Sample records for detonation rocket engine

  1. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines (United States)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two

  2. Standing detonation wave engine

    KAUST Repository

    Kasimov, Aslan


    A detonation engine can detonate a mixture of fuel and oxidizer within a cylindrical detonation region to produce work. The detonation engine can have a first and a second inlet having ends fluidly connected from tanks to the detonation engine. The first and second inlets can be aligned along a common axis. The inlets can be connected to nozzles and a separator can be positioned between the nozzles and along the common axis.

  3. Pulse Detonation Rocket MHD Power Experiment (United States)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)


    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  4. Quasi-1 Dimensional Modeling of Rotational Detonation Engines (United States)

    National Aeronautics and Space Administration — This project looks to investigate the modeling of rotational detonation engines (RDE). RDEs are an alternative engine cycle to conventional liquid rocket engines,...

  5. Detonation Jet Engine. Part 2--Construction Features (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.


    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. Detonation engines of various concepts, pulse detonation, rotational and engine with stationary detonation wave, are reviewed. Main trends in detonation engine development are discussed. The most important works that carried out…

  6. Development of a numerical tool to study the mixing phenomenon occurring during mode one operation of a multi-mode ejector-augmented pulsed detonation rocket engine (United States)

    Dawson, Joshua

    A novel multi-mode implementation of a pulsed detonation engine, put forth by Wilson et al., consists of four modes; each specifically designed to capitalize on flow features unique to the various flow regimes. This design enables the propulsion system to generate thrust through the entire flow regime. The Multi-Mode Ejector-Augmented Pulsed Detonation Rocket Engine operates in mode one during take-off conditions through the acceleration to supersonic speeds. Once the mixing chamber internal flow exceeds supersonic speed, the propulsion system transitions to mode two. While operating in mode two, supersonic air is compressed in the mixing chamber by an upstream propagating detonation wave and then exhausted through the convergent-divergent nozzle. Once the velocity of the air flow within the mixing chamber exceeds the Chapman-Jouguet Mach number, the upstream propagating detonation wave no longer has sufficient energy to propagate upstream and consequently the propulsive system shifts to mode three. As a result of the inability of the detonation wave to propagate upstream, a steady oblique shock system is established just upstream of the convergent-divergent nozzle to initiate combustion. And finally, the propulsion system progresses on to mode four operation, consisting purely of a pulsed detonation rocket for high Mach number flight and use in the upper atmosphere as is needed for orbital insertion. Modes three and four appear to be a fairly significant challenge to implement, while the challenge of implementing modes one and two may prove to be a more practical goal in the near future. A vast number of potential applications exist for a propulsion system that would utilize modes one and two, namely a high Mach number hypersonic cruise vehicle. There is particular interest in the dynamics of mode one operation, which is the subject of this research paper. Several advantages can be obtained by use of this technology. Geometrically the propulsion system is fairly

  7. Pulse Detonation Rocket Magnetohydrodynamic Power Experiment (United States)

    Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.


    The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

  8. Confined Detonations and Pulse Detonation Engines

    National Research Council Canada - National Science Library

    Roy, Gabriel D; Frolov, Sergi M; Santoro, Robert J; Tsyganov, Sergei A


    .... Contrary to the oblique-detonation concept that is applicable to hypersonic flight at velocities comparable or higher than the Chapman-Jouguet detonation velocity of the fuel-air mixture, the concept...

  9. Detonation Jet Engine. Part 1--Thermodynamic Cycle (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.


    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  10. Development of Detonation Modeling Capabilities for Rocket Test Facilities: Hydrogen-Oxygen-Nitrogen Mixtures (United States)

    Allgood, Daniel C.


    The objective of the presented work was to develop validated computational fluid dynamics (CFD) based methodologies for predicting propellant detonations and their associated blast environments. Applications of interest were scenarios relevant to rocket propulsion test and launch facilities. All model development was conducted within the framework of the Loci/CHEM CFD tool due to its reliability and robustness in predicting high-speed combusting flow-fields associated with rocket engines and plumes. During the course of the project, verification and validation studies were completed for hydrogen-fueled detonation phenomena such as shock-induced combustion, confined detonation waves, vapor cloud explosions, and deflagration-to-detonation transition (DDT) processes. The DDT validation cases included predicting flame acceleration mechanisms associated with turbulent flame-jets and flow-obstacles. Excellent comparison between test data and model predictions were observed. The proposed CFD methodology was then successfully applied to model a detonation event that occurred during liquid oxygen/gaseous hydrogen rocket diffuser testing at NASA Stennis Space Center.

  11. Aerospike Nozzle for Rotating Detonation Engine Application (United States)

    National Aeronautics and Space Administration — This proposal presents a graduate MS research thesis on improving the efficiency of rotating detonation engines by using aerospike nozzle technologies. A rotating...

  12. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.


    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  13. Liquid Rocket Engine Testing (United States)


    and storable propellants • Liquid Oxygen (LOX) • RP-1 (Kerosene, very similar to JP-8) • Liquid Hydrogen • Liquid methane • Pressure = Performance in...booster rocket engines • 6000-10000 psia capabilities – Can use gaseous nitrogen, helium, or hydrogen to pressurize propellant tanks 9Distribution A...demonstrator of a Kerosene-LOX, 250,000 lbf, 3000 psi oxygen-rich staged combustion engine (ORSC) • AFRL’s Test Stand 2A recently completed a two-year

  14. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly


    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  15. Detonation Propagation Through Ducts in a Pulsed Detonation Engine (United States)


    Collin, Adam, Mike, Bob , Jared, Josh, you guys are awesome! Jeff Nielsen vi Table of Contents Page Abstract...pp. 375-381. 9. Feivisohn, Robert T. Numerical Investigation of Pre-detonator Geometries for PDE Applications. MS thesis, AFIT/GAE/ENY/10-M09... Berman , M. Hydrogen-Air Detonations, 19th Symposium (Int.) on Combustion, pp. 583-590, 1982. 16. Knystautas, R., Guirao, C., Lee, J.H., and

  16. Centrifugal pumps for rocket engines (United States)

    Campbell, W. E.; Farquhar, J.


    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  17. Rocket Engine Altitude Simulation Technologies (United States)

    Woods, Jody L.; Lansaw, John


    John C. Stennis Space Center is embarking on a very ambitious era in its rocket engine propulsion test history. The first new large rocket engine test stand to be built at Stennis Space Center in over 40 years is under construction. The new A3 Test Stand is designed to test very large (294,000 Ibf thrust) cryogenic propellant rocket engines at a simulated altitude of 100,000 feet. A3 Test Stand will have an engine testing chamber where the engine will be fired after the air in the chamber has been evacuated to a pressure at the simulated altitude of less than 0.16 PSIA. This will result in a very unique environment with extremely low pressures inside a very large chamber and ambient pressures outside this chamber. The test chamber is evacuated of air using a 2-stage diffuser / ejector system powered by 5000 lb/sec of steam produced by 27 chemical steam generators. This large amount of power and flow during an engine test will result in a significant acoustic and vibrational environment in and around A3 Test Stand.

  18. Unique nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Culver, D.W.; Rochow, R.


    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps

  19. Rocket Engine Numerical Simulator (RENS) (United States)

    Davidian, Kenneth O.


    Work is being done at three universities to help today's NASA engineers use the knowledge and experience of their Apolloera predecessors in designing liquid rocket engines. Ground-breaking work is being done in important subject areas to create a prototype of the most important functions for the Rocket Engine Numerical Simulator (RENS). The goal of RENS is to develop an interactive, realtime application that engineers can utilize for comprehensive preliminary propulsion system design functions. RENS will employ computer science and artificial intelligence research in knowledge acquisition, computer code parallelization and objectification, expert system architecture design, and object-oriented programming. In 1995, a 3year grant from the NASA Lewis Research Center was awarded to Dr. Douglas Moreman and Dr. John Dyer of Southern University at Baton Rouge, Louisiana, to begin acquiring knowledge in liquid rocket propulsion systems. Resources of the University of West Florida in Pensacola were enlisted to begin the process of enlisting knowledge from senior NASA engineers who are recognized experts in liquid rocket engine propulsion systems. Dr. John Coffey of the University of West Florida is utilizing his expertise in interviewing and concept mapping techniques to encode, classify, and integrate information obtained through personal interviews. The expertise extracted from the NASA engineers has been put into concept maps with supporting textual, audio, graphic, and video material. A fundamental concept map was delivered by the end of the first year of work and the development of maps containing increasing amounts of information is continuing. Find out more information about this work at the Southern University/University of West Florida. In 1996, the Southern University/University of West Florida team conducted a 4day group interview with a panel of five experts to discuss failures of the RL10 rocket engine in conjunction with the Centaur launch vehicle. The

  20. Measuring Model Rocket Engine Thrust Curves (United States)

    Penn, Kim; Slaton, William V.


    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  1. Metal Matrix Composites for Liquid Rocket Engines

    National Research Council Canada - National Science Library

    Shelley, J


    ...) technologies being developed for application to Liquid Rocket Engines (LIRE). Developments in LRE technology for the US Air Force are being tracked and planned through the Integrated High Payoff Rocket Propulsion Technologies Program (IHPRPT...

  2. Pulse Detonation Engine Air Induction System Analysis (United States)

    Pegg, R. J.; Hunter, L. G.; Couch, B. D.


    A preliminary mixed-compression inlet design concept for potential pulse-detonation engine (PDE) powered supersonic aircraft was defined and analyzed. The objectives of this research were to conceptually design and integrate an inlet/PDE propulsion system into a supersonic aircraft, perform time-dependent CFD analysis of the inlet flowfield, and to estimate the installed PDE cycle performance. The study was baselined to a NASA Mach 5 Waverider study vehicle in which the baseline over/under turboramjet engines were replaced with a single flowpath PDE propulsion system. As much commonality as possible was maintained with the baseline configuration, including the engine location and forebody lines. Modifications were made to the inlet system's external ramp angles and a rotating cowl lip was incorporated to improve off-design inlet operability and performance. Engines were sized to match the baseline vehicle study's ascent trajectory thrust requirement at Mach 1.2. The majority of this study was focused on a flight Mach number of 3.0. The time-dependent Navier Stokes CFD analyses of a two-dimensional approximation of the inlet was conducted for the Mach 3.0 condition. The Lockheed Martin Tactical Aircraft Systems-developed FALCON CFD code with a two equation 'k-1' turbulence model was used. The downstream PDE was simulated by an array of four sonic nozzles in which the flow areas were rapidly varied in various opening/closing combinations. Results of the CFD study indicated that the inlet design concept operated successfully at the Mach 3.0 condition, satisfying mass capture, total pressure recovery, and operability requirements. Time-dependent analysis indicated that pressure and expansion waves from the simulated valve perturbations did not effect the inlet's operability or performance.

  3. Investigation on Novel Methods to Increase Specific Thrust in Pulse Detonation Engines via Imploding Detonations (United States)

    Ho, Ivan


    Pulse Detonation Engines (PDE) is seen to be the next generation propulsion systems due to enhanced thermodynamic efficiencies. One of the limitations in fielding practical designs has been attributed to tube diameters not exceeding 5 inches, thus affecting specific thrust. Novel methods via imploding detonations were investigated to remove such limitations. During the study, a practical computational cell size was first determined so as to capture the required physics for detonation wave propagation using a Hydrogen-Air test case. Through a grid sensitivity analysis, one-quarter of the induction length was found sufficient to capture the experimentally observed detonation wave structure. Test case models utilizing axi-symmetric head-on implosions were studied in order to understand how the implosion process reinforces a detonation wave as it expands. This in effect creates localized overdriven regions, which maintains the transition process to full detonation. A parametric study was also performed to determine the extent of diameter increase for such that practical designs could be fielded. It was found in the study that diameters of up to 12 inches could be achieved with reasonable run length distances.

  4. Development and application of theoretical models for Rotating Detonation Engine flowfields (United States)

    Fievisohn, Robert

    As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new

  5. Program For Optimization Of Nuclear Rocket Engines (United States)

    Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.


    NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.

  6. Nitrous Oxide/Paraffin Hybrid Rocket Engines (United States)

    Zubrin, Robert; Snyder, Gary


    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  7. Yes--This is Rocket Science: MMCs for Liquid Rocket Engines

    National Research Council Canada - National Science Library

    Shelley, J


    The Air Force's Integrated High-Payoff Rocket Propulsion Technologies (IHPRPT) Program has established aggressive goals for both improved performance and reduced cost of rocket engines and components...

  8. Exhaust Gas Emissions from a Rotating Detonation-wave Engine (United States)

    Kailasanath, Kazhikathra; Schwer, Douglas


    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  9. Characterization of Pulse Detonation Engine Performance with Varying Free Stream Stagnation Pressure Levels

    National Research Council Canada - National Science Library

    Knick, Wesley R


    A pulse detonation engine operates on the principle that a fuel-air mixture injected into a tube will ignite and undergo a transition from a deflagration to a detonation and exit the tube at supersonic velocities...

  10. The Strutjet Rocket Based Combined Cycle Engine (United States)

    Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.


    The multi stage chemical rocket has been established over many years as the propulsion System for space transportation vehicles, while, at the same time, there is increasing concern about its continued affordability and rather involved reusability. Two broad approaches to addressing this overall launch cost problem consist in one, the further development of the rocket motor, and two, the use of airbreathing propulsion to the maximum extent possible as a complement to the limited use of a conventional rocket. In both cases, a single-stage-to-orbit (SSTO) vehicle is considered a desirable goal. However, neither the "all-rocket" nor the "all-airbreathing" approach seems realizable and workable in practice without appreciable advances in materials and manufacturing. An affordable system must be reusable with minimal refurbishing on-ground, and large mean time between overhauls, and thus with high margins in design. It has been suggested that one may use different engine cycles, some rocket and others airbreathing, in a combination over a flight trajectory, but this approach does not lead to a converged solution with thrust-to-mass, specific impulse, and other performance and operational characteristics that can be obtained in the different engines. The reason is this type of engine is simply a combination of different engines with no commonality of gas flowpath or components, and therefore tends to have the deficiencies of each of the combined engines. A further development in this approach is a truly combined cycle that incorporates a series of cycles for different modes of propulsion along a flight path with multiple use of a set of components and an essentially single gas flowpath through the engine. This integrated approach is based on realizing the benefits of both a rocket engine and airbreathing engine in various combinations by a systematic functional integration of components in an engine class usually referred to as a rocket-based combined cycle (RBCC) engine

  11. Additive Manufacturing for Affordable Rocket Engines (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty


    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  12. A Multidisciplinary Study of Pulse Detonation Engine Propulsion

    National Research Council Canada - National Science Library

    Santoro, Robert


    .... The multidisciplinary research effort brought together a team of leading researchers in the areas of the initiation and propagation of detonations, liquid hydrocarbon spray detonation, combustion...

  13. Hydrocarbon Rocket Engine Plume Imaging with Laser Induced Incandescence Project (United States)

    National Aeronautics and Space Administration — NASA/ Marshall Space Flight Center (MSFC) needs sensors that can be operated on rocket engine plume environments to improve NASA/SSC rocket engine performance. In...

  14. Energy Loss in Pulse Detonation Engine due to Fuel Viscosity

    Directory of Open Access Journals (Sweden)

    Weipeng Hu


    Full Text Available Fluid viscosity is a significant factor resulting in the energy loss in most fluid dynamical systems. To analyze the energy loss in the pulse detonation engine (PDE due to the viscosity of the fuel, the energy loss in the Burgers model excited by periodic impulses is investigated based on the generalized multisymplectic method in this paper. Firstly, the single detonation energy is simplified as an impulse; thus the complex detonation process is simplified. And then, the symmetry of the Burgers model excited by periodic impulses is studied in the generalized multisymplectic framework and the energy loss expression is obtained. Finally, the energy loss in the Burgers model is investigated numerically. The results in this paper can be used to explain the difference between the theoretical performance and the experimental performance of the PDE partly. In addition, the analytical approach of this paper can be extended to the analysis of the energy loss in other fluid dynamic systems due to the fluid viscosity.

  15. AJ26 rocket engine testing news briefing (United States)


    NASA's John C. Stennis Space Center Director Gene Goldman (center) stands in front of a 'pathfinder' rocket engine with Orbital Sciences Corp. President and Chief Operating Officer J.R. Thompson (left) and Aerojet President Scott Seymour during a Feb. 24 news briefing at the south Mississippi facility. The leaders appeared together to announce a partnership for testing Aerojet AJ26 rocket engines at Stennis. The engines will be used to power Orbital's Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. During the event, the Stennis partnership with Orbital was cited as an example of the new direction of NASA to work with commercial interests for space travel and transport.

  16. Closed-cycle liquid propellant rocket engines (United States)

    Kuznetsov, N. D.


    The paper presents experience gained by SSSPE TRUD in development of NK-33, NK-43, NK-39, and NK-31 liquid propellant rocket engines, which are reusable, closed-cycle type, working on liquid oxygen and kerosene. Results are presented showing the engine structure efficiency, configuration rationality, and optimal thrust values which provide the following specific parameters: specific vacuum impulses in the range 331-353 s (for NK-33 and NK-31 engines, respectively) and specific weight of about 8 kg/tf (NK-33 and NK-43 engines). The problems which occurred during engine development and the study of the main components of these engines are discussed. The important technical data, materials, methodology, and bench development data are presented for the gas generator, turbopump assembly, combustion chamber and full-scale engines.

  17. On the deflagration-to-detonation transition (DDT) process with added energetic solid particles for pulse detonation engines (PDE) (United States)

    Nguyen, V. B.; Li, J.; Chang, P.-H.; Phan, Q. T.; Teo, C. J.; Khoo, B. C.


    In this paper, numerical simulations are performed to study the dynamics of the deflagration-to-detonation transition (DDT) in pulse detonation engines (PDE) using energetic aluminum particles. The DDT process and detonation wave propagation toward the unburnt hydrogen/air mixture containing solid aluminum particles is numerically studied using the Eulerian-Lagrangian approach. A hybrid numerical methodology combined with appropriate sub-models is used to capture the gas dynamic characteristics, particle behavior, combustion characteristics, and two-way solid-particle-gas flow interactions. In our approach, the gas mixture is expressed in the Eulerian frame of reference, while the solid aluminum particles are tracked in the Lagrangian frame of reference. The implemented computer code is validated using published benchmark problems. The obtained results show that the aluminum particles not only shorten the DDT length but also reduce the DDT time. The improvement of DDT is primarily attributed to the heat released from surface chemical reactions on the aluminum particles. The temperatures associated with the DDT process are greater than the case of non-reacting particles added, with an accompanying rise in the pressure. For an appropriate range of particle volume fraction, particularly in this study, the higher volume fraction of the micro-aluminum particles added in the detonation chamber can lead to more heat energy released and more local instabilities in the combustion process (caused by the local high temperature), thereby resulting in a faster DDT process. In essence, the aluminum particles contribute to the DDT process of successfully transitioning to detonation waves for (failure) cases in which the fuel gas mixture can be either too lean or too rich. With a better understanding of the influence of added aluminum particles on the dynamics of the DDT and detonation process, we can apply it to modify the geometry of the detonation chamber (e.g., the length of

  18. Application of Anova to Pulse Detonation Engine Dynamic Performance Measurements (United States)

    Chander, Subhash; Kumar, Rakesh; Sandhu, Manmohan; Jindal, TK


    Application of Anova to Pulse detonation engine dynamic performance measurement resulted in quantifying engine functionality during various operations. After evaluating the performance, techniques of improving it, were applied in multiple areas of relevant interest. This produced encouraging results and helped in upscaling efforts in a significant manner. The current paper deals in the details of anova implementation and systematic identification of key areas of improvements. The improvements were carried out after careful selection of plans in the engine, ground rig and instrumentation setup etc. It also yielded better reproducibility of performance and optimization of main subsystems of PDE. Further, this will also contribute to reduce the development cycle and trial complexity also, if researchers continue to extract concern areas to be addressed.

  19. Software for Collaborative Engineering of Launch Rockets (United States)

    Stanley, Thomas Troy


    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  20. Rocket Engine Innovations Advance Clean Energy (United States)


    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  1. Rocket engine control and monitoring expert system (United States)

    Ali, Moonis; Crawford, Roger


    This paper focuses on the application of expert systems technology to the automatic detection, verification and correction of anomalous rocket engine operations through interfacing with an intelligent adaptive control system. The design of a reliable and intelligent propulsion control and monitoring system is outlined which includes the architecture of an Integrated Expert System (IES) serving as the core component. The IES functions include automatic knowledge acquisition, integrated knowledge base, and fault diagnosis and prediction methodology. The results of fault analysis and diagnostic techniques are presented for an example fault in the SSME main combustion chamber injectors.

  2. Numerical investigations of hybrid rocket engines (United States)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.


    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  3. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines (United States)


    pressure Qrs Elastic collision cross-section of the rth and sth species Ru Universal gas constant Rprod Specific gas constant (products) Rreac...cross-section and collisional frequency of the sth species, ve is the electron thermal velocity, and f is the electron distribution function. Electron

  4. Liquid fuel injection elements for rocket engines (United States)

    Cox, George B., Jr. (Inventor)


    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  5. Developments in REDES: The Rocket Engine Design Expert System (United States)

    Davidian, Kenneth O.


    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  6. Optical limiting in suspension of detonation nanodiamonds in engine oil (United States)

    Mikheev, Konstantin G.; Krivenkov, Roman Yu.; Mogileva, Tatyana N.; Puzyr, Alexey P.; Bondar, Vladimir S.; Bulatov, Denis L.; Mikheev, Gennady M.


    The optical limiting (OL) of detonation nanodiamond (DND) suspensions in engine oil was studied at a temperature range of 20°C to 100°C. Oil suspensions were prepared on the basis of the DNDs with an average nanoparticle cluster size in hydrosols (Daver) of 50 and 110 nm. Raman spectroscopy was used to characterize the samples. The OL investigation was carried out by the z-scan technique. The fundamental (1064 nm) and second (532 nm) harmonic radiations of YAG:Nd3+ laser with passive Q-switching as an excitation source were used. The OL thresholds for both suspensions at 532 and 1064 nm were determined. It is shown that a decrease in the average nanoparticle cluster size as well as an increase of the wavelength of the incident radiation leads to the OL threshold increase. It is established that the OL performance is not influenced by increasing the temperature from 20°C to 100°C. The results obtained show the possibility of using the DNDs suspensions in engine oil as an optical limiter in a wide temperature range.

  7. Comparative performance analysis of combined-cycle pulse detonation turbofan engines (PDTEs

    Directory of Open Access Journals (Sweden)

    Sudip Bhattrai


    Full Text Available Combined-cycle pulse detonation engines are promising contenders for hypersonic propulsion systems. In the present study, design and propulsive performance analysis of combined-cycle pulse detonation turbofan engines (PDTEs is presented. Analysis is done with respect to Mach number at two consecutive modes of operation: (1 Combined-cycle PDTE using a pulse detonation afterburner mode (PDA-mode and (2 combined-cycle PDTE in pulse detonation ramjet engine mode (PDRE-mode. The performance of combined-cycle PDTEs is compared with baseline afterburning turbofan and ramjet engines. The comparison of afterburning modes is done for Mach numbers from 0 to 3 at 15.24 km altitude conditions, while that of pulse detonation ramjet engine (PDRE is done for Mach 1.5 to Mach 6 at 18.3 km altitude conditions. The analysis shows that the propulsive performance of a turbine engine can be greatly improved by replacing the conventional afterburner with a pulse detonation afterburner (PDA. The PDRE also outperforms its ramjet counterpart at all flight conditions considered herein. The gains obtained are outstanding for both the combined-cycle PDTE modes compared to baseline turbofan and ramjet engines.

  8. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine


    Mboyi, Kalomba; Ren, Junxue; Liu, Yu


    A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the e...

  9. Software Estimates Costs of Testing Rocket Engines (United States)

    Smith, C. L.


    Simulation-Based Cost Model (SiCM), a discrete event simulation developed in Extend , simulates pertinent aspects of the testing of rocket propulsion test articles for the purpose of estimating the costs of such testing during time intervals specified by its users. A user enters input data for control of simulations; information on the nature of, and activity in, a given testing project; and information on resources. Simulation objects are created on the basis of this input. Costs of the engineering-design, construction, and testing phases of a given project are estimated from numbers and labor rates of engineers and technicians employed in each phase, the duration of each phase; costs of materials used in each phase; and, for the testing phase, the rate of maintenance of the testing facility. The three main outputs of SiCM are (1) a curve, updated at each iteration of the simulation, that shows overall expenditures vs. time during the interval specified by the user; (2) a histogram of the total costs from all iterations of the simulation; and (3) table displaying means and variances of cumulative costs for each phase from all iterations. Other outputs include spending curves for each phase.

  10. Evaluation of a Liquid-Fueled Pulse Detonation Engine Combustor

    National Research Council Canada - National Science Library

    Forster, David


    ... for use in the combustor. The chosen atomizer was installed in the combustor geometries and then analyzed over a range of combustor conditions to measure deflagration to detonation transition (DDT...

  11. Telemetry Boards Interpret Rocket, Airplane Engine Data (United States)


    For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.

  12. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines (United States)

    Povinelli, Louis A.; Yungster, Shaye


    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  13. The development and testing of pulsed detonation engine ground demonstrators (United States)

    Panicker, Philip Koshy


    The successful implementation of a PDE running on fuel and air mixtures will require fast-acting fuel-air injection and mixing techniques, detonation initiation techniques such as DDT enhancing devices or a pre-detonator, an effective ignition system that can sustain repeated firing at high rates and a fast and capable, closed-loop control system. The control system requires high-speed transducers for real-time monitoring of the PDE and the detection of the detonation wave speed. It is widely accepted that the detonation properties predicted by C-J detonation relations are fairly accurate in comparison to experimental values. The post-detonation flow properties can also be expressed as a function of wave speed or Mach number. Therefore, the PDE control system can use C-J relations to predict the post-detonation flow properties based on measured initial conditions and compare the values with those obtained from using the wave speed. The controller can then vary the initial conditions within the combustor for the subsequent cycle, by modulating the frequency and duty cycle of the valves, to obtain optimum air and fuel flow rates, as well as modulate the energy and timing of the ignition to achieve the required detonation properties. Five different PDE ground demonstrators were designed, built and tested to study a number of the required sub-systems. This work presents a review of all the systems that were tested, along with suggestions for their improvement. The PDE setups, ranged from a compact PDE with a 19 mm (3/4 in.) i.d., to two 25 mm (1 in.) i.d. setups, to a 101 mm (4 in.) i.d. dual-stage PDE setup with a pre-detonator. Propane-oxygen mixtures were used in the smaller PDEs. In the dual-stage PDE, propane-oxygen was used in the pre-detonator, while propane-air mixtures were used in the main combustor. Both rotary valves and solenoid valve injectors were studied. The rotary valves setups were tested at 10 Hz, while the solenoid valves were tested at up to 30 Hz

  14. Distributed Rocket Engine Testing Health Monitoring System, Phase I (United States)

    National Aeronautics and Space Administration — The on-ground and Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) provides a system architecture and software tools for performing diagnostics...

  15. Distributed Rocket Engine Testing Health Monitoring System, Phase II (United States)

    National Aeronautics and Space Administration — Leveraging the Phase I achievements of the Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) including its software toolsets and system building...

  16. Advanced Vortex Hybrid Rocket Engine (AVHRE), Phase II (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  17. Distributed Rocket Engine Testing Health Monitoring System Project (United States)

    National Aeronautics and Space Administration — Leveraging the Phase I achievements of the Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) including its software toolsets and system building...

  18. Distributed Rocket Engine Testing Health Monitoring System Project (United States)

    National Aeronautics and Space Administration — The on-ground and Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) provides a system architecture and software tools for performing diagnostics...

  19. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter, Phase I (United States)

    National Aeronautics and Space Administration — Spark ignition of a bi-propellant rocket engine is a classic, proven, and generally reliable process. However, timing can be critical, and the control logic,...

  20. Advanced Vortex Hybrid Rocket Engine (AVHRE), Phase I (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  1. Scale-Up of GRCop: From Laboratory to Rocket Engines (United States)

    Ellis, David L.


    GRCop is a high temperature, high thermal conductivity copper-based series of alloys designed primarily for use in regeneratively cooled rocket engine liners. It began with laboratory-level production of a few grams of ribbon produced by chill block melt spinning and has grown to commercial-scale production of large-scale rocket engine liners. Along the way, a variety of methods of consolidating and working the alloy were examined, a database of properties was developed and a variety of commercial and government applications were considered. This talk will briefly address the basic material properties used for selection of compositions to scale up, the methods used to go from simple ribbon to rocket engines, the need to develop a suitable database, and the issues related to getting the alloy into a rocket engine or other application.

  2. Propellant-Flow-Actuated Rocket Engine Igniter (United States)

    Wollen, Mark


    A rocket engine igniter has been created that uses a pneumatically driven hammer that, by specialized geometry, is induced into an oscillatory state that can be used to either repeatedly impact a piezoelectric crystal with sufficient force to generate a spark capable of initiating combustion, or can be used with any other system capable of generating a spark from direct oscillatory motion. This innovation uses the energy of flowing gaseous propellant, which by means of pressure differentials and kinetic motion, causes a hammer object to oscillate. The concept works by mass flows being induced through orifices on both sides of a cylindrical tube with one or more vent paths. As the mass flow enters the chamber, the pressure differential is caused because the hammer object is supplied with flow on one side and the other side is opened with access to the vent path. The object then crosses the vent opening and begins to slow because the pressure differential across the ball reverses due to the geometry in the tube. Eventually, the object stops because of the increasing pressure differential on the object until all of the kinetic energy has been transferred to the gas via compression. This is the point where the object reverses direction because of the pressure differential. This behavior excites a piezoelectric crystal via direct impact from the hammer object. The hammer strikes a piezoelectric crystal, then reverses direction, and the resultant high voltage created from the crystal is transferred via an electrode to a spark gap in the ignition zone, thereby providing a spark to ignite the engine. Magnets, or other retention methods, might be employed to favorably position the hammer object prior to start, but are not necessary to maintain the oscillatory behavior. Various manifestations of the igniter have been developed and tested to improve device efficiency, and some improved designs are capable of operation at gas flow rates of a fraction of a gram per second (0

  3. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi


    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  4. Engineering models of deflagration-to-detonation transition

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, J.B.; Son, S.F.


    For the past two years, Los Alamos has supported research into the deflagration-to-detonation transition (DDT) in damaged energetic materials as part of the explosives safety program. This program supported both a theory/modeling group and an experimentation group. The goal of the theory/modeling group was to examine the various modeling structures (one-phase models, two-phase models, etc.) and select from these a structure suitable to model accidental initiation of detonation in damaged explosives. The experimental data on low-velocity piston supported DDT in granular explosive was to serve as a test bed to help in the selection process. Three theoretical models have been examined in the course of this study: (1) the Baer-Nunziato (BN) model, (2) the Stewart-Prasad-Asay (SPA) model and (3) the Bdzil-Kapila-Stewart model. Here we describe these models, discuss their properties, and compare their features.

  5. Experimental investigation on valveless air-breathing dual-tube pulse detonation engines

    International Nuclear Information System (INIS)

    Peng, Changxin; Fan, Wei; Zheng, Longxi; Wang, Zhiwu; Yuan, Cheng


    Two-phase dual-tube air-breathing pulse detonation engine (APDE) experiments were performed to improve the understanding of the characteristics of valveless multi-tube APDE. Two different operation patterns were studied: simultaneously and single-tube firing. The synchronicity of detonation waves was quantified. The time interval was less than 1 ms and decreased with the increasing frequency. It was found which detonation wave arrived firstly had a degree of randomness. The situation that the detonation wave in a certain tube always kept ahead never happened in the experiments. The back-propagation pressure wave in the upstream inlet was also not synchronous. Its synchronicity was a little inferior than the detonation wave's and also improved with the increasing frequency. The pressure-rise occurred twice successively in the common air inlet and prolonged the period of pressure oscillations therein. The results of single-tube firing showed that the flow field in the non-detonate chamber was not only influenced by the diffracted wave downstream from the neighboring tube but also by the upstream-propagating pressure wave. Compared with the dual-tube firing, the operation pattern of single-tube firing is beneficial to reduce the pressure disturbance in the common air inlet. -- Highlights: ► Two-phase dual-tube APDE experiments were performed. ► The synchronicity of detonation waves was quantified. ► The synchronicity of back-propagation pressure was quantified. ► The flow field under different operation patterns were studied

  6. A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities (United States)

    Betts, Erin M.; Frederick, Robert A., Jr.


    This is a comprehensive systems study to examine and evaluate throttling capabilities of liquid rocket engines. The focus of this study is on engine components, and how the interactions of these components are considered for throttling applications. First, an assessment of space mission requirements is performed to determine what applications require engine throttling. A background on liquid rocket engine throttling is provided, along with the basic equations that are used to predict performance. Three engines are discussed that have successfully demonstrated throttling. Next, the engine system is broken down into components to discuss special considerations that need to be made for engine throttling. This study focuses on liquid rocket engines that have demonstrated operational capability on American space launch vehicles, starting with the Apollo vehicle engines and ending with current technology demonstrations. Both deep throttling and shallow throttling engines are discussed. Boost and sustainer engines have demonstrated throttling from 17% to 100% thrust, while upper stage and lunar lander engines have demonstrated throttling in excess of 10% to 100% thrust. The key difficulty in throttling liquid rocket engines is maintaining an adequate pressure drop across the injector, which is necessary to provide propellant atomization and mixing. For the combustion chamber, cooling can be an issue at low thrust levels. For turbomachinery, the primary considerations are to avoid cavitation, stall, surge, and to consider bearing leakage flows, rotordynamics, and structural dynamics. For valves, it is necessary to design valves and actuators that can achieve accurate flow control at all thrust levels. It is also important to assess the amount of nozzle flow separation that can be tolerated at low thrust levels for ground testing.

  7. Use of Soft Computing Technologies For Rocket Engine Control (United States)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael


    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  8. Detonation Initiation Studies and Performance Results for Pulsed Detonation Engine Applications

    National Research Council Canada - National Science Library

    Schauer, Fred; Stutrud, Jeff; Bradley, Royce


    ...) that uses a practical fuel (kerosene based, fleet-wide use, JP type) is currently underway at the Combustion Sciences Branch of the Turbine Engine Division of the Air Force Research Laboratory (AFRL/PRTS...

  9. Grooved Fuel Rings for Nuclear Thermal Rocket Engines (United States)

    Emrich, William


    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  10. Chemical Kinetics in the expansion flow field of a rotating detonation-wave engine (United States)

    Kailasanath, Kazhikathra; Schwer, Douglas


    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. A key step towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release.

  11. Rocket and Missile Container Engineering Guide (United States)


    complex equations which may, for the sake of expe- diency, be circumvented. To satisfy the intent of this handbook, it will suffice merely to be aware of...tabulates dm given h and Gm. 1-11 RATE OFTRAVEL To attain a required level of protection (G,.- factor), it has been shown that the item to be pro- tected...706-298 This page intentionally left blank. - 2-2 MISSILE OR ROCKET PROFILE SHILLELAGH • REDEYE LAUNCHER (CONTAINS .. MISSILE) M41A2 M41A3

  12. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves (United States)

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Arakawa, Yoshihiro; Katsurayama, Hiroshi


    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhausts at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area α. An engine cycle and predicted thrust was explained.

  13. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.


    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high

  14. Additive Manufacturing a Liquid Hydrogen Rocket Engine (United States)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris


    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  15. Performance, Applications, and Analysis of Rotating Detonation Engine Technologies (Preprint) (United States)


    a turboshaft engine for the first time. The performance of the RDE gas turbine engine is similar to or better than that of the conventional gas ...engines operating on hydrogen /air and ethylene/air mixtures. The encouraging results indicate that RDEs are capable of producing thrust with fuel ...for the first time. The performance of the RDE gas turbine engine is similar to or better than that of the conventional gas turbine engine across

  16. Two-step rocket engine bipropellant valve concept (United States)

    Capps, J. E.; Ferguson, R. E.; Pohl, H. O.


    Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber.

  17. Liquid rocket engine fluid-cooled combustion chambers (United States)


    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  18. Analysis of supercritical methane in rocket engine cooling channels

    NARCIS (Netherlands)

    Denies, L.; Zandbergen, B.T.C.; Natale, P.; Ricci, D.; Invigorito, M.


    Methane is a promising propellant for liquid rocket engines. As a regenerative coolant, it would be close to its critical point, complicating cooling analysis. This study encompasses the development and validation of a new, open-source computational fluid dynamics (CFD) method for analysis of

  19. Vacuum plasma spray applications on liquid fuel rocket engines (United States)

    McKechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.


    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  20. Fluidically Augmented Nozzles for Pulse Detonation Engine Applications (United States)


    ODIO lfA.CU~">~AI! CoofC(,fO TITLE: A.’>ICIIIA.t:MA.CM! lf’>IO:! l’>ICAHif, IWO P1A.Cl OlCfMAI ~ NPS Rocket Lab lootlf i>IA.Cl OICfMAI... ODIO ltACIO’>IA.I! A. .. CIIIA.f:MA.C•• 11’>10 • IWO ’•ACI OIC~AI : - loot!( ’•ACI OICfMAI ~ NUf’ffiCIOMIItC IOIIfAoC~’If: ~frr~1Al8:>61-T6

  1. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. Interim Revision, March 1976 (United States)

    Gordon, S.; Mcbride, B. J.


    A detailed description of the equations and computer program for computations involving chemical equilibria in complex systems is given. A free-energy minimization technique is used. The program permits calculations such as (1) chemical equilibrium for assigned thermodynamic states (T,P), (H,P), (S,P), (T,V), (U,V), or (S,V), (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. The program considers condensed species as well as gaseous species.

  2. Developing Avionics Hardware and Software for Rocket Engine Testing (United States)

    Aberg, Bryce Robert


    My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.

  3. Reliability Improvements in Liquid Rocket Engine Instrumentation (United States)

    Hill, A.; Acosta, E.


    Instrumentation hardware is often the weak link in advanced liquid fueled propulsion systems. The development of the Space Shuttle Main Engine (SSME) was no exception. By sheer necessity, a reusable, high energy, low weight engine system often relegates the instrumentation hardware to the backseat in the critical hardware development process. This produces less than optimum hardware constraints; including size, location, mounting, redundancy, and signal conditioning. This can negatively affect the development effort and ultimately the system reliability. The challenge was clear, however, the outcome was less certain. Unfortunately, the SSME hardware development culminated in series of measurement failures, most significant of which was the premature engine shutdown during the launch of STS-51F on July 29, 1985. The Return to Flight activities following the Challenger disaster redoubled our efforts to eliminate, once and for all, sensor malfunctions as the determining factor in overall engine reliability. This paper describes each phase of this effort in detail and includes discussion of the tasks related to improving measurement reliability.

  4. On the Exit Boundary Condition for One-Dimensional Calculations of Pulsed Detonation Engine Performance (United States)

    Wilson, Jack; Paxson, Daniel E.


    In one-dimensional calculations of pulsed detonation engine (PDE) performance, the exit boundary condition is frequently taken to be a constant static pressure. In reality, for an isolated detonation tube, after the detonation wave arrives at the exit plane, there will be a region of high pressure, which will gradually return to ambient pressure as an almost spherical shock wave expands away from the exit, and weakens. Initially, the flow is supersonic, unaffected by external pressure, but later becomes subsonic. Previous authors have accounted for this situation either by assuming the subsonic pressure decay to be a relaxation phenomenon, or by running a two-dimensional calculation first, including a domain external to the detonation tube, and using the resulting exit pressure temporal distribution as the boundary condition for one-dimensional calculations. These calculations show that the increased pressure does affect the PDE performance. In the present work, a simple model of the exit process is used to estimate the pressure decay time. The planar shock wave emerging from the tube is assumed to transform into a spherical shock wave. The initial strength of the spherical shock wave is determined from comparison with experimental results. Its subsequent propagation, and resulting pressure at the tube exit, is given by a numerical blast wave calculation. The model agrees reasonably well with other, limited, results. Finally, the model was used as the exit boundary condition for a one-dimensional calculation of PDE performance to obtain the thrust wall pressure for a hydrogen-air detonation in tubes of length to diameter ratio (L/D) of 4, and 10, as well as for the original, constant pressure boundary condition. The modified boundary condition had no performance impact for values of L/D > 10, and moderate impact for L/D = 4.

  5. Expert System Architecture for Rocket Engine Numerical Simulators: A Vision (United States)

    Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.


    Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.

  6. Nonlinear Control of a Reusable Rocket Engine for Life Extension (United States)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok


    This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.

  7. Schlieren image velocimetry measurements in a rocket engine exhaust plume (United States)

    Morales, Rudy; Peguero, Julio; Hargather, Michael


    Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.

  8. Analysis of supercritical methane in rocket engine cooling channels


    Denies, L.; Zandbergen, B.T.C.; Natale, P.; Ricci, D.; Invigorito, M.


    Methane is a promising propellant for liquid rocket engines. As a regenerative coolant, it would be close to its critical point, complicating cooling analysis. This study encompasses the development and validation of a new, open-source computational fluid dynamics (CFD) method for analysis of methane cooling channels. Validation with experimental data has been carried out, showing an accuracy within 20 K for wall temperature and 10% for pressure drop. It is shown that the turbulence model has...

  9. History of the Development of NERVA Nuclear Rocket Engine Technology

    International Nuclear Information System (INIS)

    David L., Black


    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably

  10. Oxidation of Copper Alloy Candidates for Rocket Engine Applications (United States)

    Ogbuji, Linus U. Thomas; Humphrey, Donald L.


    The gateway to affordable and reliable space transportation in the near future remains long-lived rocket-based propulsion systems; and because of their high conductivities, copper alloys remain the best materials for lining rocket engines and dissipating their enormous thermal loads. However, Cu and its alloys are prone to oxidative degradation -- especially via the ratcheting phenomenon of blanching, which occurs in situations where the local ambient can oscillate between oxidation and reduction, as it does in a H2/02- fuelled rocket engine. Accordingly, resistance to blanching degradation is one of the key requirements for the next generation of reusable launch vehicle (RLV) liner materials. Candidate copper alloys have been studied with a view to comparing their oxidation behavior, and hence resistance to blanching, in ambients corresponding to conditions expected in rocket engine service. These candidate materials include GRCop-84 and GRCop-42 (Cu - Cr-8 - Nb-4 and Cu - Cr-4 - Nb-2 respectively); NARloy-Z (Cu-3%Ag-0.5%Y), and GlidCop (Cu-O.l5%Al2O3 ODS alloy); they represent different approaches to improving the mechanical properties of Cu without incurring a large drop in thermal conductivity. Pure Cu (OFHC-Cu) was included in the study to provide a baseline for comparison. The samples were exposed for 10 hours in the TGA to oxygen partial pressures ranging from 322 ppm to 1.0 atmosphere and at temperatures of up to 700 C, and examined by SEM-EDS and other techniques of metallography. This paper will summarize the results obtained.

  11. Contact diagnostics of combustion products of rocket engines, their units, and systems (United States)

    Ivanov, N. N.; Ivanov, A. N.


    This article is devoted to a new block-module device used in the diagnostics of condensed combustion products of rocket engines during research and development with liquid-propellant rocket engines (Glushko NPO Energomash; engines RD-171, RD-180, and RD-191) and solid-propellant rocket motors. Soot samplings from the supersonic high-temperature jet of a high-power liquid-propellant rocket engine were taken by the given device for the first time in practice for closed-exhaust lines. A large quantity of significant results was also obtained during a combustion investigation of solid propellants within solid-propellant rocket motors.

  12. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam


    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  13. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F


    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  14. Effect of pre-combustion characteristics in pulse detonation engine using shchelkin spiral

    Directory of Open Access Journals (Sweden)

    C. T. Dheeraj Kumar Singh


    Full Text Available Pulse detonation engines are the modern propulsive device which provides high thrust. They are unsteady propulsive devices which has multi cycle operations in it. In this multi cycle process for every cycle fuel and air are initiated and a shock wave is generated in combustion chamber in form of deflagration. Combustion chamber is maintained with high pressure and high temperature which leads to combustion of reactants. This deflagration transmits to detonation with high velocity and increasing Mach number. Deflagration propagates forward by taking all unburned species and products formed after combustion. Propagation of Deflagration – Detonation Transition (DDT shock wave studies is a pioneering research concept. In the present study, simulation of PDE with Shchelkin spiral geometry is considered with two mass flow inlets has been used in which one is for fuel inlet and other for oxidizer. Geometry and meshing has been done in Gambit. Fuel used is gaseous fuel hydrogen and oxidizer is air mixture of O2, N2 work has been performed for different mass flow rates of fuel and oxidizer. Energy equation, Species transport equation to be solved in Fluent. Comparison results of DDT in parameters of mach number, velocity, pressure and temperatures depending on different time steps have been observed

  15. Rover nuclear rocket engine program: Overview of rover engine tests (United States)

    Finseth, J. L.


    The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.

  16. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Schnitzler; Stanley K. Borowski


    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564

  17. Reusable rocket engine preventive maintenance scheduling using genetic algorithm

    International Nuclear Information System (INIS)

    Chen, Tao; Li, Jiawen; Jin, Ping; Cai, Guobiao


    This paper deals with the preventive maintenance (PM) scheduling problem of reusable rocket engine (RRE), which is different from the ordinary repairable systems, by genetic algorithm. Three types of PM activities for RRE are considered and modeled by introducing the concept of effective age. The impacts of PM on all subsystems' aging processes are evaluated based on improvement factor model. Then the reliability of engine is formulated by considering the accumulated time effect. After that, optimization model subjected to reliability constraint is developed for RRE PM scheduling at fixed interval. The optimal PM combination is obtained by minimizing the total cost in the whole life cycle for a supposed engine. Numerical investigations indicate that the subsystem's intrinsic reliability characteristic and the improvement factor of maintain operations are the most important parameters in RRE's PM scheduling management

  18. Investigation of the cooling film distribution in liquid rocket engine

    Directory of Open Access Journals (Sweden)

    Luís Antonio Silva


    Full Text Available This study presents the results of the investigation of a cooling method widely used in the combustion chambers, which is called cooling film, and it is applied to a liquid rocket engine that uses as propellants liquid oxygen and kerosene. Starting from an engine cooling, whose film is formed through the fuel spray guns positioned on the periphery of the injection system, the film was experimentally examined, it is formed by liquid that seeped through the inner wall of the combustion chamber. The parameter used for validation and refinement of the theoretical penetration of the film was cooling, as this parameter is of paramount importance to obtain an efficient thermal protection inside the combustion chamber. Cold tests confirmed a penetrating cold enough cooling of the film for the length of the combustion chamber of the studied engine.

  19. Ceramic Matrix Composite Turbine Disk for Rocket Engines (United States)

    Effinger, Mike; Genge, Gary; Kiser, Doug


    NASA has recently completed testing of a ceramic matrix composite (CMC), integrally bladed disk (blisk) for rocket engine turbopumps. The turbopump's main function is to bring propellants from the tank to the combustion chamber at optimal pressures, temperatures, and flow rates. Advantages realized by using CMC blisks are increases in safety by increasing temperature margins and decreasing costs by increasing turbopump performance. A multidisciplinary team, involving materials, design, structural analysis, nondestructive inspection government, academia, and industry experts, was formed to accomplish the 4.5 year effort. This article will review some of the background and accomplishments of the CMC Blisk Program relative to the benefits of this technology.

  20. Structurally compliant rocket engine combustion chamber: Experimental and analytical validation (United States)

    Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.


    A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.

  1. Effects of rocket engines on laser during lunar landing

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiong, E-mail: [Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083 (China); Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063 (China); Shu, Rong; Huang, Genghua [Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083 (China)


    In the Chinese moon exploration project “ChangE-3”, the laser telemeter and lidar are important equipments on the lunar landing vehicle. A low-thrust vernier rocket engine works during the soft landing, whose plume may influence on the laser equipments. An experiment has first been accomplished to evaluate the influence of the plume on the propagation characteristics of infrared laser under the vacuum condition. Combination with our theoretical analysis has given an appropriate assessment of the plume's effects on the infrared laser hence providing a valuable basis for the design of lunar landing systems.

  2. Advances for laser ignition of internal combustion and rocket engines

    International Nuclear Information System (INIS)

    Schwarz, E.


    The scope of the PhD thesis presented here is the investigation of theoretical and practical aspects of laser-induced spark ignition and laser thermal ignition. Laser ignition systems are currently undergoing a rapidly development with growing intensity involving more and more research groups who mainly concentrate on the field of car and large combustion engines. This research is primarily driven by the engagement to meet the increasingly strict emission limits and by the intention to use the limited energy reserves more efficiently. For internal combustion engines, laser plasma-induced ignition will allow to combine the goals for legally required reductions of pollutant emissions and higher engine efficiencies. Also for rocket engines laser ignition turns out to be very attractive. A highly reliable ignition system like laser ignition would represent an option for introducing non-toxic propellants in order to replace highly toxic and carcinogenic hydrazine-based propellants commonly used in launch vehicle upper stages and satellites. The most important results on laser ignition and laser plasma generation, accomplished by the author and, in some respects, enriched by cooperation with colleagues are presented in the following. The emphasis of this thesis is placed on the following issues: - Two-color effects on laser plasma generation - Theoretical considerations about the focal volume concerning plasma generation - Plasma transmission experiments - Ignition experiments on laser-induced ignition - Ignition experiments on thermally-induced ignition - Feasibility study on laser ignition of rocket engines The purpose of the two-color laser plasma experiments is to investigate possible constructive interference effects of driving fields that are not monochromatic, but contain (second) harmonic radiation with respect to the goal of lowering the plasma generation threshold. Such effects have been found in a number of related processes, such as laser ablation or high

  3. Distributed Health Monitoring System for Reusable Liquid Rocket Engines (United States)

    Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.


    The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.

  4. Software for Estimating Costs of Testing Rocket Engines (United States)

    Hines, Merlon M.


    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  5. Boiler and Pressure Balls Monopropellant Thermal Rocket Engine (United States)

    Greene, William D. (Inventor)


    The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery

  6. Rocket-Plume Spectroscopy Simulation for Hydrocarbon-Fueled Rocket Engines (United States)

    Tejwani, Gopal D.


    The UV-Vis spectroscopic system for plume diagnostics monitors rocket engine health by using several analytical tools developed at Stennis Space Center (SSC), including the rocket plume spectroscopy simulation code (RPSSC), to identify and quantify the alloys from the metallic elements observed in engine plumes. Because the hydrocarbon-fueled rocket engine is likely to contain C2, CO, CH, CN, and NO in addition to OH and H2O, the relevant electronic bands of these molecules in the spectral range of 300 to 850 nm in the RPSSC have been included. SSC incorporated several enhancements and modifications to the original line-by-line spectral simulation computer program implemented for plume spectral data analysis and quantification in 1994. These changes made the program applicable to the Space Shuttle Main Engine (SSME) and the Diagnostic Testbed Facility Thruster (DTFT) exhaust plume spectral data. Modifications included updating the molecular and spectral parameters for OH, adding spectral parameter input files optimized for the 10 elements of interest in the spectral range from 320 to 430 nm and linking the output to graphing and analysis packages. Additionally, the ability to handle the non-uniform wavelength interval at which the spectral computations are made was added. This allowed a precise superposition of wavelengths at which the spectral measurements have been made with the wavelengths at which the spectral computations are done by using the line-by-line (LBL) code. To account for hydrocarbon combustion products in the plume, which might interfere with detection and quantification of metallic elements in the spectral region of 300 to 850 nm, the spectroscopic code has been enhanced to include the carbon-based combustion species of C2, CO, and CH. In addition, CN and NO have spectral bands in 300 to 850 nm and, while these molecules are not direct products of hydrocarbon-oxygen combustion systems, they can show up if nitrogen or a nitrogen compound is present

  7. Development Testing of 1-Newton ADN-Based Rocket Engines (United States)

    Anflo, K.; Gronland, T.-A.; Bergman, G.; Nedar, R.; Thormählen, P.


    With the objective to reduce operational hazards and improve specific and density impulse as compared with hydrazine, the Research and Development (R&D) of a new monopropellant for space applications based on AmmoniumDiNitramide (ADN), was first proposed in 1997. This pioneering work has been described in previous papers1,2,3,4 . From the discussion above, it is clear that cost savings as well as risk reduction are the main drivers to develop a new generation of reduced hazard propellants. However, this alone is not enough to convince a spacecraft builder to choose a new technology. Cost, risk and schedule reduction are good incentives, but a spacecraft supplier will ask for evidence that this new propulsion system meets a number of requirements within the following areas: This paper describes the ongoing effort to develop a storable liquid monopropellant blend, based on AND, and its specific rocket engines. After building and testing more than 20 experimental rocket engines, the first Engineering Model (EM-1) has now accumulated more than 1 hour of firing-time. The results from test firings have validated the design. Specific impulse, combustion stability, blow-down capability and short pulse capability are amongst the requirements that have been demonstrated. The LMP-103x propellant candidate has been stored for more than 1 year and initial material compatibility screening and testing has started. 1. Performance &life 2. Impact on spacecraft design &operation 3. Flight heritage Hereafter, the essential requirements for some of these areas are outlined. These issues are discussed in detail in a previous paper1 . The use of "Commercial Of The Shelf" (COTS) propulsion system components as much as possible is essential to minimize the overall cost, risk and schedule. This leads to the conclusion that the Technology Readiness Level (TRL) 5 has been reached for the thruster and propellant. Furthermore, that the concept of ADN-based propulsion is feasible.

  8. Software for Preprocessing Data from Rocket-Engine Tests (United States)

    Cheng, Chiu-Fu


    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris). EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PV-WAVE based plotting software.

  9. Replacement of chemical rocket launchers by beamed energy propulsion. (United States)

    Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya


    Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%.

  10. Analysis of Acoustic Cavitation Surge in a Rocket Engine Turbopump

    Directory of Open Access Journals (Sweden)

    Hideaki Nanri


    Full Text Available In a liquid rocket engine, cavitation in an inducer of a turbopump sometimes causes instability phenomena when the inducer is operated at low inlet pressure. Cavitation surge (auto-oscillation, one such instability phenomenon, has been discussed mainly based on an inertia model assuming incompressible flow. When this model is used, the frequency of the cavitation surge decreases continuously as the inlet pressure of the turbopump decreases. However, we obtained an interesting experimental result in which the frequency of cavitation surge varied discontinuously. Therefore, we employed one-dimensional analysis based on an acoustic model in which the fluid is assumed to be compressible. The analytical result qualitatively corresponded with the experimental result.

  11. Critical Performance of Turbopump Mechanical Elements for Rocket Engine (United States)

    Takada, Satoshi; Kikuchi, Masataka; Sudou, Takayuki; Iwasaki, Fumiya; Watanabe, Yoshiaki; Yoshida, Makoto

    It is generally acknowledged that bearings and axial seals have a tendency to go wrong compared with other rocket engine elements. And when those components have malfunction, missions scarcely succeed. However, fundamental performance (maximum rotational speed, minimum flow rate, power loss, durability, etc.) of those components has not been grasped yet. Purpose of this study is to grasp a critical performance of mechanical seal and hybrid ball bearing of turbopump. In this result, it was found that bearing outer race temperature and bearing coolant outlet temperature changed along saturation line of liquid hydrogen when flow rate was decreased under critical pressure. And normal operation of bearing was possible under conditions of more than 70,000 rpm of rotational speed and more than 0.2 liter/s of coolant flow rate. Though friction coefficient of seal surface increased several times of original value after testing, the seal showed a good performance same as before.

  12. Failure characteristics analysis and fault diagnosis for liquid rocket engines

    CERN Document Server

    Zhang, Wei


    This book concentrates on the subject of health monitoring technology of Liquid Rocket Engine (LRE), including its failure analysis, fault diagnosis and fault prediction. Since no similar issue has been published, the failure pattern and mechanism analysis of the LRE from the system stage are of particular interest to the readers. Furthermore, application cases used to validate the efficacy of the fault diagnosis and prediction methods of the LRE are different from the others. The readers can learn the system stage modeling, analyzing and testing methods of the LRE system as well as corresponding fault diagnosis and prediction methods. This book will benefit researchers and students who are pursuing aerospace technology, fault detection, diagnostics and corresponding applications.

  13. Ideal cycle analysis of a regenerative pulse detonation engine for power production (United States)

    Bellini, Rafaela

    Over the last few decades, considerable research has been focused on pulse detonation engines (PDEs) as a promising replacement for existing propulsion systems with potential applications in aircraft ranging from the subsonic to the lower hypersonic regimes. On the other hand, very little attention has been given to applying detonation for electric power production. One method for assessing the performance of a PDE is through thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for the PDE that was based on the assumption that the detonation process could be approximated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob cycle, which uses the one--dimensional Chapman--Jouguet (CJ) theory of detonation, has also been used to model the PDE cycle. However, an ideal PDE cycle must include a detonation based compression and heat release processes with a finite chemical reaction rate that is accounted for in the Zeldovich -- von Neumann -- Doring model of detonation where the shock is considered a discontinuous jump and is followed by a finite exothermic reaction zone. This work presents a thermodynamic cycle analysis for an ideal PDE cycle for power production. A code has been written that takes only one input value, namely the heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the points on the ZND cycle (both p--v and T--s plots), including the von Neumann spike and the CJ point along with all the non-dimensionalized state properties at each point. In addition, the program computes the points on the Humphrey and Brayton cycles for the same input value. Thus, the thermal efficiencies of the various cycles can be calculated and compared. The heat release of combustion is presented in a generic form to make the program usable with a wide variety of fuels and oxidizers and also allows for its use in a system for the real time monitoring and control of a PDE in which the heat of reaction

  14. Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine

    Directory of Open Access Journals (Sweden)

    Liu Yusi


    Full Text Available The continuously rotating detonation engine (CRDE is a new concept of engines for aircraft and spacecraft. Quasi-stable continuously rotating detonation (CRD can be observed in an annular combustion chamber, but the sustaining, stabilizing and adjusting mechanisms are not yet clear. To learn more deeply into the CRDE, experimental studies have been carried out to investigate hydrogen-oxygen CRDE. Pressure histories are obtained during each shot, which show that stable CRD waves are generated in the combustor, when feeding pressures are higher than 0.5 MPa for fuel and oxidizer, respectively. Each shot can keep running as long as fresh gas feeding maintains. Close-up of the pressure history shows the repeatability of pressure peaks and indicates the detonation velocity in hydrogen–oxygen CRD, which proves the success of forming a stable CRD in the annular chamber. Spectrum of the pressure history matches the close-up analysis and confirms the CRD. It also shows multi-wave phenomenon and affirms the fact that in this case a single detonation wave is rotating in the annulus. Moreover, oscillation phenomenon is found in pressure peaks and a self-adjusting mechanism is proposed to explain the phenomenon.

  15. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis (United States)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.


    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  16. Orbital Transfer Rocket Engine Technology. Advanced Engine Study, Task D.6 Final Report (United States)


    development using expert systems and artificial * intelligence techniques. 3.1.2 Power Balance I A rocket engine power balance is an energy and mass balnce com...the whitish, new-copper penny appearance. Blanched surfaces are commonly interconnected by subsurface " wormholing ," severe interconnected porosity, and...In particular, some techniques of artificial intelligence decision making should be adapted to handle this propulsion system. RPT/OOfl?. a/,.o..o 194

  17. Thrust stand for low-thrust liquid pulsed rocket engines (United States)

    Xing, Qin; Zhang, Jun; Qian, Min; Jia, Zhen-yuan; Sun, Bao-yuan


    A thrust stand is developed for measuring the pulsed thrust generated by low-thrust liquid pulsed rocket engines. It mainly consists of a thrust dynamometer, a base frame, a connecting frame, and a data acquisition and processing system. The thrust dynamometer assembled with shear mode piezoelectric quartz sensors is developed as the core component of the thrust stand. It adopts integral shell structure. The sensors are inserted into unique double-elastic-half-ring grooves with an interference fit. The thrust is transferred to the sensors by means of static friction forces of fitting surfaces. The sensors could produce an amount of charges which are proportional to the thrust to be measured. The thrust stand is calibrated both statically and dynamically. The in situ static calibration is performed using a standard force sensor. The dynamic calibration is carried out using pendulum-typed steel ball impact technique. Typical thrust pulse is simulated by a trapezoidal impulse force. The results show that the thrust stand has a sensitivity of 25.832 mV/N, a linearity error of 0.24% FSO, and a repeatability error of 0.23% FSO. The first natural frequency of the thrust stand is 1245 Hz. The thrust stand can accurately measure thrust waveform of each firing, which is used for fine control of on-orbit vehicles in the thrust range of 5-20 N with pulse frequency of 50 Hz.

  18. Rocket engine coaxial injector liquid/gas interface flow phenomena (United States)

    Mayer, Wolfgang; Kruelle, Gerd


    Coaxial injectors are used for the injection and mixing of propellants H2/O2 in cryogenic rocket engines. The aim of the theoretical and experimental investigations presented here is to elucidate some of the physical processes in coaxial injector flow with respect to their significance for atomization and mixing. Experiments with the simulation fluids H2O and air were performed under ambient conditions and at elevated counter pressures up to 20 bar. This article reports on phenomenological studies of spray generation under a broad variation of parameters using nanolight photography and high-speed cinematography (up to 3 x 10(exp 4) frames/s). Detailed theoretical and experimental studies of the surface evolution of turbulent jets were performed. Proof was obtained of the impact of internal fluid jet motions on surface deformation. The m = 1 nonaxisymmetric instability of the liquid jet seems to be superimposed onto the small-scale atomization process. A model is presented that calculates droplet atomization quantities as frequency, droplet diameter, and liquid core shape. The overall procedure for implementing this model as a global spray model is also described and an example calculation is presented.

  19. Temperature State of Noncooled Nozzle Adjutage of Liquid Rocket Engine

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin


    Full Text Available The increasing specific impulse of the liquid rocket engine (LRE, which is designed to operate in space or in rarefied atmosphere, is directly related to the increasing speed of the combustion gases in the outlet section of the nozzle due to increasing nozzle expansion ratio. An intensity of the convective heat transfer of LRE combustion with the supersonic part of a nozzle shell in the first approximation is inversely proportional to the cross sectional area of gas dynamic path and reduces substantially as approaching to the outlet section of the nozzle.Therefore, in case of large nozzle expansion ratio the use of modern heat-resistant materials allows us to implement its outlet section as a thin-walled uncooled adjutage. This design solution results in reducing total weight of nozzle and decreasing overall preheat of LRE propellant used to cool the engine chamber. For a given diameter of the nozzle outlet section and pressure of combustion gases in this section, to make informed choices of permissible length for uncooled adjutage, it is necessary to have a reliable estimate of its thermal state on the steady-state LRE operation. A mathematical model of the nozzle shell heat transfer with the gas stream taking into account the heat energy transfer by convection and radiation, as well as by heat conduction along the generatrix of the shell enables this estimate.Quantitative analysis of given mathematical model showed that, because of the comparatively low pressure and temperature level of combustion gases, it is acceptable to ignore their own radiation and absorption capacity as compared with the convective heat intensity and the surface nozzle radiation. Thus, re-radiation of its internal surface portions is a factor of importance. Its taking into consideration is the main feature of the developed mathematical model.

  20. Numerical Investigation of Detonation Combustion Wave in Pulse Detonation Combustor with Ejector


    P. Debnath; K. M. Pandey


    Detonation combustion based engines are more efficient compared to conventional deflagration based engines. Pulse detonation engine is the new concept in propulsion technology for future propulsion system. In this contrast, an ejector was used to modify the detonation wave propagation structure in pulse detonation engine combustor. In this paper k-ε turbulence model was used for detonation wave shock pattern simulation in PDE with ejectors at Ansys 14 Fluent platform. The unsteady Euler equat...

  1. A Numerical Study of Combined Convective and Radiative Heat Transfer in a Rocket Engine Combustion Chamber

    National Research Council Canada - National Science Library

    Savur, Mehmet


    A numerical study was conducted to predict the combined convective and radiative heat transfer rates on the walls of a small aspect ratio cylinder representative of the scaled model of a rocket engine combustion chamber...

  2. Improved Rocket Test Engine Video Recording with Computational Photography and Computer Vision Techniques (United States)

    National Aeronautics and Space Administration — High energy processes such as rocket engine flight certification ground testing require high-speed, high dynamic range video imaging in order to capture and record...

  3. Improved Rocket Test Engine Video Recording with Computational Photography and Computer Vision Techniques (United States)

    National Aeronautics and Space Administration — Rocket engine flight certification ground testing requires high-speed video recording that can capture essential information for NASA. This need is particularly true...

  4. Quasi-2D Unsteady Flow Solver Module for Rocket Engine and Propulsion System Simulations

    National Research Council Canada - National Science Library

    Campell, Bryan T; Davis, Roger L


    .... The solver is targeted to the commercial dynamic simulation software package Simulink(Registered) for integration into a larger suite of modules developed for simulating rocket engines and propulsion systems...

  5. Torch-Augmented Spark Igniter for Nanosat Launch Vehicle LOX/Propylene Rocket Engine, Phase I (United States)

    National Aeronautics and Space Administration — The technical innovation proposed here is the introduction of torch-augmented spark ignition for high performance liquid oxygen (LOX) / propylene rocket engines now...

  6. Code Validation of CFD Heat Transfer Models for Liquid Rocket Engine Combustion Devices

    National Research Council Canada - National Science Library

    Coy, E. B


    .... The design of the rig and its capabilities are described. A second objective of the test rig is to provide CFD validation data under conditions relevant to liquid rocket engine thrust chambers...

  7. Regeneratively-Cooled, Turbopump-Fed, Small-Scale Cryogenic Rocket Engines, Phase II (United States)

    National Aeronautics and Space Administration — To-date, the realization of small-scale, high-performance liquid bipropellant rocket engines has largely been limited by the inability to operate at high chamber...

  8. Multicamera High Dynamic Range High-Speed Video of Rocket Engine Tests and Launches (United States)

    National Aeronautics and Space Administration — High-speed video recording of rocket engine tests has several challenges. The scenes that are imaged have both bright and dark regions associated with plume emission...

  9. Proposal for a Concept Assessment of a Fission Fragment Rocket Engine (FFRE) Propelled Spacecraft Project (United States)

    National Aeronautics and Space Administration — A new technology, the Fission Fragment Rocket Engine (FFRE), requires small amounts of readily available, energy dense, long lasting fuel, significant thrust at...

  10. Development of test stand for experimental investigation of chemical and physical phenomena in Liquid Rocket Engine


    Emerson Andrade Santos; Wilton Fernandes Alves; André Neves Almeida Prado; Cristiane Aparecida Martins


    Abstract The main objective of this work was to present the specification of an experimental firing test stand for liquid rocket engines (LRE) and develop a program for control and acquisition of data. It provides conditions to test rocket engines with thrust from 50 to 100 kgf. A methodology for laboratory work implementation using information technology, which will allow the automatic and remote functioning of the test stand, permits users to input the necessary data to conduct tests safely...

  11. LOX/Methane Regeneratively-Cooled Rocket Engine Development (United States)

    National Aeronautics and Space Administration — The purpose of this project is to advance the technologies required to build a subcritical regeneratively cooled liquid oxygen/methane rocket combustion chamber for...

  12. Characterization and Performance of a Liquid Hydrocarbon-Fueled Pulse Detonation Rocket Engine

    National Research Council Canada - National Science Library

    Damphousse, Paul


    .... The first time use of a new electro-hydraulic liquid fuel injector was demonstrated to produce consistent atomization properties while allowing for varying fuel injection durations at frequencies up to 50 Hz...

  13. Schlieren Imaging and Pulsed Detonation Engine Testing of Ignition by a Nanosecond Repetitively Pulsed Discharge (United States)


    revised form 26 February 2015 Accepted 26 February 2015 Available online 17 March 2015 Keywords: Flame propagation Non-equilibrium plasma Plasma...and thus has a fas- ter energy deposition than these other plasma discharge types [3,8]. While all atmospheric pressure discharges must be initialized... flame and undergo DDT. Third is detonation wave propagation, which produces a rapid pressure rise, accelerating the burned gas through the detonation

  14. An historical perspective of the NERVA nuclear rocket engine technology program. Final Report

    International Nuclear Information System (INIS)

    Robbins, W.H.; Finger, H.B.


    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments

  15. An historical perspective of the NERVA nuclear rocket engine technology program (United States)

    Robbins, W. H.; Finger, H. B.


    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  16. Theoretical Acoustic Absorber Design Approach for LOX/LCH4 Pintle Injector Rocket Engines (United States)

    Candelaria, Jonathan

    Liquid rocket engines, or LREs, have served a key role in space exploration efforts. One current effort involves the utilization of liquid oxygen (LOX) and liquid methane (LCH4) LREs to explore Mars with in-situ resource utilization for propellant production. This on-site production of propellant will allow for greater payload allocation instead of fuel to travel to the Mars surface, and refueling of propellants to travel back to Earth. More useable mass yields a greater benefit to cost ratio. The University of Texas at El Paso's (UTEP) Center for Space Exploration and Technology Research Center (cSETR) aims to further advance these methane propulsion systems with the development of two liquid methane - liquid oxygen propellant combination rocket engines. The design of rocket engines, specifically liquid rocket engines, is complex in that many variables are present that must be taken into consideration in the design. A problem that occurs in almost every rocket engine development program is combustion instability, or oscillatory combustion. It can result in the destruction of the rocket, subsequent destruction of the vehicle and compromise the mission. These combustion oscillations can vary in frequency from 100 to 20,000 Hz or more, with varying effects, and occur from different coupling phenomena. It is important to understand the effects of combustion instability, its physical manifestations, how to identify the instabilities, and how to mitigate or dampen them. Linear theory methods have been developed to provide a mathematical understanding of the low- to mid-range instabilities. Nonlinear theory is more complex and difficult to analyze mathematically, therefore no general analytical method that yields a solution exists. With limited resources, time, and the advice of our NASA mentors, a data driven experimental approach utilizing quarter wave acoustic dampener cavities was designed. This thesis outlines the methodology behind the design of an acoustic

  17. Dual Regenerative Cooling Circuits for Liquid Rocket Engines (POSTPRINT)

    National Research Council Canada - National Science Library

    Naraghi, N. H; Dunn, S; Coats, D


    .... Two engines, the SSME and a RP1-LOX engine, are retrofitted with dual-circuits. It is shown that the maximum wall temperatures for both engines are substantially reduced while also lowering coolant pumping power...

  18. Investigation of low cost material processes for liquid rocket engines (United States)

    Nguyentat, Thinh; Kawashige, Chester M.; Scala, James G.; Horn, Ronald M.


    The development of low cost material processes is essential to the achievement of economical liquid rocket propulsion systems in the next century. This paper will present the results of the evaluation of some promising material processes including powder metallurgy, vacuum plasma spray, metal spray forming, and bulge forming. The physical and mechanical test results from the samples and subscale hardware fabricated from high strength copper alloys and superalloys will be discussed.

  19. Computer Design Technology of the Small Thrust Rocket Engines Using CAE / CAD Systems (United States)

    Ryzhkov, V.; Lapshin, E.


    The paper presents an algorithm for designing liquid small thrust rocket engine, the process of which consists of five aggregated stages with feedback. Three stages of the algorithm provide engineering support for design, and two stages - the actual engine design. A distinctive feature of the proposed approach is a deep study of the main technical solutions at the stage of engineering analysis and interaction with the created knowledge (data) base, which accelerates the process and provides enhanced design quality. The using multifunctional graphic package Siemens NX allows to obtain the final product -rocket engine and a set of design documentation in a fairly short time; the engine design does not require a long experimental development.

  20. Combustion oscillation study in a kerosene fueled rocket-based combined-cycle engine combustor (United States)

    Huang, Zhi-Wei; He, Guo-Qiang; Qin, Fei; Xue, Rui; Wei, Xiang-Geng; Shi, Lei


    This study reports the combustion oscillation features in a three-dimensional (3D) rocket-based combined-cycle (RBCC) engine combustor under flight Mach number (Mflight) 3.0 conditions both experimentally and numerically. Experiment is performed on a direct-connect ground test facility, which measures the wall pressure along the flow-path. High-speed imaging of the flame luminosity and schlieren is carried out at exit of the primary rocket. Compressible reactive large eddy simulation (LES) with reduced chemical kinetics of a surrogate model for kerosene is performed to further understand the combustion oscillation mechanisms in the combustor. LES results are validated with experimental data by the time-averaged and root mean square (RMS) pressure values, and show acceptable agreement. Effects of the primary rocket jet on pressure oscillation in the combustor are analyzed. Relation of the high speed rocket jet oscillation, which is thought to among the most probable sources of combustion oscillation, with the RBCC combustor is recognized. Results reveal that the unsteady over-expanded rocket jet has significant impacts on the combustion oscillation feature of the RBCC combustor, which is different from a thermo-acoustics type oscillation. The rocket jet/air inflow physical interactions under different rocket jet expansion degrees are experimentally studied.

  1. Experimental Research on Induction Systems of an Air-breathing Valveless Pulse Detonation Engine (United States)

    Wang, Zhi-wu; Chen, Xinggu; Zheng, Long-xi; Peng, Changxin; Yan, Chuan-jun


    An air-breathing valveless PDE model was designed and manufactured, which was made up of subsonic inlet, mixing chamber, ignition chamber, detonation chamber. The total pressure recovery coefficient, flux coefficient and intake resistance with six different induction systems were measured by a semi free subsonic flow field. The proof-of-principle experiments of PDE model with different induction systems were all successfully carried out, by using liquid gasoline-air mixture with low-energy system (total stored energy less than 50 mJ). The measured detonation wave pressure ratio was very close to that of C-J detonation. The air-breathing PDE model was easy to initiate and worked in good condition. The deflagration to detonation transition (DDT) and operation frequency effect on pressure traces were also investigated by experiments. The results indicated the oscillation of pressure peak at P6 enhanced with the operation frequency increased. DDT accomplished before P6 and the DDT distance was about 0.9 m (from the ignitor).

  2. Rocket Science: The Shuttle's Main Engines, though Old, Are not Forgotten in the New Exploration Initiative (United States)

    Covault, Craig


    The Space Shuttle Main Engine (SSME), developed 30 years ago, remains a strong candidate for use in the new Exploration Initiative as part of a shuttle-derived heavy-lift expendable booster. This is because the Boeing-Rocket- dyne man-rated SSME remains the most highly efficient liquid rocket engine ever developed. There are only enough parts for 12-15 existing SSMEs, however, so one NASA option is to reinitiate SSME production to use it as a throw-away, as opposed to a reusable, powerplant for NASA s new heavy-lift booster.

  3. LOX/Methane Regeneratively-Cooled Rocket Engine Development Project (United States)

    National Aeronautics and Space Administration — Design, build, and test a 5,000 lbf thrust regeneratively cooled combustion chamber at JSC for a low pressure liquid oxygen/methane engine. The engine demonstrates...

  4. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications (United States)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)


    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  5. Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines (United States)

    Brockmeyer, Jerry W.; Schnittgrund, Gary D.


    Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.

  6. Verification of Model of Calculation of Intra-Chamber Parameters In Hybrid Solid-Propellant Rocket Engines

    Directory of Open Access Journals (Sweden)

    Zhukov Ilya S.


    Full Text Available On the basis of obtained analytical estimate of characteristics of hybrid solid-propellant rocket engine verification of earlier developed physical and mathematical model of processes in a hybrid solid-propellant rocket engine for quasi-steady-state flow regime was performed. Comparative analysis of calculated and analytical data indicated satisfactory comparability of simulation results.

  7. JANNAF "Test and Evaluation Guidelines for Liquid Rocket Engines": Status and Application (United States)

    Parkinson, Douglas; VanLerberghe, Wayne M.; Rahman, Shamim A.


    For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in

  8. A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine (United States)


    and octane number were tested: n-heptane, isooctane , aviation gasoline, and JP-8. Results showed the FVS quickly provides a detonable mixture for all...fuel temperatures between 393 K and 533 K. The products from these reactions cause carbon particulates7 and carbonaceous deposits on metal surfaces in...tested. Table 1. Fuel vapor pressures (kPa) at various temperatures: from Refs. 12 and 13. Temperature (°C) isooctane n-heptane

  9. Fuel Composition and Performance Analysis of Endothermically Heated Fuels for Pulse Detonation Engines (United States)


    exchanger was constructed on an inner 2 in Inconel 625 schedule 10 pipe and an outer 2 ½ in Inconel 600 schedule 40 pipe 0.91 m (36 in) in length. The...switched to positions two and three for the remainder of the experiments. 46 The detonation tubes are fabricated from inconel and include heat...and four. Fuel Heating System 47 The fuel heating system centers around two pairs of inconel heat exchangers. The first pair was developed in

  10. Advanced acoustic cavity technology. [for hydrogen oxygen rocket engines (United States)

    Hines, W. S.; Oberg, C. L.; Kusak, L.


    A series of rocket motor firings was performed in a modified linear aerospike thrust chamber with the H2/O2 propellant combination to allow determination of the physical properties of the combustion gases in acoustic cavities located in the chamber side walls. A preliminary analytical study was first conducted to define theoretically both the appropriate cavity dimensions and the combustion gas flow field adjacent to the cavity openings. During the subsequent motor firings, cavity gas temperature profiles were measured and gas samples were withdrawn from the bottom of the cavities for compositional analysis by measurement of pressure/temperature variation and gas chromatography. Data were obtained with both radially and axially oriented cavities and with and without hydrogen bleed flow through the cavities. A simplified procedure was developed for predicting gas cavity and acoustic velocity for use in acoustic cavity design analyses.

  11. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Satira, E-mail:; King, Jeffrey, E-mail:


    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort.

  12. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.


    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  13. A feasibility study on using inkjet technology, micropumps, and MEMs as fuel injectors for bipropellant rocket engines


    Glynne-Jones, Peter; Coletti, M.; White, N.M.; Gabriel, S.B.; Bramanti, C.


    Control over drop size distributions, injection rates, and geometrical distribution of fuel and oxidizer sprays in bi-propellant rocket engines has the potential to produce more efficient, more stable, less polluting rocket engines. This control also offers the potential of an engine that can be throttled, working efficiently over a wide range of output thrusts. Inkjet printing technologies, MEMS fuel atomizers, and piezoelectric injectors similar in concept to those used in diesel engines ar...

  14. Theory of intrachamber processes and design of solid-propellant rocket engines (United States)

    Erokhin, Boris T.

    The theory of processes taking place inside the combustion chamber of solid-propellant rocket engines is presented, and methods of optimizing the design of such engines are discussed. In particular, attention is given to the selection of the solid propellant charge and igniters, volume density of the charge, structural and heat insulation materials, and thrust vector control devices. Examples of calculations of the nonstationary and quasi-stationary operating regimes and energy and mass characteristics are presented.

  15. Inspection of a prototype of rocket based combined cycle engine (United States)


    The Direct Gain Solar Thermal Engine was designed with no moving parts. The concept of Solar Thermal Propulsion Research uses focused solar energy from an inflatable concentrator (a giant magnifying glass) to heat a propellant (hydrogen) and allows thermal expansion through the nozzle for low thrust without chemical combustion. Energy limitations and propellant weight associated with traditional combustion engines are non-existant with this concept. The Direct Gain Solar Thermal Engine would be used for moving from a lower orbit to an upper synchronous orbit.

  16. Lightweight Exit Cone for Liquid Rocket Engines, Phase I (United States)

    National Aeronautics and Space Administration — The Pratt and Whitney Rocketdyne (PWR) J-2X engine will power the upper stage of the Ares I and the earth departure stage (EDS) of the Ares V, which will enable...

  17. Development of Advanced Rocket Engine Technology for Precision Guided Missiles

    National Research Council Canada - National Science Library

    Nusca, Michael J; Michaels, R. S


    ...) that can power tactical missiles for both current and future combat systems. The use of gel propellants brings the advantages of selectable thrust and the promise of small engine size but also introduces new challenges in combustion control...

  18. Thermonuclear detonation

    International Nuclear Information System (INIS)

    Feoktistov, L.P.


    The characteristics of, and energy transfer mechanisms involved in, thermonuclear detonation are discussed. What makes the fundamental difference between thermonuclear and chemical detonation is that the former has a high specific energy release and can therefore be employed for preliminary compressing the thermonuclear mixture ahead of the burning wave. Consequently, with moderate (mega joule) initiation energies, a steady-state detonation laboratory experiment with unlimited energy multiplication becomes a possibility

  19. Thermonuclear detonation

    International Nuclear Information System (INIS)

    Feoktistov, L P


    The characteristics of, and energy transfer mechanisms involved in, thermonuclear detonation are discussed. What makes the fundamental difference between thermonuclear and chemical detonation is that the former has a high specific energy release and can therefore be employed for preliminarily compressing the thermonuclear mixture ahead of the burning wave. Consequently, with moderate (megajoule) initiation energies, a steady-state detonation laboratory experiment with unlimited energy multiplication becomes a possibility. (from the history of physics)

  20. Rocket Engine Health Management: Early Definition of Critical Flight Measurements (United States)

    Christenson, Rick L.; Nelson, Michael A.; Butas, John P.


    The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.

  1. Artificial intelligence techniques for ground test monitoring of rocket engines (United States)

    Ali, Moonis; Gupta, U. K.


    An expert system is being developed which can detect anomalies in Space Shuttle Main Engine (SSME) sensor data significantly earlier than the redline algorithm currently in use. The training of such an expert system focuses on two approaches which are based on low frequency and high frequency analyses of sensor data. Both approaches are being tested on data from SSME tests and their results compared with the findings of NASA and Rocketdyne experts. Prototype implementations have detected the presence of anomalies earlier than the redline algorithms that are in use currently. It therefore appears that these approaches have the potential of detecting anomalies early eneough to shut down the engine or take other corrective action before severe damage to the engine occurs.

  2. Transient Mathematical Modeling for Liquid Rocket Engine Systems: Methods, Capabilities, and Experience (United States)

    Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.


    The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.

  3. Design of a 500 lbf liquid oxygen and liquid methane rocket engine for suborbital flight (United States)

    Trillo, Jesus Eduardo

    Liquid methane (LCH4)is the most promising rocket fuel for our journey to Mars and other space entities. Compared to liquid hydrogen, the most common cryogenic fuel used today, methane is denser and can be stored at a more manageable temperature; leading to more affordable tanks and a lighter system. The most important advantage is it can be produced from local sources using in-situ resource utilization (ISRU) technology. This will allow the production of the fuel needed to come back to earth on the surface of Mars, or the space entity being explored, making the overall mission more cost effective by enabling larger usable mass. The major disadvantage methane has over hydrogen is it provides a lower specific impulse, or lower rocket performance. The UTEP Center for Space Exploration and Technology Research (cSETR) in partnership with the National Aeronautics and Space Administration (NASA) has been the leading research center for the advancement of Liquid Oxygen (LOX) and Liquid Methane (LCH4) propulsion technologies. Through this partnership, the CROME engine, a throattable 500 lbf LOX/LCH4 rocket engine, was designed and developed. The engine will serve as the main propulsion system for Daedalus, a suborbital demonstration vehicle being developed by the cSETR. The purpose of Daedalus mission and the engine is to fire in space under microgravity conditions to demonstrate its restartability. This thesis details the design process, decisions, and characteristics of the engine to serve as a complete design guide.

  4. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments (United States)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.


    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  5. Design Considerations for Human Rating of Liquid Rocket Engines (United States)

    Parkinson, Douglas


    I.Human-rating is specific to each engine; a. Context of program/project must be understood. b. Engine cannot be discussed independently from vehicle and mission. II. Utilize a logical combination of design, manufacturing, and test approaches a. Design 1) It is crucial to know the potential ways a system can fail, and how a failure can propagate; 2) Fault avoidance, fault tolerance, DFMR, caution and warning all have roles to play. b. Manufacturing and Assembly; 1) As-built vs. as-designed; 2) Review procedures for assembly and maintenance periodically; and 3) Keep personnel trained and certified. c. There is no substitute for test: 1) Analytical tools are constantly advancing, but still need test data for anchoring assumptions; 2) Demonstrate robustness and explore sensitivities; 3) Ideally, flight will be encompassed by ground test experience. III. Consistency and repeatability is key in production a. Maintain robust processes and procedures for inspection and quality control based upon development and qualification experience; b. Establish methods to "spot check" quality and consistency in parts: 1) Dedicated ground test engines; 2) Random components pulled from the line/lot to go through "enhanced" testing.

  6. Analysis of startup strategies for a particle bed reactor nuclear rocket engine (United States)

    Suzuki, D. E.


    This paper develops and analyzes engine system startup strategies for a particle bed reactor (PBR) nuclear rocket engine. The strategies are designed to maintain stable flow through the PBR fuel element while reaching the design conditions as quickly as possible. The analyses are conducted using a computer model of a representative particle bed reactor and engine system. Elements of the startup strategy considered include: the coordinated control of reactor power and coolant flow; turbine inlet temperature and flow control; and use of an external starter system. The simulation results indicate that the use of an external starter system enables the engine to reach design conditions very quickly while maintaining the flow well away from the unstable regime. If a bootstrap start is used instead, the transient does not progress as fast and approaches closer to the unstable flow regime, but allows for greater engine reusability. These results can provide important information for engine designers and mission planners.

  7. The hard start phenomena in hypergolic engines. Volume 5: RCS engine deformation and destruct tests (United States)

    Miron, Y.; Perlee, H. E.


    Tests were conducted to determine the causes of Apollo Reaction Control (RCS) engine failures. Stainless steel engines constructed for use in the destructive tests are described. The tests conducted during the three phase investigation are discussed. It was determined that the explosive reaction that destroys the RCS engines occurs at the time of engine ignition and is apparently due to either the detonation of the heterogeneous constituents of the rocket engine, consisting primarily of unreacted propellant droplets and vapors, and/or the detonation of explosive materials accumulated on the engine walls from previous pulses. Photographs of the effects of explosions on the simulated RCS engines are provided.

  8. Development of test stand for experimental investigation of chemical and physical phenomena in Liquid Rocket Engine

    Directory of Open Access Journals (Sweden)

    Emerson Andrade Santos


    Full Text Available The main objective of this work was to present the specification of an experimental firing test stand for liquid rocket engines (LRE and develop a program for control and acquisition of data. It provides conditions to test rocket engines with thrust from 50 to 100 kgf. A methodology for laboratory work implementation using information technology, which will allow the automatic and remote functioning of the test stand, permits users to input the necessary data to conduct tests safely, achieve accurate measurements and obtain reliable results. The control of propellant mass flow rates by pressure regulators and other system valves, as well as the test stand data acquisition, are carried out automatically through LabVIEW commercial software. The test stand program is a readable, scalable and maintainable code. The test stand design and its development represent the state of art of experimental apparatus in LRE testing.

  9. Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments (United States)

    Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew


    The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response

  10. Pressure Distribution and Performance Impacts of Aerospike Nozzles on Rotating Detonation Engines (United States)


    to the propellant flow rate, exhaust velocity and pressure, and ambient conditions. For a steadily operating rocket propulsion system, the total...thrust at the exit plane, which is nonzero only when there exists an imbalance in ambient pressure and local exit pressure. B. NOZZLES Based on...accelerate combustion products to high exit velocities. Maximum possible thrust is obtained by complete expansion of the exhaust gases to the ambient

  11. Ablative material testing for low-pressure, low-cost rocket engines (United States)

    Richter, G. Paul; Smith, Timothy D.


    The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.

  12. Integrated Ceramic Matrix Composite and Carbon/Carbon Structures for Large Rocket Engine Nozzles and Nozzle Extensions Project (United States)

    National Aeronautics and Space Administration — Low-cost access to space demands durable, cost-effective, efficient, and low-weight propulsion systems. Key components include rocket engine nozzles and nozzle...

  13. Bi-Metallic Additive Manufacturing Close-Out of Coolant Channels for Large Liquid Rocket Engine (LRE) Nozzles, Phase I (United States)

    National Aeronautics and Space Administration — This NASA sponsored STTR project will investigate methods for close-out of large, liquid rocket engine nozzle, coolant channels utilizing robotic laser and...

  14. Paraffin-based hybrid rocket engines applications: A review and a market perspective (United States)

    Mazzetti, Alessandro; Merotto, Laura; Pinarello, Giordano


    Hybrid propulsion technology for aerospace applications has received growing attention in recent years due to its important advantages over competitive solutions. Hybrid rocket engines have a great potential for several aeronautics and aerospace applications because of their safety, reliability, low cost and high performance. As a consequence, this propulsion technology is feasible for a number of innovative missions, including space tourism. On the other hand, hybrid rocket propulsion's main drawback, i.e. the difficulty in reaching high regression rate values using standard fuels, has so far limited the maturity level of this technology. The complex physico-chemical processes involved in hybrid rocket engines combustion are of major importance for engine performance prediction and control. Therefore, further investigation is ongoing in order to achieve a more complete understanding of such phenomena. It is well known that one of the most promising solutions for overcoming hybrid rocket engines performance limits is the use of liquefying fuels. Such fuels can lead to notably increased solid fuel regression rate due to the so-called "entrainment phenomenon". Among liquefying fuels, paraffin-based formulations have great potentials as solid fuels due to their low cost, availability (as they can be derived from industrial waste), low environmental impact and high performance. Despite the vast amount of literature available on this subject, a precise focus on market potential of paraffins for hybrid propulsion aerospace applications is lacking. In this work a review of hybrid rocket engines state of the art was performed, together with a detailed analysis of the possible applications of such a technology. A market study was carried out in order to define the near-future foreseeable development needs for hybrid technology application to the aforementioned missions. Paraffin-based fuels are taken into account as the most promising segment for market development

  15. 14 CFR 33.47 - Detonation test. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Detonation test. 33.47 Section 33.47 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.47 Detonation test. Each engine...

  16. Preliminary design of a pressurization system for small bipropellant rocket engines (United States)

    Stanley, Steven

    A study was conducted on the feasibility of developing a device or system that would improve the performance of small, bipropellant rockets through pressurization of the propellants. Due to the limitations in the space industry, namely high development costs and resistance to change, the new approach needed to be as simple and robust as possible. After reviewing several different potential methodologies, a concept was developed from first principles based on small gas turbine engine fuel injection approaches. The concept is simple and has heritage in the field of gas turbine engines, but it is new for the field of rocket propulsion. Using the basic physics of the proposed baseline concept, a simulation was developed to optimize the design parameters and to explore the trade space. Exercising the resulting simulation led to the identification of the critical design parameters and key performance metrics. During the iteration process, the design was updated and finalized. The resulting configuration appears to be feasible and has the potential of providing a new capability for small bipropellant rockets. Based upon the results of the study, recommendations were developed and a plan was created to further the development of the pump.

  17. A unique nuclear thermal rocket engine using a particle bed reactor (United States)

    Culver, Donald W.; Dahl, Wayne B.; McIlwain, Melvin C.


    Aerojet Propulsion Division (APD) studied 75-klb thrust Nuclear Thermal Rocket Engines (NTRE) with particle bed reactors (PBR) for application to NASA's manned Mars mission and prepared a conceptual design description of a unique engine that best satisfied mission-defined propulsion requirements and customer criteria. This paper describes the selection of a sprint-type Mars transfer mission and its impact on propulsion system design and operation. It shows how our NTRE concept was developed from this information. The resulting, unusual engine design is short, lightweight, and capable of high specific impulse operation, all factors that decrease Earth to orbit launch costs. Many unusual features of the NTRE are discussed, including nozzle area ratio variation and nozzle closure for closed loop after cooling. Mission performance calculations reveal that other well known engine options do not support this mission.

  18. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary (United States)

    Liou, Larry C.


    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  19. Design and test of a small two stage counter-rotating turbine for rocket engine application (United States)

    Huber, F. W.; Branstrom, B. R.; Finke, A. K.; Johnson, P. D.; Rowey, R. J.; Veres, J. P.


    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The technology represented by this turbine is being developed for application in an advanced upper stage rocket engine turbopump. This engine will employ an oxygen/hydrogen expander cycle and achieve high performance through efficient combustion, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low flow rates result in very small airfoil diameter, height and chord. The high efficiency and small size requirements present a challenging turbine design problem. The unconventional approach employed to meet this challenge is described, along with the detailed design process and resulting airfoil configurations. The method and results of full scale aerodynamic performance evaluation testing of both one and two stage configurations, as well as operation without the secondary stage stator are presented. The overall results of this effort illustrate that advanced aerodynamic design tools and hardware fabrication techniques have provided improved capability to produce small high performance turbines for advanced rocket engines.

  20. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Directory of Open Access Journals (Sweden)

    Qiang WEI


    Full Text Available To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions. The overall model is benchmarked under various impingement angles, jet momentum and off-center ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  1. Thermohydraulic Design Analysis Modeling for Korea Advanced NUclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)


    Space exploration is a realistic and profitable goal for long-term humanity survival, although the harsh space environment imposes lots of severe challenges to space pioneers. To date, almost all space programs have relied upon Chemical Rockets (CRs) rating superior thrust level to transit from the Earth's surface to its orbit. However, CRs inherently have insurmountable barrier to carry out deep space missions beyond Earth's orbit due to its low propellant efficiency, and ensuing enormous propellant requirement and launch costs. Meanwhile, nuclear rockets typically offer at least two times the propellant efficiency of a CR and thus notably reduce the propellant demand. Particularly, a Nuclear Thermal Rocket (NTR) is a leading candidate for near-term manned missions to Mars and beyond because it satisfies a relatively high thrust as well as a high efficiency. The superior efficiency of NTRs is due to both high energy density of nuclear fuel and the low molecular weight propellant of Hydrogen (H{sub 2}) over the chemical reaction by-products. A NTR uses thermal energy released from a nuclear fission reactor to heat the H{sub 2} propellant and then exhausted the highly heated propellant through a propelling nozzle to produce thrust. A propellant efficiency parameter of rocket engines is specific impulse (I{sub s}p) which represents the ratio of the thrust over the propellant consumption rate. If the average exhaust H{sub 2} temperature of a NTR is around 3,000 K, the I{sub s}p can be achieved as high as 1,000 s as compared with only 450 - 500 s of the best CRs. For this reason, NTRs are favored for various space applications such as orbital tugs, lunar transports, and manned missions to Mars and beyond. The best known NTR development effort was conducted from 1955 to1974 under the ROVER and NERVA programs in the USA. These programs had successfully designed and tested many different reactors and engines. After these projects, the researches on NERVA derived

  2. A feasibility study on using inkjet technology, micropumps, and MEMs as fuel injectors for bipropellant rocket engines (United States)

    Glynne-Jones, Peter; Coletti, M.; White, N. M.; Gabriel, S. B.; Bramanti, C.


    Control over drop size distributions, injection rates, and geometrical distribution of fuel and oxidizer sprays in bi-propellant rocket engines has the potential to produce more efficient, more stable, less polluting rocket engines. This control also offers the potential of an engine that can be throttled, working efficiently over a wide range of output thrusts. Inkjet printing technologies, MEMS fuel atomizers, and piezoelectric injectors similar in concept to those used in diesel engines are considered for their potential to yield a new, more active injection scheme for a rocket engine. Inkjets are found to be unable to pump at sufficient pressures, and have possibly dangerous failure modes. Active injection is found to be feasible if high pressure drop along the injector plate is used. A conceptual design is presented and its basic behavior assessed.

  3. Gas core nuclear thermal rocket engine research and development in the former USSR

    International Nuclear Information System (INIS)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.


    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept

  4. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry (United States)

    Gradl, Paul


    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  5. Optimization of the stand for test of hybrid rocket engines of solid fuel

    Directory of Open Access Journals (Sweden)

    Zolotorev Nikolay


    Full Text Available In the paper the laboratory experimental stand of the hybrid rocket engine of solid fuel to study ballistic parameters of the engine at burning of high-energy materials in flow of hot gas is presented. Mixture of air with nitrogen with a specified content of active oxygen is used as a gaseous oxidizer. The experimental stand has modular design and consists of system of gas supply, system of heating of gas, system for monitoring gas parameters, to which a load cell with a model engine was connected. The modular design of the stand allows to change its configuration under specific objective. This experimental stand allows to conduct a wide range of the pilot studies at interaction of a hot stream of gas with samples high-energy materials.

  6. Development of an intelligent diagnostic system for reusable rocket engine control (United States)

    Anex, R. P.; Russell, J. R.; Guo, T.-H.


    A description of an intelligent diagnostic system for the Space Shuttle Main Engines (SSME) is presented. This system is suitable for incorporation in an intelligent controller which implements accommodating closed-loop control to extend engine life and maximize available performance. The diagnostic system architecture is a modular, hierarchical, blackboard system which is particularly well suited for real-time implementation of a system which must be repeatedly updated and extended. The diagnostic problem is formulated as a hierarchical classification problem in which the failure hypotheses are represented in terms of predefined data patterns. The diagnostic expert system incorporates techniques for priority-based diagnostics, the combination of analytical and heuristic knowledge for diagnosis, integration of different AI systems, and the implementation of hierarchical distributed systems. A prototype reusable rocket engine diagnostic system (ReREDS) has been implemented. The prototype user interface and diagnostic performance using SSME test data are described.

  7. Development of Aluminum Composites for a Rocket Engine's Lightweight Thrust Cell (United States)

    Lee, Jonathan A.; Elam, Sandy; Munafo, Paul M. (Technical Monitor)


    The Aerospike liquid fueled rocket engine for the X-33 aerospace vehicle consists of several thrust cells, which can comprise as much as 25% of the engine weight. The interior wall of the thrust cell chamber is exposed to high temperature combustion products and must be cooled by using liquid hydrogen. Ultimately, reducing engine weight would increase vehicle performance and allow heavier payload capabilities. Currently, the thrust cell's structural jacket and manifolds are made of stainless steel 347, which can potentially be replaced by a lighter material such as an Aluminum (Al) Metal Matrix Composites (MMC). Up to 50% weight reduction can be expected for each of the thrust cell chambers using particulate SiC reinforced Al MMC. Currently, several Al MMC thrust cell structural jackets have been produced, using cost-effective processes such as gravity casting and plasma spray deposition, to demonstrate MMC technology readiness for NASA's advanced propulsion systems.

  8. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Chang, Soon Heung


    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application

  9. Application of High Speed Digital Image Correlation in Rocket Engine Hot Fire Testing (United States)

    Gradl, Paul R.; Schmidt, Tim


    Hot fire testing of rocket engine components and rocket engine systems is a critical aspect of the development process to understand performance, reliability and system interactions. Ground testing provides the opportunity for highly instrumented development testing to validate analytical model predictions and determine necessary design changes and process improvements. To properly obtain discrete measurements for model validation, instrumentation must survive in the highly dynamic and extreme temperature application of hot fire testing. Digital Image Correlation has been investigated and being evaluated as a technique to augment traditional instrumentation during component and engine testing providing further data for additional performance improvements and cost savings. The feasibility of digital image correlation techniques were demonstrated in subscale and full scale hotfire testing. This incorporated a pair of high speed cameras to measure three-dimensional, real-time displacements and strains installed and operated under the extreme environments present on the test stand. The development process, setup and calibrations, data collection, hotfire test data collection and post-test analysis and results are presented in this paper.

  10. Structurally-compliant rocket engine combustion chamber: Experimental/analytical validation (United States)

    Jankovsky, R. S.; Kazaroff, J. M.; Galford, G. R.; Arya, V. K.


    A new, structurally-compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested, and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase in life over that of rectangular channel designs, the current state-of-the-art. Greater structural compliance in the circumferential direction gives rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal/durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives have corroborated the experimental observations.

  11. Modular simulation software development for liquid propellant rocket engines based on MATLAB Simulink

    Directory of Open Access Journals (Sweden)

    Naderi Mahyar


    Full Text Available Focusing on Liquid Propellant Rocket Engine (LPRE major components, a steady state modular simulation software has been established in MATLAB Simulink. For integrated system analysis, a new algorithm dependant on engine inlet mass flow rate and pressure is considered. Using the suggested algorithm, it is possible to evaluate engine component operation, similar to the known initial parameters during hot fire test of the engine on stand. As a case study, the reusable Space Shuttle Main Engine (SSME has been selected and the simulation has been performed to predict engine’s throttled operation at 109 percent of the nominal thrust value. For this purpose the engine actual flow diagram has been converted to 34 numerical modules and the engine has been modelled by solving a total of 101 steady state mathematic equations. The mean error of the simulation results is found to be less than 5% compared with the published SSME data. Using the presented idea and developed modules, it is possible to build up the numerical model and simulate other LPREs.

  12. Operation of a cryogenic rocket engine an outline with down-to-earth and up-to-space remarks

    CERN Document Server

    Kitsche, Wolfgang


    This book presents the operational aspects of the rocket engine on a test facility. It will be useful to engineers and scientists who are in touch with the test facility. To aerospace students it shall provide an insight of the job on the test facility. And to interest readers it shall provide an impression of this thrilling area of aerospace.

  13. Development and analysis of startup strategies for particle bed nuclear rocket engine (United States)

    Suzuki, David E.


    The particle bed reactor (PBR) nuclear thermal propulsion rocket engine concept is the focus of the Air Force's Space Nuclear Thermal Propulsion program. While much progress has been made in developing the concept, several technical issues remain. Perhaps foremost among these concerns is the issue of flow stability through the porous, heated bed of fuel particles. There are two complementary technical issues associated with this concern: the identification of the flow stability boundary and the design of the engine controller to maintain stable operation. This thesis examines a portion of the latter issue which has yet to be addressed in detail. Specifically, it develops and analyzes general engine system startup strategies which maintain stable flow through the PBR fuel elements while reaching the design conditions as quickly as possible. The PBR engine studies are conducted using a computer model of a representative particle bed reactor and engine system. The computer program utilized is an augmented version of SAFSIM, an existing nuclear thermal propulsion modeling code; the augmentation, dubbed SAFSIM+, was developed by the author and provides a more complete engine system modeling tool.

  14. Influence of atomization quality modulation on flame dynamics in a hypergolic rocket engine

    Directory of Open Access Journals (Sweden)

    Moritz Schulze


    Full Text Available For the numerical evaluation of the thermoacoustic stability of rocket engines often hybrid methods are applied, which separate the computation of wave propagation in the combustor from the analysis of the flame response to acoustic perturbations. Closure requires a thermoacoustic feedback model which provides the heat release fluctuation in the source term of the employed wave transport equations. The influence of the acoustic fluctuations in the combustion chamber on the heat release fluctuations from the modulation of the atomization of the propellants in a hypergolic upper stage rocket engine is studied. Numerical modeling of a single injector provides the time mean reacting flow field. A network of transfer functions representing all aspects relevant for the feedback model is presented. Analytical models for the injector admittances and for the atomization transfer functions are provided. The dynamics of evaporation and combustion are studied numerically and the numerical results are analyzed. An analytical approximation of the computed flame transfer function is combined with the analytical models for the injector and the atomization quality to derive the feedback model for the wave propagation code. The evaluation of this model on the basis of the Rayleigh index reveals the thermoacoustic driving potential originating from the fluctuating spray quality.

  15. Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing (United States)

    Gradl, Paul R.


    Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.

  16. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender


    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  17. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines (United States)

    Micklow, Gerald J.


    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  18. Extensions to the time lag models for practical application to rocket engine stability design (United States)

    Casiano, Matthew J.

    The combustion instability problem in liquid-propellant rocket engines (LREs) has remained a tremendous challenge since their discovery in the 1930s. Improvements are usually made in solving the combustion instability problem primarily using computational fluid dynamics (CFD) and also by testing demonstrator engines. Another approach is to use analytical models. Analytical models can be used such that design, redesign, or improvement of an engine system is feasible in a relatively short period of time. Improvements to the analytical models can greatly aid in design efforts. A thorough literature review is first conducted on liquid-propellant rocket engine (LRE) throttling. Throttling is usually studied in terms of vehicle descent or ballistic missile control however there are many other cases where throttling is important. It was found that combustion instabilities are one of a few major issues that occur during deep throttling (other major issues are heat transfer concerns, performance loss, and pump dynamics). In the past and again recently, gas injected into liquid propellants has shown to be a viable solution to throttle engines and to eliminate some forms of combustion instability. This review uncovered a clever solution that was used to eliminate a chug instability in the Common Extensible Cryogenic Engine (CECE), a modified RL10 engine. A separate review was also conducted on classic time lag combustion instability models. Several new stability models are developed by incorporating important features to the classic and contemporary models, which are commonly used in the aerospace rocket industry. The first two models are extensions of the original Crocco and Cheng concentrated combustion model with feed system contributions. A third new model is an extension to the Wenzel and Szuch double-time lag model also with feed system contributions. The first new model incorporates the appropriate injector acoustic boundary condition which is neglected in contemporary

  19. Computational Analysis of an LOx Supply Line System of an Liquid Rocket Engine

    Directory of Open Access Journals (Sweden)

    Insang Moon


    Full Text Available A computational fluid analysis was performed on an LOx line system of a liquid rocket engine. The model was created with 3D CAD and imbedded to the 3D CFD program. Before the full scale analysis on the system was carried out, each components with simplified models was analyzed to save time and cost. As a result, the inlet pressure of the gas generator should be compensated with a certain device unless the inlet pressure of the line system is sufficiently high. The flow pattern of the exit of the system was dependant upon the location of the orifice as well as the size. As a whole the line system analyzed met the requirements, and will be tested and confirmed after being manufactured.

  20. Multidimensional Unstructured-Grid Liquid Rocket Engine Nozzle Performance and Heat Transfer Analysis (United States)

    Wang, Ten-See


    The objective of this study is to conduct a unified computational analysis for computing design parameters such as axial thrust, convective and radiative wall heat fluxes for regeneratively cooled liquid rocket engine nozzles, so as to develop a computational strategy for computing those parameters through parametric investigations. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, radiating, unstructured-grid, and pressure-based formulation, with grid refinement capabilities. Systematic parametric studies on effects of wall boundary conditions, combustion chemistry, radiation coupling, computational cell shape, and grid refinement were performed and assessed. Under the computational framework of this study, it is found that the computed axial thrust performance, flow features, and wall heat fluxes compared well with those of available data and calculations, using a strategy of structured-grid dominated mesh, finite-rate chemistry, and cooled wall boundary condition.

  1. Kinetic—a system code for analyzing nuclear thermal propulsion rocket engine transients (United States)

    Schmidt, Eldon; Lazareth, Otto; Ludewig, Hans


    A system code suitable for analyzing Nuclear Thermal Propulsion (NTP) rocket engines is described in this paper. The code consists of a point reactor model and nodes to describe the fluid dynamics and heat transfer mechanism. Feedback from the fuel, coolant, moderator and reflector are allowed for, and the control of the reactor is by motion of controls element (drums or rods). The worth of the control element and feedback coefficients are predetermined. Separate models for the turbo-pump assembly (TPA) and nozzle are also included. The model to be described in this paper is specific for the Particle Bed Reactor (PBR). An illustrative problem is solved. This problem consists of a PBR operating in a blowdown mode.

  2. KINETIC: A system code for analyzing Nuclear thermal propulsion rocket engine transients (United States)

    Schmidt, E.; Lazareth, O.; Ludewig, H.


    A system code suitable for analyzing Nuclear Thermal Propulsion (NTP) rocket engines is described in this paper. The code consists of a point reactor model and nodes to describe the fluid dynamics and heat transfer mechanism. Feedback from the fuel coolant, moderator and reflector are allowed for, and the control of the reactor is by motion of control elements (drums or rods). The worth of the control clement and feedback coefficients are predetermined. Separate models for the turbo-pump assembly (TPA) and nozzle are also included. The model to be described in this paper is specific for the Particle Bed Reactor (PBR). An illustrative problem is solved. This problem consists of a PBR operating in a blowdown mode.

  3. Very Low Thrust Gaseous Oxygen-hydrogen Rocket Engine Ignition Technology (United States)

    Bjorklund, Roy A.


    An experimental program was performed to determine the minimum energy per spark for reliable and repeatable ignition of gaseous oxygen (GO2) and gaseous hydrogen (GH2) in very low thrust 0.44 to 2.22-N (0.10 to 0.50-lb sub f) rocket engines or spacecraft and satellite attitude control systems (ACS) application. Initially, the testing was conducted at ambient conditions, with the results subsequently verified under vacuum conditions. An experimental breadboard electrical exciter that delivered 0.2 to 0.3 mj per spark was developed and demonstrated by repeated ignitions of a 2.22-N (0.50-lb sub f) thruster in a vacuum chamber with test durations up to 30 min.

  4. Current and Future Critical Issues in Rocket Propulsion Systems (United States)

    Navaz, Homayun K.; Dix, Jeff C.


    The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).

  5. Development of a model for baffle energy dissipation in liquid fueled rocket engines (United States)

    Miller, Nathan A.

    In this thesis the energy dissipation from a combined hub and blade baffle structure in a combustion chamber of a liquid-fueled rocket engine is modeled and computed. An analytical model of the flow stabilization due to the effect of combined radial and hub blades was developed. The rate of energy dissipation of the baffle blades was computed using a corner-flow model that included unsteady flow separation and turbulence effects. For the inviscid portion of the flow field, a solution methodology was formulated using an eigenfunction expansion and a velocity potential matching technique. Parameters such as local velocity, elemental path length, effective viscosity, and local energy dissipation rate were computed as a function of the local angle alpha for a representative baffle blade, and compared to results predicted by the Baer-Mitchell blade dissipation model. The sensitivity of the model to the overall engine acoustic oscillation mode, blade length, and thickness was also computed and compared to previous results. Additional studies were performed to determine the sensitivity to input parameters such as the dimensionless turbulence coefficient, the location of the potential difference in the generation of the dividing streamline, the number of baffle blades and the size of the central hub. Stability computations of a test engine indicated that when the baffle length is increased, the baffles provide increased stabilization effects. The model predicts greatest dissipation for radial modes with a hub radius at approximately half the chamber's radius.

  6. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests (United States)

    Douglas, Freddie; Bourgeois, Edit Kaminsky


    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  7. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana


    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  8. Fast reconstruction of an unmanned engineering vehicle and its application to carrying rocket

    Directory of Open Access Journals (Sweden)

    Jun Qian


    Full Text Available Engineering vehicle is widely used as a huge moving platform for transporting heavy goods. However, traditional human operations have a great influence on the steady movement of the vehicle. In this Letter, a fast reconstruction process of an unmanned engineering vehicle is carried out. By adding a higher-level controller and two two-dimensional laser scanners on the moving platform, the vehicle could perceive the surrounding environment and locate its pose according to extended Kalman filter. Then, a closed-loop control system is formed by communicating with the on-board lower-level controller. To verify the performance of automatic control system, the unmanned vehicle is automatically navigated when carrying a rocket towards a launcher in a launch site. The experimental results show that the vehicle could align with the launcher smoothly and safely within a small lateral deviation of 1 cm. This fast reconstruction presents an efficient way of rebuilding low-cost unmanned special vehicles and other automatic moving platforms.

  9. Derating design for optimizing reliability and cost with an application to liquid rocket engines

    International Nuclear Information System (INIS)

    Kim, Kyungmee O.; Roh, Taeseong; Lee, Jae-Woo; Zuo, Ming J.


    Derating is the operation of an item at a stress that is lower than its rated design value. Previous research has indicated that reliability can be increased from operational derating. In order to derate an item in field operation, however, an engineer must rate the design of the item at a stress level higher than the operational stress level, which increases the item's nominal failure rate and development costs. At present, there is no model available to quantify the cost and reliability that considers the design uprating as well as the operational derating. In this paper, we establish the reliability expression in terms of the derating level assuming that the nominal failure rate is constant with time for a fixed rated design value. The total development cost is expressed in terms of the rated design value and the number of tests necessary to demonstrate the reliability requirement. The properties of the optimal derating level are explained for maximizing the reliability or for minimizing the cost. As an example, the proposed model is applied to the design of liquid rocket engines. - Highlights: • Modeled the effect of derating design on the reliability and the development cost. • Discovered that derating design may reduce the cost of reliability demonstration test. • Optimized the derating design parameter for reliability maximization or cost minimization.

  10. Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand (United States)

    Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard


    This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.

  11. Oxidation Behavior of Copper Alloy Candidates for Rocket Engine Applications (Technical Poster) (United States)

    Ogbuji, Linus U. J.; Humphrey, Donald H.; Barrett, Charles A.; Greenbauer-Seng, Leslie (Technical Monitor); Gray, Hugh R. (Technical Monitor)


    A rocket engine's combustion chamber is lined with material that is highly conductive to heat in order to dissipate the huge thermal load (evident in a white-hot exhaust plume). Because of its thermal conductivity copper is the best choice of liner material. However, the mechanical properties of pure copper are inadequate to withstand the high stresses, hence, copper alloys are needed in this application. But copper and its alloys are prone to oxidation and related damage, especially "blanching" (an oxidation-reduction mode of degradation). The space shuttle main engine combustion chamber is lined with a Cu-Ag-Zr alloy, "NARloy-Z", which exhibits blanching. A superior liner is being sought for the next generation of RLVs (Reusable Launch Vehicles) It should have improved mechanical properties and higher resistance to oxidation and blanching, but without substantial penalty in thermal conductivity. GRCop84, a Cu-8Cr-4Nb alloy (Cr2Nb in Cu matrix), developed by NASA Glenn Research Center (GRC) and Case Western Reserve University, is a prime contender for RLV liner material. In this study, the oxidation resistance of GRCop-84 and other related/candidate copper alloys are investigated and compared

  12. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines (United States)

    Son, Min; Ko, Sangho; Koo, Jaye


    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  13. Exergetic efficiency analysis of hydrogen–air detonation in pulse detonation combustor using computational fluid dynamics


    Pinku Debnath; KM Pandey


    Exergy losses during the combustion process, heat transfer, and fuel utilization play a vital role in the analysis of the exergetic efficiency of combustion process. Detonation is thermodynamically more efficient than deflagration mode of combustion. Detonation combustion technology inside the pulse detonation engine using hydrogen as a fuel is energetic propulsion system for next generation. In this study, the main objective of this work is to quantify the exergetic efficiency of hydrogen–ai...

  14. Continuous Space Education System and its Role in Increasing Efficiency of Engineering Staff Training for Ukraine Space Rocket Industry (United States)

    Novykov, O.; Perlik, V.; Polyakov, N.; Khytorniy, V.


    Adjustment to new economical and social conditions in Ukraine, being a space-faring country, requires a new concept in improving efficiency of engineering education to provide rocket and space field with highly qualified engineers and scientists. General strategy to solve this task is to combine the efforts of the secondary schools, academic institutions, R&D institutes and production enterprises in order to educe gifted youth as early as possible and to train them into rocket and space field specialists following the scheme of continuous education: school - institution of higher education - enterprise. This report analyzes the 20-year experience of Dniepropetrovsk State University, Yuzhnoye State Design Office and Ukraine's National Center for the Aerospace Education of Youth in their joint efforts to organize the system of continuous education and how it managed to enhance the training efficiency of the engineering skills.

  15. Improving the performance of LOX/kerosene upper stage rocket engines

    Directory of Open Access Journals (Sweden)

    IgorN. Nikischenko


    Full Text Available Improved liquid rocket engine cycles were proposed and analyzed via comparison with existing staged combustion and gas-generator cycles. The key features of the proposed cycles are regenerative cooling of thrust chamber by oxygen and subsequent use of this oxygen for driving one or two oxygen pumps. The fuel pump(s are driven in a conventional manner, for example, using a fuel-rich gas-generator cycle. Comparison with staged combustion cycle based on oxygen-rich pre-burner showed that one of the proposed semi-expander cycles has a specific impulse only on 0.4% lower while providing much lower oxygen temperature, more efficient tank pressurizing system and built-in roll control. This semi-expander cycle can be considered as a more reliable and cost-effective alternative of staged combustion cycle. Another semi-expander cycle can be considered as an improvement of gas-generator cycle. All proposed semi-expander cycles were developed as a derivative of thrust chamber regenerative cooling performed by oxygen. Analysis of existing oxygen/kerosene engines showed that replacing of kerosene regenerative cooling with oxygen allows a significant increase of achievable specific impulse, via optimization of mixture ratio. It is especially the case for upper stage engines. The increasing of propellants average density can be considered as an additional benefit of mixture ratio optimization. It was demonstrated that oxygen regenerative cooling of thrust chamber is a feasible and the most promising option for oxygen/kerosene engines. Combination of oxygen regenerative cooling and semi-expander cycles potentially allows creating the oxygen/kerosene propulsion systems with minimum specific impulse losses. It is important that such propulsion systems can be fully based on inherited and well-proven technical solutions. A hypothetic upper stage engine with thrust 19.6 kN was chosen as a prospective candidate for theoretical analysis of the proposed semi

  16. Numerical modeling of sympathetic detonation

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, A.L.; Kershner, J.D.; Mader, C.L.


    The sympathetic detonation of small cubes of solid rocket propellant was modeled numerically, using the Eulerian reactive hydrodynamic code 2DE with Forest Fire burn rates. The model was applied to cubes of 1 to 3 in., with excellent agreement between calculated and experimental results. The model also was applied to several propellants and to different experimental arrangements. The blast-wave pressures in the air gap and the induced shock pressures in the acceptor were obtained from the model. The correlation between these pressures was coupled with a study of the effect of the length-to-diameter ratio of a donor cylinder and the necessary conditions for detonation of the acceptor to provide a semiquantitative predictive capability.

  17. Technology developments for thrust chambers of future launch vehicle liquid rocket engines (United States)

    Immich, H.; Alting, J.; Kretschmer, J.; Preclik, D.


    In this paper an overview of recent technology developments for thrust chambers of future launch vehicle liquid rocket engines at Astrium, Space Infrastructure Division (SI), is shown. The main technology. developments shown in this paper are: Technologies Technologies for enhanced heat transfer to the coolant for expander cycle engines Advanced injector head technologies Advanced combustion chamber manufacturing technologies. The main technologies for enhanced heat transfer investigated by subscale chamber hot-firing tests are: Increase of chamber length Hot gas side ribs in the chamber Artificially increased surface roughness. The developments for advanced injector head technologies were focused on the design of a new modular subscale chamber injector head. This injector head allows for an easy exchange of different injection elements: By this, cost effective hot-fire tests with different injection element concepts can be performed. The developments for advanced combustion chamber manufacturing technologies are based on subscale chamber tests with a new design of the Astrium subscale chamber. The subscale chamber has been modified by introduction of a segmented cooled cylindrical section which gives the possibility to test different manufacturing concepts for cooled chamber technologies by exchanging the individual segments. The main technology efforts versus advanced manufacturing technologies shown in this paper are: Soldering techniques Thermal barrier coatings for increased chamber life. A new technology effort is dedicated especially to LOX/Hydrocarbon propellant combinations. Recent hot fire tests on the subscale chamber with Kerosene and Methane as fuel have already been performed. A comprehensive engine system trade-off between the both propellant combinations (Kerosene vs. Methane) is presently under preparation.

  18. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization (United States)

    Vaidyanathan, Rajkumar; Papita, Nilay; Shyy, Wei; Tucker, P. Kevin; Griffin, Lisa W.; Haftka, Raphael; Fitz-Coy, Norman; McConnaughey, Helen (Technical Monitor)


    The goal of this work is to compare the performance of response surface methodology (RSM) and two types of neural networks (NN) to aid preliminary design of two rocket engine components. A data set of 45 training points and 20 test points obtained from a semi-empirical model based on three design variables is used for a shear coaxial injector element. Data for supersonic turbine design is based on six design variables, 76 training, data and 18 test data obtained from simplified aerodynamic analysis. Several RS and NN are first constructed using the training data. The test data are then employed to select the best RS or NN. Quadratic and cubic response surfaces. radial basis neural network (RBNN) and back-propagation neural network (BPNN) are compared. Two-layered RBNN are generated using two different training algorithms, namely solverbe and solverb. A two layered BPNN is generated with Tan-Sigmoid transfer function. Various issues related to the training of the neural networks are addressed including number of neurons, error goals, spread constants and the accuracy of different models in representing the design space. A search for the optimum design is carried out using a standard gradient-based optimization algorithm over the response surfaces represented by the polynomials and trained neural networks. Usually a cubic polynominal performs better than the quadratic polynomial but exceptions have been noticed. Among the NN choices, the RBNN designed using solverb yields more consistent performance for both engine components considered. The training of RBNN is easier as it requires linear regression. This coupled with the consistency in performance promise the possibility of it being used as an optimization strategy for engineering design problems.

  19. Pulse Detonation Assessment for Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Muhammad Hanafi Azami


    Full Text Available The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion systems, but it is now important to consider their emissions also. To assess both performance and emissions, this paper focuses on the feasibility of using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel, and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model, and taking into account single step chemistry and thermophysical properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration. The computed pressure rise and detonation velocity are shown to be in good agreement with published literature. Additional computations examine the effects of initial pressure, temperature, and mass flux on the physical properties of the flow. The results indicate that alternative fuels require higher initial mass flux and temperature to detonate. The benefits of alternative fuels appear significant.

  20. Concept Assessment of a Fission Fragment Rocket Engine (FFRE) Propelled Spacecraft (United States)

    Werka, Robert; Clark, Rod; Sheldon, Rob; Percy, Tom


    The March, 2012 issue of Aerospace America stated that ?the near-to-medium prospects for applying advanced propulsion to create a new era of space exploration are not very good. In the current world, we operate to the Moon by climbing aboard a Carnival Cruise Lines vessel (Saturn 5), sail from the harbor (liftoff) shedding whole decks of the ship (staging) along the way and, having reached the return leg of the journey, sink the ship (burnout) and return home in a lifeboat (Apollo capsule). Clearly this is an illogical way to travel, but forced on Explorers by today's propulsion technology. However, the article neglected to consider the one propulsion technology, using today's physical principles that offer continuous, substantial thrust at a theoretical specific impulse of 1,000,000 sec. This engine unequivocally can create a new era of space exploration that changes the way spacecraft operate. Today's space Explorers could travel in Cruise Liner fashion using the technology not considered by Aerospace America, the novel Dusty Plasma Fission Fragment Rocket Engine (FFRE). This NIAC study addresses the FFRE as well as its impact on Exploration Spacecraft design and operation. It uses common physics of the relativistic speed of fission fragments to produce thrust. It radiatively cools the fissioning dusty core and magnetically controls the fragments direction to practically implement previously patented, but unworkable designs. The spacecraft hosting this engine is no more complex nor more massive than the International Space Station (ISS) and would employ the successful ISS technology for assembly and check-out. The elements can be lifted in "chunks" by a Heavy Lift Launcher. This Exploration Spacecraft would require the resupply of small amounts of nuclear fuel for each journey and would be an in-space asset for decades just as any Cruise Liner on Earth. This study has synthesized versions of the FFRE, integrated one concept onto a host spacecraft designed for

  1. Conceptual Engine System Design for NERVA derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets

    International Nuclear Information System (INIS)

    Fittje, James E.; Buehrle, Robert J.


    The Nuclear Thermal Rocket concept is being evaluated as an advanced propulsion concept for missions to the moon and Mars. A tremendous effort was undertaken during the 1960's and 1970's to develop and test NERVA derived Nuclear Thermal Rockets in the 111.2 KN to 1112 KN pound thrust class. NASA GRC is leveraging this past NTR investment in their vehicle concepts and mission analysis studies, and has been evaluating NERVA derived engines in the 66.7 KN to the 111.2 KN thrust range. The liquid hydrogen propellant feed system, including the turbopumps, is an essential component of the overall operation of this system. The NASA GRC team is evaluating numerous propellant feed system designs with both single and twin turbopumps. The Nuclear Engine System Simulation code is being exercised to analyze thermodynamic cycle points for these selected concepts. This paper will present propellant feed system concepts and the corresponding thermodynamic cycle points for 66.7 KN and 111.2 KN thrust NTR engine systems. A pump out condition for a twin turbopump concept will also be evaluated, and the NESS code will be assessed against the Small Nuclear Rocket Engine preliminary thermodynamic data

  2. Response Surface Optimization of Lead Azide for Explosive Detonators

    National Research Council Canada - National Science Library

    McCulloh, Ian; Massie, Darrell; Cordaro, Emily


    The Armament Research, Development and Engineering Center, Picatinny (ARDEC) has been tasked with developing a new chemical process to produce lead azide, the key explosive ingredient in detonators...

  3. Experimental investigation of high-frequency combustion instabilities in liquid rocket engine (United States)

    Richecoeur, F.; Ducruix, S.; Scouflaire, P.; Candel, S.


    High-frequency instabilities in liquid propellant rocket engines are experimentally investigated in a model scale research facility. Liquid oxygen and gaseous methane are injected in the combustion chamber at 0.9 MPa through three coaxial injectors vertically aligned. High-amplitude transverse pressure fluctuations are generated in the chamber at frequencies above 1 kHz by a rotating toothed wheel actuator which periodically blocks an auxiliary lateral nozzle. The chamber eigenmodes are identified in a first stage by examining the response of the system to a linear frequency sweep. In a second stage the chamber is excited at the frequency corresponding to the first transverse (1T) mode. The effect of the pressure mode on combustion is observed with intensified and high-speed cameras. Photo-multipliers and pressure sensors are also used to characterize the system behavior and examine phase relations between the corresponding signals. Flame structure modifications observed for specific injection conditions correspond to a strong coupling between acoustics and combustion which notably modifies the flow dynamics, augments the flame expansion rate and enhances heat transfer to the wall.

  4. Simulation of supercritical flows in rocket-motor engines: application to cooling channel and injection system (United States)

    Ribert, G.; Taieb, D.; Petit, X.; Lartigue, G.; Domingo, P.


    To address physical modeling of supercritical multicomponent fluid flows, ideal-gas law must be changed to real-gas equation of state (EoS), thermodynamic and transport properties have to incorporate dense fluid corrections, and turbulence modeling has to be reconsidered compared to classical approaches. Real-gas thermodynamic is presently investigated with validation by NIST (National Institute of Standards and Technology) data. Two major issues of Liquid Rocket Engines (LRE) are also presented. The first one is the supercritical fluid flow inside small cooling channels. In a context of LRE, a strong heat flux coming from the combustion chamber (locally Φ ≈ 80 MW/m2) may lead to very steep density gradients close to the wall. These gradients have to be thermodynamically and numerically captured to properly reproduce in the simulation the mechanism of heat transfer from the wall to the fluid. This is done with a shock-capturing weighted essentially nonoscillatory (WENO) numerical discretization scheme. The second issue is a supercritical fluid injection following experimental conditions [1] in which a trans- or supercritical nitrogen is injected into warm nitrogen. The two-dimensional results show vortex structures with high fluid density detaching from the main jet and persisting in the low-speed region with low fluid density.

  5. Highly resolved numerical simulation of combustion downstream of a rocket engine igniter (United States)

    Buttay, R.; Gomet, L.; Lehnasch, G.; Mura, A.


    We study ignition processes in the turbulent reactive flow established downstream of highly under-expanded coflowing jets. The corresponding configuration is typical of a rocket engine igniter, and to the best knowledge of the authors, this study is the first that documents highly resolved numerical simulations of such a reactive flowfield. Considering the discharge of axisymmetric coaxial under-expanded jets, various morphologies are expected, depending on the value of the nozzle pressure ratio, a key parameter used to classify them. The present computations are conducted with a value of this ratio set to fifteen. The simulations are performed with the massively parallel CREAMS solver on a grid featuring approximately 440,000,000 computational nodes. In the main zone of interest, the level of spatial resolution is D/74, with D the central inlet stream diameter. The computational results reveal the complex topology of the compressible flowfield. The obtained results also bring new and useful insights into the development of ignition processes. In particular, ignition is found to take place rather far downstream of the shock barrel, a conclusion that contrasts with early computational studies conducted within the unsteady RANS computational framework. Consideration of detailed chemistry confirms the essential role of hydroperoxyl radicals, while the analysis of the Takeno index reveals the predominance of a non-premixed combustion mode.

  6. High Thermal Conductivity NARloy-Z-Diamond Composite Liner for Advanced Rocket Engines (United States)

    Bhat, Biliyar; Greene, Sandra


    NARloy-Z (Cu-3Ag-0.5Zr) alloy is state-of-the-art combustion chamber liner material used in liquid propulsion engines such as the RS-68 and RS-25. The performance of future liquid propulsion systems can be improved significantly by increasing the heat transfer through the combustion chamber liner. Prior work1 done at NASA Marshall Space Flight Center (MSFC) has shown that the thermal conductivity of NARloy-Z alloy can be improved significantly by embedding high thermal conductivity diamond particles in the alloy matrix to form NARloy-Z-diamond composite (fig. 1). NARloy-Z-diamond composite containing 40vol% diamond showed 69% higher thermal conductivity than NARloy-Z. It is 24% lighter than NARloy-Z and hence the density normalized thermal conductivity is 120% better. These attributes will improve the performance and life of the advanced rocket engines significantly. The research work consists of (a) developing design properties (thermal and mechanical) of NARloy-Z-D composite, (b) fabrication of net shape subscale combustion chamber liner, and (c) hot-fire testing of the liner to test performance. Initially, NARloy-Z-D composite slabs were made using the Field Assisted Sintering Technology (FAST) for the purpose of determining design properties. In the next step, a cylindrical shape was fabricated to demonstrate feasibility (fig. 3). The liner consists of six cylinders which are sintered separately and then stacked and diffusion bonded to make the liner (fig. 4). The liner will be heat treated, finish-machined, and assembled into a combustion chamber and hot-fire tested in the MSFC test facility (TF 115) to determine perform.

  7. Method and apparatus to produce high specific impulse and moderate thrust from a fusion-powered rocket engine

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Samuel A.; Pajer, Gary A.; Paluszek, Michael A.; Razin, Yosef S.


    A system and method for producing and controlling high thrust and desirable specific impulse from a continuous fusion reaction is disclosed. The resultant relatively small rocket engine will have lower cost to develop, test, and operate that the prior art, allowing spacecraft missions throughout the planetary system and beyond. The rocket engine method and system includes a reactor chamber and a heating system for heating a stable plasma to produce fusion reactions in the stable plasma. Magnets produce a magnetic field that confines the stable plasma. A fuel injection system and a propellant injection system are included. The propellant injection system injects cold propellant into a gas box at one end of the reactor chamber, where the propellant is ionized into a plasma. The propellant and fusion products are directed out of the reactor chamber through a magnetic nozzle and are detached from the magnetic field lines producing thrust.

  8. 2D and 3D Modeling Efforts in Fuel Film Cooling of Liquid Rocket Engines (Conference Paper with Briefing Charts) (United States)


    Conference Paper with Briefing Charts 3. DATES COVERED (From - To) 17 November 2016 – 12 January 2017 4. TITLE AND SUBTITLE 2D and 3D Modeling ...98) Prescribed by ANSI Std. 239.18 2D and 3D Modeling Efforts in Fuel Film Cooling of Liquid Rocket Engines Kevin C. Brown∗, Edward B. Coy†, and...wide. As a consequence, the 3D simulations may better model the experimental setup used, but are perhaps not representative of the long circumferential

  9. Confined Detonations and Pulse Detonation Engines (United States)


    the a1 A9 and blE+ electronic states has been developed.9. Mechanisms of reaction runaway in an adiabatic reactor and in a super- sonic flow behind...PDE (1 - extrap - zero in Eqs. (10) and (11), the numerical olated for initial pressure of 101 kPa; and 2 - 2D analysis for initial pres- results of

  10. Low-Cost High-Performance Non-Toxic Self-Pressurizing Storable Liquid Bi-Propellant Pressure-Fed Rocket Engine, Phase I (United States)

    National Aeronautics and Space Administration — Exquadrum proposes a high-performance liquid bi-propellant rocket engine that uses propellants that are non-toxic, self-pressurizing, and low cost. The proposed...

  11. Vibration, acoustic, and shock design and test criteria for components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME) (United States)


    The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.

  12. Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine (United States)

    Brown, T. M.; Smith, Norm


    Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.

  13. Techniques to assess acoustic-structure interaction in liquid rocket engines (United States)

    Davis, R. Benjamin

    Acoustoelasticity is the study of the dynamic interaction between elastic structures and acoustic enclosures. In this dissertation, acoustoelasticity is considered in the context of liquid rocket engine design. The techniques presented here can be used to determine which forcing frequencies are important in acoustoelastic systems. With a knowledge of these frequencies, an analyst can either find ways to attenuate the excitation at these frequencies or alter the system in such a way that the prescribed excitations do result in a resonant condition. The end result is a structural component that is less susceptible to failure. The research scope is divided into three parts. In the first part, the dynamics of cylindrical shells submerged in liquid hydrogen (LH2) and liquid oxygen (LOX) are considered. The shells are bounded by rigid outer cylinders. This configuration gives rise to two fluid-filled cavities---an inner cylindrical cavity and an outer annular cavity. Such geometries are common in rocket engine design. The natural frequencies and modes of the fluid-structure system are computed by combining the rigid wall acoustic cavity modes and the in vacuo structural modes into a system of coupled ordinary differential equations. Eigenvalue veering is observed near the intersections of the curves representing natural frequencies of the rigid wall acoustic and the in vacuo structural modes. In the case of a shell submerged in LH2, system frequencies near these intersections are as much as 30% lower than the corresponding in vacuo structural frequencies. Due to its high density, the frequency reductions in the presence of LOX are even more dramatic. The forced responses of a shell submerged in LH2 and LOX while subject to a harmonic point excitation are also presented. The responses in the presence of fluid are found to be quite distinct from those of the structure in vacuo. In the second part, coupled mode theory is used to explore the fundamental features of

  14. Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine (United States)

    Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.


    The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.

  15. Development and Hotfire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications (United States)

    Gradl, Paul R.; Greene, Sandy; Protz, Chris


    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA’s Marshall Space Flight Center (MSFC) has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. MSFC’s efforts include a 4,000 pounds-force thrust liquid oxygen/methane (LOX/CH4) combustion chamber. Small thrust chambers for 1,200 pounds-force LOX/hydrogen (H2) applications have also been designed and fabricated with SLM GRCop-84. Similar chambers have also completed development with an Inconel 625 jacket bonded to the GRCop-84 material, evaluating direct metal deposition (DMD) laser- and arc-based techniques. The same technologies for these lower thrust applications are being applied to 25,000-35,000 pounds-force main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  16. Towards Detonation Theory


    Dremin, A.


    Experimental findings inconsistent with both the CJ and the ZND detonation theories are discussed. These are the unstable detonation and the weak dependence on charge diameter of liquid explosives detonation velocity at sizable value of their failure diameter. The investigations have resulted in the discovery and introduction into detonation theory of two new theoretical notions : chemical reaction breakdown (BD) and shock discontinuity zone (SDZ). It is shown that the BD governs the limits o...

  17. Improving of technical characteristics of launch vehicles with liquid rocket engines using active onboard de-orbiting systems (United States)

    Trushlyakov, V.; Shatrov, Ya.


    In this paper, the analysis of technical requirements (TR) for the development of modern space launch vehicles (LV) with main liquid rocket engines (LRE) is fulfilled in relation to the anthropogenic impact decreasing. Factual technical characteristics on the example of a promising type of rocket ;Soyuz-2.1.v.; are analyzed. Meeting the TR in relation to anthropogenic impact decrease based on the conventional design approach and the content of the onboard system does not prove to be efficient and leads to depreciation of the initial technical characteristics obtained at the first design stage if these requirements are not included. In this concern, it is shown that the implementation of additional active onboard de-orbiting system (AODS) of worked-off stages (WS) into the onboard LV stages systems allows to meet the TR related to the LV environmental characteristics, including fire-explosion safety. In some cases, the orbital payload mass increases.

  18. The Pressure Field Measurement for Researching Inducer Flow of Booster Rocket Engine Turbopump

    Directory of Open Access Journals (Sweden)

    N. S. Dorosh


    Full Text Available When designing a feed system for modern main rocket engine development, designers have to pay special attention to energy efficiency of units and their reliability. One of the most important conditions of reliability is to provide non-cavitation operation of the main turbo-pump, which is impossible without using the booster turbo-pumps, considering the current levels of pressure in the combustion chamber. Thanks to high suction properties and processability, axial inducers with screw geometry became the most widely used in booster turbo-pumps. At the same time, the flow in the inducers of progressive geometry has complex spatial nature that makes their designing and detailed flow studying to be a difficult task.Based on the need of detailed understanding the flow structure in inducer channels a number of investigation methods are considered, including: analytical calculation, visual research methods, direct flow measurement, and numerical simulation. Analysis of the characteristics of each method shows the need to combine several methods to achieve the best results. Using a numerical simulation becomes the most effective strategy to obtain a wide range of data and confirm their authenticity by experimental measurements at characteristic points. The features of such kind of measurements in the inducer flow and measuring device requirements are considered.Based on this, an original design experimental booster turbo-pump, equipped with a pressure measuring system behind the inducer and automatic unloader device simulator is developed. Using these systems a radial pressure diagram of inducer flow as well as axial the force acting on the inducer can be experimentally obtained. It is shown that the offered measuring system satisfies those requirements and provides data at the various operation modes of the booster turbopump unit. A developed test program allows us to obtain required data: the pressure values in the flow behind inducer and axial force

  19. Preparation and Ablating Behavior of FGM used in a Heat Flux Rocket Engine (United States)

    He, Xiaodong; Han, Jiecai; Zhang, Xinghong


    rocket engine. As a result, TiB2-Cu FGM showed excellent resistant ablating properties. There is only a little loss of the mass after heated for 40 seconds in the wind tunnel. Meanwhile no cracks and breakup appeared in the FGM under the sharp thermal shock condition. Key words: functionally graded materials, combustion synthesis, ablation, thermal shock, thermal stress

  20. Copper Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Singh, Jogender; Rape, Aaron; Vohra, Yogesh; Thomas, Vinoy; Li, Deyu; Otte, Kyle


    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  1. Copper-Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Rape, Aaron; Singh, Jogender; Vohra, Yogesh K.; Thomas, Vinoy; Otte, Kyle G.; Li, Deyu


    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  2. Detonation Wave Profile

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory


    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  3. An Approximate Analysis of the Inner Wall Loading of a Bimetallic Camera Shell of Reusable Rocket Engine


    V. S. Zarubin; V. N. Zimin; G. N. Kuvyrkin


    Various technical devices quite widely use bimetallic shells as the structural elements. A chamber combustion design of the liquid rocket engine (LRE) is a typical use of the bimetallic shells.In LRE operation a combustion chamber shell is subject to intense thermal and mechanical effects, which necessitates cooling. A cooling shell path is formed by a gap between its inner and outer walls connected to each other by milled or grooved spacer ribs. The outer wall of the shell serves as a load-b...

  4. Development and Analysis of Startup Strategies for Particle Bed Nuclear Rocket Engine (United States)


    M. D. Hoover, eds. American Institute of Physics, New York, 1993. [L-3] Ludewig , Hans. "Particle Bed Reactor Nuclear Rocket Concept." Nuclear Thermal...July 1988. [S-I] Stafford, Thomas (Chairman). America’s Space Exploration Initiative: America at the Threshold. Report of the Stafford Committee to

  5. Rockets: Educator's Guide with Activities in Science, Technology, Engineering and Mathematics (United States)

    Shearer, Deborah A.; Vogt, Gregory L.


    This guide provides teachers and students many opportunities. Chapters within the guide present the history of rocketry, National Aeronautics and Space Administration's (NASA's) 21st Century Space Exploration Policy, rocketry principles, and practical rocketry. These topics lay the foundation for what follows--a wealth of dynamic rocket science…

  6. Affordable Development and Demonstration of a Small Nuclear Thermal Rocket (NTR) Engine and Stage: How Small Is Big Enough? (United States)

    Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg, Abraham; Joyner, Claude R.


    The Nuclear Thermal Rocket (NTR) derives its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core. It generates high thrust and has a specific impulse potential of approximately 900 specific impulse - a 100 percent increase over today's best chemical rockets. The Nuclear Thermal Propulsion (NTP) project, funded by NASA's Advanced Exploration Systems (AES) program, includes five key task activities: (1) Recapture, demonstration, and validation of heritage graphite composite (GC) fuel (selected as the Lead Fuel option); (2) Engine Conceptual Design; (3) Operating Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable Development Strategy. During fiscal year (FY) 2014, a preliminary Design Development Test and Evaluation (DDT&E) plan and schedule for NTP development was outlined by the NASA Glenn Research Center (GRC), Department of Energy (DOE) and industry that involved significant system-level demonstration projects that included Ground Technology Demonstration (GTD) tests at the Nevada National Security Site (NNSS), followed by a Flight Technology Demonstration (FTD) mission. To reduce cost for the GTD tests and FTD mission, small NTR engines, in either the 7.5 or 16.5 kilopound-force thrust class, were considered. Both engine options used GC fuel and a common fuel element (FE) design. The small approximately 7.5 kilopound-force criticality-limited engine produces approximately157 thermal megawatts and its core is configured with parallel rows of hexagonal-shaped FEs and tie tubes (TTs) with a FE to TT ratio of approximately 1:1. The larger approximately 16.5 kilopound-force Small Nuclear Rocket Engine (SNRE), developed by Los Alamos National Laboratory (LANL) at the end of the Rover program, produces approximately 367 thermal megawatts and has a FE to TT ratio of approximately 2:1. Although both engines use a common 35-inch (approximately

  7. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender


    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.


    Directory of Open Access Journals (Sweden)

    N. V. Astredinova


    Full Text Available During the manufacturing process to the design of modern liquid rocket engines are presented important requirements, such as minimum weight, maximum stiffness and strength of nodes, maximum service life in operation, high reliability and quality of soldered and welded seams. Due to the high quality requirements soldered connections and the specific design of the nozzle, it became necessary in the development and testing of a new non-conventional non-destructive testing method – laser-ultrasound diagnosis. In accordance with regulatory guidelines, quality control soldered connections is allowed to use an acoustic kind of control methods of the reflected light, transmitted light, resonant, free vibration and acoustic emission. Attempts to use traditional methods of non-destructive testing did not lead to positive results. This is due primarily to the size of typical solder joint defects, as well as the structural features of the rocket engine, the data structure is not controllable. In connection with this, a new method that provides quality control soldered connections cameras LRE based on the thermo generation of ultrasound. Methods of ultrasonic flaw detection of photoacoustic effect, in most cases, have a number of advantages over methods that use standard (traditional piezo transducers. In the course of studies have found that the sensitivity of the laser-ultrasonic method and flaw detector UDL-2M can detect lack of adhesion in the solder joints on the upper edges of the nozzle in the sub-header area of the site.

  9. The Primary Experiments of an Analysis of Pareto Solutions for Conceptual Design Optimization Problem of Hybrid Rocket Engine (United States)

    Kudo, Fumiya; Yoshikawa, Tomohiro; Furuhashi, Takeshi

    Recentry, Multi-objective Genetic Algorithm, which is the application of Genetic Algorithm to Multi-objective Optimization Problems is focused on in the engineering design field. In this field, the analysis of design variables in the acquired Pareto solutions, which gives the designers useful knowledge in the applied problem, is important as well as the acquisition of advanced solutions. This paper proposes a new visualization method using Isomap which visualizes the geometric distances of solutions in the design variable space considering their distances in the objective space. The proposed method enables a user to analyze the design variables of the acquired solutions considering their relationship in the objective space. This paper applies the proposed method to the conceptual design optimization problem of hybrid rocket engine and studies the effectiveness of the proposed method.

  10. Operational Modal Analysis and Force Characterization of an Unstable Liquid Rocket Engine


    Buechele, Kevin Charles


    Combustion instability has plagued the rocket industry since its beginnings. It is characterized by sustained pressure oscillations in the combustion chamber due to the coupling of natural pressure fluctuations with unsteady heat release. Typically, combustion instabilities are identified and mitigated during ground testing. Occasionally combustion instabilities do not present themselves until after a system is fielded and may only occur in a flight environment. While ground tests are heavily...

  11. Detonation command and control

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Jonathan Lee; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves


    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  12. Some Calculated Research Results of the Working Process Parameters of the Low Thrust Rocket Engine Operating on Gaseous Oxygen-Hydrogen Fuel (United States)

    Ryzhkov, V.; Morozov, I.


    The paper presents the calculating results of the combustion products parameters in the tract of the low thrust rocket engine with thrust P ∼ 100 N. The article contains the following data: streamlines, distribution of total temperature parameter in the longitudinal section of the engine chamber, static temperature distribution in the cross section of the engine chamber, velocity distribution of the combustion products in the outlet section of the engine nozzle, static temperature near the inner wall of the engine. The presented parameters allow to estimate the efficiency of the mixture formation processes, flow of combustion products in the engine chamber and to estimate the thermal state of the structure.

  13. Modeling of Uneven Flow and Electromagnetic Field Parameters in the Combustion Chamber of Liquid Rocket Engine with a Near-wall Layer Available

    Directory of Open Access Journals (Sweden)

    A. V. Rudinskii


    Full Text Available The paper concerns modeling of an uneven flow and electromagnetic field parameters in the combustion chamber of the liquid rocket engine with a near-wall layer available.The research objective was to evaluate quantitatively influence of changing model chamber mode of the liquid rocket engine on the electro-physical characteristics of the hydrocarbon fuel combustion by-products.The main method of research was based on development of a final element model of the flowing path of the rocket engine chamber and its adaptation to the boundary conditions.The paper presents a developed two-dimensional non-stationary mathematical model of electro-physical processes in the liquid rocket engine chamber using hydrocarbon fuel. The model takes into consideration the features of a gas-dynamic contour of the engine chamber and property of thermo-gas-dynamic characteristics of the ionized products of combustion of hydrocarbonic fuel. Distributions of magnetic field intensity and electric conductivity received and analyzed taking into account a low-temperature near-wall layer. Special attention is paid to comparison of obtained calculation values of the electric current, which is taken out from intrachamber space of the engine with earlier published data of other authors.

  14. Research on shock wave characteristics in the isolator of central strut rocket-based combined cycle engine under Ma5.5 (United States)

    Wei, Xianggeng; Xue, Rui; Qin, Fei; Hu, Chunbo; He, Guoqiang


    A numerical calculation of shock wave characteristics in the isolator of central strut rocket-based combined cycle (RBCC) engine fueled by kerosene was carried out in this paper. A 3D numerical model was established by the DES method. The kerosene chemical kinetic model used the 9-component and 12-step simplified mechanism model. Effects of fuel equivalence ratio, inflow total temperature and central strut rocket on-off on shock wave characteristics were studied under Ma5.5. Results demonstrated that with the increase of equivalence ratio, the leading shock wave moves toward upstream, accompanied with higher possibility of the inlet unstart. However, the leading shock wave moves toward downstream as the inflow total temperature rises. After the central strut rocket is closed, the leading shock wave moves toward downstream, which can reduce risks of the inlet unstart. State of the shear layer formed by the strut rocket jet flow and inflow can influence the shock train structure significantly.

  15. Models of Non-Stationary Thermodynamic Processes in Rocket Engines Taking into Account a Chemical Equilibrium of Combustion Products

    Directory of Open Access Journals (Sweden)

    A. V. Aliev


    Full Text Available The paper considers the two approach-based techniques for calculating the non-stationary intra-chamber processes in solid-propellant rocket engine (SPRE. The first approach assumes that the combustion products are a mechanical mix while the other one supposes it to be the mix, which is in chemical equilibrium. To enhance reliability of solution of the intra ballistic tasks, which assume a chemical equilibrium of combustion products, the computing algorithms to calculate a structure of the combustion products are changed. The algorithm for solving a system of the nonlinear equations of chemical equilibrium, when determining the iterative amendments, uses the orthogonal QR method instead of a method of Gauss. Besides, a possibility to apply genetic algorithms in a task about a structure of combustion products is considered.It is shown that in the tasks concerning the prediction of non-stationary intra ballistic characteristics in a solid propellant rocket engine, application of models of mechanical mix and chemically equilibrium structure of combustion products leads to qualitatively and quantitatively coinciding results. The maximum difference in parameters is 5-10%, at most. In tasks concerning the starting operation of a solid sustainer engine with high-temperature products of combustion difference in results is more essential, and can reach 20% and more.A technique to calculate the intra ballistic parameters, in which flotation of combustion products is considered in the light of a spatial statement, requires using the high-performance computer facilities. For these tasks it is offered to define structure of products of combustion and its thermo-physical characteristics, using the polynoms coefficients of which should be predefined.

  16. Carbon-Carbon Nozzle Extension Development in Support of In-Space and Upper-Stage Liquid Rocket Engines (United States)

    Gradl, Paul R.; Valentine, Peter G.


    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures, increasing exhaust velocities. Due to the large size of such nozzles, and the related engine performance requirements, carbon-carbon (C-C) composite nozzle extensions are being considered to reduce weight impacts. Currently, the state-of-the-art is represented by the metallic and foreign composite nozzle extensions limited to approximately 2000 degrees F. used on the Atlas V, Delta IV, Falcon 9, and Ariane 5 launch vehicles. NASA and industry partners are working towards advancing the domestic supply chain for C-C composite nozzle extensions. These development efforts are primarily being conducted through the NASA Small Business Innovation Research (SBIR) program in addition to other low level internal research efforts. This has allowed for the initial material development and characterization, subscale hardware fabrication, and completion of hot-fire testing in relevant environments. NASA and industry partners have designed, fabricated and hot-fire tested several subscale domestically produced C-C extensions to advance the material and coatings fabrication technology for use with a variety of liquid rocket and scramjet engines. Testing at NASA's Marshall Space Flight Center (MSFC) evaluated heritage and state-of-the-art C-C materials and coatings, demonstrating the initial capabilities of the high temperature materials and their fabrication methods. This paper discusses the initial material development, design and fabrication of the subscale carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work. The follow on work includes the fabrication of ultra-high temperature materials, larger C-C nozzle extensions, material characterization, sub-element testing and hot-fire testing at

  17. Subscale Carbon-Carbon Nozzle Extension Development and Hot Fire Testing in Support of Upper Stage Liquid Rocket Engines (United States)

    Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam


    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.

  18. Rocket University at KSC (United States)

    Sullivan, Steven J.


    "Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.

  19. Optical engine initiation: multiple compartment applications (United States)

    Hunt, Jeffrey H.


    Modern day propulsion systems are used in aerospace applications for different purposes. The aerospace industry typically requires propulsion systems to operate in a rocket mode in order to drive large boost vehicles. The defense industry generally requires propulsion systems to operate in an air-breathing mode in order to drive missiles. A mixed system could use an air-breathing first stage and a rocket-mode upper stage for space access. Thus, propulsion systems can be used for high mass payloads and where the payload is dominated by the fuel/oxidizer mass being used by the propulsion system. The pulse detonation wave engine (PDWE) uses an alternative type of detonation cycle to achieve the same propulsion results. The primary component of the PDWE is the combustion chamber (or detonation tube). The PDWE represents an attractive propulsion source since its engine cycle is thermodynamically closest to that of a constant volume reaction. This characteristic leads to the inference that a maximum of the potential energy of the PDWE is put into thrust and not into flow work. Consequently, the volume must be increased. The technical community has increasingly adopted the alternative choice of increasing total volume by designing the engine to include a set of banks of smaller combustion chambers. This technique increases the complexity of the ignition subsystem because the inter-chamber timing must be considered. Current approaches to igniting the PDWE have involved separate shock or blast wave initiators and chemical additives designed to enhance detonatibility. An optical ignition subsystem generates a series of optical pulses, where the optical pulses ignite the fuel/oxidizer mixture such that the chambers detonate in a desired order. The detonation system also has an optical transport subsystem for transporting the optical pulses from the optical ignition subsystem to the chambers. The use of optical ignition and transport provides a non-toxic, small, lightweight

  20. Design of Cooling Channels of Preburners for Small Liquid Rocket Engines with Computational Flow and Heat Transfer Analysis

    Directory of Open Access Journals (Sweden)

    Insang Moon


    Full Text Available A series of computational analyses was performed to predict the cooling process by the cooling channel of preburners used for kerosene-liquid oxygen staged combustion cycle rocket engines. As an oxygen-rich combustion occurs in the kerosene fueled preburner, it is of great importance to control the wall temperature so that it does not exceed the critical temperature. However, since the heat transfer is proportional to the speed of fluid running inside the channel, the high heat transfer leads to a trade-off of pressure loss. For this reason, it is necessary to establish a certain criteria between the pressure loss and the heat transfer or the wall surface temperature. The design factors of the cooling channel were determined by the computational research, and a test model was manufactured. The test model was used for the hot fire tests to prove the function of the cooling mechanism, among other purposes.

  1. The issue of ensuring the safe explosion of the spent orbital stages of a launch vehicle with propulsion rocket engine

    Directory of Open Access Journals (Sweden)

    Trushlyakov Valeriy I.


    Full Text Available A method for increasing the safe explosion of the spent orbital stages of a space launch vehicle (SLV with a propulsion rocket engine (PRE based on the gasification of unusable residues propellant and venting fuel tanks. For gasification and ventilation the hot gases used produced by combustion of the specially selected gas generating composition (GGC with a set of physical and chemical properties. Excluding the freezing of the drainage system on reset gasified products (residues propellant+pressurization gas+hot gases in the near-Earth space is achieved by selecting the physical-chemical characteristics of the GGC. Proposed steps to ensure rotation of gasified products due to dumping through the drainage system to ensure the most favorable conditions for propellant gasification residues. For example, a tank with liquid oxygen stays with the orbital spent second stage of the SLV “Zenit”, which shows the effectiveness of the proposed method.

  2. The Technique for CFD-Simulation of Fuel Valve from Pneumatic-Hydraulic System of Liquid-Propellant Rocket Engine (United States)

    Shabliy, L. S.; Malov, D. V.; Bratchinin, D. S.


    In the article the description of technique for simulation of valves for pneumatic-hydraulic system of liquid-propellant rocket engine (LPRE) is given. Technique is based on approach of computational hydrodynamics (Computational Fluid Dynamics – CFD). The simulation of a differential valve used in closed circuit LPRE supply pipes of fuel components is performed to show technique abilities. A schematic and operation algorithm of this valve type is described in detail. Also assumptions made in the construction of the geometric model of the hydraulic path of the valve are described in detail. The calculation procedure for determining valve hydraulic characteristics is given. Based on these calculations certain hydraulic characteristics of the valve are given. Some ways of usage of the described simulation technique for research the static and dynamic characteristics of the elements of the pneumatic-hydraulic system of LPRE are proposed.

  3. Orbit transfer rocket engine technology program: Automated preflight methods concept definition (United States)

    Erickson, C. M.; Hertzberg, D. W.


    The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment.

  4. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana


    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  5. The Thermal State Computational Research of the Low-Thrust Oxygen-Methane Gaseous-Propellant Rocket Engine in the Pulse Mode of Operation


    O. A. Vorozheeva; D. A. Yagodnikov


    Currently promising development direction of space propulsion engineering is to use, as spacecraft controls, low-thrust rocket engines (RDTM) on clean fuels, such as oxygen-methane. Modern RDTM are characterized by a lack regenerative cooling and pulse mode of operation, during which there is accumulation of heat energy to lead to the high thermal stress of RDTM structural elements. To get an idea about the thermal state of its elements, which further will reduce the number of fire tests is t...

  6. Technical engineering services in support of the Nike-Tomahawk sounding rocket vehicle system (United States)


    Task assignments in support of the Nike-Tomahawk vehicles, which were completed from May, 1970 through November 1972 are reported. The services reported include: analytical, design and drafting, fabrication and modification, and field engineering.

  7. Air Force Research Laboratory's Rocket Engine Program Enters Fast-Paced Test Phase

    National Research Council Canada - National Science Library

    Thornburg, Jeff


    .... Recent tests of the Integrated Powerhead Demonstration project here established a technical first for the United States and mark the first advancements in boost engine technology since the space...

  8. Measurement and Modeling of Surface Coking in Fuel-Film Cooled Liquid Rocket Engines (United States)

    National Aeronautics and Space Administration — The development of future Kerosone/LOX engines will require higher chamber pressures to increase performance and reusability in order to decrease operating costs....

  9. Multiphysics Framework for Prediction of Dynamic Instability in Liquid Rocket Engines, Phase I (United States)

    National Aeronautics and Space Administration — Mitigation of dynamic combustion instability is one of the most difficult engineering challenges facing NASA and industry in the development of new continuous-flow...

  10. Theoretical and experimental analysis of liquid layer instability in hybrid rocket engines (United States)

    Kobald, Mario; Verri, Isabella; Schlechtriem, Stefan


    The combustion behavior of different hybrid rocket fuels has been analyzed in the frame of this research. Tests have been performed in a 2D slab burner configuration with windows on two sides. Four different liquefying paraffin-based fuels, hydroxyl terminated polybutadiene (HTPB) and high-density polyethylene (HDPE) have been tested in combination with gaseous oxygen (GOX). Experimental high-speed video data have been analyzed manually and with the proper orthogonal decomposition (POD) technique. Application of POD enables the recognition of the main structures of the flow field and the combustion flame appearing in the video data. These results include spatial and temporal analysis of the structures. For liquefying fuels these spatial values relate to the wavelengths associated to the Kelvin Helmholtz Instability (KHI). A theoretical long-wave solution of the KHI problem shows good agreement with the experimental results. Distinct frequencies found in the POD analysis can be related to the precombustion chamber configuration which can lead to vortex shedding phenomena.

  11. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume (United States)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen


    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  12. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.


    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  13. A Framework for Assessing the Reusability of Hardware (Reusable Rocket Engines) (United States)

    Childress-Thompson, Rhonda; Thomas, Dale; Farrington, Philip


    Within the past few years, there has been a renewed interest in reusability as it applies to space flight hardware. Commercial companies such as Space Exploration Technologies Corporation (SpaceX), Blue Origin, and United Launch Alliance (ULA) are pursuing reusable hardware. Even foreign companies are pursuing this option. The Indian Space Research Organization (ISRO) launched a reusable space plane technology demonstrator and Airbus Defense and Space is planning to recover the main engines and avionics from its Advanced Expendable Launcher with Innovative engine Economy [1] [2]. To date, the Space Shuttle remains as the only Reusable Launch (RLV) to have flown repeated missions and the Space Shutte Main Engine (SSME) is the only demonstrated reusable engine. Whether the hardware being considered for reuse is a launch vehicle (fully reusable), a first stage (partially reusable), or a booster engine (single component), the overall governing process is the same; it must be recovered and recertified for flight. Therefore, there is a need to identify the key factors in determining the reusability of flight hardware. This paper begins with defining reusability to set the context, addresses the significance of reuse, and discusses areas that limit successful implementation. Finally, this research identifies the factors that should be considered when incorporating reuse.

  14. A computer program for performance prediction of tripropellant rocket engines with tangential slot injection (United States)

    Dang, Anthony; Nickerson, Gary R.


    For the development of a Heavy Lift Launch Vehicle (HLLV) several engines with different operating cycles and using LOX/Hydrocarbon propellants are presently being examined. Some concepts utilize hydrogen for thrust chamber wall cooling followed by a gas generator turbine drive cycle with subsequent dumping of H2/O2 combustion products into the nozzle downstream of the throat. In the Space Transportation Booster Engine (STBE) selection process the specific impulse will be one of the optimization criteria; however, the current performance prediction programs do not have the capability to include a third propellant in this process, nor to account for the effect of dumping the gas-generator product tangentially inside the nozzle. The purpose is to describe a computer program for accurately predicting the performance of such an engine. The code consists of two modules; one for the inviscid performance, and the other for the viscous loss. For the first module, the two-dimensional kinetics program (TDK) was modified to account for tripropellant chemistry, and for the effect of tangential slot injection. For the viscous loss, the Mass Addition Boundary Layer program (MABL) was modified to include the effects of the boundary layer-shear layer interaction, and tripropellant chemistry. Calculations were made for a real engine and compared with available data.

  15. Unsteady flowfield in an integrated rocket ramjet engine and combustion dynamics of a gas turbine swirl-stabilized injector (United States)

    Sung, Hong-Gye

    This research focuses on the time-accurate simulation and analysis of the unsteady flowfield in an integrated rocket-ramjet engine (IRR) and combustion dynamics of a swirl-stabilized gas turbine engine. The primary objectives are: (1) to establish a unified computational framework for studying unsteady flow and flame dynamics in ramjet propulsion systems and gas turbine combustion chambers, and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations. The first part of the thesis deals with a complete axi-symmetric IRR engine. The domain of concern includes a supersonic inlet diffuser, a combustion chamber, and an exhaust nozzle. This study focused on the physical mechanism of the interaction between the oscillatory terminal shock in the inlet diffuser and the flame in the combustion chamber. In addition, the flow and ignition transitions from the booster to the sustainer phase were analyzed comprehensively. Even though the coupling between the inlet dynamics and the unsteady motions of flame shows that they are closely correlated, fortunately, those couplings are out of phase with a phase lag of 90 degrees, which compensates for the amplification of the pressure fluctuation in the inlet. The second part of the thesis treats the combustion dynamics of a lean-premixed gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) Parallel architecture and large-eddy-simulation technique was applied. Vortex breakdown in the swirling flow is clearly visualized and explained on theoretical bases. The unsteady turbulent flame dynamics are carefully simulated so that the flow motion can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots and large vortical structures in the azimuthal direction. The correlation between pressure oscillation and unsteady heat release is examined by

  16. Exergetic efficiency analysis of hydrogen–air detonation in pulse detonation combustor using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Pinku Debnath


    Full Text Available Exergy losses during the combustion process, heat transfer, and fuel utilization play a vital role in the analysis of the exergetic efficiency of combustion process. Detonation is thermodynamically more efficient than deflagration mode of combustion. Detonation combustion technology inside the pulse detonation engine using hydrogen as a fuel is energetic propulsion system for next generation. In this study, the main objective of this work is to quantify the exergetic efficiency of hydrogen–air combustion for deflagration and detonation combustion process. Further detonation parameters are calculated using 0.25, 0.35, and 0.55 of H2 mass concentrations in the combustion process. The simulations have been performed for converging the solution using commercial computational fluid dynamics package Ansys Fluent solver. The details of combustion physics in chemical reacting flows of hydrogen–air mixture in two control volumes were simulated using species transport model with eddy dissipation turbulence chemistry interaction. From these simulations it was observed that exergy loss in the deflagration combustion process is higher in comparison to the detonation combustion process. The major observation was that pilot fuel economy for the two combustion processes and augmentation of exergetic efficiencies are better in the detonation combustion process. The maximum exergetic efficiency of 55.12%, 53.19%, and 23.43% from deflagration combustion process and from detonation combustion process, 67.55%, 57.49%, and 24.89%, are obtained from aforesaid H2 mass fraction. It was also found that for lesser fuel mass fraction higher exergetic efficiency was observed.

  17. Effect of prill structure on detonation performance of ANFO

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, Terry R [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory; Kiyanda, Charles B [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory; Zimmerly, Tony [EMRTC NMT


    While the effects of charge diameter, fuel mix ratio, and temperature on ANFO detonation performance are substantial, the effects of prill type are considerable as well as tailorable. Engineered AN prills provide a means to improve overall performance, primarily by changing the material microstructure through the addition of features designed to enhance hot spot action. To examine the effects of prill type (along with fuel mix ratio and charge diameter) on detonation performance, a series of precision, large-scale, ANFO front-curvature rate-stick tests was performed. Each shot used standard No. 2 diesel for the fuel oil and was essentially unconfined with cardboard confinement. Detonation velocities and front curvatures were measured while actively maintaining consistent shot temperatures. Based on the experimental results, DSD calibrations were performed to model the detonation performance over a range of conditions, and the overall effects of prill microstructure were examined and correlated with detonation performance.

  18. Electric field and radio frequency measurements for rocket engine health monitoring applications (United States)

    Valenti, Elizabeth L.


    Electric-field (EF) and radio-frequency (RF) emissions generated in the exhaust plumes of the diagnostic testbed facility thruster (DTFT) and the SSME are examined briefly for potential applications to plume diagnostics and engine health monitoring. Hypothetically, anomalous engine conditions could produce measurable changes in any characteristic EF and RF spectral signatures identifiable with a 'healthly' plumes. Tests to determine the presence of EF and RF emissions in the DTFT and SSME exhaust plumes were conducted. EF and RF emissions were detected using state-of-the-art sensors. Analysis of limited data sets show some apparent consistencies in spectral signatures. Significant emissions increases were detected during controlled tests using dopants injected into the DTFT.

  19. Up the Technology Readiness Level (TRL) Scale to Demonstrate a Robust, Long Life, Liquid Rocket Engine Combustion Chamber, or...Up the Downstairs (United States)

    Holmes, Richard; Elam, Sandra; McKechnie, Timothy; Power, Christopher


    Advanced vacuum plasma spray (VPS) technology, utilized to successfully apply thermal barrier coatings to space shuttle main engine turbine blades, was further refined as a functional gradient material (FGM) process for space furnace cartridge experiments at 1600 C and for robust, long life combustion chambers for liquid rocket engines. A VPS/FGM 5K (5,000 lb. thrust) thruster has undergone 220 hot firing tests, in pristine condition, showing no wear, blanching or cooling channel cracks. Most recently, this technology has been applied to a 40K thruster, with scale up planned for a 194K Ares I, J-2X engine.

  20. Development and Testing of Carbon-Carbon Nozzle Extensions for Upper Stage Liquid Rocket Engines (United States)

    Valentine, Peter G.; Gradl, Paul R.; Greene, Sandra E.


    Carbon-carbon (C-C) composite nozzle extensions are of interest for use on a variety of launch vehicle upper stage engines and in-space propulsion systems. The C-C nozzle extension technology and test capabilities being developed are intended to support National Aeronautics and Space Administration (NASA) and Department of Defense (DOD) requirements, as well as those of the broader Commercial Space industry. For NASA, C-C nozzle extension technology development primarily supports the NASA Space Launch System (SLS) and NASA's Commercial Space partners. Marshall Space Flight Center (MSFC) efforts are aimed at both (a) further developing the technology and databases needed to enable the use of composite nozzle extensions on cryogenic upper stage engines, and (b) developing and demonstrating low-cost capabilities for testing and qualifying composite nozzle extensions. Recent, on-going, and potential future work supporting NASA, DOD, and Commercial Space needs will be discussed. Information to be presented will include (a) recent and on-going mechanical, thermal, and hot-fire testing, as well as (b) potential future efforts to further develop and qualify domestic C-C nozzle extension solutions for the various upper stage engines under development.

  1. Rocket engine plume diagnostics using video digitization and image processing - Analysis of start-up (United States)

    Disimile, P. J.; Shoe, B.; Dhawan, A. P.


    Video digitization techniques have been developed to analyze the exhaust plume of the Space Shuttle Main Engine. Temporal averaging and a frame-by-frame analysis provide data used to evaluate the capabilities of image processing techniques for use as measurement tools. Capabilities include the determination of the necessary time requirement for the Mach disk to obtain a fully-developed state. Other results show the Mach disk tracks the nozzle for short time intervals, and that dominate frequencies exist for the nozzle and Mach disk movement.

  2. Torpedo Rockets (United States)


    All through the 13th to the 15th Centuries there were reports of many rocket experiments. For example, Joanes de Fontana of Italy designed a surface-rurning, rocket-powered torpedo for setting enemy ships on fire

  3. Rocket Flight. (United States)

    Van Evera, Bill; Sterling, Donna R.


    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  4. Thermal-structural analysis of regeneratively-cooled thrust chamber wall in reusable LOX/Methane rocket engines

    Directory of Open Access Journals (Sweden)

    Jiawen SONG


    Full Text Available To predict the thermal and structural responses of the thrust chamber wall under cyclic work, a 3-D fluid-structural coupling computational methodology is developed. The thermal and mechanical loads are determined by a validated 3-D finite volume fluid-thermal coupling computational method. With the specified loads, the nonlinear thermal-structural finite element analysis is applied to obtaining the 3-D thermal and structural responses. The Chaboche nonlinear kinematic hardening model calibrated by experimental data is adopted to predict the cyclic plastic behavior of the inner wall. The methodology is further applied to the thrust chamber of LOX/Methane rocket engines. The results show that both the maximum temperature at hot run phase and the maximum circumferential residual strain of the inner wall appear at the convergent part of the chamber. Structural analysis for multiple work cycles reveals that the failure of the inner wall may be controlled by the low-cycle fatigue when the Chaboche model parameter γ3 = 0, and the damage caused by the thermal-mechanical ratcheting of the inner wall cannot be ignored when γ3 > 0. The results of sensitivity analysis indicate that mechanical loads have a strong influence on the strains in the inner wall.

  5. Rocket engine high-enthalpy flow simulation using heated CO2 gas to verify the development of a rocket nozzle and combustion tests (United States)

    Takeishi, K.; Ishizaka, K.; Okamoto, J.; Watanabe, Y.


    The LE-7A engine is the first-stage engine of the Japanese-made H-IIA launch vehicle. This engine has been developed by improving and reducing the price of the LE-7 engine used in the H-II launch vehicle. In the qualification combustion tests, the original designed LE-7A (LE-7A-OR) engine experienced two major problems, a large side load in the transient state of engine start and stop and melt on nozzle generative cooling tubes. The reason for the troubles of the LE-7A-OR engine was investigated by conducting experimental and numerical studies. In actual engine conditions, the main hot gas stream is a heated steam. Furthermore, the main stream temperature in the nozzle changes from approximately 3500 K at the throat to 500 K at the exit. In such a case, the specific heat ratio changes depending on the temperature. A similarity of the Mach number should be considered when conducting a model flow test with a similar flow condition of the Mach number between an actual engine combustion test and a model flow test. High-speed flow tests were conducted using CO2 gas heated up to 673 K as a working fluid and a 1:12 sub-scaled model nozzle of the LE-7A-OR engine configuration. The problems of the side force and the conducted form of the shock waves generated in the nozzle of the LE-7A-OR engine during engine start and stop were reproduced by the model tests of experimental and numerical investigations. This study presented that the model flow test using heated CO2 gas is useful and effective in verifying the numerical analysis and the design verification before actual engine combustion tests.

  6. Some Interesting Applications of Probabilistic Techiques in Structural Dynamic Analysis of Rocket Engines (United States)

    Brown, Andrew M.


    Numerical and Analytical methods developed to determine damage accumulation in specific engine components when speed variation included. Dither Life Ratio shown to be well over factor of 2 for specific example. Steady-State assumption shown to be accurate for most turbopump cases, allowing rapid calculation of DLR. If hot-fire speed data unknown, Monte Carlo method developed that uses speed statistics for similar engines. Application of techniques allow analyst to reduce both uncertainty and excess conservatism. High values of DLR could allow previously unacceptable part to pass HCF criteria without redesign. Given benefit and ease of implementation, recommend that any finite life turbomachine component analysis adopt these techniques. Probability Values calculated, compared, and evaluated for several industry-proposed methods for combining random and harmonic loads. Two new excel macros written to calculate combined load for any specific probability level. Closed form Curve fits generated for widely used 3(sigma) and 2(sigma) probability levels. For design of lightweight aerospace components, obtaining accurate, reproducible, statistically meaningful answer critical.

  7. Detonation Engine Research Facility (DERF) (United States)

    Federal Laboratory Consortium — Description: This facility is configured to safely conduct experimental pressuregain combustion research. The DERF is capable of supporting up to 60,000 lbf thrust...

  8. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment (United States)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.


    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  9. [Research on diagnosis of gas-liquid detonation exhaust based on double optical path absortion spectroscopy technique]. (United States)

    Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng


    The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology.

  10. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications (United States)

    Bennewitz, John William

    model-predicted mode stability transition was consistent with experimental observations, supporting the premise that inlet acoustic modulation is a means to control high-frequency combustion instabilities. From the modal analysis, it may be deduced that the inlet impedance provides a damping mechanism for instability suppression. Combined, this work demonstrates the strategic application of acoustic modulation within an injector as a potential method to control high-frequency combustion instabilities for liquid rocket engine applications.

  11. Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles (United States)

    Wang, Ten-See


    Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.


    Directory of Open Access Journals (Sweden)

    P. V. Bulat


    Full Text Available The paper deals with current issues of the interference theory development of gas-dynamic discontinuities as applied to a problem of propulsion refinement for the air-spacecrafts, designed for hypersonic flight speeds. In the first part of the review we have presented the history of detonation study and different concepts of detonation engines, as well as air intakes designed for hypersonic flight speeds. The second part provides an overview of works on the interference theory development for gas-dynamic discontinuities. We report about classification of the gas-dynamic discontinuities, shock wave propagation, shock-wave structures and triple configurations of shock waves. We have shown that many of these processes are accompanied by a hysteresis phenomenon, there are areas of ambiguity; therefore, in the design of engines and air intakes optimal shock-wave structures should be provided and their sustainability should be ensured. Much attention has recently been given to the use of the air intakes in the shock-wave structures with the rereflection of shock waves and the interference of shock waves in the opposite directions. This review provides increased focus on it, contains references to landmark works, the last calculated and experimental results. Unfortunately, foreign surveys missed many landmark works of the Soviet and Russian researchers, as they were not published in English. At the same time, it was the Soviet school of gas dynamics that has formulated the interference theory of gas-dynamic discontinuities in its present form. To fill this gap is one of this review scopes. The review may be recommended for professionals, engineers and scientists working in the field of aerospace engineering.

  13. A Framework for Assessing the Reusability of Hardware (Reusable Rocket Engines) (United States)

    Childress-Thompson, Rhonda; Thomas, Dale; Farrington, Phillip


    Within the space flight community, reusability has taken center stage as the new buzzword. In order for reusable hardware to be competitive with its expendable counterpart, two major elements must be closely scrutinized. First, recovery and refurbishment costs must be lower than the development and acquisition costs. Additionally, the reliability for reused hardware must remain the same (or nearly the same) as "first use" hardware. Therefore, it is imperative that a systematic approach be established to enhance the development of reusable systems. However, before the decision can be made on whether it is more beneficial to reuse hardware or to replace it, the parameters that are needed to deem hardware worthy of reuse must be identified. For reusable hardware to be successful, the factors that must be considered are reliability (integrity, life, number of uses), operability (maintenance, accessibility), and cost (procurement, retrieval, refurbishment). These three factors are essential to the successful implementation of reusability while enabling the ability to meet performance goals. Past and present strategies and attempts at reuse within the space industry will be examined to identify important attributes of reusability that can be used to evaluate hardware when contemplating reusable versus expendable options. This paper will examine why reuse must be stated as an initial requirement rather than included as an afterthought in the final design. Late in the process, changes in the overall objective/purpose of components typically have adverse effects that potentially negate the benefits. A methodology for assessing the viability of reusing hardware will be presented by using the Space Shuttle Main Engine (SSME) to validate the approach. Because reliability, operability, and costs are key drivers in making this critical decision, they will be used to assess requirements for reuse as applied to components of the SSME.

  14. Some typical solid propellant rocket motors

    NARCIS (Netherlands)

    Zandbergen, B.T.C.


    Typical Solid Propellant Rocket Motors (shortly referred to as Solid Rocket Motors; SRM's) are described with the purpose to form a database, which allows for comparative analysis and applications in practical SRM engineering.

  15. Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications (United States)

    Gradl, Paul R.; Greene, Sandy Elam; Protz, Christopher S.; Ellis, David L.; Lerch, Bradley A.; Locci, Ivan E.


    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  16. Clamp for detonating fuze (United States)

    Holderman, E. J.


    Quick acting clamp provides physical support for a closely confined detonating fuse in an application requiring removal and replacement at frequent intervals during test. It can be designed with a base of any required strength and configuration to permit the insertion of an object.

  17. Environmentally Benign Stab Detonators

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A


    Many energetic systems can be activated via mechanical means. Percussion primers in small caliber ammunition and stab detonators used in medium caliber ammunition are just two examples. Current medium caliber (20-60mm) munitions are detonated through the use of impact sensitive stab detonators. Stab detonators are very sensitive and must be small, as to meet weight and size limitations. A mix of energetic powders, sensitive to mechanical stimulus, is typically used to ignite such devices. Stab detonators are mechanically activated by forcing a firing pin through the closure disc of the device and into the stab initiating mix. Rapid heating caused by mechanically driven compression and friction of the mixture results in its ignition. The rapid decomposition of these materials generates a pressure/temperature pulse that is sufficient to initiate a transfer charge, which has enough output energy to detonate the main charge. This general type of ignition mix is used in a large variety of primers, igniters, and detonators.[1] Common primer mixes, such as NOL-130, are made up of lead styphnate (basic) 40%, lead azide (dextrinated) 20%, barium nitrate 20%, antimony sulfide 15%, and tetrazene 5%.[1] These materials pose acute and chronic toxicity hazards during mixing of the composition and later in the item life cycle after the item has been field functioned. There is an established need to replace these mixes on toxicity, health, and environmental hazard grounds. This effort attempts to demonstrate that environmentally acceptable energetic solgel coated flash metal multilayer nanocomposites can be used to replace current impact initiated devices (IIDs), which have hazardous and toxic components. Successful completion of this project will result in IIDs that include innocuous compounds, have sufficient output energy for initiation, meet current military specifications, are small, cost competitive, and perform as well as or better than current devices. We expect flash

  18. Easier Analysis With Rocket Science (United States)


    Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications

  19. Laser-Supported Detonation Concept as a Space Thruster

    International Nuclear Information System (INIS)

    Fujiwara, Toshi; Miyasaka, Takeshi


    Similar to the concept of pulse detonation engine (PDE), a detonation generated in the 'combustion chamber' due to incoming laser absorption can produce the thrust basically much higher than the one that a laser-supported deflagration wave can provide. Such a laser-supported detonation wave concept has been theoretically studied by the first author for about 20 years in view of its application to space propulsion. The entire work is reviewed in the present paper. The initial condition for laser absorption can be provided by increasing the electron density using electric discharge. Thereafter, once a standing/running detonation wave is formed, the laser absorption can continuously be performed by the classical absorption mechanism called Inverse Bremsstrahlung behind a strong shock wave

  20. Suppression of sympathetic detonation (United States)

    Foster, J. C., Jr.; Gunger, M. E.; Craig, B. G.; Parsons, G. H.


    There are two basic approaches to suppression of sympathetic detonation. Minimizing the shock sensitivity of the explosive to long duration pressure will obviously reduce interround separation distances. However, given that the explosive sensitivity is fixed, then much can be gained through the use of simple barriers placed between the rounds. Researchers devised calculational methods for predicting shock transmission; experimental methods have been developed to characterize explosive shock sensitivity and observe the response of acceptors to barriers. It was shown that both EAK and tritonal can be initiated to detonation with relatively low pressure shocks of long durations. It was also shown that to be an effective barrier between the donor and acceptor, the material must attenuate shock and defect fragments. Future actions will concentrate on refining the design of barriers to minimize weight, volume, and cost.

  1. An Approximate Analysis of the Inner Wall Loading of a Bimetallic Camera Shell of Reusable Rocket Engine

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin


    Full Text Available Various technical devices quite widely use bimetallic shells as the structural elements. A chamber combustion design of the liquid rocket engine (LRE is a typical use of the bimetallic shells.In LRE operation a combustion chamber shell is subject to intense thermal and mechanical effects, which necessitates cooling. A cooling shell path is formed by a gap between its inner and outer walls connected to each other by milled or grooved spacer ribs. The outer wall of the shell serves as a load-bearing element, the inner wall is in direct contact with high-temperature combustion products and exposed to intense heat. The difference in functions of shell walls calls for their manufacturing from different materials with different thermophysical and mechanical properties.Interaction between the shell walls of different materials in heating and cooling leads to emerging thermal strains of various values in the walls. In terms of mechanical properties the inner wall material, usually ranks below the outer wall material strength, which uses the high strength stainless steel 12Х21Н5Т. The inner wall is typically made from copper-based highly heat-conductive alloys. (eg.: chromium bronze. Therefore, the result of the difference in temperature deformations, arising in the walls,  is inelastic nonisothermal strain of the inner wall material with (usually elastic behavior of the outer wall material.For reusable LRE, a cyclic sequence of the loading steps of the inner wall can lead to accumulating damages in its material because of the low-cycle fatigue and cause destruction of the wall or the loss of the cooling tract tightness. The main parameter that determines the level of low-cycle fatigue, is an absolute value of the accumulated inelastic strain (both plastic and evolving over time creep deformation. Quantitative evaluation of this parameter involves analysis of the inner wall loading with multiple starts and shutdowns of LRE. The paper represents an

  2. The dynamics of a gas-dust cloud expansion in the upper atmosphere at a shutdown of solid-propellant rocket engines (United States)

    Nikolaishvili, S. Sh.; Platov, Yu. V.; Chernouss, S. A.


    The velocity of spherical gas-dust cloud expansion in the situation when the stages of solid-propellant rocket separate in the upper atmosphere have been determined. The measured velocity vary from 2.5 to 7.5 km/s. The dispersed component accelerates at the front of a shock that develops at engine-thrust shutdown. The model calculations of the gas-dust cloud luminosity intensity qualitatively coincide with the photometric profiles of object images. Such formations can vary from almost homogeneous ball-shaped clouds to rather thin spherical shells depending on the gas-dust cloud mass and the matter distribution within this cloud.

  3. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 1: Pump Evaluation and design. [of centrifugal pumps (United States)

    Macgregor, C.; Csomor, A.


    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low-thrust, high-performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm, and helirotor pump concepts. The centrifugal pump and the gear pump were selected and these were carried through detailed design and fabrication. Mechanical difficulties were encountered with the gear pump during the preliminary tests in Freon-12. Further testing and development was therefore limited to the centrifugal pump. Tests on the centrifugal pump were conducted in Freon-12 to determine the hydrodynamic performance and in liquid fluorine to demonstrate chemical compatibility.

  4. Mechanism of Gaseous Detonation Propagation Through Reactant Layers Bounded by Inert Gas (United States)

    Houim, Ryan


    Vapor cloud explosions and rotating detonation engines involve the propagation of gaseous detonations through a layer of reactants that is bounded by inert gas. Mechanistic understanding of how detonations propagate stably or fail in these scenarios is incomplete. Numerical simulations were used to investigate mechanisms of gaseous detonation propagation through reactant layers bounded by inert gas. The reactant layer was a stoichiometric mixture of C2H4/O2 at 1 atm and 300K and is 4 detonation cells in height. Cases where the inert gas temperature was 300, 1500, and 3500 K will be discussed. The detonation failed for the 300 K case and propagated marginally for the 1500 K case. Surprisingly, the detonation propagated stably for the 3500 K case. A shock structure forms that involves a detached shock in the inert gas and a series of oblique shocks in the reactants. A small local explosion is triggered when the Mach stem of a detonation cell interacts with the compressed reactants behind one of these oblique shocks. The resulting pressure wave produces a new Mach stem and a new triple point that leads to a stable detonation. Preliminary results on the influence of a deflagration at the inert/reactant interface on the stability of a layered detonation will be discussed.

  5. Study on the special vision sensor for detecting position error in robot precise TIG welding of some key part of rocket engine (United States)

    Zhang, Wenzeng; Chen, Nian; Wang, Bin; Cao, Yipeng


    Rocket engine is a hard-core part of aerospace transportation and thrusting system, whose research and development is very important in national defense, aviation and aerospace. A novel vision sensor is developed, which can be used for error detecting in arc length control and seam tracking in precise pulse TIG welding of the extending part of the rocket engine jet tube. The vision sensor has many advantages, such as imaging with high quality, compactness and multiple functions. The optics design, mechanism design and circuit design of the vision sensor have been described in detail. Utilizing the mirror imaging of Tungsten electrode in the weld pool, a novel method is proposed to detect the arc length and seam tracking error of Tungsten electrode to the center line of joint seam from a single weld image. A calculating model of the method is proposed according to the relation of the Tungsten electrode, weld pool, the mirror of Tungsten electrode in weld pool and joint seam. The new methodologies are given to detect the arc length and seam tracking error. Through analyzing the results of the experiments, a system error modifying method based on a linear function is developed to improve the detecting precise of arc length and seam tracking error. Experimental results show that the final precision of the system reaches 0.1 mm in detecting the arc length and the seam tracking error of Tungsten electrode to the center line of joint seam.

  6. Application of C/C composites to the combustion chamber of rocket engines. Part 1: Heating tests of C/C composites with high temperature combustion gases (United States)

    Tadano, Makoto; Sato, Masahiro; Kuroda, Yukio; Kusaka, Kazuo; Ueda, Shuichi; Suemitsu, Takeshi; Hasegawa, Satoshi; Kude, Yukinori


    Carbon fiber reinforced carbon composite (C/C composite) has various superior properties, such as high specific strength, specific modulus, and fracture strength at high temperatures of more than 1800 K. Therefore, C/C composite is expected to be useful for many structural applications, such as combustion chambers of rocket engines and nose-cones of space-planes, but C/C composite lacks oxidation resistivity in high temperature environments. To meet the lifespan requirement for thermal barrier coatings, a ceramic coating has been employed in the hot-gas side wall. However, the main drawback to the use of C/C composite is the tendency for delamination to occur between the coating layer on the hot-gas side and the base materials on the cooling side during repeated thermal heating loads. To improve the thermal properties of the thermal barrier coating, five different types of 30-mm diameter C/C composite specimens constructed with functionally gradient materials (FGM's) and a modified matrix coating layer were fabricated. In this test, these specimens were exposed to the combustion gases of the rocket engine using nitrogen tetroxide (NTO) / monomethyl hydrazine (MMH) to evaluate the properties of thermal and erosive resistance on the thermal barrier coating after the heating test. It was observed that modified matrix and coating with FGM's are effective in improving the thermal properties of C/C composite.

  7. Novel Uses of Detonator Diagnostics (United States)

    Gibson, John


    A novel combination of diagnostics is being used to research the physics of detonator initiation. Rogowski coils are being used to obtain the time derivatives of electrical currents in the detonators in combination with polyvinylidene difluoride (PVDF) stress sensors to monitor shock propagation. PVDF is commonly used in contact with the detonator output to detect breakout time of the detonation wave; however, in this experiment PVDF foils are separated from the PETN and re-oriented to observe various shock events from the time of bridge burst until the breakout time of the detonation wave. The goal of these experiments is to use these diagnostics to study the response of detonators using specific explosive particle sizes. The new diagnostics were used to determine the timing of bridge burst, flyer impact, wave propagation and detonator breakout. Custom designed fixtures were loaded with the explosive PETN, which was pressed to a density of 1.55 g/cc. The results of testing various detonators with these new techniques will be presented. The data are compared to those of currently used diagnostics in order to validate the accuracy of these new methods. Future experiments will incorporate other methods of validation including dynamic radiography.

  8. Space shuttle SRM plume expansion sensitivity analysis. [flow characteristics of exhaust gases from solid propellant rocket engines (United States)

    Smith, S. D.; Tevepaugh, J. A.; Penny, M. M.


    The exhaust plumes of the space shuttle solid rocket motors can have a significant effect on the base pressure and base drag of the shuttle vehicle. A parametric analysis was conducted to assess the sensitivity of the initial plume expansion angle of analytical solid rocket motor flow fields to various analytical input parameters and operating conditions. The results of the analysis are presented and conclusions reached regarding the sensitivity of the initial plume expansion angle to each parameter investigated. Operating conditions parametrically varied were chamber pressure, nozzle inlet angle, nozzle throat radius of curvature ratio and propellant particle loading. Empirical particle parameters investigated were mean size, local drag coefficient and local heat transfer coefficient. Sensitivity of the initial plume expansion angle to gas thermochemistry model and local drag coefficient model assumptions were determined.

  9. Characterization of Air Emissions from Open Burning and Open Detonation of Gun Propellants and Ammunition (United States)

    Emissions from open burning (OB) and open detonation (OD) of military ordnance and static fires (SF) of rocket motors were sampled in fall, 2013 at the Dundurn Depot (Saskatchewan, Canada). Emission sampling was conducted with an aerostat-lofted instrument package termed the “Fl...

  10. Planar Reflection of Gaseous Detonations (United States)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  11. Rocket noise - A review (United States)

    McInerny, S. A.


    This paper reviews what is known about far-field rocket noise from the controlled studies of the late 1950s and 1960s and from launch data. The peak dimensionless frequency, the dependence of overall sound power on exhaust parameters, and the directivity of the overall sound power of rockets are compared to those of subsonic jets and turbo-jets. The location of the dominant sound source in the rocket exhaust plume and the mean flow velocity in this region are discussed and shown to provide a qualitative explanation for the low peak Strouhal number, fD(e)/V(e), and large angle of maximum directivity. Lastly, two empirical prediction methods are compared with data from launches of a Titan family vehicle (two, solid rocket motors of 5.7 x 10 to the 6th N thrust each) and the Saturn V (five, liquid oxygen/rocket propellant engines of 6.7 x 10 to the 6th N thrust, each). The agreement is favorable. In contrast, these methods appear to overpredict the far-field sound pressure levels generated by the Space Shuttle.

  12. Application of Probabilistic Methods to Assess Risk Due to Resonance in the Design of J-2X Rocket Engine Turbine Blades (United States)

    Brown, Andrew M.; DeHaye, Michael; DeLessio, Steven


    The LOX-Hydrogen J-2X Rocket Engine, which is proposed for use as an upper-stage engine for numerous earth-to-orbit and heavy lift launch vehicle architectures, is presently in the design phase and will move shortly to the initial development test phase. Analysis of the design has revealed numerous potential resonance issues with hardware in the turbomachinery turbine-side flow-path. The analysis of the fuel pump turbine blades requires particular care because resonant failure of the blades, which are rotating in excess of 30,000 revolutions/minutes (RPM), could be catastrophic for the engine and the entire launch vehicle. This paper describes a series of probabilistic analyses performed to assess the risk of failure of the turbine blades due to resonant vibration during past and present test series. Some significant results are that the probability of failure during a single complete engine hot-fire test is low (1%) because of the small likelihood of resonance, but that the probability increases to around 30% for a more focused turbomachinery-only test because all speeds will be ramped through and there is a greater likelihood of dwelling at more speeds. These risk calculations have been invaluable for use by program management in deciding if risk-reduction methods such as dampers are necessary immediately or if the test can be performed before the risk-reduction hardware is ready.

  13. Experimental investigation of solid rocket motors for small sounding rockets (United States)

    Suksila, Thada


    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  14. Detonation spreading in fine TATBs

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, J.E.; Lee, K.Y.; Spontarelli, T.; Stine, J.R.


    A test has been devised that permits rapid evaluation of the detonation-spreading (or corner-turning) properties of detonations in insensitive high explosives. The test utilizes a copper witness plate as the medium to capture performance data. Dent depth and shape in the copper are used as quantitative measures of the detonation output and spreading behavior. The merits of the test are that it is easy to perform with no dynamic instrumentation, and the test requires only a few grams of experimental explosive materials.

  15. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.


    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  16. A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers (United States)

    MacConochie, Ian O.; Stnaley, Douglas O.


    A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.

  17. Base Flow and Heat Transfer Characteristics of a Four-Nozzle Clustered Rocket Engine: Effect of Nozzle Pressure Ratio (United States)

    Nallasamy, R.; Kandula, M.; Duncil, L.; Schallhorn, P.


    The base pressure and heating characteristics of a four-nozzle clustered rocket configuration is studied numerically with the aid of OVERFLOW Navier-Stokes code. A pressure ratio (chamber pressure to freestream static pressure) range of 990 to 5,920 and a freestream Mach number range of 2.5 to 3.5 are studied. The qualitative trends of decreasing base pressure with increasing pressure ratio and increasing base heat flux with increasing pressure ratio are correctly predicted. However, the predictions for base pressure and base heat flux show deviations from the wind tunnel data. The differences in absolute values between the computation and the data are attributed to factors such as perfect gas (thermally and calorically perfect) assumption, turbulence model inaccuracies in the simulation, and lack of grid adaptation.

  18. Novel uses of detonator diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, John R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilde, Zakary Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tasker, Douglas George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Francois, Elizabeth Green [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nakamoto, Teagan Kanakanui Junichi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Dalton Kay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Christopher J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    A novel combination of diagnostics is being used to research the physics of detonator initiation. The explosive PETN (Pentaerythritol tetranitrate) commonly used in detonators, is also a piezo-electric material that, when sufficiently shocked, emits an electromagnetic field in the radio frequency (RF) range, along crystal fracture planes. In an effort to capture this RF signal, a new diagnostic was created. A copper foil, used as an RF antenna, was wrapped around a foam fixture encompassing a PETN pellet. Rogowski coils were used to obtain the change in current with respect to time (di/dt) the detonator circuit, in and polyvinylidene difluoride (PVDF) stress sensors were used to capture shockwave arrival time. The goal of these experiments is to use these diagnostics to study the reaction response of a PETN pellet of known particle size to shock loading with various diagnostics including an antenna to capture RF emissions. Our hypothesis is that RF feedback may signify the rate of deflagration to detonation transition (DDT) or lack thereof. The new diagnostics and methods will be used to determine the timing of start of current, bridge burst, detonator breakout timing and RF generated from detonation. These data will be compared to those of currently used diagnostics in order to validate the accuracy of these new methods. Future experiments will incorporate other methods of validation including dynamic radiography, optical initiation and use of magnetic field sensors.

  19. Light-initiated detonation systems (United States)

    Cooper, Stafford S.; Malone, Philip G.; Bartholomew, Stephen W.; Necker, William J.


    Numerous light sources could be employed in detonation systems, but lasers have the most efficient coupling to optical fibers and can generate energetic light pulses required for detonation. Flash lamp-pumped, solid state lasers are presently the most useful light source for explosive initiation. Laser diodes in current production cannot generate enough energy for practical applications. The most useful optical fiber for blast line application is a step index fiber with a large core-to-cladding ratio. The large core minimizes energy losses due to misalignment core of fibers in connectors. Couplers that involve mechanically crimped connectors and cleaved fibers, rather than the epoxy-cemented connectors with polished fibers, provide superior energy transmission due to the reduced carbonization at the fiber end. Detonators for optical initiation systems are similar in basic construction to those employed in electrical initiation systems. Explosive and pyrotechnic charges can also be similar. Either primary or secondary explosives can be initiated in present laser-based systems. Two laser detonation systems are presently accessible; a multiple-shot laser with a single-shot, single fiber system designed for use with detonators containing primary explosives. Additional research related to development of low-energy, photoreactive detonators, continuity checking techniques and improved connectors and fibers can produce significant improvements in presently fielded systems.

  20. Controlled Detonation Dynamics in Additively Manufactured High Explosives (United States)

    Schmalzer, Andrew; Tappan, Bryce; Bowden, Patrick; Manner, Virginia; Clements, Brad; Menikoff, Ralph; Ionita, Axinte; Branch, Brittany; Dattelbaum, Dana; Espy, Michelle; Patterson, Brian; Wu, Ruilian; Mueller, Alexander


    The effect of structure in explosives has long been a subject of interest to explosives engineers and scientists. Through structure, detonation dynamics in explosives can be manipulated, introducing a new level of safety and directed performance into these previously difficult to control materials. New advances in additive manufacturing (AM) allow the deliberate introduction of exact internal structures at dimensions approaching the mesoscale of these energetic materials. We show through simulation and experiment that this structure can be used to control detonation behavior by manipulating complex shockwave interactions. We use high-speed video and shorting mag-wires to determine the detonation velocity in AM generated explosive structures, demonstrating, for the first time, a method of controlling the directional propagation of reactive flow through the controlled introduction of structure within a high explosive. With ongoing improvement in the AM methods available coupled with guidance through modeling and simulations, more complex interactions are being explored. LANL LDRD Office.

  1. Investigations on detonation shock dynamics and related topics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States). Dept. of Theoretical and Applied Mechanics


    This document is a final report that summarizes the research findings and research activities supported by the subcontract DOE-LANL-9-XG8-3931P-1 between the University of Illinois (D. S. Stewart Principal Investigator) and the University of California (Los Alamos National Laboratory, M-Division). The main focus of the work has been on investigations of Detonation Shock Dynamics. A second emphasis has been on modeling compaction of energetic materials and deflagration to detonation in those materials. The work has led to a number of extensions of the theory of Detonation Shock Dynamics (DSD) and its application as an engineering design method for high explosive systems. The work also enhanced the hydrocode capabilities of researchers in M-Division by modifications to CAVEAT, an existing Los Alamos hydrocode. Linear stability studies of detonation flows were carried out for the purpose of code verification. This work also broadened the existing theory for detonation. The work in this contract has led to the development of one-phase models for dynamic compaction of porous energetic materials and laid the groundwork for subsequent studies. Some work that modeled the discrete heterogeneous behavior of propellant beds was also performed. The contract supported the efforts of D. S. Stewart and a Postdoctoral student H. I. Lee at the University of Illinois.

  2. Numerical Simulations of Detonation Instabilities and Magnetic Field Interactions (United States)

    Cole, Lord; Le, Hai; Karagozian, Ann


    Numerical simulations of magneto-hydrodynamic (MHD) effects on high frequency and low frequency one-dimensional detonation wave instabilities are performed, with applications to flow control and MHD thrust augmentation in Pulse Detonation Engines and their design variations. The dynamics of the hydrogen-air detonation are explored via high order shock capturing schemes and complex reaction kinetics. The flame is initially strongly coupled to the shock and the wave is over-driven. As the degree of overdrive decays and the detonation approaches the CJ limit, high frequency instabilities begin to appear. Eventually the average induction length continues to increase and a second mode can be seen which directly couples the flame speed with the shock, resulting in fluctuations with lower frequency but much higher amplitude. A simple model for flame-shock coupling replicates the quantitative features of these instabilities quite well. Effects of an externally applied magnetic field on these detonation instabilities are explored. In addition, the complex chemical kinetics calculations are ported onto a GPU, and computational performance may be compared with standard CPU-based computations. Supported by AFOSR and AFRL/RZSS.

  3. CECE: Expanding the Envelope of Deep Throttling Technology in Liquid Oxygen/Liquid Hydrogen Rocket Engines for NASA Exploration Missions (United States)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.


    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data

  4. Experimental investigation on noise radiation characteristics of pulse detonation engine–driven ejector

    Directory of Open Access Journals (Sweden)

    Xi-qiao Huang


    Full Text Available The noise radiation characteristics of multi-cycle pulse detonation engine with and without ejector were investigated under different operating frequencies utilizing gasoline as fuel and air as oxidizer. The straight cylindrical ejector with convergent inlet geometry was coaxially installed at different axial locations relative to the exit of the detonation tube. In all the experiments, the equivalence ratios of gasoline–air mixture and the fill fraction were 1.2 and 1.0, respectively. The experimental results implied that the addition of ejector could drastically change the far-field acoustic performance of pulse detonation engine exit and the peak sound pressure level of noise radiation was a strong function of the ejector axial position. But the peak sound pressure level was not sensitive to the operating frequencies which varied from 10 to 25 Hz. The pulse sound pressure level, however, increased with the increase in operating frequencies. The far-field jet-noise measurements of the pulse detonation engine-ejector system also showed that ejector could decrease the peak sound pressure level of pulse detonation engine. The maximum reduction was approximately 8.5 dB. For the current pulse detonation engine test conditions, an optimum ejector position was found to be a downstream axial placement of x/DPDE  = 0.5.

  5. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan


    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  6. The Thermal State Computational Research of the Low-Thrust Oxygen-Methane Gaseous-Propellant Rocket Engine in the Pulse Mode of Operation

    Directory of Open Access Journals (Sweden)

    O. A. Vorozheeva


    Full Text Available Currently promising development direction of space propulsion engineering is to use, as spacecraft controls, low-thrust rocket engines (RDTM on clean fuels, such as oxygen-methane. Modern RDTM are characterized by a lack regenerative cooling and pulse mode of operation, during which there is accumulation of heat energy to lead to the high thermal stress of RDTM structural elements. To get an idea about the thermal state of its elements, which further will reduce the number of fire tests is therefore necessary in the development phase of a new product. Accordingly, the aim of this work is the mathematical modeling and computational study of the thermal state of gaseous oxygen-methane propellant RDMT operating in pulse mode.In this paper we consider a model RDTM working on gaseous propellants oxygen-methane in pulse mode.To calculate the temperature field of the chamber wall of model RDMT under consideration is used the mathematical model of non-stationary heat conduction in a two-dimensional axisymmetric formulation that takes into account both the axial heat leakages and the nonstationary processes occurring inside the chamber during pulse operation of RDMT.As a result of numerical study of the thermal state of model RDMT, are obtained the temperature fields during engine operation based on convective, conductive, and radiative mechanisms of heat transfer from the combustion products to the wall.It is shown that the elements of flanges of combustion chamber of model RDMT act as heat sinks structural elements. Temperatures in the wall of the combustion chamber during the engine mode of operation are considered relatively low.Raised temperatures can also occur in the mixing head in the feeding area of the oxidant into the combustion chamber.During engine operation in the area forming the critical section, there is an intensive heating of a wall, which can result in its melting, which in turn will increase the minimum nozzle throat area and hence

  7. Deflagration-to-detonation transition in gases in tubes with cavities (United States)

    Smirnov, N. N.; Nikitin, V. F.; Phylippov, Yu. G.


    The existence of a supersonic second combustion mode — detonation — discovered by Mallard and Le Chatelier and by Berthélot and Vieille in 1881 posed the question of mechanisms for transition from one mode to the other. In the period 1959-1969, experiments by Salamandra, Soloukhin, Oppenheim, and their coworkers provided insights into this complex phenomenon. Since then, among all the phenomena related to combustion processes, deflagration-to-detonation transition is, undoubtedly, the most intriguing one. Deflagration-to-detonation transition (DDT) in gases is connected with gas and vapor explosion safety issues. Knowing mechanisms of detonation onset control is of major importance for creating effective mitigation measures addressing two major goals: to prevent DDT in the case of mixture ignition, or to arrest the detonation wave in the case where it has been initiated. A new impetus to the increase in interest in deflagration-to-detonation transition processes was given by the recent development of pulse detonation devices. The probable application of these principles to creation of a new generation of engines put the problem of effectiveness of pulse detonating devices at the top of current research needs. The effectiveness of the pulse detonation cycle turned out to be the key factor characterizing the Pulse Detonation Engine (PDE), whose operation modes were shown to be closely related to periodical onset and degeneration of a detonation wave. Those unsteady-state regimes should be self-sustained to guarantee a reliable operation of devices using the detonation mode of burning fuels as a constitutive part of their working cycle. Thus deflagration-to-detonation transition processes are of major importance for the issue. Minimizing the predetonation length and ensuring stability of the onset of detonation enable one to increase the effectiveness of a PDE. The DDT turned out to be the key factor characterizing the PDE operating cycle. Thus, the problem of

  8. Theoretical investigation on crystal structure, detonation ...

    Indian Academy of Sciences (India)

    lows: P, detonation pressure (GPa); D, the detona- tion velocity (km/s); ρ, the packed density (g/cm3); , the characteristics value of explosives; N, the mol of gas produced by per gram of explosives; M, an ave- rage molar weight of detonation products; and Q, the estimated heat of detonation (kJ/g). The density of each ...

  9. Modeling Potential Carbon Monoxide Exposure Due to Operation of a Major Rocket Engine Altitude Test Facility Using Computational Fluid Dynamics (United States)

    Blotzer, Michael J.; Woods, Jody L.


    This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.

  10. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber (United States)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi


    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  11. V-2 Rocket at White Sands (United States)


    A V-2 rocket takes flight at White Sands, New Mexico, in 1946. The German engineers and scientists who developed the V-2 came to the United States at the end of World War II and continued rocket testing under the direction of the U. S. Army, launching more than sixty V-2s.

  12. Rocket + Science = Dialogue (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin


    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  13. Experimental investigation on noise radiation characteristics of pulse detonation engine–driven ejector


    Xi-qiao Huang; Moqi Li; Yuan-yuan Yuan; Yue-fei Xiong; Longxi Zheng


    The noise radiation characteristics of multi-cycle pulse detonation engine with and without ejector were investigated under different operating frequencies utilizing gasoline as fuel and air as oxidizer. The straight cylindrical ejector with convergent inlet geometry was coaxially installed at different axial locations relative to the exit of the detonation tube. In all the experiments, the equivalence ratios of gasoline–air mixture and the fill fraction were 1.2 and 1.0, respectively. The ex...

  14. Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation (United States)


    renewed interests on rotating detonation engine (RDE) concept driven by potential benefits on thermodynamic efficiency of detonation cycle over...implies shocks reflected off of irregular annulus features are unlikely to serve as a significant thermodynamic cycle loss mechanism. 3. In cases...known. The subscript i stands for the inert bounding gas, and the subscript e for the explosive mixture. Since Pe3 = Pi2 , there are now only three

  15. Environmentally Benign Stab Detonators

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A E


    The coupling of energetic metallic multilayers (a.k.a. flash metal) with energetic sol-gel synthesis and processing is an entirely new approach to forming energetic devices for several DoD and DOE needs. They are also practical and commercially viable manufacturing techniques. Improved occupational safety and health, performance, reliability, reproducibility, and environmentally acceptable processing can be achieved using these methodologies and materials. The development and fielding of this technology will enhance mission readiness and reduce the costs, environmental risks and the necessity of resolving environmental concerns related to maintaining military readiness while simultaneously enhancing safety and health. Without sacrificing current performance, we will formulate new impact initiated device (IID) compositions to replace materials from the current composition that pose significant environmental, health, and safety problems associated with functions such as synthesis, material receipt, storage, handling, processing into the composition, reaction products from testing, and safe disposal. To do this, we will advance the use of nanocomposite preparation via the use of multilayer flash metal and sol-gel technologies and apply it to new small IIDs. This work will also serve to demonstrate that these technologies and resultant materials are relevant and practical to a variety of energetic needs of DoD and DOE. The goal will be to produce an IID whose composition is acceptable by OSHA, EPA, the Clean Air Act, Clean Water Act, Resource Recovery Act, etc. standards, without sacrificing current performance. The development of environmentally benign stab detonators and igniters will result in the removal of hazardous and toxic components associated with their manufacturing, handling, and use. This will lead to improved worker safety during manufacturing as well as reduced exposure of Service personnel during their storage and or use in operations. The

  16. Backyard rockets learn to make and launch rockets, missiles, cannons, and other projectiles

    CERN Document Server

    com, Instructables; Warren, Mike


    Originating from Instructables, a popular project-based community made up of all sorts of characters with wacky hobbies and a desire to pass on their wisdom to others, Backyard Rockets is made up of projects from a medley of authors who have collected and shared a treasure trove of rocket-launching plans and the knowledge to make their projects soar! Backyard Rockets gives step-by-step instructions, with pictures to guide the way, on how to launch your very own project into the sky. All of these authors have labored over their endeavors to pass their knowledge on and make it easier for others to attempt. Discover how to create the following projects: Teeny, Tiny Rocket Engine Ultimate Straw Rocket Rocket Eggstronaut Pocket Rocket Launcher Iron Man Model Rocket Model Rocket with Camera Rocket-Powered Matchbox Cars – Extreme And much more! The Instructables community has provided a compendium of rocket savvy from innovators who have paved the way for other curious minds. In addition to rockets, fireworks, and ...

  17. Turbulent deflagrations, autoignitions, and detonations

    KAUST Repository

    Bradley, Derek


    Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.

  18. Development and Performance of the 10 kN Hybrid Rocket Motor for the Stratos II Sounding Rocket

    NARCIS (Netherlands)

    Werner, R.M.; Knop, T.R.; Wink, J; Ehlen, J; Huijsman, R; Powell, S; Florea, R.; Wieling, W; Cervone, A.; Zandbergen, B.T.C.


    This paper presents the development work of the 10 kN hybrid rocket motor DHX-200 Aurora. The DHX-200 Aurora was developed by Delft Aerospace Rocket Engineering (DARE) to power the Stratos II and Stratos II+ sounding rocket, with the later one being launched in October 2015. Stratos II and Stratos

  19. Research on laser detonation pulse circuit with low-power based on super capacitor (United States)

    Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong


    According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.

  20. Shock wave science and technology reference library. Vol. 4. Heterogeneous detonation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan (ed.) [Defence Research and Development Canada, Suffield, AB (Canada)


    This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with detonation waves or compression shock waves in reactive heterogeneous media, including mixtures of solid, liquid and gas phases. The topics involve a variety of energy release and control processes in such media - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The six extensive chapters contained in this volume are: - Spray Detonation (SB Murray and PA Thibault) - Detonation of Gas-Particle Flow (F Zhang) - Slurry Detonation (DL Frost and F Zhang) - Detonation of Metalized Composite Explosives (MF Gogulya and MA Brazhnikov) - Shock-Induced Solid-Solid Reactions and Detonations (YA Gordopolov, SS Batsanov, and VS Trofimov) - Shock Ignition of Particles (SM Frolov and AV Fedorov). Each chapter is self-contained and can be read independently of the others, though, they are thematically interrelated. They offer a timely reference, for graduate students as well as professional scientists and engineers, by laying out the foundations and discussing the latest developments including yet unresolved challenging problems. (orig.)

  1. Detonation velocity in poorly mixed gas mixtures (United States)

    Prokhorov, E. S.


    The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.

  2. A summary of hydrogen-air detonation experiments

    International Nuclear Information System (INIS)

    Guirao, C.M.; Knystautas, R.; Lee, J.H.


    Dynamic detonation parameters are reviewed for hydrogen-air-diluent detonations and deflagration-to-detonation transitions (DDT). These parameters include the characteristic chemical length scale, such as the detonation cell width, associated with the three-dimensional cellular structure of detonation waves, critical transmission conditions of confined detonations into unconfined environments, critical initiation energy for unconfined detonations, detonability limits, and critical conditions for DDT. The detonation cell width, which depends on hydrogen and diluent concentrations, pressure, and temperature, is an important parameter in the prediction of critical geometry-dependent conditions for the transmission of confined detonations into unconfined environments and the critical energies for the direct initiation of unconfined detonations. Detonability limits depend on both initial and boundary conditions and the limit has been defined as the onset of single head spin. Four flame propagation regimes have been identified and the criterion for DDT in a smooth tube is discussed. 108 refs., 28 figs., 5 tabs

  3. Small rocket research and technology (United States)

    Schneider, Steven; Biaglow, James


    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a

  4. Computational and Experimental Investigation of Liquid Propellant Rocket Combustion Instability (United States)

    National Aeronautics and Space Administration — Combustion instability has been a problem faced by rocket engine developers since the 1940s. The complicated phenomena has been highly unpredictable, causing engine...

  5. Detonation properties of the nitromethane/ diethylenetriamine solution (United States)

    Mochalova, Valentina; Utkin, Alexander; Lapin, Sergey


    The results of the experimental determination of detonation parameters for the mixture of nitromethane (NM) with diethylenetriamine (DETA) are presented in this work. By the using of a laser interferometer VISAR the stability of detonation waves, detonation velocity and the reaction time with the change of the DETA concentration from 0 to 60 weight percentages were investigated. It is shown that detonation waves are stable up to 25% DETA, and the character reaction time is reduced from 50 ns up to 30 ns with the addition of a few percentages of the sensitizer and then remains almost the constant. With further increase of the DETA concentration the detonation front becomes unstable, and it results in an arising of pulsations with amplitude of 10 microns. The limit concentration of DETA, above which the detonation of the mixture was impossible, was determined. This concentration was equal to 60%. It is shown that the dependence of the detonation velocity on the DETA concentration is non-monotonic. In particular, the increase of detonation velocity in the vicinity of small concentrations of the sensitizer, about 0.1%, was recorded. The work was supported by Russian Foundation for Basic Research (Project 15-03-07830).


    Directory of Open Access Journals (Sweden)

    Vinko Škrlec


    Full Text Available Blasting operations in built-up areas, at short distances from structures, impose new requirements on blasting techniques and properties of explosives in order to mitigate seismic effect of blasting. Explosives for civil uses are mixtures of different chemical composition of explosive and/or non-explosive substances. Chemical and physical properties, along with means of initiation, environment and the terms of application define detonation and blasting parameters of a particular type of the explosive for civil uses. Velocity of detonation is one of the most important measurable characteristics of detonation parameters which indirectly provide information about the liberated energy, quality of explosives and applicability for certain purposes. The level of shock effect of detonated charge on the rock, and therefore the level of seismic effect in the area, depends on the velocity of detonation. Since the velocity of detonation is proportional to the density of an explosive, the described research is carried out in order to determine the borderline density of the mixture of an emulsion explosive with expanded polystyrene while achieving stable detonation, and to determine the dependency between the velocity of detonation and the density of mixture (the paper is published in Croatian.

  7. Tritium labeling of detonation nanodiamonds. (United States)

    Girard, Hugues A; El-Kharbachi, Abdelouahab; Garcia-Argote, Sébastien; Petit, Tristan; Bergonzo, Philippe; Rousseau, Bernard; Arnault, Jean-Charles


    For the first time, the radioactive labeling of detonation nanodiamonds was efficiently achieved using a tritium microwave plasma. According to our measurements, the total radioactivity reaches 9120 ± 120 μCi mg(-1), with 93% of (3)H atoms tightly bonded to the surface and up to 7% embedded into the diamond core. Such (3)H doping will ensure highly stable radiolabeled nanodiamonds, on which surface functionalization is still allowed. This breakthrough opens the way to biodistribution and pharmacokinetics studies of nanodiamonds, while this approach can be scalable to easily treat bulk quantities of nanodiamonds at low cost.

  8. Detonation properties of nitromethane/diethylenetriamine solution (United States)

    Mochalova, V.; Utkin, A.; Lapin, S.


    The results of the experimental determination of the detonation parameters of nitromethane (NM) with diethylenetriamine (DETA) solution are presented in this work. With the using of a laser interferometer VISAR the stability of detonation waves, the detonation velocity and the reaction time at the concentration of DETA from 0 to 60 weight percentage were investigated. It is shown that the stability of detonation waves is retained up to 25% DETA, at that the characteristic reaction time is reduced by about half at the addition of several percentage of the sensitizer to NM and then remains almost constant. The increase of the detonation velocity in the vicinity of the small, about 0.1%, concentrations of sensitizer is recorded.

  9. Molecular dynamics simulations of weak detonations. (United States)

    Am-Shallem, Morag; Zeiri, Yehuda; Zybin, Sergey V; Kosloff, Ronnie


    Detonation of a three-dimensional reactive nonisotropic molecular crystal is modeled using molecular dynamics simulations. The detonation process is initiated by an impulse, followed by the creation of a stable fast reactive shock wave. The terminal shock velocity is independent of the initiation conditions. Further analysis shows supersonic propagation decoupled from the dynamics of the decomposed material left behind the shock front. The dependence of the shock velocity on crystal nonlinear compressibility resembles solitary behavior. These properties categorize the phenomena as a weak detonation. The dependence of the detonation wave on microscopic potential parameters was investigated. An increase in detonation velocity with the reaction exothermicity reaching a saturation value is observed. In all other respects the model crystal exhibits typical properties of a molecular crystal.

  10. Rockets two classic papers

    CERN Document Server

    Goddard, Robert


    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  11. Impact sensitivity and the maximum heat of detonation. (United States)

    Politzer, Peter; Murray, Jane S


    We demonstrate that a large heat of detonation is undesirable from the standpoint of the impact sensitivity of an explosive and also unnecessary from the standpoints of its detonation velocity and detonation pressure. High values of the latter properties can be achieved even with a moderate heat of detonation, and this in turn enhances the likelihood of relatively low sensitivity.

  12. Effect of Mixture Pressure and Equivalence Ratio on Detonation Cell Size for Hydrogen-Air Mixtures (United States)


    mixture pressure detonation cell sizes are important for scaling the combustion chambers, and before this research no data existed for hydrogen and air...Introduction General Issue Pressure gain combustors have the potential to replace traditional combustions systems in gas turbine engines (Tellefsen et al... combustion has not been fully incorporated into turbine engines. In order to fully integrate RDEs into turbine engines, RDEs must be able to function

  13. Laser-supported detonation waves and pulsed laser propulsion

    International Nuclear Information System (INIS)

    Kare, J.


    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10 4 K, 10 2 atmospheres, 10 7 w/cm 2 ) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area

  14. Reinforced concrete wall under hydrogen detonation

    International Nuclear Information System (INIS)

    Saarenheimo, A.


    The structural integrity of a reinforced concrete wall in the BWR reactor building under hydrogen detonation conditions has been analysed. Of particular interest is whether the containment integrity can be jeopardised by an external hydrogen detonation. The load carrying capacity of a reinforced concrete wall was studied. The detonation pressure loads were estimated with computerised hand calculations assuming a direct initiation of detonation and applying the strong explosion theory. The results can be considered as rough and conservative estimates for the first shock pressure impact induced by a reflecting detonation wave. Structural integrity may be endangered due to slow pressurisation or dynamic impulse loads associated with local detonations. The static pressure following the passage of a shock front may be relatively high, thus this static or slowly decreasing pressure after a detonation may damage the structure severely. The mitigating effects of the opening of a door on pressure history and structural response were also studied. The non-linear behaviour of the wall was studied under detonations corresponding a detonable hydrogen mass of 0.5 kg and 1.428 kg. Non-linear finite element analyses of the reinforced concrete structure were carried out by the ABAQUS/Explicit program. The reinforcement and its non-linear material behaviour and the tensile cracking of concrete were modelled. Reinforcement was defined as layers of uniformly spaced reinforcing bars in shell elements. In these studies the surrounding structures of the non-linearly modelled reinforced concrete wall were modelled using idealised boundary conditions. Especially concrete cracking and yielding of the reinforcement was monitored during the numerical simulation. (au)

  15. Assessing the Effect of the Role of Detonation Wave Curvature on the Firing Times of High Voltage Detonators (United States)

    Drake, Rod; Explosive Materials; Initiation Science Group Team


    In detonators the lost time is the difference between the measured and calculated time for the reactive wave to transit the explosive charge. The calculated time is derived from the charge thickness and the steady state detonation velocity. For both EBW and EFI detonators the lost time is significant and, for detonators of comparable dimensions, greater in EBW detonators. Typically, the lost time is attributed to a finite growth to detonation time. The bridgewires and foil flyers of EBW and EFI detonators respectively establish reaction fronts over very small areas in the explosive. Even with a significant run to detonation distance, the detonation front may be expected to be highly curved and, thus, have a detonation velocity below the steady state velocity. Consequently, the time and distance required for a steady state detonation velocity to be established may also contribute to the lost time in EBW and EFI detonators. To assess the relevance of wave curvature on lost time a simple analytical model has been developed which takes into account growth to detonation and detonation wave curvature effects. The model showed that detonation wave curvature could be responsible for at least some of the lost time of EBW detonators. British Crown Owned Copyright 2017/AWE.

  16. Plasma-assisted ignition and deflagration-to-detonation transition. (United States)

    Starikovskiy, Andrey; Aleksandrov, Nickolay; Rakitin, Aleksandr


    Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc. As a rule, the dominant mechanism of the effect of non-equilibrium plasma on ignition and combustion is associated with the generation of active particles in the discharge plasma. For plasma-assisted ignition and combustion in mixtures containing air, the most promising active species are O atoms and, to a smaller extent, some other neutral atoms and radicals. These active particles are efficiently produced in high-voltage, nanosecond, pulse discharges owing to electron-impact dissociation of molecules and electron-impact excitation of N(2) electronic states, followed by collisional quenching of these states to dissociate the molecules. Mechanisms of deflagration-to-detonation transition (DDT) initiation by non-equilibrium plasma were analysed. For longitudinal discharges with a high power density in a plasma channel, two fast DDT mechanisms have been observed. When initiated by a spark or a transient discharge, the mixture ignited simultaneously over the volume of the discharge channel, producing a shock wave with a Mach number greater than 2 and a flame. A gradient mechanism of DDT similar to that proposed by Zeldovich has been observed experimentally under streamer initiation.

  17. Qualitative and quantitative analysis of detonation products

    International Nuclear Information System (INIS)

    Xie Yun


    Different sampling and different injection method were used during analyzing unknown detonation products in a obturator. The sample analyzed by gas chromatography and gas chromatography/mass spectrum. Qualitative analysis was used with CO, NO, C 2 H 2 , C 6 H 6 and so on, qualitative analysis was used with C 3 H 5 N, C 10 H 10 , C 8 H 8 N 2 and so on. The method used in the article is feasible. The results show that the component of detonation in the study is negative oxygen balance, there were many pollutants in the detonation products. (authors)

  18. Study on Performance of Detonation-Driven Shock Tube(Compressible Flow and Detonation)


    YAMANAKA, Akio; ARIGA, Yosuke; 小原, 哲郎; CAI, Pin; 大八木, 重治


    A detonation-driven shock tube firstly designed by H.R. Yu is considered to be a useful apparatus for producing high-enthalpy flow. In this apparatus, a strong shock wave is generated by detonating an oxygen-hydrogen mixture (oxy-hydrogen) and the driver gas temperature and pressure are extremely high compared with those of a conventional shock tube. However, the structure of the detonation wave is not uniform, e.g., the detonation wave has three-dimensional cellular structures and multiple t...

  19. Underwater sympathetic detonation of pellet explosive (United States)

    Kubota, Shiro; Saburi, Tei; Nagayama, Kunihito


    The underwater sympathetic detonation of pellet explosives was taken by high-speed photography. The diameter and the thickness of the pellet were 20 and 10 mm, respectively. The experimental system consists of the precise electric detonator, two grams of composition C4 booster and three pellets, and these were set in water tank. High-speed video camera, HPV-X made by Shimadzu was used with 10 Mfs. The underwater explosions of the precise electric detonator, the C4 booster and a pellet were also taken by high-speed photography to estimate the propagation processes of the underwater shock waves. Numerical simulation of the underwater sympathetic detonation of the pellet explosives was also carried out and compared with experiment.

  20. Confined detonations with cylindrical and spherical symmetry

    International Nuclear Information System (INIS)

    Linan, A.; Lecuona, A.


    An imploding spherical or cylindrical detonation, starting in the interface of the detonantion with an external inert media, used as a reflector, creates on it a strong shock wave moving outward from the interface. An initially weak shock wave appears in the detonated media that travels toward the center, and it could reach the detonation wave, enforcing it in its process of implosion. To describe the fluid field, the Euler s equations are solved by means of expansions valid for the early stages of the process. Isentropic of the type P/pγ-K for the detonated and compressed inert media are used. For liquid or solid reflectors a more appropriate equation is used. (Author) 8 refs

  1. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L


    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  2. Chirped fiber Bragg grating detonation velocity sensing. (United States)

    Rodriguez, G; Sandberg, R L; McCulloch, Q; Jackson, S I; Vincent, S W; Udd, E


    An all optical-fiber-based approach to measuring high explosive detonation front position and velocity is described. By measuring total light return using an incoherent light source reflected from a linearly chirped fiber Bragg grating sensor in contact with the explosive, dynamic mapping of the detonation front position and velocity versus time is obtained. We demonstrate two calibration procedures and provide several examples of detonation front measurements: PBX 9502 cylindrical rate stick, radial detonation front in PBX 9501, and PBX 9501 detonation along curved meridian line. In the cylindrical rate stick measurement, excellent agreement with complementary diagnostics (electrical pins and streak camera imaging) is achieved, demonstrating accuracy in the detonation front velocity to below the 0.3% level when compared to the results from the pin data. Finally, an estimate on the linear spatial and temporal resolution of the system shows that sub-mm and sub-μs levels are attainable with proper consideration of the recording speed, detection sensitivity, spectrum, and chirp properties of the grating.

  3. Ignition of detonation in accreted helium envelopes (United States)

    Ami Glasner, S.; Livne, E.; Steinberg, E.; Yalinewich, A.; Truran, James W.


    Sub Chandrasekhar CO white dwarfs accreting helium have been considered as candidates for SNIa progenitors since the early 1980's (helium shell mass >0.1M⊙). These models, once detonated did not fit the observed spectra and light curve of typical SNIa observations. New theoretical work examined detonations on much less massive (<0.05M⊙) envelopes. They find stable detonations that lead to light curves, spectra and abundances that compare relatively well with the observational data. The exact mechanism leading to the ignition of helium detonation is a key issue, since it is a mandatory first step for the whole scenario. As the flow of the accreted envelope is unstable to convection long before any hydrodynamic phenomena develops, a multidimensional approach is needed in order to study the ignition process. The complex convective reactive flow is challenging to any hydrodynamical solver. According to our best knowledge all previous 2D studies ignited the detonation artificially. We present here, for the first time, fully consistent results from two hydrodynamical 2D solvers that adopt two independent accurate schemes. For both solvers an effort was made to overcome the problematics raised by the finite resolution and numerical diffusion by the advective terms. Our best models lead to the ignition of a detonation in a convective cell. Our results are robust and the agreement between the two different numerical approaches is very good.

  4. Qualitative and Asymptotic Theory of Detonations

    KAUST Repository

    Faria, Luiz


    Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.

  5. Effect of Resolution on Propagating Detonation Wave

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  6. Research on verification and validation strategy of detonation fluid dynamics code of LAD2D (United States)

    Wang, R. L.; Liang, X.; Liu, X. Z.


    The verification and validation (V&V) is an important approach in the software quality assurance of code in complex engineering application. Reasonable and efficient V&V strategy can achieve twice the result with half the effort. This article introduces the software-Lagrangian adaptive hydrodynamics code in 2D space (LAD2D), which is self-developed software in detonation CFD with plastic-elastic structure. The V&V strategy of this detonation CFD code is presented based on the foundation of V&V methodology for scientific software. The basic framework of the module verification and the function validation is proposed, composing the detonation fluid dynamics model V&V strategy of LAD2D.

  7. Not just rocket science

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Anderson, R. [Celan Energy Systems, Rancho Cordova, CA (United States)


    The paper explains a different take on oxyfuel combustion. Clean Energy Systems (CES) has integrated aerospace technology into conventional power systems, creating a zero-emission power generation technology that has some advantages over other similar approaches. When using coal as a feedstock, the CES process burns syngas rather than raw coal. The process uses recycled water and steam to moderate the temperature, instead of recycled CO{sub 2}. With no air ingress, the CES process produces very pure CO{sub 2}. This makes it possible to capture over 99% of the CO{sub 2} resulting from combustion. CES uses the combustion products to drive the turbines, rather than indirectly raising steam for steam turbines, as in the oxyfuel process used by companies such as Vattenfall. The core of the process is a high-pressure oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include natural gas, coal or coke-derived synthesis gas, landfill and biodigester gases, glycerine solutions and oil/water emulsion. 2 figs.

  8. Collaboration with and without Coauthorship: Rocket Science Versus Economic Science


    Barnett, William


    This essay is about my prior experiences as a rocket scientist on Apollo rocket engines, with comparison to my subsequent experiences at the Federal Reserve, and in academia, with emphasis upon differences in collaboration and scientific methodology. A primary difference is in the emphasis on measurement.

  9. Detonability of H2-air-diluent mixtures

    International Nuclear Information System (INIS)

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.; Berman, M.


    This report describes the Heated Detonation Tube (HDT). Detonation cell width and velocity results are presented for H 2 -air mixtures, undiluted and diluted with CO 2 and H 2 O for a range of H 2 concentration, initial temperature and pressure. The results show that the addition of either CO 2 or H 2 O significantly increases the detonation cell width and hence reduces the detonability of the mixture. The results also show that the detonation cell width is reduced (detonability is increased) for increased initial temperature and/or pressure

  10. Detonation nanodiamonds for doping Kevlar. (United States)

    Comet, Marc; Pichot, Vincent; Siegert, Benny; Britz, Fabienne; Spitzer, Denis


    This paper reports on the first attempt to enclose diamond nanoparticles--produced by detonation--into a Kevlar matrix. A nanocomposite material (40 wt% diamond) was prepared by precipitation from an acidic solution of Kevlar containing dispersed nanodiamonds. In this material, the diamond nanoparticles (Ø = 4 nm) are entirely wrapped in a Kevlar layer about 1 nm thick. In order to understand the interactions between the nanodiamond surface and the polymer, the oxygenated surface functional groups of nanodiamond were identified and titrated by Boehm's method which revealed the exclusive presence of carboxyl groups (0.85 sites per nm2). The hydrogen interactions between these groups and the amide groups of Kevlar destroy the "rod-like" structure and the classical three-dimensional organization of this polymer. The distortion of Kevlar macromolecules allows the wrapping of nanodiamonds and leads to submicrometric assemblies, giving a cauliflower structure reminding a fractal object. Due to this structure, the macroscopic hardness of Kevlar doped by nanodiamonds (1.03 GPa) is smaller than the one of pure Kevlar (2.31 GPa). To our knowledge, this result is the first illustration of the change of the mechanical properties induced by doping the Kevlar with nanoparticles.

  11. Reignition of detonations by reflected shocks (United States)

    Jones, D. A.; Sichel, M.; Oran, E. S.


    Numerical simulations are used to study the diffraction, decay, and reignition that occurs when a detonation propagates past an increase in cross-sectional area in a rectangular tube. The computations solve the time-dependent two-dimensional equations describing a reactive flow in an argon-diluted stoichiometric hydrogen-oxygen mixture at atmospheric pressure. Previous studies have shown that soon after transmission to a larger area, the reaction front decouples from the leading shock and forms a decaying blast wave (“bubble”) in the larger tube. Then, depending on the initial conditions, the detonation either continues to decay or is reignited as the bubble reflects off confining surfaces. For a strongly overdriven initiating detonation, reignition occurs through an interaction between the bubble and the original contact surface. For a more weakly driven system, reignition can occur in two ways: either in the slip line and Mach stem of the Mach reflection formed when the bubble reflects off the bottom surface of the tube, or by multiple shock interactions that occur when the reflected bubble overtakes the initial detonation front. The computations show the evolution and development of the cellular structure of the steady detonation front.

  12. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    International Nuclear Information System (INIS)

    Dolmatov, Valerii Yu


    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.


    National Aeronautics and Space Administration — This proposal is responsive to Topic H10: Ground Processing and in particular to Subtopic H10.02. When a rocket motor/engine is ignited at low altitude its...

  14. Gaseous Helium Reclamation at Rocket Test Systems, Phase II (United States)

    National Aeronautics and Space Administration — GHe reclamation is critical in reducing operating costs at rocket engine test facilities. Increases in cost and shortages of helium will dramatically impact testing...

  15. Ultraviolet photographic pyrometer used in rocket exhaust analysis (United States)

    Levin, B. P.


    Ultraviolet photographic pyrometer investigates the role of carbon as a thermal radiator and determines the geometry, location, and progress of afterburning phenomena in the exhaust plume of rocket engines using liquid oxygen/RP-1 as propellant.

  16. Nitrous Ethane-Ethylene Rocket with Hypergolic Ignition, Phase I (United States)

    National Aeronautics and Space Administration — The Nitrous Ethane-Ethylene Rocket with Hypergolic Ignition (NEERHI) engine is a proposed technology designed to provide small spacecraft with non-toxic,...

  17. Nitrous Ethane-Ethylene Rocket with Hypergolic Ignition, Phase II (United States)

    National Aeronautics and Space Administration — The Nitrous Ethane-Ethylene Rocket with Hypergolic Ignition (NEERHI) engine is a proposed technology designed to provide small spacecraft with non-toxic,...

  18. Design study of RL10 derivatives. Volume 3, part 2: Operational and flight support plan. [analysis of transportation requirements for rocket engine in support of space tug program (United States)

    Shubert, W. C.


    Transportation requirements are considered during the engine design layout reviews and maintenance engineering analyses. Where designs cannot be influenced to avoid transportation problems, the transportation representative is advised of the problems permitting remedies early in the program. The transportation representative will monitor and be involved in the shipment of development engine and GSE hardware between FRDC and vehicle manufacturing plant and thereby will be provided an early evaluation of the transportation plans, methods and procedures to be used in the space tug support program. Unanticipated problems discovered in the shipment of development hardware will be known early enough to permit changes in packaging designs and transportation plans before the start of production hardware and engine shipments. All conventional transport media can be used for the movement of space tug engines. However, truck transport is recommended for ready availability, variety of routes, short transit time, and low cost.

  19. Development of new model for high explosives detonation parameters calculation

    Directory of Open Access Journals (Sweden)

    Jeremić Radun


    Full Text Available The simple semi-empirical model for calculation of detonation pressure and velocity for CHNO explosives has been developed, which is based on experimental values of detonation parameters. Model uses Avakyan’s method for determination of detonation products' chemical composition, and is applicable in wide range of densities. Compared with the well-known Kamlet's method and numerical model of detonation based on BKW EOS, the calculated values from proposed model have significantly better accuracy.

  20. Pseudoideal detonation of mechanoactivated mixtures of ammonium perchlorate with nanoaluminum (United States)

    Shevchenko, A. A.; Dolgoborodov, A. Yu; Brazhnikov, M. A.; Kirilenko, V. G.


    Detonation properties of mechanochemical activated ammonium perchlorate with aluminum (AP–Al) mixtures with increased detonation velocity was studied. For compositions with nanoscale aluminum was obtained nonmonotonic dependence of the detonation velocity vs reciprocal diameter. The results generally showed that the combined usage of mechanical activation and nanoscale components of explosive mixtures can significantly increase the detonation ability and reduce the critical diameter to d cr = 7 mm.

  1. Multistage reaction pathways in detonating high explosives

    International Nuclear Information System (INIS)

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya


    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N 2 and H 2 O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N 2 and H 2 O productions

  2. Detonation Properties of Ammonium Dinitramide (ADN) (United States)

    Wätterstam, A.; Östmark, H.; Helte, A.; Karlsson, S.


    Ammonium Dinitramide, ADN, has a potential as an oxidizer for underwater high explosives. Pure ADN has a large reaction-zone length and shows a strong non-ideal behaviour. The work presented here is an extension of previous work.(Sensitivity and Performance Characterization of Ammonium Dinitramide (ADN). Presented at 11th International Detonation Symposium, Snowmass, CO, 1998.) Experiments for determining the detonation velocity as a function of inverse charge radius and density, reaction-zone length and curvature, and the detonation pressure are presented. Measurements of pressure indicates that no, or weak von-Neumann spike exists, suggesting an immediate chemical decomposition. Experimental data are compared with predicted using thermochemical codes and ZND-theory.

  3. Microelectronic Spare and Repair Part Status Analysis for the Multiple Launch Rocket System (MLRS)

    National Research Council Canada - National Science Library

    Maddux, Gary


    .... IOD required management and engineering support In performing microelectronic technology and availability assessments for the impact of nonavailability on the Multiple Launch Rocket System (MLRS...

  4. High Thrust & High ISP Nuclear Thermal Rocket (NTR) Grooved Ring Fuel Element (GRFE) (United States)

    National Aeronautics and Space Administration — Missions to Mars will benefit from propulsion systems with performance levels exceeding that of today's best chemical engines. Nuclear Thermal Rocket (NTR)...

  5. Unsteady detonations driven by first-order phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Rabie, R.L.; Fickett, W.


    Reactive waves supported by the energy released during a phase transformation are examined as elementary detonations. It is found that a class of eigenvalue detonations exist containing the well known Chapman-Jouguet solution as a particular case. In general the set of eigenvalue detonations are unsteady in any single inertial reference frame.

  6. 30 CFR 56.6402 - Deenergized circuits near detonators. (United States)


    ... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not be deenergized between 25 to 50 feet of the electric detonators if stray current tests, conducted as frequently...

  7. 30 CFR 57.6402 - Deenergized circuits near detonators. (United States)


    ... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not be deenergized between 25 to 50 feet of the electric detonators if stray current tests...

  8. 30 CFR 57.6400 - Compatibility of electric detonators. (United States)


    ... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 57.6400...

  9. 30 CFR 56.6400 - Compatibility of electric detonators. (United States)


    ... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical firing characteristics. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 56.6400...

  10. Investigation of hydrogen-deflagration/-detonation

    International Nuclear Information System (INIS)

    Breitung, W.; Redlinger, R.; Werle, H.; Moeschke, M.


    The static and dynamic loads of a PWR-containment from hydrogen combustion are investigated theoretically and experimentally. The primary goal is the determination of realistic, not too conservative, upper bounds. The load data are needed to define design requirements for a core-melt resistant containment structure. The following work was performed in 1991: balloon tests; design of a medium scale detonation tube; development of a 1D detonation code; analytical study with SNL/Albuquerque, USA and documentation and presentation of results. (orig./DG)

  11. Another Look at Rocket Thrust (United States)

    Hester, Brooke; Burris, Jennifer


    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  12. US Rocket Propulsion Industrial Base Health Metrics (United States)

    Doreswamy, Rajiv


    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  13. Detonation of hydrogen-air mixtures. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.H.S.; Knystautas, R.; Benedick, W.B.


    The detonation of a hydrogen-air cloud subsequent to an accidental release of hydrogen into ambient surroundings cannot be totally ruled out in view of the relative sensitivity of the hydrogen-air system. The present paper investigates the key parameters involved in hydrogen-air detonations and attempts to establish quantitative correlations between those that have important practical implications. Thus, for example, the characteristic length scale lambda describing the cellular structure of a detonation front is measured for a broad range of hydrogen-air mixtures and is quantitatively correlated with the key dynamic detonation properties such as detonability, transmission and initiation.

  14. Rogowski coils for studies of detonator initiation (United States)

    Tasker, Douglas


    The Rogowski coil dates back to 1887 and it has commonly been employed to measure rapid changes of electrical currents without direct contact with the circuits, especially in high energy density applications. Recently, it has been used to measure currents in relatively low energy devices such as semiconductor circuits; here we report its utility in the analysis of detonator initiation. From an electrical perspective, the coil is essentially an air-cored transformer and measures the temporal rate of change of current dI/dt. Following a careful characterization of the circuit, an accurate measurement of this derivative is shown to provide a complete solution of the detonator circuit, including current, voltage, power and energy delivered to the detonator. The dependence of the electrical sensitivity, accuracy and bandwidth on coil design will be discussed and a new printed circuit design will be presented. Interesting features in the initiation of exploding bridgewire detonators have been observed with this coil and the results of various experiments will be discussed.

  15. Mach reflection of a ZND detonation wave (United States)

    Li, J.; Ning, J.; Lee, J. H. S.


    The Mach reflection of a ZND detonation wave on a wedge is investigated numerically. A two-step chain-branching reaction model is used giving a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. The presence of a finite reaction zone thickness renders the Mach reflection process non-self-similar. The variation of the height of the Mach stem with distance of propagation does not correspond to a straight curve from the wedge apex as governed by self-similar three-shock theory. However, the present results indicate that in the near field around the wedge apex, and in the far field where the reaction zone thickness is small compared to the distance of travel of the Mach stem, the behavior appears to be self-similar. This corresponds to the so-called frozen and equilibrium limit pointed out by Hornung and Sanderman for strong discontinuity shock waves and by Shepherd et al. for cellular detonations. The critical wedge angle for the transition from regular to Mach reflection is found to correspond to the value determined by self-similar three-shock theory, but not by reactive three-shock theory for a discontinuous detonation front.

  16. Formation of transverse waves in oblique detonations

    NARCIS (Netherlands)

    Verreault, J.; Higgins, A.J.; Stowe, R.A.


    The structure of oblique detonation waves stabilized on a hypersonic wedge in mixtures characterized by a large activation energy is investigated via steady method of characteristics (MoC) calculations and unsteady computational flowfield simulations. The steady MoC solutions show that, after the

  17. Detonation propagation in a high loss configuration

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Scott I [Los Alamos National Laboratory; Shepherd, Joseph E [CALTECH


    This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.

  18. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Tagawa, H. [Nuclear Power Engineering Corp., Tokyo (Japan); Malliakos, A. [Nuclear Regulatory Commission, Washington, DC (United States)


    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant product,s and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

  19. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C. [Brookhaven National Lab., Upton, NY (United States)] [and others


    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

  20. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.


    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  1. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Malliakos, A.


    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant product,s and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  2. Thermo-acoustic instabilities of high-frequency combustion in rocket engines; Instabilites thermo-acoustiques de combustion haute-frequence dans les moteurs fusees

    Energy Technology Data Exchange (ETDEWEB)

    Cheuret, F.


    Rocket motors are confined environments where combustion occurs in extreme conditions. Combustion instabilities can occur at high frequencies; they are tied to the acoustic modes of the combustion chamber. A common research chamber, CRC, allows us to study the response of a turbulent two-phase flame to acoustic oscillations of low or high amplitudes. The chamber is characterised under cold conditions to obtain, in particular, the relative damping coefficient of acoustic oscillations. The structure and frequency of the modes are determined in the case where the chamber is coupled to a lateral cavity. We have used a powder gun to study the response to a forced acoustic excitation at high amplitude. The results guide us towards shorter flames. The injectors were then modified to study the combustion noise level as a function of injection conditions. The speed of the gas determines whether the flames are attached or lifted. The noise level of lifted flames is higher. That of attached flames is proportional to the Weber number. The shorter flames whose length is less than the radius of the CRC, necessary condition to obtain an effective coupling, are the most sensitive to acoustic perturbations. The use of a toothed wheel at different positions in the chamber allowed us to obtain informations on the origin of the thermo-acoustic coupling, main objective of this thesis. The flame is sensitive to pressure acoustic oscillations, with a quasi-zero response time. These observations suggest that under the conditions of the CRC, we observe essentially the response of chemical kinetics to pressure oscillations. (author)

  3. Hydrocarbon Rocket Technology Impact Forecasting (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.


    Forecasting method is a normative forecasting technique that allows the designer to quantify the effects of adding new technologies on a given design. This method can be used to assess and identify the necessary technological improvements needed to close the gap that exists between the current design and one that satisfies all constraints imposed on the design. The TIF methodology allows for more design knowledge to be brought to the earlier phases of the design process, making use of tools such as Quality Function Deployments, Morphological Matrices, Response Surface Methodology, and Monte Carlo Simulations.2 This increased knowledge allows for more informed decisions to be made earlier in the design process, resulting in shortened design cycle time. This paper will investigate applying the TIF method, which has been widely used in aircraft applications, to the conceptual design of a hydrocarbon rocket engine. In order to reinstate a manned presence in space, the U.S. must develop an affordable and sustainable launch capability. Hydrocarbon-fueled rockets have drawn interest from numerous major government and commercial entities because they offer a low-cost heavy-lift option that would allow for frequent launches1. However, the development of effective new hydrocarbon rockets would likely require new technologies in order to overcome certain design constraints. The use of advanced design methods, such as the TIF method, enables the designer to identify key areas in need of improvement, allowing one to dial in a proposed technology and assess its impact on the system. Through analyses such as this one, a conceptual design for a hydrocarbon-fueled vehicle that meets all imposed requirements can be achieved.

  4. Numerical investigation of unsteady detonation waves in combustion chamber using Shchelkin spirals

    Directory of Open Access Journals (Sweden)

    Repaka Ramesh


    Full Text Available : Pulse Detonation Engine (PDE is considered to be a propulsive system of future air vehicles. The main objective is to minimizing the Deflagration to Detonation transition run-up distance and time by placing Shchelkin spiral with varying pitch length. Here we have considered blockage-area ratio is 0.5 as optimal value from review of previous studies. In the present study the detonation initiation and propagation is modeled numerically using commercial CFD codes GAMBIT and FLUENT. The unsteady and two-dimensional compressible Reynolds Averaged Navier-Stokes equation is used to simulate the model. Fuel-air mixture of Hydrogen-air is used for better efficiency of PDE. It is very simple straight tube with Shchelkin spirals, one of the methods which is used to initiate detonation is creation of high pressure and temperature chamber region with 0.5cm from closed end of tube where shock will generate and transition into low pressure and temperature region propagates towards end of the tube. Two different zones namely high and low pressure zones are used as interface in modeling and patching has been used to fill the zones with hydrogen and oxygen with different pressure and temperatures hence shock leads to propagate inside the combustion chamber.

  5. Confinement Effect on Detonation Propagation in Condensed-Phase High Explosives (United States)

    Chiquete, Carlos; Short, Mark; Meyer, Chad D.; Quirk, James J.


    In applications that embed condensed-phase high explosives (HEs) in engineering scale geometries, the confining material's density and impedance have a strong influence on the resulting speed and front shape of the detonation wave in the HE. This is due to the post-shock flow divergence induced by the inert material yielding to the intense reaction zone pressures. Here, we systematically investigate this confinement effect on multi-dimensional detonation propagation. Specifically, we use a simplified HE model and stylized 2D planar and axisymmetric geometries. A shock-attached formulation of the reactive Euler equations is adopted and the post-shock flow divergence is mimicked by enforcing a (linear) boundary streamline at a prescribed deflection angle. The steady-state propagation of the wave is examined as a function of this angle including its phase velocity, detonation front pressure and the reaction zone structure. We focus on the transition from subsonic or confined flow along the boundary to supersonic flow when the detonation propagation becomes insensitive to further increases in flow divergence.

  6. Synchro-ballistic recording of detonation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Critchfield, R.R.; Asay, B.W.; Bdzil, J.B.; Davis, W.C.; Ferm, E.N.; Idar, D.J.


    Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic Detonation Shock Dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of the events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film`s spatial dimension and the phase velocity is adjusted to provide synchronization at the camera`s maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to-diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric detonation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.

  7. ROCKET PORT CLOSURE (United States)

    Mattingly, J.T.


    This invention provides a simple pressure-actuated closure whereby windowless observation ports are opened to the atmosphere at preselected altitudes. The closure comprises a disk which seals a windowless observation port in rocket hull. An evacuated instrument compartment is affixed to the rocket hull adjacent the inner surface of the disk, while the outer disk surface is exposed to the atmosphere through which the rocket is traveling. The pressure differential between the evacuated instrument compartment and the relatively high pressure external atmosphere forces the disk against the edge of the observation port, thereby effecting a tight seai. The instrument compartment is evacuated to a pressure equal to the atmospheric pressure existing at the altitude at which it is desiretl that the closure should open. When the rocket reaches this preselected altitude, the inwardly directed atmospheric force on the disk is just equaled by the residual air pressure force within the instrument compartment. Consequently, the closure disk falls away and uncovers the open observation port. The separation of the disk from the rocket hull actuates a switch which energizes the mechanism of a detecting instrument disposed within the instrument compartment. (AE C)

  8. Scaled Rocket Testing in Hypersonic Flow (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish


    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  9. Unsteady Specific Work and Isentropic Efficiency of a Radial Turbine Driven by Pulsed Detonations (United States)


    Dyer and Kaemming 2002) Petters and Felder (2002) used an on-design thermodynamic cycle analysis of a hybrid PDC high-bypass turbofan in the...assumed an ideal transition from unsteady PDC exhaust to steady mixed turbine inlet flow. Unlike Petters and Felder (2002) who treated the PDC as a... Felder , J. L. "Engine System Performance of Pulse Detonation Concepts Using the NPSS Program." 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference

  10. Measurement of impulse generated by the detonation of anti-tank mines by using the VLIP technique

    CSIR Research Space (South Africa)

    De Koker, PM


    Full Text Available The impulse generated by the detonation of anti-tank mines is an important characteristic of the mine used to design and develop protective countermeasures and to define the threat in terms of scientific and engineering terms. CSIR in collaboration...

  11. A technology data base for the design of 500 to 5000-lb thrust class liquid rocket engines utilizing hydrogen and oxygen as propellants (United States)

    Schoenman, L.


    This paper presents an overview of the results of experimental evaluations of candidate designs for igniters, injectors, and propellant-cooled thrust chambers applicable to restartable high-performance, high-reliability upper-stage engines and to pulsing-type reaction control engines (RCE). Injection element types best suited for liquid, gas, and liquid/gas phase propellant supply are identified. The resulting interactions between element type, combustion efficiency, and chamber wall heating are compared. The distinction between thrust chamber design requirements for upper stage vs RCE applications as measured by cycle life requirements is translated into design configurations consisting of all-film-cooled, all-regeneratively-cooled, and composites of the two cooling approaches. The validity of the design approaches is confirmed by data from engine durability testing involving over 90,000 starts and 9,000 thermal cycles on RCE-type designs and multiple long-duration burns (up to 2,000 sec) on regeneratively cooled upper-stage designs.


    Directory of Open Access Journals (Sweden)

    Pavel V. Bulat


    Full Text Available We consider the possibilities of combustion and detonation initiation for propane mixtured with air by microwave discharges created by a quasi-optical electromagnetic beam. Comparison of initiation is performed by different types of discharge: spark, streamer, and attached one. The formation theory of streamer discharges is given, the velocity of their propagation and the volume of energy supplies are analyzed. Experiments have been carried out together with calculation of the propane-air mixture ignition by various types of discharges. It is shown that when burning is initiated by a streamer discharge, a multiple increase in the propagation velocity of the flame front and the completeness of the fuel combustion is obtained as compared to a spark discharge with an equal energy contribution. In the prechamber initiation of combustion by igniting a streamer discharge on the inner walls of the quartz tube, a significant acceleration of combustion was obtained up to the rates characteristic for the transition of deflagration to detonation. The results can be applied in the development of multivolumetric volumetric ignition systems in internal combustion engines, gas turbine engines, low-emission combustion chambers, for combustion in supersonic flow, and in combustion chambers for detonation engines.

  13. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters


    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  14. Model of non-ideal detonation of condensed high explosives (United States)

    Smirnov, E. B.; Kostitsin, O. V.; Koval, A. V.; Akhlyustin, I. A.


    The Zeldovich-Neumann-Doering theory of ideal detonation allows one to describe adequately the detonation of charges with near-critical diameter. For smaller diameters, detonation velocity can differ significantly from an ideal value expected based on equilibrium chemical thermodynamics. This difference is quite evident when using non-ideal explosives; in certain cases, this value can be up to one third of ideal detonation velocity. Numerical simulation of these systems is a very labor-consuming process because one needs to compute the states inside the chemical reaction zone, as well as to obtain data on the equation of state of high-explosive detonation products mixture and on the velocity of chemical reaction; however, these characteristics are poorly studied today. For practical purposes, one can use the detonation shock dynamics model based on interrelation between local velocity of the front and its local curvature. This interrelation depends on both the equation of state of explosion products, and the reaction velocity; but the explicit definition of these characteristics is not needed. In this paper, experimental results are analyzed. They demonstrate interrelation between the local curvature of detonation front and the detonation velocity. Equation of detonation front shape is found. This equation allows us to predict detonation velocity and shape of detonation wave front in arbitrary geometry by integrating ordinary differential equation for the front shape with a boundary condition at the charge edge. The results confirm that the model of detonation shock dynamics can be used to describe detonation processes in non-ideal explosives.

  15. Highlights of 50 years of Aerojet, a pioneering American rocket company, 1942-1992 (United States)

    Winter, Frank H.; James, George S.


    The "pre-history" of Aerojet is recalled, followed by a survey of Aerojet's solid-fuel and liquid-fuel JATOs (Jet-Assisted Take-Off) to aircraft prime powerplants, missile sustainer motors, boosters, sounding rocket engines and, finally, nuclear powered rocket engines (NERVA).

  16. Rockets in World War I (United States)


    World War I enlisted rockets once again for military purposes. French pilots rigged rockets to the wing struts of their airplanes and aimed them at enemy observation balloons filled with highly inflammable hydrogen.

  17. Reduced detonation kinetics and detonation structure in one- and multi-fuel gaseous mixtures (United States)

    Fomin, P. A.; Trotsyuk, A. V.; Vasil'ev, A. A.


    Two-step approximate models of chemical kinetics of detonation combustion of (i) one-fuel (CH4/air) and (ii) multi-fuel gaseous mixtures (CH4/H2/air and CH4/CO/air) are developed for the first time. The models for multi-fuel mixtures are proposed for the first time. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier’s principle. Constants of the models have a clear physical meaning. Advantages of the kinetic model for detonation combustion of methane has been demonstrated via numerical calculations of a two-dimensional structure of the detonation wave in a stoichiometric and fuel-rich methane-air mixtures and stoichiometric methane-oxygen mixture. The dominant size of the detonation cell, determines in calculations, is in good agreement with all known experimental data.

  18. This Is Rocket Science! (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela


    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

  19. Thiokol Solid Rocket Motors (United States)

    Graves, S. R.


    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  20. The Relativistic Rocket (United States)

    Antippa, Adel F.


    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  1. This "Is" Rocket Science! (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela


    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  2. Low toxicity rocket propellants

    NARCIS (Netherlands)

    Wink, J.


    Hydrazine (N2H4) and its hypergolic mate nitrogen tetroxide (N2O4) are used on virtually all spacecraft and on a large number of launch vehicles. In recent years however, there has been an effort in identifying and developing alternatives to replace hydrazine as a rocket propellant.

  3. Two stage turbine for rockets (United States)

    Veres, Joseph P.


    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.

  4. Precursors in detonations in porous explosives

    International Nuclear Information System (INIS)

    Spaulding, R.L. Jr.


    Photographs of detonation waves in low-density HMX and PETN, made with an image-intensifier camera, show a brilliant band of light in front of the pressure jump. The radiation temperature is estimated to be 12,000 to 14,000 0 K. The spectrum of this light is continuous. A quartz gauge shows a gradual buildup of pressure from the material producing the light. The material has little effect on the propagation of detonation. Further observations, using pellets of plastic-bonded HMX and single crystals of PETN, show that the material thrown off the free surface is transparent, with a leading edge moving at approximately 20 mm/μs. Collision of this material with polymethyl methacrylate (PMMA) produces a brilliant light with a spectrum that is initially a narrow H/sub α/ line. Quartz gauges measure the rate of pessure buildup of this material

  5. Cookoff of non-traditional detonators (United States)

    Zucker, Jonathan; Tappan, Bryce C.; Manner, Virginia W.; Novak, Alan


    Significant work has gone into understanding the cookoff behavior of a variety of explosives, primarily for safety and surety reasons. However, current times require similar knowledge on a new suite of explosives that are readily attainable or made, and are easily initiated without expensive firesets or controlled materials. Homemade explosives (HMEs) are simple to synthesize from readily available precursor materials. Two of these HMEs, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) are not only simple to prepare, but have sufficient output and sensitivity to act as primary explosives in an initiation train. Previous work has shown that detonators may be an integral vulnerability in a cookoff scenario. This poster contains the results of cookoff experiments performed on detonators made with TATP and HMTD. We found that the less chemically stable TATP decomposed during heating, while the more chemically stable HMTD acted like a traditional primary explosive, namely reaction violence and time-to-ignition were independent of confinement.

  6. Effects of high combustion chamber pressure on rocket noise environment (United States)

    Pao, S. P.


    The acoustical environment for a high combustion chamber pressure engine was examined in detail, using both conventional and advanced theoretical analysis. The influence of elevated chamber pressure on the rocket noise environment was established, based on increase in exit velocity and flame temperature, and changes in basic engine dimensions. Compared to large rocket engines, the overall sound power level is found to be 1.5 dB higher, if the thrust is the same. The peak Strouhal number shifted about one octave lower to a value near 0.01. Data on apparent sound source location and directivity patterns are also presented.

  7. Detonation Shock Dynamics of Composite Energetic Materials. (United States)

    Lee, Jaimin


    A reaction-rate equation for a composite energetic material was calibrated from two-dimensional steady-state experiment data by using the detonation shock dynamics theory. From experimental detonation velocities and shock -front shapes at different diameters for an ammonium nitrate -based emulsion explosive at 1.248 g/cm^3, the relationship between the detonation velocity normal to the shock-front and the shock-front curvature was obtained. By using this relationship and solving the quasi one-dimensional Euler equations of motion in a problem -conforming intrinsic-coordinate frame obtained from the detonation shock dynamics theory, the reaction rate was determined as a function of pressure and density: {dlambdaover dt} = 20.0 times 10^6 {rm exp}({-}14390/ sqrt{P/rho^{0.8418}})(1 - lambda)^{1.889}where lambda is the reaction extent, t is the time in s, P is the pressure in Pa, and rho is the density in kg/m^3 . The reaction-rate equation obtained for this emulsion explosive shows that the rate is very slow and weakly state dependent. These characteristics of the rate indicated that the nonideal behavior of most industrial-type explosives can be attributed to their slow and state-insensitive rates. By using the above rate equation, one-dimensional initiation experiments (wedge tests) were numerically modeled with a one-dimensional Lagrangian hydrodynamic code. The calculated shock trajectories agreed very well with experimental wedge test data. This agreement also suggested that the small shock-curvature asymptotics may be valid even for a relatively large value of the curvature. The calibration method developed in this study is independent of the form of the rate. Realistic rate equations for explosives can be obtained in a very systematic way from two-dimensional steady-state experiments.

  8. Simple Model for Detonation Energy and Rate (United States)

    Lauderbach, Lisa M.; Souers, P. Clark


    A simple model is used to derive the Eyring equation for the size effect and detonation rate, which depends on a constant energy density. The rate derived from detonation velocities is then converted into a rate constant to be used in a reactive flow model. The rate might be constant if the size effect curve is straight, but the rate constant will change with the radius of the sample and cannot be a constant. This is based on many careful cylinder tests have been run recently on LX-17 with inner copper diameters ranging from 12.7 to 101.6 mm. Copper wall velocities at scaled displacements of 6, 12.5 and 19 mm equate to values at relative volumes of 2.4, 4.4 and 7.0. At each point, the velocities from 25.4 to 101.6 mm are constant within error whereas the 12.7 mm velocities are lower. Using the updated Gurney model, the energy densities at the three larger sizes are also constant. Similar behavior has been seen in LX-14, LX-04, and an 83% RDX mix. A rough saturation has also been in old ANFO data for diameters of 101.6 mm and larger. Although the energy densities saturate, the detonation velocities continue to increase with size. These observations suggest that maximum energy density is a constant for a given explosive of a given density. The correlation of energy density with detonation velocity is not good because the latter depends on the total energy of the sample. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.



    Vinko Škrlec; Vječislav Bohanek; Zvonimir Deković


    Blasting operations in built-up areas, at short distances from structures, impose new requirements on blasting techniques and properties of explosives in order to mitigate seismic effect of blasting. Explosives for civil uses are mixtures of different chemical composition of explosive and/or non-explosive substances. Chemical and physical properties, along with means of initiation, environment and the terms of application define detonation and blasting parameters of a particular type of the e...

  10. Launch Preparation and Rocket Launching (United States)


    equipment: switchgear , power sources, onboard cable system. The imitation of prelaunch servicing procedure, launching and rocket flight is carried center of container between it and rocket are installed four bushings from foam plastic. These bushings hold rocket in the center of container and

  11. Baking Soda and Vinegar Rockets (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc


    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  12. Insensitive detonator apparatus for initiating large failure diameter explosives (United States)

    Perry, III, William Leroy


    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  13. Radio controlled detonators and sequential real time blast applications

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, T.; Laboz, J.M. [Delta Caps International, Nice (France)


    Among the numerous technical evolutions in the blasting environment the authors are going to describe below the concept of electronic detonator sequenced by radio waves, and also its numerous applications. Three major technologies are used in the initiation environment: fused-initiated detonators; electric detonators; and non-electric detonators. The last two technologies were made available under multiple variants. Two major innovations are going to substantially change the way traditional detonators operate: pyrotechnic delays are replaced by electronic delays (greater accuracy); and triggering orders, passing through a cable, is now replaced by radio-waves transmission (possibility to do real time delay pattern). Such a new product provided all the features offered by current detonators, but also allows mastering specific cases that were difficult to control with the current technology, such as: vibration control; underground blast; and building demolition.

  14. Detonation Shock Dynamics Modelling with Arbitrary Boundaries (United States)

    Hodgson, Alexander


    The Detonation Shock Dynamics (DSD) model can be used to predict detonation wave propagation in a high explosive (HE). The detonation wave is prescribed a velocity that depends on its curvature. Additionally, the angle between the wave and the HE boundary may not exceed a specified ``boundary angle'', the value of which depends on the HE and its confining material(s). The level-set method is commonly used to drive DSD computation. Boundary conditions are applied to the level-set field at the charge edges to maintain the explosive boundary angle criteria. The position of the boundary must be accurate and continuous across adjacent cells to achieve accurate and robust results. This is mainly an issue for mixed material meshes where the boundary does not coincide with the cell boundaries. For such meshes, a set of volume fractions defines the amount of material in each cell. The boundary is defined implicitly by the volume fractions, and must be reconstructed to an explicit form for use in DSD. This work describes a novel synthesis of the level-set method and simulated annealing, an optimisation method used to reconstruct the boundary. The accuracy and robustness of the resulting DSD calculation are evaluated with a range of test problems.

  15. Detonation Performance Analyses for Recent Energetic Molecules (United States)

    Stiel, Leonard; Samuels, Philip; Spangler, Kimberly; Iwaniuk, Daniel; Cornell, Rodger; Baker, Ernest


    Detonation performance analyses were conducted for a number of evolving and potential high explosive materials. The calculations were completed for theoretical maximum densities of the explosives using the Jaguar thermo-chemical equation of state computer programs for performance evaluations and JWL/JWLB equations of state parameterizations. A number of recently synthesized materials were investigated for performance characterizations and comparisons to existing explosives, including TNT, RDX, HMX, and Cl-20. The analytic cylinder model was utilized to establish cylinder and Gurney velocities as functions of the radial expansions of the cylinder for each explosive. The densities and heats of formulation utilized in the calculations are primarily experimental values from Picatinny Arsenal and other sources. Several of the new materials considered were predicted to have enhanced detonation characteristics compared to conventional explosives. In order to confirm the accuracy of the Jaguar and analytic cylinder model results, available experimental detonation and Gurney velocities for representative energetic molecules and their formulations were compared with the corresponding calculated values. Close agreement was obtained with most of the data. Presently at NATO.

  16. Detonation of Meta-stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.


    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  17. Characterizing detonator output using dynamic witness plates

    International Nuclear Information System (INIS)

    Murphy, Michael John; Adrian, Ronald J.


    A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

  18. Three Dimensional Analysis of Induced Detonation of Cased Explosive (United States)


    armour (RHA) steel were investigated through the LS-DYNA. The investigation focused on shock to detonation simulations of Composition B, with the...casing of the explosive leading to the so-called sympathetic detonation . At high impact velocity, initiation of the explosive was caused by the...analytical equations for a sphere and an indefinitely long cylinder. In general, the impact shock induced detonation behavior of an explosive is

  19. Explosives malfunction from sympathetic detonation to shock desensitization

    Energy Technology Data Exchange (ETDEWEB)

    Katsabanis, P.D.; Yeung, C.; Fitz, G.; Heater, R. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Mining Engineering


    Explosives malfunction due to shock waves is a serious concern for successful blasting results. Malfunction can range from sympathetic detonation to desensitization and modification of firing times of conventional pyrotechnic detonators. Decked charges consisting of commercial emulsion explosives having a detonator and a primer were placed in 10cm diameter blastholes and their performance was recorded. Due to the limited length of the holes the events were mainly sympathetic detonations although desensitization was also recorded. Pressure measurements along the stemming column showed that shock waves produced by an explosive have a significant amplitude even at relatively large distances away from the detonating explosive. It was found that 2m away from a detonating charge the pressures in the stemming material were above 0.1 GPa indicating that there is potential for primers and detonators to malfunction. Parallel charges consisting of a commercial emulsion explosive with a diameter of 32mm were confined in 2mm thick steel tubes and initiation was attempted using detonators having a delay interval of 25ms. The charges were placed in sand and the velocity of detonation of the acceptor charge was recorded using a continuous resistance probe system. Carbon resistors were also placed in the same position as the acceptor charge to examine the dynamic pressures that were applied to the charge. Sympathetic detonation, complete desensitization, partial desensitization and properly sequenced detonations were observed as the distance between charges was increased from 76 mm to 305 mm. Delay detonators were also tested in a similar to the last configuration. Modification of firing times was observed at distances between 150 and 360 mm.

  20. Detonation Velocity Measurement with Chirped Fiber Bragg Grating


    Wei, Peng; Lang, Hao; Liu, Taolin; Xia, Dong


    Detonation velocity is an important parameter for explosive, and it is crucial for many fields such as dynamic chemistry burn models, detonation propagation prediction, explosive performance estimation, and so on. Dual-channel detonation velocity measurement method and system are described. The CFBG sensors are pasted both on the surface and in the center of the explosive cylinder. The length of CFBG sensors is measured via the hot-tip probe method. The light intensity reflected from the CFBG...

  1. A comparison of methods for detonation pressure measurement (United States)

    Pachman, J.; Künzel, M.; Němec, O.; Majzlík, J.


    Detonation pressure is an important parameter describing the process of detonation. The paper compares three methods for determination of detonation pressure on the same explosive charge design. Pressed RDX/wax pellets with a density of 1.66 g cm^{-3} were used as test samples. The following methods were used: flyer plate method, impedance window method, and detonation electric effect. Photonic Doppler velocimetry was used for particle velocity measurements in the first two cases. The outputs of the three methods are compared to the literature values and to thermochemical calculation predictions.

  2. Hydroxyapatite Reinforced Coatings with Incorporated Detonationally Generated Nanodiamonds

    International Nuclear Information System (INIS)

    Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Dimitrova, R.; Spassov, T.; Krasteva, N.; Mitev, D.


    We studied the effect of the substrate chemistry on the morphology of hydroxyapatite-detonational nanodiamond composite coatings grown by a biomimetic approach (immersion in a supersaturated simulated body fluid). When detonational nanodiamond particles were added to the solution, the morphology of the grown for 2 h composite particles was porous but more compact then that of pure hydroxyapatite particles. The nanodiamond particles stimulated the hydroxyapatite growth with different morphology on the various substrates (Ti, Ti alloys, glasses, Si, opal). Biocompatibility assay with MG63 osteoblast cells revealed that the detonational nanodiamond water suspension with low and average concentration of the detonational nanodiamond powder is not toxic to living cells.

  3. Using PDV to Understand Damage in Rocket Motor Propellants (United States)

    Tear, Gareth; Chapman, David; Ottley, Phillip; Proud, William; Gould, Peter; Cullis, Ian


    There is a continuing requirement to design and manufacture insensitive munition (IM) rocket motors for in-service use under a wide range of conditions, particularly due to shock initiation and detonation of damaged propellant spalled across the central bore of the rocket motor (XDT). High speed photography has been crucial in determining this behaviour, however attempts to model the dynamic behaviour are limited by the lack of precision particle and wave velocity data with which to validate against. In this work Photonic Doppler Velocimetery (PDV) has been combined with high speed video to give accurate point velocity and timing measurements of the rear surface of a propellant block impacted by a fragment travelling upto 1.4 km s-1. By combining traditional high speed video with PDV through a dichroic mirror, the point of velocity measurement within the debris cloud has been determined. This demonstrates a new capability to characterise the damage behaviour of a double base rocket motor propellant and hence validate the damage and fragmentation algorithms used in the numerical simulations.

  4. An Analysis of Rocket Propulsion Testing Costs (United States)

    Ramirez, Carmen; Rahman, Shamim


    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.

  5. Parametric Study Conducted of Rocket- Based, Combined-Cycle Nozzles (United States)

    Steffen, Christopher J., Jr.; Smith, Timothy D.


    Having reached the end of the 20th century, our society is quite familiar with the many benefits of recycling and reusing the products of civilization. The high-technology world of aerospace vehicle design is no exception. Because of the many potential economic benefits of reusable launch vehicles, NASA is aggressively pursuing this technology on several fronts. One of the most promising technologies receiving renewed attention is Rocket-Based, Combined-Cycle (RBCC) propulsion. This propulsion method combines many of the efficiencies of high-performance jet aircraft with the power and high-altitude capability of rocket engines. The goal of the present work at the NASA Lewis Research Center is to further understand the complex fluid physics within RBCC engines that govern system performance. This work is being performed in support of NASA's Advanced Reusable Technologies program. A robust RBCC engine design optimization demands further investigation of the subsystem performance of the engine's complex propulsion cycles. The RBCC propulsion system under consideration at Lewis is defined by four modes of operation in a singlestage- to-orbit configuration. In the first mode, the engine functions as a rocket-driven ejector. When the rocket engine is switched off, subsonic combustion (mode 2) is present in the ramjet mode. As the vehicle continues to accelerate, supersonic combustion (mode 3) occurs in the ramjet mode. Finally, as the edge of the atmosphere is approached and the engine inlet is closed off, the rocket is reignited and the final accent to orbit is undertaken in an all-rocket mode (mode 4). The performance of this fourth and final mode is the subject of this present study. Performance is being monitored in terms of the amount of thrust generated from a given amount of propellant.

  6. Nuclear Thermal Rocket Simulation in NPSS (United States)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.


    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  7. A Flash Vaporization System for Detonation of Hydrocarbon Fuels in a Pulse Detonation Engine

    National Research Council Canada - National Science Library

    Tucker, Kelly C


    ...) with low vapor pressure, kerosene based jet fuels. These fuels have a low vapor pressure and the performance of a liquid hydrocarbon fueled PDE is significantly hindered by the presence of fuel droplets...

  8. Discrete approximations of detonation flows with structured detonation reaction zones by discontinuous front models: A program burn algorithm based on detonation shock dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, J.B. [Los Alamos National Lab., NM (United States); Jackson, T.L. [Univ. of Illinois, Urbana, IL (United States). Center for Simulation of Advanced Rockets; Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States). Theoretical and Applied Mechanics


    In the design of explosive systems the generic problem that one must consider is the propagation of a well-developed detonation wave sweeping through an explosive charge with a complex shape. At a given instant of time the lead detonation shock is a surface that occupies a region of the explosive and has a dimension that is characteristic of the explosive device, typically on the scale of meters. The detonation shock is powered by a detonation reaction zone, sitting immediately behind the shock, which is on the scale of 1 millimeter or less. Thus, the ratio of the reaction zone thickness to the device dimension is of the order of 1/1,000 or less. This scale disparity can lead to great difficulties in computing three-dimensional detonation dynamics. An attack on the dilemma for the computation of detonation systems has lead to the invention of sub-scale models for a propagating detonation front that they refer to herein as program burn models. The program burn model seeks not to resolve the fine scale of the reaction zone in the sense of a DNS simulation. The goal of a program burn simulation is to resolve the hydrodynamics in the inert product gases on a grid much coarser than that required to resolve a physical reaction zone. The authors first show that traditional program burn algorithms for detonation hydrocodes used for explosive design are inconsistent and yield incorrect shock dynamic behavior. To overcome these inconsistencies, they are developing a new class of program burn models based on detonation shock dynamic (DSD) theory. It is hoped that this new class will yield a consistent and robust algorithm which reflects the correct shock dynamic behavior.

  9. Numerical Simulation of Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) Concepts for Advanced Propulsion Systems (United States)


    the pressure at the nozzle exit drops during blowdown, the shock then slows down, and eventually, the ionized air in the bypass section starts tomove ...exit drops during blowdown, the shock then slows down, and eventually, the ionized air in the bypass section starts tomove downstream.At this point

  10. Deflagration to detonation transition in thermonuclear supernovae

    International Nuclear Information System (INIS)

    Charignon, Camille


    Type Ia supernovae are an important tool to determine the expansion history of our Universe. Thus, considerable attention has been given to both observations and models of these events. The most popular explosion model is the central ignition of a deflagration in the dense C+O interior of a Chandrasekhar mass white dwarf, followed by a transition to a detonation (TDD). We study in this thesis a new mechanism for this transition. The most robust and studied progenitor model and the postulated mechanism for the TDD, the so called 'Zel'dovich gradient mechanism', are presented. State of the art 3D simulations of such a delayed detonation, at the price of some adjustments, can indeed reproduce observables. But due to largely unresolved physical scales, such simulations cannot explain the TDD by themselves, and especially, the physical mechanism which triggers this transition - which is not yet understood, even on Earth, for unconfined media. It is then discussed why the current Zel'dovich mechanism might be too constraining for a SN Ia model, pointing to a new approach, which is the core result of this thesis.In the final part, our alternative model for DDT in supernovae, the acoustic heating of the pre-supernova envelope, is presented. A planar model first proves that small amplitude acoustic perturbations (generated by a turbulent flame) are actually amplified in a steep density gradient, up to a point where they turn into shocks able to trigger a detonation. Then, this mechanism is applied to more realistic models, taking into account, in spherical geometry, the expanding envelope. A parametric study demonstrates the validity of the model for a reasonable range of acoustic wave amplitudes and frequencies.To conclude, some exploratory 2D and 3D MHD simulations, seeking for realistic acoustic source compatible with our mechanism, are presented. (author) [fr

  11. The Alfred Nobel rocket camera. An early aerial photography attempt (United States)

    Ingemar Skoog, A.


    Alfred Nobel (1833-1896), mainly known for his invention of dynamite and the creation of the Nobel Prices, was an engineer and inventor active in many fields of science and engineering, e.g. chemistry, medicine, mechanics, metallurgy, optics, armoury and rocketry. Amongst his inventions in rocketry was the smokeless solid propellant ballistite (i.e. cordite) patented for the first time in 1887. As a very wealthy person he actively supported many Swedish inventors in their work. One of them was W.T. Unge, who was devoted to the development of rockets and their applications. Nobel and Unge had several rocket patents together and also jointly worked on various rocket applications. In mid-1896 Nobel applied for patents in England and France for "An Improved Mode of Obtaining Photographic Maps and Earth or Ground Measurements" using a photographic camera carried by a "…balloon, rocket or missile…". During the remaining of 1896 the mechanical design of the camera mechanism was pursued and cameras manufactured. In April 1897 (after the death of Alfred Nobel) the first aerial photos were taken by these cameras. These photos might be the first documented aerial photos taken by a rocket borne camera. Cameras and photos from 1897 have been preserved. Nobel did not only develop the rocket borne camera but also proposed methods on how to use the photographs taken for ground measurements and preparing maps.

  12. Numerical computation of linear instability of detonations (United States)

    Kabanov, Dmitry; Kasimov, Aslan


    We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.

  13. Velocity of detonation-a mathematical model. (United States)

    Türker, Lemi


    Based on the principles of conservation of energy and momentum, a mathematical formula has been derived for the squares of detonation velocities of a large set of explosives. The equation is a function of the total energy and molecular weight of an explosive compound considered. A regressed equation has been obtained for a pool of explosives of various types including nitramines, aliphatic and aromatic nitro compounds. Also another regressed equation for nitramines only is given. For the regression, the total energies are obtained using DFT (UB3LYP/6-31G(d)). The regression statistics are given and discussed.

  14. Shock-to-Detonation Transition simulations

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Shock-to-detonation transition (SDT) experiments with embedded velocity gauges provide data that can be used for both calibration and validation of high explosive (HE) burn models. Typically, a series of experiments is performed for each HE in which the initial shock pressure is varied. Here we describe a methodology for automating a series of SDT simulations and comparing numerical tracer particle velocities with the experimental gauge data. Illustrative examples are shown for PBX 9502 using the HE models implemented in the xRage ASC code at LANL.

  15. Laser image recording on detonation nanodiamond films

    International Nuclear Information System (INIS)

    Mikheev, G M; Mikheev, K G; Mogileva, T N; Puzyr, A P; Bondar, V S


    A focused He – Ne laser beam is shown to cause local blackening of semitransparent detonation nanodiamond (DND) films at incident power densities above 600 W cm -2 . Data obtained with a Raman spectrometer and low-power 632.8-nm laser source indicate that the blackening is accompanied by a decrease in broadband background luminescence and emergence of sharp Raman peaks corresponding to the structures of nanodiamond and sp 2 carbon. The feasibility of image recording on DND films by a focused He – Ne laser beam is demonstrated. (letters)

  16. Laser image recording on detonation nanodiamond films

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, G M; Mikheev, K G; Mogileva, T N [Institute of Mechanics, Ural Branch of the Russian Academy of Sciences, Izhevsk (Russian Federation); Puzyr, A P; Bondar, V S [Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences (Russian Federation)


    A focused He – Ne laser beam is shown to cause local blackening of semitransparent detonation nanodiamond (DND) films at incident power densities above 600 W cm{sup -2}. Data obtained with a Raman spectrometer and low-power 632.8-nm laser source indicate that the blackening is accompanied by a decrease in broadband background luminescence and emergence of sharp Raman peaks corresponding to the structures of nanodiamond and sp{sup 2} carbon. The feasibility of image recording on DND films by a focused He – Ne laser beam is demonstrated. (letters)

  17. On the Initiation Mechanism in Exploding Bridgewire and Laser Detonators (United States)

    Stewart, D. Scott; Thomas, Keith A.; Clarke, S.; Mallett, H.; Martin, E.; Martinez, M.; Munger, A.; Saenz, Juan


    Since its invention by Los Alamos during the Manhattan Project era the exploding bridgewire detonator (EBW) has seen tremendous use and study. Recent development of a laser-powered device with detonation properties similar to an EBW is reviving interest in the basic physics of the deflagration-to-detonation (DDT) process in both of these devices. Cutback experiments using both laser interferometry and streak camera observations are providing new insight into the initiation mechanism in EBWs. These measurements are being correlated to a DDT model of compaction to detonation and shock to detonation developed previously by Xu and Stewart. The DDT model is incorporated into a high-resolution, multi-material model code for simulating the complete process. Model formulation and the modeling issues required to describe the test data will be discussed.

  18. Cellular detonations in nano-sized aluminum particle gas suspensions (United States)

    Khmel, TA


    Formation of cellular detonation structures in monodisperse nano-sized aluminum particle – oxygen suspensions is studied by methods of numerical simulations of two-dimensional detonation flows. The detonation combustion are described within the semi-empirical model developed earlier which takes into account transition of the regime of aluminum particle combustion from diffusion to kinetic for micro-sized and nano-sized particles. The free-molecular effects are considered in the processes of heat and velocity relaxation of the phases. The specific features of the cellular detonation of nanoparticle suspensions comparing with micron-sized suspensions are irregular cellular structures, much higher pick pressure values, and relatively larger detonation cells. This is due to high value of activation energy of reduced chemical reaction of aluminum particle combustion in kinetic regime.

  19. Measuring In-Situ Mdf Velocity Of Detonation (United States)

    Horine, Frank M.; James, Jr., Forrest B.


    A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.

  20. Equations of state for explosive detonation products: The PANDA model

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, G.I.


    This paper discusses a thermochemical model for calculating equations of state (EOS) for the detonation products of explosives. This model, which was first presented at the Eighth Detonation Symposium, is available in the PANDA code and is referred to here as ``the Panda model``. The basic features of the PANDA model are as follows. (1) Statistical-mechanical theories are used to construct EOS tables for each of the chemical species that are to be allowed in the detonation products. (2) The ideal mixing model is used to compute the thermodynamic functions for a mixture of these species, and the composition of the system is determined from assumption of chemical equilibrium. (3) For hydrocode calculations, the detonation product EOS are used in tabular form, together with a reactive burn model that allows description of shock-induced initiation and growth or failure as well as ideal detonation wave propagation. This model has been implemented in the three-dimensional Eulerian code, CTH.

  1. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket (United States)

    Dawson, Virginia P.; Bowles, Mark D.


    The Centaur is one of the most powerful rockets in the world. As an upper-stage rocket for the Atlas and Titan boosters it has been a reliable workhorse for NASA for over forty years and has played an essential role in many of NASA's adventures into space. In this CD-ROM you will be able to explore the Centaur's history in various rooms to this virtual museum. Visit the "Movie Theater" to enjoy several video documentaries on the Centaur. Enter the "Interview Booth" to hear and read interviews with scientists and engineers closely responsible for building and operating the rocket. Go to the "Photo Gallery" to look at numerous photos of the rocket throughout its history. Wander into the "Centaur Library" to read various primary documents of the Centaur program. Finally, stop by the "Observation Deck" to watch a virtual Centaur in flight.

  2. Detonation characteristics of dimethyl ether and ethanol-air mixtures (United States)

    Diakow, P.; Cross, M.; Ciccarelli, G.


    The detonation cell structure in dimethyl ether vapor and ethanol vapor-air mixtures was measured at atmospheric pressure and initial temperatures in the range of 293-373 K. Tests were carried out in a 6.2-m-long, 10-cm inner diameter tube. For more reactive mixtures, a series of orifice plates were used to promote deflagration-to-detonation transition in the first half of the tube. For less reactive mixtures prompt detonation initiation was achieved with an acetylene-oxygen driver. The soot foil technique was used to capture the detonation cell structure. The measured cell size was compared to the calculated one-dimensional detonation reaction zone length. For fuel-rich dimethyl ether mixtures the calculated reaction zone is highlighted by a temperature gradient profile with two maxima, i.e., double heat release. The detonation cell structure was interpreted as having two characteristic sizes over the full range of mixture compositions. For mixtures at the detonation propagation limits the large cellular structure approached a single-head spin, and the smaller cells approached the size of the tube diameter. There is little evidence to support the idea that the two cell sizes observed on the foils are related to the double heat release predicted for the rich mixtures. There was very little influence of initial temperature on the cell size over the temperature range investigated. A double heat release zone was not predicted for ethanol-air detonations. The detonation cell size for stoichiometric ethanol-air was found to be similar to the size of the small cells for dimethyl ether. The measured cell size for ethanol-air did not vary much with composition in the range of 30-40 mm. For mixtures near stoichiometric it was difficult to discern multiple cell sizes. However, near the detonation limits there was strong evidence of a larger cell structure similar to that observed in dimethyl ether air mixtures.

  3. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.


    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  4. Rocket Assembly and Checkout Facility (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  5. Numerical Model of Detonation for Insensitive HE (United States)

    Klimenko, Vladimir


    Most of modern munitions are filled by insensitive HE. However, mechanism of initiation of these HE is still unknown. IHE have not any pores and, therefore, hot spot mechanism does not work here. What is a mechanism working in this case? We have used 3D hydrocode to study process of shock wave loading of mixture of HMX grains with different binders (HMX/binder=88/12) and have determined formation of surface layers with increased plastic deformation. According to the dislocation mechanism of detonation (V. Klimenko, I. Kozyreva, J. Energetic Materials, 2010, v. 28, pp. 249-262) plastic deformation generates definite concentration of radicals. Surface layers have also increased temperature due to viscous work. So, these activated layers have increased temperature and number of radicals in comparison with values inside grains. Kinetic calculation has shown fast decomposition of these layers. As a result, the activated layer is ignited and this gives beginning of grain burning process. The developed two-stages mechanism has been incorporated into 2D hydrocode. The developed numerical model demonstrates high accuracy in simulation of detonation processes in IHE (in particular, PBXN-110 and B2241).

  6. Additively Manufactured Ceramic Rocket Engine Components (United States)

    National Aeronautics and Space Administration — HRL Laboratories, LLC, with Vector Space Systems (VSS) as subcontractor, has a 24-month effort to develop additive manufacturing technology for reinforced ceramic...

  7. Construction and Design of Rocket Engines, (United States)


    transfcrmations of substance. ThA heal o’ ahase and polymoz)hic transfermatins Hand hadt can.:ity cO anA 4-0 is dsterminea expirimentally; heat...rtc nuclaar riactcr ±n hch is placFd the fissionabl. material. Flcwinj/ocC4Lrirj/lastin7 thrcugh th . rsactor, workinq body vaporizes and is naarEd t3...on or~e hanl, az incr~iase of thp - xpansicn ratio of gas In noz-zle fc. and, ccnseqizentlj, spicific imotilse, but on the other hand , !ncreaso cf

  8. Powder metallurgy bearings for advanced rocket engines (United States)

    Fleck, J. N.; Killman, B. J.; Munson, H.E.


    Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified.

  9. NASA Space Rocket Logistics Challenges (United States)

    Neeley, James R.; Jones, James V.; Watson, Michael D.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine


    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each.

  10. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (United States)

    Emrich, William J.


    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  11. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3 (United States)

    Cui, Peng; Xu, WanWu; Li, Qinglian


    Currently, the upper operating limit of the turbine engine is Mach 2+, and the lower limit of the dual-mode scramjet is Mach 4. Therefore no single power systems can operate within the range between Mach 2 + and Mach 4. By using ejector rockets, Rocket-based-combined-cycle can work well in the above scope. As the key component of Rocket-based-combined-cycle, the ejector rocket has significant influence on Rocket-based-combined-cycle performance. Research on the influence of rocket parameters on Rocket-based-combined-cycle in the speed range of Mach 2 + to Mach 4 is scarce. In the present study, influences of Mach number and total pressure of the ejector rocket on Rocket-based-combined-cycle were analyzed numerically. Due to the significant effects of the flight conditions and the Rocket-based-combined-cycle configuration on Rocket-based-combined-cycle performances, flight altitude, flight Mach number, and divergence ratio were also considered. The simulation results indicate that matching lower altitude with higher flight Mach numbers can increase Rocket-based-combined-cycle thrust. For another thing, with an increase of the divergent ratio, the effect of the divergent configuration will strengthen and there is a limit on the divergent ratio. When the divergent ratio is greater than the limit, the effect of divergent configuration will gradually exceed that of combustion on supersonic flows. Further increases in the divergent ratio will decrease Rocket-based-combined-cycle thrust.

  12. Chemical kinetics of detonation in some liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Raikova, Vlada M.; Likholatov, Evgeny A. [Mendeleev University of Chemical Technology, Moscow (Russian Federation)


    The main objective of this work is to study the chemical kinetics of detonation reactions in some nitroester mixtures and solutions of nitrocompounds in concentrated nitric acid. The main source of information on chemical kinetics in the detonation wave was the experimental dependence of failure diameter on composition of mixtures. Calculations were carried out in terms of classic theory of Dremin using the SGKR computer code. Effective values for the activation energies and pre-exponential factors for detonation reactions in the mixtures under investigation have been defined. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  13. Ablative Material Testing at Lewis Rocket Lab (United States)


    The increasing demand for a low-cost, reliable way to launch commercial payloads to low- Earth orbit has led to the need for inexpensive, expendable propulsion systems for new launch vehicles. This, in turn, has renewed interest in less complex, uncooled rocket engines that have combustion chambers and exhaust nozzles fabricated from ablative materials. A number of aerospace propulsion system manufacturers have utilized NASA Lewis Research Center's test facilities with a high degree of success to evaluate candidate materials for application to new propulsion devices.

  14. Blasting detonators incorporating semiconductor bridge technology

    Energy Technology Data Exchange (ETDEWEB)

    Bickes, R.W. Jr.


    The enormity of the coal mine and extraction industries in Russia and the obvious need in both Russia and the US for cost savings and enhanced safety in those industries suggests that joint studies and research would be of mutual benefit. The author suggests that mine sites and well platforms in Russia offer an excellent opportunity for the testing of Sandia`s precise time-delay semiconductor bridge detonators, with the potential for commercialization of the detonators for Russian and other world markets by both US and Russian companies. Sandia`s semiconductor bridge is generating interest among the blasting, mining and perforation industries. The semiconductor bridge is approximately 100 microns long, 380 microns wide and 2 microns thick. The input energy required for semiconductor bridge ignition is one-tenth the energy required for conventional bridgewire devices. Because semiconductor bridge processing is compatible with other microcircuit processing, timing and logic circuits can be incorporated onto the chip with the bridge. These circuits can provide for the precise timing demanded for cast effecting blasting. Indeed tests by Martin Marietta and computer studies by Sandia have shown that such precise timing provides for more uniform rock fragmentation, less fly rock, reduce4d ground shock, fewer ground contaminants and less dust. Cost studies have revealed that the use of precisely timed semiconductor bridges can provide a savings of $200,000 per site per year. In addition to Russia`s vast mineral resources, the Russian Mining Institute outside Moscow has had significant programs in rock fragmentation for many years. He anticipated that collaborative studies by the Institute and Sandia`s modellers would be a valuable resource for field studies.

  15. Fully Reusable Access to Space Technology (FAST) Methane Rocket (United States)


    baseline design – NASA Ames partnered for aerothermal and TPS – Reusable Merlin engine option by SpaceX – Conceptual Research Corp design Key impacts......FAST) 5b. GRANT NUMBER Methane Rocket 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lt Cole Doupe, Jess Sponable, Jeffrey Zweber (AFRL/VA); Richard

  16. How Does Rocket Propulsion Work? The most common answer to ...

    Indian Academy of Sciences (India)

    Generally while explaining the working of a rocket engine, the analogy of the movement of a rubber air balloon is given. We too will make use of this example to understand the phenomenon of propulsion. Let us consider a blown-up rubber air balloon (not the ones filled with helium gas; otherwise they will rise up before you.

  17. How Does Rocket Propulsion Work? The most common answer to ...

    Indian Academy of Sciences (India)

    internal combustion engines. The fuel or propellant is stored in the fuel tank. Here we will consider liquid hydrogen as the fuel. For the combustion to take place in outer space or in the absence of atmospheric oxygen the rocket carries along an oxidizer; here we will consider liquid oxygen as the oxidizer. The oxidizer or in.

  18. Theory of weakly nonlinear self-sustained detonations

    KAUST Repository

    Faria, Luiz


    We propose a theory of weakly nonlinear multidimensional self-sustained detonations based on asymptotic analysis of the reactive compressible Navier-Stokes equations. We show that these equations can be reduced to a model consisting of a forced unsteady small-disturbance transonic equation and a rate equation for the heat release. In one spatial dimension, the model simplifies to a forced Burgers equation. Through analysis, numerical calculations and comparison with the reactive Euler equations, the model is demonstrated to capture such essential dynamical characteristics of detonations as the steady-state structure, the linear stability spectrum, the period-doubling sequence of bifurcations and chaos in one-dimensional detonations and cellular structures in multidimensional detonations.

  19. Qualitative modeling of the dynamics of detonations with losses

    KAUST Repository

    Faria, Luiz


    We consider a simplified model for the dynamics of one-dimensional detonations with generic losses. It consists of a single partial differential equation that reproduces, at a qualitative level, the essential properties of unsteady detonation waves, including pulsating and chaotic solutions. In particular, we investigate the effects of shock curvature and friction losses on detonation dynamics. To calculate steady-state solutions, a novel approach to solving the detonation eigenvalue problem is introduced that avoids the well-known numerical difficulties associated with the presence of a sonic point. By using unsteady numerical simulations of the simplified model, we also explore the nonlinear stability of steady-state or quasi-steady solutions. © 2014 The Combustion Institute.

  20. Development and testing of pulsed and rotating detonation combustors (United States)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data

  1. Detonation Velocity Measurement with Chirped Fiber Bragg Grating. (United States)

    Wei, Peng; Lang, Hao; Liu, Taolin; Xia, Dong


    Detonation velocity is an important parameter for explosive, and it is crucial for many fields such as dynamic chemistry burn models, detonation propagation prediction, explosive performance estimation, and so on. Dual-channel detonation velocity measurement method and system are described. The CFBG sensors are pasted both on the surface and in the center of the explosive cylinder. The length of CFBG sensors is measured via the hot-tip probe method. The light intensity reflected from the CFBG sensors attached to the explosive is transformed to voltage, and the voltage-time is then measured with the oscilloscope. According to the five experiments results, the relative standard uncertainty of detonation velocity is below 1%.

  2. Detonation Velocity Measurement with Chirped Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Peng Wei


    Full Text Available Detonation velocity is an important parameter for explosive, and it is crucial for many fields such as dynamic chemistry burn models, detonation propagation prediction, explosive performance estimation, and so on. Dual-channel detonation velocity measurement method and system are described. The CFBG sensors are pasted both on the surface and in the center of the explosive cylinder. The length of CFBG sensors is measured via the hot-tip probe method. The light intensity reflected from the CFBG sensors attached to the explosive is transformed to voltage, and the voltage–time is then measured with the oscilloscope. According to the five experiments results, the relative standard uncertainty of detonation velocity is below 1%.

  3. Laser-Induced Emissions Sensor for Soot Mass in Rocket Plumes Project (United States)

    National Aeronautics and Space Administration — A method is proposed to measure soot mass concentration non-intrusively from a distance in a rocket engine exhaust stream during ground tests using laser-induced...

  4. Laser-Induced Emissions Sensor for Soot Mass in Rocket Plumes, Phase I (United States)

    National Aeronautics and Space Administration — A method is proposed to measure soot mass concentration non-intrusively from a distance in a rocket engine exhaust stream during ground tests using laser-induced...

  5. The Undergraduate Satellite and Rocket Design, Fabrication and Launch Program at the US Air Force Academy

    National Research Council Canada - National Science Library

    Siegenthaler, Kenneth E; Sellers, J. J; Miller, D. A; Lawrence, T. J; Richie, D. J


    ...." Its motto and aim is for cadets to "Learn Space by Doing Space." Cadets majoring in astronautical engineering and space operations study either the design, fabrication, testing, and launching of a sounding rocket...

  6. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A.


    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, λ, was equal to the inner diameter of the orifice plate, d (e.g., d/λ=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/λ equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/λ=4.2). This observation indicates that the d/λ=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction and the mixture initial

  7. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States); Tagawa, H. [Nuclear Power Engineering Corp., Tokyo (Japan); Malliakos, A. [Nuclear Regulatory Commission, Washington, DC (United States)


    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, {lambda}, was equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/{lambda}=4.2). This observation indicates that the d/{lambda}=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction

  8. ISHM Anomaly Lexicon for Rocket Test (United States)

    Schmalzel, John L.; Buchanan, Aubri; Hensarling, Paula L.; Morris, Jonathan; Turowski, Mark; Figueroa, Jorge F.


    Integrated Systems Health Management (ISHM) is a comprehensive capability. An ISHM system must detect anomalies, identify causes of such anomalies, predict future anomalies, help identify consequences of anomalies for example, suggested mitigation steps. The system should also provide users with appropriate navigation tools to facilitate the flow of information into and out of the ISHM system. Central to the ability of the ISHM to detect anomalies is a clearly defined catalog of anomalies. Further, this lexicon of anomalies must be organized in ways that make it accessible to a suite of tools used to manage the data, information and knowledge (DIaK) associated with a system. In particular, it is critical to ensure that there is optimal mapping between target anomalies and the algorithms associated with their detection. During the early development of our ISHM architecture and approach, it became clear that a lexicon of anomalies would be important to the development of critical anomaly detection algorithms. In our work in the rocket engine test environment at John C. Stennis Space Center, we have access to a repository of discrepancy reports (DRs) that are generated in response to squawks identified during post-test data analysis. The DR is the tool used to document anomalies and the methods used to resolve the issue. These DRs have been generated for many different tests and for all test stands. The result is that they represent a comprehensive summary of the anomalies associated with rocket engine testing. Fig. 1 illustrates some of the data that can be extracted from a DR. Such information includes affected transducer channels, narrative description of the observed anomaly, and the steps used to correct the problem. The primary goal of the anomaly lexicon development efforts we have undertaken is to create a lexicon that could be used in support of an associated health assessment database system (HADS) co-development effort. There are a number of significant

  9. Thermal Behaviour and Detonation Characterization of N-Benzoyl-3 ...

    African Journals Online (AJOL)


    The apparent activation energy, pre-exponential factor and the mechanism function are 170.77 kJ mol–1, 1014.12 s–1 and f(a) = (1–a)–1/2, respec- tively. ... The detonation velocity. (D) and ... N-benzoyl-3,3-dinitroazetidine(BDNAZ), thermal behaviour, non-isothermal kinetics, thermal safety, detonation characterization. 1.

  10. Thermodynamic modelling of detonation H-N-O high explosives (United States)

    Bogdanova, Yu A.; Gubin, S. A.; Anikeev, A. A.; Victorov, S. B.


    The multiphase model of a detonation products based on the equations of state (EOS) of chemically reacting H-N-O systems which is used in the thermodynamic TDS code is presented. This model is applicable over a wide range of temperatures and density. This model consists of theoretically reasonable EOS for a multicomponent gas (fluid) phase. The calculations of detonation based on the presented model to be in good agreement with experimental data.

  11. Sub-Chandrasekhar-mass White Dwarf Detonations Revisited (United States)

    Shen, Ken J.; Kasen, Daniel; Miles, Broxton J.; Townsley, Dean M.


    The detonation of a sub-Chandrasekhar-mass white dwarf (WD) has emerged as one of the most promising Type Ia supernova (SN Ia) progenitor scenarios. Recent studies have suggested that the rapid transfer of a very small amount of helium from one WD to another is sufficient to ignite a helium shell detonation that subsequently triggers a carbon core detonation, yielding a “dynamically driven double-degenerate double-detonation” SN Ia. Because the helium shell that surrounds the core explosion is so minimal, this scenario approaches the limiting case of a bare C/O WD detonation. Motivated by discrepancies in previous literature and by a recent need for detailed nucleosynthetic data, we revisit simulations of naked C/O WD detonations in this paper. We disagree to some extent with the nucleosynthetic results of previous work on sub-Chandrasekhar-mass bare C/O WD detonations; for example, we find that a median-brightness SN Ia is produced by the detonation of a 1.0 {M}ȯ WD instead of a more massive and rarer 1.1 {M}ȯ WD. The neutron-rich nucleosynthesis in our simulations agrees broadly with some observational constraints, although tensions remain with others. There are also discrepancies related to the velocities of the outer ejecta and light curve shapes, but overall our synthetic light curves and spectra are roughly consistent with observations. We are hopeful that future multidimensional simulations will resolve these issues and further bolster the dynamically driven double-degenerate double-detonation scenario’s potential to explain most SNe Ia.

  12. On a stabilization mechanism for low-velocity detonations

    KAUST Repository

    Sow, Aliou


    We use numerical simulations of the reactive Lula equations to analyse the nonlinear stability of steady-state one-dimensional solutions for gaseous detonations in the presence of both momentum and heat losses. Our results point to a possible stabilization mechanism for the low-velocity detonations in such systems. The mechanism stems from the existence of a one-parameter family of solutions found in Semenko el al.

  13. Divergent detonation wave processes in PBX based on RDX

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ricardo A.L.; Campos, Jose L.S. de A.; Plaksin, Igor Y.; Ribeiro, Jose M.B.M. [Fac. of Sciences and Technology of the University of Coimbra, Pinhal de Marrocos, Polo II, 3030-201 Coimbra (Portugal)


    In order to characterize the initial phase of the divergent detonation wave in PBX, a hemispheric explosive sample was initiated by a long cylindrical charge of the same explosive. The tested PBX is composed of 85 wt% of RDX and 15 wt% of binder based on HTPB. This PBX-RDX presents an effective density of 1.57 g/cm{sup 3}, and a detonation velocity of 7.90 mm/{mu}s. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  14. Experimental study on incident wave speed and the mechanisms of deflagration-to-detonation transition in a bent geometry (United States)

    Li, L.; Li, J.; Teo, C. J.; Chang, P. H.; Khoo, B. C.


    The study of deflagration-to-detonation transition (DDT) in bent tubes is important with many potential applications including fuel pipeline and mine tunnel designs for explosion prevention and detonation engines for propulsion. The aim of this study is to exploit low-speed incident shock waves for DDT using an S-shaped geometry and investigate its effectiveness as a DDT enhancement device. Experiments were conducted in a valveless detonation chamber using ethylene-air mixture at room temperature and pressure (303 K, 1 bar). High-speed Schlieren photography was employed to keep track of the wave dynamic evolution. Results showed that waves with velocity as low as 500 m/s can experience a successful DDT process through this S-shaped geometry. To better understand the mechanism, clear images of local explosion processes were captured in either the first curved section or the second curved section depending on the inlet wave velocity, thus proving that this S-shaped tube can act as a two-stage device for DDT. Owing to the curved wall structure, the passing wave was observed to undergo a continuous compression phase which could ignite the local unburnt mixture and finally lead to a local explosion and a detonation transition. Additionally, the phenomenon of shock-vortex interaction near the wave diffraction region was also found to play an important role in the whole process. It was recorded that this interaction could not only result in local head-on reflection of the reflected wave on the wall that could ignite the local mixture, and it could also contribute to the recoupling of the shock-flame complex when a detonation wave is successfully formed in the first curved section.

  15. Detonation cell widths in hydrogen-air-diluent mixtures

    International Nuclear Information System (INIS)

    Stamps, D.W.


    In this paper I report on the influence of steam and carbon dioxide on the detonability of hydrogen-air mixtures. Data were obtained on the detonation cell width in a heated detonation tube that is 0.43 m in diameter and 13.1 m long. The detonation cell widths were correlated using a characteristic length calculated from a chemical kinetic model. The addition of either diluent to a hydrogen-air mixture increased the cell width for all equivalence ratios. For equal diluent concentrations, however, carbon dioxide not only yielded larger increases in the cell width than steam, but its efficacy relative to steam was predicted to increase with increasing concentration. The range of detonable hydrogen concentrations in a hydrogen-air mixture initially at 1 atm pressure was found to be between 11.6 percent and 74.9 percent for mixtures at 20 degree C and 9.4 percent and 76.9 percent for mixtures at 100 degree C. The detonation limit was between 38.8 percent and 40.5 percent steam for a stoichiometric hydrogen-air-steam mixture initially at 100 degree C and 1 atm. 10 refs., 4 figs., 1 tab

  16. Non ideal detonation of emulsion explosives mixed with metal particles (United States)

    Mendes, R.; Ribeiro, J.; Plaksin, I.; Campos, J.


    The detonation of ammonium nitrate based compositions like emulsion explosives (EX) mixed with metal particles has been investigated experimentally. Aluminium powder with a mean particle size of 10 μm was used, and the mass concentration of aluminum on the explosive charge was ranged from 0 to 30%. The values of the detonation velocity, the pressure attenuation - P(x) - of detonation front amplitude in a standard PMMA monitor and manganin gauges pressure-time histories are shown as a function of the explosive charge porosity and specific mass. All these parameters except the pressure-times histories have been evaluated using the multi fiber optical probe (MFOP) method which is based on the use of an optical fiber strip, with 64 independent optical fibers. The MFOP allow a quasi continuous evaluation of the detonation wave run propagation and the assessment to spatial resolved measurements of the shock wave induced in the PMMA barrier which in turns allows a detailed characterization of the detonation reaction zone structure. Results of that characterization process are presented and discussed for aluminized and non aluminized EX. Moreover, the effect of the mass concentration of the sensitizing agent (hollow glass micro-balloons) on the non monotonic detonation velocity variation, for EX, will be discussed.

  17. Detonation behavior of emulsion explosives sensitized with polymeric microballoons (United States)

    Mendes, Ricardo; Ribeiro, José; Plaksin, Igor; Campos, José


    The differences between the detonation behavior of ammonium nitrate based emulsion explosive sensitized with polymeric or with glass microballoons is presented and discussed. Expancel® are hollow polymeric microballoons that contain a hydrocarbon gas. The mean particle size of those particles is 30 μm and their wall thickness is about 0.1 μm. The detonation velocity and the failure diameter of the emulsion explosive sensitized with different amounts of these particles were measured, in cylindrical charges, by ionization pins and optical fibers. The detonation velocity of emulsion explosives shows a non-monotonic evolution with the density with the maximum being reached far below the maximum density. The detonation fails when the density approaches the one of the matrix. The failure diameter increases with increasing density. For low densities the detonation velocity is almost independent of the charge diameter and it is close to the values predict by BKW EoS. The effect of the nature and size of the microballoons on the detonation front curvature and failure diameter was also determined.

  18. Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE). (United States)

    Trzciński, Waldemar A; Cudziło, Stanisław; Chyłek, Zbigniew; Szymańczyk, Leszek


    1,1-Diamino-2,2-dinitroethene (DADNE, FOX-7) is an explosive of current interest. In our work, an advanced study of detonation characteristics of this explosive was performed. DADNE was prepared and recrystallized on a laboratory scale. Some sensitivity and detonation properties of DADNE were determined. The detonation performance was established by measurements of the detonation wave velocity, detonation pressure and calorimetric heat of explosion as well as the accelerating ability. The JWL (Jones-Wilkins-Lee) isentrope and the constant-gamma isentrope for the detonation products of DADNE were also found.

  19. Turbopump options for nuclear thermal rockets

    International Nuclear Information System (INIS)

    Bissell, W.R.; Gunn, S.V.


    Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range. 10 refs

  20. Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina (United States)

    de León, Pablo


    One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.