immune escape are described, with special regard to those entering clinical phase investigation. Copyright (c) 2007 Wiley-Periodicals, Inc.

  2. Two cases of acute leukemia developed after therapeutic radiation for malignant tumors

    International Nuclear Information System (INIS)

    Takahashi, Naoki; Matsuo, Kakaru; Yamaguchi, Hiroshi; Tsuno, Sumio; Toyoda, Shigeki

    1978-01-01

    Report was made as to two cases of acute leukemia developed after therapeutic radiation for malignant tumors. Both cases were exposed to atomic-bomb at the places 4 and 3 km far from the center of explosion, and they did not suffer from injuries and acute symptoms due to radiation. Case 1. -A 78 year old man had a mass in a right hypogastric region in April of 1975. In March of 1976, he received laparotomy and was diagnosed as malignant schwannoma. He received radiation therapy with 4,600 R and MFC therapy. In February of 1977, a clinical diagnosis of erythroleukemia was made according to the findings by bone marrow puncture, and he died in March. Postmortem examination revealed that main lesions were malignant schwannoma, its metastases, and leukemia. Case 2. -A 51 year old woman had a finger-tip sized tumor in the left breast in November of 1965, and had a radical operation on the basis of a diagnosis of comedo sarcoma. After that she received 60 Co irradiation with 18,800 R, and she was admitted in December of 1971, because she was suspected of having leukemia. She died in January of 1972. Postmortem examination revealed acute myelocytic leukemia. It is suspected that the onset of erythroleukemia within one year after irradiation would be influenced by MFC therapy in addition to radiotherapy. It was thought that leukemia in Case 2 was influenced by radiotherapy rather than atomic-bomb radioactivity. (Serizawa, K.)

  3. Rational design of an EGF-IL18 fusion protein: Implication for developing tumor therapeutics

    International Nuclear Information System (INIS)

    Lu Jianxin; Peng Ying; Meng Zhefeng; Jin Liqin; Lu Yongsui; Guan Minxin

    2005-01-01

    Interleukin-18 (IL-18) is a proinflammatory cytokine. This protein has a role in regulating immune responses and exhibits significant anti-tumor activities. Epidermal growth factor (EGF) is an important growth factor that plays a central role in the regulation of cell cycle and differentiation. It was proposed that a targeted delivery of IL-18 by generation of IL-18-EGF fusion protein might decrease adverse effects and result in enhancing cytotoxic and antitumor activities. In the present study, a fusion protein, consisting of EGFR binding domain fused to human IL-18 mature peptide via a linker peptide of (Gly 4 Ser) 3, was constructed and expressed in the insect cell line Sf9 using Bac-to-Bac baculovirus expression system. We showed that the purified recombinant fusion protein induced similar levels of IFN-γ to that of native IL-18 protein in human PBMC in the presence of ConA. Furthermore, EGF receptor competitive test in human epithelial cancer A431 cell line showed that EGF-IL18 fusion protein can specifically bind with EGFR by competing with native EGF protein. These suggest that this rationally designed protein can be further developed as novel tumor therapeutics

  4. The combined status of ATM and p53 link tumor development with therapeutic response

    DEFF Research Database (Denmark)

    Jiang, Hai; Reinhardt, H Christian; Bartkova, Jirina

    2009-01-01

    commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53, two commonly mutated tumor suppressor...... genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2...... actually protects tumors from being killed by genotoxic agents. Furthermore, ATM-deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant ATM-deficient tumors to genotoxic...

  5. Naturally occurring, tumor-specific, therapeutic proteins.

    Science.gov (United States)

    Argiris, Konstantinos; Panethymitaki, Chrysoula; Tavassoli, Mahvash

    2011-05-01

    The emerging approach to cancer treatment known as targeted therapies offers hope in improving the treatment of therapy-resistant cancers. Recent understanding of the molecular pathogenesis of cancer has led to the development of targeted novel drugs such as monoclonal antibodies, small molecule inhibitors, mimetics, antisense and small interference RNA-based strategies, among others. These compounds act on specific targets that are believed to contribute to the development and progression of cancers and resistance of tumors to conventional therapies. Delivered individually or combined with chemo- and/or radiotherapy, such novel drugs have produced significant responses in certain types of cancer. Among the most successful novel compounds are those which target tyrosine kinases (imatinib, trastuzumab, sinutinib, cetuximab). However, these compounds can cause severe side-effects as they inhibit pathways such as epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor, which are also important for normal functions in non-transformed cells. Recently, a number of proteins have been identified which show a remarkable tumor-specific cytotoxic activity. This toxicity is independent of tumor type or specific genetic changes such as p53, pRB or EGFR aberrations. These tumor-specific killer proteins are either derived from common human and animal viruses such as E1A, E4ORF4 and VP3 (apoptin) or of cellular origin, such as TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) and MDA-7 (melanoma differentiation associated-7). This review aims to present a current overview of a selection of these proteins with preferential toxicity among cancer cells and will provide an insight into the possible mechanism of action, tumor specificity and their potential as novel tumor-specific cancer therapeutics.

  6. Development of lutetium-labeled bombesin derivates: relationship between structure and diagnostic-therapeutic activity for prostate tumor

    International Nuclear Information System (INIS)

    Pujatti, Priscilla Brunelli

    2009-01-01

    Bombesin (BBN) receptors - in particular, the gastrin-releasing peptide (GRP) receptor peptide - have been shown to be massively over expressed in several human tumors types, including prostate cancer, and could be an alternative as target for its treatment by radionuclide therapy (RNT). A large number of BBN analogs had already been synthesized for this purpose and have shown to reduce tumor growth in mice. Nevertheless, most of the studied analogs exhibit high abdominal accumulation, especially in pancreas. This abdominal accumulation may represent a problem in clinical use of radiolabeled bombesin analogs probably due to serious side effects to patients. The goal of the present work was to radiolabel a novel series of bombesin derivatives with lutetium-177 and to evaluate the relationship between their structure and diagnostic-therapeutic activity for prostate tumor. The generic structure of studied peptides is DOTA-Phe-(Gly) n -BBN(6-14), where DOTA is the chelator, n is the number of glycine amino acids of Phe-(Gly) n spacer and BBN(6-14) is the bombesin sequence from the amino acid 6 to the amino acid 14. Preliminary studies were done to establish the ideal labeling conditions for obtaining the highest yield of labeled bombesin derivatives, determined by instant thin layer chromatography (ITLC-SG) and high performance liquid chromatography (HPLC). The stability of the preparations was evaluated either after storing at 2-8 degree C or incubation in human serum at 37 degree C and the partition coefficient was determined in n:octanol:water. In vivo studies were performed in both healthy Balb-c and Nude mice bearing PC-3 xenografts, in order to characterize the biological properties of labeled peptides. In vitro studies involved the evaluation of cold bombesin derivatives effect in PC-3 cells proliferation. Bombesin derivatives were successfully labeled with high yield at optimized conditions and exhibited high stability at 4 degree C. The analysis of the

  7. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    Science.gov (United States)

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  8. Targeted Delivery of siRNA Therapeutics to Malignant Tumors

    Directory of Open Access Journals (Sweden)

    Qixin Leng

    2017-01-01

    Full Text Available Over the past 20 years, a diverse group of ligands targeting surface biomarkers or receptors has been identified with several investigated to target siRNA to tumors. Many approaches to developing tumor-homing peptides, RNA and DNA aptamers, and single-chain variable fragment antibodies by using phage display, in vitro evolution, and recombinant antibody methods could not have been imagined by researchers in the 1980s. Despite these many scientific advances, there is no reason to expect that the ligand field will not continue to evolve. From development of ligands based on novel or existing biomarkers to linking ligands to drugs and gene and antisense delivery systems, several fields have coalesced to facilitate ligand-directed siRNA therapeutics. In this review, we discuss the major categories of ligand-targeted siRNA therapeutics for tumors, as well as the different strategies to identify new ligands.

  9. Tumor dedifferentiation: diagnostic and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Abhimanyu Jha

    2017-09-01

    Full Text Available Some of the neoplasm especially malignant tumors are notorious in masquerading their cell of origin because of additional mutations which drives them to differentiate into unusual phenotype. This is implicated to a phenomenon of tumor dedifferentiation which can mislead into inappropriate categorization and therapy. Dedifferentiation is well recognized in sarcomas such as liposarcoma, chondrosarcoma and MPNST. However, it can also develop in carcinomas, melanomas and lymphomas at initial diagnosis, following therapy or at recurrence.  The phenomenon has been reported in both primary tumors as well as at metastatic foci. A correct and early pathological identification of this phenomenon might profoundly help in guiding appropriate therapy. Clinical and radiological findings, immunohistochemistry and genetic analysis are often required for correct lineage identification of these tumors.

  10. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    Science.gov (United States)

    2016-12-01

    ABT-263 (Fig. 2I and SI Appendix, Fig. S6A). We therefore sought to identify pharmacological strategies that could suppress MCL-1 levels and increase...resonance imaging ( MRI ) of the thorax was performed 1 day before starting treatment and on day 21 of treatment, and lung tumor volumes pre- and...spread on MRI were included in the analysis. Tumors progressed in all untreated animals (n = 7), although we observed significant variability in the

  11. The Prognostic, Diagnostic, and Therapeutic Potential of Tumor Antigens

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn

    or abundance in cancer cells is often unique and their roles and functions in tumorigenesis are, in many cases, studied extensively. They, therefore, have the potential to be highly specific biomarkers as well as therapeutic targets, but complex analysis combining basic science, high-throughput methods...... of genomics and proteomics, and clinical studies need to be combined. These analyses produce large amounts of data that require advanced bioinformatics methods for collection, management, integration and interpretation. In this thesis, I have explored the potential of tumor antigens as biomarkers...... and therapeutic agents, by developing and implementing several computational tools and databases for immunotherapy target discovery, and have analyzed the potential of tumor antigens as proteogenomic biomarkers in invasive ductal carcinomas. In this analysis I have shown that the combination of proteomics...

  12. BONE TUMOR ENVIRONMENT AS POTENTIAL THERAPEUTIC TARGET IN EWING SARCOMA

    Directory of Open Access Journals (Sweden)

    Françoise eREDINI

    2015-12-01

    Full Text Available Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, ES is an aggressive, rapidly fatal malignancy that mainly develops in osseous sites (85%, but also in extraskeletal soft tissue. It spreads naturally to the lungs, bones and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption is responsible for the clinical features of bone tumors including pain, vertebral collapse and spinal cord compression. Based on the vicious cycle concept of tumor cells and bone resorbing cells, drugs which target osteoclasts may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable niche for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing Sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates (BPs or drugs blocking the pro-resorbing cytokine Receptor Activator of NF-kappa B Ligand (RANKL. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  13. Purinergic Signalling: Therapeutic Developments

    Directory of Open Access Journals (Sweden)

    Geoffrey Burnstock

    2017-09-01

    Full Text Available Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.

  14. Tumor Microenvironment Gene Signature as a Prognostic Classifier and Therapeutic Target

    Science.gov (United States)

    2016-06-01

    AWARD NUMBER: W81XWH-14-1-0107 TITLE: Tumor Microenvironment Gene Signature as a Prognostic Classifier and Therapeutic Target PRINCIPAL...AND SUBTITLE Tumor Microenvironment Gene Signature as a 5a. CONTRACT NUMBER W81XWH-14-1-0107 Prognostic Classifier and Therapeutic Target 5b...gene signature that correlates with poor survival in ovarian cancer patients. We are refining this gene signature to develop biomarkers for the

  15. Recent novel tumor gatekeepers and potential therapeutic approaches

    African Journals Online (AJOL)

    Tumor remains a challenging task for oncology community. ... Development of novel anti-cancer drugs or new targeted strategies to conquer drug ... In this respect, novel tumor gatekeepers and innovative targeted strategies can be helpful in ...

  16. Perspective on Cancer Therapeutics Utilizing Analysis of Circulating Tumor Cells

    Directory of Open Access Journals (Sweden)

    Keun-Yeong Jeong

    2018-04-01

    Full Text Available Various methods are available for cancer screening, and the methods are performed depending on the origin site of cancer. Among these methods, biopsy followed by medical imaging is the most common. After cancer progression is determined, an optimal treatment—such as surgery, chemotherapy, and/or radiation therapy—is selected. A new assay has been developed that detects circulating tumor cells (CTCs. Tracking changes in CTCs may reveal important tumoral sensitivity information or resistance patterns to specific regimens and prompt changes in therapy on a personalized basis. Characterization of CTCs at the DNA, RNA, and protein levels is important for gaining insight for clinical applications. A small number of CTCs can be analyzed to obtain genome information such as the progression of cancer including metastasis, even in a single cluster. Although many clinical studies, particularly CTC enumeration and detection of specific oncogene expression, have increased the success rate of diagnosis and predicting prognosis, there is no consensus regarding the technical approaches and various aspects of the methodology, making it difficult to standardize optimal methods for CTC analysis. However, ongoing technological advances are currently being achieved and large-scale clinical studies are being conducted. Applying CTC analysis in the clinic would be very useful for advancing diagnosis, prognosis prediction, and therapeutics.

  17. Tumor angiogenesis--a new therapeutic target in gliomas

    DEFF Research Database (Denmark)

    Lund, E L; Spang-Thomsen, M; Skovgaard-Poulsen, H

    1998-01-01

    significant angiogenic activity primarily by the expression of the angiogenic factor VEGF Anti-angiogenic therapy represents a new promising therapeutic modality in solid tumors. Several agents are currently under evaluation in clinical trials. The present review describes the principal inducers...

  18. Development of lutetium-labeled bombesin derivates: relationship between structure and diagnostic-therapeutic activity for prostate tumor; Desenvolvimento de derivados da bombesina radiomarcados com lutecio-177: relacao estrutura e potencial diagnostico-terapeutico para tumor de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Pujatti, Priscilla Brunelli

    2009-07-01

    Bombesin (BBN) receptors - in particular, the gastrin-releasing peptide (GRP) receptor peptide - have been shown to be massively over expressed in several human tumors types, including prostate cancer, and could be an alternative as target for its treatment by radionuclide therapy (RNT). A large number of BBN analogs had already been synthesized for this purpose and have shown to reduce tumor growth in mice. Nevertheless, most of the studied analogs exhibit high abdominal accumulation, especially in pancreas. This abdominal accumulation may represent a problem in clinical use of radiolabeled bombesin analogs probably due to serious side effects to patients. The goal of the present work was to radiolabel a novel series of bombesin derivatives with lutetium-177 and to evaluate the relationship between their structure and diagnostic-therapeutic activity for prostate tumor. The generic structure of studied peptides is DOTA-Phe-(Gly){sub n}-BBN(6-14), where DOTA is the chelator, n is the number of glycine amino acids of Phe-(Gly){sub n} spacer and BBN(6-14) is the bombesin sequence from the amino acid 6 to the amino acid 14. Preliminary studies were done to establish the ideal labeling conditions for obtaining the highest yield of labeled bombesin derivatives, determined by instant thin layer chromatography (ITLC-SG) and high performance liquid chromatography (HPLC). The stability of the preparations was evaluated either after storing at 2-8 degree C or incubation in human serum at 37 degree C and the partition coefficient was determined in n:octanol:water. In vivo studies were performed in both healthy Balb-c and Nude mice bearing PC-3 xenografts, in order to characterize the biological properties of labeled peptides. In vitro studies involved the evaluation of cold bombesin derivatives effect in PC-3 cells proliferation. Bombesin derivatives were successfully labeled with high yield at optimized conditions and exhibited high stability at 4 degree C. The analysis of

  19. Therapeutic Implications from Sensitivity Analysis of Tumor Angiogenesis Models

    Science.gov (United States)

    Poleszczuk, Jan; Hahnfeldt, Philip; Enderling, Heiko

    2015-01-01

    Anti-angiogenic cancer treatments induce tumor starvation and regression by targeting the tumor vasculature that delivers oxygen and nutrients. Mathematical models prove valuable tools to study the proof-of-concept, efficacy and underlying mechanisms of such treatment approaches. The effects of parameter value uncertainties for two models of tumor development under angiogenic signaling and anti-angiogenic treatment are studied. Data fitting is performed to compare predictions of both models and to obtain nominal parameter values for sensitivity analysis. Sensitivity analysis reveals that the success of different cancer treatments depends on tumor size and tumor intrinsic parameters. In particular, we show that tumors with ample vascular support can be successfully targeted with conventional cytotoxic treatments. On the other hand, tumors with curtailed vascular support are not limited by their growth rate and therefore interruption of neovascularization emerges as the most promising treatment target. PMID:25785600

  20. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    Science.gov (United States)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  1. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment

    Directory of Open Access Journals (Sweden)

    Daria S. Chulpanova

    2018-03-01

    Full Text Available Mesenchymal stem cells (MSCs are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations, other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs, which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro- and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment.

  2. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  3. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  4. Pathophysiological aspects and therapeutic approaches of tumoral osteolysis and hypercalcemia.

    Science.gov (United States)

    Bonjour, J P; Rizzoli, R

    1989-01-01

    Malignant tumors can affect the integrity of the skeletal tissue and the homeostasis of the two main components of bone mineral, calcium (Ca) and inorganic phosphate (Pi). Various tumoral cell products can increase bone resorption by influencing the number of osteoclasts and/or their activity. These tumoral products could act either directly on bone cells of the osteoblastic or osteoclastic lineages, or indirectly by influencing cells secreting osteotropic factors, such as interleukin-1, tumor necrosis factors, transforming growth factors, and colony-stimulating factor. Among the classical calciotropic hormones, 1,25-dihydroxyvitamin D3 could be implicated in lymphoma. In hypercalcemia of malignancy, an increase in bone resorption is observed in most patients. However, in many cases an increased tubular reabsorption of Ca has been documented as well. This phenomenon when present after adequate rehydration is probably due to the secretion by the tumoral cells of a parathyroid hormone-related peptide (PTHrP). This factor has been recently identified as a protein containing 141 amino acids. This protein or some very close analogs have been shown to be secreted by lung, kidney and also breast carcinoma. Besides increasing bone resorption and stimulating tubular reabsorption of Ca, PTHrP also selectively decreases the tubular reabsorption of Pi, an action that may explain the hypophosphatemia observed in some types of neoplasm. Therapeutically, administration of antiresorbing agents such as clodronate or other bisphosphonates can normalize the increased osteolysis and, if present, the associated elevation in the plasma level of Ca in most cancer patients. However in some cases, wherein the prevailing hypercalcemic mechanism is due to an enhancement in the tubular reabsorption of Ca, other therapeutic means should be associated with the antiosteolytic bisphosphonate therapy.

  5. Therapeutically targeting cyclin D1 in primary tumors arising from loss of Ini1

    Science.gov (United States)

    Smith, Melissa E.; Cimica, Velasco; Chinni, Srinivasa; Jana, Suman; Koba, Wade; Yang, Zhixia; Fine, Eugene; Zagzag, David; Montagna, Cristina; Kalpana, Ganjam V.

    2011-01-01

    Rhabdoid tumors (RTs) are rare, highly aggressive pediatric malignancies with poor prognosis and with no standard or effective treatment strategies. RTs are characterized by biallelic inactivation of the INI1 tumor suppressor gene. INI1 directly represses CCND1 and activates cyclin-dependent kinase (cdk) inhibitors p16Ink4a and p21CIP. RTs are exquisitely dependent on cyclin D1 for genesis and survival. To facilitate translation of unique therapeutic strategies, we have used genetically engineered, Ini1+/− mice for therapeutic testing. We found that PET can be used to noninvasively and accurately detect primary tumors in Ini1+/− mice. In a PET-guided longitudinal study, we found that treating Ini1+/− mice bearing primary tumors with the pan-cdk inhibitor flavopiridol resulted in complete and stable regression of some tumors. Other tumors showed resistance to flavopiridol, and one of the resistant tumors overexpressed cyclin D1, more than flavopiridol-sensitive cells. The concentration of flavopiridol used was not sufficient to down-modulate the high level of cyclin D1 and failed to induce cell death in the resistant cells. Furthermore, FISH and PCR analyses indicated that there is aneuploidy and increased CCND1 copy number in resistant cells. These studies indicate that resistance to flavopiridol may be correlated to elevated cyclin D1 levels. Our studies also indicate that Ini1+/− mice are valuable tools for testing unique therapeutic strategies and for understanding mechanisms of drug resistance in tumors that arise owing to loss of Ini1, which is essential for developing effective treatment strategies against these aggressive tumors. PMID:21173237

  6. Exosomes as a tumor immune escape mechanism: possible therapeutic implications

    Directory of Open Access Journals (Sweden)

    Hanley Harold H

    2008-07-01

    Full Text Available Abstract Advances in cancer therapy have been substantial in terms of molecular understanding of disease mechanisms, however these advances have not translated into increased survival in the majority of cancer types. One unsolved problem in current cancer therapeutics is the substantial immune suppression seen in patients. Conventionally, investigations in this area have focused on antigen-nonspecific immune suppressive molecules such as cytokines and T cell apoptosis inducing molecules such as Fas ligand. More recently, studies have demonstrated nanovesicle particles termed exosomes are involved not only in stimulation but also inhibition of immunity in physiological conditions. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules such as PD-1L and FasL. Concentrations of exosomes from plasma of cancer patients have been associated with spontaneous T cell apoptosis, which is associated in some situations with shortened survival. In this paper we place the "exosome-immune suppression" concept in perspective of other tumor immune evasion mechanisms. We conclude by discussing a novel therapeutic approach to cancer immune suppression by extracorporeal removal of exosomes using hollow fiber filtration technology

  7. Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment

    International Nuclear Information System (INIS)

    Bathe, Oliver F; Dalyot-Herman, Nava; Malek, Thomas R

    2003-01-01

    Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several

  8. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Neil V. Klinger

    2016-01-01

    Full Text Available Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin’s ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors.

  9. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress GBM Tumor Growth.

    Science.gov (United States)

    Lee, Jaehyun; Shin, Yong Jae; Lee, Kyoungmin; Cho, Hee Jin; Sa, Jason K; Lee, Sang-Yun; Kim, Seok-Hyung; Lee, Jeongwu; Yoon, Yeup; Nam, Do-Hyun

    2017-11-10

    Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3A mRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell-line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.

  10. Tumor microenvironment in invasive lobular carcinoma: possible therapeutic targets.

    Science.gov (United States)

    Nakagawa, Saki; Miki, Yasuhiro; Miyashita, Minoru; Hata, Shuko; Takahashi, Yayoi; Rai, Yoshiaki; Sagara, Yasuaki; Ohi, Yasuyo; Hirakawa, Hisashi; Tamaki, Kentaro; Ishida, Takanori; Watanabe, Mika; Suzuki, Takashi; Ohuchi, Noriaki; Sasano, Hironobu

    2016-01-01

    Invasive ductal and lobular carcinomas (IDC and ILC) are the two most common histological types of breast cancer, and have been considered to develop from terminal duct lobular unit but their molecular, pathological, and clinical features are markedly different between them. These differences could be due to different mechanisms of carcinogenesis and tumor microenvironment, especially cancer-associated fibroblasts (CAFs) but little has been explored in this aspect. Therefore, in this study, we evaluated the status of angiogenesis, maturation of intratumoral microvessels, and proliferation of CAFs using immunohistochemistry and PCR array analysis to explore the differences of tumor microenvironment between ILC and IDC. We studied grade- and age-matched, luminal-like ILC and IDC. We immunolocalized CD34 and αSMA for an evaluation of CAFs and CD31, Vasohibin-1, a specific marker of proliferative endothelial cells and nestin, a marker of pericytes for studying the status of proliferation and maturation of intratumoral microvessel. We also performed PCR array analysis to evaluate angiogenic factors in tumor stromal components. The number of CAFs, microvessel density, and vasohibin-1/CD31 positive ratio were all significantly higher in ILC than IDC but nestin immunoreactivity in intratumoral microvessel was significantly lower in ILC. These results did indicate that proliferation of CAFs and endothelial cells was more pronounced in ILC than IDC but newly formed microvessels were less mature than those in IDC. PCR array analysis also revealed that IGF-1 expression was higher in ILC than IDC. This is the first study to demonstrate the differences of tumor microenvironment including CAFs and proliferation and maturation of intratumoral vessels between ILC and IDC.

  11. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma.

    Science.gov (United States)

    Redini, Françoise; Heymann, Dominique

    2015-01-01

    Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the "vicious cycle" concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable "niche" for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  12. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, Florence; Ray, Anne Marie; Dontenwill, Monique, E-mail: monique.dontenwill@unistra.fr [UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Tumoral signaling and therapeutic targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch (France)

    2013-01-15

    Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors.

  13. The Clinical Importance of Assessing Tumor Hypoxia: Relationship of Tumor Hypoxia to Prognosis and Therapeutic Opportunities

    Science.gov (United States)

    Walsh, Joseph C.; Lebedev, Artem; Aten, Edward; Madsen, Kathleen; Marciano, Liane

    2014-01-01

    I. Introduction II. The Clinical Importance of Tumor Hypoxia A. Pathophysiology of hypoxia B. Hypoxia's negative impact on the effectiveness of curative treatment 1. Hypoxic tumors accumulate and propagate cancer stem cells 2. Hypoxia reduces the effectiveness of radiotherapy 3. Hypoxia increases metastasis risk and reduces the effectiveness of surgery 4. Hypoxic tumors are resistant to the effects of chemotherapy and chemoradiation C. Hypoxia is prognostic for poor patient outcomes III. Diagnosis of Tumor Hypoxia A. Direct methods 1. Oxygen electrode—direct pO2 measurement most used in cancer research 2. Phosphorescence quenching—alternative direct pO2 measurement 3. Electron paramagnetic resonance 4. 19F-magnetic resonance spectroscopy 5. Overhauser-enhanced MRI B. Endogenous markers of hypoxia 1. Hypoxia-inducible factor-1α 2. Carbonic anhydrase IX 3. Glucose transporter 1 4. Osteopontin 5. A combined IHC panel of protein markers for hypoxia 6. Comet assay C. Physiologic methods 1. Near-infrared spectroscopy/tomography—widely used for pulse oximetry 2. Photoacoustic tomography 3. Contrast-enhanced color duplex sonography 4. MRI-based measurements 5. Blood oxygen level-dependent MRI 6. Pimonidazole 7. EF5 (pentafluorinated etanidazole) 8. Hypoxia PET imaging—physiologic hypoxia measurement providing tomographic information a. 18F-fluoromisonidazole b. 18F-fluoroazomycinarabinofuranoside c. 18F-EF5 (pentafluorinated etanidazole) d. 18F-flortanidazole e. Copper (II) (diacetyl-bis (N4-methylthiosemicarbazone)) f. 18F-FDG imaging of hypoxia IV. Modifying Hypoxia to Improve Therapeutic Outcomes A. Use of hypoxia information in radiation therapy planning B. Use of hypoxia assessment for selection of patients responsive to nimorazole C. Use of hypoxia assessment for selection of patients responsive to tirapazamine D. Use of hypoxia assessment for selection of patients

  14. Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-Resistant Prostate Cancer

    Science.gov (United States)

    2017-12-01

    AWARD NUMBER: W81XWH-13-1-0163 TITLE: Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer ...Prostate Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Feng Yang, Ph.D. 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: fyang@bcm.edu...W81XWH-13-1-0163 " Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer " Introduction AR signaling

  15. Recent novel tumor gatekeepers and potential therapeutic approaches

    African Journals Online (AJOL)

    Keywords: Cancer, Potent inhibitors, Gatekeepers, Therapeutic approaches, Oncogenic pathways. Tropical Journal ..... effects of the target suppression support change from a one gene .... Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017.

  16. Developing patient rapport, trust and therapeutic relationships.

    Science.gov (United States)

    Price, Bob

    2017-08-09

    Rapport is established at the first meeting between the patient and nurse, and is developed throughout the therapeutic relationship. However, challenges can arise during this process. Initially, nurses can establish trust with the patient through the questions they ask, however, as care progresses, the nurse will be required to demonstrate a commitment to maintaining the patient's psychological well-being. When the therapeutic relationship ends, the nurse should assist the patient to assess progress and plan the next stage of recovery. This article provides three reflective exercises using case study examples to demonstrate how rapport is developed and sustained. Evidence is provided to identify why challenges arise in the therapeutic relationship and how the nurse can ensure they provide care that the patient regards as genuine.

  17. Challenges in the development of magnetic particles for therapeutic applications.

    Science.gov (United States)

    Barry, Stephen E

    2008-09-01

    Certain iron-based particle formulations have useful magnetic properties that, when combined with low toxicity and desirable pharmacokinetics, encourage their development for therapeutic applications. This mini-review begins with background information on magnetic particle use as MRI contrast agents and the influence of material size on pharmacokinetics and tissue penetration. Therapeutic investigations, including (1) the loading of bioactive materials, (2) the use of stationary, high-gradient (HG) magnetic fields to concentrate magnetic particles in tissues or to separate material bound to the particles from the body, and (3) the application of high power alternating magnetic fields (AMF) to generate heat in magnetic particles for hyperthermic therapeutic applications are then surveyed. Attention is directed mainly to cancer treatment, as selective distribution to tumors is well-suited to particulate approaches and has been a focus of most development efforts. While magnetic particles have been explored for several decades, their use in therapeutic products remains minimal; a discussion of future directions and potential ways to better leverage magnetic properties and to integrate their use into therapeutic regimens is discussed.

  18. Increased Plasma Colloid Osmotic Pressure Facilitates the Uptake of Therapeutic Macromolecules in a Xenograft Tumor Model

    Directory of Open Access Journals (Sweden)

    Matthias Hofmann

    2009-08-01

    Full Text Available Elevated tumor interstitial fluid pressure (TIFP is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin: (20% HSA, used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml and cetuximab (2.0 mg/ml was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20%HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  19. Phototherapy : photobiological aspects and therapeutical developments

    NARCIS (Netherlands)

    Tjioe, Milan

    2003-01-01

    Several therapeutical modalities are nowadays used in photodermatology. In this thesis several new developments, like narrow band UVB, highdose visible light, are compared with regard to aspects of phototageing and photodamage. When broad band UVB and UVA are compared maximal photoinduced infiltrate

  20. Identification and Reconstruction of Prostate Tumor-Suppressing Exosomes for Therapeutic Applications

    Science.gov (United States)

    2016-03-01

    to the altered contents of exosomes , those from prostate cancer cells (tumor exosomes ) no longer have tumor suppressive functions. If this... cancer . To develop this concept, exosomes will be isolated from normal prostate epithelial cells by differential centrifugations or affinity...purifications and evaluated for tumor suppressing activities against various prostate cancer cells (Aim 1). Then the components of the tumor suppressing exosomes

  1. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  2. Imaging enabled platforms for development of therapeutics

    Science.gov (United States)

    Celli, Jonathan; Rizvi, Imran; Blanden, Adam R.; Evans, Conor L.; Abu-Yousif, Adnan O.; Spring, Bryan Q.; Muzikansky, Alona; Pogue, Brian W.; Finkelstein, Dianne M.; Hasan, Tayyaba

    2011-03-01

    Advances in imaging and spectroscopic technologies have enabled the optimization of many therapeutic modalities in cancer and noncancer pathologies either by earlier disease detection or by allowing therapy monitoring. Amongst the therapeutic options benefiting from developments in imaging technologies, photodynamic therapy (PDT) is exceptional. PDT is a photochemistry-based therapeutic approach where a light-sensitive molecule (photosensitizer) is activated with light of appropriate energy (wavelength) to produce reactive molecular species such as free radicals and singlet oxygen. These molecular entities then react with biological targets such as DNA, membranes and other cellular components to impair their function and lead to eventual cell and tissue death. Development of PDT-based imaging also provides a platform for rapid screening of new therapeutics in novel in vitro models prior to expensive and labor-intensive animal studies. In this study we demonstrate how an imaging platform can be used for strategizing a novel combination treatment strategy for multifocal ovarian cancer. Using an in vitro 3D model for micrometastatic ovarian cancer in conjunction with quantitative imaging we examine dose and scheduling strategies for PDT in combination with carboplatin, a chemotherapeutic agent presently in clinical use for management of this deadly form of cancer.

  3. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt

    2011-01-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...... better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein...

  4. Irradiation promotes Akt-targeting therapeutic gene delivery to the tumor vasculature

    International Nuclear Information System (INIS)

    Sonveaux, Pierre; Frerart, Francoise; Bouzin, Caroline; Brouet, Agnes; Wever, Julie de; Jordan, Benedicte F.; Gallez, Bernard; Feron, Olivier

    2007-01-01

    Purpose: To determine whether radiation-induced increases in nitric oxide (NO) production can influence tumor blood flow and improve delivery of Akt-targeting therapeutic DNA lipocomplexes to the tumor. Methods and Materials: The contribution of NO to the endothelial response to radiation was identified using NO synthase (NOS) inhibitors and endothelial NOS (eNOS)-deficient mice. Reporter-encoding plasmids complexed with cationic lipids were used to document the tumor vascular specificity and the efficacy of in vivo lipofection after irradiation. A dominant-negative Akt gene construct was used to evaluate the facilitating effects of radiotherapy on the therapeutic transgene delivery. Results: The abundance of eNOS protein was increased in both irradiated tumor microvessels and endothelial cells, leading to a stimulation of NO release and an associated increase in tumor blood flow. Transgene expression was subsequently improved in the irradiated vs. nonirradiated tumor vasculature. This effect was not apparent in eNOS-deficient mice and could not be reproduced in irradiated cultured endothelial cells. Finally, we combined low-dose radiotherapy with a dominant-negative Akt gene construct and documented synergistic antitumor effects. Conclusions: This study offers a new rationale to combine radiotherapy with gene therapy, by directly exploiting the stimulatory effects of radiation on NO production by tumor endothelial cells. The preferential expression of the transgene in the tumor microvasculature underscores the potential of such an adjuvant strategy to limit the angiogenic response of irradiated tumors

  5. Conjunctival Melanocytic Tumors-New Developments

    Directory of Open Access Journals (Sweden)

    Hülya Gökmen Soysal

    2014-09-01

    Full Text Available Melanocytic lesions of the conjunctiva represent a wide spectrum of tumors that include benign, premalignant, and malignant tumors. There are many ongoing arguments about the definition, classification, and therapeutic options of the conjunctival melanocytic tumors with many different suggestions. Conjunctival nevi are the most common melanocytic tumors and their risk of malignant transformation is less than1%. Primary acquired melanosis (PAM histopathologically includes various types of lesions from increased melanin pigmentation without melanocyte proliferation to melanoma in situ and is accepted as a clinical definition, so that a new classification is recommended which is based on more objective criteria than before. Although conjunctival melanoma is seen rarely, it is associated with a high mortality rate. Management of these tumors mainly involves surgery and adjuvant topical chemotherapy, cryotherapy, and radiation therapy that help improving the survival, however, new options are being investigated related to genetic and molecular researches. (Turk J Ophthalmol 2014; 44: Supplement 15-21

  6. From Chemotherapy to Combined Targeted Therapeutics: In Vitro and in Vivo Models to Decipher Intra-tumor Heterogeneity

    Directory of Open Access Journals (Sweden)

    Guido Gambara

    2018-02-01

    Full Text Available Recent advances in next-generation sequencing and other omics technologies capable to map cell fate provide increasing evidence on the crucial role of intra-tumor heterogeneity (ITH for cancer progression. The different facets of ITH, from genomic to microenvironmental heterogeneity and the hierarchical cellular architecture originating from the cancer stem cell compartment, contribute to the range of tumor phenotypes. Decoding these complex data resulting from the analysis of tumor tissue complexity poses a challenge for developing novel therapeutic strategies that can counteract tumor evolution and cellular plasticity. To achieve this aim, the development of in vitro and in vivo cancer models that resemble the complexity of ITH is crucial in understanding the interplay of cells and their (microenvironment and, consequently, in testing the efficacy of new targeted treatments and novel strategies of tailoring combinations of treatments to the individual composition of the tumor. This challenging approach may be an important cornerstone in overcoming the development of pharmaco-resistances during multiple lines of treatment. In this paper, we report the latest advances in patient-derived 3D (PD3D cell cultures and patient-derived tumor xenografts (PDX as in vitro and in vivo models that can retain the genetic and phenotypic heterogeneity of the tumor tissue.

  7. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    Science.gov (United States)

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  8. Immune Consequences of Decreasing Tumor Vasculature with Antiangiogenic Tyrosine Kinase Inhibitors in Combination with Therapeutic Vaccines

    Science.gov (United States)

    Farsaci, Benedetto; Donahue, Renee N.; Coplin, Michael A.; Grenga, Italia; Lepone, Lauren M.; Molinolo, Alfredo A.; Hodge, James W.

    2014-01-01

    This study investigated the effects on the tumor microenvironment of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in 2 murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using 3 endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating T lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the tumor microenvironment, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can thus have a dramatic impact on the effectiveness of cancer immunotherapy. PMID:25092771

  9. Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity

    OpenAIRE

    Cameron, Ivan L; Markov, Marko S; Hardman, W Elaine

    2014-01-01

    Background This study provided additional data on the effects of a therapeutic electromagnetic field (EMF) device on growth and vascularization of murine 16/C mammary adenocarcinoma cells implanted in C3H/HeJ mice. Methods The therapeutic EMF device generated a defined 120 Hz semi sine wave pulse signal of variable intensity. Murine 16/C mammary adenocarcinoma tumor fragments were implanted subcutaneously between the scapulae of syngeneic C3H mice. Once the tumor grew to 100 mm3, daily EMF tr...

  10. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    OpenAIRE

    Nagendra Sanyasihally Ningaraj; Divya eKhaitan

    2013-01-01

    Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB) not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB). Studies in our laboratory have identifi...

  11. Mathematical modeling of tumor-induced immunosuppression by myeloid-derived suppressor cells: Implications for therapeutic targeting strategies.

    Science.gov (United States)

    Shariatpanahi, Seyed Peyman; Shariatpanahi, Seyed Pooya; Madjidzadeh, Keivan; Hassan, Moustapha; Abedi-Valugerdi, Manuchehr

    2018-04-07

    Myeloid-derived suppressor cells (MDSCs) belong to immature myeloid cells that are generated and accumulated during the tumor development. MDSCs strongly suppress the anti-tumor immunity and provide conditions for tumor progression and metastasis. In this study, we present a mathematical model based on ordinary differential equations (ODE) to describe tumor-induced immunosuppression caused by MDSCs. The model consists of four equations and incorporates tumor cells, cytotoxic T cells (CTLs), natural killer (NK) cells and MDSCs. We also provide simulation models that evaluate or predict the effects of anti-MDSC drugs (e.g., l-arginine and 5-Fluorouracil (5-FU)) on the tumor growth and the restoration of anti-tumor immunity. The simulated results obtained using our model were in good agreement with the corresponding experimental findings on the expansion of splenic MDSCs, immunosuppressive effects of these cells at the tumor site and effectiveness of l-arginine and 5-FU on the re-establishment of antitumor immunity. Regarding this latter issue, our predictive simulation results demonstrated that intermittent therapy with low-dose 5-FU alone could eradicate the tumors irrespective of their origins and types. Furthermore, at the time of tumor eradication, the number of CTLs prevailed over that of cancer cells and the number of splenic MDSCs returned to the normal levels. Finally, our predictive simulation results also showed that the addition of l-arginine supplementation to the intermittent 5-FU therapy reduced the time of the tumor eradication and the number of iterations for 5-FU treatment. Thus, the present mathematical model provides important implications for designing new therapeutic strategies that aim to restore antitumor immunity by targeting MDSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals.

    Science.gov (United States)

    Yin, Tao; He, Sisi; Liu, Xiaoling; Jiang, Wei; Ye, Tinghong; Lin, Ziqiang; Sang, Yaxiong; Su, Chao; Wan, Yang; Shen, Guobo; Ma, Xuelei; Yu, Min; Guo, Fuchun; Liu, Yanyang; Li, Ling; Hu, Qiancheng; Wang, Yongsheng; Wei, Yuquan

    2015-01-01

    Hemorrhage is a common clinical manifestation in patients with cancer. Intratumor hemorrhage has been demonstrated to be a poor prognostic factor for cancer patients. In this study, we investigated the role of RBCs and hemoglobin (Hb) in the process of tumor progression and therapeutical response. RBCs and Hb potently promoted tumor cell proliferation and syngenic tumor growth. RBCs and Hb activated the reactive oxygen species-NF-κB pathway in both tumor cells and macrophages. RBCs and Hb also induced chemoresistance mediated, in part, by upregulating ABCB1 gene expression. Tumor growth induced by RBCs was accompanied by an inflammatory signature, increased tumor vasculature, and influx of M2 macrophages. In both the peritoneal cavity and tumor microenvironment, extravascular RBCs rapidly recruited monocyte-macrophages into the lesion sites. In addition, RBCs and Hb increased several nucleotide-binding oligomerization domain-like receptors' expression and induced IL-1β release. Our results provide novel insights into the protumor function of RBCs and Hb as endogenous danger signals, which can promote tumor cell proliferation, macrophage recruitment, and polarization. Hemorrhage may represent a useful prognostic factor for cancer patients because of its role in tumor promotion and chemoresistance. Copyright © 2014 by The American Association of Immunologists, Inc.

  13. Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts.

    Science.gov (United States)

    Tseng, Chih-Wen; Trimble, Cornelia; Zeng, Qi; Monie, Archana; Alvarez, Ronald D; Huh, Warner K; Hoory, Talia; Wang, Mei-Cheng; Hung, Chien-Fu; Wu, T-C

    2009-05-01

    Current therapeutic approaches to treatment of patients with bulky cervical cancer are based on conventional in situ ablative modalities including cisplatin-based chemotherapy and radiation therapy. The 5-year survival of patients with nonresectable disease is dismal. Because over 99% of squamous cervical cancer is caused by persistent infection with an oncogenic strain of human papillomavirus (HPV), particularly type 16 and viral oncoproteins E6 and E7 are functionally required for disease initiation and persistence, HPV-targeted immune strategies present a compelling opportunity in which to demonstrate proof of principle. Sublethal doses of radiation and chemotherapeutic agents have been shown to have synergistic effect in combination with either vaccination against cancer-specific antigens, or with passive transfer of tumor-specific cytotoxic T lymphocytes (CTLs). Here, we explored the combination of low-dose radiation therapy with DNA vaccination with calreticulin (CRT) linked to the mutated form of HPV-16 E7 antigen (E7(detox)), CRT/E7(detox) in the treatment of E7-expressing TC-1 tumors. We observed that TC-1 tumor-bearing mice treated with radiotherapy combined with CRT/E7(detox) DNA vaccination generated significant therapeutic antitumor effects and the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of treated mice. Furthermore, treatment with radiotherapy was shown to render the TC-1 tumor cells more susceptible to lysis by E7-specific CTLs. In addition, we observed that treatment with radiotherapy during the second DNA vaccination generated the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of TC-1 tumor-bearing mice. Finally, TC-1 tumor-bearing mice treated with the chemotherapy in combination with radiation and CRT/E7(detox) DNA vaccination generate significantly enhanced therapeutic antitumor effects. The clinical implications of the study are discussed.

  14. Current issues of RNAi therapeutics delivery and development.

    Science.gov (United States)

    Haussecker, D

    2014-12-10

    12 years following the discovery of the RNAi mechanism in Man, a number of RNAi therapeutics development candidates have emerged with profiles suggesting that they could become drugs of significant medical importance for diseases like TTR amyloidosis, HBV, solid cancers, and hemophilia. Despite this robust progress, the perception of RNAi therapeutics has been on a roller-coaster ride driven not only by science, but also regulatory trends, the stock markets, and Big Pharma business development decisions [1]. This presentation provides an update on the current state of RNAi therapeutics development with a particular focus on what RNAi delivery can achieve today and key challenges to be overcome to expand therapeutic opportunities. The delivery of RNAi triggers to disease-relevant cell types clearly represents the rate-limiting factor in broadly expanding the applicability of RNAi therapeutics. Today, with at least 3 delivery options (lipid nanoparticles/LNPs, GalNAc-siRNA conjugates, Dynamic PolyConjugates/DPCs) for which profound gene knockdowns have been demonstrated in non-human primates and in the clinic, RNAi therapeutics should in principle be able to address most diseases related to gene expression in the liver. Given the central importance of the liver in systemic physiology, this already represents a significant therapeutic and commercial opportunity rivaling that of e.g. monoclonal antibodies. Beyond the liver, there is a reason to believe that current RNAi therapeutics technologies can address a number of solid tumors (e.g. LNPs), diseases of the eye (e.g. self-delivering RNAi triggers) as well as diseases involving the respiratory epithelium (e.g. aerosolized LNPs), certain phagocytic cells (LNPs), hematopoietic stem cells and their progeny (lentiviral DNA-directed RNAi), vascular endothelial cells (cationic lipoplexes), and certain cell types in the kidney (self-delivering RNAi triggers, DPCs; Table 1). Despite this success, there has been a sense that

  15. Neurocognitive effects of therapeutic irradiation for base of skull tumors

    International Nuclear Information System (INIS)

    Meyers, Christina A.; Geara, Fady; Wong Peifong; Morrison, William H.

    2000-01-01

    Purpose: To determine whether radiation therapy delivered to the paranasal sinuses causes any long-term impairment in neurocognitive function as a result of incidental brain irradiation. Methods and Materials: Nineteen patients who received paranasal sinus irradiation at least 20 months and up to 20 years before assessment were given a battery of neuropsychologic tests of cognitive function. Radiation was delivered by a three-field (one anteroposterior and two lateral) technique. The median radiation dose was 60 Gy (range 50-68 Gy) in fractions of 1.8 to 2 Gy. The volume of irradiated brain was calculated from planning computed tomography slices or simulation films. The results of the neuropsychologic tests were compared to normative control values. Results: Memory impairment was found in 80% of the patients, and one-third manifested difficulty with visual-motor speed, frontal lobe executive functions, and fine motor coordination. Two of the patients had frank brain necrosis with resultant dementia and blindness, and three had evidence of brain atrophy. Three of the fourteen patients without documented cerebral atrophy or necrosis were disabled from their normal activities. Three patients also developed pituitary dysfunction. Neurocognitive symptoms were related to the total dose of radiation delivered but not to the volume of brain irradiated, side of radiation boost, or chemotherapy treatment. The pattern of test findings was consistent with radiation injury to subcortical white matter. Conclusions: Radiation therapy for paranasal sinus cancer may cause delayed neurocognitive side effects. Currently, however, the development of severe adverse effects appears to be decreasing because of improvements in the techniques used to deliver radiation. Lowering the total dose and improving dose distributions should further decrease the incidence of delayed brain injury due to radiation

  16. Design of clinical trials for therapeutic cancer vaccines development.

    Science.gov (United States)

    Mackiewicz, Jacek; Mackiewicz, Andrzej

    2009-12-25

    Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate.

  17. Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer.

    Science.gov (United States)

    McKeage, Mark J; Baguley, Bruce C

    2010-04-15

    The unique characteristics of tumor vasculature represent an attractive target that may be exploited by vascular-targeting anticancer agents. A promising strategy involves the selective disruption of established tumor blood vessels by tumor-vascular disrupting agents (tumor-VDAs), which exhibit antivascular activity, resulting in inhibition of tumor blood flow and extensive necrosis within the tumor core. The tumor-VDA class can be subdivided into flavonoid compounds, which are related to flavone acetic acid, and tubulin-binding compounds. ASA404, of the flavonoid class, is the most advanced tumor-VDA in clinical development and has been evaluated preclinically and in several phase 1 and phase 2 studies. Preclinical studies have demonstrated the selective apoptosis of tumor endothelial cells and the inhibition of tumor blood flow. Synergistic activity was observed with ASA404 and with several chemotherapeutic agents, particularly taxanes. In clinical trials, compared with chemotherapy alone, ASA404 was tolerated well and produced improved activity in patients with nonsmall cell lung cancer when combined with paclitaxel and carboplatin. Phase 3 clinical trials are ongoing. Selectively targeting established tumor vasculature with tumor-VDAs represents a promising and innovative approach to improving the efficacy of standard anticancer therapies. (c) 2010 American Cancer Society.

  18. Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors.

    Science.gov (United States)

    Narayanasamy, Ganesh; Zhang, Xin; Meigooni, Ali; Paudel, Nava; Morrill, Steven; Maraboyina, Sanjay; Peacock, Loverd; Penagaricano, Jose

    2017-08-01

    Spatially fractionated radiation therapy (SFRT or grid therapy) has proven to be effective in management of bulky tumors. The aim of this project is to study the therapeutic ratio (TR) of helical Tomotherapy (HT)-based grid therapy using linear-quadratic cell survival model. HT-based grid (or HT-GRID) plan was generated using a patient-specific virtual grid pattern of high-dose cylindrical regions using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT-GRID irradiation to an open debulking field of an equivalent dose that result in the same tumor cell SF. TR was estimated from DVH data on ten HT-GRID patient plans with deep seated, bulky tumor. Dependence of the TR values on radiosensitivity of the tumor cells and prescription dose was analyzed. The mean ± standard deviation (SD) of TR was 4.0 ± 0.7 (range: 3.1-5.5) for the 10 patients with single fraction maximum dose of 20 Gy to GTV assuming a tumor cell SF at 2 Gy (SF2 t ) value of 0·5. In addition, the mean ± SD of TR values for SF2 t values of 0.3 and 0.7 were found to be 1 ± 0.1 and 18.0 ± 5.1, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the respective TR values to 2.0 ± 0.2 and 1.2 ± 0.04 for a SF2 t value of 0.5. HT-GRID therapy demonstrates a significant therapeutic advantage over uniform dose from an open field irradiation for the same tumor cell kill. TR increases with the radioresistance of the tumor cells and with prescription dose.

  19. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    Energy Technology Data Exchange (ETDEWEB)

    Witek, Matthew [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Blomain, Erik S.; Magee, Michael S.; Xiang, Bo; Waldman, Scott A. [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Snook, Adam E., E-mail: adam.snook@jefferson.edu [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2014-04-01

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responses were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance

  20. Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs.

    Science.gov (United States)

    Chen, Ling; Zang, Fengchao; Wu, Haoan; Li, Jianzhong; Xie, Jun; Ma, Ming; Gu, Ning; Zhang, Yu

    2018-01-25

    Micelle drugs based on a polymeric platform offer great advantages over liposomal drugs for tumor treatment. Although nearly all of the nanomedicines approved in the clinical use can passively target to the tumor tissues on the basis of an enhanced permeability and retention (EPR) effect, the nanodrugs have shown heterogenous responses in the patients. This phenomenon may be traced back to the EPR effect of tumor, which is extremely variable in the individuals from extensive studies. Nevertheless, there is a lack of experimental data describing the EPR effect and predicting its impact on therapeutic efficacy of nanoagents. Herein, we developed 32 nm magnetic iron oxide nanoparticles (MION) as a T 2 -weighted contrast agent to describe the EPR effect of each tumor by in vivo magnetic resonance imaging (MRI). The MION were synthesized by a thermal decomposition method and modified with DSPE-PEG2000 for biological applications. The PEGylated MION (Fe 3 O 4 @PEG) exhibited high r 2 of 571 mM -1 s -1 and saturation magnetization (M s ) of 94 emu g -1 Fe as well as long stability and favorable biocompatibility through the in vitro studies. The enhancement intensities of the tumor tissue from the MR images were quantitatively measured as TNR (Tumor/Normal tissue signal Ratio) values, which were correlated with the delay of tumor growth after intravenous administration of the PLA-PEG/PTX micelle drug. The results demonstrated that the group with the smallest TNR values (TNR EPR effect in patients for accurate medication guidance of micelle drugs in the future treatment of tumors.

  1. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    Science.gov (United States)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  2. Rhenium radioisotopes for therapeutic radiopharmaceutical development

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Pinkert, J.; Kropp, J.; Lin, W.Y.; Wang, S.Y.

    2001-01-01

    Rhenium-186 and rhenium-188 represent two important radioisotopes which are of interest for a variety of therapeutic applications in oncology, nuclear medicine and interventional cardiology. Rhenium-186 is directly produced in a nuclear reactor and the 90 hour half-life allows distribution to distant sites. The relatively low specific activity of rhenium-186 produced in most reactors, however, permits use of phosphonates, but limits use for labelled peptides and antibodies. Rhenium-188 has a much shorter 16.9 hour half-life which makes distribution from direct reactor production difficult. However, rhenium-188 can be obtained carrier-free from a tungsten-188/rhenium-188 generator, which has a long useful shelf-life of several months which is cost-effective, especially for developing regions. In this paper we discuss the issues associated with the production of rhenium-186- and rhenium-188 and the development and use of various radiopharmaceuticals and devices labelled with these radioisotopes for bone pain palliation, endoradiotherapy of tumours by selective catheterization and tumour therapy using radiolabelled peptides and antibodies, radionuclide synovectomy and the new field of vascular radiation therapy. (author)

  3. Pig models on intestinal development and therapeutics.

    Science.gov (United States)

    Yin, Lanmei; Yang, Huansheng; Li, Jianzhong; Li, Yali; Ding, Xueqing; Wu, Guoyao; Yin, Yulong

    2017-12-01

    The gastrointestinal tract plays a vital role in nutrient supply, digestion, and absorption, and has a crucial impact on the entire organism. Much attention is being paid to utilize animal models to study the pathogenesis of gastrointestinal diseases in response to intestinal development and health. The piglet has a body size similar to that of the human and is an omnivorous animal with comparable anatomy, nutritional requirements, and digestive and associated inflammatory processes, and displays similarities to the human intestinal microbial ecosystem, which make piglets more appropriate as an animal model for human than other non-primate animals. Therefore, the objective of this review is to summarize key attributes of the piglet model with which to study human intestinal development and intestinal health through probing into the etiology of several gastrointestinal diseases, thus providing a theoretical and hopefully practical, basis for further studies on mammalian nutrition, health, and disease, and therapeutics. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young piglets and humans, the piglet has been used as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Because of similarities in anatomy and physiology between pigs and mankind, more emphasises are put on how to use the piglet model for human organ transplantation research.

  4. Monte Carlo calculation of the maximum therapeutic gain of tumor antivascular alpha therapy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen-Yu; Oborn, Bradley M.; Guatelli, Susanna; Allen, Barry J. [Centre for Experimental Radiation Oncology, St. George Clinical School, University of New South Wales, Kogarah, New South Wales 2217 (Australia); Illawarra Cancer Care Centre, Wollongong, New South Wales 2522, Australia and Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Centre for Experimental Radiation Oncology, St. George Clinical School, University of New South Wales, Kogarah, New South Wales 2217 (Australia)

    2012-03-15

    Purpose: Metastatic melanoma lesions experienced marked regression after systemic targeted alpha therapy in a phase 1 clinical trial. This unexpected response was ascribed to tumor antivascular alpha therapy (TAVAT), in which effective tumor regression is achieved by killing endothelial cells (ECs) in tumor capillaries and, thus, depriving cancer cells of nutrition and oxygen. The purpose of this paper is to quantitatively analyze the therapeutic efficacy and safety of TAVAT by building up the testing Monte Carlo microdosimetric models. Methods: Geant4 was adapted to simulate the spatial nonuniform distribution of the alpha emitter {sup 213}Bi. The intraluminal model was designed to simulate the background dose to normal tissue capillary ECs from the nontargeted activity in the blood. The perivascular model calculates the EC dose from the activity bound to the perivascular cancer cells. The key parameters are the probability of an alpha particle traversing an EC nucleus, the energy deposition, the lineal energy transfer, and the specific energy. These results were then applied to interpret the clinical trial. Cell survival rate and therapeutic gain were determined. Results: The specific energy for an alpha particle hitting an EC nucleus in the intraluminal and perivascular models is 0.35 and 0.37 Gy, respectively. As the average probability of traversal in these models is 2.7% and 1.1%, the mean specific energy per decay drops to 1.0 cGy and 0.4 cGy, which demonstrates that the source distribution has a significant impact on the dose. Using the melanoma clinical trial activity of 25 mCi, the dose to tumor EC nucleus is found to be 3.2 Gy and to a normal capillary EC nucleus to be 1.8 cGy. These data give a maximum therapeutic gain of about 180 and validate the TAVAT concept. Conclusions: TAVAT can deliver a cytotoxic dose to tumor capillaries without being toxic to normal tissue capillaries.

  5. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Directory of Open Access Journals (Sweden)

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  6. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.

    Science.gov (United States)

    Taylor, Sophie; Spugnini, Enrico Pierluigi; Assaraf, Yehuda G; Azzarito, Tommaso; Rauch, Cyril; Fais, Stefano

    2015-11-01

    Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide

  7. Therapeutic potential and challenges of Natural killer cells in treatment of solid tumors

    Directory of Open Access Journals (Sweden)

    Andrea eGras Navarro

    2015-04-01

    Full Text Available Natural killer (NK cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing requiring one–to-one target engagement and site directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells (CSCs and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME and augment adaptive immune responses by promoting differentiation, activation and/ or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach.

  8. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue

    International Nuclear Information System (INIS)

    Fraenzel, W.; Gerlach, R.; Hein, H.J.; Schaller, H.G.

    2006-01-01

    Tumor irradiation of the head-neck area is accompanied by the development of a so-called radiation caries in the treated patients. In spite of conservative therapeutic measures, the process results in tooth destruction. The present study investigated the effects of irradiation on the demineralization and remineralization of the dental tissue. For this purpose, retained third molars were prepared and assigned either to a test group, which was exposed to fractional irradiation up to 60 Gy, or to a non-irradiated control group. Irradiated and non-irradiated teeth were then demineralized using acidic hydroxyl-cellulose gel; afterwards the teeth were remineralized using either Bifluorid12 registered or elmex gelee registered . The nanoindentation technique was used to measure the mechanical properties, hardness and elasticity, of the teeth in each of the conditions. The values were compared to the non-irradiated control group. Irradiation decreased dramatically the mechanical parameters of enamel and dentine. In non-irradiated teeth, demineralization had nearly the same effects of irradiation on the mechanical properties. In irradiated teeth, the effects of demineralization were negligible in comparison to non-irradiated teeth. Remineralization with Bifluorid12 registered or elmex gelee registered led to a partial improvement of the mechanical properties of the teeth. The enamel was more positively affected, by remineralization than the dentine. (orig.)

  9. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue

    Energy Technology Data Exchange (ETDEWEB)

    Fraenzel, W. [Dept. of Physics, Martin Luther Univ. Halle (Germany); Gerlach, R. [Univ. Clinic and Policlinic for Radiation Therapy, Martin Luther Univ. Halle (Germany); Hein, H.J. [Univ. Clinic and Policlinic for Orthopaedics and Physical Medicine, Martin Luther Univ. Halle (Germany); Schaller, H.G. [Dept. of Operative Dentistry and Periodontology, Martin Luther Univ. Halle (Germany)

    2006-07-01

    Tumor irradiation of the head-neck area is accompanied by the development of a so-called radiation caries in the treated patients. In spite of conservative therapeutic measures, the process results in tooth destruction. The present study investigated the effects of irradiation on the demineralization and remineralization of the dental tissue. For this purpose, retained third molars were prepared and assigned either to a test group, which was exposed to fractional irradiation up to 60 Gy, or to a non-irradiated control group. Irradiated and non-irradiated teeth were then demineralized using acidic hydroxyl-cellulose gel; afterwards the teeth were remineralized using either Bifluorid12 {sup registered} or elmex gelee {sup registered}. The nanoindentation technique was used to measure the mechanical properties, hardness and elasticity, of the teeth in each of the conditions. The values were compared to the non-irradiated control group. Irradiation decreased dramatically the mechanical parameters of enamel and dentine. In non-irradiated teeth, demineralization had nearly the same effects of irradiation on the mechanical properties. In irradiated teeth, the effects of demineralization were negligible in comparison to non-irradiated teeth. Remineralization with Bifluorid12 {sup registered} or elmex gelee {sup registered} led to a partial improvement of the mechanical properties of the teeth. The enamel was more positively affected, by remineralization than the dentine. (orig.)

  10. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines

    Science.gov (United States)

    Shimizu, K.; Fields, R. C.; Giedlin, M.; Mule, J. J.

    1999-03-01

    We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of non-toxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

  11. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.

    Science.gov (United States)

    Wu, Min; Frieboes, Hermann B; Chaplain, Mark A J; McDougall, Steven R; Cristini, Vittorio; Lowengrub, John S

    2014-08-21

    Vascularized tumor growth is characterized by both abnormal interstitial fluid flow and the associated interstitial fluid pressure (IFP). Here, we study the effect that these conditions have on the transport of therapeutic agents during chemotherapy. We apply our recently developed vascular tumor growth model which couples a continuous growth component with a discrete angiogenesis model to show that hypertensive IFP is a physical barrier that may hinder vascular extravasation of agents through transvascular fluid flux convection, which drives the agents away from the tumor. This result is consistent with previous work using simpler models without blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic fluid dynamics to show that tumors with larger lymphatic resistance increase the agent concentration more rapidly while also experiencing faster washout. In contrast, tumors with smaller lymphatic resistance accumulate less agents but are able to retain them for a longer time. The agent availability (area-under-the curve, or AUC) increases for less permeable agents as lymphatic resistance increases, and correspondingly decreases for more permeable agents. We also investigate the effect of vascular pathologies on agent transport. We show that elevated vascular hydraulic conductivity contributes to the highest AUC when the agent is less permeable, but to lower AUC when the agent is more permeable. We find that elevated interstitial hydraulic conductivity contributes to low AUC in general regardless of the transvascular agent transport capability. We also couple the agent transport with the tumor dynamics to simulate chemotherapy with the same vascularized tumor under different vascular pathologies. We show that tumors with an elevated interstitial hydraulic conductivity alone require the strongest dosage to shrink. We further show that tumors with elevated vascular hydraulic conductivity are more hypoxic during therapy and that the response

  12. Tumor Therapeutics Work as Stress Inducers to Enhance Tumor Sensitivity to Natural Killer (NK) Cell Cytolysis by Up-regulating NKp30 Ligand B7-H6.

    Science.gov (United States)

    Cao, Guoshuai; Wang, Jian; Zheng, Xiaodong; Wei, Haiming; Tian, Zhigang; Sun, Rui

    2015-12-11

    Immune cells are believed to participate in initiating anti-tumor effects during regular tumor therapy such as chemotherapy, radiation, hyperthermia, and cytokine injection. One of the mechanisms underlying this process is the expression of so-called stress-inducible immunostimulating ligands. Although the activating receptor NKG2D has been proven to play roles in tumor therapy through targeting its ligands, the role of NKp30, another key activating receptor, is seldom addressed. In this study, we found that the NKp30 ligand B7-H6 was widely expressed in tumor cells and closely correlated to their susceptibility to NK cell lysis. Further studies showed that treatment of tumor cells with almost all standard tumor therapeutics, including chemotherapy (cisplatin, 5-fluorouracil), radiation therapy, non-lethal heat shock, and cytokine therapy (TNF-α), could up-regulate the expression of B7-H6 in tumor cells and enhance tumor sensitivity to NK cell cytolysis. B7-H6 shRNA treatment effectively dampened sensitization of tumor cells to NK-mediated lysis. Our study not only reveals the possibility that tumor therapeutics work as stress inducers to enhance tumor sensitivity to NK cell cytolysis but also suggests that B7-H6 could be a potential target for tumor therapy in the future. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Therapeutic Targeting of AXL Receptor Tyrosine Kinase Inhibits Tumor Growth and Intraperitoneal Metastasis in Ovarian Cancer Models

    Directory of Open Access Journals (Sweden)

    Pinar Kanlikilicer

    2017-12-01

    Full Text Available Despite substantial improvements in the treatment strategies, ovarian cancer is still the most lethal gynecological malignancy. Identification of drug treatable therapeutic targets and their safe and effective targeting is critical to improve patient survival in ovarian cancer. AXL receptor tyrosine kinase (RTK has been proposed to be an important therapeutic target for metastatic and advanced-stage human ovarian cancer. We found that AXL-RTK expression is associated with significantly shorter patient survival based on the The Cancer Genome Atlas patient database. To target AXL-RTK, we developed a chemically modified serum nuclease-stable AXL aptamer (AXL-APTAMER, and we evaluated its in vitro and in vivo antitumor activity using in vitro assays as well as two intraperitoneal animal models. AXL-aptamer treatment inhibited the phosphorylation and the activity of AXL, impaired the migration and invasion ability of ovarian cancer cells, and led to the inhibition of tumor growth and number of intraperitoneal metastatic nodules, which was associated with the inhibition of AXL activity and angiogenesis in tumors. When combined with paclitaxel, in vivo systemic (intravenous [i.v.] administration of AXL-aptamer treatment markedly enhanced the antitumor efficacy of paclitaxel in mice. Taken together, our data indicate that AXL-aptamers successfully target in vivo AXL-RTK and inhibit its AXL activity and tumor growth and progression, representing a promising strategy for the treatment of ovarian cancer.

  14. Does Tumor Development Follow a Programmed Path?

    Science.gov (United States)

    Austin, Robert

    2011-03-01

    The initiation and progression of a tumor is a complex process, resembling the growth of a embryo in terms of the stages of development and increasing differentiation and somatic evolution of constituent cells in the community of cells that constitute the tumor. Typically we view cancer cells as rogue individuals violating the rules of the games played within an organism, but I would suggest that what we see is a programmed and algorithmic process. I will then question If tumor progression is dominated by the random acquisition of successive survival traits, or by a systematic and sequential unpacking of ``weapons'' from a pre-adapted ``toolkit'' of genetic and epigenetic potentialities? Can we then address this hypothesis by data mining solid tumors layer by layer? Support of the NSF and the NCI is gratefully acknowledged.

  15. Forced LIGHT expression in prostate tumors overcomes Treg mediated immunosuppression and synergizes with a prostate tumor therapeutic vaccine by recruiting effector T lymphocytes.

    Science.gov (United States)

    Yan, Lisa; Da Silva, Diane M; Verma, Bhavna; Gray, Andrew; Brand, Heike E; Skeate, Joseph G; Porras, Tania B; Kanodia, Shreya; Kast, W Martin

    2015-02-15

    LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown to activate immune cells and result in tumor regression in a virally-induced tumor model, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration toward an anti-tumoral milieu, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Real Time PCR was used to evaluate expression of forced LIGHT and other immunoregulatory genes in prostate tumors samples. For in vivo studies, adenovirus encoding murine LIGHT was injected intratumorally into TRAMP-C2 prostate cancer cell tumor bearing mice. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor-specific lymphocytes were quantified via ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. LIGHT expression peaked within 48 hr of infection, recruited effector T cells that recognized mouse prostate stem cell antigen (PSCA) into the tumor microenvironment, and inhibited infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated

  16. How will diagnostic and therapeutic oncology develop? Pt. 1

    International Nuclear Information System (INIS)

    Senekowitsch-Schmidtke, R.

    1998-01-01

    New developments in the field of tumor biology and gene therapy reveal that by somatic gene transfer every tumor cell can be transferred into a high immonogenic cell. The gene transfer leads to an activation of accessory signals in lymphocytes which can destroy the tumor cell. After transfection of tumor cells with 'suicide genes' untoxic virostatics can be phosphorylated by the viral thymidine kinase. Incorporation of the phosphorylated substance into DNA inhibits further cell replication. The transfection efficiency can be visualized by the retention of the F-18 labeled virostatics in the tumor tissue. For characterization of tumor cells a large number of tracers have been developed including radiolobeled aminoacids, nucleotides and target specific modified antibodies and peptides. Modern concepts of chemotherapy are changing from cytostatic therapy to pathogeneses-oriented strategies with regard to molecular and functional characteristics of the malignant cells. Such kind of therapies can interact with specific receptors and inhibit the signal transduction in tumor cells. (orig.) [de

  17. Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Nigg

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  18. Tumor blood vessel 'normalization' improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    International Nuclear Information System (INIS)

    Nigg, D.W.

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  19. Promising novel therapeutic approaches in the management of gastrointestinal stromal tumors.

    Science.gov (United States)

    Szucs, Zoltan; Thway, Khin; Fisher, Cyril; Bulusu, Ramesh; Constantinidou, Anastasia; Benson, Charlotte; van der Graaf, Winette Ta; Jones, Robin L

    2017-01-01

    Primary and secondary resistance to currently available licensed tyrosine kinase inhibitors poses a real clinical challenge in the management of advanced gastrointestinal stromal tumors. Within the frame of early phase clinical trials novel systemic treatments are currently being evaluated to target both the well explored and novel emerging downstream effectors of KIT and PDGFRA signaling. Alternative therapeutic approaches also include exploring novel inhibitors of the KIT/PDGFRA receptors, immune checkpoint and cyclin-dependent kinase inhibitors. The final clinical trial outcome data for these agents are highly anticipated. Integration of new diagnostic techniques into routine clinical practice can potentially guide tailored delivery of agents in the treatment of a highly polyclonal, heterogeneous disease such as heavily pretreated advanced gastrointestinal stromal tumor.

  20. Ocular complication with therapeutic irradiation of malignant tumor in the maxilla

    International Nuclear Information System (INIS)

    Takahashi, Hisashi; Konno, Akiyoshi

    1983-01-01

    This paper describes the ocular complications of 33 cases who had undergone therapeutic irradiation for malignant tumor in the maxilla. Irradiation was performed with megavoltage x-ray of 6000 rads or more. Among the 18 patients with intraorbital infiltration of the tumor, 8 showed severe ocular lesion. In contrast, only 3 among the 15 patients without intraorbital infiltration showed severe lesions. Retinopathy was observed in 13 patients. Funduscopic findings and fluorescein angiograms were similar to those in diabetic retinopathy. One case of retinopathy with neovascular change was treated with panretinal argon laser photocoagulation; however, it was not successful. Most of the 7 glaucoma patients had neovascular glaucoma. They had the worst prognosis. (author)

  1. The diagnosis and therapeutic gain using US, CT and MRI. Submucosal tumors in stomach and duodenum

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Shinichi; Nawano, Shigeru; Tajiri, Hisao; Boku, Narikazu; Muto, Manabu; Ohtsu, Atsushi; Yoshida, Shigeaki [National Cancer Center, Kashiwa, Chiba (Japan). Hospital East; Moriyama, Noriyuki

    1999-02-01

    The usefulness of the ultrasonography (US), the computed tomography (CT) and the magnetic resonance imaging (MRI) was examined. The subjects were 19 patients with submucosal leiomyoma and leiomyosarcoma in the stomach and duodenum which had surgery and were histologically diagnosed in the National Cancer Center Hospital. The detectability of the primary foci was 50% (8/16) in US, and 93% (13/14) in EUS (the endoscopic ultrasonography) which makes the structure of the stomach wall and the continuity of tumors clear. CT could detect the primary foci in 94% (16/17) and was excellent to know not only the presence of the remote metastases but also the exact size and expanse of the tumors. In all cases of leiomyoma, tumors were leiomyosarcoma when the internal structure was diagnosed to be heterogeneous by both EUS and CT, or either of them. The qualitative image diagnosis is not always easy in gastrointestinal submucosal tumors, but it is important to generally diagnose by the combination with several examinations in order to select the suitable therapeutic method. (K.H.)

  2. HemoHIM enhances the therapeutic efficacy of ionizing radiation treatment in tumor-bearing mice.

    Science.gov (United States)

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho

    2010-02-01

    Although radiotherapy is commonly used for a variety of cancers, radiotherapy alone does not achieve a satisfactory therapeutic outcome. In this study, we examined the possibility that HemoHIM can enhance the anticancer effects of ionizing radiation (IR) in melanoma-bearing mice. The HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs-Angelica Radix, Cnidium Rhizoma, and Paeonia Radix. Anticancer effects of HemoHIM were evaluated in melanoma-bearing mice exposed to IR. IR treatment (5 Gy at 7 days after melanoma cell injection) reduced the weight of the solid tumors, and HemoHIM supplementation with IR enhanced the decreases in tumor weight (P HemoHIM administration also increased the activity of natural killer cells and cytotoxic T cells, although the proportions of these cells in spleen were not different. In addition, HemoHIM administration increased the interleukin-2 and tumor necrosis factor-alpha secretion from lymphocytes stimulated with concanavalin A, which seemed to contribute to the enhanced efficacy of HemoHIM in tumor-bearing mice treated with IR. In conclusion, HemoHIM may be a beneficial supplement during radiotherapy for enhancing the antitumor efficacy.

  3. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development.

    Science.gov (United States)

    Wilkinson, Richard D A; Young, Andrew; Burden, Roberta E; Williams, Rich; Scott, Christopher J

    2016-04-21

    Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.

  4. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma

    OpenAIRE

    Redini, Fran?oise; Heymann, Dominique

    2015-01-01

    Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due t...

  5. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors

    International Nuclear Information System (INIS)

    Lee, Carol M; Tannock, Ian F

    2010-01-01

    Poor distribution of some anticancer drugs in solid tumors may limit their anti-tumor activity. Here we used immunohistochemistry to quantify the distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab in relation to blood vessels and to regions of hypoxia in human tumor xenografts. The antibodies were injected into mice implanted with human epidermoid carcinoma A431 or human breast carcinoma MDA-MB-231 transfected with ERBB2 (231-H2N) that express high levels of ErbB1 and ErbB2 respectively, or wild-type MDA-MB-231, which expresses intermediate levels of ErbB1 and low levels of ErbB2. The distribution of cetuximab in A431 xenografts and trastuzumab in 231-H2N xenografts was time and dose dependent. At early intervals after injection of 1 mg cetuximab into A431 xenografts, the concentration of cetuximab decreased with increasing distance from blood vessels, but became more uniformly distributed at later times; there remained however limited distribution and binding in hypoxic regions of tumors. Injection of lower doses of cetuximab led to heterogeneous distributions. Similar results were observed with trastuzumab in 231-H2N xenografts. In MDA-MB-231 xenografts, which express lower levels of ErbB1, homogeneity of distribution of cetuximab was achieved more rapidly. Cetuximab and trastuzumab distribute slowly, but at higher doses achieve a relatively uniform distribution after about 24 hours, most likely due to their long half-lives in the circulation. There remains poor distribution within hypoxic regions of tumors

  6. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting.

    Science.gov (United States)

    Hankey, William; Frankel, Wendy L; Groden, Joanna

    2018-03-01

    The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.

  7. MALDI Mass Spectrometry Imaging for Evaluation of Therapeutics in Colorectal Tumor Organoids

    Science.gov (United States)

    Liu, Xin; Flinders, Colin; Mumenthaler, Shannon M.; Hummon, Amanda B.

    2018-03-01

    Patient-derived colorectal tumor organoids (CTOs) closely recapitulate the complex morphological, phenotypic, and genetic features observed in in vivo tumors. Therefore, evaluation of drug distribution and metabolism in this model system can provide valuable information to predict the clinical outcome of a therapeutic response in individual patients. In this report, we applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to examine the spatial distribution of the drug irinotecan and its metabolites in CTOs from two patients. Irinotecan is a prodrug and is often prescribed as part of therapeutic regimes for patients with advanced colorectal cancer. Irinotecan shows a time-dependent and concentration-dependent permeability and metabolism in the CTOs. More interestingly, the active metabolite SN-38 does not co-localize well with the parent drug irinotecan and the inactive metabolite SN-38G. The phenotypic effect of irinotecan metabolism was also confirmed by a viability study showing significantly reduced proliferation in the drug treated CTOs. MALDI-MSI can be used to investigate various pharmaceutical compounds in CTOs derived from different patients. By analyzing multiple CTOs from a patient, this method could be used to predict patient-specific drug responses and help to improve personalized dosing regimens. [Figure not available: see fulltext.

  8. Recent developments in therapeutic applications of Cyanobacteria.

    Science.gov (United States)

    Raja, Rathinam; Hemaiswarya, Shanmugam; Ganesan, Venkatesan; Carvalho, Isabel S

    2016-05-01

    The cyanobacteria (blue-green algae) are photosynthetic prokaryotes having applications in human health with numerous biological activities and as a dietary supplement. It is used as a food supplement because of its richness in nutrients and digestibility. Many cyanobacteria (Microcystis sp, Anabaena sp, Nostoc sp, Oscillatoria sp., etc.) produce a great variety of secondary metabolites with potent biological activities. Cyanobacteria produce biologically active and chemically diverse compounds belonging to cyclic peptides, lipopeptides, fatty acid amides, alkaloids and saccharides. More than 50% of the marine cyanobacteria are potentially exploitable for extracting bioactive substances which are effective in killing cancer cells by inducing apoptotic death. Their role as anti-viral, anti-tumor, antimicrobial, anti-HIV and a food additive have also been well established. However, such products are at different stages of clinical trials and only a few compounds have reached to the market.

  9. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches

    International Nuclear Information System (INIS)

    Salo, Tuula; Vered, Marilena; Bello, Ibrahim O.; Nyberg, Pia; Bitu, Carolina Cavalcante; Zlotogorski Hurvitz, Ayelet; Dayan, Dan

    2014-01-01

    The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. - Highlights: • Tumor depth and budding, hypoxia and TME cells associate with worse prognosis. • Pro-tumoral CAFs and CAI cells aid proliferation, invasion and spread hypoxia. • Some ECM-bound factors exert pro-angiogenic or pro-tumor activities. • Tumor spread is greatly dependent on ECM proteolysis, mediated by TME cells. • Direct targeting of TME components for treatment is still experimental

  10. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Tuula, E-mail: Tuula.salo@oulu.fi [Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu (Finland); Oulu University Central Hospital, Oulu (Finland); Institute of Dentistry, University of Helsinki, Helsinki (Finland); Vered, Marilena [Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan (Israel); Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel); Bello, Ibrahim O. [Department of Oral Medicine and Diagnostic Sciences, King Saud University, Riyadh (Saudi Arabia); Nyberg, Pia [Oulu University Central Hospital, Oulu (Finland); Bitu, Carolina Cavalcante [Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu (Finland); Zlotogorski Hurvitz, Ayelet [Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Beilinson Campus, Petah Tikva (Israel); Dayan, Dan [Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-07-15

    The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. - Highlights: • Tumor depth and budding, hypoxia and TME cells associate with worse prognosis. • Pro-tumoral CAFs and CAI cells aid proliferation, invasion and spread hypoxia. • Some ECM-bound factors exert pro-angiogenic or pro-tumor activities. • Tumor spread is greatly dependent on ECM proteolysis, mediated by TME cells. • Direct targeting of TME components for treatment is still experimental.

  11. Galectin-3 as a Potential Therapeutic Target in Tumors Arising from Malignant Endothelia

    Directory of Open Access Journals (Sweden)

    Kim D. Johnson

    2007-08-01

    Full Text Available Angiosarcoma (ASA in humans, hemangiosarcoma (HSA in dogs are deadly neoplastic diseases characterized by an aggressive growth of malignant cells with endothelial phenotype, widespread metastasis, poor response to chemotherapy. Galectin-3 (Gal-3, a p-galactoside-binding lectin implicated in tumor progression, metastasis, endothelial cell biology, angiogenesis, regulation of apoptosis, neoplastic cell response to cytotoxic drugs, has not been studied before in tumors arising from malignant endothelia. Here, we tested the hypothesis that Gal-3 could be widely expressed in human ASA, canine HSA, could play an important role in malignant endothelial cell biology. Immunohistochemical analysis demonstrated that 100% of the human ASA (10 of 10, canine HSA (17 of 17 samples analyzed expressed Gal-3. Two carbohydrate-based Gal-3 inhibitors, modified citrus pectin (MCP, lactulosyl-l-leucine (LL, caused a dose-dependent reduction of SVR murine ASA cell clonogenic survival through the inhibition of Gal-3 antiapoptotic function. Furthermore, both MCP, LL sensitized SVR cells to the cytotoxic drug doxorubicin to a degree sufficient to reduce the in vitro IC50 of doxorubicin by 10.7-fold, 3.64old, respectively. These results highlight the important role of Gal-3 in the biology of ASA, identify Gal-3 as a potential therapeutic target in tumors arising from malignant endothelial cells.

  12. Tumor Progression Locus 2 (Tpl2 Kinase as a Novel Therapeutic Target for Cancer: Double-Sided Effects of Tpl2 on Cancer

    Directory of Open Access Journals (Sweden)

    Hye Won Lee

    2015-02-01

    Full Text Available Tumor progression locus 2 (Tpl2 is a mitogen-activated protein kinase (MAPK kinase kinase (MAP3K that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.

  13. A drug development perspective on targeting tumor-associated myeloid cells.

    Science.gov (United States)

    Majety, Meher; Runza, Valeria; Lehmann, Christian; Hoves, Sabine; Ries, Carola H

    2018-02-01

    Despite decades of research, cancer remains a devastating disease and new treatment options are needed. Today cancer is acknowledged as a multifactorial disease not only comprising of aberrant tumor cells but also the associated stroma including tumor vasculature, fibrotic plaques, and immune cells that interact in a complex heterotypic interplay. Myeloid cells represent one of the most abundant immune cell population within the tumor stroma and are equipped with a broad functional repertoire that promotes tumor growth by suppressing cytotoxic T cell activity, stimulating neoangiogenesis and tissue remodeling. Therefore, myeloid cells have become an attractive target for pharmacological intervention. In this review, we summarize the pharmacological approaches to therapeutically target tumor-associated myeloid cells with a focus on advanced programs that are clinically evaluated. In addition, for each therapeutic strategy, the preclinical rationale as well as advantages and challenges from a drug development perspective are discussed. © 2017 Federation of European Biochemical Societies.

  14. INFLAMMATION AS A THERAPEUTIC TARGET IN THE COMPLEX TREATMENT OF MALIGNANT TUMORS

    Directory of Open Access Journals (Sweden)

    O. E. Savelieva

    2017-01-01

    Full Text Available In this review, we analyzed the role of inflammation in carcinogenesis, tumor development, and metastasis. In addition, the mechanisms of non-steroidal anti-inflammatory drugs (NSAIDs and the reasons of their contradictory influence on cancers were discussed. We summarized the numerous data about effectiveness of anti-inflammatory drugs for the prevention and additional therapy of tumor diseases. In particular, divergent effects of NSAIDs may be due to the peculiarities of immune-inflammatory responses that are realized in carcinogenesis and tumor development that have yet to be studied. We also discussed the selectivity of NSAID effects on different cancers and opposite effects of anticancer drugs with similar mechanisms of action. Apparently, the unsuccessful use of NSAIDs in cancer prevention and therapy are more specific for squamous cell carcinomas. Based on the literature, we provided significant clinical findings regarding the need of NSAID use in the current therapy of certain cancers and the determination of molecular predictors of the drug effect. In fact, anti-inflammatory therapy could eliminate the factors that contribute to the appearance of invasive and metastatic tumor cells, cancer and premetastatic niches and thus prevent metastasis and recurrence. At present, some non-selective (aspirin and selective (celecoxib NSAIDs are highly promising in the therapy of solid tumors

  15. Radiofrequency ablation of liver tumors by using monopolar perfusion electrode:an analysis of therapeutic results

    International Nuclear Information System (INIS)

    Luo Rongguang; Gu Yangkui; Gao Fei; Zhang Liang; Zhao Ming; Fan Weijun; Wu Peihong; Huang Jinhua

    2010-01-01

    Objective: To investigate the clinical value of CT-guided radiofrequency ablation by using monopolar perfusion electrode in treating liver tumors. Methods: From January 2008 to December 2008, 24 patients with 37 lesions of liver tumors were treated with radiofrequency ablation by using monopolar perfusion electrode (RITA UniBlate). Of the 24 patients,solitary lesion was seen in 14, two lesions in 7 and three lesions in 3. Among 37 lesions,the maximum diameter of the lesion ≤ 3 cm, 3.1∼5 cm and > 5 cm was determined in 24, 8 and 5, respectively. The changes of the tumor size and the AFP level were observed. A follow-up lasting for 12 months was conducted. Results: After radiofrequency ablation twenty-two lesions (22/37, 59.5%) were completely ablated, of which nineteen tumors (19/24, 79.2%) were smaller than 3 cm in diameter, two tumors (2 / 8, 25%) had a diameter between 3.1 cm and 5 cm, one tumor (1 / 5, 20%) was larger than 5 cm. Fifteen tumors (15 / 37, 40.5%) were not completely ablated. During the follow-up period of 12 months, fifteen patients (15 / 24, 62.5%) remained alive and nine patients died, of whom the survival time was less than 6 months in six and was 6 -12 months in 4. After radiofrequency ablation, the AFP level decreased to normal level in 5 patients (5 / 10, 50%), and mild decrease of AFP, but still higher than normal,was seen in 3 patients (3 / 10, 30%). Of 10 patients who had a positive AFP test, 2 (2 / 10, 10%) showed a continuous rise in the AFP level. After radiofrequency ablation, one patient developed a minor hepatic subcapsular bleeding,and all patients complained of different degrees of fever and upper abdominal pain. Conclusion: CT-guided radiofrequency ablation by using monopolar perfusion electrode is a minimally-invasive technique with reliable short-term results and fewer complications. Therefore, it is a safe and effective local treatment for liver cancer. For tumors smaller than 3 cm in diameter complete ablation can be

  16. Development of the Fibulin-3 protein therapeutics of non small cell lung cancer stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kugchan; Jung, Il Lae; Kim, Seo Yeon; Choi, Su Im; Lee, Jae Ha

    2013-09-15

    This study focuses on developing an efficient bioprocess for large-scale production of fibulin-3 using Chinese Hamster Ovary cell expression system and evaluating its therapeutic potential for the treatment of cancer. The specific aims are as follows: Isolation and establishment of CSCs using FACS based on cell surface markers and high ALDH1 activity. Identification and characterization of lung cancer stem cells that acquire features of CSC upon exposure to ionizing radiation. Evaluation of the fibulin-3 effects on the stem traits and signaling pathways required for the generation and maintenance of CSCs. In vivo validation of fivulin-3 for tumor prognosis and therapeutic efficacy against lung cancer using animal model.

  17. The therapeutic relationship: historical development and contemporary significance.

    Science.gov (United States)

    O'Brien, A J

    2001-04-01

    The therapeutic relationship is a concept held by many to be fundamental to the identity of mental health nurses. While the therapeutic relationship was given formal expression in nursing theory in the middle of the last century, its origins can be traced to attendants' interpersonal practices in the asylum era. The dominance of medical understandings of mental distress, and the working-class status of asylum attendants, prevented the development of an account of mental health nursing based on attendants' relationships with asylum inmates. It was left to Peplau and other nursing theorists to describe mental health nursing as a therapeutic relationship in the 1940s and later. Some distinctive features of colonial life in New Zealand suggest that the ideal of the attendant as the embodiment of bourgeoisie values seems particularly unlikely to have been realized in the New Zealand context. However, New Zealand literature from the 20th century shows that the therapeutic relationship, as part of a general development of a therapeutic discourse, came to assume a central place in conceptualizations of mental health nursing. While the therapeutic relationship is not by itself a sufficient basis for professional continuity, it continues to play a fundamental role in mental health nurses' professional identity. The way in which the therapeutic relationship is articulated in the future will determine the meaning of the therapeutic relationship for future generations of mental health nurses.

  18. A Natural CCR2 Antagonist Relieves Tumor-associated Macrophage-mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer

    Directory of Open Access Journals (Sweden)

    Wenbo Yao

    2017-08-01

    Full Text Available Hepatocellular carcinoma (HCC is a common malignant tumor in the digestive tract with limited therapeutic choices. Although sorafenib, an orally administered multikinase inhibitor, has produced survival benefits for patients with advanced HCC, favorable clinical outcomes are limited due to individual differences and resistance. The application of immunotherapy, a promising approach for HCC is urgently needed. Macrophage infiltration, mediated by the CCL2/CCR2 axis, is a potential immunotherapeutic target. Here, we report that a natural product from Abies georgei, named 747 and related in structure to kaempferol, exhibits sensitivity and selectivity as a CCR2 antagonist. The specificity of 747 on CCR2 was demonstrated via calcium flux, the binding domain of CCR2 was identified in an extracellular loop by chimera binding assay, and in vivo antagonistic activity of 747 was confirmed through a thioglycollate-induced peritonitis model. In animals, 747 elevated the number of CD8+ T cells in tumors via blocking tumor-infiltrating macrophage-mediated immunosuppression and inhibited orthotopic and subcutaneous tumor growth in a CD8+ T cell-dependent manner. Further, 747 enhanced the therapeutic efficacy of low-dose sorafenib without obvious toxicity, through elevating the numbers of intra-tumoral CD8+ T cells and increasing death of tumor cells. Thus, we have discovered a natural CCR2 antagonist and have provided a new perspective on development of this antagonist for treatment of HCC. In mouse models of HCC, 747 enhanced the tumor immunosuppressive microenvironment and potentiated the therapeutic effect of sorafenib, indicating that the combination of an immunomodulator with a chemotherapeutic drug could be a new approach for treating HCC.

  19. Combined anti-tumor therapeutic effect of targeted gene, hyperthermia, radionuclide brachytherapy in breast carcinoma

    International Nuclear Information System (INIS)

    Chen Daozhen; Tang Qiusha; Xiang Jingying; Xu Fei; Zhang Li; Wang Junfeng

    2011-01-01

    Objective: To investigate the antitumor therapeutic effect of combined therapy of magnetic induction heating by nano-magnetic particles, herpes simplex virus thymidine kinase gene (HSV-tk suicide gene) and internal radiation in mice bearing MCF-7 breast carcinoma. Methods: The transfection reagents, plasmids heat shock protein-HSV-tk (pHSP-HSV-tk), ferroso-ferric oxide nano-magnetic fluid flow and 188 Re-ganciclovir-bovine serum albumin-nanopaticles (GCV-BSA-NP) were prepared. The heating experiments in vivo were carried out using ferroso-ferric oxide nano-magnetic fluid flow. Sixty mice tumor models bearing MCF-7 breast carcinoma were established and randomly divided into six groups. Group A was the control group, B was gene transfection therapy group, C was hyperthermia group, D was gene transfection therapy combined with radionuclide brachytherapy group, E was gene therapy combined with hyperthermia group, and F was gene therapy, hyperthermia combined with radionuclide brachytherapy group. The tumor growth, tumor mass and histopathological changes were evaluated. The expression of HSV-tk in the groups of B, D, E and F was detected by RT-PCR. Poisson distribution and one-way analysis of variance (ANOVA) were used for statistical analysis by SPSS 10.0 software. Results: In the animal heating experiments, the temperature of tumor increased up to 39.6 degree C, 43.2 degree C, and 48.1 degree C quickly with different injected doses (2, 4 and 6 mg respectively) of nano-magnetic particles and maintained for 40 min. The temperature of tumor tissue reduced to 36.8 degree C, 37.5 degree C and 37.8 degree C in 10 min when alternating magnetic field (AMF) stopped. The tumor mass in Groups C ((452.50±30.29) mg), D ((240.98±35.32)mg), E((231.87±27.41) mg) and F ((141.55±23.78) mg) were much lower than that in Group A ((719.12±22.65) mg) (F=800.07, P<0.01), with the most significant treatment effect in Group F.The tumor mass in Group B((684.05±24.02) mg) was higher than

  20. Gamma knife radiosurgery for glomus jugulare tumors: therapeutic advantages of minimalism in the skull base.

    Science.gov (United States)

    Sharma, Manish S; Gupta, A; Kale, S S; Agrawal, D; Mahapatra, A K; Sharma, B S

    2008-01-01

    Glomus jugulare (GJ) tumors are paragangliomas found in the region of the jugular foramen. Surgery with/without embolization and conventional radiotherapy has been the traditional management option. To analyze the efficacy of gamma knife radiosurgery (GKS) as a primary or an adjunctive form of therapy. A retrospective analysis of patients who received GKS at a tertiary neurosurgical center was performed. Of the 1601 patients who underwent GKS from 1997 to 2006, 24 patients with GJ underwent 25 procedures. The average age of the cohort was 46.6 years (range, 22-76 years) and the male to female ratio was 1:2. The most common neurological deficit was IX, X, XI cranial nerve paresis (15/24). Fifteen patients received primary GKS. Mean tumor size was 8.7 cc (range 1.1-17.2 cc). The coverage achieved was 93.1% (range 90-97%) using a mean tumor margin dose of 16.4 Gy (range 12-25 Gy) at a mean isodose of 49.5% (range 45-50%). Thirteen patients (six primary and seven secondary) were available for follow-up at a median interval of 24 months (range seven to 48 months). The average tumor size was 7.9 cc (range 1.1-17.2 cc). Using a mean tumor margin dose of 16.3 Gy (range 12-20 Gy) 93.6% coverage (range 91-97%) was achieved. Six patients improved clinically. A single patient developed transient trigeminal neuralgia. Magnetic resonance imaging follow-up was available for 10 patients; seven recorded a decrease in size. There was no tumor progression. Gamma knife radiosurgery is a safe and effective primary and secondary modality of treatment for GJ.

  1. Impact of the scintigraphy of somatostatin receptors upon the therapeutic strategy in patients bearing digestive endocrine tumors

    International Nuclear Information System (INIS)

    Lebtahi, R.; Cadiot, G.; Genin, R.; Delahaye, N.; Faraggi, M.; Daou, D.; Peker, C.; Migon, M.; Le Guludec, D.

    1997-01-01

    The scintigraphy of somatostatin receptors (SSR) is a sensible method for detecting the gastroenteric-pancreatic endocrine tumors and their metastases. The aim of this study is to evaluate the clinical impact of the results of SSR in taking patients in therapeutic charge. A hundred and sixty patients bearing biologically and/or histologically proved digestive endocrine tumors were prospectively studied. The patients were classified in 3 groups: group I - 90 patients with no known metastases; group II - 59 patients with liver metastases and group III - 11 patients with known extra-hepatic metastases. The results of the scintigraphy were compared with those of conventional imaging. The following results were obtained: in group 1 (90 patients) the conventional imaging has allowed detecting 53 primitive tumors in 44 patients. The SSR visualized 68% of these sites and has detected 26 supplementary primitive sites in 20 patients and 29 metastatic sites in 25 patients. In group II the scintigraphy has detected 95% of hepatic metastases and revealed 23 new metastasis sites and 18/59 patients. In group III the scintigraphy has detected 11 new sites in 7 patients. The results of scintigraphy modified the patient's classification in 38 cases (24%). The therapeutic strategy was modified for 40 patients (25%). In conclusion, the scintigraphy of somatostatin receptors is able to detect a significant number of digestive endocrine tumors what has important implications for therapeutical planning of the treatment of patients. It must be carried out during pre-therapeutic extension examination of these tumors

  2. Recent developments in Alzheimer's disease therapeutics

    Directory of Open Access Journals (Sweden)

    Aisen Paul S

    2009-02-01

    Full Text Available Abstract Alzheimer's disease is a devastating neurological disorder that affects more than 37 million people worldwide. The economic burden of Alzheimer's disease is massive; in the United States alone, the estimated direct and indirect annual cost of patient care is at least $100 billion. Current FDA-approved drugs for Alzheimer's disease do not prevent or reverse the disease, and provide only modest symptomatic benefits. Driven by the clear unmet medical need and a growing understanding of the molecular pathophysiology of Alzheimer's disease, the number of agents in development has increased dramatically in recent years. Truly *disease-modifying' therapies that target the underlying mechanisms of Alzheimer's disease have now reached late stages of human clinical trials. Primary targets include beta-amyloid, whose presence and accumulation in the brain is thought to contribute to the development of Alzheimer's disease, and tau protein which, when hyperphosphorylated, results in the self-assembly of tangles of paired helical filaments also believed to be involved in the pathogenesis of Alzheimer's disease. In this review, we briefly discuss the current status of Alzheimer's disease therapies under study, as well the scientific context in which they have been developed.

  3. Affinity-tuning leukocyte integrin for development of safe therapeutics

    Science.gov (United States)

    Park, Spencer

    Much attention has been given to the molecular and cellular pathways linking inflammation with cancer and the local tumor environment to identify new target molecules that could lead to improved diagnosis and treatment. Among the many molecular players involved in the complex response, central to the induction of inflammation is intercellular adhesion molecule (ICAM)-1, which is of particular interest for its highly sensitive and localized expression in response to inflammatory signals. ICAM-1, which has been implicated to play a critical role in tumor progression in various types of cancer, has also been linked to cancer metastases, where ICAM-1 facilitates the spread of metastatic cancer cells to secondary sites. This unique expression profile of ICAM-1 throughout solid tumor microenvironment makes ICAM-1 an intriguing molecular target, which holds great potential as an important diagnostic and therapeutic tool. Herein, we have engineered the ligand binding domain, or the inserted (I) domain of a leukocyte integrin, to exhibit a wide range of monovalent affinities to the natural ligand, ICAM-1. Using the resulting I domain variants, we have created drug and gene delivery nanoparticles, as well as targeted immunotherapeutics that have the ability to bind and migrate to inflammatory sites prevalent in tumors and the associated microenvironment. Through the delivery of diagnostic agents, chemotherapeutics, and immunotherapeutics, the following chapters demonstrate that the affinity enhancements achieved by directed evolution bring the affinity of I domains into the range optimal for numerous applications.

  4. Advances in Therapeutic Development for Radiation Cystitis.

    Science.gov (United States)

    Rajaganapathy, Bharathi Raja; Jayabalan, Nirmal; Tyagi, Pradeep; Kaufman, Jonathan; Chancellor, Michael B

    2014-01-01

    Radiation treatment for pelvic malignancies is typically associated with radiation injury to urinary bladder that can ultimately lead to radiation cystitis (RC). The late sequelae of radiation therapy may take many years to develop and include bothersome storage symptoms such as hematuria, which may be life-threatening in severe cases of hemorrhagic cystitis. Although no definitive treatment is currently available, various interventions are used for radiation and hemorrhagic cystitis including blood transfusion, bladder irrigation, intravesical instillation of substances such as alum, silver nitrate, prostaglandins or formalin, and fulguration of intravesical bleeding sites and surgery options such as supravesical urinary diversions and cystectomy. Effects of non-surgical treatments for radiation and hemorrhagic cystitis are of modest success and studies are lacking to control the effects caused by RC. When such measures have proven ineffective, use of bladder botulinum toxin injection has been reported. New therapy, such as intravesical immunosuppression with local tacrolimus formulation is being developed for the treatment of radiation hemorrhagic cystitis. © 2013 Wiley Publishing Asia Pty Ltd.

  5. Nonviral gene therapy in vivo with PAM-RG4/apoptin as a potential brain tumor therapeutic.

    Science.gov (United States)

    An, Songhie; Nam, Kihoon; Choi, Sunghyun; Bai, Cheng Z; Lee, Yan; Park, Jong-Sang

    2013-01-01

    Glioma is still one of the most complicated forms of brain tumor to remove completely due to its location and the lack of an efficient means to specifically eliminate tumor cells. For these reasons, this study has examined the effectiveness of a nonviral gene therapy approach utilizing a tumor-selective killer gene on a brain tumor xenograft model. The therapeutic apoptin gene was recombined into the JDK plasmid and delivered into human brain tumor cells (U87MG) by using a polyamidoamine dendrimer with an arginine surface (PAM-RG4). Studies in vitro showed that the PAM-RG4/apoptin plasmid polyplex exhibited a particularly high transfection activity of .40%. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, 4',6-Diamidino-2-phenylindole (DAPI) TUNEL assay, DAPI staining, and caspase-3 activity assay verified that the tumor cells had undergone apoptosis induced by apoptin. For in vivo studies, the polyplex was injected into tumors, which were induced by injecting U87MG cells intradermally into nude mice. Based on hematoxylin and eosin staining, epidermal growth factor receptor immunohistochemistry results and tumor volume measurement results, tumor growth was effectively inhibited and no specific edema, irritation, or other harm to the skin was observed after polyplex injection. The in vivo expression of apoptin and the induction of apoptosis were verified by reverse-transcription polymerase chain reaction analysis, TUNEL assay, and DAPI staining. The PAM-RG4/apoptin gene polyplex is a strong candidate for brain tumor therapeutics because of the synergistic effect of the carrier's high transfection efficiency (35%-40%) in glioma cells and the selective apoptosis-inducing activity of apoptin in tumor cells.

  6. Development of Class IIa Bacteriocins as Therapeutic Agents

    OpenAIRE

    Christopher T. Lohans; John C. Vederas

    2012-01-01

    Class IIa bacteriocins have been primarily explored as natural food preservatives, but there is much interest in exploring the application of these peptides as therapeutic antimicrobial agents. Bacteriocins of this class possess antimicrobial activity against several important human pathogens. Therefore, the therapeutic development of these bacteriocins will be reviewed. Biological and chemical modifications to both stabilize and increase the potency of bacteriocins are discussed, as well as ...

  7. Efficient Production of an Engineered Apoptin from Chicken Anemia Virus in a Recombinant E. coli for Tumor Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Lee Meng-Shiou

    2012-06-01

    premyelocytic leukemia HL-60 cells to enter apoptosis. Conclusions On expression in E. coli, purified recombinant TAT-Apoptinopt that has been fused to a GST tag and had its codons optimized, was found to have great potential. This protein may in the future allow the development of a therapeutic protein that is able to specifically kill tumor cells.

  8. [The development of therapeutic vaccine for hepatitis C virus].

    Science.gov (United States)

    Kimura, Kiminori; Kohara, Michinori

    2012-10-01

    Chronic hepatitis C caused by infection with the hepatitis C virus(HCV)is a global health problem. HCV causes persistent infection that can lead to chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The therapeutic efficacy of antiviral drugs is not optimal in patients with chronic infection; furthermore, an effective vaccine has not yet been developed. To design an effective HCV vaccine, generation of a convenient animal model of HCV infection is necessary. Recently, we used the Cre/loxP switching system to generate an immunocompetent mouse model of HCV expression, thereby enabling the study of host immune responses against HCV proteins. At present vaccine has not yet been shown to be therapeutically effective against chronic HCV infection. We examined the therapeutic effects of a recombinant vaccinia virus(rVV)encoding HCV protein in a mouse model. we generated rVVs for 3 different HCV proteins and found that one of the recombinant viruses encoding a nonstructural protein(rVV-N25)resolved pathological chronic hepatitis C symptoms in the liver. We propose the possibility that rVV-N25 immunization has the potential for development of an effective therapeutic vaccine for HCV induced chronic hepatitis. The utilization of the therapeutic vaccine can protect progress to chronic hepatitis, and as a consequence, leads to eradication of hepatocellular carcinoma. In this paper, we summarized our current study for HCV therapeutic vaccine and review the vaccine development to date.

  9. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma.

    Science.gov (United States)

    Liang, Chao; Li, Fangfei; Wang, Luyao; Zhang, Zong-Kang; Wang, Chao; He, Bing; Li, Jie; Chen, Zhihao; Shaikh, Atik Badshah; Liu, Jin; Wu, Xiaohao; Peng, Songlin; Dang, Lei; Guo, Baosheng; He, Xiaojuan; Au, D W T; Lu, Cheng; Zhu, Hailong; Zhang, Bao-Ting; Lu, Aiping; Zhang, Ge

    2017-12-01

    Osteosarcoma (OS) is a highly aggressive pediatric cancer, characterized by frequent lung metastasis and pathologic bone destruction. Vascular endothelial growth factor A (VEGFA), highly expressed in OS, not only contributes to angiogenesis within the tumor microenvironment via paracrine stimulation of vascular endothelial cells, but also acts as an autocrine survival factor for tumor cell themselves, thus making it a promising therapeutic target for OS. CRISPR/Cas9 is a versatile genome editing technology and holds tremendous promise for cancer treatment. However, a major bottleneck to achieve the therapeutic potential of the CRISPR/Cas9 is the lack of in vivo tumor-targeted delivery systems. Here, we screened an OS cell-specific aptamer (LC09) and developed a LC09-functionalized PEG-PEI-Cholesterol (PPC) lipopolymer encapsulating CRISPR/Cas9 plasmids encoding VEGFA gRNA and Cas9. Our results demonstrated that LC09 facilitated selective distribution of CRISPR/Cas9 in both orthotopic OS and lung metastasis, leading to effective VEGFA genome editing in tumor, decreased VEGFA expression and secretion, inhibited orthotopic OS malignancy and lung metastasis, as well as reduced angiogenesis and bone lesion with no detectable toxicity. The delivery system simultaneously restrained autocrine and paracrine VEGFA signaling in tumor cells and could facilitate translating CRISPR-Cas9 into clinical cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Solitary fibrous tumor: A center's experience and an overview of the symptomatology, the diagnostic and therapeutic procedures of this rare tumor

    Directory of Open Access Journals (Sweden)

    Wolfgang Hohenforst-Schmidt

    2017-01-01

    Full Text Available Solitary Fibrous Tumor of the Pleura (SFTP is a rare tumor of the pleura. Worldwide about 800 patients diagnosed with this oncological entity have been described in the existing literature. We report our center's 13 year experience. During this time three patients suffering from this rare disease have been treated in our department. All patients were asymptomatic and their diagnosis was initially triggered by a random finding in a routine chest x-ray. The diagnosis was set preoperatively through a needle biopsy under computer tomography (CT guidance. The tumors were resected surgically though video-assisted thoracoscopic surgery (VATS or thoracotomy. Because of the lack of specific guidelines due to the rarity of the disease a long-term, systematic follow-up was recommended and performed. Parallel an overview of the diagnostic and therapeutic procedures of the rare tumor is made.

  11. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-α (TNF-α in Major Depressive Disorder: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Ke Ma

    2016-05-01

    Full Text Available Major depressive disorder (MDD is characterized by mood, vegetative, cognitive, and even psychotic symptoms and signs that can cause substantial impairments in quality of life and functioning. Up to now, the exact pathogenesis of MDD remains poorly understood. Recent research has begun to reveal that the pro-inflammatory cytokines, particularly, tumor necrosis factor-α (TNF-α, play an integral role in the pathophysiology of depressive disorders and the mechanism of antidepressant treatment. On the base of several observations: it is found that subsets of MDD patients have enhanced plasma levels TNF-α; antidepressant treatments had linked with the decline of TNF-α; central administration of TNF-α gives rise to sickness behavior which shares features with depression; and a blockade of it can ameliorate depressive symptomatology in animal models and clinical trials. In this review article, we focus on recent evidence linking TNF-α and MDD looking at data from animal and clinical studies, illustrating the pathophysiological role, susceptibility and its therapeutic application in depression. We conclude by discussing future directions for research, in particular the opportunities for the development of novel therapeutics that target TNF-α. This will be very important for designing preventative strategies and for the identification of new drug targets and preventative strategies.

  12. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-α (TNF-α) in Major Depressive Disorder: A Systematic Review

    Science.gov (United States)

    Ma, Ke; Zhang, Hongxiu; Baloch, Zulqarnain

    2016-01-01

    Major depressive disorder (MDD) is characterized by mood, vegetative, cognitive, and even psychotic symptoms and signs that can cause substantial impairments in quality of life and functioning. Up to now, the exact pathogenesis of MDD remains poorly understood. Recent research has begun to reveal that the pro-inflammatory cytokines, particularly, tumor necrosis factor-α (TNF-α), play an integral role in the pathophysiology of depressive disorders and the mechanism of antidepressant treatment. On the base of several observations: it is found that subsets of MDD patients have enhanced plasma levels TNF-α; antidepressant treatments had linked with the decline of TNF-α; central administration of TNF-α gives rise to sickness behavior which shares features with depression; and a blockade of it can ameliorate depressive symptomatology in animal models and clinical trials. In this review article, we focus on recent evidence linking TNF-α and MDD looking at data from animal and clinical studies, illustrating the pathophysiological role, susceptibility and its therapeutic application in depression. We conclude by discussing future directions for research, in particular the opportunities for the development of novel therapeutics that target TNF-α. This will be very important for designing preventative strategies and for the identification of new drug targets and preventative strategies. PMID:27187381

  13. Protein based therapeutic delivery agents: Contemporary developments and challenges.

    Science.gov (United States)

    Yin, Liming; Yuvienco, Carlo; Montclare, Jin Kim

    2017-07-01

    As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. MicroRNA Signatures as Biomarkers and Therapeutic Target for CNS Embryonal Tumors: The Pros and the Cons

    Directory of Open Access Journals (Sweden)

    Tarek Shalaby

    2014-11-01

    Full Text Available Embryonal tumors of the central nervous system represent a heterogeneous group of childhood cancers with an unknown pathogenesis; diagnosis, on the basis of histological appearance alone, is controversial and patients’ response to therapy is difficult to predict. They encompass medulloblastoma, atypical teratoid/rhabdoid tumors and a group of primitive neuroectodermal tumors. All are aggressive tumors with the tendency to disseminate throughout the central nervous system. The large amount of genomic and molecular data generated over the last 5–10 years encourages optimism that new molecular targets will soon improve outcomes. Recent neurobiological studies have uncovered the key role of microRNAs (miRNAs in embryonal tumors biology and their potential use as biomarkers is increasingly being recognized and investigated. However the successful use of microRNAs as reliable biomarkers for the detection and management of pediatric brain tumors represents a substantial challenge. This review debates the importance of miRNAs in the biology of central nervous systemembryonal tumors focusing on medulloblastoma and atypical teratoid/rhabdoid tumors and highlights the advantages as well as the limitations of their prospective application as biomarkers and candidates for molecular therapeutic targets.

  15. In Vivo Monitoring of pH, Redox Status, and Glutathione Using L-Band EPR for Assessment of Therapeutic Effectiveness in Solid Tumors

    Science.gov (United States)

    Bobko, Andrey A.; Eubank, Timothy D.; Voorhees, Jeffrey L.; Efimova, Olga V.; Kirilyuk, Igor A.; Petryakov, Sergey; Trofimiov, Dmitrii G.; Marsh, Clay B.; Zweier, Jay L.; Grigor’ev, Igor A.; Samouilov, Alexandre; Khramtsov, Valery V.

    2011-01-01

    Approach for in vivo real-time assessment of tumor tissue extracellular pH (pHe), redox, and intracellular glutathione based on L-band EPR spectroscopy using dual function pH and redox nitroxide probe and disulfide nitroxide biradical, is described. These parameters were monitored in PyMT mice bearing breast cancer tumors during treatment with granulocyte macrophage colony-stimulating factor. It was observed that tumor pHe is about 0.4 pH units lower than that in normal mammary gland tissue. Treatment with granulocyte macrophage colony-stimulating factor decreased the value of pHe by 0.3 units compared with PBS control treatment. Tumor tissue reducing capacity and intracellular glutathione were elevated compared with normal mammary gland tissue. Granulocyte macrophage colony-stimulating factor treatment resulted in a decrease of the tumor tissue reducing capacity and intracellular glutathione content. In addition to spectroscopic studies, pHe mapping was performed using recently proposed variable frequency proton–electron double-resonance imaging. The pH mapping superimposed with MRI image supports probe localization in mammary gland/tumor tissue, shows high heterogeneity of tumor tissue pHe and a difference of about 0.4 pH units between average pHe values in tumor and normal mammary gland. In summary, the developed multifunctional approach allows for in vivo, noninvasive pHe, extracellular redox, and intracellular glutathione content monitoring during investigation of various therapeutic strategies for solid tumors. Magn Reson Med 000:000–000, 2011. PMID:22113626

  16. Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects.

    Science.gov (United States)

    Han, Kai; Zhang, Wei-Yun; Ma, Zhao-Yu; Wang, Shi-Bo; Xu, Lu-Ming; Liu, Jia; Zhang, Xian-Zheng; Han, He-You

    2017-05-17

    Photodynamic therapy (PDT) holds great promise in tumor treatment. Nevertheless, it remains highly desirable to develop easy-to-fabricated PDT systems with improved tumor accumulation/internalization and timely therapeutic feedback. Here, we report a tumor-acidity-responsive chimeric peptide for enhanced PDT and noninvasive real-time apoptosis imaging. Both in vitro and in vivo studies revealed that a tumor mildly acidic microenvironment could trigger rapid protonation of carboxylate anions in chimeric peptide, which led to increased ζ potential, improved hydrophobicity, controlled size enlargement, and precise morphology switching from sphere to spherocylinder shape of the chimeric peptide. All of these factors realized superfast accumulation and prolonged retention in the tumor region, selective cellular internalization, and enhanced PDT against the tumor. Meanwhile, this chimeric peptide could further generate reactive oxygen species and initiate cell apoptosis during PDT. The subsequent formation of caspase-3 enzyme hydrolyzed the chimeric peptide, achieving a high signal/noise ratio and timely fluorescence feedback. Importantly, direct utilization of the acidity responsiveness of a biofunctional Asp-Glu-Val-Asp-Gly (DEVDG, caspase-3 enzyme substrate) peptide sequence dramatically simplified the preparation and increased the performance of the chimeric peptide furthest.

  17. [The development of novel tumor targeting delivery strategy].

    Science.gov (United States)

    Gao, Hui-le; Jiang, Xin-guo

    2016-02-01

    Tumor is one of the most serious threats for human being. Although many anti-tumor drugs are approved for clinical use, the treatment outcome is still modest because of the poor tumor targeting efficiency and low accumulation in tumor. Therefore, it is important to deliver anti-tumor drug into tumor efficiently, elevate drug concentration in tumor tissues and reduce the drug distribution in normal tissues. And it has been one of the most attractive directions of pharmaceutical academy and industry. Many kinds of strategies, especially various nanoparticulated drug delivery systems, have been developed to address the critical points of complex tumor microenvironment, which are partially or mostly satisfied for tumor treatment. In this paper, we carefully reviewed the novel targeting delivery strategies developed in recent years. The most powerful method is passive targeting delivery based on the enhanced permeability and retention(EPR) effect, and most commercial nanomedicines are based on the EPR effect. However, the high permeability and retention require different particle sizes, thus several kinds of size-changeable nanoparticles are developed, such as size reducible particles and assemble particles, to satisfy the controversial requirement for particle size and enhance both tumor retention and penetration. Surface charge reversible nanoparticles also shows a high efficiency because the anionic charge in blood circulation and normal organs decrease the unintended internalization. The charge can change into positive in tumor microenvironment, facilitating drug uptake by tumor cells. Additionally, tumor microenvironment responsive drug release is important to decrease drug side effect, and many strategies are developed, such as p H sensitive release and enzyme sensitive release. Except the responsive nanoparticles, shaping tumor microenvironment could attenuate the barriers in drug delivery, for example, decreasing tumor collagen intensity and normalizing tumor

  18. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Directory of Open Access Journals (Sweden)

    Umberto Tosi

    2017-02-01

    Full Text Available Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.

  19. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Science.gov (United States)

    Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.

    2017-01-01

    Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698

  20. Mucociliary and cough clearance as a biomarker for therapeutic development

    DEFF Research Database (Denmark)

    Bennett, William D; Daviskas, Evangelia; Hasani, Amir

    2010-01-01

    or therapeutic evaluation presented details of their methodologies. Attendees participating in the workshop discussions included those interested in the physiology of MCC/CC, some of who use in vitro or animal methods for its study, pharmaceutical companies developing muco-active therapies, and many who were......A workshop/symposium on “Mucociliary and Cough Clearance (MCC/CC) as a Biomarker for Therapeutic Development” was held on October 21–22, 2008, in Research Triangle Park, NC, to discuss the methods for measurement of MCC/CC and how they may be optimized for assessing new therapies designed...

  1. Novel Therapeutic Strategies for Solid Tumor Based on Body's Intrinsic Antitumor Immune System.

    Science.gov (United States)

    Duan, Haifeng

    2018-05-22

    The accumulation of mutated somatic cells due to the incompetency of body's immune system may lead to tumor onset. Therefore, enhancing the ability of the system to eliminate such cells should be the core of tumor therapy. The intrinsic antitumor immunity is triggered by tumor-specific antigens (TSA) or TSA-sensitized dendritic cells (DC). Once initiated, specific anti-tumor antibodies are produced and tumor-specific killer immune cells, including cytotoxic T lymphocytes (CTL), NK cells, and macrophages, are raised or induced. Several strategies may enhance antitumor action of immune system, such as supplying tumor-targeted antibody, activating T cells, enhancing the activity and tumor recognition of NK cells, promoting tumor-targeted phagocytosis of macrophages, and eliminating the immunosuppressive myeloid-derived suppressor cells (MDSCs) and Treg cells. Apart from the immune system, the removal of tumor burden still needs to be assisted by drugs, surgery or radiation. And the body's internal environment and tumor microenvironment should be improved to recover immune cell function and prevent tumor growth. Multiple microenvironment modulatory therapies may be applied, including addressing hypoxia and oxidative stress, correcting metabolic disorders, and controlling chronic inflammation. Finally, to cure tumor and prevent tumor recurrence, repairing or supporting therapy that consist of tissue repair and nutritional supplement should be applied properly. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity.

    Directory of Open Access Journals (Sweden)

    Anne Kleijn

    Full Text Available The oncolytic adenovirus Delta24-RGD represents a new promising therapeutic agent for patients with a malignant glioma and is currently under investigation in clinical phase I/II trials. Earlier preclinical studies showed that Delta24-RGD is able to effectively lyse tumor cells, yielding promising results in various immune-deficient glioma models. However, the role of the immune response in oncolytic adenovirus therapy for glioma has never been explored. To this end, we assessed Delta24-RGD treatment in an immune-competent orthotopic mouse model for glioma and evaluated immune responses against tumor and virus. Delta24-RGD treatment led to long-term survival in 50% of mice and this effect was completely lost upon administration of the immunosuppressive agent dexamethasone. Delta24-RGD enhanced intra-tumoral infiltration of F4/80+ macrophages, CD4+ and CD8+ T-cells, and increased the local production of pro-inflammatory cytokines and chemokines. In treated mice, T cell responses were directed to the virus as well as to the tumor cells, which was reflected in the presence of protective immunological memory in mice that underwent tumor rechallenge. Together, these data provide evidence that the immune system plays a vital role in the therapeutic efficacy of oncolytic adenovirus therapy of glioma, and may provide angles to future improvements on Delta24-RGD therapy.

  3. Development of Class IIa Bacteriocins as Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Christopher T. Lohans

    2012-01-01

    Full Text Available Class IIa bacteriocins have been primarily explored as natural food preservatives, but there is much interest in exploring the application of these peptides as therapeutic antimicrobial agents. Bacteriocins of this class possess antimicrobial activity against several important human pathogens. Therefore, the therapeutic development of these bacteriocins will be reviewed. Biological and chemical modifications to both stabilize and increase the potency of bacteriocins are discussed, as well as the optimization of their production and purification. The suitability of bacteriocins as pharmaceuticals is explored through determinations of cytotoxicity, effects on the natural microbiota, and in vivo efficacy in mouse models. Recent results suggest that class IIa bacteriocins show promise as a class of therapeutic agents.

  4. The importance of time interval to development of second tumor in metachronous bilateral wilms' tumor

    International Nuclear Information System (INIS)

    Paulino, Arnold C.; Thakkar, Bharat; Henderson, William G.

    1997-01-01

    Purpose: To determine whether the time interval to development of second tumor is a prognostic factor for overall survival in children with metachronous bilateral Wilms' tumor and to give a recommendation regarding screening of the contralateral kidney in patients with Wilms' tumor. Materials and Management: A literature search using MEDLINE was performed of manuscripts in the English language from 1950-1996 and identified 108 children with metachronous bilateral Wilms' tumor. Children were classified according to time interval to development of a contralateral Wilms' tumor ( 78 mos (2), 78 - < 84 mos (1), 84 - < 90 mos (0), 90 - < 96 mos (1), ≥ 96 mos (0). Analysis of overall survival in patients with a time interval of < 18 months and ≥ 18 months showed a 10 year survival of 39.6% and 55.2%, respectively (p = 0.024, log-rank test). Conclusions: Children with metachronous bilateral Wilms' tumor who develop a contralateral tumor at a time interval of ≥ 18 months from the initial Wilms' tumor had a better overall survival than children with a time interval of < 18 months. Screening by abdominal ultrasound of the contralateral kidney for more than 5 years after initial diagnosis of Wilms' tumor may not be necessary since 102/106 (96.2%) of children had a time interval to second tumor of < 60 months

  5. Evaluation of the therapeutic efficacy of a VEGFR2-blocking antibody using sodium-iodide symporter molecular imaging in a tumor xenograft model

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Su-Jin; Lee, Chang-Moon; Kim, Eun-Mi [Department of Nuclear Medicine, Chonbuk National University Medical School, Jeonju-si, Jeonbuk 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju-si, Jeonbuk 561-712 (Korea, Republic of); Cyclotron Research Center, Chonbuk National University Hospital, Jeonju-si, Jeonbuk 561-712 (Korea, Republic of); Uhm, Tai-Boong [Faculty of Biological Science, Chonbuk National University, Jeonju-si, jeonbuk 561-756 (Korea, Republic of); Jeong, Hwan-Jeong, E-mail: jayjeong@chonbuk.ac.k [Department of Nuclear Medicine, Chonbuk National University Medical School, Jeonju-si, Jeonbuk 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju-si, Jeonbuk 561-712 (Korea, Republic of); Cyclotron Research Center, Chonbuk National University Hospital, Jeonju-si, Jeonbuk 561-712 (Korea, Republic of); Kim, Dong Wook; Lim, Seok Tae; Sohn, Myung-Hee [Department of Nuclear Medicine, Chonbuk National University Medical School, Jeonju-si, Jeonbuk 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju-si, Jeonbuk 561-712 (Korea, Republic of); Cyclotron Research Center, Chonbuk National University Hospital, Jeonju-si, Jeonbuk 561-712 (Korea, Republic of)

    2011-01-15

    Purpose: Vascular endothelial growth factor receptor 2-blocking antibody (DC101) has inhibitory effects on tumor growth and angiogenesis in vivo. The human sodium/iodide symporter (hNIS) gene has been shown to be a useful molecular imaging reporter gene. Here, we investigated the evaluation of therapeutic efficacy by molecular imaging in reporter gene transfected tumor xenografts using a gamma imaging system. Methods: The hNIS gene was transfected into MDA-MB-231 cells using Lipofectamine. The correlation between the number of MDA-MB-231-hNIS cells and the uptake of {sup 99m}Tc-pertechnetate or {sup 125}I was investigated in vitro by gamma imaging and counting. MDA-MB-231-hNIS cells were injected subcutaneously into mice. When the tumor volume reached 180-200 mm{sup 3}, we randomly assigned five animals to each of three groups representing different tumor therapies; no DC101 (control), 100 {mu}g, or 150 {mu}g DC101/mouse. One week and 2 weeks after the first injection of DC101, gamma imaging was performed. Mice were sacrificed 2 weeks after the first injection of DC101. The tumor tissues were used for reverse transcriptase-polymerase chain reaction (RT-PCR) and CD31 staining. Results: Uptake of {sup 125}I and {sup 99m}Tc-pertechnetate into MDA-MB-231-hNIS cells in vitro showed correlation with the number of cells. In DC101 treatment groups, the mean tumor volume was smaller than that of the control mice. Furthermore, tumor uptake of {sup 125}I was lower than in the controls. The CD31 staining and RT-PCR assay results showed that vessel formation and expression of the hNIS gene were significantly reduced in the tumor tissues of treatment groups. Conclusion: This study demonstrated the power of molecular imaging using a gamma imaging system for evaluating the therapeutic efficacy of an antitumor treatment. Molecular imaging systems may be useful in evaluation and development of effective diagnostic and/or therapeutic antibodies for specific target molecules.

  6. In Vivo Visualizing the IFN-β Response Required for Tumor Growth Control in a Therapeutic Model of Polyadenylic-Polyuridylic Acid Administration.

    Science.gov (United States)

    Nocera, David Andrés; Roselli, Emiliano; Araya, Paula; Nuñez, Nicolás Gonzalo; Lienenklaus, Stefan; Jablonska, Jadwiga; Weiss, Siegfried; Gatti, Gerardo; Brinkmann, Melanie M; Kröger, Andrea; Morón, Gabriel; Maccioni, Mariana

    2016-03-15

    The crucial role that endogenously produced IFN-β plays in eliciting an immune response against cancer has recently started to be elucidated. Endogenous IFN-β has an important role in immune surveillance and control of tumor development. Accordingly, the role of TLR agonists as cancer therapeutic agents is being revisited via the strategy of intra/peritumoral injection with the idea of stimulating the production of endogenous type I IFN inside the tumor. Polyadenylic-polyuridylic acid (poly A:U) is a dsRNA mimetic explored empirically in cancer immunotherapy a long time ago with little knowledge regarding its mechanisms of action. In this work, we have in vivo visualized the IFN-β required for the antitumor immune response elicited in a therapeutic model of poly A:U administration. In this study, we have identified the role of host type I IFNs, cell populations that are sources of IFN-β in the tumor microenvironment, and other host requirements for tumor control in this model. One single peritumoral dose of poly A:U was sufficient to induce IFN-β, readily visualized in vivo. IFN-β production relied mainly on the activation of the transcription factor IFN regulatory factor 3 and the molecule UNC93B1, indicating that TLR3 is required for recognizing poly A:U. CD11c(+) cells were an important, but not the only source of IFN-β. Host type I IFN signaling was absolutely required for the reduced tumor growth, prolonged mice survival, and the strong antitumor-specific immune response elicited upon poly A:U administration. These findings add new perspectives to the use of IFN-β-inducing compounds in tumor therapy. Copyright © 2016 by The American Association of Immunologists, Inc.

  7. Nonviral gene therapy in vivo with PAM-RG4/apoptin as a potential brain tumor therapeutic

    Directory of Open Access Journals (Sweden)

    An S

    2013-02-01

    Full Text Available Songhie An,* Kihoon Nam,* Sunghyun Choi, Cheng Z Bai, Yan Lee, Jong-Sang ParkDepartment of Chemistry, Seoul National University, Seoul, Republic of Korea*These authors contributed equally to this workBackground: Glioma is still one of the most complicated forms of brain tumor to remove completely due to its location and the lack of an efficient means to specifically eliminate tumor cells. For these reasons, this study has examined the effectiveness of a nonviral gene therapy approach utilizing a tumor-selective killer gene on a brain tumor xenograft model.Methods and results: The therapeutic apoptin gene was recombined into the JDK plasmid and delivered into human brain tumor cells (U87MG by using a polyamidoamine dendrimer with an arginine surface (PAM-RG4. Studies in vitro showed that the PAM-RG4/apoptin plasmid polyplex exhibited a particularly high transfection activity of >40%. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay, 4´,6-Diamidino-2-phenylindole (DAPI TUNEL assay, DAPI staining, and caspase-3 activity assay verified that the tumor cells had undergone apoptosis induced by apoptin. For in vivo studies, the polyplex was injected into tumors, which were induced by injecting U87MG cells intradermally into nude mice. Based on hematoxylin and eosin staining, epidermal growth factor receptor immunohistochemistry results and tumor volume measurement results, tumor growth was effectively inhibited and no specific edema, irritation, or other harm to the skin was observed after polyplex injection. The in vivo expression of apoptin and the induction of apoptosis were verified by reverse-transcription polymerase chain reaction analysis, TUNEL assay, and DAPI staining.Conclusion: The PAM-RG4/apoptin gene polyplex is a strong candidate for brain tumor therapeutics because of the synergistic effect of the carrier's high transfection efficiency (35%–40% in glioma cells and the selective apoptosis-inducing activity of

  8. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy

    Science.gov (United States)

    Laufer, Jan; Johnson, Peter; Zhang, Edward; Treeby, Bradley; Cox, Ben; Pedley, Barbara; Beard, Paul

    2012-05-01

    The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to noninvasively image human colorectal tumor xenografts implanted subcutaneously in mice. Label-free three-dimensional in vivo images of whole tumors to depths of almost 10 mm with sub-100-micron spatial resolution were acquired in a longitudinal manner. This enabled the development of tumor-related vascular features, such as vessel tortuosity, feeding vessel recruitment, and necrosis to be visualized over time. The system was also used to study the temporal evolution of the response of the tumor vasculature following the administration of a therapeutic vascular disrupting agent (OXi4503). This revealed the well-known destruction and recovery phases associated with this agent. These studies illustrate the broader potential of this technology as an imaging tool for the preclinical and clinical study of tumors and other pathologies characterized by changes in the vasculature.

  9. Quantitative Analysis of Survivin Protein Expression and Its Therapeutic Depletion by an Antisense Oligonucleotide in Human Lung Tumors

    Directory of Open Access Journals (Sweden)

    Anna L Olsen

    2012-01-01

    Full Text Available RNA-directed antisense and interference therapeutics are a promising treatment option for cancer. The demonstration of depletion of target proteins within human tumors in vivo using validated methodology will be a key to the application of this technology. Here, we present a flow cytometric-based approach to quantitatively determine protein levels in solid tumor material derived by fiber optic brushing (FOB of non-small cell lung cancer (NSCLC patients. Focusing upon the survivin protein, and its depletion by an antisense oligonucleotide (ASO (LY2181308, we show that we can robustly identify a subpopulation of survivin positive tumor cells in FOB samples, and, moreover, detect survivin depletion in tumor samples from a patient treated with LY2181308. Survivin depletion appears to be a result of treatment with this ASO, because a tumor treated with conventional cytotoxic chemotherapy did not exhibit a decreased percentage of survivin positive cells. Our approach is likely to be broadly applicable to, and useful for, the quantification of protein levels in tumor samples obtained as part of clinical trials and studies, facilitating the proof-of-principle testing of novel targeted therapies.

  10. Ligand Activation of TAM Family Receptors-Implications for Tumor Biology and Therapeutic Response.

    Science.gov (United States)

    Davra, Viralkumar; Kimani, Stanley G; Calianese, David; Birge, Raymond B

    2016-11-29

    The TAM family of receptors (i.e., Tyro3, Axl, and Mertk), and their ligands Growth arrest specific factor 6 (Gas6) and Protein S (Pros1) contribute to several oncogenic processes, such as cell survival, invasion, migration, chemo-resistance, and metastasis, whereby expression often correlates with poor clinical outcomes. In recent years, there has been great interest in the study of TAM receptors in cancer, stemming both from their roles as oncogenic signaling receptors, as well as their roles in tumor immunology. As a result, several classes of TAM inhibitors that include small molecule tyrosine kinase inhibitors, monoclonal antibodies, decoy receptors, as well as novel strategies to target TAM ligands are being developed. This paper will review the biology of TAM receptors and their ligands with a focus on cancer, as well as evidence-based data for the continued pursuit of TAM/Gas6 inhibitors in clinical practice.

  11. Pancreatic Adenocarcinoma Therapeutic Targets Revealed by Tumor-Stroma Cross-Talk Analyses in Patient-Derived Xenografts

    Directory of Open Access Journals (Sweden)

    Rémy Nicolle

    2017-11-01

    Full Text Available Preclinical models based on patient-derived xenografts have remarkable specificity in distinguishing transformed human tumor cells from non-transformed murine stromal cells computationally. We obtained 29 pancreatic ductal adenocarcinoma (PDAC xenografts from either resectable or non-resectable patients (surgery and endoscopic ultrasound-guided fine-needle aspirate, respectively. Extensive multiomic profiling revealed two subtypes with distinct clinical outcomes. These subtypes uncovered specific alterations in DNA methylation and transcription as well as in signaling pathways involved in tumor-stromal cross-talk. The analysis of these pathways indicates therapeutic opportunities for targeting both compartments and their interactions. In particular, we show that inhibiting NPC1L1 with Ezetimibe, a clinically available drug, might be an efficient approach for treating pancreatic cancers. These findings uncover the complex and diverse interplay between PDAC tumors and the stroma and demonstrate the pivotal role of xenografts for drug discovery and relevance to PDAC.

  12. A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution

    Directory of Open Access Journals (Sweden)

    Grace R. Anderson

    2017-07-01

    Full Text Available Combinatorial inhibition of effector and feedback pathways is a promising treatment strategy for KRAS mutant cancers. However, the particular pathways that should be targeted to optimize therapeutic responses are unclear. Using CRISPR/Cas9, we systematically mapped the pathways whose inhibition cooperates with drugs targeting the KRAS effectors MEK, ERK, and PI3K. By performing 70 screens in models of KRAS mutant colorectal, lung, ovarian, and pancreas cancers, we uncovered universal and tissue-specific sensitizing combinations involving inhibitors of cell cycle, metabolism, growth signaling, chromatin regulation, and transcription. Furthermore, these screens revealed secondary genetic modifiers of sensitivity, yielding a SRC inhibitor-based combination therapy for KRAS/PIK3CA double-mutant colorectal cancers (CRCs with clinical potential. Surprisingly, acquired resistance to combinations of growth signaling pathway inhibitors develops rapidly following treatment, but by targeting signaling feedback or apoptotic priming, it is possible to construct three-drug combinations that greatly delay its emergence.

  13. Development of synchronous VHL syndrome tumors reveals contingencies and constraints to tumor evolution

    DEFF Research Database (Denmark)

    Fisher, Rosalie; Horswell, Stuart; Rowan, Andrew

    2014-01-01

    are contingent upon the nature of 3p loss of heterozygosity occurring early in tumorigenesis. However, despite distinct 3p events, genomic, proteomic and immunohistochemical analyses reveal evidence for convergence upon the PI3K-AKT-mTOR signaling pathway. Four germline tumors in this young patient...... a germline VHL mutation, the evolutionary principles of contingency and convergence in tumor development are complementary. In this small set of patients with early stage VHL-associated tumors, there is reduced mutation burden and limited evidence of intra-tumor heterogeneity....

  14. Melanoma genetics and the development of rational therapeutics.

    Science.gov (United States)

    Chudnovsky, Yakov; Khavari, Paul A; Adams, Amy E

    2005-04-01

    Melanoma is a cancer of the neural crest-derived cells that provide pigmentation to skin and other tissues. Over the past 4 decades, the incidence of melanoma has increased more rapidly than that of any other malignancy in the United States. No current treatments substantially enhance patient survival once metastasis has occurred. This review focuses on recent insights into melanoma genetics and new therapeutic approaches being developed based on these advances.

  15. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein.

    Science.gov (United States)

    Kitagawa, Koichi; Oda, Tsugumi; Saito, Hiroki; Araki, Ayame; Gonoi, Reina; Shigemura, Katsumi; Hashii, Yoshiko; Katayama, Takane; Fujisawa, Masato; Shirakawa, Toshiro

    2017-06-01

    Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4 + T and CD8 + T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.

  16. GSK3α/β: A Novel Therapeutic Target for Neuroendocrine Tumors?

    Science.gov (United States)

    Aristizabal Prada, Elke Tatjana; Weis, Carla; Orth, Michael; Lauseker, Michael; Spoettl, Gerald; Maurer, Julian; Grabowski, Patricia; Grossman, Ashley; Auernhammer, Christoph Josef; Nölting, Svenja

    2017-10-02

    Introduction: GSK3α/β is a serine/threonine-kinase that plays a critical role in cancer. In this study, we evaluated the effects of the specific GSK3α/β inhibitor AR-A014418 in vitro to gain novel insights into GSK3α/β signaling in NETs. Human NET cell lines (BON1, QGP1, H727 and GOT1) were treated with different concentrations of AR-A014418 alone and in combination with lovastatin, everolimus, 5-fluorouracil (5-FU) and γ-irradiation. AR-A014418 significantly dose- and time-dependently decreased cell viability in all four NET cell lines through inhibition of EGFR- and mTORC1/p70S6K signaling, as well as Cyclin D3 downregulation and induction of pChk1. In all cell lines tested, FACS analysis showed an AR-A014418-induced increase in the sub-G1 phase, reflecting cell death. However, apoptosis induction was only observed in H727 cells. Furthermore, significant anti-migratory effects upon GSK3α/β inhibition were found and were associated with β-catenin downregulation in all cell lines tested. Compensatory up-regulation of pAkt and pERK in response to GSK3α/β inhibition was prevented by combining AR-A014418 with the ERK- and Akt-inhibitor lovastatin. Accordingly, the lovastatin/AR-A014418 combination was synergistic in BON1 and QGP1 cells. Moreover, AR-A014418 displayed promising chemo-sensitizing effects to 5-FU in QGP1 and slight radio-sensitizing properties in BON1 and QGP1 cells. Our data provide new insights into the role of GSK3α/β in NETs and suggest that GSK3α/β-inhibition could be a novel therapeutic option in NETs, especially in combination with lovastatin or 5-FU, depending on tumor entity. ©2017S. Karger AG, Basel.

  17. Challenges in the development of therapeutics for narcolepsy.

    Science.gov (United States)

    Black, Sarah Wurts; Yamanaka, Akihiro; Kilduff, Thomas S

    2017-05-01

    Narcolepsy is a neurological disorder that afflicts 1 in 2000 individuals and is characterized by excessive daytime sleepiness and cataplexy-a sudden loss of muscle tone triggered by positive emotions. Features of narcolepsy include dysregulation of arousal state boundaries as well as autonomic and metabolic disturbances. Disruption of neurotransmission through the hypocretin/orexin (Hcrt) system, usually by degeneration of the HCRT-producing neurons in the posterior hypothalamus, results in narcolepsy. The cause of Hcrt neurodegeneration is unknown but thought to be related to autoimmune processes. Current treatments for narcolepsy are symptomatic, including wake-promoting therapeutics that increase presynaptic dopamine release and anticataplectic agents that activate monoaminergic neurotransmission. Sodium oxybate is the only medication approved by the US Food and Drug Administration that alleviates both sleep/wake disturbances and cataplexy. Development of therapeutics for narcolepsy has been challenged by historical misunderstanding of the disease, its many disparate symptoms and, until recently, its unknown etiology. Animal models have been essential to elucidating the neuropathology underlying narcolepsy. These models have also aided understanding the neurobiology of the Hcrt system, mechanisms of cataplexy, and the pharmacology of narcolepsy medications. Transgenic rodent models will be critical in the development of novel therapeutics for the treatment of narcolepsy, particularly efforts directed to overcome challenges in the development of hypocretin replacement therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Limited SP17 expression within tumors diminishes its therapeutic potential

    DEFF Research Database (Denmark)

    Gjerstorff, M F; Ditzel, H J

    2012-01-01

    In this study, we have investigated the expression of the tumor antigen sperm protein 17 (SP17) in a large panel of human cancers and compared it with the expression of two well-characterized families of tumor antigens, melanoma-associated antigen-A (MAGE-A) and G antigen (GAGE). We found that SP17...

  19. Mechanoregulatory tumor-stroma crosstalk in pancreatic cancer: Measurements of the effects of extracellular matrix mechanics on tumor growth behavior, and vice-versa, to inform therapeutics

    Science.gov (United States)

    Celli, Jonathan; Jones, Dustin; El-Hamidi, Hamid; Cramer, Gwendolyn; Hanna, William; Caide, Andrew; Jafari, Seyedehrojin

    The rheological properties of the extracellular matrix (ECM) have been shown to play key roles in regulating tumor growth behavior through mechanotranduction pathways. The role of the mechanical microenvironment may be particularly important tumors of the pancreas, noted for an abundance of rigid fibrotic stroma, implicated in therapeutic resistance. At the same time, cancer cells and their stromal partners (e.g. tumor associated fibroblasts) continually alter the mechanical microenvironment in response to extracellular physical and biochemical cues as part of a two-way mechanoregulatory dialog. Here, we describe experimental studies using 3D pancreatic cell cultures with customized mechanical properties, combined with optical microrheology to provide insight into tumor-driven matrix remodeling. Quantitative microscopy provides measurements of phenotypic changes accompanying systematic variation of ECM composition in collagen and laminin-rich basement membrane admixtures, while analysis of the trajectories of passive tracer particles embedded in ECM report dynamic changes in heterogeneity, microstructure and local shear modulus accompanying both ECM stiffening (fibrosis) processes, and ECM degradation near invading cells. We gratefully acknowledge funding from the National Cancer Institute, R00CA155045 (PI: Celli).

  20. Therapeutic profile of single-fraction radiosurgery of vestibular schwannoma: unrelated malignancy predicts tumor control

    Science.gov (United States)

    Wowra, Berndt; Muacevic, Alexander; Fürweger, Christoph; Schichor, Christian; Tonn, Jörg-Christian

    2012-01-01

    Radiosurgery has become an accepted treatment option for vestibular schwannomas. Nevertheless, predictors of tumor control and treatment toxicity in current radiosurgery of vestibular schwannomas are not well understood. To generate new information on predictors of tumor control and cranial nerve toxicity of single-fraction radiosurgery of vestibular schwannomas, we conducted a single-institution long-term observational study of radiosurgery for sporadic vestibular schwannomas. Minimum follow-up was 3 years. Investigated as potential predictors of tumor control and cranial nerve toxicity were treatment technology; tumor resection preceding radiosurgery; tumor size; gender; patient age; history of cancer, vascular disease, or metabolic disease; tumor volume; radiosurgical prescription dose; and isodose line. Three hundred eighty-six patients met inclusion criteria. Treatment failure was observed in 27 patients. History of unrelated cancer (strongest predictor) and prescription dose significantly predicted tumor control. The cumulative incidence of treatment failure was 30% after 6.5 years in patients with unrelated malignancy and 10% after ≥15 years in patients without such cancer (P making in ambiguous cases. PMID:22561798

  1. HAMLET kills tumor cells by an apoptosis-like mechanism--cellular, molecular, and therapeutic aspects.

    Science.gov (United States)

    Svanborg, Catharina; Agerstam, Helena; Aronson, Annika; Bjerkvig, Rolf; Düringer, Caroline; Fischer, Walter; Gustafsson, Lotta; Hallgren, Oskar; Leijonhuvud, Irene; Linse, Sara; Mossberg, Ann-Kristin; Nilsson, Hanna; Pettersson, Jenny; Svensson, Malin

    2003-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex that induces apoptosis-like death in tumor cells, but leaves fully differentiated cells unaffected. This review summarizes the information on the in vivo effects of HAMLET in patients and tumor models on the tumor cell biology, and on the molecular characteristics of the complex. HAMLET limits the progression of human glioblastomas in a xenograft model and removes skin papillomas in patients. This broad anti-tumor activity includes >40 different lymphomas and carcinomas and apoptosis is independent of p53 or bcl-2. In tumor cells HAMLET enters the cytoplasm, translocates to the perinuclear area, and enters the nuclei where it accumulates. HAMLET binds strongly to histones and disrupts the chromatin organization. In the cytoplasm, HAMLET targets ribosomes and activates caspases. The formation of HAMLET relies on the propensity of alpha-lactalbumin to alter its conformation when the strongly bound Ca2+ ion is released and the protein adopts the apo-conformation that exposes a new fatty acid binding site. Oleic acid (C18:1,9 cis) fits this site with high specificity, and stabilizes the altered protein conformation. The results illustrate how protein folding variants may be beneficial, and how their formation in peripheral tissues may depend on the folding change and the availability of the lipid cofactor. One example is the acid pH in the stomach of the breast-fed child that promotes the formation of HAMLET. This mechanism may contribute to the protective effect of breastfeeding against childhood tumors. We propose that HAMLET should be explored as a novel approach to tumor therapy.

  2. A Therapeutic and Diagnostic Dilemma: Granular Cell Tumor of the Breast

    Directory of Open Access Journals (Sweden)

    Ahmet Pergel

    2011-01-01

    Full Text Available Six to eight percent of granular cell tumors are seen in the breast. Although mostly benign, they rarely have malignant features clinically and radiologically reminding of breast cancer. This may lead to a potential misdiagnosis of breast carcinoma and overtreatment of patients. The final diagnosis is made by immunohistochemical examination. We performed excisional biopsy on a patient who was diagnosed to have a breast mass. The histopathological examination of the mass revealed granular cell tumor.

  3. A therapeutic and diagnostic dilemma: granular cell tumor of the breast.

    Science.gov (United States)

    Pergel, Ahmet; Yucel, Ahmet Fikret; Karaca, A Serdar; Aydin, Ibrahim; Sahin, Dursun Ali; Demirbag, Nilgun

    2011-01-01

    Six to eight percent of granular cell tumors are seen in the breast. Although mostly benign, they rarely have malignant features clinically and radiologically reminding of breast cancer. This may lead to a potential misdiagnosis of breast carcinoma and overtreatment of patients. The final diagnosis is made by immunohistochemical examination. We performed excisional biopsy on a patient who was diagnosed to have a breast mass. The histopathological examination of the mass revealed granular cell tumor.

  4. In vitro patient-derived 3D mesothelioma tumor organoids facilitate patient-centric therapeutic screening.

    Science.gov (United States)

    Mazzocchi, Andrea R; Rajan, Shiny A P; Votanopoulos, Konstantinos I; Hall, Adam R; Skardal, Aleksander

    2018-02-13

    Variability in patient response to anti-cancer drugs is currently addressed by relating genetic mutations to chemotherapy through precision medicine. However, practical benefits of precision medicine to therapy design are less clear. Even after identification of mutations, oncologists are often left with several drug options, and for some patients there is no definitive treatment solution. There is a need for model systems to help predict personalized responses to chemotherapeutics. We have microengineered 3D tumor organoids directly from fresh tumor biopsies to provide patient-specific models with which treatment optimization can be performed before initiation of therapy. We demonstrate the initial implementation of this platform using tumor biospecimens surgically removed from two mesothelioma patients. First, we show the ability to biofabricate and maintain viable 3D tumor constructs within a tumor-on-a-chip microfluidic device. Second, we demonstrate that results of on-chip chemotherapy screening mimic those observed in subjects themselves. Finally, we demonstrate mutation-specific drug testing by considering the results of precision medicine genetic screening and confirming the effectiveness of the non-standard compound 3-deazaneplanocin A for an identified mutation. This patient-derived tumor organoid strategy is adaptable to a wide variety of cancers and may provide a framework with which to improve efforts in precision medicine oncology.

  5. Macromolecular therapeutics.

    Science.gov (United States)

    Yang, Jiyuan; Kopeček, Jindřich

    2014-09-28

    This review covers water-soluble polymer-drug conjugates and macromolecules that possess biological activity without attached low molecular weight drugs. The main design principles of traditional and backbone degradable polymer-drug conjugates as well as the development of a new paradigm in nanomedicines - (low molecular weight) drug-free macromolecular therapeutics are discussed. To address the biological features of cancer, macromolecular therapeutics directed to stem/progenitor cells and the tumor microenvironment are deliberated. Finally, the future perspectives of the field are briefly debated. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Radiotherapy in conjunction with 7-hydroxystaurosporine: a multimodal approach with tumor pO2 as a potential marker of therapeutic response.

    Science.gov (United States)

    Khan, Nadeem; Mupparaju, Sriram P; Hou, Huagang; Lariviere, Jean P; Demidenko, Eugene; Swartz, Harold M; Eastman, Alan

    2009-11-01

    Checkpoint inhibitors potentially could be used to enhance cell killing by DNA-targeted therapeutic modalities such as radiotherapy. UCN-01 (7-hydroxystaurosporine) inhibits S and G2 checkpoint arrest in the cells of various malignant cell lines and has been investigated in combination with chemotherapy. However, little is known about its potential use in combination with radiotherapy. We report the effect of 20 Gy radiation given in conjunction with UCN-01 on the pO2 and growth of subcutaneous RIF-1 tumors. Multisite EPR oximetry was used for repeated, non-invasive tumor pO2 measurements. The effect of UCN-01 and/or 20 Gy on tumor pO2 and tumor volume was investigated to determine therapeutic outcomes. Untreated RIF-1 tumors were hypoxic with a tissue pO2 of 5-7 mmHg. Treatment with 20 Gy or UCN-01 significantly reduced tumor growth, and a modest increase in tumor pO2 was observed in tumors treated with 20 Gy. However, irradiation with 20 Gy 12 h after UCN-01 treatment resulted in a significant inhibition of tumor growth and a significant increase in tumor pO2 to 16-28 mmHg from day 1 onward compared to the control, UCN-01 or 20-Gy groups. Treatment with UCN-01 12 h after 20 Gy also led to a similar growth inhibition of the tumors and a similar increase in tumor pO2. The changes in tumor pO2 observed after the treatment correlated inversely with the tumor volume in the groups receiving UCN-01 with 20 Gy. This multimodal approach could be used to enhance the outcome of radiotherapy. Furthermore, tumor pO2 could be a potential marker of therapeutic response.

  7. Repeated tumor pO2 measurements by multi-site EPR oximetry as a prognostic marker for enhanced therapeutic efficacy of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Hou Huagang; Lariviere, Jean P.; Demidenko, Eugene; Gladstone, David; Swartz, Harold; Khan, Nadeem

    2009-01-01

    Purpose: To investigate the temporal effects of single or fractionated radiotherapy on subcutaneous RIF-1 tumor pO 2 and to determine the therapeutic outcomes when the timing of fractionations is guided by tumor pO 2 . Methods: The time-course of the tumor pO 2 changes was followed by multi-site electron paramagnetic resonance (EPR) oximetry. The tumors were treated with single 10, 20, and 10 Gy x 2 doses, and the tumor pO 2 was measured repeatedly for six consecutive days. In the 10 Gy x 2 group, the second dose of 10 Gy was delivered at a time when the tumors were either relatively oxygenated or hypoxic. The changes in tumor volumes were followed for nine days to determine the therapeutic outcomes. Results: A significant increase in tumor pO 2 was observed at 24 h post 10 Gy, while 20 Gy resulted in a significant increase in tumor pO 2 at 72-120 h post irradiation. The tumors irradiated with a second dose of 10 Gy at 24 h, when the tumors were oxygenated, had a significant increase in tumor doubling times (DTs), as compared to tumors treated at 48 h when they were hypoxic (p 2 repeatedly during fractionated schemes to optimize radiotherapeutic outcome. This technique could also be used to identify responsive and non-responsive tumors, which will facilitate the design of other therapeutic approaches for non-responsive tumors at early time points during the course of therapy.

  8. An industry update: the latest developments in therapeutic delivery.

    Science.gov (United States)

    Simpson, Iain

    2018-01-01

    This industry update covers the period from 1 September through 30 September 2017, and is based on information sourced from company press releases, scientific literature, patents and various news websites. The month saw the US FDA approve three new molecular entities, Aliqopa (copanlisib dihydrochloride) (Bayer Healthcare); Solosec (secnidazole) (Symbiomix Therapeutics) and Verzenio (abemaciclib) (Eli Lilly and Co). Intarcia Therapeutics Inc. has its application for approval of a novel drug device combination of exenatide for the treatment of diabetes rejected by FDA but said that it will work to address the concerns and refile the application. The impact of biosimilars in the market is steadily increasing with seven biosimilars approved in the USA and Sandoz hoping to add to this with its announcement that FDA has accepted its Biologics License Application for a biosimilar version of Roche's Rituxan. Circassia announced positive top line results of a respiratory drug, Duaklir (for the treatment of chronic obstructive pulmonary disease) and Sarepta (for its new treatment for Duchenne muscular dystrophy). Axovant Sciences Ltd announced the failure if its drug Intepirdine in the treatment of Alzheimer's, adding to a growing list of drug failures in this area. There were a number of developments in the area of oncology with Bristol-Myers Squibb and Infinity Pharmaceuticals announcing an expansion of their collaboration looking at combination treatments, as well as Eli Lilly and Co's approval for Verzenio. Rani Therapeutics and Intra-Cellular Therapies announced successful funding rounds to support their drug programs. Allergan announced a novel licensing deal for its dry eye drug, Restasis, which it hopes would allow it to stave off patent challenges from several companies looking to develop generic versions of the drug. New research suggests that loss of sense of smell can be linked to an increased risk of developing Parkinson's disease.

  9. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  10. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  11. Current Status of Dengue Therapeutics Research and Development.

    Science.gov (United States)

    Low, Jenny G H; Ooi, Eng Eong; Vasudevan, Subhash G

    2017-03-01

    Dengue is a significant global health problem. Even though a vaccine against dengue is now available, which is a notable achievement, its long-term protective efficacy against each of the 4 dengue virus serotypes remains to be definitively determined. Consequently, drugs directed at the viral targets or critical host mechanisms that can be used safely as prophylaxis or treatment to effectively ameliorate disease or reduce disease severity and fatalities are still needed to reduce the burden of dengue. This review will provide a brief account of the status of therapeutics research and development for dengue. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  12. A Multimodal Imaging Approach for Longitudinal Evaluation of Bladder Tumor Development in an Orthotopic Murine Model.

    Directory of Open Access Journals (Sweden)

    Chantal Scheepbouwer

    Full Text Available Bladder cancer is the fourth most common malignancy amongst men in Western industrialized countries with an initial response rate of 70% for the non-muscle invasive type, and improving therapy efficacy is highly needed. For this, an appropriate, reliable animal model is essential to gain insight into mechanisms of tumor growth for use in response monitoring of (new agents. Several animal models have been described in previous studies, but so far success has been hampered due to the absence of imaging methods to follow tumor growth non-invasively over time. Recent developments of multimodal imaging methods for use in animal research have substantially strengthened these options of in vivo visualization of tumor growth. In the present study, a multimodal imaging approach was addressed to investigate bladder tumor proliferation longitudinally. The complementary abilities of Bioluminescence, High Resolution Ultrasound and Photo-acoustic Imaging permit a better understanding of bladder tumor development. Hybrid imaging modalities allow the integration of individual strengths to enable sensitive and improved quantification and understanding of tumor biology, and ultimately, can aid in the discovery and development of new therapeutics.

  13. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents.

    Science.gov (United States)

    Holub, Justin M

    2017-09-01

    Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Intrinsic Subtype and Therapeutic Response Among HER2-Positive Breast Tumors from the NCCTG (Alliance) N9831 Trial

    Science.gov (United States)

    Perez, Edith A.; Ballman, Karla V.; Mashadi-Hossein, Afshin; Tenner, Kathleen S.; Kachergus, Jennifer M.; Norton, Nadine; Necela, Brian M.; Carr, Jennifer M.; Ferree, Sean; Perou, Charles M.; Baehner, Frederick; Cheang, Maggie Chon U.

    2017-01-01

    Background: Genomic data from human epidermal growth factor receptor 2–positive (HER2+) tumors were analyzed to assess the association between intrinsic subtype and clinical outcome in a large, well-annotated patient cohort. Methods: Samples from the NCCTG (Alliance) N9831 trial were analyzed using the Prosigna algorithm on the NanoString platform to define intrinsic subtype, risk of recurrence scores, and risk categories for 1392 HER2+ tumors. Subtypes were evaluated for recurrence-free survival (RFS) using Kaplan-Meier and Cox model analysis following adjuvant chemotherapy (n = 484) or chemotherapy plus trastuzumab (n = 908). All statistical tests were two-sided. Results: Patients with HER2+ tumors from N9831 were primarily scored as HER2-enriched (72.1%). These individuals received statistically significant benefit from trastuzumab (hazard ratio [HR] = 0.68, 95% confidence interval [CI] = 0.52 to 0.89, P = .005), as did the patients (291 of 1392) with luminal-type tumors (HR = 0.52, 95% CI = 0.32 to 0.85, P = .01). Patients with basal-like tumors (97 of 1392) did not have statistically significantly better RFS when treated with trastuzumab and chemotherapy compared with chemotherapy alone (HR = 1.06, 95% CI = 0.53 to 2.13, P = .87). Conclusions: The majority of clinically defined HER2-positive tumors were classified as HER2-enriched or luminal using the Prosigna algorithm. Intrinsic subtype alone cannot replace conventional histopathological evaluation of HER2 status because many tumors that are classified as luminal A or luminal B will benefit from adjuvant trastuzumab if that subtype is accompanied by HER2 overexpression. However, among tumors that overexpress HER2, we speculate that assessment of intrinsic subtype may influence treatment, particularly with respect to evaluating alternative therapeutic approaches for that subset of HER2-positive tumors of the basal-like subtype. PMID:27794124

  15. Intrinsic Subtype and Therapeutic Response Among HER2-Positive Breaty st Tumors from the NCCTG (Alliance) N9831 Trial.

    Science.gov (United States)

    Perez, Edith A; Ballman, Karla V; Mashadi-Hossein, Afshin; Tenner, Kathleen S; Kachergus, Jennifer M; Norton, Nadine; Necela, Brian M; Carr, Jennifer M; Ferree, Sean; Perou, Charles M; Baehner, Frederick; Cheang, Maggie Chon U; Thompson, E Aubrey

    2017-02-01

    Genomic data from human epidermal growth factor receptor 2-positive (HER2+) tumors were analyzed to assess the association between intrinsic subtype and clinical outcome in a large, well-annotated patient cohort. Samples from the NCCTG (Alliance) N9831 trial were analyzed using the Prosigna algorithm on the NanoString platform to define intrinsic subtype, risk of recurrence scores, and risk categories for 1392 HER2+ tumors. Subtypes were evaluated for recurrence-free survival (RFS) using Kaplan-Meier and Cox model analysis following adjuvant chemotherapy (n = 484) or chemotherapy plus trastuzumab (n = 908). All statistical tests were two-sided. Patients with HER2+ tumors from N9831 were primarily scored as HER2-enriched (72.1%). These individuals received statistically significant benefit from trastuzumab (hazard ratio [HR] = 0.68, 95% confidence interval [CI] = 0.52 to 0.89, P = .005), as did the patients (291 of 1392) with luminal-type tumors (HR = 0.52, 95% CI = 0.32 to 0.85, P = .01). Patients with basal-like tumors (97 of 1392) did not have statistically significantly better RFS when treated with trastuzumab and chemotherapy compared with chemotherapy alone (HR = 1.06, 95% CI = 0.53 to 2.13, P = .87). The majority of clinically defined HER2-positive tumors were classified as HER2-enriched or luminal using the Prosigna algorithm. Intrinsic subtype alone cannot replace conventional histopathological evaluation of HER2 status because many tumors that are classified as luminal A or luminal B will benefit from adjuvant trastuzumab if that subtype is accompanied by HER2 overexpression. However, among tumors that overexpress HER2, we speculate that assessment of intrinsic subtype may influence treatment, particularly with respect to evaluating alternative therapeutic approaches for that subset of HER2-positive tumors of the basal-like subtype. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions

  16. 77 FR 65582 - Pfizer Therapeutic Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as...

    Science.gov (United States)

    2012-10-29

    ... Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as Warner Lambert Company... workers of Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, formerly known... follows: All workers of Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division...

  17. Exome sequencing of bilateral testicular germ cell tumors suggests independent development lineages.

    Science.gov (United States)

    Brabrand, Sigmund; Johannessen, Bjarne; Axcrona, Ulrika; Kraggerud, Sigrid M; Berg, Kaja G; Bakken, Anne C; Bruun, Jarle; Fosså, Sophie D; Lothe, Ragnhild A; Lehne, Gustav; Skotheim, Rolf I

    2015-02-01

    Intratubular germ cell neoplasia, the precursor of testicular germ cell tumors (TGCTs), is hypothesized to arise during embryogenesis from developmentally arrested primordial germ cells (PGCs) or gonocytes. In early embryonal life, the PGCs migrate from the yolk sac to the dorsal body wall where the cell population separates before colonizing the genital ridges. However, whether the malignant transformation takes place before or after this separation is controversial. We have explored the somatic exome-wide mutational spectra of bilateral TGCT to provide novel insight into the in utero critical time frame of malignant transformation and TGCT pathogenesis. Exome sequencing was performed in five patients with bilateral TGCT (eight tumors), of these three patients in whom both tumors were available (six tumors) and two patients each with only one available tumor (two tumors). Selected loci were explored by Sanger sequencing in 71 patients with bilateral TGCT. From the exome-wide mutational spectra, no identical mutations in any of the three bilateral tumor pairs were identified. Exome sequencing of all eight tumors revealed 87 somatic non-synonymous mutations (median 10 per tumor; range 5-21), some in already known cancer genes such as CIITA, NEB, platelet-derived growth factor receptor α (PDGFRA), and WHSC1. SUPT6H was found recurrently mutated in two tumors. We suggest independent development lineages of bilateral TGCT. Thus, malignant transformation into intratubular germ cell neoplasia is likely to occur after the migration of PGCs. We reveal possible drivers of TGCT pathogenesis, such as mutated PDGFRA, potentially with therapeutic implications for TGCT patients. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  18. Exome Sequencing of Bilateral Testicular Germ Cell Tumors Suggests Independent Development Lineages

    Directory of Open Access Journals (Sweden)

    Sigmund Brabrand

    2015-02-01

    Full Text Available Intratubular germ cell neoplasia, the precursor of testicular germ cell tumors (TGCTs, is hypothesized to arise during embryogenesis from developmentally arrested primordial germ cells (PGCs or gonocytes. In early embryonal life, the PGCs migrate from the yolk sac to the dorsal body wall where the cell population separates before colonizing the genital ridges. However, whether the malignant transformation takes place before or after this separation is controversial. We have explored the somatic exome-wide mutational spectra of bilateral TGCT to provide novel insight into the in utero critical time frame of malignant transformation and TGCT pathogenesis. Exome sequencing was performed in five patients with bilateral TGCT (eight tumors, of these three patients in whom both tumors were available (six tumors and two patients each with only one available tumor (two tumors. Selected loci were explored by Sanger sequencing in 71 patients with bilateral TGCT. From the exome-wide mutational spectra, no identical mutations in any of the three bilateral tumor pairs were identified. Exome sequencing of all eight tumors revealed 87 somatic non-synonymous mutations (median 10 per tumor; range 5-21, some in already known cancer genes such as CIITA, NEB, platelet-derived growth factor receptor α (PDGFRA, and WHSC1. SUPT6H was found recurrently mutated in two tumors. We suggest independent development lineages of bilateral TGCT. Thus, malignant transformation into intratubular germ cell neoplasia is likely to occur after the migration of PGCs. We reveal possible drivers of TGCT pathogenesis, such as mutated PDGFRA, potentially with therapeutic implications for TGCT patients.

  19. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Siegler

    2016-11-01

    Full Text Available Increasing attention has been given to the tumor microenvironment (TME, which includes cellular and structural components such as fibroblasts, immune cells, vasculature, and extracellular matrix (ECM that surround tumor sites. These components contribute to tumor growth and metastasis and are one reason why traditional chemotherapy often is insufficient to eradicate the tumor completely. Newer treatments that target aspects of the TME, such as antiangiogenic and immunostimulatory therapies, have seen limited clinical success despite promising preclinical results. This can be attributed to a number of reasons, including a lack of drug penetration deeper into the necrotic tumor core, nonspecific delivery, rapid clearance from serum, or toxic side effects at high doses. Nanoparticles offer a potential solution to all of these obstacles, and many recent studies have shown encouraging results using nanomedicine to target TME vasculature, ECM, and immune response. While few of these platforms have made it to clinical trials to date, these strategies are relatively new and may offer a way to improve the effects of anticancer therapies.

  20. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells

    Science.gov (United States)

    Shu, Yi; Shu, Dan; Haque, Farzin; Guo, Peixuan

    2013-01-01

    RNA nanotechnology is a term that refers to the design, fabrication, and utilization of nanoparticles mainly composed of ribonucleic acids via bottom-up self-assembly. The packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor has been developed into a nano-delivery platform. This protocol describes the synthesis, assembly, and functionalization of pRNA nanoparticles based on three ‘toolkits’ derived from pRNA structural features: interlocking loops for hand-in-hand interactions, palindrome sequences for foot-to-foot interactions, and an RNA three-way junction for branch-extension. siRNAs, ribozymes, aptamers, chemical ligands, fluorophores, and other functionalities can also be fused to the pRNA prior to the assembly of the nanoparticles, so as to ensure the production of homogeneous nanoparticles and the retention of appropriate folding and function of the incorporated modules. The resulting self-assembled multivalent pRNA nanoparticles are thermodynamically and chemically stable, and they remain intact at ultra-low concentrations. Gene silencing effects are progressively enhanced with increasing number of siRNA in each pRNA nanoparticle. Systemic injection of the pRNA nanoparticles into xenograft-bearing mice has revealed strong binding to tumors without accumulation in vital organs or tissues. The pRNA-based nano-delivery scaffold paves a new way towards nanotechnological application of pRNA-based nanoparticles for disease detection and treatment. The time required for completing one round of this protocol is 3–4 weeks, including in vitro functional assays, or 2–3 months including in vivo studies. PMID:23928498

  1. Preclinical and clinical development of siRNA-based therapeutics.

    Science.gov (United States)

    Ozcan, Gulnihal; Ozpolat, Bulent; Coleman, Robert L; Sood, Anil K; Lopez-Berestein, Gabriel

    2015-06-29

    The discovery of RNA interference, first in plants and Caenorhabditis elegans and later in mammalian cells, led to the emergence of a transformative view in biomedical research. Knowledge of the multiple actions of non-coding RNAs has truly allowed viewing DNA, RNA and proteins in novel ways. Small interfering RNAs (siRNAs) can be used as tools to study single gene function both in vitro and in vivo and are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of siRNAs in cancer therapy, many challenges remain, including rapid degradation, poor cellular uptake and off-target effects. Rational design strategies, selection algorithms, chemical modifications and nanocarriers offer significant opportunities to overcome these challenges. Here, we review the development of siRNAs as therapeutic agents from early design to clinical trial, with special emphasis on the development of EphA2-targeting siRNAs for ovarian cancer treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Discovery, clinical development, and therapeutic uses of bisphosphonates.

    Science.gov (United States)

    Licata, Angelo A

    2005-04-01

    To review the literature concerning the history, development, and therapeutic uses of bisphosphonates. English-language articles were identified through a search of MEDLINE (through December 2004) using the key word bisphosphonate. Reference lists of pivotal studies, reviews, and full prescribing information for the approved agents were also examined. Selected studies included those that discussed the discovery and initial applications of bisphosphonates, as well as their historical development, pharmacokinetic and pharmacodynamic properties, and current therapeutic uses. Bisphosphonates structurally resemble pyrophosphates (naturally occurring polyphosphates) and have demonstrated similar physicochemical effects to pyrophosphates. In addition, bisphosphonates reduce bone turnover and resist hydrolysis when administered orally. The information gained from initial work with etidronate generated a considerable scientific effort to design new and more effective bisphosphonates. The PCP moiety in the general bisphosphonate structure is essential for binding to hydroxyapatite and allows for a number of chemical variations by changing the 2 lateral side chains (designated R(1) and R(2)). The R(1) side chain determines binding affinity to hydroxyapatite, and the R(2) side chain determines antiresorptive potency. Accordingly, each bisphosphonate has its own characteristic profile of activity. The bisphosphonates reduce bone turnover, increase bone mass, and decrease fracture risk and therefore have a significant place in the management of skeletal disorders including osteoporosis, Paget's disease, bone metastases, osteogenesis imperfecta, and heterotopic ossification.

  3. Linking tumor glycolysis and immune evasion in cancer: Emerging concepts and therapeutic opportunities.

    Science.gov (United States)

    Ganapathy-Kanniappan, Shanmugasundaram

    2017-08-01

    Metabolic reprogramming and immune evasion are two hallmarks of cancer. Metabolic reprogramming is exemplified by cancer's propensity to utilize glucose at an exponential rate which in turn is linked with "aerobic glycolysis", popularly known as the "Warburg effect". Tumor glycolysis is pivotal for the efficient management of cellular bioenergetics and uninterrupted cancer growth. Mounting evidence suggests that tumor glycolysis also plays a key role in instigating immunosuppressive networks that are critical for cancer cells to escape immune surveillance ("immune evasion"). Recent data show that induction of cellular stress or metabolic dysregulation sensitize cancer cells to antitumor immune cells implying that metabolic reprogramming and immune evasion harmonize during cancer progression. However, the molecular link between these two hallmarks of cancer remains obscure. In this review the molecular intricacies of tumor glycolysis that facilitate immune evasion has been discussed in the light of recent research to explore immunotherapeutic potential of targeting cancer metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille

    2012-01-01

    in vivo. Calcium electroporation elicited dramatic antitumor responses in which 89% of treated tumors were eliminated. Histologic analyses indicated complete tumor necrosis. Mechanistically, calcium electroporation caused acute ATP depletion likely due to a combination of increased cellular use of ATP......, decreased production of ATP due to effects on the mitochondria, as well as loss of ATP through the permeabilized cell membrane. Taken together, our findings offer a preclinical proof of concept for the use of electroporation to load cancer cells with calcium as an efficient anticancer treatment...

  5. RNA-Sequencing of Primary Retinoblastoma Tumors Provides New Insights and Challenges Into Tumor Development

    Directory of Open Access Journals (Sweden)

    Sailaja V. Elchuri

    2018-05-01

    Full Text Available Retinoblastoma is rare tumor of the retina caused by the homozygous loss of the Retinoblastoma 1 tumor suppressor gene (RB1. Loss of the RB1 protein, pRB, results in de-regulated activity of the E2F transcription factors, chromatin changes and developmental defects leading to tumor development. Extensive microarray profiles of these tumors have enabled the identification of genes sensitive to pRB disruption, however, this technology has a number of limitations in the RNA profiles that they generate. The advent of RNA-sequencing has enabled the global profiling of all of the RNA within the cell including both coding and non-coding features and the detection of aberrant RNA processing events. In this perspective, we focus on discussing how RNA-sequencing of rare Retinoblastoma tumors will build on existing data and open up new area’s to improve our understanding of the biology of these tumors. In particular, we discuss how the RB-research field may be to use this data to determine how RB1 loss results in the expression of; non-coding RNAs, causes aberrant RNA processing events and how a deeper analysis of metabolic RNA changes can be utilized to model tumor specific shifts in metabolism. Each section discusses new opportunities and challenges associated with these types of analyses and aims to provide an honest assessment of how understanding these different processes may contribute to the treatment of Retinoblastoma.

  6. Targeting brain tumor cAMP: the case for sex-specific therapeutics

    Directory of Open Access Journals (Sweden)

    Nicole M Warrington

    2015-07-01

    Full Text Available A relationship between cyclic adenosine 3’, 5’-monophosphate (cAMP levels and brain tumor biology has been evident for nearly as long as cAMP and its synthetase, adenylate cyclase (ADCY have been known. The importance of the pathway in brain tumorigenesis has been demonstrated in vitro and in multiple animal models. Recently, we provided human validation for a cooperating oncogenic role for cAMP in brain tumorigenesis when we found that SNPs in ADCY8 were correlated with glioma (brain tumor risk in individuals with Neurofibromatosis type 1 (NF1. Together, these studies provide a strong rationale for targeting cAMP in brain tumor therapy. However, the cAMP pathway is well known to be sexually dimorphic, and SNPs in ADCY8 affected glioma risk in a sex-specific fashion, elevating the risk for females while protecting males. The cAMP pathway can be targeted at multiple levels in the regulation of its synthesis and degradation. Sex differences in response to drugs that target cAMP regulators indicate that successful targeting of the cAMP pathway for brain tumor patients is likely to require matching specific mechanisms of drug action with patient sex.

  7. In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor

    NARCIS (Netherlands)

    van der Heijden, Michiel S.; Brody, Jonathan R.; Dezentje, David A.; Gallmeier, Eike; Cunningham, Steven C.; Swartz, Michael J.; DeMarzo, Angelo M.; Offerhaus, G. Johan A.; Isacoff, William H.; Hruban, Ralph H.; Kern, Scott E.

    2005-01-01

    Purpose: BRCA2, FANCC, and FANCG gene mutations are present in a subset of pancreatic cancer. Defects in these genes could lead to hypersensitivity to interstrand cross-linkers in vivo and a more optimal treatment of pancreatic cancer patients based on the genetic profile of the tumor. Experimental

  8. Combined MRI and MRS improves pre-therapeutic diagnoses of pediatric brain tumors over MRI alone

    Energy Technology Data Exchange (ETDEWEB)

    Shiroishi, Mark S.; Nelson, Marvin D. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Pediatric Radiology, Pittsburgh, PA (United States); Moore, Kevin R. [Primary Children' s Medical Center, Department of Radiology, Salt Lake City, UT (United States); Gilles, Floyd H. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Pathology, Los Angeles, CA (United States); Gonzalez-Gomez, Ignacio [All Children' s Hospital, Department of Pathology, St. Petersburg, FL (United States); Blueml, Stefan [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States)

    2015-09-15

    The specific goal of this study was to determine whether the inclusion of MRS had a measureable and positive impact on the accuracy of pre-surgical MR examinations of untreated pediatric brain tumors over that of MRI alone in clinical practice. Final imaging reports of 120 pediatric patients with newly detected brain tumors who underwent combined MRI/MRS examinations were retrospectively reviewed. Final pathology was available in all cases. Group A comprised 60 subjects studied between June 2001 and January 2005, when MRS was considered exploratory and radiologists utilized only conventional MRI to arrive at a diagnosis. For group B, comprising 60 subjects studied between January 2005 and March 2008, the radiologists utilized information from both MRI and MRS. Furthermore, radiologists revisited group A (blind review, time lapse >4 years) to determine whether the additional information from MRS would have altered their interpretation. Sixty-three percent of patients in group A were diagnosed correctly, whereas in 10 % the report was partially correct with the final tumor type mentioned (but not mentioned as most likely tumor), while in 27 % of cases the reports were wrong. For group B, the diagnoses were correct in 87 %, partially correct in 5 %, and incorrect in 8 % of the cases, which is a significant improvement (p < 0.005). Re-review of combined MRI and MRS of group A resulted 87 % correct, 7 % partially correct, and 7 % incorrect diagnoses, which is a significant improvement over the original diagnoses (p < 0.05). Adding MRS to conventional MRI significantly improved diagnostic accuracy in preoperative pediatric patients with untreated brain tumors. (orig.)

  9. Combined MRI and MRS improves pre-therapeutic diagnoses of pediatric brain tumors over MRI alone

    International Nuclear Information System (INIS)

    Shiroishi, Mark S.; Nelson, Marvin D.; Panigrahy, Ashok; Moore, Kevin R.; Gilles, Floyd H.; Gonzalez-Gomez, Ignacio; Blueml, Stefan

    2015-01-01

    The specific goal of this study was to determine whether the inclusion of MRS had a measureable and positive impact on the accuracy of pre-surgical MR examinations of untreated pediatric brain tumors over that of MRI alone in clinical practice. Final imaging reports of 120 pediatric patients with newly detected brain tumors who underwent combined MRI/MRS examinations were retrospectively reviewed. Final pathology was available in all cases. Group A comprised 60 subjects studied between June 2001 and January 2005, when MRS was considered exploratory and radiologists utilized only conventional MRI to arrive at a diagnosis. For group B, comprising 60 subjects studied between January 2005 and March 2008, the radiologists utilized information from both MRI and MRS. Furthermore, radiologists revisited group A (blind review, time lapse >4 years) to determine whether the additional information from MRS would have altered their interpretation. Sixty-three percent of patients in group A were diagnosed correctly, whereas in 10 % the report was partially correct with the final tumor type mentioned (but not mentioned as most likely tumor), while in 27 % of cases the reports were wrong. For group B, the diagnoses were correct in 87 %, partially correct in 5 %, and incorrect in 8 % of the cases, which is a significant improvement (p < 0.005). Re-review of combined MRI and MRS of group A resulted 87 % correct, 7 % partially correct, and 7 % incorrect diagnoses, which is a significant improvement over the original diagnoses (p < 0.05). Adding MRS to conventional MRI significantly improved diagnostic accuracy in preoperative pediatric patients with untreated brain tumors. (orig.)

  10. Development and therapeutic application of internally emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Bloomer, W.D.

    1980-01-01

    This project is concerned with developing the potential of alpha-emitting radionuclides as agents for radiotherapy. Among the available α-emitters, astatine-211 appears most promising for testing the efficacy of α-emitters for therapeutic applications because: (1) it has some chemical similarities to iodine, an element that can readily be incorporated into numerous proteins and peptides; (2) it has a half life that is long enough to permit chemical manipulation yet short enough to minimize destruction of healthy cells; and (3) α-emission is associated with 100% of its decays. If appropriate biological carriers can be labeled with an alpha emitter such as 211 At, they could be of great utility in several areas of therapeutic medicine where elimination of specific cell populations is desired. While previous attempts to astatinate proteins using standard iodination techniques have been unsuccessful, effective labeling of proteins with astatine by first synthesizing an aryl astatide and then coupling this compound to the protein via an acylation has been achieved. Undergoing current investigation are several different aryl astatide-followed-by-acylation approaches including an astatinated Bolton-Hunter type reagent using concanavalin A (ConA) and melanocyte stimulating hormone (MSH) as model compounds

  11. Development and evaluation of an electronic drug and therapeutics bulletin.

    Science.gov (United States)

    Alderman, Christopher P

    2002-10-01

    To describe the development, implementation, and initial evaluation of a paperless drug and therapeutics bulletin that is distributed by electronic mail from the pharmacy department of an Australian teaching hospital. A standardized format for the bulletin was designed and approved in February 2001. The aim of the bulletin is to facilitate the timely dissemination of concise, factual information about issues of current interest in therapeutics, drug safety, and the cost-effective use of medicines. A simple and attractive graphic design was chosen, and the hospital's clinical pharmacists and drug information staff developed an initial bank of content during the period immediately preceding the launch. The bulletin is presented as a 1-page, read-only file in Word for Windows format and was initially distributed by electronic mail to all users of the hospital's computerized communication network. As the popularity of the bulletin increased, healthcare practitioners from outside of the hospital began to request permission for inclusion on the circulation list, and the content was frequently forwarded by E-mail to workers in other hospitals and community-based settings. The bulletin is now distributed to pharmacists around Australia via 2 separate moderated discussion lists, one of which provides an archive site for previous editions. Healthcare workers in Singapore, the US, Canada, and New Zealand also receive the bulletin, which is now also abstracted by a major Australian pharmacy journal. A readership survey (also electronically distributed) was used to seek feedback after the publication of the first 12 editions. Readers indicated a high level of satisfaction with the content, format, and frequency of distribution of the materials. Although the concept and execution of this project was relatively simple, an extensive literature review did not reveal any previously published reports describing this type of approach to the distribution of a pharmacy bulletin. The

  12. Therapeutic Touch Has Significant Effects on Mouse Breast Cancer Metastasis and Immune Responses but Not Primary Tumor Size.

    Science.gov (United States)

    Gronowicz, Gloria; Secor, Eric R; Flynn, John R; Jellison, Evan R; Kuhn, Liisa T

    2015-01-01

    Evidence-based integrative medicine therapies have been introduced to promote wellness and offset side-effects from cancer treatment. Energy medicine is an integrative medicine technique using the human biofield to promote well-being. The biofield therapy chosen for study was Therapeutic Touch (TT). Breast cancer tumors were initiated in mice by injection of metastatic 66cl4 mammary carcinoma cells. The control group received only vehicle. TT or mock treatments were performed twice a week for 10 minutes. Two experienced TT practitioners alternated treatments. At 26 days, metastasis to popliteal lymph nodes was determined by clonogenic assay. Changes in immune function were measured by analysis of serum cytokines and by fluorescent activated cells sorting (FACS) of immune cells from the spleen and lymph nodes. No significant differences were found in body weight gain or tumor size. Metastasis was significantly reduced in the TT-treated mice compared to mock-treated mice. Cancer significantly elevated eleven cytokines. TT significantly reduced IL-1-a, MIG, IL-1b, and MIP-2 to control/vehicle levels. FACS demonstrated that TT significantly reduced specific splenic lymphocyte subsets and macrophages were significantly elevated with cancer. Human biofield therapy had no significant effect on primary tumor but produced significant effects on metastasis and immune responses in a mouse breast cancer model.

  13. Assessment of therapeutic response and treatment planning for brain tumors using metabolic and physiological MRI.

    Science.gov (United States)

    Nelson, Sarah J

    2011-07-01

    MRI is routinely used for diagnosis, treatment planning and assessment of response to therapy for patients with glioma. Gliomas are spatially heterogeneous and infiltrative lesions that are quite variable in terms of their response to therapy. Patients classified as having low-grade histology have a median overall survival of 7 years or more, but need to be monitored carefully to make sure that their tumor does not upgrade to a more malignant phenotype. Patients with the most aggressive grade IV histology have a median overall survival of 12-15 months and often undergo multiple surgeries and adjuvant therapies in an attempt to control their disease. Despite improvements in the spatial resolution and sensitivity of anatomic images, there remain considerable ambiguities in the interpretation of changes in the size of the gadolinium-enhancing lesion on T(1) -weighted images as a measure of treatment response, and in differentiating between treatment effects and infiltrating tumor within the larger T(2) lesion. The planning of focal therapies, such as surgery, radiation and targeted drug delivery, as well as a more reliable assessment of the response to therapy, would benefit considerably from the integration of metabolic and physiological imaging techniques into routine clinical MR examinations. Advanced methods that have been shown to provide valuable data for patients with glioma are diffusion, perfusion and spectroscopic imaging. Multiparametric examinations that include the acquisition of such data are able to assess tumor cellularity, hypoxia, disruption of normal tissue architecture, changes in vascular density and vessel permeability, in addition to the standard measures of changes in the volume of enhancing and nonenhancing anatomic lesions. This is particularly critical for the interpretation of the results of Phase I and Phase II clinical trials of novel therapies, which are increasingly including agents that are designed to have anti-angiogenic and anti

  14. Tumor Cell-Free DNA Copy Number Instability Predicts Therapeutic Response to Immunotherapy.

    Science.gov (United States)

    Weiss, Glen J; Beck, Julia; Braun, Donald P; Bornemann-Kolatzki, Kristen; Barilla, Heather; Cubello, Rhiannon; Quan, Walter; Sangal, Ashish; Khemka, Vivek; Waypa, Jordan; Mitchell, William M; Urnovitz, Howard; Schütz, Ekkehard

    2017-09-01

    Purpose: Chromosomal instability is a fundamental property of cancer, which can be quantified by next-generation sequencing (NGS) from plasma/serum-derived cell-free DNA (cfDNA). We hypothesized that cfDNA could be used as a real-time surrogate for imaging analysis of disease status as a function of response to immunotherapy and as a more reliable tool than tumor biomarkers. Experimental Design: Plasma cfDNA sequences from 56 patients with diverse advanced cancers were prospectively collected and analyzed in a single-blind study for copy number variations, expressed as a quantitative chromosomal number instability (CNI) score versus 126 noncancer controls in a training set of 23 and a blinded validation set of 33. Tumor biomarker concentrations and a surrogate marker for T regulatory cells (Tregs) were comparatively analyzed. Results: Elevated CNI scores were observed in 51 of 56 patients prior to therapy. The blinded validation cohort provided an overall prediction accuracy of 83% (25/30) and a positive predictive value of CNI score for progression of 92% (11/12). The combination of CNI score before cycle (Cy) 2 and 3 yielded a correct prediction for progression in all 13 patients. The CNI score also correctly identified cases of pseudo-tumor progression from hyperprogression. Before Cy2 and Cy3, there was no significant correlation for protein tumor markers, total cfDNA, or surrogate Tregs. Conclusions: Chromosomal instability quantification in plasma cfDNA can serve as an early indicator of response to immunotherapy. The method has the potential to reduce health care costs and disease burden for cancer patients following further validation. Clin Cancer Res; 23(17); 5074-81. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Therapeutic Roles of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    Science.gov (United States)

    2013-10-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER New Jersey, University of Medicine and Dentistry ...classified according to postoperative Gleason score or clinical stage (TNM system ). Histological categories divided tumors with Gleason scores...On the basis of rapid adhesion on collagen, PCa cells were plated on a collagen-I dish for 5 min (5’=rapidly adherent) (3-5% of cells) were

  16. A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution

    OpenAIRE

    Grace R. Anderson; Peter S. Winter; Kevin H. Lin; Daniel P. Nussbaum; Merve Cakir; Elizabeth M. Stein; Ryan S. Soderquist; Lorin Crawford; Jim C. Leeds; Rachel Newcomb; Priya Stepp; Catherine Yip; Suzanne E. Wardell; Jennifer P. Tingley; Moiez Ali

    2017-01-01

    Combinatorial inhibition of effector and feedback pathways is a promising treatment strategy for KRAS mutant cancers. However, the particular pathways that should be targeted to optimize therapeutic responses are unclear. Using CRISPR/Cas9, we systematically mapped the pathways whose inhibition cooperates with drugs targeting the KRAS effectors MEK, ERK, and PI3K. By performing 70 screens in models of KRAS mutant colorectal, lung, ovarian, and pancreas cancers, we uncovered universal and tiss...

  17. Characterization of PD-1 upregulation on tumor-infiltrating lymphocytes in human and murine gliomas and preclinical therapeutic blockade.

    Science.gov (United States)

    Dejaegher, Joost; Verschuere, Tina; Vercalsteren, Ellen; Boon, Louis; Cremer, Jonathan; Sciot, Raf; Van Gool, Stefaan W; De Vleeschouwer, Steven

    2017-11-01

    Blockade of the immune checkpoint molecule programmed-cell-death-protein-1 (PD-1) yielded promising results in several cancers. To understand the therapeutic potential in human gliomas, quantitative data describing the expression of PD-1 are essential. Moreover, due the immune-specialized region of the brain in which gliomas arise, differences between tumor-infiltrating and circulating lymphocytes should be acknowledged. In this study we have used flow cytometry to quantify PD-1 expression on tumor-infiltrating T cells of 25 freshly resected glioma cell suspensions (10 newly and 5 relapsed glioblastoma, 10 lower grade gliomas) and simultaneously isolated circulating T cells. A strong upregulation of PD-1 expression in the tumor microenvironment compared to the blood circulation was seen in all glioma patients. Additionally, circulating T cells were isolated from 15 age-matched healthy volunteers, but no differences in PD-1 expression were found compared to glioma patients. In the murine GL261 malignant glioma model, there was a similar upregulation of PD-1 on brain-infiltrating lymphocytes. Using a monoclonal PD-1 blocking antibody, we found a marked prolonged survival with 55% of mice reaching long-term survival. Analysis of brain-infiltrating cells 21 days after GL261 tumor implantation showed a shift in infiltrating lymphocyte subgroups with increased CD8+ T cells and decreased regulatory T cells. Together, our results suggest an important role of PD-1 in glioma-induced immune escape, and provide translational evidence for the use of PD-1 blocking antibodies in human malignant gliomas. © 2017 UICC.

  18. Functional imaging of larynx via 256-Slice Multi-Detector Computed Tomography in patients with laryngeal tumors: A faster, better and more reliable pre-therapeutic evaluation

    International Nuclear Information System (INIS)

    Celebi, Irfan; Basak, Muzaffer; Ucgul, Ayhan; Yildirim, Hakan; Oz, Aysel; Vural, Cetin

    2012-01-01

    Objective: To determine the clinical utility of using dynamic maneuvers during imaging of larynx via 256-Slice Multi-Detector Computed Tomography in the pre-therapeutic evaluation of laryngeal tumors. Materials and methods: A total of 27 patients (7 women, 20 men; aged 53–76 years) diagnosed with laryngeal squamous cell carcinoma were evaluated pre-therapeutically via contrast enhanced axial CT scans during consecutive phases of phonation (PP), inspiration (IP) and Valsalva maneuver (VP). Results: In 2 of 5 patients diagnosed with T1a glottic tumor, scans obtained during VP and PP were normal while the CT scans obtained during IP clearly showed a mass. In all patients (27/27) PP provided visualization of the ventricle, on coronal plane images and the pyriform sinus apices, on axial plane images. Involvement of the anterior commissure was best assessable on axial plane IP images (sensitivity 93%, specificity 92%). In cases of stage T1–T3 tumors use of dynamic maneuvers during laryngeal CT imaging showed the location and extension of the tumor better than the single phase CT scans did. We did not find a significant improvement in the pre-therapeutic evaluation in stage T4 tumors. Conclusion: Providing markedly clearer and more detailed evaluation of mucosal surfaces and deep structures of the larynx and mobility of the cords than do conventional scans, use of dynamic laryngeal maneuvers during laryngeal CT imaging seems to be an useful alternative in the pre-therapeutic assessment of laryngeal tumors.

  19. Clinical observation on the therapeutic efficacy of CyberKnife for primary or metastatic retroperitoneal tumors

    International Nuclear Information System (INIS)

    Zhuang Hongqing; Yuan Zhiyong; Wang Ping

    2012-01-01

    Objective: To evaluate the early response rate and radiation toxicity of CyberKnife in the treatment of primary or metastatic retroperitoneal tumors. Methods: Twenty-eight patients with retroperitoneal tumors were treated with CyberKnife. The total doses were 2000-6000 cGy (median 4500 cGy) and biological effective doses were 3750-10080 cGy (median 7680 cGy) in 2-10 fractions (median 5). Of all patients, 3 received three dimensional conformal radiotherapy (3DCRT) or intensity modulated radiotherapy (IMRT) boost, 1 was treated as second-course radiotherapy, and others were treated with CyberKnife only. The survival rates were calculated by Kaplan-Meier method and compared with Logrank test. Results: The complete response, stable disease and progression disease rates were 43% (12/28), 6% (10/28), 18% (5/28), 4%, (1/28), respectively. The overall response rate was 96%. The number of patients who were followed up more than 1, 2, 3 years were 17, 9, 7, respectively. The 1-, 2- and 3-year local control rates were 92%, 86%, and 86%, respectively. The 1-, 2- and 3-year overall survival rates were 60%, 49% and 49%, respectively. The difference between local progression-free survival and overall survival was not significant (median 9.5 and 12.0 months, χ 2 =0.17, P=0.680), Moreover, if the patients did not have metastasis elsewhere and local treatment was effective, there was no significant difference between local progression-free survival and progression free survival (median 17 and 11 months, χ 2 =0.13, P=0.720), Acute radiation-induced side effects (≥ 2 grade) such as fatigue, anorexia, nausea, vomiting and epigastric discomfort occurred in 9, 9, 7, 7 and 2 patients, respectively. Intestinal stenosis of 1 grade occurred in 1 patients. Conclusions: Radiotherapy for retroperitoneal tumors with CyberKnife has provided a high response rate with minimal side effects. It is a safe and effective local treatment method for retroperitoneal tumors. (authors)

  20. Vatuximab(Trademark): Optimizing Therapeutic Strategies for Prostate Cancer Based on Dynamic MR Tumor Oximetry

    Science.gov (United States)

    2010-01-01

    159: 621-631, 2003. 37. Bourke , V. A., Zhao, D., Gilio, J., Chang, C.-H., Jiang, L., Hahn, E. W., and Mason, R. P. Correlation of Radiation...probe: comparison with a paired survival assay. Radiat Res, 158, 167-73 (2002) 27. Gu, Y. Q., V. A. Bourke , J. G. Kim, A. Constantinescu, R. P. Mason...Res. 1998; 150: 549–556. 10. Bourke VA, Zhao D, Gilio J, Chang C-H, Jiang L, Hahn EW, Mason RP. Correlation of radiation response with tumor oxygen

  1. Emerging Strategies for Developing Next-Generation Protein Therapeutics for Cancer Treatment.

    Science.gov (United States)

    Kintzing, James R; Filsinger Interrante, Maria V; Cochran, Jennifer R

    2016-12-01

    Protein-based therapeutics have been revolutionizing the oncology space since they first appeared in the clinic two decades ago. Unlike traditional small-molecule chemotherapeutics, protein biologics promote active targeting of cancer cells by binding to cell-surface receptors and other markers specifically associated with or overexpressed on tumors versus healthy tissue. While the first approved cancer biologics were monoclonal antibodies, the burgeoning field of protein engineering is spawning research on an expanded range of protein formats and modifications that allow tuning of properties such as target-binding affinity, serum half-life, stability, and immunogenicity. In this review we highlight some of these strategies and provide examples of modified and engineered proteins under development as preclinical and clinical-stage drug candidates for the treatment of cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 4-1BB Aptamer-Based Immunomodulation Enhances the Therapeutic Index of Radiation Therapy in Murine Tumor Models

    Energy Technology Data Exchange (ETDEWEB)

    Benaduce, Ana Paula; Brenneman, Randall; Schrand, Brett; Pollack, Alan; Gilboa, Eli; Ishkanian, Adrian, E-mail: aishkanian@med.miami.edu

    2016-10-01

    Purpose: To report a novel strategy using oligonucleotide aptamers to 4-1BB as an alternate method for costimulation, and show that combinatorial therapy with radiation improves the therapeutic ratio over equivalent monoclonal antibodies. Methods and Materials: Subcutaneous 4T1 (mouse mammary carcinoma) tumors were established (approximately 100 mm{sup 3}), and a radiation therapy (RT) dose/fractionation schedule that optimally synergizes with 4-1BB monoclonal antibody (mAb) was identified. Comparable tumor control and animal survival was observed when either 4-1BB antibody or aptamer were combined with RT using models of breast cancer and melanoma (4T1 and B16-F10). Off-target CD8{sup +} T-cell toxicity was evaluated by quantification of CD8{sup +} T cells in livers and spleens of treated animals. Results: When combined with 4-1BB mAb, significant differences in tumor control were observed by varying RT dose and fractionation schedules. Optimal synergy between RT and 4-1BB mAb was observed at 5 Gy × 6. Testing 4-1BB mAb and aptamer independently using the optimal RT (5 Gy × 6 for 4T1/Balb/c and 12 Gy × 1 for B16/C57BL6J mouse models) revealed equivalent tumor control using 4-1BB aptamer and 4-1BB mAb. 4-1BB mAb, but not 4-1BB aptamer-treated animals, exhibited increased lymphocytic liver infiltrates and increased splenic and liver CD8{sup +} T cells. Conclusions: Radiation therapy synergizes with 4-1BB mAb, and this effect is dependent on RT dose and fractionation. Tumor control by 4-1BB aptamer is equivalent to 4-1BB mAb when combined with optimal RT dose, without eliciting off-target liver and spleen CD8{sup +} expansion. 4-1BB aptamer-based costimulation affords a comparable and less toxic strategy to augment RT-mediated tumor control.

  3. Dual responsive promoters to target therapeutic gene expression to radiation-resistant hypoxic tumor cells

    International Nuclear Information System (INIS)

    Chadderton, Naomi; Cowen, Rachel L.; Sheppard, Freda C.D.; Robinson, Suzanne; Greco, Olga; Scott, Simon D.; Stratford, Ian J.; Patterson, Adam V.; Williams, Kaye J.

    2005-01-01

    Purpose: Tumor hypoxia is unequivocally linked to poor radiotherapy outcome. This study aimed to identify enhancer sequences that respond maximally to a combination of radiation and hypoxia for use in genetic radiotherapy approaches. Methods and materials: The influence of radiation (5 Gy) and hypoxia (1% O 2 ) on reporter-gene expression driven by hypoxia (HRE) and radiation (Egr-1) responsive elements was evaluated in tumor cells grown as monolayers or multicellular spheroids. Hypoxia-inducible factor-1α (HIF-1α) and HIF-2α protein expression was monitored in parallel. Results: Of the sequences tested, an HRE from the phosphoglycerate kinase-1 gene (PGK-18[5+]) was maximally induced in response to hypoxia plus radiation in all 5 cell lines tested. The additional radiation treatment afforded a significant increase in the induction of PGK-18[5+] compared with hypoxia alone in 3 cell lines. HIF-1α/2α were induced by radiation but combined hypoxia/radiation treatment did not yield a further increase. The dual responsive nature of HREs was maintained when spheroids were irradiated after delivery of HRE constructs in a replication-deficient adenovirus. Conclusions: Hypoxia-responsive enhancer element sequences are dually responsive to combined radiation and hypoxic treatment. Their use in genetic radiotherapy in vivo could maximize expression in the most radio-resistant population at the time of radiation and also exploit microenvironmental changes after radiotherapy to yield additional switch-on

  4. In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor.

    Science.gov (United States)

    van der Heijden, Michiel S; Brody, Jonathan R; Dezentje, David A; Gallmeier, Eike; Cunningham, Steven C; Swartz, Michael J; DeMarzo, Angelo M; Offerhaus, G Johan A; Isacoff, William H; Hruban, Ralph H; Kern, Scott E

    2005-10-15

    BRCA2, FANCC, and FANCG gene mutations are present in a subset of pancreatic cancer. Defects in these genes could lead to hypersensitivity to interstrand cross-linkers in vivo and a more optimal treatment of pancreatic cancer patients based on the genetic profile of the tumor. Two retrovirally complemented pancreatic cancer cell lines having defects in the Fanconi anemia pathway, PL11 (FANCC-mutated) and Hs766T (FANCG-mutated), as well as several parental pancreatic cancer cell lines with or without mutations in the Fanconi anemia/BRCA2 pathway, were assayed for in vitro and in vivo sensitivities to various chemotherapeutic agents. A distinct dichotomy of drug responses was observed. Fanconi anemia-defective cancer cells were hypersensitive to the cross-linking agents mitomycin C (MMC), cisplatin, chlorambucil, and melphalan but not to 5-fluorouracil, gemcitabine, doxorubicin, etoposide, vinblastine, or paclitaxel. Hypersensitivity to cross-linking agents was confirmed in vivo; FANCC-deficient xenografts of PL11 and BRCA2-deficient xenografts of CAPAN1 regressed on treatment with two different regimens of MMC whereas Fanconi anemia-proficient xenografts did not. The MMC response comprised cell cycle arrest, apoptosis, and necrosis. Xenografts of PL11 also regressed after a single dose of cyclophosphamide whereas xenografts of genetically complemented PL11(FANCC) did not. MMC or other cross-linking agents as a clinical therapy for pancreatic cancer patients with tumors harboring defects in the Fanconi anemia/BRCA2 pathway should be specifically investigated.

  5. Tumor cells and memory T cells converge at glycolysis: therapeutic implications.

    Science.gov (United States)

    Karthikeyan, Swathi; Geschwind, Jean-Francois; Ganapathy-Kanniappan, Shanmugasundaram

    2014-05-01

    In the immune system, activation of naïve T (Tn) cells into effector T cells (Teff) involves a metabolic switch to glycolysis to promote rapid proliferation and differentiation. In the October issue of The Journal of Clinical Investigation, Sukumar et al. have demonstrated that in CD8(+) memory T (Tems) cells glycolytic phenotype contributes to the shortened lifespan of Tems. Conversely, inhibition of glycolysis in Tems not only extended their viability but also augmented desirable properties. Notably, they also demonstrate that glycolytic inhibition during the ex vivo clonal expansion of tumor-specific Tems enhanced their antitumor function. Overall, the data suggest that an antiglycolytic strategy targeting the Tems could enhance antitumor immune response. On the other hand, cancer cells have long been known to exhibit metabolic reprogramming which involves a shift toward glycolysis (the conversion of glucose into lactate) to facilitate uninterrupted growth. Interestingly, antiglycolytic treatment of cancer cells has been known to trigger antitumor immune response as well. Taken together, it is probable that a strategy involving concurrent inhibition of glycolysis in tumor cells and Tems could promote a dual attack on cancer by inducing an effective antitumor immune response and an immunogenic chemotherapy.

  6. Evidence mapping based on systematic reviews of therapeutic interventions for gastrointestinal stromal tumors (GIST

    Directory of Open Access Journals (Sweden)

    Mónica Ballesteros

    2017-09-01

    Full Text Available Abstract Background Gastrointestinal Stromal Tumours (GISTs are the most common mesenchymal tumours. Currently, different pharmacological and surgical options are used to treat localised and metastatic GISTs, although this research field is broad and the body of evidence is scattered and expanding. Our objectives are to identify, describe and organise the current available evidence for GIST through an evidence mapping approach. Methods We followed the methodology of Global Evidence Mapping (GEM. We searched Pubmed, EMBASE, The Cochrane Library and Epistemonikos in order to identify systematic reviews (SRs with or without meta-analyses published between 1990 and March 2016. Two authors assessed eligibility and extracted data. Methodological quality of the included systematic reviews was assessed using AMSTAR. We organised the results according to identified PICO questions and presented the evidence map in tables and a bubble plot. Results A total of 17 SRs met eligibility criteria. These reviews included 66 individual studies, of which three quarters were either observational or uncontrolled clinical trials. Overall, the quality of the included SRs was moderate or high. In total, we extracted 14 PICO questions from them and the corresponding results mostly favoured the intervention arm. Conclusions The most common type of study used to evaluate therapeutic interventions in GIST sarcomas has been non-experimental studies. However, the majority of the interventions are reported as beneficial or probably beneficial by the respective authors of SRs. The evidence mapping is a useful and reliable methodology to identify and present the existing evidence about therapeutic interventions.

  7. New developments in management of gastrointestinal stromal tumors: regorafenib, the new player in the team

    Directory of Open Access Journals (Sweden)

    Boichuk S

    2013-12-01

    Full Text Available Sergei Boichuk,1,2 Jessica L Rausch,1 Anette Duensing1,31Cancer Virology Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA; 2Department of Pathology, Kazan State Medical University, Kazan, Russia; 3Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: Gastrointestinal stromal tumors (GISTs are the most common mesenchymal tumors of the gastrointestinal tract and the most frequent single type of sarcoma, at least in some geographical regions. They arise from the interstitial cells of Cajal (or a common progenitor cell. The vast majority of GISTs are characterized by oncogenically activating mutations in the KIT or platelet-derived growth factor receptor alpha (PDGFRA receptor tyrosine kinase genes. This molecular feature has been successfully exploited for therapeutic purposes, and as of a decade ago, GISTs have become the prototype of a solid tumor that can be targeted with small molecule kinase inhibitors. Imatinib mesylate (Gleevec®/Glivec® benefits more than 85% of patients with unresectable and/or metastatic GIST. Unfortunately, the majority of patients develop resistance to imatinib within the first 2 years of treatment and new therapeutic options are needed. Although the broad-range kinase inhibitor sunitinib malate (Sutent® has been the second-line therapy approved by the US Food and Drug Administration since 2006, it was not until recently (February 2013 that regorafenib (Stivarga® was approved as a third-line therapeutic agent for GIST. This review summarizes the development process of regorafenib for GIST and highlights its biochemical, pharmacologic, and clinical properties.Keywords: gastrointestinal stromal tumors, GIST, regorafenib

  8. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    Science.gov (United States)

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  9. Developments in intervertebral disc disease research: pathophysiology, mechanobiology, and therapeutics.

    Science.gov (United States)

    Weber, Kathryn T; Jacobsen, Timothy D; Maidhof, Robert; Virojanapa, Justin; Overby, Chris; Bloom, Ona; Quraishi, Shaheda; Levine, Mitchell; Chahine, Nadeen O

    2015-03-01

    Low back pain is a leading cause of disability worldwide and the second most common cause of physician visits. There are many causes of back pain, and among them, disc herniation and intervertebral disc degeneration are the most common diagnoses and targets for intervention. Currently, clinical treatment outcomes are not strongly correlated with diagnoses, emphasizing the importance for characterizing more completely the mechanisms of degeneration and their relationships with symptoms. This review covers recent studies elucidating cellular and molecular changes associated with disc mechanobiology, as it relates to degeneration and regeneration. Specifically, we review findings on the biochemical changes in disc diseases, including cytokines, chemokines, and proteases; advancements in disc disease diagnostics using imaging modalities; updates on studies examining the response of the intervertebral disc to injury; and recent developments in repair strategies, including cell-based repair, biomaterials, and tissue engineering. Findings on the effects of the omega-6 fatty acid, linoleic acid, on nucleus pulposus tissue engineering are presented. Studies described in this review provide greater insights into the pathogenesis of disc degeneration and may define new paradigms for early or differential diagnostics of degeneration using new techniques such as systemic biomarkers. In addition, research on the mechanobiology of disease enriches the development of therapeutics for disc repair, with potential to diminish pain and disability associated with disc degeneration.

  10. Development of Antibody-Based Vaccines Targeting the Tumor Vasculature.

    Science.gov (United States)

    Zhuang, Xiaodong; Bicknell, Roy

    2016-01-01

    A functional vasculature is essential for tumor progression and malignant cell metastasis. Endothelial cells lining blood vessels in the tumor are exposed to a unique microenvironment, which in turn induces expression of specific proteins designated as tumor endothelial markers (TEMs). TEMs either localized at the plasma membrane or secreted into the extracellular matrix are accessible for antibody targeting, which can be either infused or generated de novo via vaccination. Recent studies have demonstrated vaccines against several TEMs can induce a strong antibody response accompanied by a potent antitumor effect in animal models. These findings present an exciting field for novel anticancer therapy development. As most of the TEMs are self-antigens, breaking tolerance is necessary for a successful vaccine. This chapter describes approaches to efficiently induce a robust antibody response against the tumor vasculature.

  11. Enhanced therapeutic effect of multiple injections of HSV-TK + GCV gene therapy in combination with ionizing radiation in a mouse mammary tumor model

    International Nuclear Information System (INIS)

    Vlachaki, Maria T.; Chhikara, Madhu; Aguilar, Laura; Zhu Xiaohong; Chiu, Kam J.; Woo, Shiao; Teh, Bin S.; Thompson, Timothy C.; Butler, E. Brian; Aguilar-Cordova, Estuardo

    2001-01-01

    Purpose: Standard therapies for breast cancer lack tumor specificity and have significant risk for recurrence and toxicities. Herpes simplex virus-thymidine kinase (HSV-tk) gene therapy combined with radiation therapy (XRT) may be effective because of complementary mechanisms and distinct toxicity profiles. HSV-tk gene therapy followed by systemic administration of ganciclovir (GCV) enhances radiation-induced DNA damage by generating high local concentrations of phosphorylated nucleotide analogs that increase radiation-induced DNA breaks and interfere with DNA repair mechanisms. In addition, radiation-induced membrane damage enhances the 'bystander effect' by facilitating transfer of nucleotide analogs to neighboring nontransduced cells and by promoting local and systemic immune responses. This study assesses the effect of single and multiple courses of HSV-tk gene therapy in combination with ionizing radiation in a mouse mammary cancer model. Methods and Materials: Mouse mammary TM40D tumors transplanted s.c. in syngeneic immunocompetent BALB-c mice were treated with either adenoviral-mediated HSV-tk gene therapy or local radiation or the combination of gene and radiation therapy. A vector consisting of a replication-deficient (E1-deleted) adenovirus type 5 was injected intratumorally to administer the HSV-tk gene, and GCV was initiated 24 h later for a total of 6 days. Radiation was given as a single dose of 5 Gy 48 h after the HSV-tk injection. A metastatic model was developed by tail vein injection of TM40D cells on the same day that the s.c. tumors were established. Systemic antitumor effect was evaluated by counting the number of lung nodules after treating only the primary tumors with gene therapy, radiation, or the combination of gene and radiation therapy. To assess the therapeutic efficacy of multiple courses of this combinatorial approach, one, two, and three courses of HSV-tk + GCV gene therapy, in combination with radiation, were compared to HSV-tk or

  12. Protease-Sensitive Liposomes in Chemotherapy & Chemoradiotherapy: From Material Development to In Vivo Application in Tumor-Bearing Mice

    DEFF Research Database (Denmark)

    Brogaard, Rikke Yding; Melander, Fredrik

    to enhance therapeutic efficacies. In this thesis, the development, characterization, and evaluation of an advanced liposomal DDS and its potential in chemoradiotherapy is presented from material development to in vivo application in tumor*bearing mice. In the first part of the thesis, we report the design...... concept of the liposomal DDS, which leads to rapid cellular uptake. Various lipid compositions are tested in uptake and cytotoxicity experiments in vitro, followed by in vivo experiments where the ability of the liposomal DDS to accumulate in tumors together with its anti*cancer activity is explored...... in tumor*bearing mice. The in vivo data demonstrates superior anti*cancer activity relative to the free drug and to conventional, long circulating liposomes. This indicates that the MMP*sensitive liposomal DDS holds potential in therapeutic applications. In the second part of the thesis, the potential...

  13. Choice of therapeutic tactics after failure of the first tumor necrosis factor-α inhibitor

    Directory of Open Access Journals (Sweden)

    N. V. Chichasova

    2017-01-01

    Full Text Available The paper discusses whether the effect of different biological agents (BAs can be achieved in patients with active rheumatoid arthritis (RA when they inadequately respond to therapy with tumor necrosis factor-α (TNF-α inhibitors. It gives data on the efficacy of BAs with another mechanism of action (abatacept, tocilizumab, and rituximab and on the comparable efficacy of golimumab (GLM in this group of patients. It is shown that the effect of GLM therapy does not depend on the reasons for discontinuation of a previously used TNF-α inhibitors (inefficacy, adverse events, etc.. It is conclusion that GLM is effective after failure of one or two TNF-α inhibitors.

  14. Preparation of 188 Re-lanreotide as a potential tumor therapeutic agent

    International Nuclear Information System (INIS)

    Bai Hongsheng; Jin Xiaohai; Fan Hongqiang; Jia Bing; Wang Yuqing; Lu Weiwei

    2001-01-01

    Radiolabeled peptides hold unlimited potential in diagnostic applications and therapy of malignant tumor. Somatostatin analogue peptide (Lanreotide) is labeled directly with 188 Re via the mixture of citrate and tartrate. The influences of reaction conditions such as pH, temperature, amount of stannous chloride, Lanreotide quantity, reaction time on labeling yield are investigated in detail. At the same time, the stability in vitro, quality control and animal test are evaluated. The experimental results show that Lanreotide reacts with 188 Re for 40 min at pH 2 - 3 and 60 degree C, the labeling yield is at range of 88% - 94%. After purification of 188 Re-Lanreotide with Sep-Pak C 18 reverse phase extraction cartridge, the radiochemical purity (RP) is more than 95%. 188 Re-Lanreotide is eliminated rapidly from the blood and is excreted through liver, the uptake of lung and intestine is high

  15. Myeloid leukemias and virally induced lymphomas in miniature inbred swine; development of a large animal tumor model

    Directory of Open Access Journals (Sweden)

    RAIMON eDURAN-STRUUCK

    2015-11-01

    Full Text Available The lack of a large animal transplantable tumor model has limited the study of novel therapeutic strategies for the treatment of liquid cancers. Swine as a species provide a natural option based on their similarities with humans and their already extensive use in biomedical research. Specifically, the MGH miniature swine herd retains unique genetic characteristics that facilitate the study of hematopoietic cell and solid organ transplantation. Spontaneously arising liquid cancers in these swine, specifically myeloid leukemias and B cell lymphomas, closely resemble human malignancies. The ability to establish aggressive tumor cell lines in vitro from these naturally occurring malignancies makes a transplantable tumor model a close reality. Here, we discuss our experience with myeloid and lymphoid tumors in MHC characterized miniature swine and future approaches regarding the development of a large animal transplantable tumor model.

  16. The therapeutic ratio in BNCT: Assessment using the Rat 9L gliosarcoma brain tumor and spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Fisher, C.D.; Bywaters, A.; Morris, G.M.; Hopewell, J.W.

    1996-01-01

    During any radiation therapy, the therapeutic tumor dose is limited by the tolerance of the surrounding normal tissue within the treatment volume. The short ranges of the products of the 10 B(n,α) 7 Li reaction produced during boron neutron capture therapy (BNCT) present an opportunity to increase the therapeutic ratio (tumor dose/normal tissue dose) to levels unprecedented in photon radiotherapy. The mixed radiation field produced during BNCT comprises radiations with different linear energy transfer (LET) and different relative biological effectiveness (RBE). The short ranges of the two high-LET products of the 'B(n,a)'Li reaction make the microdistribution of the boron relative to target cell nuclei of particular importance. Due to the tissue specific distribution of different boron compounds, the term RBE is inappropriate in defining the biological effectiveness of the 10 B(n,α) 7 Li reaction. To distinguish these differences from true RBEs we have used the term open-quotes compound biological effectivenessclose quotes (CBE) factor. The latter can be defined as the product of the true, geometry-independent, RBE for these particles times a open-quotes boron localization factorclose quotes, which will most likely be different for each particular boron compound. To express the total BNCT dose in a common unit, and to compare BNCT doses with the effects of conventional photon irradiation, multiplicative factors (RBEs and CBEs) are applied to the physical absorbed radiation doses from each high-LET component. The total effective BNCT dose is then expressed as the sum of RBE-corrected physical absorbed doses with the unit Gray-equivalent (Gy-Eq)

  17. Cancer vaccines: the challenge of developing an ideal tumor killing system.

    Science.gov (United States)

    Mocellin, Simone

    2005-09-01

    Despite the evidence that the immune system plays a significant role in controlling tumor growth in natural conditions and in response to therapeutic vaccination, cancer cells can survive their attack as the disease progresses and no vaccination regimen should be currently proposed to patients outside experimental clinical trials. Clinical results show that the immune system can be actively polarized against malignant cells by means of a variety of vaccination strategies, and that in some cases this is associated with tumor regression. This implies that under some unique circumstances, the naturally "dormant" immune effectors can actually be put at work and used as endogenous weapons against malignant cells. Consequently, the main challenge of tumor immunologists appears to lie on the ability of reproducing those conditions in a larger set of patients. The complexity of the immune network and the still enigmatic host-tumor interactions make these tasks at the same time challenging and fascinating. Recent tumor immunology findings are giving new impetus to the development of more effective vaccination strategies and might revolutionize the way of designing the next generation of cancer vaccines. In the near future, the implementation of these insights in the clinical setting and the completion/conduction of comparative randomized phase III trials will allow oncologists to define the actual role of cancer vaccines in the fight against malignancy.

  18. The Enigmatic Roles of Caspases in Tumor Development

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, Richard; Zwacka, Ralf M., E-mail: ralf.zwacka@nuigalway.ie [National University of Ireland, Galway, National Centre for Biomedical Engineering Science and Apoptosis Research Centre, Molecular Therapeutics Group, Galway (Ireland)

    2010-11-24

    One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may

  19. The Enigmatic Roles of Caspases in Tumor Development

    International Nuclear Information System (INIS)

    Jäger, Richard; Zwacka, Ralf M.

    2010-01-01

    One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may

  20. Inhibition of mTOR's Catalytic Site by PKI-587 Is a Promising Therapeutic Option for Gastroenteropancreatic Neuroendocrine Tumor Disease.

    Science.gov (United States)

    Freitag, Helma; Christen, Friederike; Lewens, Florentine; Grass, Irina; Briest, Franziska; Iwaszkiewicz, Sara; Siegmund, Britta; Grabowski, Patricia

    2017-01-01

    The characteristic clinical heterogeneity and mostly slow-growing behavior of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) cause problems in finding appropriate treatments. Thus, the current therapy options are not satisfactory. PKI-587 is a highly potent, novel dual inhibitor of PI3K and mTORC1/C2. We assessed the effects of PKI-587 in different GEP-NEN tumor models, including the poorly differentiated cell line LCC-18, and compared them with those of the established mTORC1 inhibitor everolimus. We treated BON, QGP-1, KRJ-I, and LCC-18 cell lines with increasing concentrations of the inhibitor PKI-587, and compared the results with those of everolimus and DMSO. We assessed the impact of the treatments on viability (WST-1 assay), on apoptotic processes (caspase 3/7 assay, JC-1), and on cell cycle regulation (flow cytometry). We determined alterations in signaling mediators by phosphor-specific Western blot analysis and conducted multiplexed gene expression analysis (nCounter® technology). In all cell lines, PKI-587 dose-dependently inhibited proliferation, whereas everolimus was less effective. Treatment with PKI-587 led to cell cycle arrest and induction of apoptosis and successfully suppressed activity of the direct mTORC1 target 4E-BP1, a crucial factor for tumor genesis only partially inhibited by everolimus. Gene expression analyses revealed relevant changes of RAS, MAPK, STAT, and PI3K pathway genes after treatment. Treatment-dependent and cell line-characteristic effects on AKT/Rb/E2F signaling regarding cell cycle control and apoptosis are extensively discussed in this paper. PI3K/mTOR dual targeting is a promising new therapeutic approach in neuroendocrine tumor disease that should be evaluated in further clinical trials. © 2016 The Author(s) Published by S. Karger AG, Basel.

  1. Pathogenesis of Cognitive Decline Following Therapeutic Irradiation for Head and Neck Tumors

    International Nuclear Information System (INIS)

    Abayomi, Olubunmi K.

    2002-01-01

    Cognitive decline is a significant but largely unrecognized sequela following irradiation for several head and neck tumors, particularly cancer of the nasopharynx and paranasal sinuses. In this article the cellular mechanisms of radiation-induced vascular damage in the temporal lobe and its effects on the medial temporal lobe memory systems are described. Recognition of the mechanisms and site of the injury should permit the use of treatment planning systems, such as 3-dimensional (3-D) conformal and intensity-modulated radiotherapy (IMRT) techniques, to spare large volumes of the temporal lobe from receiving a high dose. Furthermore, the emerging concepts of vascular irradiation damage as an inflammatory fibroproliferative response to endothelial injury may permit the application of measures directed at inhibiting the expression of proinflammatory genes and thus mitigate the inflammatory response. Moreover, comorbid factors such as hypertension, diabetes, lipidemia, obesity and smoking are known to promote atherogenesis and therefore may exacerbate radiation-induced vascular damage. Control of these factors may also reduce the incidence and severity of this sequela

  2. Membrane damage effect of therapeutic ultrasound on Ehrlich ascitic tumor cells.

    Science.gov (United States)

    Hao, Qiao; Liu, Quanhong; Wang, Xiaobing; Wang, Pan; Li, Tao; Tong, Wan Yan

    2009-02-01

    The biologic effects and the underlying mechanisms of Ehrlich ascitic tumor (EAT) cells induced by ultrasound were investigated in this study. Cells were subjected to ultrasonic irradiation with a frequency of 2.17 MHz and an intensity of 3 W/cm(2) for variable periods of time. Trypan blue exclusion was used to detect the integrity of cellular membrane; the membrane permeability was investigated by the incorporation of fluorescein isothiocyanate dextran during ultrasound exposure; and the cell membrane ultrastructure changes were observed under a scanning electron microscope. The potential mechanism was estimated from the generation of hydroxyl radicals, the lipid peroxidation levels, and intracellular reactive oxygen radicals production. The cell membrane damage effects induced by ultrasound increased with a prolonged exposure time; the fluorescent rates of the cells irradiated with ultrasound for 30 and 60 seconds were 11.46% and 18.50%, respectively; the amount of hydroxyl radicals in 30 (26.10 U/mL) and 60 seconds (28.47 U/mL) were significantly enhanced, compared with the control group (24.44 U/mL); then, the level of lipid peroxidation was also changed from 0.27 to 0.54 (30 seconds) and 1.21 nmol/mL (60 seconds). Shear forces and free radicals produced by acoustic cavitation may play important roles in these actions.

  3. Development of radiolanthanide labeled porphyrin complexes as possible therapeutic agents in beast carcinoma xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Vahidfar, Nasim; Aghanejad, Ayuob; Beiki, Davood; Khalaj, Ali [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Faculty of Pharmacy; Jalilian, Amir R.; Fazaeli, Yousef; Bahrami-Samani, Ali; Alirezapour, Behrooz; Erfani, Mostafa [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiopharmacy Research Group

    2014-10-01

    Radiolabeled porphyrins are potential tumor avid radiopharmaceuticals because of their behaviour in the human body, ability to complex various radionuclides, water solubility, low toxicity etc., in this work radio ytterbium/samarium porphyrin complexes have been developed. {sup 175}Yb and {sup 153}Sm labeled 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrins ([{sup 175}Yb]-TDMPP/[{sup 153}Sm]-TDMPP) were prepared using 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrin (H{sub 2}TDMPP) and [{sup 175}Yb]YbCl{sub 3} or [{sup 153}Sm]SmCl{sub 3} in 12-24 h at 60 C. Stability of the complexes were checked in final formulation and human serum for 24 h, followed by partition coefficient determination and biodistribution studies in wild type and breast carcinoma-bearing mice. The radiocomplexes were obtained with acceptable radiochemical purity (> 95% (paper chromatography) and > 96% (HPLC) for [{sup 175}Yb]-TDMPP and > 97% (paper chromatography) and > 98% (HPLC) for [{sup 153}Sm]-TDMPP) with specific activities of 12-15 GBq/mmol and 278 GBq/mmol at the end of bombardment for [{sup 175}Yb]-TDMPP and [{sup 153}Sm]-TDMPP respectively. The partition coefficients were determined for [{sup 175}Yb]-TDMPP and [{sup 153}Sm]-TDMPP (log P = 0.63 and log P = 0.96 respectively). The [{sup 175}Yb]-TDMPP complex is mostly washed out from the circulation through kidneys. Liver and spleen also demonstrated significant activity uptake in 72 h post injection. Also [{sup 153}Sm]-TDMPP, is mostly washed out from the circulation through kidneys, however lungs are the major accumulation sites. The [{sup 153}Sm]-TDMPP complex demonstrated significant targeted uptake in breast carcinoma xenografts with tumor: blood ratios of 10.67, 10.47 and 19.01 in 24, 48 and 72 h respectively. Also interesting tumor: kidney/liver ratios were obtained. {sup 153}Sm-TDMPP properties suggest an efficient tumor targeting agent with high tumor-avidity. Further investigation on the therapeutic properties must be

  4. True recurrence vs. new primary ipsilateral breast tumor relapse: An analysis of clinical and pathologic differences and their implications in natural history, prognoses, and therapeutic management

    International Nuclear Information System (INIS)

    Smith, Tanya E.; Lee, Daesung; Turner, Bruce C.; Carter, Darryl; Haffty, Bruce G.

    2000-01-01

    Purpose: The purpose of this study was to classify all ipsilateral breast tumor relapses (IBTR) in patients treated with conservative surgery and radiation therapy (CS+RT) as either new primary tumors (NP) or true local recurrences (TR) and to assess the prognostic and therapeutic implications of this classification. Methods and Materials: Of the 1152 patients who have been treated at Yale-New Haven Hospital before 1990, 136 patients have experienced IBTR as their primary site of failure. These relapses were classified as either NP or TR. Specifically, patients were classified as NP if the recurrence was distinctly different from the primary tumor with respect to the histologic subtype, the recurrence location was in a different location, or if the flow cytometry changed from aneuploid to diploid. This information was determined by a detailed review of each patient's hospital and/or radiotherapy record, mammograms, and pathologic reports. Results: As of 2/99, with a mean follow-up of 14.2 years, the overall ipsilateral breast relapse-free rate for all 1152 patients was 86% at 10 years. Using the classification scheme outlined above, 60 patient relapses were classified as TR, 70 were classified as NP and 6 were unable to be classified. NP patients had a longer mean time to breast relapse than TR patients (7.3 years vs. 3.7 years, p < 0.0001) and were significantly younger than TR patients (48.9 years vs. 54.5 years, p < 0.01). Patients developed both TR and NP at similar rates until approximately 8 years, when TR rates stabilized but NP rates continued to rise. By 15 years following original diagnosis, the TR rate was 6.8% compared to 13.1% for NP. Of the patients who had been previously tested for BRCA1/2 mutations, 17% (8/52) had deleterious mutations. It is noteworthy that all patients with deleterious mutations had new primary IBTR, while patients without deleterious mutations had both TR and NP (p = 0.06). Ploidy was evenly distributed between TR and NP but NP

  5. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    International Nuclear Information System (INIS)

    Adam, Jean-Francois

    2005-01-01

    maximal dose deposit in the tumor, while sparing healthy tissues. The methodology, the associated dosimetry as well as the preclinical validation of iodine enhanced strereotactic synchrotron radiation therapy is developed in the thesis. Significant survival increases were obtained, especially when the delivery of iodine is coupled with a transient blood-brain-barrier opener. The two complementary methods developed in this thesis offer perspectives in the understanding of the glioma growth process and in their treatment by radiation therapy. They show the potential of synchrotron radiation for absolute high-resolution morphological and functional CT imaging, and for new therapeutic modalities using intense monochromatic x rays

  6. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  7. Recent Developments in Active Tumor Targeted Multifunctional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging

    Science.gov (United States)

    Glasgow, Micah D. K.; Chougule, Mahavir B.

    2016-01-01

    Nanotechnology and combination therapy are two major fields that show great promise in the treatment of cancer. The delivery of drugs via nanoparticles helps to improve drug’s therapeutic effectiveness while reducing adverse side effects associated with high dosage by improving their pharmacokinetics. Taking advantage of molecular markers over-expressing on tumor tissues compared to normal cells, an “active” molecular marker targeted approach would be beneficial for cancer therapy. These actively targeted nanoparticles would increase drug concentration at the tumor site, improving efficacy while further reducing chemo-resistance. The multidisciplinary approach may help to improve the overall efficacy in cancer therapy. This review article summarizes recent developments of targeted multifunctional nanoparticles in the delivery of various drugs for a combinational chemotherapy approach to cancer treatment and imaging. PMID:26554150

  8. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model.

    Directory of Open Access Journals (Sweden)

    Yuya Yoshimoto

    Full Text Available PURPOSE: There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL activity. METHODS AND MATERIALS: C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD was defined as the time (in days for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. RESULTS: In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days and prolonged median survival time (MST to 59 days (versus 28 days in the non-irradiated group. CD8(+ cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days. Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days, while anti-FR4 and anti-GITR antibodies did not affect efficacy. CONCLUSIONS: Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4

  9. Radiotherapy-Induced Anti-Tumor Immunity Contributes to the Therapeutic Efficacy of Irradiation and Can Be Augmented by CTLA-4 Blockade in a Mouse Model

    Science.gov (United States)

    Yoshimoto, Yuya; Suzuki, Yoshiyuki; Mimura, Kousaku; Ando, Ken; Oike, Takahiro; Sato, Hiro; Okonogi, Noriyuki; Maruyama, Takanori; Izawa, Shinichiro; Noda, Shin-ei; Fujii, Hideki; Kono, Koji; Nakano, Takashi

    2014-01-01

    Purpose There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL) activity. Methods and Materials C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C) cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD) was defined as the time (in days) for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. Results In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days) and prolonged median survival time (MST) to 59 days (versus 28 days in the non-irradiated group). CD8(+) cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days). Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days), while anti-FR4 and anti-GITR antibodies did not affect efficacy. Conclusions Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4 blockade, may be a

  10. Pharmacological and therapeutic properties of carrier bound methotrexate against tumor confined to a third space body compartment.

    Science.gov (United States)

    Chu, B C; Howell, S B

    1981-11-01

    The pharmacokinetics and therapeutic effectiveness of methotrexate (MTX) and MTX covalently bound to bovine serum albumin (MTX-BSA) and poly-l-lysine, MW 3,000 (MTX-PLL 3K) or MW 40,000 to 60,000 (MTX-PLL 40-60K) were compared when these drugs were injected directly into the pleural cavities of BDF1 mice containing the L1210 tumor. Simultaneous measurements od drug levels in both pleural fluid and blood after a single dose demonstrated that free MTX and MTX-PLL 3K were cleared from the pleural cavity and blood within 4 hr, MTX-PLL 40K-60K was cleared within 2 hr, and MTX-BSA was still present in the tumor compartment at 48 hr. The coupling of MTX to these carriers increased its toxicity by extending the half-life of MTX-BSA within the animal and by incorporating a toxic PLL derivative as a carrier. At equitoxic doses, a single dose of MTX-BSA gave a peak increase in lifespan (ILS) of 50% (at 35 mg/kg) compared with a peak ILS of 30 to 35% for both free drug (at 95 mg/kg) and the MTX-PLL derivatives (at 1.4-6 mg/kg). Systemic administration of sufficient leucovorin to provide partial marrow protection compromised the antitumor activity of both MTX and MTX-BSA in the pleural cavity, and although leucovorin permitted higher doses to be used, this resulted in only a small increase in peak ILS for MTX-BSA on a single dose schedule.

  11. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer.

    Science.gov (United States)

    Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E

    2017-01-03

    Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.

  12. Tumor markers kits development for use in radioimmunometric assays

    International Nuclear Information System (INIS)

    Ahmed, B.

    1997-01-01

    The immunoassays such as RIA and IRMA are now widely used through the world for the quantitation of a variety of substances in the biological fluid for their high sensibility and specificity which required simple equipments. These techniques are also very used in Algeria for an effective amelioration of public heath The assays kits of RIA/IRMA of thyroid hormones are the most used, followed by peptidic hormones, steroids hormones and IRMA Tumor Markers (T.M) kits. In spite of the important demand, of tumor markers kits for the diagnosis and follow up of cancers their use are always insufficient due to the high cost. The research contract programme proposed by IAEA on the theme 'The Developments of IRMA Tumor Markers Kits' of prostate specific Antigen (PSA) and Tissue Polypeptide Specific Antigen (TPS) will allowed us to produce locally with best quality-price, the main reagents for PSA and TPS IRMA assays kits for diagnosis and follow up the prostate and breast cancers which are very spready in the country. This report include the following points: Generalities on the use of tumor markers in Algeria, programme for the Development of the PSA IRMA assay (schedule of protocols applied for each reagents; annual planning for assessing the programme activities) and conclusion

  13. Cancer vaccine development: Designing tumor cells for greater immunogenicity

    Science.gov (United States)

    Bozeman, Erica N.; Shashidharamurthy, Rangaiah; Paulos, Simon A.; Palaniappan, Ravi; D’Souza, Martin; Selvaraj, Periasamy

    2014-01-01

    Cancer vaccine development is one of the most hopeful and exhilarating areas in cancer research. For this reason, there has been a growing interest in the development and application of novel immunotherapies for the treatment of cancer with the focus being on stimulating the immune system to target tumor cells specifically while leaving normal cells unharmed. From such research has emerged a host of promising immunotherapies such as dendritic cell-based vaccines, cytokine therapies and gene transfer technology. These therapies seek to counteract the poor immunogenicity of tumors by augmenting the host’s immune system with a variety of immunostimulatory proteins such as cytokines and costimulatory molecules. While such therapies have proven effective in the induction of anti-tumor immunity in animal models, they are less than optimal and pose a high risk of clinical infeasibility. Herein, we further discuss these immunotherapies as well as a feasible and efficient alternative that, in pre-clinical animal models, allows for the expression of specific immunostimulatory molecules on the surface of tumor cells by a novel protein transfer technology. PMID:20036822

  14. Metabolic Disorder, Inflammation, and Deregulated Molecular Pathways Converging in Pancreatic Cancer Development: Implications for New Therapeutic Strategies

    International Nuclear Information System (INIS)

    Motoo, Yoshiharu; Shimasaki, Takeo; Ishigaki, Yasuhito; Nakajima, Hideo; Kawakami, Kazuyuki; Minamoto, Toshinari

    2011-01-01

    Pancreatic cancer develops and progresses through complex, cumulative biological processes involving metabolic disorder, local inflammation, and deregulated molecular pathways. The resulting tumor aggressiveness hampers surgical intervention and renders pancreatic cancer resistant to standard chemotherapy and radiation therapy. Based on these pathologic properties, several therapeutic strategies are being developed to reverse refractory pancreatic cancer. Here, we outline molecular targeting therapies, which are primarily directed against growth factor receptor-type tyrosine kinases deregulated in tumors, but have failed to improve the survival of pancreatic cancer patients. Glycogen synthase kinase-3β (GSK3β) is a member of a serine/threonine protein kinase family that plays a critical role in various cellular pathways. GSK3β has also emerged as a mediator of pathological states, including glucose intolerance, inflammation, and various cancers (e.g., pancreatic cancer). We review recent studies that demonstrate the anti-tumor effects of GSK3β inhibition alone or in combination with chemotherapy and radiation. GSK3β inhibition may exert indirect anti-tumor actions in pancreatic cancer by modulating metabolic disorder and inflammation

  15. Metabolic Disorder, Inflammation, and Deregulated Molecular Pathways Converging in Pancreatic Cancer Development: Implications for New Therapeutic Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Motoo, Yoshiharu, E-mail: motoo@kanazawa-med.ac.jp [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Shimasaki, Takeo [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Division of Translational & Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa (Japan); Ishigaki, Yasuhito [Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Nakajima, Hideo [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Kawakami, Kazuyuki; Minamoto, Toshinari [Division of Translational & Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa (Japan)

    2011-01-24

    Pancreatic cancer develops and progresses through complex, cumulative biological processes involving metabolic disorder, local inflammation, and deregulated molecular pathways. The resulting tumor aggressiveness hampers surgical intervention and renders pancreatic cancer resistant to standard chemotherapy and radiation therapy. Based on these pathologic properties, several therapeutic strategies are being developed to reverse refractory pancreatic cancer. Here, we outline molecular targeting therapies, which are primarily directed against growth factor receptor-type tyrosine kinases deregulated in tumors, but have failed to improve the survival of pancreatic cancer patients. Glycogen synthase kinase-3β (GSK3β) is a member of a serine/threonine protein kinase family that plays a critical role in various cellular pathways. GSK3β has also emerged as a mediator of pathological states, including glucose intolerance, inflammation, and various cancers (e.g., pancreatic cancer). We review recent studies that demonstrate the anti-tumor effects of GSK3β inhibition alone or in combination with chemotherapy and radiation. GSK3β inhibition may exert indirect anti-tumor actions in pancreatic cancer by modulating metabolic disorder and inflammation.

  16. Metabolic Disorder, Inflammation, and Deregulated Molecular Pathways Converging in Pancreatic Cancer Development: Implications for New Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Toshinari Minamoto

    2011-01-01

    Full Text Available Pancreatic cancer develops and progresses through complex, cumulative biological processes involving metabolic disorder, local inflammation, and deregulated molecular pathways. The resulting tumor aggressiveness hampers surgical intervention and renders pancreatic cancer resistant to standard chemotherapy and radiation therapy. Based on these pathologic properties, several therapeutic strategies are being developed to reverse refractory pancreatic cancer. Here, we outline molecular targeting therapies, which are primarily directed against growth factor receptor-type tyrosine kinases deregulated in tumors, but have failed to improve the survival of pancreatic cancer patients. Glycogen synthase kinase-3β (GSK3β is a member of a serine/threonine protein kinase family that plays a critical role in various cellular pathways. GSK3β has also emerged as a mediator of pathological states, including glucose intolerance, inflammation, and various cancers (e.g., pancreatic cancer. We review recent studies that demonstrate the anti-tumor effects of GSK3β inhibition alone or in combination with chemotherapy and radiation. GSK3β inhibition may exert indirect anti-tumor actions in pancreatic cancer by modulating metabolic disorder and inflammation.

  17. 78 FR 28630 - Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, Formerly Known as...

    Science.gov (United States)

    2013-05-15

    ... Research, Pfizer Worldwide Research & Development Division, Formerly Known as Warner Lambert Company... Groton, Connecticut location of Pfizer Therapeutic Research, Pfizer Worldwide Research & Development... Worldwide Research & Development Division, formerly known as Warner Lambert Company, Comparative Medicine...

  18. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application

    Directory of Open Access Journals (Sweden)

    Wagner D.

    2015-09-01

    Full Text Available Adequate diagnosis of upper urinary tract (UUT tumors is essential for successful local treatment. Organsparing approaches are technically difficult and require consistent further development. Appropriate models for investigating new diagnostic and therapeutic methods are not yet available. This study demonstrates the incorporation of a fresh sample model into five different test levels (I-V for improving the diagnosis and therapy of ureteral tumors. In these test levels, new diagnostic and ablation techniques are evaluated for feasibility, application safety, efficacy and accuracy. An assessment of their suitability for broad preclinical and clinical application also took economic aspects into account.

  19. Transcriptional mutagenesis: causes and involvement in tumor development

    Science.gov (United States)

    Brégeon, Damien; Doetsch, Paul W.

    2013-01-01

    The majority of normal cells in a human do not multiply continuously but are quiescent and devote most of their energy to gene transcription. When DNA damages in the transcribed strand of an active gene are bypassed by an RNA polymerase, they can miscode at the damaged site and produce mutant transcripts. This process known as transcriptional mutagenesis can lead to the production of mutant proteins that could be important in tumor development. PMID:21346784

  20. How will diagnostic and therapeutic oncology develop? Pt. 3

    International Nuclear Information System (INIS)

    Laubenbacher, C.; Tausig, A.

    1998-01-01

    Forward-looking aspects of nuclear medicine were presented during the third part of the session 'Oncology: Future trends in diagnosis and therapy'. Prof. Strauss illustrated the use of functional imaging modalities for therapy monitoring and concentrated on the rating of FDG-PET for melanoma and lymphoma. Prof. Molls, a radiation therapist, demonstrated the importance of nuclear medicine for radiation treatment planning. Additionally, he stressed on the potential of nuclear medicine for better characterization of tumor biology (e.g. non-invasive determination of intratumoral pO2). Prof. Wahl gave an update on radioimmunotherapy (RITh) of lymphomas. By using I-131-anti-CD 10-antibodies he was able to observe remissions in 27 out of 29 patients with B-cell lymphomas. In the last part of the session, Prof. Senekowitsch-Schmidtke summarized the potentials for optimization of RITh. Beside possible ways to increase the amount of radioactivity delivered to the tumor, she concentrated on parameters for the choice of the optimal radionuclide. (orig.) [de

  1. Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke; Kajikawa, Shu-hei [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Uesato, Shin-ichi [Department of Biotechnology, Faculty of Engineering, Kansai University, Osaka 564-8680 (Japan); Watanabe, Kazushi [Proubase Technology Inc., Kanagawa 211-0063 (Japan); Tanimura, Susumu [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Koji, Takehiko [Department of Histology and Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kohno, Michiaki, E-mail: kohnom@nagasaki-u.ac.jp [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Proubase Technology Inc., Kanagawa 211-0063 (Japan); Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501 (Japan)

    2013-04-19

    Highlights: •Blockade of the ERK pathway enhances the anticancer efficacy of HDAC inhibitors. •MEK inhibitors sensitize human tumor xenografts to HDAC inhibitor cytotoxicity. •Such the enhanced efficacy is achieved by a transient blockade of the ERK pathway. •This drug combination provides a promising therapeutic strategy for cancer patients. -- Abstract: The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showed that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients.

  2. Manipulation of tumor oxygenation and radiosensitivity through modification of cell respiration. A critical review of approaches and imaging biomarkers for therapeutic guidance.

    Science.gov (United States)

    Gallez, Bernard; Neveu, Marie-Aline; Danhier, Pierre; Jordan, Bénédicte F

    2017-08-01

    Tumor hypoxia has long been considered as a detrimental factor for the response to irradiation. In order to improve the sensitivity of tumors cells to radiation therapy, tumor hypoxia may theoretically be alleviated by increasing the oxygen delivery or by decreasing the oxygen consumption by tumor cells. Mathematical modelling suggested that decreasing the oxygen consumption should be more efficient than increasing oxygen delivery in order to alleviate tumor hypoxia. In this paper, we review several promising strategies targeting the mitochondrial respiration for which alleviation of tumor hypoxia and increase in sensitivity to irradiation have been demonstrated. Because the translation of these approaches into the clinical arena requires the use of pharmacodynamics biomarkers able to identify shift in oxygen consumption and tumor oxygenation, we also discuss the relative merits of imaging biomarkers (Positron Emission Tomography and Magnetic Resonance) that may be used for therapeutic guidance. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Therapeutic effects of a novel tylophorine analog, NK-007, on collagen-induced arthritis through suppressing tumor necrosis factor α production and Th17 cell differentiation.

    Science.gov (United States)

    Wen, Ti; Li, Yangguang; Wu, Meng; Sun, Xiaolin; Bao, Xiucong; Lin, Yuquan; Hao, Jianlei; Han, Lin; Cao, Guangchao; Wang, Ziwen; Liu, Yuxiu; Wu, Zhenzhou; Hong, Zhangyong; Wang, Puyue; Zhao, Liqing; Li, Zhanguo; Wang, Qingmin; Yin, Zhinan

    2012-09-01

    To analyze the effects of a novel compound, NK-007, on the prevention and treatment of collagen-induced arthritis (CIA) and the underlying mechanisms. We determined the effect of NK-007 on lipopolysaccharide (LPS)-triggered tumor necrosis factor α (TNFα) production by murine splenocytes and a macrophage cell line (RAW 264.7) by enzyme-linked immunosorbent assay, intracellular cytokine staining, and Western blotting. The LPS-boosted CIA model was adopted, and NK-007 or vehicle was administered at different time points after immunization. Mice were monitored for clinical severity of arthritis, and joint tissues were used for histologic examination, cytokine detection, and immunohistochemical staining. Finally, stability of TNFα production and Th17 cell differentiation were studied using quantitative polymerase chain reaction and flow cytometry. NK-007 significantly suppressed LPS-induced TNFα production in vitro. Administration of NK-007 completely blocked CIA development and delayed its progression. Furthermore, treatment with NK-007 at the onset of arthritis significantly inhibited the progress of joint inflammation. Administration of NK-007 also suppressed production of TNFα, interleukin-6 (IL-6), and IL-17A in the joint and reduced percentages of IL-17+ cells among CD4+ and γ/δ T cells in draining lymph nodes. We further demonstrated that NK-007 acted on the stability of TNFα messenger RNA and reduced Th17 cell differentiation. In addition, it significantly inhibited levels of IL-6 and IL-17A in human coculture assay. For its effects on the development and progression of CIA and for its therapeutic effect on CIA, NK-007 has great potential to be a therapeutic agent for human rheumatoid arthritis. Copyright © 2012 by the American College of Rheumatology.

  4. Improved anti-tumor activity of a therapeutic melanoma vaccine through the use of the dual COX-2/5-LO inhibitor licofelone

    Directory of Open Access Journals (Sweden)

    Silke Neumann

    2016-12-01

    Full Text Available Immune-suppressive cell populations impair anti-tumor immunity and can contribute to the failure of immune therapeutic approaches. We hypothesized that the non-steroidal anti-inflammatory drug (NSAID licofelone, a dual COX-2/5-LO inhibitor, would improve therapeutic melanoma vaccination by reducing immune-suppressive cell populations. Therefore, licofelone was administered after tumor implantation, either alone or in combination with a peptide vaccine containing a long tyrosinase-related protein (TRP2-peptide and the adjuvant α-galactosylceramide, all formulated into cationic liposomes. Mice immunized with the long-peptide vaccine and licofelone showed delayed tumor growth compared to mice given the vaccine alone. This protection was associated with a lower frequency of immature myeloid cells (IMCs in the bone marrow (BM and spleen of tumor-inoculated mice. When investigating the effect of licofelone on IMCs in vitro, we found that the prostaglandin E2-induced generation of IMCs was decreased in the presence of licofelone. Furthermore, pre-incubation of BM cells differentiated under IMC-inducing conditions with licofelone reduced the secretion of cytokines interleukin (IL-10 and -6 upon LPS stimulation as compared to untreated cells. Interestingly, licofelone increased IL-6 and IL-10 secretion when administered after the LPS stimulus, demonstrating an environment-dependent effect of licofelone. Our findings support the use of licofelone to reduce tumor-promoting cell populations.

  5. The non-classical antigens of HLA-G and HLA-E as diagnostic and prognostic biomarkers and as therapeutic targets in transplantation and tumors.

    Science.gov (United States)

    Seliger, Barbara

    2013-01-01

    The non-classical human leukocyte antigen (HLA) class I antigen HLA-G represents a tolerogenic molecule and is involved in the inhibition of natural killer cell and cytotoxic T lymphocyte-mediated cytotoxicity. Under physiological conditions, HLA-G expression is mainly restricted to immune-privileged tissues, whereas it is overexpressed in tumors and transplants as well as in virus-infected cells. Due to its immunosuppressive features, HLA-G is important for pregnancy or organ transplantation and autoimmune diseases as well as cancer immune escape. This review focusses on the expression, regulation, and function of HLA-G in tumor cells andlor in transplants as well as therapeutic tools for enhancing (transplantation) or avoiding (tumor) tolerance. Thus, HLA-G or HLA-G-derived synthetic molecules might be used as therapeutic agents in combination with immunosuppressive drugs to enhance organ tolerance upon transplantation. In addition, HLA-G neoexpressing tumor cells could be targeted by HLA-G-specific microRNAs in order to enhance tumor immunogenicity.

  6. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Charles A Maitz

    2017-08-01

    Full Text Available Boron neutron capture therapy (BNCT was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH215–7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.

  7. Role for the Wilms tumor gene in genital development?

    International Nuclear Information System (INIS)

    van Heyningen, V.; Bickmore, W.A.; Seawright, A.; Fletcher, J.M.; Maule, J.; Hastie, N.D.; Fekete, G.; Gessler, M.; Bruns, G.A.P.; Huerre-Jeanpierre, C.; Junien, C.; Williams, B.R.G.

    1990-01-01

    Detailed molecular definition of the WAGR region at chromosome 11p13 has been achieved by chromosome breakpoint analysis and long-range restriction mapping. Here the authors describe the molecular detection of a cytogenetically invisible 1-megabase deletion in an individual with aniridia, cryptorchidism, and hypospadias but no Wilms tumor (WT). The region of overlap between this deletion and one associated with WT and similar genital anomalies but no aniridia covers a region of 350-400 kilobases, which is coincident with the extent of homozygous deletion detected in tumor tissue from a sporadic WT. A candidate WT gene located within this region has recently been isolated, suggesting nonpenetrance for tumor expression in the first individual. The inclusion within the overlap region of a gene for WT predisposition and a gene for the best-documented WT-associated genitourinary malformations leads to suggest that both of these anomalies result from a loss-of-function mutation at the same locus. This in turn implies that the WT gene exerts pleiotropic effect on both kidney and genitourinary development, a possibility supported by the observed expression pattern of the WT candidate gene in developing kidney and gonads

  8. An industry update: the latest developments in Therapeutic delivery.

    Science.gov (United States)

    Steinbach, Oliver C

    2018-05-01

    The present industry update covers the period of 1 January-31 January 2018, with information sourced from company press releases, regulatory and patent agencies as well as scientific literature. Several public offerings (Gecko, Insmed), licensing (Foresee) and commercialization agreements (Alnylam, Collegium Pharmaceutical) as well as patent filings (Elute) continue to prove the sustained investments in the drug delivery market. In increasing numbers, more effective ways to deliver the active ingredient to the right location and the right dose through devices (Boehringer Ingelheim's Respimat, Medtronics' SynchroMedII) or improved compound properties through formulation (Aquestive Therapeutics' PharmFilm, Noven Pharmaceuticals' transdermal patch) are reaching the market. Furthering biologics and gene delivery (Avacta, Bracco) proves that novel drug delivery technologies are successfully addressing more challenging drug formats.

  9. Development of RIA kits for tumor-markers monitoring

    International Nuclear Information System (INIS)

    Suprarop, P.

    1997-01-01

    All reagents for tumor markers assays are imported from various manufacturers mainly CIS bio international. The average cost of these reagents is ranged from 80-150 bath/test (2-4 dollars test). The screening test for cancers could not be done especially in other regions of Thailand whose budgets and resources are so limited. If the reagents are made locally, many laboratories can perform the tests and use as primary diagnosis, screening or monitor the course of the disease following treatment. In addition, these reagents could help clinicians and give complementary information on the tumor status to improve quality of life in Thailand. Research objectives include: 1. Development of IRMA reagent kits suitable for diagnosing staging and monitoring prostrate and breast cancer. 2. Transfer of technology and reagent kits to relevant laboratories in Thailand. 3. Routine distribution of the reagents kits to the end users

  10. Therapeutic efficacy and microSPECT/CT imaging of {sup 188}Re-DXR-liposome in a C26 murine colon carcinoma solid tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.-J.; Chang, C.-H.; Yu, C.-Y.; Chang, T.-J.; Chen, L.-C. [Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Chen, M.-H. [National Health Research Institutes, Miaoli, Taiwan (China); Lee, T.-W. [Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Ting Gann [National Health Research Institutes, Miaoli, Taiwan (China)], E-mail: gann.ting@msa.hinet.net

    2010-01-15

    Nanocarriers can selectively target cancer sites and carry payloads, thereby improving diagnostic and therapeutic effectiveness and reducing toxicity. The objective of this study was to investigate the therapeutic efficacy of a new co-delivery radiochemotherapeutics of {sup 188}Re-N,N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA)-labeled pegylated liposomal doxorubicin (DXR) ({sup 188}Re-DXR-liposome) in a C26 murine colon carcinoma solid tumor model. To evaluate the targeting and localization of {sup 188}Re-DXR-liposome in C26 murine tumor-bearing mice, biodistribution, microSPECT/CT imaging and pharmacokinetic studies were performed. The antitumor effect of {sup 188}Re-DXR-liposome was assessed by tumor growth inhibition, survival ratio and histopathological hematoxylin-eosin staining. The tumor target and localization of the nanoliposome delivery radiochemotherapeutics of {sup 188}Re-DXR-liposome were demonstrated in the biodistribution, pharmacokinetics and in vivo nuclear imaging studies. In the study on therapeutic efficacy, the tumor-bearing mice treated with bimodality radiochemotherapeutics of {sup 188}Re-DXR-liposome showed better mean tumor growth inhibition rate (MGI) and longer median survival time (MGI=0.048; 74 days) than those treated with radiotherapeutics of {sup 188}Re-liposome (MGI=0.134; 60 days) and chemotherapeutics of Lipo-Dox (MGI=0.413; 38 days). The synergistic tumor regression effect was observed with the combination index (CI) exceeding 1 (CI=1.145) for co-delivery radiochemotherapeutics of {sup 188}Re-DXR-liposome. Two (25%) of the mice treated with radiochemotherapeutics were completely cured after 120 days. The therapeutic efficacy of radiotherapeutics of {sup 188}Re-liposome and the synergistic effect of the combination radiochemotherapeutics of {sup 188}Re-DXR-liposome have been demonstrated in a C26 murine solid tumor animal model, which pointed to the potential benefit and promise of the co-delivery of

  11. Evaluation of an anti-tumor necrosis factor therapeutic in a mouse model of Niemann-Pick C liver disease.

    Directory of Open Access Journals (Sweden)

    Melanie Vincent

    2010-09-01

    Full Text Available Niemann-Pick type C (NPC disease is a lysosomal storage disease characterized by the accumulation of cholesterol and glycosphingolipids. The majority of NPC patients die in their teen years due to progressive neurodegeneration; however, half of NPC patients also suffer from cholestasis, prolonged jaundice, and hepatosplenomegaly. We previously showed that a key mediator of NPC liver disease is tumor necrosis factor (TNF α, which is involved in both proinflammatory and apoptotic signaling cascades. In this study, we tested the hypothesis that blocking TNF action with an anti-TNF monoclonal antibody (CNTO5048 will slow the progression of NPC liver disease.Treatment of wild-type C57BL/6 mice with NPC1-specific antisense oligonucleotides led to knockdown of NPC1 protein expression in the liver. This caused classical symptoms of NPC liver disease, including hepatic cholesterol accumulation, hepatomegaly, elevated serum liver enzymes, and lipid laden macrophage accumulation. In addition, there was a significant increase in the number of apoptotic cells and a proliferation of stellate cells. Concurrent treatment of NPC1 knockdown mice with anti-TNF had no effect on the primary lipid storage or accumulation of lipid-laden macrophages. However, anti-TNF treatment slightly blunted the increase in hepatic apoptosis and stellate cell activation that was seen with NPC1 knockdown.Current therapeutic options for NPC disease are limited. Our results provide proof of principle that pharmacologically blocking the TNF-α inflammatory cascade can slightly reduce certain markers of NPC disease. Small molecule inhibitors of TNF that penetrate tissues and cross the blood-brain barrier may prove even more beneficial.

  12. Radioresistant head and neck squamous cell carcinoma cells: Intracellular signaling, putative biomarkers for tumor recurrences and possible therapeutic targets

    International Nuclear Information System (INIS)

    Skvortsov, Sergej; Jimenez, Connie R.; Knol, Jaco C.; Eichberger, Paul; Schiestl, Bernhard; Debbage, Paul; Skvortsova, Ira; Lukas, Peter

    2011-01-01

    Purpose: Treatment of local and distant head and neck cancer recurrences after radiotherapy remains an unsolved problem. In order to identify potential targets for use in effective therapy of recurrent tumors, we have investigated protein patterns in radioresistant (FaDu-IRR and SCC25-IRR, “IRR cells”) as compared to parental (FaDu and SCC25) head and neck carcinoma cells. Methods and materials: Radiation resistant IRR cells were derived from parental cells after repeated exposure to ionizing radiation 10 times every two weeks at a single dose of 10 Gy, resulting in a total dose of 100 Gy. Protein profiling in parental and IRR cells was carried out using two-dimensional differential gel electrophoresis (2D-DIGE) followed by MALDI-TOF/TOF mass spectrometry. Cell viability, cell migration assays and Western blot analysis were used to confirm results obtained using the proteome approach. Results: Forty-five proteins that were similarly modulated in FaDu-IRR and SCC25-IRR cells compared to parental cells were selected to analyze their common targets. It was found that these either up- or down-regulated proteins are closely related to the enhancement of cell migration which is regulated by Rac1 protein. Further investigations confirmed that Rac1 is up-regulated in IRR cells, and inhibiting its action reduces the migratory abilities of these cells. Additionally, the Rac1 inhibitor exerts cytostatic effects in HNSCC cells, mostly in migratory cells. Conclusions: Based on these results, we conclude that radioresistant HNSCC cells possess enhanced metastatic abilities that are regulated by a network of migration-related proteins. Rac1 protein may be considered as a putative biomarker of HNSCC radiation resistance, and as a potential therapeutic target for treating local and distant HNSCC recurrences.

  13. A rationally designed combined treatment with an alphavirus-based cancer vaccine, sunitinib and low-dose tumor irradiation completely blocks tumor development

    NARCIS (Netherlands)

    Draghiciu, Oana; Boerma, Annemarie; Hoogeboom, Baukje Nynke; Nijman, Hans W.; Daemen, Toos

    2015-01-01

    The clinical efficacy of therapeutic cancer vaccines remains limited. For effective immunotherapeutic responses in cancer patients, multimodal approaches capable of both inducing antitumor immune responses and bypassing tumor-mediated immune escape seem essential. Here, we report on a combination

  14. Digital Therapeutics: An Integral Component of Digital Innovation in Drug Development.

    Science.gov (United States)

    Sverdlov, Oleksandr; van Dam, Joris; Hannesdottir, Kristin; Thornton-Wells, Tricia

    2018-07-01

    Digital therapeutics represent a new treatment modality in which digital systems such as smartphone apps are used as regulatory-approved, prescribed therapeutic interventions to treat medical conditions. In this article we provide a critical overview of the rationale for investing in such novel modalities, including the unmet medical needs addressed by digital therapeutics and the potential for reducing current costs of medical care. We also discuss emerging pathways to regulatory approval and how innovative business models are enabling further growth in the development of digital therapeutics. We conclude by providing some recent examples of digital therapeutics that have gained regulatory approval and highlight opportunities for the near future. © 2018 American Society for Clinical Pharmacology and Therapeutics.

  15. Therapeutic Non-Toxic Doses of TNF Induce Significant Regression in TNFR2-p75 Knockdown Lewis Lung Carcinoma Tumor Implants

    Science.gov (United States)

    Sasi, Sharath P.; Bae, Sanggyu; Song, Jin; Perepletchikov, Aleksandr; Schneider, Douglas; Carrozza, Joseph; Yan, Xinhua; Kishore, Raj; Enderling, Heiko; Goukassian, David A.

    2014-01-01

    Tumor necrosis factor-alpha (TNF) binds to two receptors: TNFR1/p55-cytotoxic and TNFR2/p75-pro-survival. We have shown that tumor growth in p75 knockout (KO) mice was decreased more than 2-fold in Lewis lung carcinoma (LLCs). We hypothesized that selective blocking of TNFR2/p75 LLCs may sensitize them to TNF-induced apoptosis and affect the tumor growth. We implanted intact and p75 knockdown (KD)-LLCs (>90%, using shRNA) into wild type (WT) mice flanks. On day 8 post-inoculation, recombinant murine (rm) TNF-α (12.5 ng/gr of body weight) or saline was injected twice daily for 6 days. Tumor volumes (tV) were measured daily and tumor weights (tW) on day 15, when study was terminated due to large tumors in LLC+TNF group. Tubular bones, spleens and peripheral blood (PB) were examined to determine possible TNF toxicity. There was no significant difference in tV or tW between LLC minus (-) TNF and p75KD/LLC-TNF tumors. Compared to 3 control groups, p75KD/LLC+TNF showed >2-5-fold decreases in tV (ptumors were 100% necrotic, the remaining revealed 40-60% necrosis. No toxicity was detected in bone marrow, spleen and peripheral blood. We concluded that blocking TNFR2/p75 in LLCs combined with intra-tumoral rmTNF injections inhibit LLC tumor growth. This could represent a novel and effective therapy against lung neoplasms and a new paradigm in cancer therapeutics. PMID:24664144

  16. Development of cell-cycle checkpoint therapy for solid tumors.

    Science.gov (United States)

    Tamura, Kenji

    2015-12-01

    Cellular proliferation is tightly controlled by several cell-cycle checkpoint proteins. In cancer, the genes encoding these proteins are often disrupted and cause unrestrained cancer growth. The proteins are over-expressed in many malignancies; thus, they are potential targets for anti-cancer therapies. These proteins include cyclin-dependent kinase, checkpoint kinase, WEE1 kinase, aurora kinase and polo-like kinase. Cyclin-dependent kinase inhibitors are the most advanced cell-cycle checkpoint therapeutics available. For instance, palbociclib (PD0332991) is a first-in-class, oral, highly selective inhibitor of CDK4/6 and, in combination with letrozole (Phase II; PALOMA-1) or with fulvestrant (Phase III; PALOMA-3), it has significantly prolonged progression-free survival, in patients with metastatic estrogen receptor-positive, HER2-negative breast cancer, in comparison with that observed in patients using letrozole, or fulvestrant alone, respectively. In this review, we provide an overview of the current compounds available for cell-cycle checkpoint protein-directed therapy for solid tumors. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2007-11-01

    Full Text Available Abstract Background The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5 melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-γ or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. Methods These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN, were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-γ or TNF-α was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO was determined using GRIES reagent. Results We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1α and MIP-1β following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-γ or TNF-α, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC, MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin

  18. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Pyka, Thomas; Hiob, Daniela; Wester, Hans-Juergen [Klinikum Rechts der Isar der TU Muenchen, Department of Nuclear Medicine, Munich (Germany); Gempt, Jens; Ringel, Florian; Meyer, Bernhard [Klinikum Rechts der Isar der TU Muenchen, Neurosurgic Department, Munich (Germany); Schlegel, Juergen [Klinikum Rechts der Isar der TU Muenchen, Institute of Pathology and Neuropathology, Munich (Germany); Bette, Stefanie [Klinikum Rechts der Isar der TU Muenchen, Neuroradiologic department, Munich (Germany); Foerster, Stefan [Klinikum Rechts der Isar der TU Muenchen, Department of Nuclear Medicine, Munich (Germany); Klinikum Rechts der Isar der TU Muenchen, TUM Neuroimaging Center (TUM-NIC), Munich (Germany)

    2016-01-15

    hold in multivariate analysis. Determination of uptake heterogeneity in pre-therapeutic FET-PET using textural features proved valuable for the (sub-)grading of high-grade glioma as well as prediction of tumor progression and patient survival, and showed improved performance compared to standard parameters such as TBR and tumor volume. Our results underscore the importance of intratumoral heterogeneity in the biology of high-grade glial cell tumors and may contribute to individual therapy planning in the future, although they must be confirmed in prospective studies before incorporation into clinical routine. (orig.)

  19. Tumors markers

    International Nuclear Information System (INIS)

    Yamaguchi-Mizumoto, N.H.

    1989-01-01

    In order to study blood and cell components alterations (named tumor markers) that may indicate the presence of a tumor, several methods are presented. Aspects as diagnostic, prognostic, therapeutic value and clinical evaluation are discussed. (M.A.C.)

  20. In vivo electroporation enhances vaccine-mediated therapeutic control of human papilloma virus-associated tumors by the activation of multifunctional and effector memory CD8+ T cells.

    Science.gov (United States)

    Sales, Natiely S; Silva, Jamile R; Aps, Luana R M M; Silva, Mariângela O; Porchia, Bruna F M M; Ferreira, Luís Carlos S; Diniz, Mariana O

    2017-12-19

    In vivo electroporation (EP) has reignited the clinical interest on DNA vaccines as immunotherapeutic approaches to control different types of cancer. EP has been associated with increased immune response potency, but its capacity in influencing immunomodulation remains unclear. Here we evaluated the impact of in vivo EP on the induction of cellular immune responses and therapeutic effects of a DNA vaccine targeting human papillomavirus-induced tumors. Our results demonstrate that association of EP with the conventional intramuscular administration route promoted a more efficient activation of multifunctional and effector memory CD8 + T cells with enhanced cytotoxic activity. Furthermore, EP increased tumor infiltration of CD8 + T cells and avoided tumor recurrences. Finally, our results demonstrated that EP promotes local migration of antigen presenting cells that enhances with vaccine co-delivery. Altogether the present evidences shed further light on the in vivo electroporation action and its impact on the immunogenicity of DNA vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity.

    Science.gov (United States)

    Cubillos-Ruiz, Juan R; Engle, Xavier; Scarlett, Uciane K; Martinez, Diana; Barber, Amorette; Elgueta, Raul; Wang, Li; Nesbeth, Yolanda; Durant, Yvon; Gewirtz, Andrew T; Sentman, Charles L; Kedl, Ross; Conejo-Garcia, Jose R

    2009-08-01

    The success of clinically relevant immunotherapies requires reversing tumor-induced immunosuppression. Here we demonstrated that linear polyethylenimine-based (PEI-based) nanoparticles encapsulating siRNA were preferentially and avidly engulfed by regulatory DCs expressing CD11c and programmed cell death 1-ligand 1 (PD-L1) at ovarian cancer locations in mice. PEI-siRNA uptake transformed these DCs from immunosuppressive cells to efficient antigen-presenting cells that activated tumor-reactive lymphocytes and exerted direct tumoricidal activity, both in vivo and in situ. PEI triggered robust and selective TLR5 activation in vitro and elicited the production of hallmark TLR5-inducible cytokines in WT mice, but not in Tlr5-/- littermates. Thus, PEI is a TLR5 agonist that, to our knowledge, was not previously recognized. In addition, PEI-complexed nontargeting siRNA oligonucleotides stimulated TLR3 and TLR7. The nonspecific activation of multiple TLRs (specifically, TLR5 and TLR7) reversed the tolerogenic phenotype of human and mouse ovarian tumor-associated DCs. In ovarian carcinoma-bearing mice, this induced T cell-mediated tumor regression and prolonged survival in a manner dependent upon myeloid differentiation primary response gene 88 (MyD88; i.e., independent of TLR3). Furthermore, gene-specific siRNA-PEI nanocomplexes that silenced immunosuppressive molecules on mouse tumor-associated DCs elicited discernibly superior antitumor immunity and enhanced therapeutic effects compared with nontargeting siRNA-PEI nanocomplexes. Our results demonstrate that the intrinsic TLR5 and TLR7 stimulation of siRNA-PEI nanoparticles synergizes with the gene-specific silencing activity of siRNA to transform tumor-infiltrating regulatory DCs into DCs capable of promoting therapeutic antitumor immunity.

  2. Therapeutic effects of anti-CD115 monoclonal antibody in mouse cancer models through dual inhibition of tumor-associated macrophages and osteoclasts.

    Directory of Open Access Journals (Sweden)

    Laetitia Fend

    Full Text Available Tumor progression is promoted by Tumor-Associated Macrophages (TAMs and metastasis-induced bone destruction by osteoclasts. Both myeloid cell types depend on the CD115-CSF-1 pathway for their differentiation and function. We used 3 different mouse cancer models to study the effects of targeting cancer host myeloid cells with a monoclonal antibody (mAb capable of blocking CSF-1 binding to murine CD115. In mice bearing sub-cutaneous EL4 tumors, which are CD115-negative, the anti-CD115 mAb depleted F4/80(+ CD163(+ M2-type TAMs and reduced tumor growth, resulting in prolonged survival. In the MMTV-PyMT mouse model, the spontaneous appearance of palpable mammary tumors was delayed when the anti-CD115 mAb was administered before malignant transition and tumors became palpable only after termination of the immunotherapy. When administered to mice already bearing established PyMT tumors, anti-CD115 treatment prolonged their survival and potentiated the effect of chemotherapy with Paclitaxel. As shown by immunohistochemistry, this therapeutic effect correlated with the depletion of F4/80(+CD163(+ M2-polarized TAMs. In a breast cancer model of bone metastasis, the anti-CD115 mAb potently blocked the differentiation of osteoclasts and their bone destruction activity. This resulted in the inhibition of cancer-induced weight loss. CD115 thus represents a promising target for cancer immunotherapy, since a specific blocking antibody may not only inhibit the growth of a primary tumor through TAM depletion, but also metastasis-induced bone destruction through osteoclast inhibition.

  3. Development of a Multifaceted Ovarian Cancer Therapeutic and Imaging Agent

    National Research Council Canada - National Science Library

    Markland, Francis S

    2008-01-01

    ...%. This project outlines the development of a recombinant version of a member of a class of proteins known as disintegrins as an innovative imaging and diagnostic agent for ovarian cancer (OC). Vicrostatin (VN...

  4. 10 non seminomatous testicular germ cell tumors: therapeutic results and behavior at the University Hospital in the last 10 years

    International Nuclear Information System (INIS)

    Martinez, A.; Xavier, F.; Cepellini, R.; Fresco, R.

    2010-01-01

    Objective: Retrospectively analyze about the characteristics, therapeutic behavior and treatment results in patients with non-seminomatous testicular germ cell tumours (NSGCT) Stage III assisted in the University Hospital. Materials and Methods: The medical records of patients (pts) with histologically reviewed of NSGCT assisted in the Department of Clinical Oncology, Hospital das Clinicas (H C), among January 2000 and December 2009. We analyzed in detail the clinico pathological features of those belonging to pts with stage III tumors TNM classification. Results: 23 pts were included; median age 24 years (range: 17-40); median follow-up: 19 months (range: 2-104). Stadiums: I: 9/23; II: 7/23; III: 7/23. Among ptes E III.They corresponded to: high risk: 3/7; means: 3/7; Low: 1/7. Only in 1 patient (pte) of the E III It is not explicitly consisted risk rating in history but, based on data present is able to allocate retrospectively. The chemotherapy was the first line chosen, PE B plan pts 6/7 and 1/7 VIP (pte. athlete). All patients received 4 sets of PE B / VIP (including low risk). Imaging responses post chemotherapy (Q T): Complete: 1/7; Partial: 5/7; Stabilization: 1/7. In the 7 pts M T post Q T were normal. In 4 of the 7 pts who achieved partial response and normalized MTwe proceeded to surgery residual mass. The current status of patients is alive: 6/23; Dead: 4/23; monitoring loss (PDS): 13/23. The patients E III: Live 2/7, 4/7 dead, PDS 1/7.4 E III patients were dead with diagnosis (high risk 3/4, 1/4 medium). He did not make the survival analysis given the low and high percentage of patients PDS. Conclusions: In the last 10 years only 7 patients with NSGCT E III attended the H C (0.7 / year). Overall front line management adjusted to the recommendations international but the management of patients with residual mass and not normal M T necessarily. While the number of patients is too low to definitive conclusions, the C R rate to Q T 1st line impresses be

  5. Concise review : Developing best-practice models for the therapeutic use of extracellular vesicles

    NARCIS (Netherlands)

    Reiner, Agnes T.; Witwer, Kenneth W.; Van Balkom, Bas W.M.; De Beer, Joel; Brodie, Chaya; Corteling, Randolph L.; Gabrielsson, Susanne; Gimona, Mario; Ibrahim, Ahmed G.; De Kleijn, Dominique; Lai, Charles P.; Tvall, Jan Lo; Del Portillo, Hernando A; Reischl, Ilona G; Riazifar, Milad; Salomon, Carlos; Tahara, Hidetoshi; Toh, Wei Seong; Wauben, Marca H M; Yang, Vicky K.; Yang, Yijun; Yeo, Ronne Wee Yeh; Yin, Hang; Giebel, Bernd; Rohde, Eva; Lim, Sai Kiang

    2017-01-01

    Growing interest in extracellular vesicles (EVs, including exosomes and microvesicles) as therapeutic entities, particularly in stem cell-related approaches, has underlined the need for standardization and coordination of development efforts. Members of the International Society for Extracellular

  6. A new therapeutic community: development of a compassion-focussed and contextual behavioural environment.

    Science.gov (United States)

    Veale, David; Gilbert, Paul; Wheatley, Jon; Naismith, Iona

    2015-01-01

    Social relationships and communities provide the context and impetus for a range of psychological developments, from genetic expression to the development of core self-identities. This suggests a need to think about the therapeutic changes and processes that occur within a community context and how communities can enable therapeutic change. However, the 'therapeutic communities' that have developed since the Second World War have been under-researched. We suggest that the concept of community, as a change process, should be revisited within mainstream scientific research. This paper briefly reviews the historical development of therapeutic communities and critically evaluates their current theory, practice and outcomes in a systematic review. Attention is drawn to recent research on the nature of evolved emotion regulation systems, the way these are entrained by social relationships, the importance of affiliative emotions in the regulation of threat and the role of fear of affiliative emotions in psychopathology. We draw on concepts from compassion-focussed therapy, social learning theory and functional analytical psychotherapy to consider how members of a therapeutic community can be aware of each other's acts of courage and respond using compassion. Living in structured and affiliative-orientated communities that are guided by scientific models of affect and self-regulation offers potential therapeutic advantages over individual outpatient therapy for certain client groups. This conclusion should be investigated further. Key Practitioner Message Current therapeutic community practice is not sufficiently evidence based and may not be maximizing the potential therapeutic value of a community. Compassion-focussed therapy and social learning theory offer new approaches for a therapeutic environment, involving an understanding of the role, nature and complexities of compassionate and affiliative relationships from staff and members, behavioural change guided by

  7. Tumor macroenvironment and metabolism.

    Science.gov (United States)

    Al-Zoughbi, Wael; Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-04-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organs. Amino acids, and distinct lipid and lipoprotein species can be essential for further tumor growth. The role of glucose in tumor metabolism has been studied extensively. Cancer-associated cachexia is the most important tumor-associated systemic syndrome and not only affects the quality of life of patients with various malignancies but is estimated to be the cause of death in 15%-20% of all cancer patients. On the other hand, systemic metabolic diseases such as obesity and diabetes are known to influence tumor development. Furthermore, the clinical implications of the tumor macroenvironment are explored in the context of the patient's outcome with special consideration for pediatric tumors. Finally, ways to target the tumor macroenvironment that will provide new approaches for therapeutic concepts are described. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Renal transplantation-related risk factors for the development of uterine adenomatoid tumors.

    Science.gov (United States)

    Mizutani, Teruyuki; Yamamuro, Osamu; Kato, Noriko; Hayashi, Kazumasa; Chaya, Junya; Goto, Norihiko; Tsuzuki, Toyonori

    2016-08-01

    •We analyzed the epidemiological factors for clinical manifestations of uterine adenomatoid tumors.•Renal transplantation with immunosuppression therapy is risk factor for the development of uterine adenomatoid tumors.•The length of time on dialysis is risk factor for the development of uterine adenomatoid tumors.

  9. Development and optimization of targeted radionuclide tumor therapy using folate based radiopharmaceuticals

    CERN Document Server

    Reber, Josefine Astrid

    The folate receptor (FR) has been used for a quarter of a century as a tumor-associated target for selective delivery of drugs and imaging agents to cancer cells. While several folic acid radioconjugates have been successfully employed for imaging purposes in (pre)clinical studies, a therapeutic application of folic acid radioconjugates has not yet reached the critical stage which would allow a clinical translation. Due to a substantial expression of the FR in the proximal tubule cells, radiofolates accumulate in the kidneys which are at risk of damage by particle-radiation. To improve this situation, we aimed to develop and evaluate strategies for the performance of FR-targeted radionuclide therapy by decreasing the renal uptake of radiofolates and thereby reducing potential nephrotoxic effects. Two different strategies were investigated. First, the combination of radiofolates with chemotherapeutic agents such as pemetrexed (PMX) and 5-fluorouracil (5-FU) and secondly, an approach based on radioiodinated fol...

  10. Osteoprotegerin inhibits bone resorption and prevents tumor development in a xenogenic model of Ewing's sarcoma by inhibiting RANKL

    Science.gov (United States)

    Picarda, Gaëlle; Matous, Etienne; Amiaud, Jérôme; Charrier, Céline; Lamoureux, François; Heymann, Marie-Françoise; Tirode, Franck; Pitard, Bruno; Trichet, Valérie; Heymann, Dominique; Redini, Françoise

    2013-01-01

    Ewing's sarcoma (ES) associated with high osyeolytic lesions typically arises in the bones of children and adolescents. The development of multi-disciplinary therapy has increased current long-term survival rates to greater than 50% but only 20% for high risk group patients (relapse, metastases, etc.). Among new therapeutic approaches, osteoprotegerin (OPG), an anti-bone resorption molecule may represent a promising candidate to inhibit RANKL-mediated osteolytic component of ES and consequently to limit the tumor development. Xenogenic orthotopic models of Ewing's sarcoma were induced by intra-osseous injection of human TC-71 ES cells. OPG was administered in vivo by non-viral gene transfer using an amphiphilic non ionic block copolymer. ES bearing mice were assigned to controls (no treatment, synthetic vector alone or F68/empty pcDNA3.1 plasmid) and hOPG treated groups. A substantial but not significant inhibition of tumor development was observed in the hOPG group as compared to control groups. Marked bone lesions were revealed by micro-computed tomography analyses in control groups whereas a normal bone micro-architecture was preserved in the hOPG treated group. RANKL over-expressed in ES animal model was expressed by tumor cells rather than by host cells. However, TRAIL present in the tumor microenvironment may interfere with OPG effect on tumor development and bone remodeling via RANKL inhibition. In conclusion, the use of a xenogenic model of Ewing's sarcoma allowed discriminating between the tumor and host cells responsible for the elevation of RANKL production observed in this tumor and demonstrated the relevance of blocking RANKL by OPG as a promising therapy in ES. PMID:26909278

  11. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ijin; Kim, Jung Hoon; Lee, Jeong Min; Choi, Jin Woo; Han, Joon Koo; Choi, Byung Ihn [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-03-15

    To evaluate the usefulness of dynamic contrast-enhanced ultrasonography (DCE-US) in the early quantification of hemodynamic change following administration of the vascular disrupting agent (VDA) CKD-516 using a rabbit VX2 liver tumor model. This study was approved by our institutional animal care and use committee. Eight VX2 liver-tumor-bearing rabbits were treated with intravenous CKD-516, and all underwent DCE-US using SonoVue before and again 2, 4, 6, and 24 hours following their treatment. The tumor perfusion parameters were obtained from the time-intensity curve of the DCE-US data. Repeated measures analysis of variance was performed to assess any significant change in tumor perfusion over time. Relative changes in the DCE-US parameters between the baseline and follow-up assessments were correlated with the relative changes in tumor size over the course of seven days using Pearson correlation. CKD-516 treatment resulted in significant changes in the DCE-US parameters, including the peak intensity, total area under the time-intensity curve (AUCtotal), and AUC during wash-out (AUCout) over time (P<0.05). Pairwise comparison tests revealed that the AUCtotal and AUC during wash-in (AUCin) seen on the two-hour follow-up were significantly lower than the baseline values (P<0.05). However, none of early changes in the DCE-US parameters until 24-hour follow-up showed a significant correlation with the relative changes in tumor size during seven days after CKD-516 treatment. Our results suggest that a novel VDA (CKD-516) can cause disruption of tumor perfusion as early as two hours after treatment and that the therapeutic effect of CKD-516 treatment can be effectively quantified using DCE-US.

  12. Activity of the hypoxia-activated pro-drug TH-302 in hypoxic and perivascular regions of solid tumors and its potential to enhance therapeutic effects of chemotherapy.

    Science.gov (United States)

    Saggar, Jasdeep K; Tannock, Ian F

    2014-06-01

    Many chemotherapy drugs have poor therapeutic activity in regions distant from tumor blood vessels because of poor tissue penetration and low cytotoxic activity against slowly-proliferating cells. The hypoxia-activated pro-drug TH-302 may have selective toxicity for hypoxic and neighboring cells in tumors. Here we characterize the spatial distribution and ability of TH-302 to selectively target hypoxic regions and complement the effect of doxorubicin and docetaxel by modifying biomarker distribution. Athymic nude mice bearing human breast MCF-7 or prostate PC-3 tumors were treated with doxorubicin or docetaxel respectively and TH-302 alone or in combination. Biomarkers of drug effect including γH2aX (a marker of DNA damage), cleaved caspase-3 or -6 (markers of apoptosis) and reduction in Ki-67 (a marker of cell proliferation) were quantified in tumor sections in relation to functional blood vessels (recognized by DiOC7) and hypoxia (recognized by EF5) using immunohistochemistry. γH2aX expression at 10 min and cleaved caspase-3 or -6 at 24 hr after doxorubicin or docetaxel decreased with increasing distance from tumor blood vessels, with minimal expression in hypoxic regions; maximum reduction in Ki67 levels was observed in regions closest to vasculature at 24 hr. TH-302 induced maximal cell damage in hypoxic and neighboring regions, but was also active in tumor regions closer to blood vessels. TH-302 given 4 hr before doxorubicin or docetaxel increased DNA damage and apoptosis throughout the tumor compared to chemotherapy alone. When given with doxorubicin or docetaxel, TH-302 complements and enhances anticancer effects in both perivascular and hypoxic regions but also increases toxicity. © 2013 UICC.

  13. Development of an acellular tumor extracellular matrix as a three-dimensional scaffold for tumor engineering.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Lü

    Full Text Available Tumor engineering is defined as the construction of three-dimensional (3D tumors in vitro with tissue engineering approaches. The present 3D scaffolds for tumor engineering have several limitations in terms of structure and function. To get an ideal 3D scaffold for tumor culture, A549 human pulmonary adenocarcinoma cells were implanted into immunodeficient mice to establish xenotransplatation models. Tumors were retrieved at 30-day implantation and sliced into sheets. They were subsequently decellularized by four procedures. Two decellularization methods, Tris-Trypsin-Triton multi-step treatment and sodium dodecyl sulfate (SDS treatment, achieved complete cellular removal and thus were chosen for evaluation of histological and biochemical properties. Native tumor tissues were used as controls. Human breast cancer MCF-7 cells were cultured onto the two 3D scaffolds for further cell growth and growth factor secretion investigations, with the two-dimensional (2D culture and cells cultured onto the Matrigel scaffolds used as controls. Results showed that Tris-Trypsin-Triton multi-step treated tumor sheets had well-preserved extracellular matrix structures and components. Their porosity was increased but elastic modulus was decreased compared with the native tumor samples. They supported MCF-7 cell repopulation and proliferation, as well as expression of growth factors. When cultured within the Tris-Trypsin-Triton treated scaffold, A549 cells and human colorectal adenocarcinoma cells (SW-480 had similar behaviors to MCF-7 cells, but human esophageal squamous cell carcinoma cells (KYSE-510 had a relatively slow cell repopulation rate. This study provides evidence that Tris-Trypsin-Triton treated acellular tumor extracellular matrices are promising 3D scaffolds with ideal spatial arrangement, biomechanical properties and biocompatibility for improved modeling of 3D tumor microenvironments.

  14. Brain stem tumors in children - therapeutic results in patients of the University Children's Hospital of Cracow in Poland

    International Nuclear Information System (INIS)

    Korab-Chrzanowska, E.; Bartoszewska, J.; Kwiatkowski, S.

    2005-01-01

    To analyse the treatment results achieved in children treated for brain stem tumours at one institution between the years 1990 and 2004. Material. 20 patients (10 girls, 10 boys) aged 2.8-15.6 years were treated for brain stem tumors at the University Children's Hospital of Cracow (UCHC) in the years 1990-2004. The tumour type was defined basing on imaging studies (CT, MRI), and, in the case of 7 patients, additionally basing on histopathological results. In the collected material the predominant tumor type was benign glioma, detected in 17 patients. Malignant gliomas were diagnosed in 3 children. 7 children were treated by radiotherapy only. Surgical procedures and adjuvant radiotherapy were employed in 3 patients. 6 children underwent radiotherapy and chemotherapy. Combined surgical treatment followed by radiotherapy and chemotherapy was employed in 4 patients. Of the 20 patients 6 have died (30%). The surviving group (70%) includes 1 patient with tumor progression (5%), 5 - with stable tumors (25%), and 8 (40%) - with tumor regression. The probability of three-year overall survival for the entire group as calculated by the Kaplan-Meier method was 70% while the probability of three-year progression-free survival was 65%. Conclusions. Diffuse brain stem tumors, mostly those involving the pons, and malignant gliomas have poor prognosis. In the presented material we achieved the best treatment results in patients with exophytic or focal tumors, treated surgically with adjuvant therapy. (author)

  15. Development of Acne therapeutic hydrogel patches by radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Younmook; Nho, Youngchang; Gwon, Huijeong; Park, Jongseok; Kim, Jinkyu; Kim, Yongsoo

    2012-04-15

    In this project, hydrogel patches containing herbal extracts mixture were developed by radiation technology for acne treatment. Propionibacterium acnes (P. acnes), one of the anaerobic bacterium, is the cause of inflammatory acne. To find novel mediation for inflammation of P. acnes, we confirmed the anti-bacterial and anti-inflammatory activities of several herbal extracts against P. acnes. The water extracts from five dried herbs, Phellodendron amurense Rupr., Paeonia lactiflora Pallas., Houttuynia cordata Thumb., Agrimonia pilosa Ledeb. and Glycyrrhiza uralensis Fisch., were mixed into biocompatible polymers and irradiated by using gamma-ray to prepare hydrogels. The hydrogels containing herbal extracts mixture initiated to decrease the growth of P. acnes and reduced the production of pro-inflammatory cytokines, TNF-{alpha}, IL-8, IL-1{beta} and IL-6, in experiment with human monocytic THP-1 cells treated with heat-killed P. acnes at 1 mg/ml of mixture concentration.

  16. Development of Acne therapeutic hydrogel patches by radiation technology

    International Nuclear Information System (INIS)

    Lim, Younmook; Nho, Youngchang; Gwon, Huijeong; Park, Jongseok; Kim, Jinkyu; Kim, Yongsoo

    2012-04-01

    In this project, hydrogel patches containing herbal extracts mixture were developed by radiation technology for acne treatment. Propionibacterium acnes (P. acnes), one of the anaerobic bacterium, is the cause of inflammatory acne. To find novel mediation for inflammation of P. acnes, we confirmed the anti-bacterial and anti-inflammatory activities of several herbal extracts against P. acnes. The water extracts from five dried herbs, Phellodendron amurense Rupr., Paeonia lactiflora Pallas., Houttuynia cordata Thumb., Agrimonia pilosa Ledeb. and Glycyrrhiza uralensis Fisch., were mixed into biocompatible polymers and irradiated by using gamma-ray to prepare hydrogels. The hydrogels containing herbal extracts mixture initiated to decrease the growth of P. acnes and reduced the production of pro-inflammatory cytokines, TNF-α, IL-8, IL-1β and IL-6, in experiment with human monocytic THP-1 cells treated with heat-killed P. acnes at 1 mg/ml of mixture concentration

  17. Improved Tumor-Specific Drug Accumulation by Polymer Therapeutics with pH-Sensitive Drug Release Overcomes Chemotherapy Resistance.

    Science.gov (United States)

    Heinrich, Anne-Kathrin; Lucas, Henrike; Schindler, Lucie; Chytil, Petr; Etrych, Tomáš; Mäder, Karsten; Mueller, Thomas

    2016-05-01

    The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5- to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance. Mol Cancer Ther; 15(5); 998-1007. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Markus Schosserer

    2017-11-01

    Full Text Available Cellular senescence describes an irreversible growth arrest characterized by distinct morphology, gene expression pattern, and secretory phenotype. The final or intermediate stages of senescence can be reached by different genetic mechanisms and in answer to different external and internal stresses. It has been maintained in the literature but never proven by clearcut experiments that the induction of senescence serves the evolutionary purpose of protecting the individual from development and growth of cancers. This hypothesis was recently scrutinized by new experiments and found to be partly true, but part of the gene activities now known to happen in senescence are also needed for cancer growth, leading to the view that senescence is a double-edged sword in cancer development. In current cancer therapy, cellular senescence is, on the one hand, intended to occur in tumor cells, as thereby the therapeutic outcome is improved, but might, on the other hand, also be induced unintentionally in non-tumor cells, causing inflammation, secondary tumors, and cancer relapse. Importantly, organismic aging leads to accumulation of senescent cells in tissues and organs of aged individuals. Senescent cells can occur transiently, e.g., during embryogenesis or during wound healing, with beneficial effects on tissue homeostasis and regeneration or accumulate chronically in tissues, which detrimentally affects the microenvironment by de- or transdifferentiation of senescent cells and their neighboring stromal cells, loss of tissue specific functionality, and induction of the senescence-associated secretory phenotype, an increased secretory profile consisting of pro-inflammatory and tissue remodeling factors. These factors shape their surroundings toward a pro-carcinogenic microenvironment, which fuels the development of aging-associated cancers together with the accumulation of mutations over time. We are presenting an overview of well-documented stress

  19. Identification of genes highly downregulated in pancreatic cancer through a meta-analysis of microarray datasets: implications for discovery of novel tumor-suppressor genes and therapeutic targets.

    Science.gov (United States)

    Goonesekere, Nalin C W; Andersen, Wyatt; Smith, Alex; Wang, Xiaosheng

    2018-02-01

    The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC), which has a 5-year survival rate of about 7%. Recent failures of targeted therapies inhibiting kinase activity in clinical trials have highlighted the need for new approaches towards combating this deadly disease. In this study, we have identified genes that are significantly downregulated in PC, through a meta-analysis of large number of microarray datasets. We have used qRT-PCR to confirm the downregulation of selected genes in a panel of PC cell lines. This study has yielded several novel candidate tumor-suppressor genes (TSGs) including GNMT, CEL, PLA2G1B and SERPINI2. We highlight the role of GNMT, a methyl transferase associated with the methylation potential of the cell, and CEL, a lipase, as potential therapeutic targets. We have uncovered genetic links to risk factors associated with PC such as smoking and obesity. Genes important for patient survival and prognosis are also discussed, and we confirm the dysregulation of metabolic pathways previously observed in PC. While many of the genes downregulated in our dataset are associated with protein products normally produced by the pancreas for excretion, we have uncovered some genes whose downregulation appear to play a more causal role in PC. These genes will assist in providing a better understanding of the disease etiology of PC, and in the search for new therapeutic targets and biomarkers.

  20. Development of an evidence vase for therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Turner, J.H.

    2003-01-01

    A prime objective of the World Radiopharmaceutical Therapy Council is the promotion of innovative clinical practice of safe, efficacious radionuclide therapy throughout the world. The evidence for safety and efficacy will emerge from global observational studies performed using standard protocols with uniformly defined end points. Observational studies have several advantages over randomised controlled trials (RCTs) including lower cost, greater timeliness and a broader range of patients. Observational studies and RCTs can produce similar estimates of the effects of treatment and meta- analyses of observational studies produce results that are similar to meta-analyses of randomised trials. RCTs have the disadvantage of excluding of patients who might benefit from treatment, low recruitment rates resulting in delays in obtaining definitive results and the danger of unjustified extrapolation of these results to different populations. Evidence from trials is most applicable in clinical practice, when the design and the outcomes chosen are directly relevant to real patients, the trials are undertaken against a background of standard medical care, patients in trials are broadly representative of patients in the real world and evidence from trials is integrated with individual patient characteristics for meaningful risk-benefit assessment. Despite the need for high-quality clinical trials, few patients participate in them. Less than 5% of eligible patients participate in most cancer trials and almost none are from developing countries. How do we in fact determine the truth in clinical medicine, given that the conclusions of the 'gold-standard' RCT may not be replicable when the outcomes are examined in everyday practice? Ethical standards, patient selection criteria and low participation rates often create RCT study groups that differ from the general population and extrapolation of results may not always be valid. Observational studies have been characterised as all

  1. Development of effective tumor immunotherapy using a novel dendritic cell-targeting Toll-like receptor ligand.

    Directory of Open Access Journals (Sweden)

    Nadeeka H De Silva

    Full Text Available Although dendritic cell (DC-based immunotherapy shows little toxicity, improvements should be necessary to obtain satisfactory clinical outcome. Using interferon-gamma injection along with DCs, we previously obtained significant clinical responses against small or early stage malignant tumors in dogs. However, improvement was necessary to be effective to largely developed or metastatic tumors. To obtain effective methods applicable to those tumors, we herein used a DC-targeting Toll-like receptor ligand, h11c, and examined the therapeutic effects in murine subcutaneous and visceral tumor models and also in the clinical treatment of canine cancers. In murine experiments, most and significant inhibition of tumor growth and extended survival was observed in the group treated with the combination of h11c-activated DCs in combination with interferon-gamma and a cyclooxygenase2 inhibitor. Both monocytic and granulocytic myeloid-derived suppressor cells were significantly reduced by the combined treatment. Following the successful results in mice, the combined treatment was examined against canine cancers, which spontaneously generated like as those in human. The combined treatment elicited significant clinical responses against a nonepithelial malignant tumor and a malignant fibrous histiocytoma. The treatment was also successful against a bone-metastasis of squamous cell carcinoma. In the successful cases, the marked increase of tumor-responding T cells and decrease of myeloid-derived suppressor cells and regulatory T cells was observed in their peripheral blood. Although the combined treatment permitted the growth of lung cancer of renal carcinoma-metastasis, the marked elevated and long-term maintaining of the tumor-responding T cells was observed in the patient dog. Overall, the combined treatment gave rise to emphatic amelioration in DC-based cancer therapy.

  2. Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering?

    Science.gov (United States)

    Spugnini, Enrico; Fais, Stefano

    2017-04-01

    One of the unsolved mysteries in oncology includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to the development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. In the last decades a primordial role for proton exchangers has been supported as a key tumor advantage in facing off the acidic milieu. Proton exchangers do not allow intracellular acidification through a continuous elimination of H+ either outside the cells or within the internal vacuoles. This article wants to comment a translational process through that led to the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed powerful chemosensitizers as well. In this process we achieved the clinical proof of concept that PPI may well be included in new anti-cancer strategies with a solid background and rationale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Novel diagnostic and therapeutic radionuclides for the development of innovative radiopharmaceuticals

    CERN Multimedia

    We propose the exploration of novel radionuclides with diagnostic or therapeutic properties from ISOLDE. Access to such unique isotopes will enable the fundamental research in radiopharmaceutical science towards superior treatment, e.g. in nuclear oncology. The systematic investigation of the biological response to the different characteristics of the decay radiation will be performed for a better understanding of therapeutic effects. The development of alternative diagnostic tools will be applied for the management and optimization of radionuclide therapy.

  4. Involvement of host stroma cells and tissue fibrosis in pancreatic tumor development in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Itai Spector

    Full Text Available INTRODUCTION: Stroma cells and extracellular matrix (ECM components provide the pivotal microenvironment for tumor development. The study aimed to evaluate the importance of the pancreatic stroma for tumor development. METHODS: Pancreatic tumor cells were implanted subcutaneously into green fluorescent protein transgenic mice, and stroma cells invading the tumors were identified through immunohistochemistry. Inhibition of tumor invasion by stroma cells was achieved with halofuginone, an inhibitor of TGFβ/Smad3 signaling, alone or in combination with chemotherapy. The origin of tumor ECM was evaluated with species-specific collagen I antibodies and in situ hybridization of collagen α1(I gene. Pancreatic fibrosis was induced by cerulean injection and tumors by spleen injection of pancreatic tumor cells. RESULTS: Inhibition of stroma cell infiltration and reduction of tumor ECM levels by halofuginone inhibited development of tumors derived from mouse and human pancreatic cancer cells. Halofuginone reduced the number only of stroma myofibroblasts expressing both contractile and collagen biosynthesis markers. Both stroma myofibroblasts and tumor cells generated ECM that contributes to tumor growth. Combination of treatments that inhibit stroma cell infiltration, cause apoptosis of myofibroblasts and inhibit Smad3 phosphorylation, with chemotherapy that increases tumor-cell apoptosis without affecting Smad3 phosphorylation was more efficacious than either treatment alone. More tumors developed in fibrotic than in normal pancreas, and prevention of tissue fibrosis greatly reduced tumor development. CONCLUSIONS: The utmost importance of tissue fibrosis and of stroma cells for tumor development presents potential new therapy targets, suggesting combination therapy against stroma and neoplastic cells as a treatment of choice.

  5. Current diagnosis of tumors developed in the internal auditory canal and cerebellopontine angle

    International Nuclear Information System (INIS)

    Vignaud, J.; Doyon, D.

    1988-01-01

    The introduction of CT scan and, more recently, magnetic resonance imaging, has radically changed the diagnostic approach to tumors developed in the internal auditory canal and cerebellopontine angle. CT scan with intravenous injection visualizes tumors lying in the cerebellopontine angle. Magnetic resonance imaging, especially using gadolinium, is a very accurate means for diagnosing tumors of both the auditory canal and cerebellopontine angle [fr

  6. Identification of new tumor associated antigens and their usage for new therapeutic strategies based on the combination of chemotherapy and immunotherapy for colorectal cancer patients

    International Nuclear Information System (INIS)

    Proietti, E.; Maccalli, C.; Rosenberg, S.A.; Robbins, P.F.

    2009-01-01

    The main general objective of this project was to characterize a new colorectal carcinoma (CRC) tumor-associated antigen (TAA) and validate a new therapeutic strategy combining chemotherapy and tumor vaccination for the treatment of cancer patients. To this purpose a strategic interaction between Drs. Proietti/Maccali at the ISS and the group of Drs. Rosenberg/Robbins at the NIH was established. A stage of Dr. Maccalli at the NIH allowed to carry out the first steps for the identification and the initial characterization of the CRC TAA named COA-1. A laboratory meeting with Dr. Robbins has been planned on May 24-25 2006 at the ISS, during the International Meeting on Immunotherapy of Cancer: Challenges and Needs, for discussing results and perspectives of this research project

  7. Tailored Beta-catenin mutational approach in extra-abdominal sporadic desmoid tumor patients without therapeutic intervention

    International Nuclear Information System (INIS)

    Broekhoven, Danique L.M. van; Grünhagenl, Dirk J.; Dalen, Thijs van; Coevorden, Frits van; Bonenkamp, Han J.; Been, Lukas B.; Bemelmans, Marc H.A.; Dijkstra, Sander D.S.; Colombo, Chiara; Gronchi, Alessandro; Verhoef, Cornelis

    2016-01-01

    The efficacy of the classical treatment modalities surgery and radiotherapy in the treatment of aggressive fibromatosis is presently disputed and there is a shift towards a more conservative approach. The aim of the present study is to objectify tumor growth in patients with extra-abdominal or abdominal wall aggressive fibromatosis, while adhering to a “watchful waiting” policy. Other objectives are to investigate quality of life and to identify factors associated with tumor growth, in particular the relation with the presence of a CTNNB1-gene mutation in the tumor. GRAFITI is a nationwide, multicenter, prospective registration trial. All patients with extra-abdominal or abdominal wall aggressive fibromatosis are eligible for inclusion in the study. Main exclusion criteria are: history of familiar adenomatous polyposis, severe pain, functional impairment, life/limb threating situations in case of progressive disease. Patients included in the study will be treated with a watchful waiting policy during a period of 5 years. Imaging studies with ultrasound and magnetic resonance imaging scan will be performed during follow-up to monitor possible growth: the first years every 3 months, the second year twice and the yearly. In addition patients will be asked to complete a quality of life questionnaire on specific follow-up moments. The primary endpoint is the rate of progression per year, defined by the Response Evaluation Criteria In Solid Tumors (RECIST). Secondary endpoints are quality of life and the rate of influence on tumor progression for several factors, such as CTNNB1-mutations, age and localization. This study will provide insight in tumor behavior, the effect on quality of life and clinicopathological factors predictive of tumor progression. The GRAFITI trial is registered in the Netherlands National Trial Register (NTR), number: NTR4714

  8. Tumor-targeting Salmonella typhimurium A1-R is a highly effective general therapeutic for undifferentiated soft tissue sarcoma patient-derived orthotopic xenograft nude-mouse models.

    Science.gov (United States)

    Igarashi, Kentaro; Kawaguchi, Kei; Kiyuna, Tasuku; Miyake, Kentaro; Miyake, Masuyo; Singh, Arun S; Eckardt, Mark A; Nelson, Scott D; Russell, Tara A; Dry, Sarah M; Li, Yunfeng; Yamamoto, Norio; Hayashi, Katsuhiro; Kimura, Hiroaki; Miwa, Shinji; Tsuchiya, Hiroyuki; Singh, Shree Ram; Eilber, Fritz C; Hoffman, Robert M

    2018-03-18

    Undifferentiated soft tissue sarcoma (USTS) is a recalcitrant and heterogeneous subgroup of soft tissue sarcoma with high risk of metastasis and recurrence. Due to heterogeneity of USTS, there is no reliably effective first-line therapy. We have generated tumor-targeting Salmonella typhimurium A1-R (S. typhimurium A1-R), which previously showed strong efficacy on single patient-derived orthotopic xenograft (PDOX) models of Ewing's sarcoma and follicular dendritic cell sarcoma. In the present study, tumor resected from 4 patients with a biopsy-proven USTS (2 undifferentiated pleomorphic sarcoma [UPS], 1 undifferentiated sarcoma not otherwise specified [NOS] and 1 undifferentiated spindle cell sarcoma [USS]) were grown orthotopically in the biceps femoris muscle of mice to establish PDOX models. One USS model and one UPS model were doxorubicin (DOX) resistant. One UPS and the NOS model were partially sensitive to DOX. DOX is first-line therapy for these diseases. S. typhimurium A1-R arrested tumor growth all 4 models. In addition to arresting tumor growth in each case, S. typhimurium A1-R was significantly more efficacious than DOX in each case, thereby surpassing first-line therapy. These results suggest that S. typhimurium A1-R can be a general therapeutic for USTS and possibly sarcoma in general. Published by Elsevier Inc.

  9. Potential Development of Tumor-Targeted Oral Anti-Cancer Prodrugs: Amino Acid and Dipeptide Monoester Prodrugs of Gemcitabine.

    Science.gov (United States)

    Tsume, Yasuhiro; Drelich, Adam J; Smith, David E; Amidon, Gordon L

    2017-08-10

    One of the main obstacles for cancer therapies is to deliver medicines effectively to target sites. Since stroma cells are developed around tumors, chemotherapeutic agents have to go through stroma cells in order to reach tumors. As a method to improve drug delivery to the tumor site, a prodrug approach for gemcitabine was adopted. Amino acid and dipeptide monoester prodrugs of gemcitabine were synthesized and their chemical stability in buffers, resistance to thymidine phosphorylase and cytidine deaminase, antiproliferative activity, and uptake/permeability in HFF cells as a surrogate to stroma cells were determined and compared to their parent drug, gemcitabine. The activation of all gemcitabine prodrugs was faster in pancreatic cell homogenates than their hydrolysis in buffer, suggesting enzymatic action. All prodrugs exhibited great stability in HFF cell homogenate, enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase, and deamination by cytidine deaminase compared to their parent drug. All gemcitabine prodrugs exhibited higher uptake in HFF cells and better permeability across HFF monolayers than gemcitabine, suggesting a better delivery to tumor sites. Cell antiproliferative assays in Panc-1 and Capan-2 pancreatic ductal cell lines indicated that the gemcitabine prodrugs were more potent than their parent drug gemcitabine. The transport and enzymatic profiles of gemcitabine prodrugs suggest their potential for delayed enzymatic bioconversion and enhanced resistance to metabolic enzymes, as well as for enhanced drug delivery to tumor sites, and cytotoxic activity in cancer cells. These attributes would facilitate the prolonged systemic circulation and improved therapeutic efficacy of gemcitabine prodrugs.

  10. Delivery of Therapeutic Proteins Using Electrospun Fibers-Recent Developments and Current Challenges.

    Science.gov (United States)

    Seif, Salem; Planz, Viktoria; Windbergs, Maike

    2017-10-01

    Proteins play a vital role within the human body by regulating various functions and even serving as structural constituent of many body parts. In this context, protein-based therapeutics have attracted a lot of attention in the last few decades as potential treatment of different diseases. Due to the steadily increasing interest in protein-based therapeutics, different dosage forms were investigated for delivering such complex macromolecules to the human body. Here, electrospun fibers hold a great potential for embedding proteins without structural damage and for controlled release of the protein for therapeutic applications. This review provides a comprehensive overview of the current state of protein-based carrier systems using electrospun fibers, with special emphasis on discussing their potential and key challenges in developing such therapeutic strategies, along with a prospective view of anticipated future directions. © 2017 Deutsche Pharmazeutische Gesellschaft.

  11. Effect of troglitazone on tumor growth and pulmonary metastasis development of the mouse osteosarcoma cell line LM8

    International Nuclear Information System (INIS)

    Aizawa, Junichi; Sakayama, Kenshi; Kamei, Setsuya; Kidani, Teruki; Yamamoto, Haruyasu; Norimatsu, Yoshiaki; Masuno, Hiroshi

    2010-01-01

    Osteosarcoma often develops micrometastases in the lung prior to diagnosis, causing a fatal outcome. Therefore, the prevention of pulmonary metastases is critical for the improvement of the prognosis of patients with osteosarcoma. The purpose of this study was to investigate whether troglitazone (TGZ) is considered as possible therapeutics in the treatment of growth and metastasis of osteosarcoma. LM8 cells were treated for 3 days with various concentrations of TGZ. The effect of TGZ on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine incorporation study. The assay of cell invasion and motility was performed using either the Matrigel-coated cell culture inserts or the uncoated cell culture inserts in the invasion chambers. The effect of TGZ on Akt signaling was assessed by Western blot analysis of Akt and p-Akt. The effects of oral administration of either TGZ (TGZ group) or ethanol (control group) on the growth of primary tumor and the development of pulmonary metastasis were examined in nude mice implanted with LM8 cells on their backs. The expression and activity of matrix metalloproteinase 2 (MMP-2) within the tumor were determined by immunohistochemistry and zymography. The microvessel density (MVD) within the tumor was determined by immunohistochemistry for CD34. TGZ dose-dependently inhibits cell proliferation. TGZ-treated cells were less invasive and less motile than untreated cells. The activity of MMP-2 secreted by TGZ-treated cells was lower than that secreted by untreated cells. TGZ decreased the level of p-Akt. The primary tumor mass was smaller in the TGZ group than in the control group. The TGZ group had less metastatic tumors in the lung compared with the control group. The expression and activity of MMP-2 within the tumor of the TGZ group were lower than those of the control group. The MVD within the tumor of the TGZ group was lower than that of the control group. Inhibition of Akt signaling by

  12. Effect of troglitazone on tumor growth and pulmonary metastasis development of the mouse osteosarcoma cell line LM8

    Directory of Open Access Journals (Sweden)

    Kidani Teruki

    2010-02-01

    Full Text Available Abstract Background Osteosarcoma often develops micrometastases in the lung prior to diagnosis, causing a fatal outcome. Therefore, the prevention of pulmonary metastases is critical for the improvement of the prognosis of patients with osteosarcoma. The purpose of this study was to investigate whether troglitazone (TGZ is considered as possible therapeutics in the treatment of growth and metastasis of osteosarcoma. Methods LM8 cells were treated for 3 days with various concentrations of TGZ. The effect of TGZ on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine incorporation study. The assay of cell invasion and motility was performed using either the Matrigel-coated cell culture inserts or the uncoated cell culture inserts in the invasion chambers. The effect of TGZ on Akt signaling was assessed by Western blot analysis of Akt and p-Akt. The effects of oral administration of either TGZ (TGZ group or ethanol (control group on the growth of primary tumor and the development of pulmonary metastasis were examined in nude mice implanted with LM8 cells on their backs. The expression and activity of matrix metalloproteinase 2 (MMP-2 within the tumor were determined by immunohistochemistry and zymography. The microvessel density (MVD within the tumor was determined by immunohistochemistry for CD34. Results TGZ dose-dependently inhibits cell proliferation. TGZ-treated cells were less invasive and less motile than untreated cells. The activity of MMP-2 secreted by TGZ-treated cells was lower than that secreted by untreated cells. TGZ decreased the level of p-Akt. The primary tumor mass was smaller in the TGZ group than in the control group. The TGZ group had less metastatic tumors in the lung compared with the control group. The expression and activity of MMP-2 within the tumor of the TGZ group were lower than those of the control group. The MVD within the tumor of the TGZ group was lower than that of the

  13. 77 FR 69637 - Development of Prioritized Therapeutic Area Data Standards; Request for Comments

    Science.gov (United States)

    2012-11-20

    ... regulatory information. FDA has developed a roadmap that provides its current thinking on therapeutic area... Clinical Data Interchange Standards Consortium (CDISC), the Critical Path Institute, Health Level 7's (HL7... 20993-0002, or the Office of Communication, Outreach and Development (HFM-40), Center for Biologics...

  14. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    Crum, Lawrence A

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  15. The IAEA Activities on Supporting Development of Therapeutic Radiopharmaceuticals and Capacity Building in Member States

    International Nuclear Information System (INIS)

    Pillai, M.R.A.; Haji-Saeid, M.; Zaknun, J.; Ramamoorthy, N.

    2009-01-01

    The IAEA activities on supporting development of therapeutic radiopharmaceuticals are focused on identified radionuclides that can be produced in large quantities and making use of carrier molecules which can be synthesized locally or procured from commercial sources or already available in MS from other related programs. The main emphasis is on 90 Y and 177 Lu based products, which cover the hard beta energy and soft beta energy range respectively, and also since both these radionuclides can be produced in large quantities with very high specific activity and high radionuclidic purity. The services to MS are provided through implementing Coordinated Research Projects (CRP), Technical Cooperation (TC) projects, technical meetings and regional training courses in addition to documenting practically useful technical information related to these products though IAEA publications. The CRP is a group activity in which nearly 15 participants from as many countries come together to work towards an identified objective. Two of the completed CRPs in this area are: (i) Comparative evaluation of therapeutic radiopharmaceuticals (2002-2005) that focussed on the development of 'in vitro' and 'in vivo' techniques for evaluating new generation therapeutic radiopharmaceuticals; and (ii) Development of generator technologies for therapeutic radionuclides (2004-2007) that addressed technologies for 90 Sr/ 90 Y and 188 W/ 188 Re generators and which can be easily adapted by MS. The participants in the CRP on 'Comparative evaluation of therapeutic radiopharmaceuticals' used the somatostatin analogue, DOTATATE as the lead molecule for developing radiopharmaceuticals and testing the efficacy by in vitro biological assays and animal biodistribution studies. A significant outcome of the CRP was that 177 Lu-DOTATATE therapy is now practised in several of the CRP participating countries including Brazil, India, Italy, and Poland. The major outcome of the CRP on 'Development of generator

  16. Recent advances in (therapeutic protein drug development [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    H.A. Daniel Lagassé

    2017-02-01

    Full Text Available Therapeutic protein drugs are an important class of medicines serving patients most in need of novel therapies. Recently approved recombinant protein therapeutics have been developed to treat a wide variety of clinical indications, including cancers, autoimmunity/inflammation, exposure to infectious agents, and genetic disorders. The latest advances in protein-engineering technologies have allowed drug developers and manufacturers to fine-tune and exploit desirable functional characteristics of proteins of interest while maintaining (and in some cases enhancing product safety or efficacy or both. In this review, we highlight the emerging trends and approaches in protein drug development by using examples of therapeutic proteins approved by the U.S. Food and Drug Administration over the previous five years (2011–2016, namely January 1, 2011, through August 31, 2016.

  17. Inflammasomes and Cancer: The Dynamic Role of the Inflammasome in Tumor Development

    Directory of Open Access Journals (Sweden)

    Melvin Kantono

    2017-09-01

    Full Text Available Chronic Inflammation in tumor microenvironments is not only associated with various stages of tumor development, but also has significant impacts on tumor immunity and immunotherapy. Inflammasome are an important innate immune pathway critical for the production of active IL-1β and interleukin 18, as well as the induction of pyroptosis. Although extensive studies have demonstrated that inflammasomes play a vital role in infectious and autoimmune diseases, their role in tumor progression remains elusive. Multiple studies using a colitis-associated colon cancer model show that inflammasome components provide protection against the development of colon cancer. However, very recent studies demonstrate that inflammasomes promote tumor progression in skin and breast cancer. These results indicate that inflammasomes can promote and suppress tumor development depending on types of tumors, specific inflammasomes involved, and downstream effector molecules. The complicated role of inflammasomes raises new opportunities and challenges to manipulate inflammasome pathways in the treatment of cancer.

  18. Discovery and Development of Therapeutic Drugs against Lethal Human RNA Viruses: a Multidisciplinary Assault.

    Science.gov (United States)

    1991-07-16

    AD-A239 742 AD GRANT NO: DAMD17-89-Z-9021 TITLE: DISCOVERY AND DEVELOPMENT OF THERAPEUTIC DRUGS AGAINST LETHAL HUMAN RNA VIRUSES: A MULTIDISCIPLINARY...62787A871 AB WrJDA317987 11. TITLE (Include Securty Classification) DISCOVERY AND DEVELOPMENT OF THERAPEUTIC DRUGS AGAINST LETHAL HUMAN RNA VIRUSES: A...G. R. Pettit, III, D.-S. Huang, and G. R. Pettit, 23rd Int’l. Horticulture Congress, Italy, 8/27 - 9/1/90. "Bryostatins Define the Role of Protein

  19. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma

    DEFF Research Database (Denmark)

    Overdijk, M. B.; Verploegen, S.; Bogels, M.

    2015-01-01

    Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment...... in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA's mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly...... and sequentially engulfed multiple tumor cells. DARA-dependent phagocytosis by mouse and human macrophages was also observed in an in vitro flow cytometry assay, using a range of MM and Burkitt's lymphoma cell lines. Phagocytosis contributed to DARA's anti-tumor activity in vivo, in both a subcutaneous...

  20. Investigations of relevance of the tumor marker neopterine for therapeutic decision and control of progress in mammary carcinoma

    International Nuclear Information System (INIS)

    Hacker, I; Lauterbach, H.; Kob, D.

    1989-01-01

    The value of serum neopterin as tumor marker was verified in 104 breast cancer patients. Based on the results the evaluation of neopterin cannot be recommended, neither for the decision of treatment after primary therapy nor for monitoring of the breast cancer. (author)

  1. Therapeutic antitumor efficacy of tumor-derived autophagosome (DRibble vaccine on head and neck cancer

    Directory of Open Access Journals (Sweden)

    Su H

    2015-03-01

    Full Text Available Hang Su,1,* Qiong Luo,2,* Hao Xie,3 Xiaofeng Huang,1 Yanhong Ni,1 Yongbin Mou,1 Qingang Hu1,4 1Center Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, 2State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 3Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, People’s Republic of China; 4Leeds Dental Institute, Faculty of Medicine and Health, University of Leeds, Leeds, UK *These authors contributed equally to this work Purpose: Vaccines play important roles in antitumor biotherapy. Autophagy in tumor cells plays a critical role in depredating proteins, including tumor-specific antigens and tumor-associated antigens. We aimed to induce and collect tumor-derived autophagosomes (DRibbles from tumor cells as a novel antitumor vaccine by inhibiting the functions of proteasomes and lysosomes.Materials and methods: DRibbles were prepared and their morphological and autophagic properties characterized. Dendritic cells (DCs generated from the bone marrow monocytes of mice were cocultured with DRibbles, then surface molecules of DCs and B cells, as well as apoptosis of DCs, were determined by flow cytometry. Meanwhile, functional properties of the DRibble-DCs were examined by mixed lymphocyte reactions and animal experiments.Results: The diameter of autophagic nanoparticles with spherical and double-membrane structure was between 200 nm and 500 nm. DRibbles resulted in the upregulation of costimulatory molecules CD40 and CD86 as well as major histocompatibility complex (MHC-I molecules on DCs, but not MHC-II. The expressions of CD40, CD80, and CD86 and that of MHC-II molecules on B cells were also upregulated. Moreover, suppression of tumor growth and lifetime prolongation was observed in DRibble-DC-vaccinated tumor-bearing mice.Conclusion: Our results demonstrate that naïve T cells can be activated effectively by

  2. Laser ablation of tumors: current concepts and recent developments

    International Nuclear Information System (INIS)

    Stroszczynski, C.; Gaffke, G.; Gnauck, M.; Ricke, J.; Felix, R.; Puls, R.; Speck, U.; Hosten, N.; Oettle, H.; Hohenberger, P.

    2004-01-01

    Purpose. The purpose of this paper is to present technical innovations and clinical results of percutaneous interventional laser ablation of tumors using new techniques. Methods. Laser ablation was performed in 182 patients (liver tumors: 131, non hepatic tumors - bone, lung, others: 51) after interdisciplinary consensus was obtained. The procedure was done using a combination of imaging modalities (CT/MRI, CT/US) or only closed high field MRI (1.5 T). All patients received an MRI-scan immediately after laser ablation. Results. In 90.9% of the patients with liver tumors, a complete ablation was achieved. Major events occurred in 5.4%. The technical success rate of laser ablation in non-hepatic tumors was high, clinical results differed depending on the treated organ. Conclusions. The treatment of tumors of the liver and other organs up to 5 cm by laser ablation was a safe procedure with a low rate of complications and side effects. Image guidance by MRI is advantageous for precise tumor visualization in all dimensions, therapy monitoring, and control of laser ablation results. (orig.) [de

  3. Development of stereotactic mass spectrometry for brain tumor surgery.

    Science.gov (United States)

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of

  4. Development of Potential Small Molecule Therapeutics for Treatment of Ebola Virus.

    Science.gov (United States)

    Schafer, Adam Michael; Cheng, Han; Lee, Charles; Du, Ruikun; Han, Julianna; Perez, Jasmine; Peet, Norton; Manicassamy, Balaji; Rong, Lijun

    2017-10-10

    Ebola virus has caused 26 outbreaks in 10 different countries since its identification in 1976, making it one of the deadliest emerging viral pathogens. The most recent outbreak in West Africa from 2014-16 was the deadliest yet and culminated in 11,310 deaths out of 28,616 confirmed cases. Currently there are no FDA-approved therapeutics or vaccines to treat Ebola virus infections. The slow development of effective vaccines combined with the severity of past outbreaks emphasizes the need to accelerate research into understanding the virus lifecycle and the development of therapeutics for post exposure treatment. Here we present a summary of the major findings on the Ebola virus replication cycle and the therapeutic approaches explored to treat this devastating disease. The major focus of this review is on small molecule inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Practical considerations in the development of hemoglobin-based oxygen therapeutics.

    Science.gov (United States)

    Kim, Hae Won; Estep, Timothy N

    2012-09-01

    The development of hemoglobin based oxygen therapeutics (HBOCs) requires consideration of a number of factors. While the enabling technology derives from fundamental research on protein biochemistry and biological interactions, translation of these research insights into usable medical therapeutics demands the application of considerable technical expertise and consideration and reconciliation of a myriad of manufacturing, medical, and regulatory requirements. The HBOC development challenge is further exacerbated by the extremely high intravenous doses required for many of the indications contemplated for these products, which in turn implies an extremely high level of purity is required. This communication discusses several of the important product configuration and developmental considerations that impact the translation of fundamental research discoveries on HBOCs into usable medical therapeutics.

  6. Development of nutrition standards and therapeutic diet specifications for public hospitals in New South Wales.

    Science.gov (United States)

    Williams, Peter; Hazlewood, Tanya; Pang, Glen

    2014-09-01

    In New South Wales (NSW), a new suite of nutrition standards for menus and specifications for therapeutic diets to be used in hospitals has been developed. These standards were required to facilitate centralised menu planning and food production, with the move to management of most hospital food services by HealthShare NSW, a state-wide business unit of NSW Health. The standards also aim to improve communication between health professionals, particularly with the increasing use of computerised meal-ordering systems. Nutrition standards have been developed for adult, paediatric and mental health inpatients, and specifications for 147 different adult and paediatric therapeutic diets. There is still significant variation in the nutrition standards for nutrition and therapeutic diets in hospitals across the Australian states, and a move to a more nationally harmonised approach would be welcome. Further research is required to examine the impact of these standards on operating efficiency and patient care outcomes.

  7. Current progress and future perspectives in the development of anti-polo-like kinase 1 therapeutic agents [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Jung-Eun Park

    2017-06-01

    Full Text Available Although significant levels of side effects are often associated with their use, microtubule-directed agents that primarily target fast-growing mitotic cells have been considered to be some of the most effective anti-cancer therapeutics. With the hope of developing new-generation anti-mitotic agents with reduced side effects and enhanced tumor specificity, researchers have targeted various proteins whose functions are critically required for mitotic progression. As one of the highly attractive mitotic targets, polo-like kinase 1 (Plk1 has been the subject of an extensive effort for anti-cancer drug discovery. To date, a variety of anti-Plk1 agents have been developed, and several of them are presently in clinical trials. Here, we will discuss the current status of generating anti-Plk1 agents as well as future strategies for designing and developing more efficacious anti-Plk1 therapeutics.

  8. Recent development of fluorescent imaging for specific detection of tumors

    International Nuclear Information System (INIS)

    Nakata, Eiji; Morii, Takashi; Uto, Yoshihiro; Hori, Hitoshi

    2011-01-01

    Increasing recent studies on fluorescent imaging for specific detection of tumors are described here on strategies of molecular targeting, metabolic specificity and hypoxic circumstance. There is described an instance of a conjugate of antibody and pH-activable fluorescent ligand, which specifically binds to the tumor cells, is internalized in the cellular lysozomes where their pH is low, and then is activated to become fluorescent only in viable tumor cells. For the case of metabolic specificity, excessive loading of the precursor (5-aminolevulinic acid) of protoporphyrin IX (ppIX), due to their low activity to convert ppIX to heme B, results in making tumors observable in red as ppIX emits fluorescence (red, 585 nm) when excited by blue ray of 410 nm. Similarly, imaging with indocyanine green which is accumulated in hepatoma cells is reported in success in detection of small lesion and metastasis when the dye is administered during operation. Reductive reactions exceed in tumor hypoxic conditions, of which feature is usable for imaging. Conjugates of nitroimidazole and fluorescent dye are reported to successfully image tumors by nitro reduction. Authors' UTX-12 is a non-fluorescent nitroaromatic derivative of pH-sensitive fluorescent dye seminaphtharhodafluor (SNARF), and is designed for the nitro group, the hypoxia-responding sensor, to be reduced in tumor hypoxic conditions and then for the aromatic moiety to be cleaved to release free SNARF. Use of hypoxia-inducible factor-1 (HIF-1) for imaging has been also reported in many. As above, studies on fluorescent imaging for specific detection of tumors are mostly at fundamental step but its future is conceivably promising along with advances in other technology like fluorescent endoscopy and multimodal imaging. (author)

  9. Therapeutic value of 3-D printing template-assisted 125I-seed implantation in the treatment of malignant liver tumors

    Directory of Open Access Journals (Sweden)

    Han T

    2017-07-01

    Full Text Available Tao Han,1,* Xiaodan Yang,1,* Ying Xu,2,* Zhendong Zheng,1,* Ying Yan,2 Ning Wang2 1Department of Oncology, 2Department of Radiotherapy, General Hospital of Shenyang Military Region, Shenyang, China *These authors contributed equally to this work Objective: To explore the therapeutic value of 3-D printing template-assisted 125I-seed implantation in the treatment of malignant liver tumors.Materials and methods: Fifteen liver cancer patients with 47 total lesions were treated with 3-D printing template-assisted radioactive seed implantation (group A, and 25 liver-tumor patients with 66 total lesions were treated with 125I-seed implantation without a template auxiliary (group B. Operation time, in-hospital time, operation complications, dose distribution, and response rate (number were compared between the two groups. Results: Shorter operation times and better dose distribution were observed in group A than in group B, and the differences were statistically significant. The response rate after 2 months was 86.7% (13 of 15 in group A and 84% (21 of 25 in group B; differences between the two groups were not significant.Conclusion: Application of 3-D printing template-assisted radioactive seed implantation in the treatment of malignant liver tumors can help shorten operation time and optimize radiation-dose distribution, is worthy of further study, and has clinical significance. Keywords: brachytherapy, stereotactic techniques, iodine isotopes, liver, carcinoma 

  10. Passive tumor targeting of polymer therapeutics: in vivo imaging of both the polymer carrier and the enzymatically cleavable drug model

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Heinrich, A. K.; Mueller, T.; Kostka, Libor; Mäder, K.; Pechar, Michal; Etrych, Tomáš

    2016-01-01

    Roč. 16, č. 11 (2016), s. 1577-1582 ISSN 1616-5187 R&D Projects: GA ČR(CZ) GA15-02986S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer drug carriers * tumor targeting * enzymatic release Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.238, year: 2016

  11. Neoplastic Meningitis from Solid Tumors: A Prospective Clinical Study in Lombardia and a Literature Review on Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    A. Silvani

    2013-01-01

    Full Text Available Neoplastic dissemination to the leptomeninges is an increasingly common occurrence in patients with both haematological and solid tumors arising outside the central nervous system. Both refinement of diagnostic techniques (Magnetic resonance imaging and increased survival in patients treated with targeted therapies for systemic tumors account for this increased frequency. Cerebrospinal fluid cytological analysis and MRI confirm clinical diagnosis based on multifocal central nervous system signs/symptoms in a patient with known malignancy. Overall survival in patients with leptomeningeal neoplastic dissemination from solid tumors is short, rarely exceeding 3-4 months. However, selected patients may benefit from aggressive therapies, Apart from symptomatic treatment, intrathecal chemotherapy is used, with both free (methotrexate, Thiotepa, AraC and liposomal antitumor agents (liposomal AraC. Palliative radiotherapy is indicated only in cases of symptomatic bulky disease, surgery is limited to positioning of Ommaya recervoirs or C5F shunting. We report clinical data on a cohort of 26 prospectively followed patients with neoplastic leptomeningitis followed in Lombardia, Italy, in 2011. Prognostic factors and pattern of care are reported.

  12. Development of new therapeutic methods of lung cancer through team approach study

    International Nuclear Information System (INIS)

    Park, Jong Ho; Zo, Jae Ill; Baek, Hee Jong; Jung, Jin Haeng; Lee, Jae Cheol; Ryoo, Baek Yeol; Kim, Mi Sook; Choi, Du Hwan; Park, Sun Young; Lee, Hae Young

    2000-12-01

    The aims of this study were to make the lung cancer clinics in Korea Cancer Center Hospital, and to establish new therapeutic methods of lung cancer for increasing the cure rate and survival rate of patients. Also another purpose of this study was to establish a common treatment method in our hospital. All patients who were operated in Korea Cancer Center Hospital from 1987 due to lung cancer were followed up and evaluated. And we have been studied the effect of postoperative adjuvant therapy in stage I, II, IIIA non-small cell lung cancer patients from 1989 with the phase three study form. Follow-up examinations were scheduled in these patients and interim analysis was made. Also we have been studied the effect of chemo-therapeutic agents in small cell lung cancer patients from 1997 with the phase two study form. We evaluated the results of this study. Some important results of this study were as follows. 1. The new therapeutic method (surgery + MVP chemotherapy) was superior to the standard therapeutic one in stage I Non-small cell lung cancer patients. So, we have to change the standard method of treatment in stage I NSCLC. 2. Also, this new therapeutic method made a good result in stage II NSCLC patients. And this result was reported in The Annals of Thoracic Surgery. 3. However, this new therapeutic method was not superior to the standard treatment method (surgery only) in stage IIIA NSCLC patients. So, we must develop new chemo-therapeutic agents in the future for advanced NSCLC patients. 4. In the results of the randomized phase II studies about small cell lung cancer, there was no difference in survival between Etoposide + Carboplatin + Ifosfamide + Cisplatin group and Etoposide + Carboplatin + Ifosfamide + Cisplatin + Tamoxifen group in both the limited and extended types of small cell lung cancer patients

  13. Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0243 TITLE: Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution PRINCIPAL...SUBTITLE 5a. CONTRACT NUMBER Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution 5b. GRANT NUMBER 5c. PROGRAM...derive a prognostic classifier. 15. SUBJECT TERMS NSCLC; tumor evolution ; whole exome sequencing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  14. The value of non-human primates in the development of therapeutic monoclonal antibodies

    NARCIS (Netherlands)

    Van Meer, P.J.K.|info:eu-repo/dai/nl/34153790X; Kooijman, M.|info:eu-repo/dai/nl/322905788; Van Der Laan, J.W.|info:eu-repo/dai/nl/374879966; Moors, E.H.M.|info:eu-repo/dai/nl/20241664X; Schellekens, H.|info:eu-repo/dai/nl/068406762

    2011-01-01

    The pharmaceutical industry is increasingly focusing on the development of biological therapeutics. These molecules generally cause no off-target toxicity and are highly species specific. Therefore, non-human primates (NHPs) are often the only relevant species in which to conduct regulatory safety

  15. 77 FR 62521 - Prospective Grant of Exclusive License: The Development of Therapeutic Agents for the Treatment...

    Science.gov (United States)

    2012-10-15

    ... interleukin-10 (IL-10) inhibitor as a dual-biologic therapy to treat metastatic breast cancer, or ii) incorporating a p53 isoform antisense oligonucleotide as a single biologic therapy to treat T- cell lymphoma... Exclusive License: The Development of Therapeutic Agents for the Treatment of Metastatic Breast Cancer and T...

  16. MicroRNA silencing in primates: towards development of novel therapeutics

    DEFF Research Database (Denmark)

    Petri, Andreas; Lindow, Morten; Kauppinen, Sakari

    2009-01-01

    MicroRNAs (miRNA) comprise an abundant class of small noncoding RNAs that act as important posttranscriptional regulators of gene expression. Accumulating evidence showing that aberrantly expressed miRNAs play important roles in human cancers underscores them as potential targets for therapeutic ...... intervention. Recent reports on efficient miRNA silencing in rodents and nonhuman primates using high-affinity targeting by chemically modified antisense oligonucleotides highlight the utility of such compounds in the development of miRNA-based cancer therapeutics....

  17. Translational research in addiction: toward a framework for the development of novel therapeutics.

    Science.gov (United States)

    Paterson, Neil E

    2011-06-15

    The development of novel substance use disorder (SUD) therapeutics is insufficient to meet the medical needs of a growing SUD patient population. The identification of translatable SUD models and tests is a crucial step in establishing a framework for SUD therapeutic development programs. The present review begins by identifying the clinical features of SUDs and highlights the narrow regulatory end-point required for approval of a novel SUD therapeutic. A conceptual overview of dependence is provided, followed by identification of potential intervention targets in the addiction cycle. The main components of the addiction cycle provide the framework for a discussion of preclinical models and their clinical analogs, all of which are focused on isolated behavioral end-points thought to be relevant to the persistence of compulsive drug use. Thus, the greatest obstacle to successful development is the gap between the multiplicity of preclinical and early clinical end-points and the regulatory end-point of sustained abstinence. This review proposes two pathways to bridging this gap: further development and validation of the preclinical extended access self-administration model; inclusion of secondary end-points comprising all of the measures highlighted in the present discussion in Phase 3 trials. Further, completion of the postdictive validation of analogous preclinical and clinical assays is of high priority. Ultimately, demonstration of the relevance and validity of a variety of end-points to the ultimate goal of abstinence will allow researchers to identify truly relevant therapeutic mechanisms and intervention targets, and establish a framework for SUD therapeutic development that allows optimal decision-making and resource allocation. 2011 Elsevier Inc. All rights reserved.

  18. Normalization of tumor microenvironment by neem leaf glycoprotein potentiates effector T cell functions and therapeutically intervenes in the growth of mouse sarcoma.

    Directory of Open Access Journals (Sweden)

    Subhasis Barik

    Full Text Available We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP. In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME. Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8(+ T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR(+ cells within CD8(+ T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8(+ T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8(+ T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth.

  19. Rapid development of Leydig cell tumors in a Wistar rat substrain

    NARCIS (Netherlands)

    Teerds, K. J.; de rooij, D. G.; de Jong, F. H.; Rommerts, F. F.

    1991-01-01

    In 78% of the Wistar rats (substrain U) studied, spontaneous Leydig cell tumors developed between the ages of 12 and 30 months. The first signs of tumor development, in the form of nodules of Leydig cells, were already apparent in 1-month-old U-rats. These nodules of Leydig cells were found in all

  20. Preparation of slow release anticancer drug by means of radiation technique and IT's therapeutic effect on sold tumor of mice

    International Nuclear Information System (INIS)

    Li Ximing; Shen Weiming; Liu Chengjie; Hu Xu

    1991-01-01

    In order to minimize the toxic effect of chemotherapy of malignant tumors, the authors use a method of radiation induced cast polymerization of hydrophilic monomer at low temperature for immobilization the anticancer drug, 5-Fluorouracil, into the polymer matrix. The anticancer drug-polymer composite called slow release anticancer drug was used for treatment the transplantable squamous cell carcinoma in mice 615 and the transplantable sarcoma (S180) in Kunming mice. There were marked difference between the treated group and the control group. That is the higher inhibition ratio and lower toxic effect were reported

  1. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    International Nuclear Information System (INIS)

    Monti Hughes, A.; Heber, E.M.; Pozzi, E.; Nigg, D.W.; Calzetta, O.; Blaumann, H.; Longhino, J.; Nievas, S.I.; Aromando, R.F.; Itoiz, M.E.; Trivillin, V.A.; Schwint, A.E.

    2009-01-01

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  2. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics.

    Science.gov (United States)

    McArthur, Monica A

    2017-06-13

    Zika is a rapidly emerging public health threat. Although clinical infection is frequently mild, significant neurological manifestations have been demonstrated in infants born to Zika virus (ZIKV) infected mothers. Due to the substantial ramifications of intrauterine infection, effective counter-measures are urgently needed. In order to develop effective anti-ZIKV vaccines and therapeutics, improved animal models and a better understanding of immunological correlates of protection against ZIKV are required. This review will summarize what is currently known about ZIKV, the clinical manifestations and epidemiology of Zika as well as, the development of animal models to study ZIKV infection, host immune responses against ZIKV, and the current state of development of vaccines and therapeutics against ZIKV.

  3. Tumor development in field-cancerized tissue is inhibited by a double application of Boron neutron capture therapy (BNCT) without exceeding radio-tolerance

    International Nuclear Information System (INIS)

    Monti Hughes, Andrea; Heber, Elisa M.; Itoiz, Maria E.; Molinari, Ana J.; Garabalino, Marcela A.; Trivillin, Veronica A.; Schwint, Amanda E.; Aromando, Romina F.

    2009-01-01

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of a 'single' application of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-1(Na 2 10 B 10 H 10 ) or (GB-10+BPA) to treat hamster cheek pouch tumors with no normal tissue radiotoxicity. Based on these results, we developed a model of precancerous tissue in the hamster cheek pouch for long-term studies. Employing this model we evaluated the long-term potential inhibitory effect on the development of second primary tumors from precancerous tissue and eventual radiotoxicity of a single application of BNCT mediated by BPA, GB-10 or (GB-10+BPA), in the RA-6. The clinical rationale of this study was to search for a BNCT protocol that is therapeutic for tumor, not radio-toxic for the normal tissue that lies in the neutron beam path, and exerts the desired inhibitory effect on the development of second primary tumors, without exceeding the radio-tolerance of precancerous tissue, the dose limiting tissue in this case. Second primary tumors that arise in precancerous tissue (also called locoregional recurrences) are a frequent cause of therapeutic failure in head and neck tumors. Aim: Evaluate the radiotoxicity and inhibitory effect of a 'double' application of the same BNCT protocols that were proved therapeutically successful for tumor and precancerous tissue, with a long term follow up (8 months). A 'double' application of BNCT is a potentially useful strategy for the treatment of tumors, in particular the larger ones, but the cost in terms of side-effects in dose-limiting tissues might preclude its application and requires cautious evaluation. Materials and methods: We performed a double application of 1) BPA-BNCT; 2) (GB

  4. Jnk2 effects on tumor development, genetic instability and replicative stress in an oncogene-driven mouse mammary tumor model.

    Directory of Open Access Journals (Sweden)

    Peila Chen

    2010-05-01

    Full Text Available Oncogenes induce cell proliferation leading to replicative stress, DNA damage and genomic instability. A wide variety of cellular stresses activate c-Jun N-terminal kinase (JNK proteins, but few studies have directly addressed the roles of JNK isoforms in tumor development. Herein, we show that jnk2 knockout mice expressing the Polyoma Middle T Antigen transgene developed mammary tumors earlier and experienced higher tumor multiplicity compared to jnk2 wildtype mice. Lack of jnk2 expression was associated with higher tumor aneuploidy and reduced DNA damage response, as marked by fewer pH2AX and 53BP1 nuclear foci. Comparative genomic hybridization further confirmed increased genomic instability in PyV MT/jnk2-/- tumors. In vitro, PyV MT/jnk2-/- cells underwent replicative stress and cell death as evidenced by lower BrdU incorporation, and sustained chromatin licensing and DNA replication factor 1 (CDT1 and p21(Waf1 protein expression, and phosphorylation of Chk1 after serum stimulation, but this response was not associated with phosphorylation of p53 Ser15. Adenoviral overexpression of CDT1 led to similar differences between jnk2 wildtype and knockout cells. In normal mammary cells undergoing UV induced single stranded DNA breaks, JNK2 localized to RPA (Replication Protein A coated strands indicating that JNK2 responds early to single stranded DNA damage and is critical for subsequent recruitment of DNA repair proteins. Together, these data support that JNK2 prevents replicative stress by coordinating cell cycle progression and DNA damage repair mechanisms.

  5. The Effects of Radiation and Dose-Fractionation on Cancer and Non-Tumor Disease Development

    Directory of Open Access Journals (Sweden)

    Gayle E. Woloschak

    2012-12-01

    Full Text Available The Janus series of radiation experiments, conducted from 1970 to 1992, explored the effects of gamma and neutron radiation on animal lifespan and disease development. Data from these experiments presents an opportunity to conduct a large scale analysis of both tumor and non-tumor disease development. This work was focused on a subset of animals from the Janus series of experiments, comparing acute or fractionated exposures of gamma or neutron radiation on the hazards associated with the development of tumor and non-tumor diseases of the liver, lung, kidney or vascular system. This study also examines how the co-occurrence of non-tumor diseases may affect tumor-associated hazards. While exposure to radiation increases the hazard of dying with tumor and non-tumor diseases, dose fractionation modulates these hazards, which varies across different organ systems. Finally, the effect that concurrent non-cancer diseases have on the hazard of dying with a tumor also differs by organ system. These results highlight the complexity in the effects of radiation on the liver, lung, kidney and vascular system.

  6. Report of an autopsyzed case of Kaposi sarcoma developed in therapeutically irradiated region

    International Nuclear Information System (INIS)

    Tanahashi, Yoshio; Sato, Akihiko

    1975-01-01

    A case of Kaposi sarcoma developed in the right gluteal region of 57 year-old woman was reported in the present paper. The patient received surgical excision of uterine cervical cancer and also gastric cancer in the different time in her past history. Post-operative radiotherapy following uterine excision consisted of 3,350 to 3,650 R of respective 180 kV of X-ray and 60 Co. The mass developed in the region irradiated during the past deep therapy, and showed resistance to Linac irradiation and bleomycin. The masses which seemed to be the same with that in the skin developed in the both lung, and bleomycin administered was not effective. In addition, a mass developed in the right inguinal lymphnode which was considered to be the metastasis from cervical cancer, and was wholly excised. The patient died from pneumonia one year after the manifestation of Kaposi sarcoma. This case was very extraordinary because of the triplicated tumors, i.e., gastric cancer, uterine cervical cancer, and Kaposi sarcoma. The nature of Kaposi sarcoma was discussed from our experience and literature. Kaposi sarcoma in our case, was suggested to be a radiation-induced tumor, and the mechanism of occurrence was considered to be that of multi-centric tumor. (Tsukamoto, Y.)

  7. Report of an autopsyed case of Kaposi sarcoma developed in therapeutically irradiated region

    Energy Technology Data Exchange (ETDEWEB)

    Tanahashi, Y; Sato, A [Tohoku Univ., Sendai (Japan). School of Medicine

    1975-04-01

    A case of Kaposi sarcoma developed in the right gluteal region of 57 year-old woman was reported in the present paper. The patient received surgical excision of uterine cervical cancer and also gastric cancer in the different time in her past history. Post-operative radiotherapy following uterine excision consisted of 3,350 to 3,650 R of respective 180 kV of X-ray and /sup 60/Co. The mass developed in the region irradiated during the past deep therapy, and showed resistance to Linac irradiation and bleomycin. The masses which seemed to be the same with that in the skin developed in the both lung, and bleomycin administered was not effective. In addition, a mass developed in the right inguinal lymphnode which was considered to be the metastasis from cervical cancer, and was wholly excised. The patient died from pneumonia one year after the manifestation of Kaposi sarcoma. This case was very extraordinary because of the triplicated tumors, i.e., gastric cancer, uterine cervical cancer, and Kaposi sarcoma. The nature of Kaposi sarcoma was discussed from our experience and literature. Kaposi sarcoma in our case, was suggested to be a radiation-induced tumor, and the mechanism of occurrence was considered to be that of multi-centric tumor.

  8. Molecular crosstalk between cancer cells and tumor microenvironment components suggests potential targets for new therapeutic approaches in mobile tongue cancer

    International Nuclear Information System (INIS)

    Dayan, Dan; Salo, Tuula; Salo, Sirpa; Nyberg, Pia; Nurmenniemi, Sini; Costea, Daniela Elena; Vered, Marilena

    2012-01-01

    We characterized tumor microenvironment (TME) components of mobile tongue (MT) cancer patients in terms of overall inflammatory infiltrate, focusing on the protumorigenic/anti-inflammatory phenotypes and on cancer-associated fibroblasts (CAFs) in order to determine their interrelations and associations with clinical outcomes. In addition, by culturing tongue carcinoma cells (HSC-3) on a three-dimensional myoma organotypic model that mimics TME, we attempted to investigate the possible existence of a molecular crosstalk between cancer cells and TME components. Analysis of 64 cases of MT cancer patients revealed that the overall density of the inflammatory infiltrate was inversely correlated to the density of CAFs (P = 0.01), but that the cumulative density of the protumorigenic/anti-inflammatory phenotypes, including regulatory T cells (Tregs, Foxp3+), tumor-associated macrophages (TAM2, CD163+), and potentially Tregs-inducing immune cells (CD80+), was directly correlated with the density of CAFs (P = 0.01). The hazard ratio (HR) for recurrence in a TME rich in CD163+ Foxp3+ CD80+ was 2.9 (95% CI 1.03–8.6, P = 0.043 compared with low in CD163+ Foxp3+ CD80+). The HR for recurrence in a TME rich in CAFs was 4.1 (95% confidence interval [CI] 1.3–12.8, P = 0.012 compared with low in CAFs). In vitro studies showed cancer-derived exosomes, epithelial–mesenchymal transition process, fibroblast-to-CAF-like cell transdifferentiation, and reciprocal interrelations between different cytokines suggesting the presence of molecular crosstalk between cancer cells and TME components. Collectively, these results highlighted the emerging need of new therapies targeting this crosstalk between the cancer cells and TME components in MT cancer

  9. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity

    Science.gov (United States)

    Kato, Shingo; Berzofsky, Jay A.; Terabe, Masaki

    2018-01-01

    Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies. PMID:29520281

  10. Breast Tumor Specific Peptides: Development of Breast Carcinoma Diagnostic and Therapeutic Agents

    Science.gov (United States)

    2000-11-01

    Columbia, Missouri 65211; La Jolla Institute for Allergy and Inmunology [M. E. H.], San Diego, California 92121; and Sidney Kimmel Cancer Center and...spontaneous homotypic aggregation of breast The costs of publication of this article were defrayed in part by the payment of page cancer cells, then a T...antigen-binding peptide may likewise inhibit charges. This article must therefore be hereby marked advertisement in accordance with this aggregation

  11. Novel Therapeutic Development of NF1-Associated Malignant Peripheral Nerve Sheath Tumor (MPNST)

    Science.gov (United States)

    2016-08-01

    generations of clinical investigations for MPNST. Impact on technology transfer: Nothing to report. Impact on society beyond science and technology ...dilution; Cell Signaling Technology , Danvers, MA). All immunostaining studies were performed on a Leica Bond-RX and Bond-3 automated stainer platform (Leica...monophasic, biphasic, and poorly differentiated examples, retained expression of this marker. A recent study showed that neurofibromin C-terminus ( NFC

  12. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development.

    Science.gov (United States)

    Noreen, Razia; Chien, Chia-Chi; Chen, Hsiang-Hsin; Bobroff, Vladimir; Moenner, Michel; Javerzat, Sophie; Hwu, Yeukuang; Petibois, Cyril

    2013-11-01

    Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.

  13. Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases.

    Science.gov (United States)

    Douthwaite, Julie A; Finch, Donna K; Mustelin, Tomas; Wilkinson, Trevor C I

    2017-01-01

    The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Lactate as an early predictor of psychomotor development in neonates with asphyxia receiving therapeutic hypothermia.

    Science.gov (United States)

    Polackova, Renata; Salounova, Dana; Kantor, Lumir

    2017-12-04

    This prospective study aimed to evaluate the relationship between persistently elevated lactate values in the arterial blood of newborns with grade II and III hypoxic ischemic encephalopathy (treated with therapeutic hypothermia) and psychomotor development at 24 months. 51 neonates of gestational age from 36 to 41 weeks receiving therapeutic hypothermia for moderate to severe hypoxic ischaemic encephalopathy had arterial blood lactate levels regularly analysed. At 24 months the infants' psychomotor development was evaluated and they were divided into two groups - those where the outcome was favourable (i.e. normal psychomotor development) and adverse (severe motor or sensory impairment or death). The lactate dynamics over time were retrospectively evaluated from the data collected, with the normal upper limit set at 4 mmol/L. Of the 51 affected neonates, 7 died over the course of the study. 34 of the remaining 44 infants demonstrated normal psychomotor findings at 2 years old, with adverse findings in 10 cases. Although both groups experienced significant reductions in lactate over time, there were statistically significant differences between them regarding currently measured lactate levels. Absolute lactate values and their development over time can be a used as an auxiliary factor in making early estimates of the long-term outcome for newborns with neonatal asphyxia being treated with therapeutic hypothermia.

  15. Aquatic environment as an occupational therapeutic scenario for the development of body scheme in Down syndrome

    Directory of Open Access Journals (Sweden)

    Chrystiane Maria Veras Pôrto

    2010-12-01

    Full Text Available Objective: To assess the effect of aquatic environment while an occupational therapeutic scenario in the development of body scheme of a child with Down Syndrome, considering the therapeutic properties of water. Description of the case: An interventionist research, with a qualitative and descriptive approach, conducted in an adapted pool of the Núcleo de Atenção Médica Integrada (NAMI of Fortaleza University (UNIFOR, Ceara, during the period of March to May, 2005. The subject of the study was a female child, aged 10 years old, diagnosed with Down Syndrome. Data collection had as instruments an interview guide for anamnesis, an evaluation form of psychomotor development, besides a field diary to record clinical observations during the sessions. This information was organized and analyzed based on clinical reasoning of occupational therapists and then described as a case study. We observed an evolution in the development of skills related to body scheme, such as the perception of fine parts of her own body, as well as large parts in someone else’s body, the imitation of positions, finishing with more active participation in activities of daily living. Final Considerations: We verified the effectiveness of occupational therapeutic activities conducted in aquatic environment for the development of the body scheme of the child in the study. This may be useful for conducting further research on the subject – whose literature is scarce – and contributing to the crescent update of occupational therapy practices.

  16. Therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Baum, Richard P.

    2014-01-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  17. Therapeutic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Richard P. (ed.) [ENETS Center of Excellence, Bad Berka (Germany). THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging

    2014-07-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  18. Comparison of {sup 18}F-FDG PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of the uterine cervix

    Energy Technology Data Exchange (ETDEWEB)

    Sarabhai, Theresia; Wetter, Axel; Forsting, Michael; Umutlu, Lale; Grueneisen, Johannes [University Hospital Essen, University of Duisburg-Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Schaarschmidt, Benedikt M.; Kirchner, Julian [University Dusseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Dusseldorf (Germany); Aktas, Bahriye [University Hospital Essen, University of Duisburg-Essen, Department of Obstetrics and Gynecology, Essen (Germany); Ruhlmann, Verena; Herrmann, Ken [University Hospital Essen, University of Duisburg-Essen, Department of Nuclear Medicine, Essen (Germany)

    2018-01-15

    The aim of the present study was to assess and compare the diagnostic performance of integrated PET/MRI and MRI alone for local tumor evaluation and whole-body tumor staging of primary cervical cancers. In addition, the corresponding impact on further patient management of the two imaging modalities was assessed. A total of 53 consecutive patients with histopathological verification of a primary cervical cancer were prospectively enrolled for a whole-body 18F-FDG PET/MRI examination. Two experienced physicians analyzed the MRI data, in consensus, followed by a second reading session of the PET/MRI datasets. The readers were asked to perform a dedicated TNM staging in accordance with the 7th edition of the AJCC staging manual. Subsequently, the results of MRI and PET/MRI were discussed in a simulated interdisciplinary tumor board and therapeutic decisions based on both imaging modalities were recorded. Results from histopathology and cross-sectional imaging follow-up served as the reference standard. PET/MRI allowed for a correct determination of the T stage in 45/53 (85%) cases, while MRI alone enabled a correct identification of the tumor stage in 46/53 (87%) cases. In 24 of the 53 patients, lymph node metastases were present. For the detection of nodal-positive patients, sensitivity, specificity and accuracy of PET/MRI were 83%, 90% and 87%, respectively. The respective values for MRI alone were 71%, 83% and 77%. In addition, PET/MRI showed higher values for the detection of distant metastases than MRI alone (sensitivity: 87% vs. 67%, specificity: 92% vs. 90%, diagnostic accuracy: 91% vs. 83%). Among the patients with discrepant staging results in the two imaging modalities, PET/MRI enabled correct treatment recommendations for a higher number (n = 9) of patients than MRI alone (n = 3). The present results demonstrate the successful application of integrated PET/MRI imaging for whole-body tumor staging of cervical cancer patients, enabling improved treatment

  19. Influence networks based on coexpression improve drug target discovery for the development of novel cancer therapeutics

    Science.gov (United States)

    2014-01-01

    Background The demand for novel molecularly targeted drugs will continue to rise as we move forward toward the goal of personalizing cancer treatment to the molecular signature of individual tumors. However, the identification of targets and combinations of targets that can be safely and effectively modulated is one of the greatest challenges facing the drug discovery process. A promising approach is to use biological networks to prioritize targets based on their relative positions to one another, a property that affects their ability to maintain network integrity and propagate information-flow. Here, we introduce influence networks and demonstrate how they can be used to generate influence scores as a network-based metric to rank genes as potential drug targets. Results We use this approach to prioritize genes as drug target candidates in a set of ER + breast tumor samples collected during the course of neoadjuvant treatment with the aromatase inhibitor letrozole. We show that influential genes, those with high influence scores, tend to be essential and include a higher proportion of essential genes than those prioritized based on their position (i.e. hubs or bottlenecks) within the same network. Additionally, we show that influential genes represent novel biologically relevant drug targets for the treatment of ER + breast cancers. Moreover, we demonstrate that gene influence differs between untreated tumors and residual tumors that have adapted to drug treatment. In this way, influence scores capture the context-dependent functions of genes and present the opportunity to design combination treatment strategies that take advantage of the tumor adaptation process. Conclusions Influence networks efficiently find essential genes as promising drug targets and combinations of targets to inform the development of molecularly targeted drugs and their use. PMID:24495353

  20. Diagnostic accuracy of contrast-enhanced ultrasound in assessing the therapeutic response to radio frequency ablation for liver tumors: systematic review and meta-analysis.

    Science.gov (United States)

    Xuan, Min; Zhou, Fengsheng; Ding, Yan; Zhu, Qiaoying; Dong, Ji; Zhou, Hao; Cheng, Jun; Jiang, Xiao; Wu, Pengxi

    2018-04-01

    To review the diagnostic accuracy of contrast-enhanced ultrasound (CEUS) used to detect residual or recurrent liver tumors after radiofrequency ablation (RFA). This technique uses contrast-enhanced computer tomography or/and contrast-enhanced magnetic resonance imaging as the gold standard of investigation. MEDLINE, EMBASE, and COCHRANE were systematically searched for all potentially eligible studies comparing CEUS with the reference standard that follows RFA. Risk of bias and applicability concerns were addressed by adopting the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Pooled point estimates for sensitivity, specificity, positive and negative likelihood ratios, and diagnostic odds ratios (DOR) with 95% CI were computed before plotting the sROC (summary receiver operating characteristic) curve. Meta-regression and subgroup analysis were used to identify the source of the heterogeneity that was detected. Publication bias was evaluated using Deeks' funnel plot asymmetry test. Ten eligible studies on 1162 lesions that occurred between 2001 and 2016 were included in the final analysis. The quality of the included studies assessed by the QUADAS-2 tool was considered reasonable. The pooled sensitivity and specificity of CEUS in detecting residual or recurrent liver tumors had the following values: 0.90 (95% CI 0.85-0.94) and 1.00 (95% CI 0.99-1.00), respectively. Overall DOR was 420.10 (95% CI 142.30-1240.20). The sources of heterogeneity could not be precisely identified by meta-regression or subgroup analysis. No evidence of publication bias was found. This study confirmed that CEUS exhibits high sensitivity and specificity in assessing therapeutic responses to RFA for liver tumors.

  1. [The prospects for the development of therapeutic and health-promoting tourism in Gorny Altai].

    Science.gov (United States)

    Dzhabarova, N K; Iakovenko, É S; Sidorina, N G; Firsova, I A

    2014-01-01

    The present balneological survey made it possible to identify the promising areas with a high potential for the health resort, recreational and touristic activities including the foothill, low-mountain, mid-mountain valleys and hollows of Northern, Northwestern, Central and Eastern bioclimatic provinces of Mountainous Altai. Recommendations have been proposed for the development of therapeutic and health-improving tourism in the Shebalinsk, Ust'-Kansk and Ulagansk districts of the Altai Republic.

  2. Design, development, and clinical validation of therapeutic toys for autistic children

    OpenAIRE

    Tseng, Kevin C.; Tseng, Sung-Hui; Cheng, Hsin-Yi Kathy

    2016-01-01

    [Purpose] One of the characteristics of autistic children is social interaction difficulties. Although therapeutic toys can promote social interaction, however its related research remains insufficient. The aim of the present study was to build a set of cooperative play toys that are suitable for autistic children. [Subjects and Methods] This study used an innovative product design and development approach as the basis for the creation of cooperative play toys. [Results] The present study has...

  3. Recent developments in the nanostructured materials functionalized with ruthenium complexes for targeted drug delivery to tumors

    Directory of Open Access Journals (Sweden)

    Thangavel P

    2017-04-01

    Full Text Available Prakash Thangavel,1 Buddolla Viswanath,1 Sanghyo Kim1,2 1Department of Bionanotechnology, Gachon University, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 2Graduate Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea Abstract: In recent years, the field of metal-based drugs has been dominated by other existing precious metal drugs, and many researchers have focused their attention on the synthesis of various ruthenium (Ru complexes due to their potential medical and pharmaceutical applications. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidation states, low toxicity, high selectivity for diseased cells, ligand exchange properties, and the ability to mimic iron binding to biomolecules. In addition, Ru complexes have favorable adsorption properties, along with excellent photochemical and photophysical properties, which make them promising tools for photodynamic therapy. At present, nanostructured materials functionalized with Ru complexes have become an efficient way to administer Ru-based anticancer drugs for cancer treatment. In this review, the recent developments in the nanostructured materials functionalized with Ru complexes for targeted drug delivery to tumors are discussed. In addition, information on “traditional” (ie, non-nanostructured Ru-based cancer therapies is included in a precise manner. Keywords: metallodrugs, nanotechnology, cancer treatment, cell apoptosis, DNA damage, toxicity

  4. Therapeutic Ultrasound Research And Development From An Industrial And Commercial Perspective

    Science.gov (United States)

    Seip, Ralf

    2009-04-01

    The objective of this paper is to share the challenges and opportunities as viewed from an industrial and commercial perspective that one encounters when performing therapeutic ultrasound research, development, manufacturing, and sales activities. Research in therapeutic ultrasound has become an active field in the last decade, spurred by technological advances in the areas of transducer materials, control electronics, treatment monitoring techniques, an ever increasing number of clinical applications, and private and governmental funding opportunities. The development of devices and methods utilizing therapeutic ultrasound to cure or manage disease is being pursued by startup companies and large established companies alike, driven by the promise of profiting at many levels from this new and disruptive technology. Widespread penetration within the clinical community remains elusive, with current approaches focusing on very specific applications and niche markets. Challenges include difficulties in securing capital to develop the technology and undertake costly clinical trials, a regulatory landscape that varies from country to country, resistance from established practitioners, and difficulties in assembling a team with the right mix of technological savvy and business expertise. Success is possible and increasing, however, as evidenced by several companies, initiatives, and products with measurable benefits to the patient, clinician, and companies alike.

  5. Therapeutic Ultrasound Research And Development From An Industrial And Commercial Perspective

    International Nuclear Information System (INIS)

    Seip, Ralf

    2009-01-01

    The objective of this paper is to share the challenges and opportunities as viewed from an industrial and commercial perspective that one encounters when performing therapeutic ultrasound research, development, manufacturing, and sales activities. Research in therapeutic ultrasound has become an active field in the last decade, spurred by technological advances in the areas of transducer materials, control electronics, treatment monitoring techniques, an ever increasing number of clinical applications, and private and governmental funding opportunities. The development of devices and methods utilizing therapeutic ultrasound to cure or manage disease is being pursued by startup companies and large established companies alike, driven by the promise of profiting at many levels from this new and disruptive technology. Widespread penetration within the clinical community remains elusive, with current approaches focusing on very specific applications and niche markets. Challenges include difficulties in securing capital to develop the technology and undertake costly clinical trials, a regulatory landscape that varies from country to country, resistance from established practitioners, and difficulties in assembling a team with the right mix of technological savvy and business expertise. Success is possible and increasing, however, as evidenced by several companies, initiatives, and products with measurable benefits to the patient, clinician, and companies alike.

  6. The IAEA Activities on Supporting Development of Therapeutic Radiopharmaceuticals and Capacity Building in Member States

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, M R.A.; Haji-Saeid, M; Zaknun, J; Ramamoorthy, N [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna (Austria)

    2009-07-01

    The IAEA activities on supporting development of therapeutic radiopharmaceuticals are focused on identified radionuclides that can be produced in large quantities and making use of carrier molecules which can be synthesized locally or procured from commercial sources or already available in MS from other related programs. The main emphasis is on {sup 90}Y and {sup 177}Lu based products, which cover the hard beta energy and soft beta energy range respectively, and also since both these radionuclides can be produced in large quantities with very high specific activity and high radionuclidic purity. The services to MS are provided through implementing Coordinated Research Projects (CRP), Technical Cooperation (TC) projects, technical meetings and regional training courses in addition to documenting practically useful technical information related to these products though IAEA publications. The CRP is a group activity in which nearly 15 participants from as many countries come together to work towards an identified objective. Two of the completed CRPs in this area are: (i) Comparative evaluation of therapeutic radiopharmaceuticals (2002-2005) that focussed on the development of 'in vitro' and 'in vivo' techniques for evaluating new generation therapeutic radiopharmaceuticals; and (ii) Development of generator technologies for therapeutic radionuclides (2004-2007) that addressed technologies for {sup 90}Sr/{sup 90}Y and {sup 188}W/{sup 188}Re generators and which can be easily adapted by MS. The participants in the CRP on 'Comparative evaluation of therapeutic radiopharmaceuticals' used the somatostatin analogue, DOTATATE as the lead molecule for developing radiopharmaceuticals and testing the efficacy by in vitro biological assays and animal biodistribution studies. A significant outcome of the CRP was that {sup 177}Lu-DOTATATE therapy is now practised in several of the CRP participating countries including Brazil, India, Italy, and Poland. The major outcome of the CRP

  7. Helping Oxytocin Deliver: Considerations in the Development of Oxytocin-Based Therapeutics for Brain Disorders.

    Directory of Open Access Journals (Sweden)

    Kai eMacdonald

    2013-03-01

    Full Text Available Concerns regarding a drought in psychopharmacology have risen from many quarters. From one perspective, the wellspring of bedrock medications for anxiety disorders, depression, and schizophrenia was serendipitously discovered over thirty year ago, the swell of pharmaceutical investment in drug discovery has receded, and the pipeline’s flow of medications with unique mechanisms of action (i.e. glutamatergic agents, CRF antagonists has slowed to a trickle. Might oxytocin (OT-based therapeutics be an oasis? Though a large basic science literature and a slowly increasing number of studies in human diseases support this hope, the bulk of extant OT studies in humans are single-dose studies on normals, and do not directly relate to improvements in human brain-based diseases. Instead, these studies have left us with a field pregnant with therapeutic possibilities, but barren of definitive treatments. In this clinically-oriented review, we discuss the extant OT literature with an eye toward helping OT deliver on its promise as a therapeutic agent. To this end, we identify ten key questions that we believe future OT research should address. From this overview, several conclusions are clear: 1 the OT system represents an extremely promising target for novel CNS drug development; 2 there is a pressing need for rigorous, randomized controlled clinical trials targeting actual patients; and 3 in order to inform the design and execution of these vital trials, we need further translational studies addressing the questions posed in this review. Looking forward, we extend a cautious hope that the next decade of OT research will birth oxytocin-targetted therapeutics that can truly deliver on this system’s therapeutic potential.

  8. Cytotoxic effects of 125I-labeled PBZr ligand PK 11195 in prostatic tumor cells: therapeutic implications

    International Nuclear Information System (INIS)

    Alenfall, J.; Kant, R.; Batra, S.

    1998-01-01

    The effect of [ 125 I]PK 11195 was examined in human prostatic tumor cells (DU 145) in culture and compared with Na[ 125 I] and non-radioactive PK 11195. [ 125 I]PK 11195 was clearly cytocidal. The data for dose-related cell survival with [ 125 I]PK 11195 showed a linear relationship. Na[ 125 I] or non-labeled PK 11195 at similar concentrations did not lead to any cell killing. The uptake of [ 125 I]PK 11195 and [ 3 H]PK 11195 in cells was very similar. Fragmentation of DNA measured by agarose gel electrophoresis showed that exposure of DU 145 cells to [ 125 I]PK 11195 for 1, 4 or 24 h caused no fragmentation. These results indicate that nuclear DNA is not the prime binding site for [ 125 I]PK 11195, which is consistent with the presence of specific peripheral benzodiazepine receptors (PBZr) in the mitochondria. The cell killing effect of [ 125 I]PK 11195 suggests the use of PBZr ligand for radiotherapy

  9. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    International Nuclear Information System (INIS)

    Rymaszewski, Amy L.; Tate, Everett; Yimbesalu, Joannes P.; Gelman, Andrew E.; Jarzembowski, Jason A.; Zhang, Hao; Pritchard, Kirkwood A. Jr.; Vikis, Haris G.

    2014-01-01

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting

  10. The role of neutrophil myeloperoxidase in models of lung tumor development.

    Science.gov (United States)

    Rymaszewski, Amy L; Tate, Everett; Yimbesalu, Joannes P; Gelman, Andrew E; Jarzembowski, Jason A; Zhang, Hao; Pritchard, Kirkwood A; Vikis, Haris G

    2014-05-09

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  11. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    Energy Technology Data Exchange (ETDEWEB)

    Rymaszewski, Amy L.; Tate, Everett; Yimbesalu, Joannes P. [Department of Pharmacology and Toxicology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Gelman, Andrew E. [Department of Surgery, Washington University in St. Louis, St. Louis, MO 63130 (United States); Jarzembowski, Jason A. [Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Zhang, Hao; Pritchard, Kirkwood A. Jr. [Department of Surgery and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Vikis, Haris G., E-mail: hvikis@mcw.edu [Department of Pharmacology and Toxicology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States)

    2014-05-09

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  12. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    Directory of Open Access Journals (Sweden)

    Amy L. Rymaszewski

    2014-05-01

    Full Text Available Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA-initiated, butylated hydroxytoluene (BHT-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC, a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  13. Tumor development following internal exposures to radionuclides during the perinatal period

    International Nuclear Information System (INIS)

    Sikov, M.R.

    1988-07-01

    Exposure to radiation from internally deposited radionuclides during the prenatal and/or neonatal periods involves a distinct oncogenic potential. The fundamental mechanisms for perinatal radionuclide carcinogenesis seem to be generally similar to those that pertain to external radiation exposures and other carcinogenic agents, but unique interactions may be superimposed. Specific dose-effect relationships differ among radionuclides; many studies find dose-related increases in the incidence of tumors or decreases in age at tumor appearance following prenatal or neonatal radiation exposures. Tumor incidences may be decreased, especially at high dose levels; these are usually attributable to cell death, inhibited development of target tissues, or to endocrine malfunction. Age-related differences in predominant tumor types and/or sites of tumor development are often detected, and are explainable by the existence of nuclide-specific target organs or tissues, dosimetric factors, and developmental considerations. 34 refs

  14. Microdissecting the Genetic Events in Nephrogenic Rests and Wilms’ Tumor Development

    Science.gov (United States)

    Charles, Adrian K.; Brown, Keith W.; Berry, P. Jeremy

    1998-01-01

    Nephrogenic rests are precursor lesions associated with about 40% of Wilms’ tumors. This study identifies genetic steps occurring in the development of Wilms’ tumor. Thirty-four Wilms’ tumors with nephrogenic rests and/or areas of anaplasia were microdissected from paraffin sections to determine whether and at what stage loss of heterozygosity (LOH) occurred, using polymerase chain reaction-based polymorphic markers at 11p13, 11p15, and 16q. LOH at these loci have been identified in Wilms’ tumors and are associated with identified or putative tumor suppressor genes. Three cystic nephromas/cystic partially differentiated nephroblastomas were also examined. LOH was detected in six cases at 11p13 and in six cases at 11p15, and two of these cases had LOH at both loci. All intralobar rests showing LOH also showed LOH in the tumor. A case with a small perilobar rest showed LOH of 11p13 only in the tumor. Five cases showing LOH at 16q were identified (this was identified only in the tumor, and not in the associated rest), and three of these had recurrence of the tumor. Two cases had a WT1 mutation (one germline and the other somatic), as well as LOH in both the intralobar rest and the tumor. A cystic partially differentiated nephroblastoma showed loss at 11p13 and 11p15, as well as at 16q. This study suggests that LOH at 11p13 and 11p15 and WT1 mutations are early events but that LOH at 16q occurs late in the pathogenesis of Wilms’ tumor. Intralobar and perilobar nephrogenic rests are known to have different biological behaviors, and this study suggests that they are genetically different. A multistep model of Wilms’ tumor pathogenesis is supported by these findings. PMID:9736048

  15. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development.

    Science.gov (United States)

    Krishnan, Navasona; Bonham, Christopher A; Rus, Ioana A; Shrestha, Om Kumar; Gauss, Carla M; Haque, Aftabul; Tocilj, Ante; Joshua-Tor, Leemor; Tonks, Nicholas K

    2018-01-18

    The protein tyrosine phosphatase PTP1B is a major regulator of glucose homeostasis and energy metabolism, and a validated target for therapeutic intervention in diabetes and obesity. Nevertheless, it is a challenging target for inhibitor development. Previously, we generated a recombinant antibody (scFv45) that recognizes selectively the oxidized, inactive conformation of PTP1B. Here, we provide a molecular basis for its interaction with reversibly oxidized PTP1B. Furthermore, we have identified a small molecule inhibitor that mimics the effects of scFv45. Our data provide proof-of-concept that stabilization of PTP1B in an inactive, oxidized conformation by small molecules can promote insulin and leptin signaling. This work illustrates a novel paradigm for inhibiting the signaling function of PTP1B that may be exploited for therapeutic intervention in diabetes and obesity.

  16. Effect of hepatic blood flow alteration on the therapeutic effect of cryoablation in VX2 hepatic tumor rabbit: an experimental study

    International Nuclear Information System (INIS)

    Guo Zhi; Ni Hong; Li Baoguo; Hu Yonghua; Xing Wenge; Liu Fang

    2008-01-01

    Objective: To investigate the effect of alteration of blood flow in the hepatic artery on the therapeutic effect of cryoablation in VX2 hepatic tumor rabbit model. Methods: Thirty rabbits with VX2 hepatic tumor were divided into three groups according to hepatic artery blood flow: complete occlusion of the hepatic artery(group A), partial occlusion of the hepatic artery (group B), and no occlusion of the hepatic artery (group C). With conventional CT scan and perfusion scan, the values of blood flow (BF) and blood volume(BV) of VX 2 tumor were computed and the differences among the three groups were analyzed. After cryoablation, the animals were euthanized and the livers were removed. The hepatic tissue from the cryoablation area and surrounding area underwent both methyl thiazolyl tetrazolium (MTY) diaphorase staining and triphenyl tetrazolium chloride (TTC) staining. The gross pathology and histopathological changes were observed. Results: (1)The BF and BV in the three groups were: (7.23 + 2. 15 ) ml·100 g -1 ·min -1 and (1.63±0.52) ml/100 g in group A; (32.65±6.12) ml·100 g -1 ·min -1 and (9.32±2.63) ml/100 g in group B; (61.34±12.15) ml·100 g -1 ·min -1 and (17.51± 3.14) ml/100 g in group C, respectively. There were significant differences among the three groups in the BF and BV (F value was 452.16 and 421.33 in the BF and BV, respectively, P <0.01); (2) The maximum diameter of cryoablation-induced necrosis was (2.3±0.3)cm in group A, (1.5±0.2) cm in group B, and (0.8±0.1) cm in group C, respectively. The difference was significant among the groups (F value was 315.32,P <0.01). (3) There were well-defined frozen areas, bordering areas and normal surrounding areas in MTT staining. In group C, positive staining around some blood vessels could be seen. Conclusion: Alteration of the blood flow in the hepatic artery can affect the cryoablation efficacy. With the decrease of hepatic artery blood flow, the efficacy of cryoablation on liver tumor

  17. Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Eunice Yuen-Ting Lau

    2017-01-01

    Full Text Available Tumor consists of heterogeneous cancer cells including cancer stem cells (CSCs that can terminally differentiate into tumor bulk. Normal stem cells in normal organs regulate self-renewal within a stem cell niche. Likewise, accumulating evidence has also suggested that CSCs are maintained extrinsically within the tumor microenvironment, which includes both cellular and physical factors. Here, we review the significance of stromal cells, immune cells, extracellular matrix, tumor stiffness, and hypoxia in regulation of CSC plasticity and therapeutic resistance. With a better understanding of how CSC interacts with its niche, we are able to identify potential therapeutic targets for the development of more effective treatments against cancer.

  18. Development of Y-shaped peptide for constructing nanoparticle systems targeting tumor-associated macrophages in vitro and in vivo

    International Nuclear Information System (INIS)

    Yan, Lu; Gao, Yunxiang; Pierce, Ryan; Dai, Liming; Kim, Julian; Zhang, Mei

    2014-01-01

    Tumor-associated macrophage (TAM) is increasingly being viewed as a target of great interest in tumor microenvironment due to its important role in the progression and metastasis of cancers. It has been shown that TAM indeed overexpresses unique surface marker legumain. In this study, we designed and synthesized a Y-shaped legumain-targeting peptide (Y-Leg) with functional groups allowing for further conjugation with imaging and therapeutic moieties (vide infra). The in vitro cell experiments using FITC-conjugated Y-Leg revealed its specific and selective interaction with M2-polarized macrophages (i.e., TAMs) with preference to M1 macrophages, and that the interaction was not interfered with by conjugating FITC to its functional group. Further, we constructed a nanotube system by grafting Y-Leg onto oxidized carbon nanotubes (OCNTs) loaded with paramagnetic Fe 3 O 4 nanoparticles. The intravenous injection of the resultant Y-Leg-OCNT/Fe 3 O 4 nanotubes to 4T1 mammary tumor-bearing mouse led to the magnetic resonance imaging (MRI) of TAM-infiltrated tumor microenvironment, revealing the targeting specificity of Y-Leg-conjugated nanotubes in vivo. The Y shape of peptide and its functional groups containing amines and imidazole can protonate at different pHs, contributing to the in vitro and in vivo targeting specificity. This study represents the first development of novel peptide and peptide-grafted nanotube system targeting M2-polarized TAMs in vivo. The methodology developed in this study is applicable to the construction of various multifunctional nanoparticle systems for selectively targeting, imaging and manipulating of TAMs for the diagnosis and treatment of cancers and inflammatory diseases identified with macrophage-infiltrated disease tissue. (papers)

  19. Cystatin C and lactoferrin concentrations in biological fluids as possible prognostic factors in eye tumor development

    Directory of Open Access Journals (Sweden)

    Mariya A. Dikovskaya

    2013-08-01

    Full Text Available Objectives. To investigate the possible role of cystatin C in eye biological fluids locally and in serum and lactoferrin revealing anti-tumor activity in eye tumor development. Background. The increased number of eye tumors was registered recently not only in the countries with high insolation, but also in the northern countries including Russia (11 cases per million of population. Search for new biological markers is important for diagnosis and prognosis in eye tumors. Cystatin C, an endogenous inhibitor of cysteine proteases, plays an important protective role in several tumors. Lactoferrin was shown to express anti-tumor and antiviral activities. It was hypothesized that cystatin C and lactoferrin could serve as possible biomarkers in the diagnosis of malignant and benign eye tumors. Study design. A total of 54 patients with choroidal melanoma and benign eye tumors were examined (part of them undergoing surgical treatment. Serum, tear fluid and intraocular fluid samples obtained from the anterior chamber of eyes in patients with choroidal melanoma were studied. Methods. Cystatin C concentration in serum and eye biological fluids was measured by commercial ELISA kits for human (BioVendor, Czechia; lactoferrin concentration – by Lactoferrin-strip D 4106 ELISA test systems (Vector-BEST, Novosibirsk Region, Russia. Results. Cystatin C concentration in serum of healthy persons was significantly higher as compared to tear and intraocular fluids. In patients with choroidal melanoma, increased cystatin C concentration was similar in tear fluid of both the eyes. Lactoferrin level in tear fluid of healthy persons was significantly higher than its serum level. Significantly increased lactoferrin concentration in tear fluid was noted in patients with benign and malignant eye tumors. Conclusion. Increased level of cystatin C in tear fluid seems to be a possible diagnostic factor in the eye tumors studied. However, it does not allow us to differentiate

  20. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects.

    Science.gov (United States)

    Dumonteil, Eric; Bottazzi, Maria Elena; Zhan, Bin; Heffernan, Michael J; Jones, Kathryn; Valenzuela, Jesus G; Kamhawi, Shaden; Ortega, Jaime; de Leon Rosales, Samuel Ponce; Lee, Bruce Y; Bacon, Kristina M; Fleischer, Bernhard; Slingsby, B T; Cravioto, Miguel Betancourt; Tapia-Conyer, Roberto; Hotez, Peter J

    2012-09-01

    Chagas disease is a leading cause of heart disease affecting approximately 10 million people in Latin America and elsewhere worldwide. The two major drugs available for the treatment of Chagas disease have limited efficacy in Trypanosoma cruzi-infected adults with indeterminate (patients who have seroconverted but do not yet show signs or symptoms) and determinate (patients who have both seroconverted and have clinical disease) status; they require prolonged treatment courses and are poorly tolerated and expensive. As an alternative to chemotherapy, an injectable therapeutic Chagas disease vaccine is under development to prevent or delay Chagasic cardiomyopathy in patients with indeterminate or determinate status. The bivalent vaccine will be comprised of two recombinant T. cruzi antigens, Tc24 and TSA-1, formulated on alum together with the Toll-like receptor 4 agonist, E6020. Proof-of-concept for the efficacy of these antigens was obtained in preclinical testing at the Autonomous University of Yucatan. Here the authors discuss the potential for a therapeutic Chagas vaccine as well as the progress made towards such a vaccine, and the authors articulate a roadmap for the development of the vaccine as planned by the nonprofit Sabin Vaccine Institute Product Development Partnership and Texas Children's Hospital Center for Vaccine Development in collaboration with an international consortium of academic and industrial partners in Mexico, Germany, Japan, and the USA.

  1. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    Science.gov (United States)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  2. Development of Novel Therapeutic Agents by Inhibition of Oncogenic MicroRNAs

    Directory of Open Access Journals (Sweden)

    Dinh-Duc Nguyen

    2017-12-01

    Full Text Available MicroRNAs (miRs, miRNAs are regulatory small noncoding RNAs, with their roles already confirmed to be important for post-transcriptional regulation of gene expression affecting cell physiology and disease development. Upregulation of a cancer-causing miRNA, known as oncogenic miRNA, has been found in many types of cancers and, therefore, represents a potential new class of targets for therapeutic inhibition. Several strategies have been developed in recent years to inhibit oncogenic miRNAs. Among them is a direct approach that targets mature oncogenic miRNA with an antisense sequence known as antimiR, which could be an oligonucleotide or miRNA sponge. In contrast, an indirect approach is to block the biogenesis of miRNA by genome editing using the CRISPR/Cas9 system or a small molecule inhibitor. The development of these inhibitors is straightforward but involves significant scientific and therapeutic challenges that need to be resolved. In this review, we summarize recent relevant studies on the development of miRNA inhibitors against cancer.

  3. A Therapeutic Approach to Teaching Poetry: Individual Development, Psychology, and Social Reparation. Psychoanalysis, Education and Social Transformation

    Science.gov (United States)

    Williams, Todd O.

    2012-01-01

    A Therapeutic Approach to Teaching Poetry develops a poetry pedagogy that offers significant benefits to students by helping them to achieve a sense of renewal (a deeper awareness of self and potentials) and reparation (a realistic, but positive and proactive worldview). Todd O. Williams offers a thorough examination of the therapeutic potential…

  4. Synthesis, analysis, purification and biodistribution in an animal model of radiopharmaceutical 177Lu3+ -dotatato for diagnostic and therapeutic use in neuroendocrine tumors

    International Nuclear Information System (INIS)

    Caldeira Filho, Jose de Souza

    2009-01-01

    The aim of this work was to propose rationalization in the synthesis, analysis and purification of radiopharmaceutical 177 Lu 3+ - DOTATATO for diagnostic and therapeutic use in neuroendocrine tumors, as well as for evaluation g biodistribution of this radiopharmaceutical an animal-mode. The complexation reaction for the synthesis of radiopharmaceutical was carried out in ammonium acetate buffer 0.5 M, p H 7.0, for 30 minutes at 95 deg C. The radiochemical purity was > 95%, according to analysis by chromatography in ITLC-SG, when using the sodium citrate buffer 0,1 M, p H 5.0, as the mobile phase. The molar-limit ratio 177 Lu 3+ :DOTATATO, in ammonium acetate buffer 0.5 M, p H 7.0, for 30 minutes at 95 deg C, was dependent on the specific activity and origin of the radioisotope, this being 1:3.5 (370 MBq : 26μg) for that from the Oak Ridge National Laboratory /USA, and 1:16 (370 MBq: 11.8 μg) for that from Nuclear Analytical and Medical Services/Holland, when considering a decay of five days from the production date of te radioisotopes. This rationalization in the synthesis of radiopharmaceutical 177 Lu 3+ - DOTATATO permits high economy in production costs. Chemical studies on the synthesis of radiopharmaceuticals also placed in evidence the interference of 177 Hf 4+ , the decay product of 177 Lu 3= , as the 177 Lu 3= competitor for DOTATATO. Radiopharmaceutical preparation proved to be stable during 24 hours, at an activity rate of 2775 MBq, with the addition of 0.6 mg/mL of gentisic acid and when kept in dry ice. In biodistribution studies on Swiss and Nuce mice, the specificity of radiopharmaceutical for somatostatin positive-receptor tissues, such as the pancreas, stomach, lungs, adrenal glands, kidneys and the cell tumor AR42J was demonstrated. (author)

  5. Non-invasive thermal IR detection of breast tumor development in vivo

    Science.gov (United States)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.

    2015-03-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy comprises the treatment of breast cancer for many patients. We are developing an enhanced thermal IR imaging technique that can be used in real-time to guide tissue excision during a lumpectomy. This novel enhanced thermal imaging method is a combination of IR imaging (8- 10 μm) and selective heating of blood (~0.5 °C) relative to surrounding water-rich tissue using LED sources at low powers. Post-acquisition processing of these images highlights temporal changes in temperature and is sensitive to the presence of vascular structures. In this study, fluorescent and enhanced thermal imaging modalities were used to estimate breast cancer tumor volumes as a function of time in 19 murine subjects over a 30-day study period. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after Day 22. The tumor volumes estimated from enhanced thermal imaging show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging and the enhanced IR images, indicating that enhanced thermal imaging is capable monitoring tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses. This novel IR technique could be used to estimate tumor margins in real-time during surgical procedures.

  6. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases.

    Science.gov (United States)

    Cameron, Robert B; Beeson, Craig C; Schnellmann, Rick G

    2016-12-08

    Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.

  7. Development of Therapeutic Modality of Esophageal Cancer Using Ho-166 Stent

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo; Park, Kwang Kyun; Lee, Min Geol [Yonsei University Medical College, Seoul (Korea, Republic of); Park, Kyung Bae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    The prognosis of esophageal cancer is poor due absence of serosa which prevent local invasion to the surrounding organs such as aorta, mediastinum, trachea, and bronchi. We developed a Ho-166 Coated Radioactive Self-Expandable Metallic Stent which is a new herapeutic device in the treatment of esophageal cancer and underwent an animal experiment in mongrel dogs. We observed mucosal destruction by 4-6 mCi of Ho-166 without serious complications such as perforation of esophageal wall. Therefore, Ho-166 coated self-expandable stent appears to be an effective therapeutic device in the palliative treatment of esophageal cancer. 17 refs., 4 figs. (author)

  8. [Research on Depression in the GDR - Historical Lines of Development and Therapeutic Approaches].

    Science.gov (United States)

    Thormann, J; Himmerich, H; Steinberg, H

    2014-02-01

    Historical research has raised the issue of whether GDR psychiatry was isolated from Western influences to such an extent that an autonomous East German psychiatry developed. Taking a chronological approach and being based on a clearly defined range of topics, the objective of this paper is to identify specific contributions made by GDR psychiatry to academic research as well as the degree of its international orientation by focusing on the treatment and research on depression. We have performed a systematic review of the East German psychiatric journal "Psychiatrie, Neurologie und medizinische Psychologie" and a screening of all psychiatric textbooks that appeared in the GDR. Although East German psychiatry was oriented towards Soviet as well as Western developments, some internationally used therapeutic or conceptual innovations reached East German clinics only with some delay. Yet, East German psychiatrists have also contributed their own, independent nosological and therapeutic concepts to research on depression. Pivotal figures included, among others, R. Lemke (Jena), D. Müller-Hegemann (Leipzig) or K. Leonhard (Berlin). With regard to research on depression one cannot truly speak of an autonomous East German psychiatry. Developments in East and West were largely running in parallel. © Georg Thieme Verlag KG Stuttgart · New York.

  9. DISC1 pathway in brain development: exploring therapeutic targets for major psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Atsushi eKamiya

    2012-03-01

    Full Text Available Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward in our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of Disrupted in schizophrenia 1 (DISC1, a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions.

  10. Development of Quorum-Based Anti-Virulence Therapeutics Targeting Gram-Negative Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Wen Shan Yew

    2013-08-01

    Full Text Available Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.

  11. Advances in Antisense Oligonucleotide Development for Target Identification, Validation, and as Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Moizza Mansoor

    2008-01-01

    Full Text Available Antisense oligonucleotides (As-ODNs are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt, 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.

  12. Report of the 2. research coordination meeting on development of generator technologies for therapeutic radionuclides

    International Nuclear Information System (INIS)

    2006-01-01

    The objectives of this CRP are to evaluate various generator and concentration technologies for 188 W- 188 Re, 99 Mo- 99 mTc and 90 Sr- 90 Y generators, to optimize generator fabrication and use, to standardize quality control techniques for the eluted radionuclides and to provide standardized procedures to participating laboratories. The following issues will be addressed during the CRP. - Development of reproducible methodologies for the preparation of 188 W- 188 Re, 99 Mo- 99 mTc and 90 Sr- 90 Y generators. - Development and evaluation of chromatography adsorbents (Zr/Ti composites) having higher binding capacities and demonstration of their utility in the preparation of column generators for 188 Re and 99 mTc. - Comparison and optimization of technologies for post elution concentration of 188 Re and 99 mTc in order to improve the radioactive concentration. - Development of quality control techniques and specifications for generator eluted therapeutic radionuclides

  13. The adipose organ and multiple myeloma: Impact of adipokines on tumor growth and potential sites for therapeutic intervention.

    Science.gov (United States)

    Allegra, Alessandro; Innao, Vanessa; Gerace, Demetrio; Allegra, Andrea Gaetano; Vaddinelli, Doriana; Bianco, Oriana; Musolino, Caterina

    2018-07-01

    In addition to its capacity to store lipids the adipose tissue is now identified as a real organ with both endocrine and metabolic roles. Preclinical results indicate that modifying adipose tissue and bone marrow adipose tissue (BMAT) could be a successful multiple myeloma (MM) therapy. BMAT interrelates with bone marrow cells and other immune cells, and may influence MM disease progression. The BM adipocytes may have a role in MM progression, bone homing, chemoresistance, and relapse, due to local endocrine, paracrine, or metabolic factors. BM adipocytes isolated from MM subjects have been shown to increase myeloma growth in vitro and may preserve cells from chemotherapy-induced apoptosis. By producing free fatty acids and emitting signaling molecules such as growth factors and adipokines, BM adipocytes are both an energy font and an endocrine signaling factory. This review should suggest future research approaches toward developing novel treatments to target MM by targeting BMAT and its products. Copyright © 2018 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  14. Design, development, and clinical validation of therapeutic toys for autistic children.

    Science.gov (United States)

    Tseng, Kevin C; Tseng, Sung-Hui; Cheng, Hsin-Yi Kathy

    2016-07-01

    [Purpose] One of the characteristics of autistic children is social interaction difficulties. Although therapeutic toys can promote social interaction, however its related research remains insufficient. The aim of the present study was to build a set of cooperative play toys that are suitable for autistic children. [Subjects and Methods] This study used an innovative product design and development approach as the basis for the creation of cooperative play toys. [Results] The present study has successfully developed cooperative play toys. Compared to the traditional game therapy for autism, cooperative play toy therapy can significantly improve the interactions between autistic children and their peers. [Conclusion] The most critical design theme of cooperative play toys focuses on captivating the interest of autistic children. Based on the needs of the individual cases, the design of the therapeutic toy set was specifically tailored, i.e., by reinforcing the sound and light effects to improve the attractiveness of the toys. In the future, different play modes can be combined with this toy set to further enhance the degree of interaction of autistic children and improve their quality of life and social skills.

  15. Mammary Gland Tumor Development in Transgenic Mice Overexpressing Different Isoforms of the CDP/Cux Transcription Factor

    National Research Council Canada - National Science Library

    Cadieux, Chantal

    2008-01-01

    Short CUX1 isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas, suggesting that these proteins play a key role in tumor development and progression...

  16. Mammary Gland Tumor Development in Transgenic Mice Overexpressing Different Isoforms of the CDP/Cux Transcription Factor

    National Research Council Canada - National Science Library

    Cadieux, Chantal

    2007-01-01

    Short CDP/Cux isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas, suggesting that these proteins play a key role in tumor development and progression...

  17. In ovo method for evaluating the effect of nutritional therapies on tumor development, growth and vascularization

    OpenAIRE

    Dupertuis, Yves M.; Delie, Florence; Cohen, Marie; Pichard, Claude

    2015-01-01

    In the state of the art evaluation of nutritional therapy on tumor development, growth and vascularization requires tedious and expensive in vivo assays in which a significant number of animals undergo invasive treatments. Therefore, new alternative methods to avoid animal suffering and sacrifice are welcome. This review presents a rapid and low-cost method of experimental radio/chemotherapy in tumor xenografted chicken chorioallantoic membrane (CAM), which may contribute to implement the 3R ...

  18. Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice.

    Directory of Open Access Journals (Sweden)

    Iina Tuominen

    Full Text Available Obesity is an important risk factor for colon cancer in humans, and numerous studies have shown that a high fat diet enhances colon cancer development. As both increased adiposity and high fat diet can promote tumorigenesis, we examined the effect of diet-induced obesity, without ongoing high fat diet, on colon tumor development. C57BL/6J male mice were fed regular chow or high fat diet for 8 weeks. Diets were either maintained or switched resulting in four experimental groups: regular chow (R, high fat diet (H, regular chow switched to high fat diet (RH, and high fat diet switched to regular chow (HR. Mice were then administered azoxymethane to induce colon tumors. Tumor incidence and multiplicity were dramatically smaller in the R group relative to all groups that received high fat diet at any point. The effect of obesity on colon tumors could not be explained by differences in aberrant crypt foci number. Moreover, diet did not alter colonic expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, interleukin-1β, and interferon-γ, which were measured immediately after azoxymethane treatment. Crypt apoptosis and proliferation, which were measured at the same time, were increased in the HR relative to all other groups. Our results suggest that factors associated with obesity - independently of ongoing high fat diet and obesity - promote tumor development because HR group animals had significantly more tumors than R group, and these mice were fed the same regular chow throughout the entire carcinogenic period. Moreover, there was no difference in the number of aberrant crypt foci between these groups, and thus the effect of obesity appears to be on subsequent stages of tumor development when early preneoplastic lesions transition into adenomas.

  19. Development of tumor-targeted near infrared probes for fluorescence guided surgery.

    Science.gov (United States)

    Kelderhouse, Lindsay E; Chelvam, Venkatesh; Wayua, Charity; Mahalingam, Sakkarapalayam; Poh, Scott; Kularatne, Sumith A; Low, Philip S

    2013-06-19

    Complete surgical resection of malignant disease is the only reliable method to cure cancer. Unfortunately, quantitative tumor resection is often limited by a surgeon's ability to locate all malignant disease and distinguish it from healthy tissue. Fluorescence-guided surgery has emerged as a tool to aid surgeons in the identification and removal of malignant lesions. While nontargeted fluorescent dyes have been shown to passively accumulate in some tumors, the resulting tumor-to-background ratios are often poor, and the boundaries between malignant and healthy tissues can be difficult to define. To circumvent these problems, our laboratory has developed high affinity tumor targeting ligands that bind to receptors that are overexpressed on cancer cells and deliver attached molecules selectively into these cells. In this study, we explore the use of two tumor-specific targeting ligands (i.e., folic acid that targets the folate receptor (FR) and DUPA that targets prostate specific membrane antigen (PSMA)) to deliver near-infrared (NIR) fluorescent dyes specifically to FR and PSMA expressing cancers, thereby rendering only the malignant cells highly fluorescent. We report here that all FR- and PSMA-targeted NIR probes examined bind cultured cancer cells in the low nanomolar range. Moreover, upon intravenous injection into tumor-bearing mice with metastatic disease, these same ligand-NIR dye conjugates render receptor-expressing tumor tissues fluorescent, enabling their facile resection with minimal contamination from healthy tissues.

  20. Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2015-11-01

    Full Text Available Hypoxia-inducible factor (HIF prolyl hydroxylases (PHDs are members of the 2-oxoglutarate dependent non-heme iron dioxygenases. Due to their physiological roles in regulation of HIF-1α stability, many efforts have been focused on searching for selective PHD inhibitors to control HIF-1α levels for therapeutic applications. In this review, we first describe the structure of PHD2 as a molecular basis for structure-based drug design (SBDD and various experimental methods developed for measuring PHD activity. We further discuss the current status of the development of PHD inhibitors enabled by combining SBDD approaches with high-throughput screening. Finally, we highlight the clinical implications of small molecule PHD inhibitors.

  1. Development of gastroenterology and hepatology in Iran: Part II- advances in research and therapeutic modalities.

    Science.gov (United States)

    Saberifiroozi, Mehdi; Mir-Madjlessi, Seid-Hossein

    2009-09-01

    Following the establishment of Gastroenterology and Hepatology Fellowship Programs in 1987, significant developments in research and health care delivery have been achieved. The number of published articles has increased significantly and now more than 10 approved research centers are involved in several longitudinal and population based studies in GI epidemiology, viral hepatitis and GI oncology around the country. Before 1987 less than 50 gastroenterologists were working in the country, but now more than 300 gastroenterologists are involved in public and private health care delivery systems. Advanced diagnostic and therapeutic endoscopic procedures and complex surgical procedures such as liver transplantation are a routine now. These achievements are indicative of hard work and determination of dedicated physicians after the Islamic Revolution, and the support of governmental and non-governmental sectors. The future prospect of development in the discipline of gastroenterology and hepatology in Iran seems to be very encouraging.

  2. Alternative Splicing in Breast Cancer and the Potential Development of Therapeutic Tools.

    Science.gov (United States)

    Martínez-Montiel, Nancy; Anaya-Ruiz, Maricruz; Pérez-Santos, Martín; Martínez-Contreras, Rebeca D

    2017-10-05

    Alternative splicing is a key molecular mechanism now considered as a hallmark of cancer that has been associated with the expression of distinct isoforms during the onset and progression of the disease. The leading cause of cancer-related deaths in women worldwide is breast cancer, and even when the role of alternative splicing in this type of cancer has been established, the function of this mechanism in breast cancer biology is not completely decoded. In order to gain a comprehensive view of the role of alternative splicing in breast cancer biology and development, we summarize here recent findings regarding alternative splicing events that have been well documented for breast cancer evolution, considering its prognostic and therapeutic value. Moreover, we analyze how the response to endocrine and chemical therapies could be affected due to alternative splicing and differential expression of variant isoforms. With all this knowledge, it becomes clear that targeting alternative splicing represents an innovative approach for breast cancer therapeutics and the information derived from current studies could guide clinical decisions with a direct impact in the clinical advances for breast cancer patients nowadays.

  3. Lessons for tumor biomarker trials: vicious cycles, scientific method & developing guidelines.

    Science.gov (United States)

    Hayes, Daniel; Raison, Claire

    2015-02-01

    Interview with Daniel Hayes, by Claire Raison (Commissioning Editor) Daniel F Hayes, M.D. is the Stuart A Padnos Professor of Breast Cancer Research and co-Director of the Breast Oncology Program at the University of Michigan Comprehensive Cancer Center (Ann Arbor, MI, USA). Dr Hayes has extensive experience in clinical and translational breast cancer biomarker research, and in drug development and clinical trials. Around 30 years ago, he led the discovery of the circulating breast tumor biomarker, CA15-3, which started his career into further tumor biomarker work. The main thrust of his work since then has been in clinical trials, tumor biomarkers and trying to integrate the two. Dr Hayes is Chair of the Correlative Sciences Committee of the North American Breast Cancer Group (now called the Breast Cancer Steering Committee), and co-chairs the Expert Panel for Tumor Biomarker Practice Guidelines for the American Society of Clinical Oncology.

  4. PTEN C-Terminal Deletion Causes Genomic Instability and Tumor Development

    Directory of Open Access Journals (Sweden)

    Zhuo Sun

    2014-03-01

    Full Text Available Tumor suppressor PTEN controls genomic stability and inhibits tumorigenesis. The N-terminal phosphatase domain of PTEN antagonizes the PI3K/AKT pathway, but its C-terminal function is less defined. Here, we describe a knockin mouse model of a nonsense mutation that results in the deletion of the entire Pten C-terminal region, referred to as PtenΔC. Mice heterozygous for PtenΔC develop multiple spontaneous tumors, including cancers and B cell lymphoma. Heterozygous deletion of the Pten C-terminal domain also causes genomic instability and common fragile site rearrangement. We found that Pten C-terminal disruption induces p53 and its downstream targets. Simultaneous depletion of p53 promotes metastasis without influencing the initiation of tumors, suggesting that p53 mainly suppresses tumor progression. Our data highlight the essential role of the PTEN C terminus in the maintenance of genomic stability and suppression of tumorigenesis.

  5. Combined effect of carcinogenic n-nitrosodimethylamine precursors and fractioned γ-irradiation on tumor development in rats

    International Nuclear Information System (INIS)

    Galenko, P.M.; Nedopitanskaya, N.N.

    1996-01-01

    The influence of combined action of N-nitrosodimethylamine (NDMA) and fractioned γ-irradiation on tumor development in rats was investigated. Both the tumor frequency and tumor plurality coefficient have been studied for two types of treatment: precursors of NDMA (amidopyrine and/or sodium nitrite (SN)) alone and the combination 'precursors plus radiation'. Tumor frequency decreased by about 11% after combination of γ-irradiation and precursors in comparison with precursors alone. Nevertheless, treatment with SN and γ-irradiation did not change tumor frequency in comparison with SN alone. Irradiation of rats treated with precursors led to an increased tumor plurality coefficient

  6. Quercetin as an Emerging Anti-Melanoma Agent: A four-focus area therapeutic development strategy

    Directory of Open Access Journals (Sweden)

    Zoey Harris

    2016-10-01

    Full Text Available Replacing current refractory treatments for melanoma with new prevention and therapeutic approaches is crucial in order to successfully treat this aggressive cancer form. Melanoma develops from neural crest cells, which express tyrosinase -- a key enzyme in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells and metabolizes polyphenolic compounds; tyrosinase expression thus makes a feasible a target for polyphenol-based therapies. For example, quercetin (3,3′,4′,5,7-pentahydroxyflavone is a highly ubiquitous and well-classified dietary polyphenol found in various fruits, vegetables and other plant products including onions, broccoli, kale, oranges, blueberries, apples, and tea. Quercetin has demonstrated anti-proliferative and pro-apoptotic activity in various cancer cell types. Quercetin is readily metabolized by tyrosinase into various compounds that promote anti-cancer activity; additionally, given that tyrosinase expression increases during tumorigenesis, and its activity is associated with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests that quercetin can be used to target melanoma. In this review we explore the potential of Quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from previous in vitro studies in various human malignant cell lines and propose a four-focus area strategy to develop quercetin as a targeted anti-melanoma compound for use as either a preventative or therapeutic agent. The four areas of focus include utilizing quercetin to i modulate cellular bioreduction potential and associated signaling cascades, ii affect transcription of relevant genes, iii regulate epigenetic processes, and iv develop effective combination therapies and delivery modalities/protocols. In general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, melanoma with minimal additional side effects.

  7. First-In-Class Small Molecule ONC201 Induces DR5 and Cell Death in Tumor but Not Normal Cells to Provide a Wide Therapeutic Index as an Anti-Cancer Agent.

    Science.gov (United States)

    Allen, Joshua E; Crowder, Roslyn N; Crowder, Roslyn; El-Deiry, Wafik S

    2015-01-01

    We previously identified ONC201 (TIC10) as a first-in-class orally active small molecule with robust antitumor activity that is currently in clinical trials in advanced cancers. Here, we further investigate the safety characteristics of ONC201 in preclinical models that reveal an excellent safety profile at doses that exceed efficacious doses by 10-fold. In vitro studies indicated a strikingly different dose-response relationship when comparing tumor and normal cells where maximal effects are much stronger in tumor cells than in normal cells. In further support of a wide therapeutic index, investigation of tumor and normal cell responses under identical conditions demonstrated large apoptotic effects in tumor cells and modest anti-proliferative effects in normal cells that were non-apoptotic and reversible. Probing the underlying mechanism of apoptosis indicated that ONC201 does not induce DR5 in normal cells under conditions that induce DR5 in tumor cells; DR5 is a pro-apoptotic TRAIL receptor previously linked to the anti-tumor mechanism of ONC201. GLP toxicology studies in Sprague-Dawley rats and beagle dogs at therapeutic and exaggerated doses revealed no dose-limiting toxicities. Observations in both species at the highest doses were mild and reversible at doses above 10-fold the expected therapeutic dose. The no observed adverse event level (NOAEL) was ≥42 mg/kg in dogs and ≥125 mg/kg in rats, which both correspond to a human dose of approximately 1.25 g assuming standard allometric scaling. These results provided the rationale for the 125 mg starting dose in dose escalation clinical trials that began in 2015 in patients with advanced cancer.

  8. First-In-Class Small Molecule ONC201 Induces DR5 and Cell Death in Tumor but Not Normal Cells to Provide a Wide Therapeutic Index as an Anti-Cancer Agent.

    Directory of Open Access Journals (Sweden)

    Joshua E Allen

    Full Text Available We previously identified ONC201 (TIC10 as a first-in-class orally active small molecule with robust antitumor activity that is currently in clinical trials in advanced cancers. Here, we further investigate the safety characteristics of ONC201 in preclinical models that reveal an excellent safety profile at doses that exceed efficacious doses by 10-fold. In vitro studies indicated a strikingly different dose-response relationship when comparing tumor and normal cells where maximal effects are much stronger in tumor cells than in normal cells. In further support of a wide therapeutic index, investigation of tumor and normal cell responses under identical conditions demonstrated large apoptotic effects in tumor cells and modest anti-proliferative effects in normal cells that were non-apoptotic and reversible. Probing the underlying mechanism of apoptosis indicated that ONC201 does not induce DR5 in normal cells under conditions that induce DR5 in tumor cells; DR5 is a pro-apoptotic TRAIL receptor previously linked to the anti-tumor mechanism of ONC201. GLP toxicology studies in Sprague-Dawley rats and beagle dogs at therapeutic and exaggerated doses revealed no dose-limiting toxicities. Observations in both species at the highest doses were mild and reversible at doses above 10-fold the expected therapeutic dose. The no observed adverse event level (NOAEL was ≥42 mg/kg in dogs and ≥125 mg/kg in rats, which both correspond to a human dose of approximately 1.25 g assuming standard allometric scaling. These results provided the rationale for the 125 mg starting dose in dose escalation clinical trials that began in 2015 in patients with advanced cancer.

  9. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, University of Sydney, NSW 2006 (Australia); Booth, Jeremy T. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2014-06-15

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first

  10. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, A.; Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Pozzi, E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Research and Production Reactors, Ezeiza Atomic Center, CNEA, Buenos Aires (Argentina); Nigg, D.W. [Idaho National Laboratory, Idaho Falls, Idaho (United States); Calzetta, O.; Blaumann, H.; Longhino, J. [Department of Nuclear Engineering, Bariloche Atomic Center, CNEA, Rio Negro (Argentina); Nievas, S.I. [Department of Chemistry, CNEA, Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Trivillin, V.A. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina)], E-mail: schwint@cnea.gov.ar

    2009-07-15

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na{sub 2}{sup 10}B{sub 10}H{sub 10}) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  11. Rational design of highly potent HIV-1 fusion inhibitory proteins: Implication for developing antiviral therapeutics

    International Nuclear Information System (INIS)

    Ni Ling; Gao, George F.; Tien Po

    2005-01-01

    Recombinant protein containing one heptad-repeat 1 (HR1) segment and one HR2 segment of the HIV-1 gp41 (HR1-HR2) has been shown to fold into thermally stable six-helix bundle, representing the fusogenic core of gp41. In this study, we have used the fusogenic core as a scaffold to design HIV-1 fusion inhibitory proteins by linking another HR1 to the C terminus of HR1-HR2 (HR121) or additional HR2 to the N terminus of HR1-HR2 (HR212). Both recombinant proteins could be abundantly and solubly expressed and easily purified, exhibiting high stability and potent inhibitory activity on HIV-1 fusion with IC 50 values of 16.2 ± 2.8 and 2.8 ± 0.63 nM, respectively. These suggest that these rationally designed proteins can be further developed as novel anti-HIV-1 therapeutics

  12. Design and Development of a Bilateral Therapeutic Hand Device for Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Akhlaquor Rahman

    2013-12-01

    Full Text Available The major cause of disability is stroke. It is the second highest cause of death after coronary heart disease in Australia. In this paper, a post stroke therapeutic device has been designed and developed for hand motor function rehabilitation that a stroke survivor can use for bilateral movement practice. A prototype of the device was fabricated that can fully flex and extend metacarpophalangeal (MCP, proximal interphalangeal (PIP and distal interphalangeal (DIP joints of the fingers, and interphalangeal (IP, metacarpophalangeal (MCP and trapeziometacarpal (IM joints of the thumb of the left hand (impaired hand, based on movements of the right hand's (healthy hand fingers. Out of 21 degrees of freedom (DOFs of hand fingers, the prototype of the hand exoskeleton allowed fifteen degrees of freedom (DOFs, with three degrees of freedom (DOFs for each finger and three degrees of freedom (DOFs for the thumb. In addition, testing of the device on a healthy subject was conducted to validate the design requirements.

  13. The impact of surgical resection of the primary tumor on the development of synchronous colorectal liver metastasis: a systematic review.

    Science.gov (United States)

    Pinson, H; Cosyns, S; Ceelen, Wim P

    2018-05-22

    In recent years different therapeutic strategies for synchronously liver metastasized colorectal cancer were described. Apart from the classical staged surgical approach, simultaneous and liver-first strategies are now commonly used. One theoretical drawback of the classical approach is, however, the stimulatory effect on liver metastases growth that may result from resection of the primary tumour. This systematic review, therefore, aims to investigate the current insights on the stimulatory effects of colorectal surgery on the growth of synchronous colorectal liver metastases in humans. The systematic review was conducted according to the PRISMA statement. A literature search was performed using PubMed and Embase. Articles investigating the effects of colorectal surgery on synchronous colorectal liver metastases were included. Primary endpoints were metastatic tumor volume, metabolic and proliferative activity and tumour vascularization. Four articles meeting the selection criteria were found involving 200 patients. These studies investigate the effects of resection of the primary tumour on synchronous liver metastases using histological and radiological techniques. These papers support a possible stimulatory effect of resection of the primary tumor. Some limited evidence supports the hypothesis that colorectal surgery might stimulate the growth and development of synchronous colorectal liver metastases.

  14. Pre-clinical therapeutic development of a series of metalloporphyrins for Parkinson's disease

    International Nuclear Information System (INIS)

    Liang, Li-Ping; Huang, Jie; Fulton, Ruth; Pearson-Smith, Jennifer N.; Day, Brian J.; Patel, Manisha

    2017-01-01

    Reactive oxygen species are a well-defined therapeutic target for Parkinson's disease (PD) and pharmacological agents that catalytically scavenge reactive species are promising neuroprotective strategies for treatment. Metalloporphyrins are synthetic catalytic antioxidants that mimic the body's own antioxidant enzymes i.e. superoxide dismutases and catalase. The goal of this study was to determine if newly designed metalloporphyrins have enhanced pharmacodynamics including oral bioavailability, longer plasma elimination half-lives, penetrate the blood brain barrier, and show promise for PD treatment. Three metalloporphyrins (AEOL 11216, AEOL 11203 and AEOL 11114) were identified in this study as potential candidates for further pre-clinical development. Each of these compounds demonstrated blood brain barrier permeability by the i.p. route and two of three compounds (AEOL 11203 and AEOL 11114) were orally bioavailable. All of these compounds protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, including dopamine depletion in the striatum, dopaminergic neuronal loss in the substantial nigra, and increased oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain of the mice without inhibiting MPTP metabolism. Daily therapeutic dosing of these metalloporphyrins were well tolerated without accumulation of brain manganese levels or behavioral alterations assessed by open field and rotarod tests. The study identified two orally active metalloporphyrins and one injectable metalloporphyrin as clinical candidates for further development in PD. - Highlights: • A series of metalloporphyrins were optimized in a mouse model of parkinsonism. • Two novel orally active, brain permeable antioxidant metalloporphyrins were identified. • The identified metalloporphyrins were well tolerated.

  15. Pre-clinical therapeutic development of a series of metalloporphyrins for Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Li-Ping [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Huang, Jie [Department of Medicine, National Jewish Health, Denver, CO (United States); Fulton, Ruth; Pearson-Smith, Jennifer N. [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Day, Brian J. [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Department of Medicine, National Jewish Health, Denver, CO (United States); Patel, Manisha, E-mail: manisha.patel@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States)

    2017-07-01

    Reactive oxygen species are a well-defined therapeutic target for Parkinson's disease (PD) and pharmacological agents that catalytically scavenge reactive species are promising neuroprotective strategies for treatment. Metalloporphyrins are synthetic catalytic antioxidants that mimic the body's own antioxidant enzymes i.e. superoxide dismutases and catalase. The goal of this study was to determine if newly designed metalloporphyrins have enhanced pharmacodynamics including oral bioavailability, longer plasma elimination half-lives, penetrate the blood brain barrier, and show promise for PD treatment. Three metalloporphyrins (AEOL 11216, AEOL 11203 and AEOL 11114) were identified in this study as potential candidates for further pre-clinical development. Each of these compounds demonstrated blood brain barrier permeability by the i.p. route and two of three compounds (AEOL 11203 and AEOL 11114) were orally bioavailable. All of these compounds protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, including dopamine depletion in the striatum, dopaminergic neuronal loss in the substantial nigra, and increased oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain of the mice without inhibiting MPTP metabolism. Daily therapeutic dosing of these metalloporphyrins were well tolerated without accumulation of brain manganese levels or behavioral alterations assessed by open field and rotarod tests. The study identified two orally active metalloporphyrins and one injectable metalloporphyrin as clinical candidates for further development in PD. - Highlights: • A series of metalloporphyrins were optimized in a mouse model of parkinsonism. • Two novel orally active, brain permeable antioxidant metalloporphyrins were identified. • The identified metalloporphyrins were well tolerated.

  16. PSA-selective activation of cytotoxic human serine proteases within the tumor microenvironment as a therapeutic strategy to target prostate cancer.

    Science.gov (United States)

    Rogers, Oliver C; Anthony, Lizamma; Rosen, D Marc; Brennen, W Nathaniel; Denmeade, Samuel R

    2018-04-27

    Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers.

  17. Microwave ablation of renal tumors: state of the art and development trends.

    Science.gov (United States)

    Floridi, Chiara; De Bernardi, Irene; Fontana, Federico; Muollo, Alessandra; Ierardi, Anna Maria; Agostini, Andrea; Fonio, Paolo; Squillaci, Ettore; Brunese, Luca; Fugazzola, Carlo; Carrafiello, Gianpaolo

    2014-07-01

    In the last decades an increased incidence of new renal tumor cases has been for clinically localized, small tumors elderly patients, with medical comorbidities whom the risk of surgical complications may pose a greater risk of death than that due to the tumor itself. In these patients, unsuitable for surgical approach, thermal ablation represents a valid alternative to traditional surgery. Thermal ablation is a less invasive, less morbid treatment option thanks to reduced blood loss, lower incidence of complications during the procedure and a less long convalescence. At present, the most widely used thermal ablative techniques are cryoablation, radiofrequency ablation and microwave ablation (MWA). MWA offers many benefits of other ablation techniques and offers several other advantages: higher intratumoral temperatures, larger tumor ablation volumes, faster ablation times, the ability to use multiple applicators simultaneously, optimal heating of cystic masses and tumors close to the vessels and less procedural pain. This review aims to provide the reader with an overview about the state of the art of microwave ablation for renal tumors and to cast a glance on the new development trends of this technique.

  18. Tumor imaging using Tc(V)-99m dimercaptosuccinic acid, a newly developed radiopharmaceutical

    International Nuclear Information System (INIS)

    Ohta, Hitoya; Endo, Keigo; Koizumi, Mitsuru

    1985-01-01

    Being aware of the ideal nuclear properties of Tc-99m, we have developed a new tumor seeking agent, Tc-99m (V) dimercaptosuccinic acid (Tc(V)-DMS). In order to evaluate its clinical usefulness of Tc(V)-DMS, 400 untreated patients with histologically proven diagnoses were studied, and, in some selected cases, the results were compared with those of Ga-67 citrate. The Tc(V)-DMS scintigraphy was found especially useful in patients with head and neck tumors, medullary thyroid carcinomas, soft tissue tumors and bone tumors. But in patients with lung tumors, liver tumors, malignant melanoma or malignant lymphomas, it revealed no obvious advantage over Ga-67 scintigraphy, the results seemed to the different uptake mechanism of Tc(V)-DMS from that of Ga-67 citrate. Nevertheless the superiority of physical properties of Tc-99m, pharmacological advantage that may enable satisfactory imaging, and lower supply cost, Tc(V)-DMS would certainly offer good clinical applicability in some regions. (author)

  19. Development of the small-molecule antiviral ST-246® as a smallpox therapeutic

    Science.gov (United States)

    Grosenbach, Douglas W; Jordan, Robert; Hruby, Dennis E

    2011-01-01

    Naturally occurring smallpox has been eradicated, yet it remains as one of the highest priority pathogens due to its potential as a biological weapon. The majority of the US population would be vulnerable in a smallpox outbreak. SIGA Technologies, Inc. has responded to the call of the US government to develop and supply to the Strategic National Stockpile a smallpox antiviral to be deployed in the event of a smallpox outbreak. ST-246® (tecovirimat) was initially identified via a high-throughput screen in 2002, and in the ensuing years, our drug-development activities have spanned in vitro analysis, preclinical safety, pharmacokinetics and efficacy testing (all according to the ‘animal rule’). Additionally, SIGA has conducted Phase I and II clinical trials to evaluate the safety, tolerability and pharmacokinetics of ST-246, bringing us to our current late stage of clinical development. This article reviews the need for a smallpox therapeutic and our experience in developing ST-246, and provides perspective on the role of a smallpox antiviral during a smallpox public health emergency. PMID:21837250

  20. Effects of certain therapeutic factors on facial development in isolated cleft palate.

    Science.gov (United States)

    Smahel, Z

    1989-01-01

    Roentgencephalometry was used during the investigation of the effects of some therapeutic factors on the growth and development of the jaws in 64 adult males with an isolated cleft palate repaired by pushback. The anterior growth of the maxilla was not related to the age at the time of surgery or to orthodontic therapy with removable appliances. A small number of individuals operated during adolescence had also a shorter depth of the maxilla similarly as patients operated upon during early childhood. Anterior crossbite developed mostly in patients with reduced proclination of the upper alveolar process, while, on the contrary, a retrusion of the maxilla played no essential part. This observation proves useful for the prediction of the development of this malocclusion. The angle of sagittal jaw relations does not represent necessarily a valid criterion of the development of the jaws. In the presence of an overbite retrusion of the maxilla is associated with a retroposition of the mandible and thus the angle of sagittal jaw relations remains unchanged. Thus overbite represents an effective mechanism acting on the position of the mandible. A differentiated approach for the determination of the age of choice at the time of palate surgery according to the type and extent of the cleft is proposed.

  1. Acute development of collateral circulation and therapeutic prospects in ischemic stroke

    Directory of Open Access Journals (Sweden)

    Eri Iwasawa

    2016-01-01

    Full Text Available In acute ischemic stroke, collateral circulation plays an important role in maintaining blood flow to the tissue that is at risk of progressing into ischemia, and in increasing the successful recanalization rate without hemorrhagic transformation. We have reported that well-developed collateral circulation is associated with smaller infarct volume and better long-term neurological outcome, and it disappears promptly once the effective recanalization is achieved. Contrary to the belief that collateral vessels develop over time in chronic stenotic condition, there exists a phenomenon that collateral circulation develops immediately in acute stenosis or occlusion of the arteries and it seems to be triggered by fluid shear stress, which occurs between the territories of stenotic/occluded arteries and those fed by surrounding intact arteries. We believe that this acute development of collateral circulation is a target of novel therapeutics in ischemic stroke and refer our recent attempt in enhancing collateral circulation by modulating sphingosine-1-phosphate receptor 1, which is a known shear-stress mechanosensing protein.

  2. Acute development of collateral circulation and therapeutic prospects in ischemic stroke.

    Science.gov (United States)

    Iwasawa, Eri; Ichijo, Masahiko; Ishibashi, Satoru; Yokota, Takanori

    2016-03-01

    In acute ischemic stroke, collateral circulation plays an important role in maintaining blood flow to the tissue that is at risk of progressing into ischemia, and in increasing the successful recanalization rate without hemorrhagic transformation. We have reported that well-developed collateral circulation is associated with smaller infarct volume and better long-term neurological outcome, and it disappears promptly once the effective recanalization is achieved. Contrary to the belief that collateral vessels develop over time in chronic stenotic condition, there exists a phenomenon that collateral circulation develops immediately in acute stenosis or occlusion of the arteries and it seems to be triggered by fluid shear stress, which occurs between the territories of stenotic/occluded arteries and those fed by surrounding intact arteries. We believe that this acute development of collateral circulation is a target of novel therapeutics in ischemic stroke and refer our recent attempt in enhancing collateral circulation by modulating sphingosine-1-phosphate receptor 1, which is a known shear-stress mechanosensing protein.

  3. Acute development of collateral circulation and therapeutic prospects in ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Eri Iwasawa; Masahiko Ichijo; Satoru Ishibashi; Takanori Yokota

    2016-01-01

    In acute ischemic stroke, collateral circulation plays an important role in maintaining blood lfow to the tissue that is at risk of progressing into ischemia, and in increasing the successful recanalization rate with-out hemorrhagic transformation. We have reported that well-developed collateral circulation is associated with smaller infarct volume and better long-term neurological outcome, and it disappears promptly once the effective recanalization is achieved. Contrary to the belief that collateral vessels develop over time in chronic stenotic condition, there exists a phenomenon that collateral circulation develops immediately in acute stenosis or occlusion of the arteries and it seems to be triggered by lfuid shear stress, which occurs be-tween the territories of stenotic/occluded arteries and those fed by surrounding intact arteries. We believe that this acute development of collateral circulation is a target of novel therapeutics in ischemic stroke and refer our recent attempt in enhancing collateral circulation by modulating sphingosine-1-phosphate recep-tor 1, which is a known shear-stress mechanosensing protein.

  4. Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development.

    Science.gov (United States)

    Shi, Qiaoni; Chen, Ye-Guang

    2017-10-01

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation, differentiation, migration and death, and plays a critical role in embryogenesis and tissue homeostasis. Its deregulation results in various diseases including tumor formation. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), also play key roles in the development and progression of many types of tumors. It has been realized that TGF-β signaling and RTK pathways interact with each other and their interplay is important for cancer development. They are mutually regulated and cooperatively modulate cell survival and migration, epithelial-mesenchymal transition, and tumor microenvironment to accelerate tumorigenesis and tumor metastasis. RTKs can modulate Smad-dependent transcription or cooperate with TGF-β to potentiate its oncogenic activity, while TGF-β signaling can in turn control RTK signaling by regulating their activities or expression. This review summarizes current understandings of the interplay between TGF-β signaling and RTKs and its influence on tumor development.

  5. Targeting carbonic anhydrase IX by nitroimidazole based sulfamides enhances the therapeutic effect of tumor irradiation: A new concept of dual targeting drugs

    International Nuclear Information System (INIS)

    Dubois, Ludwig; Peeters, Sarah G.J.A.; Kuijk, Simon J.A. van; Yaromina, Ala; Lieuwes, Natasja G.; Saraya, Ruchi; Biemans, Rianne; Rami, Marouan; Parvathaneni, Nanda Kumar; Vullo, Daniela; Vooijs, Marc; Supuran, Claudiu T.; Winum, Jean-Yves

    2013-01-01

    Background and purpose: Carbonic anhydrase IX (CAIX) plays an important role in pH regulation processes critical for tumor cell growth and metastasis. We hypothesize that a dual targeting bioreductive nitroimidazole based anti-CAIX sulfamide drug (DH348) will reduce tumor growth and sensitize tumors to irradiation in a CAIX dependent manner. Material and methods: The effect of the dual targeting anti-CAIX (DH348) and its single targeting control drugs on extracellular acidification and radiosensitivity was examined in HT-29 colorectal carcinoma cells. Tumor growth and time to reach 4× start volume (T4×SV) was monitored for animals receiving DH348 (10 mg/kg) combined with tumor single dose irradiation (10 Gy). Results: In vitro, DH348 reduced hypoxia-induced extracellular acidosis, but did not change hypoxic radiosensitivity. In vivo, DH348 monotherapy decreased tumor growth rate and sensitized tumors to radiation (enhancement ratio 1.50) without systemic toxicity only for CAIX expressing tumors. Conclusions: A newly designed nitroimidazole and sulfamide dual targeting drug reduces hypoxic extracellular acidification, slows down tumor growth at nontoxic doses and sensitizes tumors to irradiation all in a CAIX dependent manner, suggesting no “off-target” effects. Our data therefore indicate the potential utility of a dual drug approach as a new strategy for tumor-specific targeting

  6. Immune evasion in cancer: Mechanistic basis and therapeutic strategies.

    Science.gov (United States)

    Vinay, Dass S; Ryan, Elizabeth P; Pawelec, Graham; Talib, Wamidh H; Stagg, John; Elkord, Eyad; Lichtor, Terry; Decker, William K; Whelan, Richard L; Kumara, H M C Shantha; Signori, Emanuela; Honoki, Kanya; Georgakilas, Alexandros G; Amin, Amr; Helferich, William G; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Keith, W Nicol; Bilsland, Alan; Bhakta, Dipita; Halicka, Dorota; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan; Choi, Beom K; Kwon, Byoung S

    2015-12-01

    Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier.

    Science.gov (United States)

    Yoshikawa, Tomoaki; Okada, Naoki; Oda, Atsushi; Matsuo, Kazuhiko; Matsuo, Keisuke; Mukai, Yohei; Yoshioka, Yasuo; Akagi, Takami; Akashi, Mitsuru; Nakagawa, Shinsaku

    2008-02-08

    Nanoscopic therapeutic systems that incorporate biomacromolecules, such as protein and peptides, are emerging as the next generation of nanomedicine aimed at improving the therapeutic efficacy of biomacromolecular drugs. In this study, we report that poly(gamma-glutamic acid)-based nanoparticles (gamma-PGA NPs) are excellent protein delivery carriers for tumor vaccines that delivered antigenic proteins to antigen-presenting cells and elicited potent immune responses. Importantly, gamma-PGA NPs efficiently delivered entrapped antigenic proteins through cytosolic translocation from the endosomes, which is a key process of gamma-PGA NP-mediated anti-tumor immune responses. Our findings suggest that the gamma-PGA NP system is suitable for the intracellular delivery of protein-based drugs as well as tumor vaccines.

  8. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications

    International Nuclear Information System (INIS)

    Parashar, Surabhi; Cheishvili, David; Arakelian, Ani; Hussain, Zahid; Tanvir, Imrana; Khan, Haseeb Ahmed; Szyf, Moshe; Rabbani, Shafaat A

    2015-01-01

    Osteosarcoma (OS) is an aggressive and highly metastatic form of primary bone cancer affecting young children and adults. Previous studies have shown that hypomethylation of critical genes is driving metastasis. Here, we examine whether hypermethylation treatment can block OS growth and pulmonary metastasis. Human OS cells LM-7 and MG-63 were treated with the ubiquitous methyl donor S-adenosylmethionine (SAM) or its inactive analog S-adenosylhomocystine (SAH) as control. Treatment with SAM resulted in a dose-dependent inhibition of tumor cell proliferation, invasion, cell migration, and cell cycle characteristics. Inoculation of cells treated with 150 μmol/L SAM for 6 days into tibia or via intravenous route into Fox Chase severe combined immune deficient (SCID) mice resulted in the development of significantly smaller skeletal lesions and a marked reduction in pulmonary metastasis as compared to control groups. Epigenome wide association studies (EWAS) showed differential methylation of several genes involved in OS progression and prominent signaling pathways implicated in bone formation, wound healing, and tumor progression in SAM-treated LM-7 cells. Real-time polymerase chain reaction (qPCR) analysis confirmed that SAM treatment blocked the expression of several prometastatic genes and additional genes identified by EWAS analysis. Immunohistochemical analysis of normal human bone and tissue array from OS patients showed significantly high levels of expression of one of the identified gene platelet-derived growth factor alpha (PDGFA). These studies provide a possible mechanism for the role of DNA demethylation in the development and metastasis of OS to provide a rationale for the use of hypermethylation therapy for OS patients and identify new targets for monitoring OS development and progression

  9. Therapeutic Silencing of Bcl-2 by Systemically Administered siRNA Nanotherapeutics Inhibits Tumor Growth by Autophagy and Apoptosis and Enhances the Efficacy of Chemotherapy in Orthotopic Xenograft Models of ER (− and ER (+ Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ibrahim Tekedereli

    2013-01-01

    Full Text Available Bcl-2 is overexpressed in about a half of human cancers and 50–70% of breast cancer patients, thereby conferring resistance to conventional therapies and making it an excellent therapeutic target. Small interfering RNA (siRNA offers novel and powerful tools for specific gene silencing and molecularly targeted therapy. Here, we show that therapeutic silencing of Bcl-2 by systemically administered nanoliposomal (NL-Bcl-2 siRNA (0.15 mg siRNA/kg, intravenous twice a week leads to significant antitumor activity and suppression of growth in both estrogen receptor-negative (ER(− MDA-MB-231 and ER-positive (+ MCF7 breast tumors in orthotopic xenograft models (P < 0.05. A single intravenous injection of NL-Bcl-2-siRNA provided robust and persistent silencing of the target gene expression in xenograft tumors. NL-Bcl-2-siRNA treatment significantly increased the efficacy of chemotherapy when combined with doxorubicin in both MDA-MB-231 and MCF-7 animal models (P < 0.05. NL-Bcl-2-siRNA treatment-induced apoptosis and autophagic cell death, and inhibited cyclin D1, HIF1α and Src/Fak signaling in tumors. In conclusion, our data provide the first evidence that in vivo therapeutic targeting Bcl-2 by systemically administered nanoliposomal-siRNA significantly inhibits growth of both ER(− and ER(+ breast tumors and enhances the efficacy of chemotherapy, suggesting that therapeutic silencing of Bcl-2 by siRNA is a viable approach in breast cancers.

  10. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation.

    Science.gov (United States)

    Langdon, Amy; Crook, Nathan; Dantas, Gautam

    2016-04-13

    The widespread use of antibiotics in the past 80 years has saved millions of human lives, facilitated technological progress and killed incalculable numbers of microbes, both pathogenic and commensal. Human-associated microbes perform an array of important functions, and we are now just beginning to understand the ways in which antibiotics have reshaped their ecology and the functional consequences of these changes. Mounting evidence shows that antibiotics influence the function of the immune system, our ability to resist infection, and our capacity for processing food. Therefore, it is now more important than ever to revisit how we use antibiotics. This review summarizes current research on the short-term and long-term consequences of antibiotic use on the human microbiome, from early life to adulthood, and its effect on diseases such as malnutrition, obesity, diabetes, and Clostridium difficile infection. Motivated by the consequences of inappropriate antibiotic use, we explore recent progress in the development of antivirulence approaches for resisting infection while minimizing resistance to therapy. We close the article by discussing probiotics and fecal microbiota transplants, which promise to restore the microbiota after damage of the microbiome. Together, the results of studies in this field emphasize the importance of developing a mechanistic understanding of gut ecology to enable the development of new therapeutic strategies and to rationally limit the use of antibiotic compounds.

  11. Optimizing real time fMRI neurofeedback for therapeutic discovery and development

    Science.gov (United States)

    Stoeckel, L.E.; Garrison, K.A.; Ghosh, S.; Wighton, P.; Hanlon, C.A.; Gilman, J.M.; Greer, S.; Turk-Browne, N.B.; deBettencourt, M.T.; Scheinost, D.; Craddock, C.; Thompson, T.; Calderon, V.; Bauer, C.C.; George, M.; Breiter, H.C.; Whitfield-Gabrieli, S.; Gabrieli, J.D.; LaConte, S.M.; Hirshberg, L.; Brewer, J.A.; Hampson, M.; Van Der Kouwe, A.; Mackey, S.; Evins, A.E.

    2014-01-01

    While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders. PMID:25161891

  12. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-12-01

    Full Text Available Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents.

  13. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Science.gov (United States)

    Zhang, Bo; Hu, Yu; Pang, Zhiqing

    2017-01-01

    Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents. PMID:29311946

  14. {sup 177}Lu- labeled MOv18 as compared to {sup 131}I- or {sup 90}Y-labeled MOv18 has the better therapeutic effect in eradication of alpha folate receptor-expressing tumor xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Zacchetti, Alberto [Unit of Molecular Therapies, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133 (Italy); Coliva, Angela [Department of Imaging and Nuclear Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133 (Italy); Luison, Elena [Unit of Molecular Therapies, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133 (Italy); Seregni, Ettore; Bombardieri, Emilio [Department of Imaging and Nuclear Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133 (Italy); Giussani, Augusto [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg (Germany); Figini, Mariangela [Unit of Molecular Therapies, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133 (Italy); Canevari, Silvana [Unit of Molecular Therapies, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133 (Italy)], E-mail: silvana.canevari@istitutotumori.mi.it

    2009-10-15

    Introduction: The mouse monoclonal antibody MOv18, directed against the {alpha}-isoform of folate receptor (FR), was investigated to identify the optimal radioconjugate for radioimmunotherapy of minimal residual disease in ovarian cancer. Methods: Pharmacokinetics, biodistribution, long-term therapeutic efficacy and toxicity of MOv18, labeled with the beta-emitters {sup 131}I, {sup 90}Y and {sup 177}Lu, were compared in a xenografted mouse model, composed by two cell lines, A431FR and A431MK, differing only for FR expression. Results: A shorter blood clearance and a higher tumor uptake were observed for {sup 90}Y- and {sup 177}Lu- compared to {sup 131}I-MOv18, and a shorter blood pharmacokinetics was recorded in A431FR-bearing animals. At equitoxic maximum tolerable doses, the general irradiation by {sup 131}I- and {sup 90}Y-MOv18 gives rise to strong targeted effects on A431FR and nontargeted effects on A431MK tumors, while {sup 177}Lu-MOv18 was able to eradicate small size tumor masses expressing the antigen of interest exerting only mild non-targeted effects. Conclusion: {sup 177}Lu-MOv18 at the maximal tolerated dose is the immunoradioconjugate with the best therapeutic window in experimental conditions of small tumor volume.

  15. The Role of gsp Mutations on the Development of Adrenal Cortical Tumors and Adrenal Hyperplasias

    Directory of Open Access Journals (Sweden)

    Maria Candida Barisson Villares Fragoso

    2016-07-01

    Full Text Available Somatic GNAS point mutations, commonly known as gsp mutations, are involved in the pathogenesis of McCune Albright syndrome and have also been described in autonomous hormone-producing tumors, such as somatotropinoma, corticotrophoma, thyroid cancer, ovarian and testicular Leydig cell tumors and primary macronodular adrenocortical hyperplasia (PMAH. [1-3]The involvement of gsp mutations in adrenal tumors was first described by Lyons et al. in 1990. Since then, several studies have detected the presence of gsp mutations in adrenal tumors, but none of them could explain its presence along or the mechanism that leads to tumor formation and hormone hypersecretion. As a result, the molecular pathogenesis of the majority of sporadic adrenocortical tumors remains unclear. [3] PMAH has also been reported with gsp somatic mutations in a few cases. Fragoso et al. in 2003 identified two distinct gsp somatic mutations affecting arginine residues on codon 201 of GNAS in a few patients with PMAH who lacked any features or manifestations of McCune Albright syndrome. Followed by this discovery, other studies have continued looking for gsp mutations based on strong prior evidence demonstrating that increased cAMP signaling is sufficient for cell proliferation and cortisol production. [2, 4] With consideration for the previously reported findings, we conjecture that although somatic activating mutations in GNAS are a rare molecular event, these mutations could probably be sufficient to induce the development of macronodule hyperplasia and variable cortisol secretion.In this manuscript, we revised the presence of gsp mutations associated with adrenal cortical tumors and hyperplasia.

  16. A Fork in the Path: Developing Therapeutic Inroads with FoxO Proteins

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese

    2009-01-01

    Full Text Available Advances in clinical care for disorders involving any system of the body necessitates novel therapeutic strategies that can focus upon the modulation of cellular proliferation, metabolism, inflammation and longevity. In this respect, members of the mammalian forkhead transcription factors of the O class (FoxOs that include FoxO1, FoxO3, FoxO4 and FoxO6 are increasingly being recognized as exciting prospects for multiple disorders. These transcription factors govern development, proliferation, survival and longevity during multiple cellular environments that can involve oxidative stress. Furthermore, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to act as a “double-edge sword” to sometimes promote cell survival, but at other times lead to cell injury. Here we discuss the fascinating but complex role of FoxOs during cellular injury and oxidative stress, progenitor cell development, fertility, angiogenesis, cardiovascular function, cellular metabolism and diabetes, cell longevity, immune surveillance and cancer.

  17. Integration of systems biology with organs-on-chips to humanize therapeutic development

    Science.gov (United States)

    Edington, Collin D.; Cirit, Murat; Chen, Wen Li Kelly; Clark, Amanda M.; Wells, Alan; Trumper, David L.; Griffith, Linda G.

    2017-02-01

    "Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance.

  18. Effect of Arrabidaea chica extracts on the Ehrlich solid tumor development

    Directory of Open Access Journals (Sweden)

    Ana Flávia C. Ribeiro

    2012-04-01

    Full Text Available The aim of this study was to investigate the effect of Arrabidaea chica (Humb. & Bonpl. B. Verl., Bignoniaceae, extracts on Ehrlich solid tumor development in Swiss mice. Leaves of A. chica were extracted with two distinct solvents, ethanol and water. The phytochemical analysis of the extracts indicated different classes of secondary metabolites like as anthocyanidins, flavonoids, tannins and saponins. Ethanol (EE and aqueous (AE extracts at 30 mg/kg reduced the development of Ehrlich solid tumor after ten days of oral treatment. The EE group presented increase in neutrophil count, α1 and β globulin values, and decrease of α2 globulin values. Furthermore, EE reduced the percentage of CD4+ T cells in blood but did not alter the percentage of inflammatory mononuclear cells associated with tumor suggesting a direct action of EE on tumor cells. Reduced tumor development observed in AE group was accompanied by a lower percentage of CD4+ T lymphocytes in blood. At the tumor microenvironment, this treatment decreased the percentage of CD3+ T cells, especially due to a reduction of CD8+ T subpopulation and NK cells. The antitumor activity presented by the AE is possibly related to an anti-inflammatory activity. None of the extracts produced toxic effects in animals. In conclusion, the ethanol and aqueous extracts of A. chica have immunomodulatory and antitumor activities attributed to the presence of flavonoids, such as kaempferol. These effects appear to be related to different mechanisms of action for each extract. This study demonstrates the potential of A. chica as an antitumor agent confirming its use in traditional popular medicine.

  19. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    Science.gov (United States)

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  20. Aberrant crypt foci in the colo-rectal mucosa as reliable markers of tumor development

    DEFF Research Database (Denmark)

    Thorup, Inger

    connection exists between occurrence of ACF (neither qualitatively nor quantita- tively) and later development of tumors. However, the literature has shown that part of the ACF show morphologic and genetic features characteristic for the tumorigenic process and a recent investigation indicate that all ACF...

  1. Selenium prevents tumor development in a rat model for chemical carcinogenesis

    DEFF Research Database (Denmark)

    Bjorkhem-Bergman, L.; Torndal, U. B.; Eken, S.

    2005-01-01

    Previous studies in animals and humans have shown that selenium compounds can prevent cancer development. In this work we studied the tumor preventive effect of selenium supplementation, administrated as selenite, in the initiation, promotion and progression phases in a synchronized rat model for...

  2. Do External or Internal Factors Lead to Tumor Development? It Is Still Unknown.

    Science.gov (United States)

    Manskikh, V N

    2017-01-01

    Arguments supporting the "bad luck" hypothesis presented by C. Tomasetti and B. Vogelstein ((2015) Science, 347, 78-81) and A. V. Lichtenstein ((2017) Biochemistry (Moscow), 82, 75-80) are critically discussed. Those arguments are not sufficient for recognition of the "bad luck" hypothesis and the leading role of internal factors in spontaneous tumor development.

  3. Development of model plans in three dimensional conformal radiotherapy for brain tumors

    International Nuclear Information System (INIS)

    Pyo, Hongryull; Kim, Gwieon; Keum, Kichang; Chang, Sekyung; Suh, Changok; Lee, Sanghoon

    2002-01-01

    Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plans for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decided. Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal tumor-5.7 x 8.2 x 7.6 cm, suprasellar tumor-3 x 4 x 4.1 cm, thalamic tumor-3.1 x 5.9 x 3.7 cm, frontoparietal tumor-5.5 x 7 x 5.5 cm, and occipitoparietal tumor-5 x 5.5 x 5 cm. Plans using parallel opposed 2-portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D plans: 27%, 8% → 3D plans: 1%, 1%). Various dose statistic values did not show any

  4. Towards the development of tumor necrosis factor (TNF) sensitizers: making TNF work against cancer.

    Science.gov (United States)

    Mocellin, Simone; Pilati, Pierluigi; Nitti, Donato

    2007-01-01

    Although TNF antitumor activity has been demonstrated in many preclinical models and in non-comparative clinical trials, no evidence exists that TNF-based treatments increase patient survival. Moreover, due to systemic toxicity, TNF can only be administered through sophisticated locoregional drug-delivery systems in patients with some types of organ-confined solid tumors; as a corollary, the impossibility to administer TNF through the systemic route does not allow to test the effectiveness of this cytokine in other clinical settings for the treatment of a broader spectrum of tumor types. A challenge many researchers are tackling is to dissect the cascade of molecular events underlying tumor sensitivity to TNF so to fully explore the anticancer potential of this molecule. The rationale for the development of strategies aimed at sensitizing malignant cells to TNF is to exploit tumor-specific molecular derangements to modulate TNF biological activities and ultimately maximize its tumor-selective cytotoxicity. This would not only enhance the anticancer activity of current TNF-based locoregional regimens, but would also open the avenue to the systemic administration of this cytokine and thus to a much wider clinical experimentation of TNF in the oncology field. In this review we first summarize the molecular biology of TNF and its cancer-related properties; then, the available findings regarding some among the most promising and best characterized TNF sensitizers are overviewed.

  5. In ovo method for evaluating the effect of nutritional therapies on tumor development, growth and vascularization

    Directory of Open Access Journals (Sweden)

    Yves M. Dupertuis

    2015-10-01

    Full Text Available In the state of the art evaluation of nutritional therapy on tumor development, growth and vascularization requires tedious and expensive in vivo assays in which a significant number of animals undergo invasive treatments. Therefore, new alternative methods to avoid animal suffering and sacrifice are welcome. This review presents a rapid and low-cost method of experimental radio/chemotherapy in tumor xenografted chicken chorioallantoic membrane (CAM, which may contribute to implement the 3R principle (Reduce, Refine, Replace. Advantages and limitations of the CAM as an experimental model in cancer research are discussed. Improving the CAM model by using tumor spheroid grafting and positron emission and computed tomography imaging would help to overcome the drawbacks of poor tumor grafting efficiency and restrained 2-D tumor growth measurement to the CAM surface. Such a simple, reliable, reproducible and quantitative method for obtaining dose–response analysis and estimating treatment schedule (i.e. type, route, dose and timing would provide an alternative to the time-consuming and expensive evaluation step in animals before initiating clinical trials.

  6. Autoclaved Tumor Bone for Skeletal Reconstruction in Paediatric Patients: A Low Cost Alternative in Developing Countries

    Directory of Open Access Journals (Sweden)

    Masood Umer

    2013-01-01

    Full Text Available We reviewed in this series forty patients of pediatric age who underwent resection for malignant tumors of musculoskeletal system followed by biological reconstruction. Our surgical procedure for reconstruction included (1 wide en bloc resection of the tumor; (2 curettage of tumor from the resected bone; (3 autoclaving for 8 minutes (4 bone grafting from the fibula (both vascularized and nonvascularized fibular grafts used; (5 reimplantation of the autoclaved bone into the host bone defect and fixation with plates. Functional evaluation was done using MSTS scoring system. At final followup of at least 18 months (mean 29.2 months, 31 patients had recovered without any complications. Thirty-eight patients successfully achieved a solid bony union between the graft and recipient bone. Three patients had surgical site infection. They were managed with wound debridement and flap coverage of the defect. Local recurrence and nonunion occurred in two patients each. One patient underwent disarticulation at hip due to extensive local disease and one died of metastasis. For patients with non-union, revision procedure with bone graft and compression plates was successfully used. The use of autoclaved tumor grafts provides a limb salvage option that is inexpensive and independent of external resources and is a viable option for musculoskeletal tumor management in developing countries.

  7. Albumin-bound paclitaxel in solid tumors: clinical development and future directions.

    Science.gov (United States)

    Kundranda, Madappa N; Niu, Jiaxin

    2015-01-01

    Albumin-bound paclitaxel (nab-paclitaxel) is a solvent-free formulation of paclitaxel that was initially developed more than a decade ago to overcome toxicities associated with the solvents used in the formulation of standard paclitaxel and to potentially improve efficacy. Nab-paclitaxel has demonstrated an advantage over solvent-based paclitaxel by being able to deliver a higher dose of paclitaxel to tumors and decrease the incidence of serious toxicities, including severe allergic reactions. To date, nab-paclitaxel has been indicated for the treatment of three solid tumors in the USA. It was first approved for the treatment of metastatic breast cancer in 2005, followed by locally advanced or metastatic non-small-cell lung cancer in 2012, and most recently for metastatic pancreatic cancer in 2013. Nab-paclitaxel is also under investigation for the treatment of a number of other solid tumors. This review highlights key clinical efficacy and safety outcomes of nab-paclitaxel in the solid tumors for which it is currently indicated, discusses ongoing trials that may provide new data for the expansion of nab-paclitaxel's indications into other solid tumors, and provides a clinical perspective on the use of nab-paclitaxel in practice.

  8. DNA methylation mediated control of gene expression is critical for development of crown gall tumors.

    Directory of Open Access Journals (Sweden)

    Jochen Gohlke

    Full Text Available Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes

  9. Report on the 2nd Research Coordination Meeting on The Development of Therapeutic Radiopharmaceuticals Based on 188Re and 90Y for Radionuclide. Working Document

    International Nuclear Information System (INIS)

    2010-01-01

    Radionuclide therapy is practiced for the treatment of malignant disorders of various organs and tissues as well as for treating certain other diseases such as rheumatoid arthritis. Advances in understanding tumor biology as well as developments in peptide chemistry and monoclonal antibody technology are opening new opportunities for the development of therapeutic radiopharmaceuticals, thereby widening the scope of radionuclide therapy. In addition, particulate based radiopharmaceuticals are useful for treating hepatocarcinoma as well as in radiation synovectomy. With the establishment of new products the demand and application of therapeutic nuclear medicine is expected to grow rapidly. While there are a large number of radioisotopes proposed for targeted therapy, practical considerations had been limiting the number of usable isotopes. Generator-produced radionuclides are an attractive option for the large scale on-site availability of therapeutic isotopes. The IAEA’s CRP on the ‘Development of generator technologies for therapeutic radionuclides’ (2004-2007) was successful in developing technologies for the preparation of 188 W/ 188 Re and 90 Sr/ 90 Y generators for eluting 188 Re and 90 Y of high radionuclidic and chemical purity usable for research applications in the development of therapeutic radiopharmaceuticals. The IAEA’s CRP on ‘The development of therapeutic radiopharmaceuticals based on 188 Re and 90 Y for radionuclide therapy’ was formulated to focus on enhancing the capacity of the 90 Sr/ 90 Y generator; to develop and validate quality control methods for the generator eluate; and to develop therapeutic radiopharmaceuticals based on 188 Re and 90 Y. The first RCM of the CRP was held in Polatom, Warsaw, Poland from 30 June to 4 July 2008. The meeting reviewed the work going on in the different participating laboratories, and the facilities, expertise and capabilities of the different participating groups, and formulated the work plan of

  10. Report on the 2{sup nd} Research Coordination Meeting on The Development of Therapeutic Radiopharmaceuticals Based on {sup 188}Re and {sup 90}Y for Radionuclide. Working Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Radionuclide therapy is practiced for the treatment of malignant disorders of various organs and tissues as well as for treating certain other diseases such as rheumatoid arthritis. Advances in understanding tumor biology as well as developments in peptide chemistry and monoclonal antibody technology are opening new opportunities for the development of therapeutic radiopharmaceuticals, thereby widening the scope of radionuclide therapy. In addition, particulate based radiopharmaceuticals are useful for treating hepatocarcinoma as well as in radiation synovectomy. With the establishment of new products the demand and application of therapeutic nuclear medicine is expected to grow rapidly. While there are a large number of radioisotopes proposed for targeted therapy, practical considerations had been limiting the number of usable isotopes. Generator-produced radionuclides are an attractive option for the large scale on-site availability of therapeutic isotopes. The IAEA’s CRP on the ‘Development of generator technologies for therapeutic radionuclides’ (2004-2007) was successful in developing technologies for the preparation of {sup 188}W/{sup 188}Re and {sup 90}Sr/{sup 90}Y generators for eluting {sup 188}Re and {sup 90}Y of high radionuclidic and chemical purity usable for research applications in the development of therapeutic radiopharmaceuticals. The IAEA’s CRP on ‘The development of therapeutic radiopharmaceuticals based on {sup 188}Re and {sup 90}Y for radionuclide therapy’ was formulated to focus on enhancing the capacity of the {sup 90}Sr/{sup 90}Y generator; to develop and validate quality control methods for the generator eluate; and to develop therapeutic radiopharmaceuticals based on {sup 188}Re and {sup 90}Y. The first RCM of the CRP was held in Polatom, Warsaw, Poland from 30 June to 4 July 2008. The meeting reviewed the work going on in the different participating laboratories, and the facilities, expertise and capabilities of the different

  11. Merkel Cell Polyomavirus Small T Antigen Initiates Merkel Cell Carcinoma-like Tumor Development in Mice.

    Science.gov (United States)

    Verhaegen, Monique E; Mangelberger, Doris; Harms, Paul W; Eberl, Markus; Wilbert, Dawn M; Meireles, Julia; Bichakjian, Christopher K; Saunders, Thomas L; Wong, Sunny Y; Dlugosz, Andrzej A

    2017-06-15

    Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a nonproliferative population of neuroendocrine cells that arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor's cell of origin, are unknown. Using a panel of preterm transgenic mice, we show that epidermis-targeted coexpression of sT and the cell fate-determinant atonal bHLH transcription factor 1 (ATOH1) leads to development of widespread cellular aggregates, with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Coexpression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with ATOH1. MCPyV sT, when coexpressed with ATOH1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. Cancer Res; 77(12); 3151-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. New Insights to Clathrin and Adaptor Protein 2 for the Design and Development of Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Ebbe Toftgaard Poulsen

    2015-12-01

    Full Text Available The Amyloid Precursor Protein (APP has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ in Alzheimer’s disease (AD. However, our understanding of the normal function of APP is still patchy. Emerging evidence indicates that a dysfunction in APP trafficking and degradation can be responsible for neuronal deficits and progressive degeneration in humans. We recently reported that the Y682 mutation in the 682YENPTY687 domain of APP affects its binding to specific adaptor proteins and leads to its anomalous trafficking, to defects in the autophagy machinery and to neuronal degeneration. In order to identify adaptors that influence APP function, we performed pull-down experiments followed by quantitative mass spectrometry (MS on hippocampal tissue extracts of three month-old mice incubated with either the 682YENPTY687 peptide, its mutated form, 682GENPTY687 or its phosphorylated form, 682pYENPTY687. Our experiments resulted in the identification of two proteins involved in APP internalization and trafficking: Clathrin heavy chain (hc and its Adaptor Protein 2 (AP-2. Overall our results consolidate and refine the importance of Y682 in APP normal functions from an animal model of premature aging and dementia. Additionally, they open the perspective to consider Clathrin hc and AP-2 as potential targets for the design and development of new therapeutic strategies.

  13. Development of a Biofeedback Therapeutic Exercise Supporting Manipulator for Lower Limbs

    Science.gov (United States)

    Hashimoto, Yosuke; Hisada, Takashi; Komada, Satoshi; Hirai, Junji

    Although equipments that support physical therapy have been developed, there are few types of equipment to improve quality of physical therapy. This paper proposes a new concept of robotic biofeedback exercise equipment that displays human muscle force during training. The concept tries to have therapeutic value through grasping of condition for trainee during exercise and giving an incentive to perform training. The equipment is not only for convalescent patients but also for athletes and healthy persons with a physical trouble. The manipulator is designed to support lower limb rehabilitation of knee and hip joints in sagittal plane, where a 3-degrees-of-freedom manipulator is adopted in order to realize low height equipment. Since the manipulator has redundant degree of freedom, collision avoidance is performed by a controller based on acceleration control by disturbance observer. Moreover, simultaneous isokinetic movement for knee and hip joints that has an adjustment capability of maximum speed and time constant is realized in order to perform safe training by isokinetic muscular contraction. Desired motion is realized experimentally by the proposed manipulator.

  14. Engineered Bovine Antibodies in the Development of Novel Therapeutics, Immunomodulators and Vaccines

    Directory of Open Access Journals (Sweden)

    Madhuri Koti

    2014-05-01

    Full Text Available Some bovine antibodies across all classes are unique, such as the CDR3 of the variable heavy-domain (VH CDR3, which is exceptionally long (up to 66 amino acids, unlike most conventional antibodies where the VH CDR3 loops range from 10 to 25 amino acids. The exceptionally long VH CDR3 is encoded by unusually long germline IGHD genes together with insertion of novel “a” nucleotide rich conserved short nucleotide sequence (CSNS specifically at the IGH V-D junction. Such an exceptionally long VH CDR3 confers unique “knob and stalk” structural architecture where the knob, formed by intra-VH CDR3 disulfide bridges, is separated by 20 Å solvent exposed stalk composed of anti-parallel beta strands. The substitution of the knob with cytokines, such as, erythropoietin and granulocyte colony stimulating factor 3 (granulocyte colony stimulating factor, results in expression of functional fusion proteins with enhanced pharmacokinetics. The beta stranded stalk can be substituted with other rigid structures, for example, repeat alpha helices to form coiled-coil that mimics the beta-stranded stalk and, thus, opens opportunities for insertion of this structure in the CDRs of antibodies across species. Given the versatility of such a structural platform in bovine antibody VH CDR3, it provides the opportunity for the development of new generation of diagnostics, therapeutics, vaccines and immunomodulating drugs.

  15. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer?s disease

    OpenAIRE

    Yang, Shuang-shuang; Zhang, Rui; Wang, Gang; Zhang, Yong-fang

    2017-01-01

    Alzheimer?s disease (AD) is a chronic neurodegenerative disease, which is associated with learning and memory impairment in the elderly. Recent studies have found that treating AD in the way of chromatin remodeling via histone acetylation is a promising therapeutic regimen. In a number of recent studies, inhibitors of histone deacetylase (HDACs) have been found to be a novel promising therapeutic?agents for neurological disorders, particularly for AD and other neurodegenerative diseases. Alth...

  16. Anal canal carcinoma: Early-stage tumors ≤10 mm (T1 or Tis): Therapeutic options and original pattern of local failure after radiotherapy

    International Nuclear Information System (INIS)

    Ortholan, Cecile; Ramaioli, Alain; Peiffert, Didier; Lusinchi, Antoine; Romestaing, Pascale; Chauveinc, Laurent; Touboul, Emmanuel; Peignaux, Karine; Bruna, Antoine; La Roche, Guy de; Lagrange, Jean-Leon; Alzieu, Christian; Gerard, Jean Pierre

    2005-01-01

    Purpose: To investigate the clinical history, management, and pattern of recurrence of very early-stage anal canal cancer in a French retrospective survey. Methods: The study group consisted of 69 patients with Stage Tis and T1 anal canal carcinoma ≤1 cm treated between 1990 and 2000 (12 were in situ, 57 invasive, 66 Stage N0, and 3 Stage N1). The median patient age was 67 years (range, 27-83 years). Of the 69 patients, 66 received radiotherapy (RT) and 3 with in situ disease were treated by local excision alone without RT. Twenty-six patients underwent local excision before RT (12 with negative and 14 with positive surgical margins). Of the 66 patients who underwent RT, 8 underwent brachytherapy alone (median dose, 55 Gy), 38 underwent external beam RT (median dose, 45 Gy) plus a brachytherapy boost (median boost dose, 20 Gy), and 20 underwent external beam RT alone (median dose, 55 Gy). Results: Of the 69 patients, 68 had initial local control. Of the 66 patients treated by RT, 6 developed local recurrence at a median interval of 50 months (range, 13-78 months). Four patients developed local failure outside the initial tumor bed. Of the 3 patients with Tis treated by excision alone, 1 developed local recurrence. No relation was found among prior excision, dose, and local failure. The 5-year overall survival, colostomy-free survival, and disease-free survival rate was 94%, 85%, and 89%, respectively. The rate of late complications (Grade 1-3) was 28% and was 14% for those who received doses <60 Gy and 37% for those who received doses of ≥60 Gy (p = 0.04). Conclusion: Most recurrences occurred after a long disease-free interval after treatment and often outside the initial tumor site. These small anal cancers could be treated by RT using a small volume and moderate dose (40-50 Gy for subclinical lesions and 50-60 Gy for T1)

  17. Expanding the Therapeutic Spectrum of Artemisinin: Activity Against Infectious Diseases Beyond Malaria and Novel Pharmaceutical Developments

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2016-08-01

    Full Text Available The interest of Western medicine in Traditional Chinese Medicine (TCM as a source of drug leads/new drugs to treat diseases without available efficient therapies has been dramatically augmented in the last decades by the extensive work and the outstanding findings achieved within this kind of medicine. The practice of TCM over thousands of years has equipped scientists with substantial experience with hundreds of plants that led to the discovery of artemisinin (qinghaosu, which is extracted from the medicinal plant Artemisia annua L. (qinghao. The unexpected success of artemisinin in combating malaria has drawn strong attention from the scientific community towards TCM. Artemisinin was discovered by Youyou Tu in 1972. Since then, several novel pharmacological activities based on the well-known properties of the sesquiterpene lactone structure with the oxepane ring and an endoperoxide bridge have been unravelled. Beyond malaria, artemisinin and its derivatives (artemisinins exert profound activities towards other protozoans (Leishmania, Trypanosoma, amoebas, Neospora caninum, and Eimeria tenella, trematodes (Schistosoma, liver flukes, and viruses (human cytomegalovirus, hepatitis B and C viruses. Less clear is the effect against bacteria and fungi. Based on the promising results of artemisinin and the first generation derivatives (artesunate, artemether, arteether, novel drug development strategies have been pursued. These included the synthesis of acetal- and non-acetal-type artemisinin dimeric molecules as well as developing nanotechnological approaches, e.g. artemisinin-based liposomes, niosomes, micelles, solid lipid nanocarriers, nanostructured lipid carriers, nanoparticles, fullerenes and nanotubes. The current review presents an overview on different aspects of artemisinins, including sources, chemistry, biological/pharmacological properties, types of infectious pathogens that are susceptible to artemisinins in vitro and in vivo, in

  18. Developments on drug discovery and on new therapeutics: highly diluted tinctures act as biological response modifiers.

    Science.gov (United States)

    de Oliveira, Carolina C; Abud, Ana Paula R; de Oliveira, Simone M; Guimarães, Fernando de S F; de Andrade, Lucas F; Di Bernardi, Raffaello P; Coletto, Ediely L de O; Kuczera, Diogo; Da Lozzo, Eneida J; Gonçalves, Jenifer P; Trindade, Edvaldo da S; Buchi, Dorly de F

    2011-10-26

    In the search for new therapies novel drugs and medications are being discovered, developed and tested in laboratories. Highly diluted substances are intended to enhance immune system responses resulting in reduced frequency of various diseases, and often present no risk of serious side-effects due to its low toxicity. Over the past years our research group has been investigating the action of highly diluted substances and tinctures on cells from the immune system. We have developed and tested several highly diluted tinctures and here we describe the biological activity of M1, M2, and M8 both in vitro in immune cells from mice and human, and in vivo in mice. Cytotoxicity, cytokines released and NF-κB activation were determined after in vitro treatment. Cell viability, oxidative response, lipid peroxidation, bone marrow and lymph node cells immunophenotyping were accessed after mice in vivo treatment. None of the highly diluted tinctures tested were cytotoxic to macrophages or K562. Lipopolysaccharide (LPS)-stimulated macrophages treated with all highly diluted tinctures decreased tumour necrosis factor alpha (TNF-α) release and M1, and M8 decreased IFN-γ production. M1 has decreased NF-κB activity on TNF-α stimulated reporter cell line. In vivo treatment lead to a decrease in reactive oxygen species (ROS), nitric oxide (NO) production was increased by M1, and M8, and lipid peroxidation was induced by M1, and M2. All compounds enhanced the innate immunity, but M1 also augmented acquired immunity and M2 diminished B lymphocytes, responsible to acquired immunity. Based on the results presented here, these highly diluted tinctures were shown to modulate immune responses. Even though further investigation is needed there is an indication that these highly diluted tinctures could be used as therapeutic interventions in disorders where the immune system is compromised.

  19. Developments on drug discovery and on new therapeutics: highly diluted tinctures act as biological response modifiers

    Directory of Open Access Journals (Sweden)

    de Oliveira Carolina C

    2011-10-01

    Full Text Available Abstract Background In the search for new therapies novel drugs and medications are being discovered, developed and tested in laboratories. Highly diluted substances are intended to enhance immune system responses resulting in reduced frequency of various diseases, and often present no risk of serious side-effects due to its low toxicity. Over the past years our research group has been investigating the action of highly diluted substances and tinctures on cells from the immune system. Methods We have developed and tested several highly diluted tinctures and here we describe the biological activity of M1, M2, and M8 both in vitro in immune cells from mice and human, and in vivo in mice. Cytotoxicity, cytokines released and NF-κB activation were determined after in vitro treatment. Cell viability, oxidative response, lipid peroxidation, bone marrow and lymph node cells immunophenotyping were accessed after mice in vivo treatment. Results None of the highly diluted tinctures tested were cytotoxic to macrophages or K562. Lipopolysaccharide (LPS-stimulated macrophages treated with all highly diluted tinctures decreased tumour necrosis factor alpha (TNF-α release and M1, and M8 decreased IFN-γ production. M1 has decreased NF-κB activity on TNF-α stimulated reporter cell line. In vivo treatment lead to a decrease in reactive oxygen species (ROS, nitric oxide (NO production was increased by M1, and M8, and lipid peroxidation was induced by M1, and M2. All compounds enhanced the innate immunity, but M1 also augmented acquired immunity and M2 diminished B lymphocytes, responsible to acquired immunity. Conclusions Based on the results presented here, these highly diluted tinctures were shown to modulate immune responses. Even though further investigation is needed there is an indication that these highly diluted tinctures could be used as therapeutic interventions in disorders where the immune system is compromised.

  20. Effects of pulsed magnetic stimulation on tumor development and immune functions in mice.

    Science.gov (United States)

    Yamaguchi, Sachiko; Ogiue-Ikeda, Mari; Sekino, Masaki; Ueno, Shoogo

    2006-01-01

    We investigated the effects of pulsed magnetic stimulation on tumor development processes and immune functions in mice. A circular coil (inner diameter = 15 mm, outer diameter = 75 mm) was used in the experiments. Stimulus conditions were pulse width = 238 micros, peak magnetic field = 0.25 T (at the center of the coil), frequency = 25 pulses/s, 1,000 pulses/sample/day and magnetically induced eddy currents in mice = 0.79-1.54 A/m(2). In an animal study, B16-BL6 melanoma model mice were exposed to the pulsed magnetic stimulation for 16 days from the day of injection of cancer cells. A tumor growth study revealed a significant tumor weight decrease in the stimulated group (54% of the sham group). In a cellular study, B16-BL6 cells were also exposed to the magnetic field (1,000 pulses/sample, and eddy currents at the bottom of the dish = 2.36-2.90 A/m(2)); however, the magnetically induced eddy currents had no effect on cell viabilities. Cytokine production in mouse spleens was measured to analyze the immunomodulatory effect after the pulsed magnetic stimulation. tumor necrosis factor (TNF-alpha) production in mouse spleens was significantly activated after the exposure of the stimulus condition described above. These results showed the first evidence of the anti-tumor effect and immunomodulatory effects brought about by the application of repetitive magnetic stimulation and also suggested the possible relationship between anti-tumor effects and the increase of TNF-alpha levels caused by pulsed magnetic stimulation.

  1. Introduction to thematic minireview series: Development of human therapeutics based on induced pluripotent stem cell (iPSC) technology.

    Science.gov (United States)

    Rao, Mahendra; Gottesfeld, Joel M

    2014-02-21

    With the advent of human induced pluripotent stem cell (hiPSC) technology, it is now possible to derive patient-specific cell lines that are of great potential in both basic research and the development of new therapeutics for human diseases. Not only do hiPSCs offer unprecedented opportunities to study cellular differentiation and model human diseases, but the differentiated cell types obtained from iPSCs may become therapeutics themselves. These cells can also be used in the screening of therapeutics and in toxicology assays for potential liabilities of therapeutic agents. The remarkable achievement of transcription factor reprogramming to generate iPSCs was recognized by the award of the Nobel Prize in Medicine to Shinya Yamanaka in 2012, just 6 years after the first publication of reprogramming methods to generate hiPSCs (Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Cell 131, 861-872). This minireview series highlights both the promises and challenges of using iPSC technology for disease modeling, drug screening, and the development of stem cell therapeutics.

  2. Role of FDG-PET in the Diagnosis of Recurrence and Assessment of Therapeutic Response in Cervical Cancer and Ovarian Cancer Patients: Comparison of Diagnostic Report between PET, Abdominal CT and Tumor Marker

    International Nuclear Information System (INIS)

    Han, You Mie; Choe, Jae Gol; Kang, Bung Chul

    2008-01-01

    We aimed to assess the role of positron emission tomography using fluorodeoxyglucose (FDG-PET) in the diagnosis of recurrence or the assessment of therapeutic response in cervical and ovarian cancer patients through making a comparison between FDG-PET, abdominal computed tomography (CT) and serum tumor marker. We included 103 cases (67 patients) performed FDG-PET and abdominal CT. There were 42 cervical cancers and 61 ovarian cancers. We retrospectively reviewed the interpretations of PET and CT images as well as the level of tumor marker. We calculated their sensitivity, specificity, positive predictive value and negative predictive value for these three modalities. And then we analyzed the differences between these three modalities. Tumor recurrences were diagnosed in 37 cases (11 cervical cancers and 26 ovarian cancers). For PET, CT and tumor marker, in cervical cancer group, sensitivity was 100% (11/11), 54.5% (6/11) and 81.1% (9/11), respectively. And specificity was 93.6% (29/31), 93.6% (29/31) and 100% (31/31). In ovarian cancer group, sensitivity was 96.2% (25/26), 84.6% (22/26) and 80.8% (21/26), and specificity was 94.3% (33/35), 94.3% (33/35), 94.3% (33/35). PET was highly sensitive to detect the intraperitoneal and extraperitoneal metastasis with the help of the CT images to localize the lesions. However, CT had limitations in differentiation of the recurrent tumor from benign fibrotic tissue, identification of viable tumors at the interface of tissues, and detecting extraperitoneal lesions. FDG-PET can be an essential modality to detect the recurrent or residual tumors in gynecologic cancer patients because of its great field of the application and high sensitivity

  3. In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Luo, Qingqiong; Hu, Dan; Hu, Shuiqing; Yan, Ming; Sun, Zujun; Chen, Fuxiang

    2012-01-01

    Metformin, which is widely used as an antidiabetic agent, has recently been reported to reduce cancer risk and improve prognosis in certain malignancies. However, the specific mechanisms underlying the effect of metformin on the development and progression of several cancers including oral squamous cell carcinoma (OSCC) remain unclear. In the present study, we investigated the effects of metformin on OSCC cells in vitro and in vivo. OSCC cells treated with or without metformin were counted using a hemocytometer. The clonogenic ability of OSCC cells after metformin treatment was determined by colony formation assay. Cell cycle progression and apoptosis were assessed by flow cytometry, and the activation of related signaling pathways was examined by immunoblotting. The in vivo anti-tumor effect of metformin was examined using a xenograft mouse model. Immunohistochemistry and TUNEL staining were used to determine the expression of cyclin D1 and the presence of apoptotic cells in tumors from mice treated with or without metformin. Metformin inhibited proliferation in the OSCC cell lines CAL27, WSU-HN6 and SCC25 in a time- and dose-dependent manner, and significantly reduced the colony formation of OSCC cells in vitro. Metformin induced an apparent cell cycle arrest at the G0/G1 phase, which was accompanied by an obvious activation of the AMP kinase pathway and a strongly decreased activation of mammalian target of rapamycin and S6 kinase. Metformin treatment led to a remarkable decrease of cyclin D1, cyclin-dependent kinase (CDK) 4 and CDK6 protein levels and phosphorylation of retinoblastoma protein, but did not affect p21 or p27 protein expression in OSCC cells. In addition, metformin induced apoptosis in OSCC cells, significantly down-regulating the anti-apoptotic proteins Bcl-2 and Bcl-xL and up-regulating the pro-apoptotic protein Bax. Metformin also markedly reduced the expression of cyclin D1 and increased the numbers of apoptotic cells in vivo, thus inhibiting

  4. Mediastinal tumors. Update 1995

    International Nuclear Information System (INIS)

    Wood, D.E.; Thomas, C.R. Jr.

    1995-01-01

    This volume represents the premier work devoted solely to the complex myriad of mediastinal tumors. The contributors to the state-of-the-art text are clinical investigators of international renown. The diagnosis, natural history, and therapeutic strategies in respect of all mediastinal tumors are thoroughly addressed in a concise and logical manner. An emphasis on the multidisciplinary nature of mediastinal tumors is thematic throughout the text. Moreover, the combined-modality treatment schemes that have been increasingly developed worldwide are analyzed. This textbook will prove of value to all general surgeons, thoracic surgeons, medical oncologists, radiation oncologists, pulmonologists, and endocrinologists, as well as to nursing and medical students, residents and fellows-in training. (orig.). 55 figs., 21 tabs

  5. Therapeutic response assessment using 3D ultrasound for hepatic metastasis from colorectal cancer: Application of a personalized, 3D-printed tumor model using CT images.

    Directory of Open Access Journals (Sweden)

    Ye Ra Choi

    Full Text Available To evaluate accuracy and reliability of three-dimensional ultrasound (3D US for response evaluation of hepatic metastasis from colorectal cancer (CRC using a personalized 3D-printed tumor model.Twenty patients with liver metastasis from CRC who underwent baseline and after chemotherapy CT, were retrospectively included. Personalized 3D-printed tumor models using CT were fabricated. Two radiologists measured volume of each 3D printing model using 3D US. With CT as a reference, we compared difference between CT and US tumor volume. The response evaluation was based on Response Evaluation Criteria in Solid Tumors (RECIST criteria.3D US tumor volume showed no significant difference from CT volume (7.18 ± 5.44 mL, 8.31 ± 6.32 mL vs 7.42 ± 5.76 mL in CT, p>0.05. 3D US provided a high correlation coefficient with CT (r = 0.953, r = 0.97 as well as a high inter-observer intraclass correlation (0.978; 0.958-0.988. Regarding response, 3D US was in agreement with CT in 17 and 18 out of 20 patients for observer 1 and 2 with excellent agreement (κ = 0.961.3D US tumor volume using a personalized 3D-printed model is an accurate and reliable method for the response evaluation in comparison with CT tumor volume.

  6. Prognostic Factors Influencing the Development of an Iatrogenic Pneumothorax for Computed Tomography-Guided Radiofrequency Ablation of Upper Renal Tumor

    International Nuclear Information System (INIS)

    Park, B.K.; Kim, C.K.

    2008-01-01

    Background: Percutaneous radiofrequency (RF) ablation of upper renal tumors is considered a minimally invasive treatment, but this technique may cause pneumothorax. Purpose: To assess retrospectively the prognostic factors influencing the development of iatrogenic pneumothorax for RF ablation of upper renal tumors. Material and Methods: Computed tomography (CT)-guided RF ablation was performed in 24 patients (21 men, three women; age range 31-77 years, mean age 53.3 years) with 28 upper renal tumors. Various factors for pneumothorax-complicated (PC) upper renal tumors and non-pneumothoracic (NP) upper renal tumors were compared during RF ablation to determine which of the factors were involved in the development of pneumothorax. Results: Among 28 upper renal tumors in 24 patients, a pneumothorax occurred accidentally in six patients with eight tumors and intentionally in two patients with two tumors. This complication was treated with conservative management, instead of tube drainage. PC upper renal tumors had shorter distance from the lung or from the costophrenic line to the tumor, a larger angle between the costophrenic line and the tumor, and a higher incidence of intervening lung tissue than NP upper renal tumors (P<0.01). Intervening lung tissue was more frequently detected on CT images obtained with the patient in the prone position than on CT images obtained with the patient in the supine position. Conclusion: The presence of intervening lung tissue and the close proximity between an upper renal tumor and the lung are high risk factors for developing an iatrogenic pneumothorax. Pre-ablation CT scan should be performed in the prone position to exactly evaluate intervening lung tissue

  7. Utilizing Biomarker Signature Pairs To Develop Gene Therapeutic Viral Delivery Platforms For Treating Prostate Cancer

    Science.gov (United States)

    Dr. Tamaro Hudson is currently an Assistant Professor at Howard University in the Department of Pharmacology and holds an appointment as a Health Research Specialist at the Washington VA Medical Center. Dr. Hudson received his Bachelor of Science from Iowa State University in Biology in 1994 and went on to receive a Master of Science in Preventive Medicine from Ohio State University in 2007. Afterwards, he received a Ph.D. from Ohio State University in 2002 where he focused on evaluating the functional differences among isothiocyanates in the rat esophageal tumor model. Following his Ph.D., Dr. Hudson was selected to complete a prestigious Cancer Prevention Fellowship Program at the National Institute of Health, National Cancer Institute, where he focused on utilizing in vitro and in vivo cancer models to assess the biological activity of bioactive compounds on prostate cancer molecular pathways. Concurrently, he completed a Master of Public Health degree from George Washington University in 2003 where he focused on assessing the degree of agreement between a food frequency questionnaire and a 4-day food record as it related to dietary fiber intake. Upon completion of his MPH and Fellowship, he was recruited by Howard University Cancer Center in 2007 as an Assistant Professor. Since joining the Howard faculty, Dr. Hudson has integrated his research focus by identifying novel signature biomarkers – that could have a significant impact on both the diagnosis and targeted treatment of prostate cancer – with the evaluation of new chemopreventive strategies, which have been evaluated in Phase I and Phase II clinical trials. Dr. Hudson received the first five-year VA-HBCU Research, Scientist, and Training grant that focuses on developing a biomarker-based risk prediction model for prostate cancer. Dr. Hudson serves on several Howard University committees and has many peer-reviewed publications. Dr. Hudson's research interests continue to expand as he tries to build

  8. Developing a therapeutic relationship with a blind client with a severe intellectual disability and persistent challenging behaviour

    NARCIS (Netherlands)

    Sterkenburg, P.S.; Janssen, C.G.C.; Schuengel, C.

    2008-01-01

    Purpose. A blind, severely intellectually impaired boy aged 17 with Down syndrome and persistent serious challenging behavior received attachment-based behavior modification treatment. The aim was to study the effect of the treatment and the development of the therapeutic attachment relationship.

  9. Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Mense, Sarah M.; Bhat, Nimee K.; Putty, Sandeep; Guthiel, William A.; Remotti, Fabrizio; Bhat, Hari K.

    2010-01-01

    Phytoestrogens are plant compounds that structurally mimic the endogenous estrogen 17β-estradiol (E 2 ). Despite intense investigation, the net effect of phytoestrogen exposure on the breast remains unclear. The objective of the current study was to examine the effects of quercetin on E 2 -induced breast cancer in vivo. Female ACI rats were given quercetin (2.5 g/kg food) for 8 months. Animals were monitored weekly for palpable tumors, and at the end of the experiment, rats were euthanized, breast tumor and different tissues excised so that they could be examined for histopathologic changes, estrogen metabolic activity and oxidant stress. Quercetin alone did not induce mammary tumors in female ACI rats. However, in rats implanted with E 2 pellets, co-exposure to quercetin did not protect rats from E 2 -induced breast tumor development with 100% of the animals developing breast tumors within 8 months of treatment. No changes in serum quercetin levels were observed in quercetin and quercetin + E 2 -treated groups at the end of the experiment. Tumor latency was significantly decreased among rats from the quercetin + E 2 group relative to those in the E 2 group. Catechol-O-methyltransferase (COMT) activity was significantly downregulated in quercetin-exposed mammary tissue. Analysis of 8-isoprostane F 2α (8-iso-PGF 2α ) levels as a marker of oxidant stress showed that quercetin did not decrease E 2 -induced oxidant stress. These results indicate that quercetin (2.5 g/kg food) does not confer protection against breast cancer, does not inhibit E 2 -induced oxidant stress and may exacerbate breast carcinogenesis in E 2 -treated ACI rats. Inhibition of COMT activity by quercetin may expose breast cells chronically to E 2 and catechol estrogens. This would permit longer exposure times to the carcinogenic metabolites of E 2 and chronic exposure to oxidant stress as a result of metabolic redox cycling to estrogen metabolites, and thus quercetin may exacerbate E 2 -induced

  10. Development of real-time tumor tracking system for stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Yamanaka, Seiji; Sasagawa, Tsuyoshi; Uno, Yukimichi

    2011-01-01

    We are now developing the real-time tumor tracking system for stereotactic radiotherapy (SRT) to provide precise information on the location of a tumor and to reduce the irradiation to healthy tissue in a patient. The system has the following features: A motion tracking and processing unit recognizes a gold marker inserted in or near a tumor in real time by the pattern matching of a predetermined template image and acquired X-ray fluoroscopic images. When the gold marker is within a planned area, that is to say, when a tumor enters a target irradiation area, a gate signal is sent to a linear accelerator. A railway unit is equipped with two X-ray tubes and two detectors, which are controlled separately with their own drive mechanism. They travel with high accuracy and reproducibility to the best position for monitoring the gold marker. A synchronization controller controls the timing for X-ray fluoroscopy and the gate signals to the linear accelerator. The controller works for two types of detectors: a color X-ray detector and a flat panel detector (FPD). (author)

  11. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases.

    Science.gov (United States)

    Oh, Doo-Byoung

    2015-08-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy.

  12. Development of a compassion-focused and contextual behavioural environment and validation of the Therapeutic Environment Scales (TESS).

    Science.gov (United States)

    Veale, David; Miles, Sarah; Naismith, Iona; Pieta, Maria; Gilbert, Paul

    2016-02-01

    Aims and method The aims of the study were to develop a scale sensitive enough to measure the interpersonal processes within a therapeutic environment, and to explore whether the new scale was sensitive enough to detect differences between settings, including a community based on compassionate mind and contextual behaviourism. The Therapeutic Environment Scales (TESS) were validated with 81 participants in three different settings: a specialist service for anxiety disorders, a specialist in-patient ward and a psychodynamic therapeutic community. Results TESS was found to be reliable and valid. Significant differences were seen between the services on the dimensions of compassion, belongingness, feeling safe, positive reinforcement of members' acts of courage, extinction and accommodation of unhelpful behaviours, inconsistency and high expressed emotion. These processes were over time associated with improved outcomes on a specialist service for anxiety disorders. Clinical implications The TESS offers a first step in exploring important interpersonal relationships in therapeutic environments and communities. An environment based on a compassionate mind and contextual behaviourism offers promise for the running of a therapeutic community.

  13. Radionuclides for therapeutic applications: Biological and medical aspects (present status, development and expectations)

    International Nuclear Information System (INIS)

    Wambersie, A.; Gahbauer, R.A.

    2002-01-01

    Different multidisciplinary therapeutic strategies and technical approaches are used today in cancer therapy. Among the techniques involving ionizing radiation, therapeutic applications of radioactive nuclides deserve a particular interest ; some clinical indications are well established, while several others are now being investigated, and some of them are promising. The efficacy of radionuclides in therapy often depends on technical factors such as specific activity, purity, chemical presentation, availability, etc. These factors are closely related, at least partly, to the production methods. This justifies the organization of the present Consultant's meeting by the IAEA. Brief information on cancer, its socio-economic aspects, and some data concerning cure rate are presented first

  14. [Recent developments in biopsy diagnosis of early and undefined liver tumors].

    Science.gov (United States)

    Longerich, T; Schirmacher, P

    2009-01-01

    Biopsy diagnosis of early and highly differentiated liver tumors is difficult and complex. Modern pathology has met this challenge by several different means; elaborate morphological algorithms and novel immunohistological markers support the differential diagnosis of highly differentiated HCC and a new, predictive molecular pathological and histological classification of liver cell adenoma was developed. By these new diagnostic tools together with the so-called 'matrix diagnosis' a reliable diagnostic classification is now feasible in the vast majority of these difficult cases.

  15. The development of CAR design for tumor CAR-T cell therapy.

    Science.gov (United States)

    Xu, Dandan; Jin, Guoliang; Chai, Dafei; Zhou, Xiaowan; Gu, Weiyu; Chong, Yanyun; Song, Jingyuan; Zheng, Junnian

    2018-03-02

    In recent years, the chimeric antigen receptor modified T cells (Chimeric antigen receptor T cells, CAR-T) immunotherapy has developed rapidly, which has been considered the most promising therapy. Efforts to enhance the efficacy of CAR-based anti-tumor therapy have been made, such as the improvement of structures of CAR-T cells, including the development of extracellular antigen recognition receptors, intracellular co-stimulatory molecules and the combination application of CARs and synthetic small molecules. In addition, effects on the function of the CAR-T cells that the space distance between the antigen binding domains and tumor targets and the length of the spacer domains have are also being investigated. Given the fast-moving nature of this field, it is necessary to make a summary of the development of CAR-T cells. In this review, we mainly focus on the present design strategies of CAR-T cells with the hope that they can provide insights to increase the anti-tumor efficacy and safety.

  16. 77 FR 26304 - Prospective Grant of Exclusive License: Development of Ocular Therapeutics Utilizing the Peptide...

    Science.gov (United States)

    2012-05-03

    ..., Rockville, MD 20852-3804; Telephone: (301) 435- 4478; Facsimile: (301) 402-0220; Email: [email protected] (IP) to be included in this exclusive license relates to a protein designated C16Y and variations... tumor bearing mouse model (see Ponce, et al Cancer Research 63: 5060-64 (2003)). The IP covers various...

  17. Biology of childhood osteogenic sarcoma and potential targets for therapeutic development : Meeting summary

    NARCIS (Netherlands)

    Gorlick, R; Anderson, P; Andrulis, [No Value; Arndt, C; Beardsley, GP; Bernstein, M; Bridge, J; Cheung, NK; Dome, JS; Ebb, D; Gardner, T; Gebhardt, M; Grier, H; Hansen, M; Healey, J; Helman, L; Hock, J; Houghton, J; Houghton, P; Huvos, A; Khanna, C; Kieran, M; Kleinerman, E; Ladanyi, M; Lau, C; Malkin, D; Marina, N; Meltzer, P; Meyers, P; Schofield, D; Schwartz, C; Smith, MA; Toretsky, J; Tsokos, M; Wexler, L; Wigginton, J; Withrow, S; Schoenfeldt, M; Anderson, B

    2003-01-01

    Childhood osteogenic sarcoma (OS) is a rare bone cancer occurring primarily in adolescents. The North American pediatric cooperative groups have performed a series of clinical treatment trials in this disease over the past several decades, and biology studies of tumor tissue have been an important

  18. Effect of a mouse mammary tumor virus-derived protein vaccine on primary tumor development in mice

    NARCIS (Netherlands)

    Creemers, P.; Ouwehand, J.; Bentveizen, P.

    1978-01-01

    The vaccines used in this study were derived from purified murine mammary tumor virus (MuMTV) preparations. Approximately 60% of the protein fractions consisted of the major viral membrane glycoprotein gp52. Inoculation sc of 10 pg MuMTV-S-derived vaccine significantly delayed the appearance of

  19. Implementation of nanoparticles in therapeutic radiation oncology

    Science.gov (United States)

    Beeler, Erik; Gabani, Prashant; Singh, Om V.

    2017-05-01

    Development and progress of cancer is a very complex disease process to comprehend because of the multiple changes in cellular physiology, pathology, and pathophysiology resulting from the numerous genetic changes from which cancer originates. As a result, most common treatments are not directed at the molecular level but rather at the tissue level. While personalized care is becoming an increasingly aim, the most common cancer treatments are restricted to chemotherapy, radiation, and surgery, each of which has a high likelihood of resulting in rather severe adverse side effects. For example, currently used radiation therapy does not discriminate between normal and cancerous cells and greatly relies on the external targeting of the radiation beams to specific cells and organs. Because of this, there is an immediate need for the development of new and innovative technologies that help to differentiate tumor cells and micrometastases from normal cells and facilitate the complete destruction of those cells. Recent advancements in nanoscience and nanotechnology have paved a way for the development of nanoparticles (NPs) as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery, and improve the therapeutic index of radiation and tumor response to the treatment. The application of NPs in radiation therapy has aimed to improve outcomes in radiation therapy by increasing therapeutic effect in tumors and reducing toxicity on normal tissues. Because NPs possess unique properties, such as preferential accumulation in tumors and minimal uptake in normal tissues, it makes them ideal for the delivery of radiotherapy. This review provides an overview of the recent development of NPs for carrying and delivering therapeutic radioisotopes for systemic radiation treatment for a variety of cancers in radiation oncology.

  20. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    International Nuclear Information System (INIS)

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-01-01

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR −/− and SHP −/− mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR −/− mice and therefore, increased SHP expression in FXR −/− mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR −/− mice with overexpression of SHP in hepatocytes (FXR −/− /SHP Tg ) and determined the contribution of SHP in HCC development in FXR −/− mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR −/− mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR −/− mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency

  1. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway.

    Science.gov (United States)

    Tian, Binqiang; Zhao, Yingmei; Liang, Tao; Ye, Xuxiao; Li, Zuowei; Yan, Dongliang; Fu, Qiang; Li, Yonghui

    2017-08-01

    We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.

  2. Development of a flexible and potent hypoxia-inducible promoter for tumor-targeted gene expression in attenuated Salmonella

    NARCIS (Netherlands)

    Mengesha, Asferd; Dubois, Ludwig; Lambin, Philippe; Landuyt, Willy; Chiu, Roland K; Wouters, Bradly G; Theys, Jan

    To increase the potential of attenuated Salmonella as gene delivery vectors for cancer treatment, we developed a hypoxia-inducible promoter system to limit gene expression specifically to the tumor. This approach is envisaged to not only increase tumor specificity, but also to target those cells

  3. Eosinophilia in routine blood samples as a biomarker for solid tumor development

    DEFF Research Database (Denmark)

    Andersen, Christen Bertel L; Siersma, V.D.; Hasselbalch, H.C.

    2014-01-01

    eosinophilia in routine blood samples as a potential biomarker of solid tumor development in a prospective design. MATERIAL AND METHODS: From the Copenhagen Primary Care Differential Count (CopDiff) Database, we identified 356 196 individuals with at least one differential cell count (DIFF) encompassing...... was increased with mild eosinophilia [OR 1.93 (CI 1.29-2.89), p = 0.0013]. No associations with eosinophilia were observed for the remaining solid cancers. CONCLUSION: We demonstrate that eosinophilia in routine blood samples associates with an increased risk of bladder cancer. Our data emphasize...... that additional preclinical studies are needed in order to shed further light on the role of eosinophils in carcinogenesis, where it is still unknown whether the cells contribute to tumor immune surveillance or neoplastic evolution....

  4. Novel allelic mutations in murine Serca2 induce differential development of squamous cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Toki, Hideaki; Minowa, Osamu; Inoue, Maki; Motegi, Hiromi; Karashima, Yuko; Ikeda, Ami [Team for Advanced Development and Evaluation of Human Disease Models, Riken BioResource Center (BRC), Tsukuba, Ibaraki (Japan); Kaneda, Hideki [Technology and Development Team for Mouse Phenotype Analysis, Riken BRC, Tsukuba, Ibaraki (Japan); Sakuraba, Yoshiyuki [Mutagenesis and Genomics Team, Riken BRC, Tsukuba, Ibaraki (Japan); Saiki, Yuriko [Department of Molecular Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi (Japan); Wakana, Shigeharu [Technology and Development Team for Mouse Phenotype Analysis, Riken BRC, Tsukuba, Ibaraki (Japan); Suzuki, Hiroshi [Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido (Japan); Gondo, Yoichi [Mutagenesis and Genomics Team, Riken BRC, Tsukuba, Ibaraki (Japan); Shiroishi, Toshihiko [Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka (Japan); Noda, Tetsuo, E-mail: tnoda@jfcr.or.jp [Team for Advanced Development and Evaluation of Human Disease Models, Riken BioResource Center (BRC), Tsukuba, Ibaraki (Japan); Department of Cell Biology, Cancer Institute, The Japanese Foundation for Cancer Research, Tokyo (Japan)

    2016-08-05

    Dominant mutations in the Serca2 gene, which encodes sarco(endo)plasmic reticulum calcium-ATPase, predispose mice to gastrointestinal epithelial carcinoma [1–4] and humans to Darier disease (DD) [14–17]. In this study, we generated mice harboring N-ethyl-N-nitrosourea (ENU)-induced allelic mutations in Serca2: three missense mutations and one nonsense mutation. Mice harboring these Serca2 mutations developed tumors that were categorized as either early onset squamous cell tumors (SCT), with development similar to null-type knockout mice [2,4] (aggressive form; M682, M814), or late onset tumors (mild form; M1049, M1162). Molecular analysis showed no aberration in Serca2 mRNA or protein expression levels in normal esophageal cells of any of the four mutant heterozygotes. There was no loss of heterozygosity at the Serca2 locus in the squamous cell carcinomas in any of the four lines. The effect of each mutation on Ca{sup 2+}-ATPase activity was predicted using atomic-structure models and accumulated mutated protein studies, suggesting that putative complete loss of Serca2 enzymatic activity may lead to early tumor onset, whereas mutations in which Serca2 retains residual enzymatic activity result in late onset. We propose that impaired Serca2 gene product activity has a long-term effect on squamous cell carcinogenesis from onset to the final carcinoma stage through an as-yet unrecognized but common regulatory pathway. -- Highlights: •Novel mutations in murine Serca2 caused early onset or late onset of tumorigenesis. •They also caused higher or lower incidence of Darier Disease phenotype. •3D structure model suggested the former mutations led to severer defect on ATPase. •Driver gene mutations via long-range effect on Ca2+ distributions are suggested.

  5. Development of a new rapid isolation device for circulating tumor cells (CTCs using 3D palladium filter and its application for genetic analysis.

    Directory of Open Access Journals (Sweden)

    Akiko Yusa

    Full Text Available Circulating tumor cells (CTCs in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D palladium (Pd filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings.

  6. Therapeutic effect and prognostic analysis of intensity-modulated radiotherapy for primary hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombus

    Directory of Open Access Journals (Sweden)

    HUANG Long

    2015-06-01

    Full Text Available ObjectiveTo determine the efficacy and prognostic factors of intensity-modulated radiotherapy (IMRT for primary hepatocellular carcinoma (HCC with portal vein and/or inferior vena cava tumor thrombus. MethodsTwenty-three HCC patients with portal vein and/or inferior vena cava tumor thrombus received IMRT with an 8 MV linear accelerator at the Cancer Center of General Hospital of Armed Police Forces, Anhui Medical University, from April 2008 to August 2011. A single dose of 3 to 6 Gy was delivered at five fractions per week, with a total dose of 56 to 96 Gy and a median dose of 60 Gy. Survival time was recorded, and adverse reactions were evaluated. Survival rate calculation and survival analysis were performed using the Kaplan-Meier method. Comparison of categorical between two groups was made by chi-square test. ResultsOne patient did not complete radiotherapy due to upper gastrointestinal bleeding. Of 22 patients who completed IMRT, 4 achieved complete remission and 10 achieved partial remission, with an overall response rate of 63.7%. Our analysis showed that the type of tumor thrombus and tumor size were associated with tumor response rate and were significant prognostic factors (P<0.05. The median survival time was 13.4 months. The 1-, 2-, and 3-year survival rates were 59%, 27%, and 18%, respectively. The 22 patients who completed radiotherapy did not experience acute radiation injury or late adverse outcomes such as radiation-induced liver disease. ConclusionThis study suggests IMRT is a safe and effective treatment option for HCC patients with portal vein and/or inferior vena cava tumor thrombus.

  7. Prophylactic and Therapeutic Vaccination against Hepatitis C Virus (HCV: Developments and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Marian E. Major

    2009-08-01

    Full Text Available Studies in patients and chimpanzees that spontaneously clear Hepatitis C Virus (HCV have demonstrated that natural immunity to the virus is induced during primary infections and that this immunity can be cross protective. These discoveries led to optimism regarding prophylactic HCV vaccines and a number of studies in the chimpanzee model have been performed, all of which resulted in modified infections after challenge but did not always prevent persistence of the virus. Therapeutic vaccine strategies have also been pursued in an effort to reduce the costs and side effects associated with anti-viral drug treatment. This review summarizes the studies performed thus far in both patients and chimpanzees for prophylactic and therapeutic vaccination, assesses the progress made and future perspectives.

  8. The Development of Therapeutic and Diagnostic Countermeasures to WMD by the Advanced Medical Countermeasures Consortium