WorldWideScience

Sample records for determines tissue damage

  1. Using electrolyte leakage tests to determine lifting windows and detect tissue damage

    Science.gov (United States)

    Richard W. Tinus

    2002-01-01

    Physiological testing is rapidly coming into use as a means to determine the condition of nursery stock and predict how it will respond to treatment or use. One such test, the electrolyte leakage test, can be used to measure cold hardiness and detect tissue damage. The principle of this test is that when cell membranes are damaged, electrolytes leak out into the water...

  2. Quantification of thermal damage in skin tissue

    Institute of Scientific and Technical Information of China (English)

    Xu Feng; Wen Ting; Lu Tianjian; Seffen Keith

    2008-01-01

    Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great problem for burn patients. Thus, it is of great importance to quantify the thermal damage in skin tissue. In this paper, the available models and experimental methods for quantification of thermal damage in skin tissue are discussed.

  3. DNA-repair, cell killing and normal tissue damage

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.; Brammer, I.

    1998-01-01

    Background: Side effects of radiotherapy in normal tissue is determined by a variety of factors of which cellular and genetic contributions are described here. Material and methods: Review. Results: Normal tissue damage after irradiation is largely due to loss of cellular proliferative capacity. This can be due to mitotic cell death, apoptosis, or terminal differentiation. Dead or differentiated cells release cytokines which additionally modulate the tissue response. DNA damage, in particular non-reparable or misrepaired double-strand breaks are considered the basic lesion leading to G1-arrest and ultimately to cell inactivation. Conclusion: Evidence for genetic bases of normal tissue response, cell killing and DNA-repair capacity is presented. However, a direct link of all 3 endpoints has not yet been proved directly. (orig.) [de

  4. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Science.gov (United States)

    Calvo, Jennifer A; Moroski-Erkul, Catherine A; Lake, Annabelle; Eichinger, Lindsey W; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T; Christiani, David C; Meira, Lisiane B; Samson, Leona D

    2013-04-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  5. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Directory of Open Access Journals (Sweden)

    Jennifer A Calvo

    2013-04-01

    Full Text Available Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  6. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  7. Radiobiology in clinical radiation therapy - Part III: Normal tissue damage

    International Nuclear Information System (INIS)

    Travis, Elizabeth L.

    1996-01-01

    Objective: This is the third part of a course designed for residents in radiation oncology preparing for their boards. This part of the course will focus on the mechanisms underlying damage in normal tissues. Although conventional wisdom long held that killing and depletion of a critical cell(s) in a tissue was responsible for the later expression of damage, histopathologic changes in normal tissue can now be explained and better understood in terms of the new molecular biology. The concept that depletion of a single cell type is responsible for the observed histopathologic changes in normal tissues has been replaced by the hypothesis that damage results from the interaction of many different cell systems, including epithelial, endothelial, macrophages and fibroblasts, via the production of specific autocrine, paracrine and endocrine growth factors. A portion of this course will discuss the clinical and experimental data on the production and interaction of those cytokines and cell systems considered to be critical to tissue damage. It had long been suggested that interindividual differences in radiation-induced normal tissue damage was genetically regulated, at least in part. Both clinical and experimental data supported this hypothesis but it is the recent advances in human and mouse molecular genetics which have provided the tools to dissect out the genetic component of normal tissue damage. These data will be presented and related to the potential to develop genetic markers to identify sensitive individuals. The impact on clinical outcome of the ability to identify prospectively sensitive patients will be discussed. Clinically it is well-accepted that the volume of tissue irradiated is a critical factor in determining tissue damage. A profusion of mathematical models for estimating dose-volume relationships in a number of organs have been published recently despite the fact that little data are available to support these models. This course will review the

  8. Damage Models for Soft Tissues: A Survey.

    Science.gov (United States)

    Li, Wenguang

    Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.

  9. Quantification of thermal damage in skin tissue

    Institute of Scientific and Technical Information of China (English)

    徐峰; 文婷; 卢天健; Seffen; Keith

    2008-01-01

    Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great...

  10. Tissue Damage Characterization Using Non-invasive Optical Modalities

    Science.gov (United States)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p differences detected in optical properties and hemoglobin content by optical measurements correlated with the extent of tissue injury observed in histological stains. After proof of concept in animals, a human study was conducted and optical data was collected from 20 healthy

  11. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    Science.gov (United States)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  12. Local stem cell depletion model for normal tissue damage

    International Nuclear Information System (INIS)

    Yaes, R.J.; Keland, A.

    1987-01-01

    The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known

  13. Quantification of change in vocal fold tissue stiffness relative to depth of artificial damage.

    Science.gov (United States)

    Rohlfs, Anna-Katharina; Schmolke, Sebastian; Clauditz, Till; Hess, Markus; Müller, Frank; Püschel, Klaus; Roemer, Frank W; Schumacher, Udo; Goodyer, Eric

    2017-10-01

    To quantify changes in the biomechanical properties of human excised vocal folds with defined artificial damage. The linear skin rheometer (LSR) was used to obtain a series of rheological measurements of shear modulus from the surface of 30 human cadaver vocal folds. The tissue samples were initially measured in a native condition and then following varying intensities of thermal damage. Histological examination of each vocal fold was used to determine the depth of artificial alteration. The measured changes in stiffness were correlated with the depth of cell damage. For vocal folds in a pre-damage state the shear modulus values ranged from 537 Pa to 1,651 Pa (female) and from 583 Pa to 1,193 Pa (male). With increasing depth of damage from the intermediate layer of the lamina propria (LP), tissue stiffness increased consistently (compared with native values) following application of thermal damage to the vocal folds. The measurement showed an increase of tissue stiffness when the depth of tissue damage was extending from the intermediate LP layer downwards. Changes in the elastic characteristics of human vocal fold tissue following damage at defined depths were demonstrated in an in vitro experiment. In future, reproducible in vivo measurements of elastic vocal fold tissue alterations may enable phonosurgeons to infer the extent of subepithelial damage from changes in surface elasticity.

  14. Periodontal tissue damage in smokers

    Directory of Open Access Journals (Sweden)

    Hutojo Djajakusuma

    2006-09-01

    Full Text Available Dental plaque is the primary etiological factor in periodontal diseases. However, there are many factors that can modify how an individual periodontal tissue will respond to the accumulation of dental plaque. Among such risk factors, there is increasing evidence that smoking tobacco products alters the expression and rate of progression of periodontal diseases. The aim of this study was to find out the loss of periodontal tissue adhesion in smokers by measuring pocket depth using probe, and by measuring alveolar bone damage using Bone Loss Score (BLS radiographic methods on teeth 12, 11, 21, 22, 32, 31, 41, 42. Based on T Test statistical analysis, there were significant differences in pocket depth damage of alveolar bone in smokers and non smokers. In conclusion there were increasing pocket depth and alveolar bone damage in smokers.

  15. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    Science.gov (United States)

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-06

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  16. Role of endothelium in radiation-induced normal tissue damages

    International Nuclear Information System (INIS)

    Milliat, F.

    2007-05-01

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  17. Radiation-induced normal tissue damage: implications for radiotherapy

    International Nuclear Information System (INIS)

    Prasanna, Pataje G.

    2014-01-01

    Radiotherapy is an important treatment modality for many malignancies, either alone or as a part of combined modality treatment. However, despite technological advances in physical treatment delivery, patients suffer adverse effects from radiation therapy due to normal tissue damage. These side effects may be acute, occurring during or within weeks after therapy, or intermediate to late, occurring months to years after therapy. Minimizing normal tissue damage from radiotherapy will allow enhancement of tumor killing and improve tumor control and patients quality of life. Understanding mechanisms through which radiation toxicity develops in normal tissue will facilitate the development of next generation radiation effect modulators. Translation of these agents to the clinic will also require an understanding of the impact of these protectors and mitigators on tumor radiation response. In addition, normal tissues vary in radiobiologically important ways, including organ sensitivity to radiation, cellular turnover rate, and differences in mechanisms of injury manifestation and damage response. Therefore, successful development of radiation modulators may require multiple approaches to address organ/site-specific needs. These may include treatments that modify cellular damage and death processes, inflammation, alteration of normal flora, wound healing, tissue regeneration and others, specifically to counter cancer site-specific adverse effects. Further, an understanding of mechanisms of normal tissue damage will allow development of predictive biomarkers; however harmonization of such assays is critical. This is a necessary step towards patient-specific treatment customization. Examples of important adverse effects of radiotherapy either alone or in conjunction with chemotherapy, and important limitations in the current approaches of using radioprotectors for improving therapeutic outcome will be highlighted. (author)

  18. The role of tissue damage in whiplash associated disorders: Discussion paper 1

    Science.gov (United States)

    Bogduk, Nikolai; Ivancic, Paul C.; McLean, Samuel A.; Siegmund, Gunter P.; Winkelstein, Beth

    2011-01-01

    STUDY DESIGN Non-systematic review of cervical spine lesions in whiplash-associated disorders (WAD). OBJECTIVE To describe whiplash injury models in terms of basic and clinical science, to summarize what can and cannot be explained by injury models, and to highlight future research areas to better understand the role of tissue damage in WAD. SUMMARY OF BACKGROUND DATA The frequent lack of detectable tissue damage has raised questions about whether tissue damage is necessary for WAD and what role it plays in the clinical context of WAD. METHODS Non-systematic review. RESULTS Lesions of various tissues have been documented by numerous investigations conducted in animals, cadavers, healthy volunteers and patients. Most lesions are undetected by imaging techniques. For zygapophysial (facet) joints, lesions have been predicted by bioengineering studies and validated through animal studies; for zygapophysial joint pain, a valid diagnostic test and a proven treatment are available. Lesions of dorsal root ganglia, discs, ligaments, muscles and vertebral artery have been documented in biomechanical and autopsy studies, but no valid diagnostic test is available to assess their clinical relevance. The proportion of WAD patients in whom a persistent lesion is the major determinant of ongoing symptoms is unknown. Psychosocial factors, stress reactions and generalized hyperalgesia have also been shown to predict WAD outcomes. CONCLUSION There is evidence supporting a lesion-based model in WAD. Lack of macroscopically identifiable tissue damage does not rule out the presence of painful lesions. The best available evidence concerns zygapophysial joint pain. The clinical relevance of other lesions needs to be addressed by future research. PMID:22020601

  19. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage

    DEFF Research Database (Denmark)

    Day, J; Ding, Ming; van der Linden, JC

    2001-01-01

    determined using a combination of finite element models and mechanical testing. The bone tissue modulus was reduced by 60% in the medial condyle of the cases with cartilage damage compared to the control specimens. Neither the presence of cartilage damage nor the anatomic site (medial vs. lateral) affected...

  20. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  1. [Scanning electron microscopy of heat-damaged bone tissue].

    Science.gov (United States)

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  2. Oxidative DNA damage in lung tissue from patients with COPD is clustered in functionally significant sequences

    Directory of Open Access Journals (Sweden)

    Viktor M Pastukh

    2011-03-01

    Full Text Available Viktor M Pastukh1, Li Zhang2, Mykhaylo V Ruchko1, Olena Gorodnya1, Gina C Bardwell1, Rubin M Tuder2, Mark N Gillespie11Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA; 2Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, Aurora, CO, USAAbstract: Lung tissue from COPD patients displays oxidative DNA damage. The present study determined whether oxidative DNA damage was randomly distributed or whether it was localized in specific sequences in either the nuclear or mitochondrial genomes. The DNA damage-specific histone, gamma-H2AX, was detected immunohistochemically in alveolar wall cells in lung tissue from COPD patients but not control subjects. A PCR-based method was used to search for oxidized purine base products in selected 200 bp sequences in promoters and coding regions of the VEGF, TGF-β1, HO-1, Egr1, and β-actin genes while quantitative Southern blot analysis was used to detect oxidative damage to the mitochondrial genome in lung tissue from control subjects and COPD patients. Among the nuclear genes examined, oxidative damage was detected in only 1 sequence in lung tissue from COPD patients: the hypoxic response element (HRE of the VEGF promoter. The content of VEGF mRNA also was reduced in COPD lung tissue. Mitochondrial DNA content was unaltered in COPD lung tissue, but there was a substantial increase in mitochondrial DNA strand breaks and/or abasic sites. These findings show that oxidative DNA damage in COPD lungs is prominent in the HRE of the VEGF promoter and in the mitochondrial genome and raise the intriguing possibility that genome and sequence-specific oxidative DNA damage could contribute to transcriptional dysregulation and cell fate decisions in COPD.Keywords: DNA damage, VEGF hypoxic response element, mtDNA, COPD

  3. Probing multi-scale mechanical damage in connective tissues using X-ray diffraction.

    Science.gov (United States)

    Bianchi, Fabio; Hofmann, Felix; Smith, Andrew J; Thompson, Mark S

    2016-11-01

    The accumulation of microstructural collagen damage following repetitive loading is linked to painful and debilitating tendon injuries. As a hierarchical, semi-crystalline material, collagen mechanics can be studied using X-ray diffraction. The aim of the study was to describe multi-structural changes in tendon collagen following controlled plastic damage (5% permanent strain). We used small angle X-ray scattering (SAXS) to interrogate the spacing of collagen molecules within a fibril, and wide angle X-ray scattering (WAXS) to measure molecular strains under macroscopic loading. Simultaneous recordings of SAXS and WAXS patterns, together with whole-tissue strain in physiologically hydrated rat-tail tendons were made during increments of in situ tensile loading. Results showed that while tissue level modulus was unchanged, fibril modulus decreased significantly, and molecular modulus significantly increased. Further, analysis of higher order SAXS peaks suggested structural changes in the gap and overlap regions, possibly localising the damage to molecular cross-links. Our results provide new insight into the fundamental damage processes at work in collagenous tissues and point to new directions for their mitigation and repair. This article reports the first in situ loading synchrotron studies on mechanical damage in collagenous tissues. We provide new insight into the nano- and micro-structural mechanisms of damage processes. Pre-damaged tendons showed differential alteration of moduli at macro, micro and nano-scales as measured using X-ray scattering techniques. Detailed analysis of higher order diffraction peaks suggested damage is localised to molecular cross-links. The results are consistent with previous X-ray scattering studies of tendons and also with recent thermal stability studies on damaged material. Detailed understanding of damage mechanisms is essential in the development of new therapies promoting tissue repair. Copyright © 2016 Acta Materialia Inc

  4. An experimental study on tissue damage following subcutaneous injection of water soluble contrast media

    International Nuclear Information System (INIS)

    Kim, Seung Hyup; Park, Jae Hyung; Kang, Heung Sik; Kim, Chu Wan; Han, Man Chung; Kim, Yong Il

    1989-01-01

    The water soluble contrast media cause tissue necrosis infrequently by extravasation during intravenous injection in various radiological examinations. However, it has not been well documented that what kind and what concentration of contrast media can cause tissue necrosis. And also, the mechanism of tissue necrosis by extravasated contrast media has not been well known. The purpose of this experimental study was to evaluate the frequency and severity of tissue damage following subcutaneous injection of various water soluble contrast media to investigate the characteristics of the contrast media acting on the tissue damage, and to provide the basic data for the clinical application. Meglumine ioxithalamate,sodium and meglumine ioxithalamate, iopromide, iopamidol, ioxaglate,meglumine diatrizoate and sodium diatrizoate of various iodine content and osmolality were injected into subcutaneous tissue of the dorsum of 970 feet of 485 rats. The tissue reaction of injection sites were grossly examined with period from 1 day to 8 weeks after the injection. Representative gross changes were correlated with histologic findings. The results were as follows; 1. The basic tissue damage by extravasated contrast media was acute and chronic inflammatory reaction of the soft tissue with subsequent progress into the hemorrhagic and necrotizing lesion. 2. Lager volume of contrast media caused more severe tissue damage. 3. Contrast media of higher osmolality caused more severe tissue damage. 4. At same osmolality, contrast media of higher iodine content caused more severe tissue damage

  5. The influence of parotid gland sparing on radiation damages of dental hard tissues.

    Science.gov (United States)

    Hey, Jeremias; Seidel, Johannes; Schweyen, Ramona; Paelecke-Habermann, Yvonne; Vordermark, Dirk; Gernhardt, Christian; Kuhnt, Thomas

    2013-07-01

    The aim of the present study was to evaluate whether radiation damage on dental hard tissue depends on the mean irradiation dose the spared parotid gland is subjected to or on stimulated whole salivary flow rate. Between June 2002 and October 2008, 70 patients with neck and cancer curatively irradiated were included in this study. All patients underwent dental treatment referring to the guidelines and recommendations of the German Society of Dental, Oral and Craniomandibular Sciences prior, during, and after radiotherapy (RT). During the follow-up period of 24 months, damages on dental hard tissues were classified according to the RTOG/EORTC guidelines. The mean doses (D(mean)) during spared parotid gland RT were determined. Stimulated whole saliva secretion flow rates (SFR) were measured before RT and 1, 6, 12, 24 months after RT. Thirty patients showed no carious lesions (group A), 18 patients developed sporadic carious lesions (group B), and 22 patients developed general carious lesions (group C). Group A patients received a D mean of 21.2 ± 11.04 Gy. Group B patients received a D(mean) of 26.5 ± 11.59 Gy and group C patients received a D(mean) of 33.9 ± 9.93 Gy, respectively. The D(mean) of group A was significantly lower than the D(mean) of group C (p dental hard tissue correlates with increased mean irradiation doses as well as decreased salivary flow rates. Parotid gland sparing resulting in a dose below 20 Gy reduces radiation damage on dental hard tissues, and therefore, the dose may act as a predictor for the damage to be expected.

  6. Protective Effect of HSP25 on Radiation Induced Tissue Damage

    International Nuclear Information System (INIS)

    Lee, Hae-June; Lee, Yoon-Jin; Kwon, Hee-Choong; Bae, Sang-Woo; Lee, Yun-Sil; Kim, Sung Ho

    2007-01-01

    Control of cancer by irradiation therapy alone or in conjunction with combination chemotherapy is often limited by organ specific toxicity. Ionizing irradiation toxicity is initiated by damage to normal tissue near the tumor target and within the transit volume of radiotherapy beams. Irradiation-induced cellular, tissue, and organ damage is mediated by acute effects, which can be dose limiting. A latent period follows recovery from the acute reaction, then chronic irradiation fibrosis (late effects) pose a second cause of organ failure. HSP25/27 has been suggested to protect cells against apoptotic cell death triggered by hyperthermia, ionizing radiation, oxidative stress, Fas ligand, and cytotoxic drugs. And several mechanisms have been proposed to account for HSP27-mediated apoptotic protection. However radioprotective effect of HSP25/27 in vivo system has not yet been evaluated. The aim of this study was to evaluate the potential of exogenous HSP25 expression, as delivered by adenoviral vectors, to protect animal from radiation induced tissue damage

  7. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue.

    Science.gov (United States)

    Schomacker, K T; Walsh, J T; Flotte, T J; Deutsch, T F

    1990-01-01

    Thermal damage produced by continuous wave (cw) CO2 laser ablation of tissue in vitro was measured for irradiances ranging from 360 W/cm2 to 740 kW/cm2 in order to investigate the extent to which ablative cooling can limit tissue damage. Damage zones thinner than 100 microns were readily produced using single pulses to cut guinea pig skin as well as bovine cornea, aorta, and myocardium. Multiple pulses can lead to increased damage. However, a systematic decrease in damage with irradiance, predicted theoretically by an evaporation model of ablation, was not observed. The damage-zone thickness was approximately constant around the periphery of the cut, consistent with the existence of a liquid layer which stores heat and leads to tissue damage, and with a model of damage and ablation recently proposed by Zweig et al.

  8. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    Science.gov (United States)

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Electrocautery causes more ischemic peritoneal tissue damage than ultrasonic dissection.

    NARCIS (Netherlands)

    Broek, R.P.G ten; Wilbers, J.; Goor, H. van

    2011-01-01

    BACKGROUND: Minimizing peritoneal tissue injury during abdominal surgery has the benefit of reducing postoperative inflammatory response, pain, and adhesion formation. Ultrasonic dissection seems to reduce tissue damage. This study aimed to compare electrocautery and ultrasonic dissection in terms

  10. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    Science.gov (United States)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  11. Regulation of annexins following infection like tissue damage – investigated by 2-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Wulff, Tune; Nielsen, Michael Engelbrecht

    are regulated after tissue damaged on the protein level. These proteins have been assign to functions like regulation of coagulation, apoptosis, and exocytosis, indicating their importance following infection and subsequent repair in fish. In addition the regulation observed in this study are supported...... an established model. In the model infection is mimicked by a well-defined tissue damage allowing each fish to be equally affected. Samples were taken 7 days after tissue damage and included samples from the damaged tissue, internal control and an external control. Changes in protein expression between the wound...... by previous findings on the mRNA level, where both proteins are regulated following infection. In conclusion this study show regulation on the protein level of two members of the annexin protein family after infection like tissue damage....

  12. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Kwangwon [Eulji Univ. Hospital, Daejeon (Korea, Republic of); Kwon, Jungkee [Chonbuk National Univ., Jeonju (Korea, Republic of); Kim, Taewoon [Jeonbuk Technopark, Jeonju (Korea, Republic of)

    2012-03-15

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage.

  13. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    International Nuclear Information System (INIS)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon; Lee, Kwangwon; Kwon, Jungkee; Kim, Taewoon

    2012-01-01

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage

  14. Linking ontogeny and tissue regeneration: a study on tissue damage and wound healing in carp in connection to the developmental stage

    DEFF Research Database (Denmark)

    Nielsen, Michael Engelbrecht; Schmidt, Jacob; Ingerslev, Hans-Christian

    regeneration since its genome is well-described and it is easy visually to follow the wound healing. In this study, carps were physically damaged in the musculature using sterile needles at day 10, 16, 24, 47 and 94 post hatch. Muscle tissue samples were subsequently taken at day 1, 3 and 7 post damage...... healing and tissue regeneration, the developmental stage of the individual may influence the immune reaction initiated following damage and thus the proliferative responses, which usually cross-talk with the immune system. Common carp (Cyprinus carpio) is an excellent fish specie to study tissue...

  15. Renal tissue damage induced by focused shock waves

    Science.gov (United States)

    Ioritani, N.; Kuwahara, M.; Kambe, K.; Taguchi, K.; Saitoh, T.; Shirai, S.; Orikasa, S.; Takayama, K.; Lush, P. A.

    1990-07-01

    Biological evidence of renal arterial wall damage induced by the microjet due to shock wave-cavitation bubble interaction was demonstrated in living dog kidneys. We also intended to clarify the mechanism of renal tissue damage and the effects of different conditions of shock wave exposure (peak pressure of focused area, number of shots, exposure rate) on the renal tissue damage in comparison to stone disintegration. Disruption of arterial wall was the most remarkable histological change in the focused area of the kidneys. This lesion appeared as if the wall had been punctured by a needle. Large hematoma formation in the renal parenchym, and interstitial hemorrhage seemed to be the results of the arterial lesion. This arterial disorder also led to ischemic necrosis of the tubules surrounding the hematoma. Micro-angiographic examination of extracted kidneys also proved such arterial puncture lesions and ischemic lesions. The number of shots required for model stone disintegration was not inversely proportional to peak pressure. It decreased markedly when peak pressure was above 700 bar. Similarly thenumber of shots for hematoma formation was not inversely proportional to peak pressure, however, this decreased markedly above 500 bar. These results suggested that a hematoma could be formed under a lower peak pressure than that required for stone disintegration.

  16. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Ryan D. [Rush University Medical Center, Department of Anatomy and Cell Biology (United States); Cole, Lisa E.; Roeder, Ryan K., E-mail: rroeder@nd.edu [University of Notre Dame, Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program (United States)

    2012-10-15

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate (l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  17. Effect of mechanical tissue properties on thermal damage in skin after IR-laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, M.; Romano, V.; Forrer, M.; Weber, H.P. (Inst. of Applied Physics, Bern Univ. (Switzerland)); Mischler, C.; Mueller, O.M. (Anatomical Inst., Bern Univ. (Switzerland))

    1991-04-01

    The damage created instantaneously in dorsal skin and in the subjacent skeletal muscle layer after CO{sub 2} and Er{sup 3+} laser incisions is histologically and ultrastructurally investigated. Light microscopical examinations show an up to three times larger damage zone in the subcutaneous layer of skeletal muscle than in the connective tissue above. The extent of thermally altered muscle tissue is classified by different zones and characterized by comparison to long time heating injuries. The unexpectedly large damage is a result of the change of elastic properties occurring abruptly at the transition between different materials. This leads to a discontinuity of the cutting dynamics that reduces the ejection of tissue material. We show that the degree of thermal damage originates from the amount of hot material that is not ejected out of the crater acting as a secondary heat source. (orig.).

  18. Nd : YAG surgical laser effects in canine prostate tissue: temperature and damage distribution

    NARCIS (Netherlands)

    van Nimwegen, S. A.; L'Eplattenier, H. F.; Rem, A. I.; van der Lugt, J. J.; Kirpensteijn, J.

    2009-01-01

    An in vitro model was used to predict short-term, laser-induced, thermal damage in canine prostate tissue. Canine prostate tissue samples were equipped with thermocouple probes to measure tissue temperature at 3, 6, 9 and 12 mm depths. The tissue surface was irradiated with a Nd:YAG laser in contact

  19. Effect of laminaria japonica polysaccharides (LJP) on radiation damage of testis tissue in male rats

    International Nuclear Information System (INIS)

    Ren Shicheng; Luo Qiong; Yang Mingliang; Yang Jiajuan; Yan Jun; Li Zhuoneng; Wang Lihong; Cui Xiaoyan

    2007-01-01

    Objective: To observe the effect of laminaria japonica polysaccharides (LJP) on local radiation damage of testis tissue in male rats. Methods: The Wistar rats were randomly divided into 4 groups: the normal group, the model group, positive control group and LJP treatment group (50 mg·kg -1 ·d -1 ). LJP was applied to the treatment group for 10 d before local irradiation with γ-ray (6.0 Gy). The morphological change of the testis, organ index of testis and epididymides, sperm count, motility rate, superoxide dismutase (SOD) activity and malonic aldehyde (MDA) contents were measured. Results: LJP could make the damaged testis recover to near normal, elevate the organ index of testis and epididymides, promote the sperm count and motility rate, increase the activity of SOD and decrease the contents of MDA in testis tissue. Conclusions: LJP could inhibit testis tissue damage induced by local radiation, hence enhance the significant radioprotective effect to testis tissue. LJP has the conspicuous protective effect on radiation damage of testis tissue. (authors)

  20. Stem cell therapy for the treatment of radiation-induced normal tissue damage

    International Nuclear Information System (INIS)

    Chapel, A.; Benderitter, M.; Gourmelon, P.; Lataillade, J.J.; Gorin, N.C.

    2013-01-01

    Radiotherapy may induce irreversible damage on healthy tissues surrounding the tumour. In Europe, per year, 1.5 million patients undergo external radiotherapy. Acute adverse effect concern 80% of patients. The late adverse effect of radiotherapy concern 5 to 10% of them, which could be life threatening. Eradication of these manifestations is crucial. The French Institute of Radioprotection and Nuclear Safety (IRSN) contribute to understand effect of radiation on healthy tissue. IRSN is strongly implicated in the field of regeneration of healthy tissue after radiotherapy or radiological accident and in the clinical use of cell therapy in the treatment of irradiated patients. Our first success in cell therapy was the correction of deficient hematopoiesis in two patients. The intravenous injection of Mesenchymal Stem Cells (MSC) has restored bone marrow micro-environment after total body irradiation necessary to sustain hematopoiesis. Cutaneous radiation reactions play an important role in radiation accidents, but also as a limitation in radiotherapy and radio-oncology. We have evidenced for the first time, the efficiency of MSC therapy in the context of acute cutaneous and muscle damage following irradiation in five patients. Concerning the medical management of gastrointestinal disorder after irradiation, we have demonstrated the promising approach of the MSC treatment. We have shown that MSC migrate to damaged tissues and restore gut functions after radiation damage. The evaluation of stem cell therapy combining different sources of adult stem cells is under investigation

  1. Effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection

    Institute of Scientific and Technical Information of China (English)

    2017-01-01

    Objective:To study the effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection.Methods: A total of 74 patients who received brain glioma resection in our hospital between May 2014 and December 2016 were selected and randomly divided into Dex group and control group who received dexmedetomidine intervention and saline intervention before induction respectively. Serum brain tissue damage marker, PI3K/AKT/iNOS and oxidation reaction molecule contents as well as cerebral oxygen metabolism index levels were determined before anesthesia (T0), at dura mater incision (T1), immediately after recovery (T2) and 24 h after operation (T3).Results: Serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of both groups at T2 and T3 were significantly higher than those at T0 and T1 while serum SOD and CAT contents as well as SjvO2levels were significantly lower than those at T0 and T1, and serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of Dex group at T2 and T3 were significantly lower than those of control group while serum SOD and CAT contents as well as SjvO2 levels were significantly higher than those of control group.Conclusions: Dexmedetomidine combined with propofol can reduce the brain tissue damage in brain glioma resection.

  2. The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation.

    Science.gov (United States)

    Enyedi, Balázs; Jelcic, Mark; Niethammer, Philipp

    2016-05-19

    Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cell kinetical aspect of normal tissue damages in relation to radiosensitivity of cells, especially from the points of LQ model

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Oohara, Hiroshi.

    1989-01-01

    Several points on the early and late radiation induced-normal tissue damages in terms of LQ model in multifractionation experiments of isoeffect were discussed from two fractors, (1) dose-responses of cell survivals or of tissue damages and (2) principles of the model. Application of the model to the both early and late tissue damages was fairly difficult in several tissues and several experimental conditions. In early damages, cell survival curve of single irradiation did not always fit to LQ model and further more incomlete repair as well as repopulation in multifractionation experiment contradicted the model especially in low dose fractionation. In late damages, the damages themselves did not express directly cell survival but probably indicate the degree of functional cell damage at the level of 10 -1 . As most isoeffects in early damages were taken at the level of 10 -3 , the comparison of two results from early and late tissue damages indicated the lack of coordinations both conceptionally and experimentally. (author)

  4. Tissue Damage, Temperature, and pH Induced by Different Electrode Arrays on Potato Pieces (Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Maraelys Morales González

    2018-04-01

    Full Text Available One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato (Solanum tuberosum L., var. Mondial depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor.

  5. Comparison of renal artery, soft tissue, and nerve damage after irrigated versus nonirrigated radiofrequency ablation.

    Science.gov (United States)

    Sakakura, Kenichi; Ladich, Elena; Fuimaono, Kristine; Grunewald, Debby; O'Fallon, Patrick; Spognardi, Anna-Maria; Markham, Peter; Otsuka, Fumiyuki; Yahagi, Kazuyuki; Shen, Kai; Kolodgie, Frank D; Joner, Michael; Virmani, Renu

    2015-01-01

    The long-term efficacy of radiofrequency ablation of renal autonomic nerves has been proven in nonrandomized studies. However, long-term safety of the renal artery (RA) is of concern. The aim of our study was to determine if cooling during radiofrequency ablation preserved the RA while allowing equivalent nerve damage. A total of 9 swine (18 RAs) were included, and allocated to irrigated radiofrequency (n=6 RAs, temperature setting: 50°C), conventional radiofrequency (n=6 RAs, nonirrigated, temperature setting: 65°C), and high-temperature radiofrequency (n=6 RAs, nonirrigated, temperature setting: 90°C) groups. RAs were harvested at 10 days, serially sectioned from proximal to distal including perirenal tissues and examined after paraffin embedding, and staining with hematoxylin-eosin and Movat pentachrome. RAs and periarterial tissue including nerves were semiquantitatively assessed and scored. A total of 660 histological sections from 18 RAs were histologically examined by light microscopy. Arterial medial injury was significantly less in the irrigated radiofrequency group (depth of medial injury, circumferential involvement, and thinning) than that in the conventional radiofrequency group (Pradiofrequency group (Pradiofrequency group and conventional radiofrequency group (P=0.36), there was a trend toward less nerve damage in the irrigated compared with conventional. Compared to conventional radiofrequency, circumferential medial damage in highest-temperature nonirrigated radiofrequency group was significantly greater (Pradiofrequency ablation, and there is a trend toward less nerve damage. © 2014 American Heart Association, Inc.

  6. High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals

    International Nuclear Information System (INIS)

    Niemantsverdriet, Maarten; Goethem, Marc-Jan van; Bron, Reinier; Hogewerf, Wytse; Brandenburg, Sytze; Langendijk, Johannes A.; Luijk, Peter van; Coppes, Robert P.

    2012-01-01

    Purpose: Radiotherapy using high linear energy transfer (LET) radiation is aimed at efficiently killing tumor cells while minimizing dose (biological effective) to normal tissues to prevent toxicity. It is well established that high LET radiation results in lower cell survival per absorbed dose than low LET radiation. However, whether various mechanisms involved in the development of normal tissue damage may be regulated differentially is not known. Therefore the aim of this study was to investigate whether two actions related to normal tissue toxicity, p53-induced apoptosis and expression of the profibrotic gene PAI-1 (plasminogen activator inhibitor 1), are differentially induced by high and low LET radiation. Methods and Materials: Cells were irradiated with high LET carbon ions or low LET photons. Cell survival assays were performed, profibrotic PAI-1 expression was monitored by quantitative polymerase chain reaction, and apoptosis was assayed by annexin V staining. Activation of p53 by phosphorylation at serine 315 and serine 37 was monitored by Western blotting. Transfections of plasmids expressing p53 mutated at serines 315 and 37 were used to test the requirement of these residues for apoptosis and expression of PAI-1. Results: As expected, cell survival was lower and induction of apoptosis was higher in high -LET irradiated cells. Interestingly, induction of the profibrotic PAI-1 gene was similar with high and low LET radiation. In agreement with this finding, phosphorylation of p53 at serine 315 involved in PAI-1 expression was similar with high and low LET radiation, whereas phosphorylation of p53 at serine 37, involved in apoptosis induction, was much higher after high LET irradiation. Conclusions: Our results indicate that diverse mechanisms involved in the development of normal tissue damage may be differentially affected by high and low LET radiation. This may have consequences for the development and manifestation of normal tissue damage.

  7. Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration

    Science.gov (United States)

    Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.

    2001-05-01

    Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.

  8. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry.

    Science.gov (United States)

    Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui

    2017-10-31

    Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.

  9. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes.

    Science.gov (United States)

    Jones, D A; Prior, S L; Barry, J D; Caplin, S; Baxter, J N; Stephens, J W

    2014-12-01

    In the past 30 years, prevalence of obesity has almost trebled resulting in an increased incidence of type 2 diabetes mellitus and other co-morbidities. Visceral adipose tissue is believed to play a vital role, but underlying mechanisms remain unclear. Our aim was to investigate changes in markers of oxidative damage in human visceral adipose tissue to determine levels of oxidative burden that may be attributed to obesity and/or diabetes. Visceral adipose tissue samples from 61 subjects undergoing abdominal surgery grouped as lean, obese and obese with type 2 diabetes mellitus, were examined using 3 different markers of oxidative stress. Malondialdehyde (MDA) concentration was measured as a marker of lipid peroxidation, telomere length and Comet assay as markers of oxidative DNA damage. No significant difference in MDA concentration, telomere length and DNA damage was observed between groups, although longer telomere lengths were seen in the obese with diabetes group compared to the obese group (Pstress and DNA damage was observed in samples from subjects with type 2 diabetes mellitus. Further work is required to investigate this further, however this phenomenon may be due to an up regulation of antioxidant defences in adipose tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Hypersensitivity to DNA-damaging agents in primary degenerations of excitable tissue

    International Nuclear Information System (INIS)

    Robbins, J.H.

    1983-01-01

    Defects in DNA-repair mechanisms render xeroderma pigmentosum cells hypersensitive to killing by the uv-type of DNA-damaging agent. Some xeroderma pigmentosum patients develop a primary neuronal degeneration, and cell lines from patients with the earliest onset of neurodegeneration are the most sensitive to killing by uv radiation. These findings led to the neuronal DNA integrity theory which holds that when the integrity of neuronal DNA is destroyed by the accumulation of unrepaired DNA damaged spontaneously or by endogenous metabolites, the neurons will undergo a primary degeneration. Cells from patients with Cockayne syndrome, a demyelinating disorder with a primary retinal degeneration, are also hypersensitive to the uv-type of DNA-damaging agent. Cells from patients with the primary neuronal degeneration of ataxia telangiectasia are hypersensitive to the x-ray-type of DNA-damaging agent. Cells from other patients with primary degeneration of excitable tissue also have hypersensitivity to the x-ray-type of DNA-damaging agent. These disorders include (1) primary neuronal degenerations which are either genetic (e.g., Huntington disease, familial dysautonomia, Friedreich ataxia) or sporadic (e.g., Alzheimer disease, Parkinson disease), (2) primary muscle degenerations (e.g., Duchenne muscular dystrophy), and (3) a primary retinal degeneration (Usher syndrome). Death of excitable tissue in vivo in these radiosensitive diseases may result from unrepaired DNA. This hypersensitivity provides the basis for developing suitable presymptomatic and prenatal tests for these diseases, for elucidating their pathogenesis, and for developing future therapies. 119 references, 3 figures, 3 tables

  11. Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage.

    Science.gov (United States)

    Vassallo, Christopher N; Wall, Daniel

    2016-04-01

    Damage repair is a fundamental requirement of all life as organisms find themselves in challenging and fluctuating environments. In particular, damage to the barrier between an organism and its environment (e.g. skin, plasma membrane, bacterial cell envelope) is frequent because these organs/organelles directly interact with the external world. Here, we discuss the general strategies that bacteria use to cope with damage to their cell envelope and their repair limits. We then describe a novel damage-coping mechanism used by multicellular myxobacteria. We propose that cell-cell transfer of membrane material within a population serves as a wound-healing strategy and provide evidence for its utility. We suggest that--similar to how tissues in eukaryotes have evolved cooperative methods of damage repair--so too have some bacteria that live a multicellular lifestyle. © 2016 WILEY Periodicals, Inc.

  12. DNA damage in plant herbarium tissue.

    Science.gov (United States)

    Staats, Martijn; Cuenca, Argelia; Richardson, James E; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.

  13. Non-damaging laser therapy of the macula: Titration algorithm and tissue response

    Science.gov (United States)

    Palanker, Daniel; Lavinsky, Daniel; Dalal, Roopa; Huie, Philip

    2014-02-01

    Retinal photocoagulation typically results in permanent scarring and scotomata, which limit its applicability to the macula, preclude treatments in the fovea, and restrict the retreatments. Non-damaging approaches to laser therapy have been tested in the past, but the lack of reliable titration and slow treatment paradigms limited their clinical use. We developed and tested a titration algorithm for sub-visible and non-damaging treatments of the retina with pulses sufficiently short to be used with pattern laser scanning. The algorithm based on Arrhenius model of tissue damage optimizes the power and duration for every energy level, relative to the threshold of lesion visibility established during titration (and defined as 100%). Experiments with pigmented rabbits established that lesions in the 50-75% energy range were invisible ophthalmoscopically, but detectable with Fluorescein Angiography and OCT, while at 30% energy there was only very minor damage to the RPE, which recovered within a few days. Patients with Diabetic Macular Edema (DME) and Central Serous Retinopathy (CSR) have been treated over the edematous areas at 30% energy, using 200μm spots with 0.25 diameter spacing. No signs of laser damage have been detected with any imaging modality. In CSR patients, subretinal fluid resolved within 45 days. In DME patients the edema decreased by approximately 150μm over 60 days. After 3-4 months some patients presented with recurrence of edema, and they responded well to retreatment with the same parameters, without any clinically visible damage. This pilot data indicates a possibility of effective and repeatable macular laser therapy below the tissue damage threshold.

  14. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

    International Nuclear Information System (INIS)

    Ostrau, Christian; Huelsenbeck, Johannes; Herzog, Melanie; Schad, Arno; Torzewski, Michael; Lackner, Karl J.; Fritz, Gerhard

    2009-01-01

    Background and purpose: HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. Materials and methods: Four hours to 24 h after total body irradiation (6 Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5 Gy and analyses were performed 3 weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. Results: Lovastatin attenuated IR-induced activation of NF-κB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFα, IL-6, TGFβ, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. γH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. Conclusions: Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

  15. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage.

    Science.gov (United States)

    Shaban, Lamyaa; Chen, Ying; Fasciano, Alyssa C; Lin, Yinan; Kaplan, David L; Kumamoto, Carol A; Mecsas, Joan

    2018-04-01

    Endospore-forming Clostridioides difficile is a causative agent of antibiotic-induced diarrhea, a major nosocomial infection. Studies of its interactions with mammalian tissues have been hampered by the fact that C. difficile requires anaerobic conditions to survive after spore germination. We recently developed a bioengineered 3D human intestinal tissue model and found that low O 2 conditions are produced in the lumen of these tissues. Here, we compared the ability of C. difficile spores to germinate, produce toxin and cause tissue damage in our bioengineered 3D tissue model versus in a 2D transwell model in which human cells form a polarized monolayer. 3D tissue models or 2D polarized monolayers on transwell filters were challenged with the non-toxin producing C. difficile CCUG 37787 serotype X (ATCC 43603) and the toxin producing UK1 C. difficile spores in the presence of the germinant, taurocholate. Spores germinated in both the 3D tissue model as well as the 2D transwell system, however toxin activity was significantly higher in the 3D tissue models compared to the 2D transwells. Moreover, the epithelium damage in the 3D tissue model was significantly more severe than in 2D transwells and damage correlated significantly with the level of toxin activity detected but not with the amount of germinated spores. Combined, these results show that the bioengineered 3D tissue model provides a powerful system with which to study early events leading to toxin production and tissue damage of C. difficile with mammalian cells under anaerobic conditions. Furthermore, these systems may be useful for examining the effects of microbiota, novel drugs and other potential therapeutics directed towards C. difficile infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  17. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations

    Science.gov (United States)

    Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2016-02-01

    Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.

  18. Radioprotection by WR-151327 against the late normal tissue damage in mouse hind legs from gamma ray radiation

    International Nuclear Information System (INIS)

    Matsushita, Satoru; Ando, Koichi; Koike, Sachiko

    1994-01-01

    To evaluate the protective effect of WR-151327 on late radiation-induced damaged to normal tissues in mice, the right hind legs of mice with or without WR-151327 administration (400 mg/kg) were irradiated with 137 Cs gamma rays. Leg contracture and skin shrinkage assays were performed at 380 days after irradiation. The mice were killed on day 400 postirradiation and histological sections of the legs were made. The thickness of the dermis, epidermis, and skin (dermis plus epidermis) was measured. The muscular area of the legs and the posterior knee angle between the femur and tibia were also measured. The left hind legs were similarly assessed as nonirradiated controls. Group means and standard deviations were calculated and dose-response curves were drawn for every endpoint. Then, the dose modifying factor (DMF) for each endpoint and the correlations among endpoints were determined. Latae damage assayed by leg contracture and skin shrinkage progressed with increasing radiation dose. However, it was reduced by drug treatment. The significant effect was indicated for skin shrinkage by a DMF of 1.8 at 35%. The DMF for leg contracture was 1.3 at 6 mm. In the irradiated legs, epidermal hyperplasia and dermal fibrosis in the skin, muscular atrophy, and extension disturbance of the knee joint were observed. These changes progressed with increasing radiation dose. Skin damage assayed by the present endpoints was also reduced by drug treatment by DMFs of 1.4 to 1.7. However, DMFs for damage to the muscle and knee were not determined because no isoeffect was observed. There were good correlations between leg contracture or skin shrinkage and the other endpoints in both untreated and drug-treated mice. WR-151327 has the potential to protect against radiation-induced late normal tissue damage. 17 refs., 6 figs., 2 tabs

  19. LYCOPENE EFFICIENCY IN THE MODULATION OF OXIDATIVE DAMAGE IN DIFFERENT TISSUES OF GAMMA IRRADIATED RATS

    International Nuclear Information System (INIS)

    EL-TAHAWY, N.A.; NADA, A.S.; REZK, R.G.

    2008-01-01

    Exposure to ionizing radiation induces oxidative stress that has been recognized as an important etiological factor in the causation of several chronic diseases. Lycopene, a carotenoid almost exclusively present in tomatoes and tomatoes products, is a lipid soluble antioxidant claimed to possess cardio protective and anticancer properties. The present study was designed to determine the possible modulator effects of lycopene on radiation-induced oxidative damage to liver, spleen and lung tissues. Animals were supplemented with lycopene (5 mg/kg body weight/ day) by gavages for two weeks before whole body exposure to gamma rays and within the period of irradiation (3 successive doses, each of 3 Gy at 72 hours intervals). Animals were sacrificed on the 3 r d day post the last irradiation session.The results obtained in the present study showed that whole body gamma irradiation produced oxidative stress manifested by significant elevation in lipid peroxides levels measured as thiobarbituric acid reactive substances (TBARS) associated with significant decrease of nitric oxide (NO) content. Non-significant change in total cupper (Cu) in the three tissues was recorded while significant increase of total iron (Fe) was observed in liver and spleen tissues only. Liver tissue of irradiated rats showed significant decrease in the activities of the antioxidant enzymes as superoxide dismutase (SOD) and catalase (CAT). In spleen tissues, there was a significant increase of SOD and significant decrease of CAT activities while in lung tissues, both SOD and CAT activities showed significant increase.Histological observations of photomicrograph of liver sections showed that radiation-induced sever damage obvious by dilated portal vein, ruptured hepatocytes, necrotic, pyknotic, karyolitic nuclei and vacuolated cytoplasm. In spleen tissue, radiation was induced degeneration of lymphatic nodules, dilation follicular artery and marked hemorrhage. In lung tissue, radiation- induces ill

  20. Disease related tissue damage and subsequent changes in fillet structure

    DEFF Research Database (Denmark)

    of the fish and subsequent a reduction in price. Despite this, the impact of infectious diseases on the meat quality and the mechanisms behind are poorly investigated. Wound repair is a dynamic, interactive response to tissue injury that involves a complex interaction and cross talk of various cell types......, extracellular matrix molecules, soluble mediators and cytokines. In order to describe the molecular mechanisms and processes of wound repair, a panel of genes covering immunological factors and tissue regeneration were used to measure changes at the mRNA level following mechanical tissue damage in rainbow trout...... (Oncorhynchus mykiss). Needle disrupted muscle tissue was sampled at different time points and subject to real-time RT-PCR for measuring the expression of the genes IL-1β, IL-8, IL-10, TGF-β, Myostatin-1ab, MMP-2, CTGF, Collagen-1α, VEGF, iNOS, Arg-2 and FGF. The results showed an initial phase with up...

  1. Radiotherapy- and chemotherapy-induced normal tissue damage. The role of cytokines and adhesion molecules

    International Nuclear Information System (INIS)

    Plevova, P.

    2002-01-01

    Background. Ionising radiation and cytostatic agents used in cancer therapy exert damaging effects on normal tissues and induce a complex response at the cellular and molecular levels. Cytokines and adhesion molecules are involved in this response. Methods. Published data on the given topic have been reviewed. Results and conclusions. Various cytokines and adhesion molecules, including tumor necrosis factor α, interleukins- 1,-2,-4, and -6, interferon γ, granulocyte macrophage- and macrophage- colony stimulating factors, transforming growth factor β, platelet-derived growth factor, insulin-like growth factor I, fibroblast and epidermal growth factors, platelet-activating factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E- and P-selectins are involved in the response of normal tissues to ionizing radiation- and chemotherapy- induced normal tissues damage and are co-responsible for some side effects of these treatment modalities, including fever, anorexia and fatigue, suppression of hematopoiesis, both acute and late local tissue response. (author)

  2. The influence of water/air cooling on collateral tissue damage using a diode laser with an innovative pulse design (micropulsed mode)-an in vitro study.

    Science.gov (United States)

    Beer, F; Körpert, W; Buchmair, A G; Passow, H; Meinl, A; Heimel, P; Moritz, A

    2013-05-01

    Since the diode laser is a good compromise for the daily use in dental offices, finding usage in numerous dental indications (e.g., surgery, periodontics, and endodontics), the minimization of the collateral damage in laser surgery is important to improve the therapeutical outcome. The aim of this study was to investigate the effect of water/air cooling on the collateral thermal soft tissue damage of 980-nm diode laser incisions. A total of 36 mechanically executed laser cuts in pork liver were made with a 980-nm diode laser in micropulsed mode with three different settings of water/air cooling and examined by histological assessment to determine the area and size of carbonization, necrosis, and reversible tissue damage as well as incision depth and width. In our study, clearly the incision depth increased significantly under water/air cooling (270.9 versus 502.3 μm-test group 3) without significant changes of incision width. In test group 2, the total area of damage was significantly smaller than in the control group (in this group, the incision depth increases by 65 %). In test group 3, the total area of damage was significantly higher (incision depth increased by 85 %), but the bigger part of it represented a reversible tissue alteration leaving the amount of irreversible damage almost the same as in the control group. This first pilot study clearly shows that water/air cooling in vitro has an effect on collateral tissue damage. Further studies will have to verify, if the reduced collateral damage we have proved in this study can lead to accelerated wound healing. Reduction of collateral thermal damage after diode laser incisions is clinically relevant for promoted wound healing.

  3. Effect of propolis feeding on rat tissues damaged by X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hoon; Seo, Eul Won [Andong National Univ., Andong (Korea, Republic of); Ji, Tae Jeong [Kaya Univ., Goryeong (Korea, Republic of)

    2007-06-15

    Present study aimed to investigate the radioprotective effects of propolis feeding on rat tissues damaged by X-ray irradiation. It was shown that the number of white blood cell in X-ray irradiated group supplemented with propolis increased as much to those of the control group and also the GOT activities among the blood components were decreased after propolis feeding. The mineral contents such as Mg, Fe, Ca, Mn, Cu, Mo, Ni, As in liver were increased as compared with those of the control group but maintained lower level than those of only irradiated groups, implying that the propolis feeding elevated the recovery capability of white blood cell effectively and propolis have a potential resistance to cell damage by X-ray. According to histological observations of the testis, intestine and liver tissues which are irradiated after feeding propolis, the numbers of damaged undifferentiated cells were decreased in testis and the shape of the goblet cells and inner and outer muscular layers in intestine were restored to the original state and the hepatocytes and interlobular veins were shown intact in liver, suggesting that propolis has a potential capacity to restore cell shapes or resist deformation of cell.

  4. The role of zinc supplementation in the inhibition of tissue damage caused by exposure to electromagnetic field in rat lung and liver tissues.

    Science.gov (United States)

    Baltaci, A K; Mogulkoc, R; Salbacak, A; Celik, I; Sivrikaya, A

    2012-01-01

    The objective of the present study was to examine the effects of zinc supplementation on the oxidant damage in lung and liver tissues in rats exposed to a 50-Hz frequency magnetic field for 5 minutes every other day over a period of 6 months. The study included 24 adult male Sprague-Dawley rats, which were divided into the three groups in equal numbers: Group 1, the control group (G1); Group 2, the group exposed to an electromagnetic field (G2); and Group 3, the group, which was exposed to an EMF and supplemented with zinc (G3). At the end of the 6-month procedures, the animals were decapitated to collect lung and liver tissue samples, in which MDA was analyzed using the "TBARS method (nmol/g/protein)", GSH by the "biuret method (mg/g/protein)" and zinc levels by atomic emission (µg/dl). MDA levels in lung and liver tissues in G2 were higher than those in G1 and G3, and the levels in G3 were higher than those in G1 (pelectromagnetic field caused cellular damage in lung and liver tissues and zinc supplementation inhibited the inflicted cellular damage. Another important result of this study that needs emphasis was that exposure to an electromagnetic field led to a significant decrease in zinc levels in lung and liver tissues (Tab. 3, Ref. 23).

  5. Adult Bone Marrow Mesenchymal Stem Cells Primed for fhe Repair of Damaged Cardiac Tissue After Myocardial Infarction

    Science.gov (United States)

    Marks, Edward D.

    The burden of cardiovascular disease around the world is growing, despite improvements in hospital care and time to treatment. As more people survive an initial myocardial infarction (MI), the decompensated heart tissue is strained, leading to heart failure (HF) and an increased risk for a second MI. While extensive progress has been made in treating the symptoms after MI, including HF and angina, little success has come from repairing the damaged heart tissue to alleviate the progression to these end- stage symptoms. One promising area of regenerative research has been the use of adult stem cells, particularly from the bone marrow (BMSCs). These cells can differentiate towards the cardiac cell lineage in vitro while producing trophic factors that can repair damaged tissue. When placed in the heart after MI though, BMSCs have mixed results, producing profound changes in some patients but zero or even negative effects in others. In this report, we used BMSCs as a stem cell base for a regenerative medicine system for the repair of damaged cardiac tissue. These cells are seeded on a polycaprolactone nanoscaffolding support system, which provides a growth substrate for in vitro work, as well as a housing system for protected in vivo delivery. When the nanoscaffold is pre-coated with a novel combination of a cardiac protein, thymosin beta4 (Tbeta4), and a small molecule effector of the WNT protein pathway, IWP-2, BMSCs differentiated towards the cardiac lineage in as little as 24hours. When injected into rat hearts that have been given an ischemic MI, the nanoscaffolding system slowly dissolves, leaving the cells in place of the damaged cardiac tissue. After two weeks of monitoring, BMSCs are present within the damaged hearts, as evidenced by immunofluorescence and nanoparticle tracking. Injections of the nanoscaffolding/cell system led to robust healing of the rat hearts that had been given small- and medium- damage heart attacks, outperforming PBS sham and cell

  6. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.

    Science.gov (United States)

    M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra

    2017-10-01

    The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.

  7. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Directory of Open Access Journals (Sweden)

    Nohra E. Beltran

    2013-01-01

    Full Text Available The gastric mucosa ischemic tissular damage plays an important role in critical care patients’ outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine. The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10% for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (. Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia.

  8. Comparison of tissue damage caused by various laser systems with tissue tolerable plasma by light and laser scan microscopy

    International Nuclear Information System (INIS)

    Vandersee, Staffan; Lademann, Jürgen; Richter, Heike; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard

    2013-01-01

    Tissue tolerable plasma (TTP) represents a novel therapeutic method with promising capabilities in the field of dermatological interventions, in particular disinfection but also wound antisepsis and regeneration. The energy transfer by plasma into living tissue is not easily educible, as a variety of features such as the medium’s actual molecule-stream, the ions, electrons and free radicals involved, as well as the emission of ultraviolet, visible and infrared light contribute to its increasingly well characterized effects. Thus, relating possible adversary effects, especially of prolonged exposure to a single component of the plasma’s mode of action, is difficult. Until now, severe adverse events connected to plasma exposure have not been reported when conducted according to existing therapeutic protocols. In this study, we have compared the tissue damage-potential of CO 2 and dye lasers with TTP in a porcine model. After exposure of pig ear skin to the three treatment modalities, all specimens were examined histologically and by means of laser scan microscopy (LSM). Light microscopical tissue damage could only be shown in the case of the CO 2 laser, whereas dye laser and plasma treatment resulted in no detectable impairment of the specimens. In the case of TTP, LSM examination revealed only an impairment of the uppermost corneal layers of the skin, thus stressing its safety when used in vivo. (letter)

  9. Effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage

    Directory of Open Access Journals (Sweden)

    Nan-Lin Meng

    2017-05-01

    Full Text Available Objective: To study the effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage. Methods: Patients with pulpal and periapical diseases who received root canal therapy in our hospital between May 2013 and October 2016 were retrospectively analyzed, and according to the different root canal filling materials they used, they were divided into epoxy group and bioceramic group who used epoxy paste and bioceramic paste as root canal filling materials respectively. Before and after treatment, gingival crevicular fluid was collected respectively to determine the levels of inflammatory factors, oxidative stress products, cell apoptosis molecules and protease-related molecules. Results: 2 weeks after treatment, IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid of epoxy group were not significantly different from those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1 and MMP-2 levels in gingival crevicular fluid of bioceramic group were significantly higher than those before treatment while Bcl-2, TIMP-1 and TIMP-2 levels were significantly lower than those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid were significantly different between two groups of patients after treatment. Conclusion: Epoxy paste for dental restoration causes less damage to periodontal tissue than bioceramic paste.

  10. Effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage

    Institute of Scientific and Technical Information of China (English)

    Nan-Lin Meng

    2017-01-01

    Objective:To study the effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage.Methods: Patients with pulpal and periapical diseases who received root canal therapy in our hospital between May 2013 and October 2016 were retrospectively analyzed, and according to the different root canal filling materials they used, they were divided into epoxy group and bioceramic group who used epoxy paste and bioceramic paste as root canal filling materials respectively. Before and after treatment, gingival crevicular fluid was collected respectively to determine the levels of inflammatory factors, oxidative stress products, cell apoptosis molecules and protease-related molecules.Results: 2 weeks after treatment, IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid of epoxy group were not significantly different from those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1 and MMP-2 levels in gingival crevicular fluid of bioceramic group were significantly higher than those before treatment while Bcl-2, TIMP-1 and TIMP-2 levels were significantly lower than those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid were significantly different between two groups of patients after treatment.Conclusion:Epoxy paste for dental restoration causes less damage to periodontal tissue than bioceramic paste.

  11. Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia.

    Science.gov (United States)

    Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai

    2018-02-17

    The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

  12. The Sensitization Model to Explain How Chronic Pain Exists Without Tissue Damage

    NARCIS (Netherlands)

    van Wilgen, C. Paul; Keizer, Doeke

    The interaction of nurses with chronic pain patients is often difficult. One of the reasons is that chronic pain is difficult to explain, because no obvious anatomic defect or tissue damage is present. There is now enough evidence available indicating that chronic pain syndromes such as low back

  13. Apoptosis modulation in the immune system reveals a role of neutrophils in tissue damage in a murine model of chlamydial genital infection.

    Science.gov (United States)

    Zortel, Tom; Schmitt-Graeff, Annette; Kirschnek, Susanne; Häcker, Georg

    2018-03-07

    Chlamydial infection frequently causes damage to the female genital tract. The precise mechanisms of chlamydial clearance and tissue damage are unknown but studies suggest immunopathology with a particular role of neutrophils. The goal of this study was to understand the contribution of the immune system, in particular neutrophils. Using Chlamydia muridarum, we infected mice with a prolonged immune response due to expression of Bcl-2 in haematopoietic cells (Bcl-2-mice), and mice where mature neutrophils are lacking due to the deletion of Mcl-1 in myeloid cells (LysM-cre-mcl-1-flox-mice; Mcl-1-mice). We monitored bacterial clearance, cellular infiltrate and long-term tissue damage. Both mutant strains showed slightly delayed clearance of the acute infection. Bcl-2-mice had a strongly increased inflammatory infiltrate concerning almost all cell lineages. The infection of Bcl-2-mice caused increased tissue damage. The loss of neutrophils in Mcl-1-mice was associated with substantial quantitative and qualitative alterations of the inflammatory infiltrate. Mcl-1-mice had higher chlamydial burden and reduced tissue damage, including lower incidence of hydrosalpinx and less uterine dilation. Inhibition of apoptosis in the haematopoietic system increases inflammation and tissue damage. Neutrophils have broad functions, including a role in chlamydial clearance and in tissue destruction.

  14. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). Copyright © 2013 by the Research Society on Alcoholism.

  15. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  16. Zicam-induced damage to mouse and human nasal tissue.

    Directory of Open Access Journals (Sweden)

    Jae H Lim

    Full Text Available Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc, a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction.

  17. On radiation damage to normal tissues and its treatment. Pt. 2

    International Nuclear Information System (INIS)

    Michalowski, A.S.

    1994-01-01

    In addition to transiently inhibiting cell cycle progression and sterilizing those cells capable of proliferation, irradiation disturbs the homeostasis effected by endogenous mediators of intercellular communication (humoral component of tissue response to radiation). Changes in the mediator levels may modulate radiation effects either by a assisting a return to normality (e.g., through a rise in H-type cell lineage-specific growth factors) or by aggravating the damage. The latter mode is illustrated with reports on changes in eicosanoid levels after irradiation and on results of empirical treatment of radiation injuries with anti-inflammatory drugs. Prodromal, acute and chronic effects of radiation are accompanied by excessive production of eicosanoids (prostaglandins, prostacyclin, thromboxanes and leukotrienes). These endogenous mediators of inflammatory reactions may be responsible for the vasodilatation, vasoconstriction, increased microvascular permeability, thrombosis and chemotaxis observed after radiation exposure. Glucocorticoids inhibit eicosanoid synthesis primarily by interfering with phospholipase A 2 whilst non-steroidal anti-inflammatory drugs prevent prostaglandin/thromboxane synthesis by inhibiting cycloxygenase. When administered after irradiation on empirical grounds, drugs belonging to both groups tend to attenuate a range of prodomal, acute and chronic effects of radiation in man and animals. Taken together, these two sets of observations are highly suggestive of a contribution of humoral factors to the adverse responses of normal tissues and organs to radiation. A full account of radiation damage should therefore consist of complementary descriptions of cellular and humoral events. Further studies on anti-inflammatory drug treatment of radiation damage to normal organs are justified and desirable. (orig.)

  18. The influence of combined treatment of Cd, and γ-irradiation on DNA damage and repair in lymphoid tissues of mice

    International Nuclear Information System (INIS)

    Privezentsev, K.V.; Sirota, N.P.; Gaziev, A.I.

    1996-01-01

    The effect of combined treatment of Cd and γ-irradiation on DNA damage and repair was studied in lymphoid tissues of mice using single-cell gel assay. Single i.p. injection of CdCl 2 (1 mg Cd/kg body wt), 2 h prior to irradiation resulted in increasing of DNA lesions in peripheral blood lymphocytes (PBL) when compared to non-injected animals. However, the same treatment, 48 h prior to irradiation is shown to decrease DNA damage in PBL and splenocytes in comparison with untreated mice. In thymocytes maximal protective effect of Cd was determined when mice were irradiated in 24 h after injection. The protective effect observed is due to decreasing of initial level of DNA damage in thymocytes as well as acceleration of DNA repair in PBL and splenocytes. 28 refs.; 2 figs

  19. DNA damage in preserved specimens and tissue samples: a molecular assessment

    Directory of Open Access Journals (Sweden)

    Cantin Elizabeth

    2008-10-01

    Full Text Available Abstract The extraction of genetic information from preserved tissue samples or museum specimens is a fundamental component of many fields of research, including the Barcode of Life initiative, forensic investigations, biological studies using scat sample analysis, and cancer research utilizing formaldehyde-fixed, paraffin-embedded tissue. Efforts to obtain genetic information from these sources are often hampered by an inability to amplify the desired DNA as a consequence of DNA damage. Previous studies have described techniques for improved DNA extraction from such samples or focused on the effect of damaging agents – such as light, oxygen or formaldehyde – on free nucleotides. We present ongoing work to characterize lesions in DNA samples extracted from preserved specimens. The extracted DNA is digested to single nucleosides with a combination of DNase I, Snake Venom Phosphodiesterase, and Antarctic Phosphatase and then analyzed by HPLC-ESI-TOF-MS. We present data for moth specimens that were preserved dried and pinned with no additional preservative and for frog tissue samples that were preserved in either ethanol, or formaldehyde, or fixed in formaldehyde and then preserved in ethanol. These preservation methods represent the most common methods of preserving animal specimens in museum collections. We observe changes in the nucleoside content of these samples over time, especially a loss of deoxyguanosine. We characterize the fragmentation state of the DNA and aim to identify abundant nucleoside lesions. Finally, simple models are introduced to describe the DNA fragmentation based on nicks and double-strand breaks.

  20. Legal acceptance of contingent valuation to determine natural resource damages

    International Nuclear Information System (INIS)

    Johnson, G.J.

    1993-01-01

    In enacting the Oil Pollution Act of 1990, Congress endorsed contingent valuation (CV) as an appropriate ''advanced technique'' to assess damages to natural resources resulting from oil and hazardous substance releases. Citing Ohio v. Department of Interior, 880 F.2d 432 (D.C.Cir. 1989), Congress stressed that ''forests are more than just board feed of lumbar,'' and rejected statutory language intended to prevent recovery of damages calculated using ''non-use'' or ''passive'' values of natural resources. Consequently, the key question is whether CV is a useful and rational means to determine non-use values when implementing statutory mandates to recover natural resource damages, not whether CV meets tests of statistical reliability. Because Congress intended that damages be calculated using non-use as well as use values, less precision in calculating non-use values is acceptable so the statutory right to full recovery is not rendered meaningless. While such damages might not be determined with the same precision as damages from a contract breach, a technique which yields results ''with as much or more certainty and accuracy as a jury determining damages for pain and suffering or mental anguish'' is adequate. No methodology except CV calculates non-use values. When designed and implemented conservatively, CV is sufficiently reliable to be used by natural resource trustees

  1. An Alternative Method of Evaluating 1540NM Exposure Laser Damage using an Optical Tissue Phantom

    National Research Council Canada - National Science Library

    Jindra, Nichole M; Figueroa, Manuel A; Rockwell, Benjamin A; Chavey, Lucas J; Zohner, Justin J

    2006-01-01

    An optical phantom was designed to physically and optically resemble human tissue, in an effort to provide an alternative for detecting visual damage resulting from inadvertent exposure to infrared lasers...

  2. Pain and Tissue Damage in Response to Orthodontic Tooth Movement: Are They Correlated?

    Science.gov (United States)

    Cuoghi, Osmar A; Topolski, Francielle; de Faria, Lorraine P; de Mendonça, Marcos R

    2016-09-01

    To evaluate the correlation between pain and tissue damage in response to orthodontic tooth movement (OTM), such as hyalinization and external apical root resorption (EARR). The literature review was used as a methodological strategy, following the knowledge development process - constructivist (ProKnow-C). Study axes were defined and keywords that best represented each axis were selected. The terms were submitted to an adherence test and validation, resulting in 12 keyword combinations. Searches were carried out in the most representative databases for the selected terms, without restriction as for language or publication dates. Retrieved studies were filtered using the EndNote X6 program and classified according to analysis of title, abstract, and keywords. The final portfolio of articles was submitted to bibliometric and systematic analysis. A total of 1,091 studies were retrieved, out of which 719 were repeated and 335 were removed in the classification stage. A total of 37 articles remained in the final portfolio. Only one article was in line with the purpose of this study, indicating absence of correlation between pain and EARR in response to OTM. Further studies are necessary to confirm whether orthodontic pain might serve as a criterion for the use of appropriate mechanical forces, contributing to minimize tissue damage following OTM. This article presents a systematic literature review, in which scientific evidence of the correlation between pain and tissue damage during orthodontic movement was studied, providing a scientific answer for the following question: Is pain reported by patients associated with application of inappropriate orthodontic force? Thus, it aims at aiding the orthodontist in the definition of clinical parameters for the use of optimal orthodontic force.

  3. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  4. In vitro prediction of in vivo skin damage associated with the wiping of dry tissue against skin.

    Science.gov (United States)

    Koenig, David W; Dvoracek, Barb; Vongsa, Rebecca

    2013-02-01

    The ideal gentle cleansing product is one that effectively removes soils while minimizing damage to the skin. Thus, measuring physical abrasion caused by cleansing tissues is critical to the continued development of gentle cleansing products. Current analysis of cleansing materials for skin gentleness is time consuming and requires expensive human subject testing. This report describes the development of a rapid and inexpensive bench assay for the assessment of skin abrasion caused by wiping. Coefficient of friction (COF) evaluations using bench methods were compared with results from clinical studies of repeated wiping and with confocal visualizations of excised skin. A Monitor/Slip and Friction instrument (model 32-06; TMI, Amityville, NY, USA) was used to measure tissue friction on simulated skin (Vitro-Skin, N19-5X; IMS, Milford, CT, USA). Clinical data from a 4-day repetitive forearm wiping study measuring transepidermal water loss (TEWL) in 30 subjects was compared with results from the bench top assay. In addition, excised skin samples were also treated using the COF bench assay and examined using confocal microscopy to visualize stratum corneum damage caused by wiping. Using the bench COF assay, we were able to distinguish between bath tissue codes by comparing average static friction value (ASFV) for the test codes, where lower ASFV indicated less abrasive tissue. The ASFV followed the same gentleness trend observed in the clinical study. Confocal microscopy of excised skin wiped with the same materials indicated stratum corneum damage consistent with the bench COF and clinical TEWL observations. We observed significant correlation between bench and clinical methods for measuring skin damage caused by wiping of skin with tissue. The bench method will facilitate rapid and inexpensive skin gentleness assessment of cleansing materials. © 2012 John Wiley & Sons A/S.

  5. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  6. Determinants of the property damage costs of tanker accidents

    International Nuclear Information System (INIS)

    Talley, W.K.

    1999-01-01

    This study investigates determinants of the vessel, oil cargo spillage, and other-property damage costs of tanker accidents. Tobit estimation of a three-equation recursive model suggests that, among types of tanker accidents, fire/explosion accidents incur the largest vessel damage costs, but the smallest oil cargo spillage costs. Alternatively, grounding accidents incur the smallest vessel damage costs, but the largest oil cargo spillage costs, reflecting the difficulty of controlling oil cargo spillage subsequent to such accidents. Also, oil cargo spillage costs are lower for US flag tanker accidents. A dollar of vessel damage cost increases other-property damage cost by 0.06 dollars, whereas a dollar of oil cargo spillage increases this cost by 1.55 dollars

  7. The number of bleaching sessions influences pulp tissue damage in rat teeth.

    Science.gov (United States)

    Cintra, Luciano Tavares Angelo; Benetti, Francine; da Silva Facundo, Aguinaldo Cândido; Ferreira, Luciana Louzada; Gomes-Filho, João Eduardo; Ervolino, Edilson; Rahal, Vanessa; Briso, André Luiz Fraga

    2013-12-01

    Hydrogen peroxide tooth bleaching is claimed to cause alterations in dental tissue structures. This study investigated the influence of the number of bleaching sessions on pulp tissue in rats. Male Wistar rats were studied in 5 groups (groups 1S-5S) of 10 each, which differed by the number (1-5) of bleaching sessions. In each session, the animals were anesthetized, and 35% hydrogen peroxide gel was applied to 3 upper right molars. Two days after the experimental period, the animals were killed, and their jaws were processed for light microscope evaluation. Pulp tissue reactions were scored as follows: 1, no or few inflammatory cells and no reaction; 2, session, necrotic tissue in the pulp horns and underlying inflammatory changes were observed. The extent and intensity of these changes increased with the number of bleaching sessions. After 5 sessions, the changes included necrotic areas in the pulp tissue involving the second third of the radicular pulp and intense inflammation in the apical third. The number of bleaching sessions directly influenced the extent of pulp damage. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. PGC-1α determines light damage susceptibility of the murine retina.

    Directory of Open Access Journals (Sweden)

    Anna Egger

    Full Text Available The peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1 proteins are key regulators of cellular bioenergetics and are accordingly expressed in tissues with a high energetic demand. For example, PGC-1α and PGC-1β control organ function of brown adipose tissue, heart, brain, liver and skeletal muscle. Surprisingly, despite their prominent role in the control of mitochondrial biogenesis and oxidative metabolism, expression and function of the PGC-1 coactivators in the retina, an organ with one of the highest energy demands per tissue weight, are completely unknown. Moreover, the molecular mechanisms that coordinate energy production with repair processes in the damaged retina remain enigmatic. In the present study, we thus investigated the expression and function of the PGC-1 coactivators in the healthy and the damaged retina. We show that PGC-1α and PGC-1β are found at high levels in different structures of the mouse retina, most prominently in the photoreceptors. Furthermore, PGC-1α knockout mice suffer from a striking deterioration in retinal morphology and function upon detrimental light exposure. Gene expression studies revealed dysregulation of all major pathways involved in retinal damage and apoptosis, repair and renewal in the PGC-1α knockouts. The light-induced increase in apoptosis in vivo in the absence of PGC-1α was substantiated in vitro, where overexpression of PGC-1α evoked strong anti-apoptotic effects. Finally, we found that retinal levels of PGC-1 expression are reduced in different mouse models for retinitis pigmentosa. We demonstrate that PGC-1α is a central coordinator of energy production and, importantly, all of the major processes involved in retinal damage and subsequent repair. Together with the observed dysregulation of PGC-1α and PGC-1β in retinitis pigmentosa mouse models, these findings thus imply that PGC-1α might be an attractive target for therapeutic approaches aimed at retinal

  9. Effects of heavy ions on rabbit tissues: damage to the forebrain

    International Nuclear Information System (INIS)

    Cox, A.B.; Keng, P.C.; Lee, A.C.; Lett, J.T.

    1982-01-01

    As part of a study of progressive radiation effects in normal tissues, the forebrains of New Zealand white rabbits (Oryctolagus cuniculus) (about 6 weeks old) were irradiated locally with single acute doses of 60 Co γ-photons (LETsub(infinity)=0.3 keV/μm), Ne ions (LETsub(infinity)=35+-3 keV/μm) or Ar ions (LETsub(infinity)=90+-5 keV/μm). Other rabbits received fractionated doses of 60 Co γ-photons according to a standard radiotherapeutic protocol. Irradiated rabbits and appropriately aged controls were sacrificed at selected intervals, and whole sagittal sections of their brains were examined for pathological changes. Forebrain damage was scored with subjective indices based on histological differences between the anterior (irradiated) and posterior (unirradiated) regions of the brain. Those indices ranged from zero (no apparent damage) to five (severe infarctions, etc.). At intermediate levels of forebrain damage, the relative biological effectiveness (r.b.e.) of each heavy ion was similar to that found for alopecia and cataractogenesis, and the early expression of the damage was also accelerated as the LETsub(infinity) increased. Late deterioration of the forebrain appeared also to be accelerated by increasing LETsub(infinity), although its accurate quantification was not possible because other priorities in the overall experimental design limited systematic sacrifice of the animals. (author)

  10. Quantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry

    Science.gov (United States)

    Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui

    2018-02-01

    As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.

  11. Damage to apparel layers and underlying tissue due to hand-gun bullets.

    Science.gov (United States)

    Carr, Debra; Kieser, Jules; Mabbott, Alexander; Mott, Charlotte; Champion, Stephen; Girvan, Elizabeth

    2014-01-01

    Ballistic damage to the clothing of victims of gunshot wounds to the chest can provide useful forensic evidence. Anyone shot in the torso will usually be wearing clothing which will be damaged by the penetrating impact event and can reportedly be the source of some of the debris in the wound. Minimal research has previously been reported regarding the effect of bullets on apparel fabrics and underlying tissue. This paper examines the effect of ammunition (9 mm full metal jacket [FMJ] DM11 A1B2, 8.0 g; and soft point flat nose Remington R357M3, 10.2 g) on clothing layers that cover the torso (T-shirt, T-shirt plus hoodie, T-shirt plus denim jacket) and underlying structures represented by porcine thoracic wall (skin, underlying tissue, ribs). Impacts were recorded using a Phantom V12 high speed camera. Ejected bone debris was collected before wound tracts were dissected and measured; any debris found was recovered for further analysis. Size and mass of bony debris was recorded; fibre debris recovered from the wound and impact damage to fabrics were imaged using scanning electron microscopy (SEM). Remington R357M3 ammunition was characteristically associated with stellate fabric damage; individual fibres were less likely to show mushrooming. In contrast, 9 mm FMJ ammunition resulted in punch-out damage to fabric layers, with mushrooming of individual fibres being more common. Entry wound sizes were similar for both types of ammunition and smaller than the diameter of the bullet that caused them. In this work, the Remington R357M3 ammunition resulted in larger exit wounds due to the bullet construction which mushroomed. That fabric coverings did not affect the amount of bony debris produced is interesting, particularly given there was some evidence that apparel layers affected the size of the wound. Recent work has suggested that denim (representative of jeans) can exacerbate wounding caused by high-velocity bullet impacts to the thigh when the bullet does not

  12. Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management

    Science.gov (United States)

    Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.

    2016-01-01

    A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.

  13. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle,

    Directory of Open Access Journals (Sweden)

    Samanta Portão de Carlos

    2014-08-01

    Full Text Available OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively] in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group: a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice, the greatest differences (increases in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.

  14. Fibrosis of the pancreas: the initial tissue damage and the resulting pattern.

    Science.gov (United States)

    Klöppel, Günter; Detlefsen, Sönke; Feyerabend, Bernd

    2004-07-01

    Fibrosis in the pancreas is caused by such processes as necrosis/apoptosis, inflammation or duct obstruction. The initial event that induces fibrogenesis in the pancreas is an injury that may involve the interstitial mesenchymal cells, the duct cells and/or the acinar cells. Damage to any one of these tissue compartments of the pancreas is associated with cytokine-triggered transformation of resident fibroblasts/pancreatic stellate cells into myofibroblasts and the subsequent production and deposition of extracellular matrix. Depending on the site of injury in the pancreas and the involved tissue compartment, predominantly inter(peri)lobular fibrosis (as in alcoholic chronic pancreatitis), periductal fibrosis (as in hereditary pancreatitis), periductal and interlobular fibrosis (as in autoimmune pancreatitis) or diffuse inter- and intralobular fibrosis (as in obstructive chronic pancreatitis) develops.

  15. The role of platelet factor 4 in local and remote tissue damage in a mouse model of mesenteric ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Peter H Lapchak

    Full Text Available The robust inflammatory response that occurs during ischemia reperfusion (IR injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4, during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage.

  16. Tissue and plasma enzyme activities in juvenile green iguanas.

    Science.gov (United States)

    Wagner, R A; Wetzel, R

    1999-02-01

    To determine activities of intracellular enzymes in 8 major organs in juvenile green iguanas and to compare tissue and plasma activities. 6 green iguanas iguanas, but high values may not always indicate overt muscle disease. The AMS activity may be specific for the pancreas, but the wide range of plasma activity would likely limit its diagnostic usefulness. Activities of AST and LDH may reflect tissue damage or inflammation, but probably do not reflect damage to specific tissues or organs.

  17. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats.

    Science.gov (United States)

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-12-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli ( Brassica oleracea ) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics ( P <0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values ( P <0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.

  18. Targeted Delivery of Neutralizing Anti-C5 Antibody to Renal Endothelium Prevents Complement-Dependent Tissue Damage

    Directory of Open Access Journals (Sweden)

    Paolo Durigutto

    2017-09-01

    Full Text Available Complement activation is largely implicated in the pathogenesis of several clinical conditions and its therapeutic neutralization has proven effective in preventing tissue and organ damage. A problem that still needs to be solved in the therapeutic control of complement-mediated diseases is how to avoid side effects associated with chronic neutralization of the complement system, in particular, the increased risk of infections. We addressed this issue developing a strategy based on the preferential delivery of a C5 complement inhibitor to the organ involved in the pathologic process. To this end, we generated Ergidina, a neutralizing recombinant anti-C5 human antibody coupled with a cyclic-RGD peptide, with a distinctive homing property for ischemic endothelial cells and effective in controlling tissue damage in a rat model of renal ischemia/reperfusion injury (IRI. As a result of its preferential localization on renal endothelium, the molecule induced complete inhibition of complement activation at tissue level, and local protection from complement-mediated tissue damage without affecting circulating C5. The ex vivo binding of Ergidina to surgically removed kidney exposed to cold ischemia supports its therapeutic use to prevent posttransplant IRI leading to delay of graft function. Moreover, the finding that the ex vivo binding of Ergidina was not restricted to the kidney, but was also seen on ischemic heart, suggests that this RGD-targeted anti-C5 antibody may represent a useful tool to treat organs prior to transplantation. Based on this evidence, we propose preliminary data showing that Ergidina is a novel targeted drug to prevent complement activation on the endothelium of ischemic kidney.

  19. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing.

    Science.gov (United States)

    Augspurger, Carol K

    2013-01-01

    Climate change, with both warmer spring temperatures and greater temperature fluctuations, has altered phenologies, possibly leading to greater risk of spring frost damage to temperate deciduous woody plants. Phenological observations of 20 woody species from 1993 to 2012 in Trelease Woods, Champaign County, Illinois, USA, were used to identify years with frost damage to vegetative and reproductive phases. Local temperature records were used in combination with the phenological observations to determine what combinations of the two were associated with damage. Finally, a long-term temperature record (1889-1992) was evaluated to determine if the frequency of frost damage has risen in recent decades. Frost Frost damage occurred in five years in the interior and in three additional years at only the forest edge. The degree of damage varied with species, life stage, tissue (vegetative or reproductive), and phenological phase. Common features associated with the occurrence of damage to interior plants were (1) a period of unusual warm temperatures in March, followed by (2) a frost event in April with a minimum temperature frost damage increased significantly, from 0.03 during 1889-1979 to 0.21 during 1980-2012. When the criteria were "softened" to frost damage events more common.

  20. The Addition of Manganese Porphyrins during Radiation Inhibits Prostate Cancer Growth and Simultaneously Protects Normal Prostate Tissue from Radiation Damage

    Directory of Open Access Journals (Sweden)

    Arpita Chatterjee

    2018-01-01

    Full Text Available Radiation therapy is commonly used for prostate cancer treatment; however, normal tissues can be damaged from the reactive oxygen species (ROS produced by radiation. In separate reports, we and others have shown that manganese porphyrins (MnPs, ROS scavengers, protect normal cells from radiation-induced damage but inhibit prostate cancer cell growth. However, there have been no studies demonstrating that MnPs protect normal tissues, while inhibiting tumor growth in the same model. LNCaP or PC3 cells were orthotopically implanted into athymic mice and treated with radiation (2 Gy, for 5 consecutive days in the presence or absence of MnPs. With radiation, MnPs enhanced overall life expectancy and significantly decreased the average tumor volume, as compared to the radiated alone group. MnPs enhanced lipid oxidation in tumor cells but reduced oxidative damage to normal prostate tissue adjacent to the prostate tumor in combination with radiation. Mechanistically, MnPs behave as pro-oxidants or antioxidants depending on the level of oxidative stress inside the treated cell. We found that MnPs act as pro-oxidants in prostate cancer cells, while in normal cells and tissues the MnPs act as antioxidants. For the first time, in the same in vivo model, this study reveals that MnPs enhance the tumoricidal effect of radiation and reduce oxidative damage to normal prostate tissue adjacent to the prostate tumor in the presence of radiation. This study suggests that MnPs are effective radio-protectors for radiation-mediated prostate cancer treatment.

  1. Ultrasound-induced cavitation damage to external epithelia of fish skin.

    Science.gov (United States)

    Frenkel, V; Kimmel, E; Iger, Y

    1999-10-01

    Transmission electron microscopy was used to show the effects of therapeutic ultrasound (fish skin. Exposures of up to 90 s produced damage to 5 to 6 of the outermost layers. Negligible temperature elevations and lack of damage observed when using degassed water indicated that the effects were due to cavitation. The minimal intensity was determined for inducing cellular damage, where the extent and depth of damage to the tissues was correlated to the exposure duration. The results may be interpreted as a damage front, advancing slowly from the outer cells inward, presumably in association with the slow replacement of the perforated cell contents with the surrounding water. This study illustrates that a controlled level of microdamage may be induced to the outer layers of the tissues.

  2. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells.

    Science.gov (United States)

    Prasetyo, R Heru; Hestianah, Eka Pramyrtha

    2017-06-01

    This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v) honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1) expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Honey can improve the liver tissue based on: (1) Mobilization of endogenous stem cells (CD34 and CD45); (2) Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3) regeneration histologically of liver tissue.

  3. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, G.; Foltán, R.; Burian, M.; Horká, E.; Adámek, S.; Hejčl, Aleš; Hanzelka, T.; Šedý, Jiří

    2011-01-01

    Roč. 40, č. 8 (2011), s. 840-844 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : piezosurgery * brain * tissue damage Subject RIV: FJ - Surgery incl. Transplants; FH - Neurology (UEM-P) Impact factor: 1.506, year: 2011

  4. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  5. Bisphenol A induces oxidative stress and DNA damage in hepatic tissue of female rat offspring

    Directory of Open Access Journals (Sweden)

    Jehane I. Eid

    2015-08-01

    Full Text Available Bisphenol A (BPA is an endocrine disrupting compound widely spread in our living environment. It is a contaminant with increasing exposure to it and exerts both toxic and estrogenic effects on mammalian cells. Due to the limited information concerning the effect of BPA on the liver, the present study was designed to assess hepatic tissue injury induced by early life exposure to BPA in female rat offspring. Rat dams (n = 9 were gavaged with 0.5 and 50 mg of BPA/kg b.w./day throughout lactation until weaning. The sham group received olive oil for the same duration while the control group did not receive any injection. The liver tissue was collected from female pups at different pubertal periods (PND50, 90 and 110 to evaluate oxidative stress biomarkers, extent of DNA damage and histopathological changes. Our results indicated that early life exposure to BPA significantly increased oxidative/nitrosative stress, decreased antioxidant enzyme activities, induced DNA damage and chronic severe inflammation in the hepatic tissue in a time dependent manner. These data suggested that BPA causes long-term adverse effects on the liver, which leads to deleterious effects in the liver of female rat offspring.

  6. Leaf hairs of Olea europaea protect underlying tissues against ultraviolet-B radiation damage

    International Nuclear Information System (INIS)

    Karabourniotis, G.; Kyparissis, A.; Manetas, Y.

    1993-01-01

    The photochemical efficiency of photosystem II, as measured by chlorophyll fluorescence induction, was not affected in de-haired olive leaves kept in the dark or intact leaves irradiated with a moderate (3.75 W m-2) ultraviolet-B (UV-B) intensity. In de-haired, UV-B-irradiated leaves, however, the ratio of variable to maximum (F(v)/F(m)) chlorophyll fluorescence declined significantly and irreversibly. Reduction in F(v)/V(m) was associated with an increase in instantaneous and a decrease in maximum (F(m)) fluorescence, indicating perturbation by the UV-B exposure of more than one photosynthetic site. Extensive epidermal browning in de-haired, UV-B irradiated leaves was also observed, indicating possible damage to cell membranes. The results strengthen the hypothesis that leaf hairs protect the underlying tissues against UV-B radiation damage

  7. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells

    Directory of Open Access Journals (Sweden)

    R. Heru Prasetyo

    2017-06-01

    Full Text Available Aim: This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Materials and Methods: Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1 expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. Results: There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Conclusion: Honey can improve the liver tissue based on: (1 Mobilization of endogenous stem cells (CD34 and CD45; (2 Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3 regeneration histologically of liver tissue.

  8. Tissue Damage Caused by Myeloablative, but Not Non-Myeloablative, Conditioning before Allogeneic Stem Cell Transplantation Results in Dermal Macrophage Recruitment without Active T-Cell Interaction

    Directory of Open Access Journals (Sweden)

    Peter van Balen

    2018-02-01

    Full Text Available IntroductionConditioning regimens preceding allogeneic stem cell transplantation (alloSCT can cause tissue damage and acceleration of the development of graft-versus-host disease (GVHD. T-cell-depleted alloSCT with postponed donor lymphocyte infusion (DLI may reduce GVHD, because tissue injury can be restored at the time of DLI. In this study, we investigated the presence of tissue injury and inflammation in skin during the period of hematologic recovery and immune reconstitution after alloSCT.MethodsSkin biopsies were immunohistochemically stained for HLA class II, CD1a, CD11c, CD40, CD54, CD68, CD86, CD206, CD3, and CD8. HLA class II-expressing cells were characterized as activated T-cells, antigen-presenting cells (APCs, or tissue repairing macrophages. In sex-mismatched patient and donor couples, origin of cells was determined by multiplex analysis combining XY-FISH and fluorescent immunohistochemistry.ResultsNo inflammatory environment due to pretransplant conditioning was detected at the time of alloSCT, irrespective of the conditioning regimen. An increase in HLA class II-positive macrophages and CD3 T-cells was observed 12–24 weeks after myeloablative alloSCT, but these macrophages did not show signs of interaction with the co-localized T-cells. In contrast, during GVHD, an increase in HLA class II-expressing cells coinciding with T-cell interaction was observed, resulting in an overt inflammatory reaction with the presence of activated APC, activated donor T-cells, and localized upregulation of HLA class II expression on epidermal cells. In the absence of GVHD, patient derived macrophages were gradually replaced by donor-derived macrophages although patient-derived macrophages were detectable even 24 weeks after alloSCT.ConclusionConditioning regimens cause tissue damage in the skin, but this does not result in a local increase of activated APC. In contrast to the inflamed situation in GVHD, when interaction takes place between

  9. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    Science.gov (United States)

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  10. Radiation-induced DNA damage in tumors and normal tissues. II. Influence of dose, residual DNA damage and physiological factors in oxygenated cells

    International Nuclear Information System (INIS)

    Zhang, H.; Wheeler, K.T.

    1994-01-01

    Detection and quantification of hypoxic cells in solid tumors is important for many experimental and clinical situations. Several laboratories, including ours, have suggested that assays which measure radiation-induced DNA strand breaks and DNA-protein crosslinks (DPCs) might be used to detect or quantify hypoxic cells in tumors and normal tissues. Recently, we demonstrated the feasibility of using an alkaline elution assay that measures strand breaks and DPCs to detect and/or quantify hypoxic cells in tissues. For this approach to be valid, DPCs must not be formed to any great extent in irradiated oxygenated cells, and the formation and repair of strand breaks and DPCs in oxygenated cells must not be modified appreciably by physiological factors (e.g., temperature, pH and nutrient depletion) that are often found in solid tumors. To address these issues, two sets of experiments were performed. In one set of experiments, oxygenated 9L cells in tissue culture, subcutaneous 9L tumors and rat cerebella were irradiated with doses of 15 or 50 Gy and allowed to repair until the residual strand break damage was low enough to detect DPCs. In another set of experiments, oxygenated exponentially growing or plateau-phase 9L cells in tissue culture were irradiated with a dose of 15 Gy at 37 or 20 degrees C, while the cells were maintained at a pH of either 6.6 or 7.3. DNA-protein crosslinks were formed in oxygenated cells about 100 times less efficiently than in hypoxic cells. In addition, temperature, pH, nutrient depletion and growth phase did not appreciably alter the formation and repair of strand breaks or the formation of DPCs in oxygenated 9L cells. These results support the use of this DNA damage assay for the detection and quantification of hypoxic cells in solid tumors. 27 refs., 5 tabs

  11. Radiation damages in solids and tissues

    International Nuclear Information System (INIS)

    Cevc, P.; Kogovsek, F.; Kanduser, A.; Peternelj, M.; Skaleric, U.; Funduk, N.

    1977-01-01

    In submitted research work we have studied radiation damages in ferroelectric crystals and application of ferroelectric crystals. Studying the radiation damages we have introduced new technique of EPR measurements under high hydrostatic pressure, that will enable us to obtain additional data on crystal lattice dynamics. A change of piroelectric coefficient with high radiation doses in dopped TGS has been measured also

  12. Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha.

    Science.gov (United States)

    Wu, Shan; Ren, Jun

    2006-02-13

    Diabetes mellitus leads to thiamine deficiency and multiple organ damage including diabetic neuropathy. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cerebral oxidative stress. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg, i.p.). Fourteen days later, control and diabetic (fasting blood glucose >13.9 mM) mice received benfotiamine (100 mg/kg/day, i.p.) for 14 days. Oxidative stress and protein damage were evaluated by glutathione/glutathione disulfide (GSH/GSSG) assay and protein carbonyl formation, respectively. Pro-oxidative or pro-inflammatory factors including advanced glycation end-product (AGE), tissue factor and tumor necrosis factor-alpha (TNF-alpha) were evaluated by immunoblot analysis. Four weeks STZ treatment led to hyperglycemia, enhanced cerebral oxidative stress (reduced GSH/GSSG ratio), elevated TNF-alpha and AGE levels without changes in protein carbonyl or tissue factor. Benfotiamine alleviated diabetes-induced cerebral oxidative stress without affecting levels of AGE, protein carbonyl, tissue factor and TNF-alpha. Collectively, our results indicated benfotiamine may antagonize diabetes-induced cerebral oxidative stress through a mechanism unrelated to AGE, tissue factor and TNF-alpha.

  13. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    Science.gov (United States)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina

  14. Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis.

    Directory of Open Access Journals (Sweden)

    Cristina Herrera

    2016-04-01

    Full Text Available The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM and other extracellular matrix (ECM proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.

  15. Can cell survival parameters be deduced from non-clonogenic assays of radiation damage to normal tissue

    International Nuclear Information System (INIS)

    Michalowski, A.; Wheldon, T.E.; Kirk, J.

    1984-01-01

    The relationship between dose-response curves for large scale radiation injury to tissues and survival curves for clonogenic cells is not necessarily simple. Sterilization of clonogenic cells occurs near-instantaneously compared with the protracted lag period for gross injury to tissues. Moreover, with some types of macroscopic damage, the shapes of the dose-response curves may depend on time of assay. Changes in the area or volume of irradiated tissue may also influence the shapes of these curves. The temporal pattern of expression of large scale injury also varies between tissues, and two distinct groups can be recognized. In rapidly proliferating tissues, lag period is almost independent of dose, whilst in slowly proliferating tissues, it is inversely proportional to dose. This might be explained by invoking differences in corresponding proliferative structures of the tissues. (Three compartmental Type H versus one compartmental Type F proliferative organization). For the second group of tissues particularly, mathematical modelling suggests a systematic dissociation of the dose-response curves for clonogenic cell survival and large scale injury. In particular, it may be difficult to disentangle the contributions made to inter-fraction sparing by cellular repair processes and by proliferation-related factors. (U.K.)

  16. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins

    DEFF Research Database (Denmark)

    Weber, Daniela; Davies, Michael J.; Grune, Tilman

    2015-01-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple...

  17. Modulation of radiation induced DNA damage by natural products in hemopoietic tissue of mice

    International Nuclear Information System (INIS)

    Jayakumar, S.; Bhilwade, H.N.; Chaubey, R.C.

    2014-01-01

    Ionizing radiation is known to induce oxidative stress through generation of ROS leading to a variety of DNA lesions. However, the most dangerous DNA lesions which are responsible for the origin of lethal effects, mutagenesis, genomic instability and carcinogenesis are the DSBs. During recent years efforts are being made to identify phytochemicals, antioxidants or neutraxeuticals which can reduce harmful effect of radiation during accidental exposure or prevent normal tissue injury during radiotherapy. In the present study, we have investigated the radioprotective role of curcumin, a dietary antioxidant, taurine, malabaricone-C, and umbelliferone, for their radioprotective properties in hemopoietic cells of mice. Groups of mice-were fed 1% of curcumin in diet for three weeks. Similarly other groups of mice were injected i.p. with 50 mg/kg body weight of taurine for five consecutive days. After the completion of the treatment mice pre-treated with curcumin and taurine were exposed to 3 Gy of gamma rays. Malabaricone-C was tested for its radiomodulation potential in vitro, in spleenocytes of mouse. Spleenocytes were isolated and treated with different concentrations (0.5-25 ìM) of malabaricone-C. Immediately after irradiation, alkaline comet assay were performed using standard procedures. Twenty four post radiation exposure mice were sacrificed for micronucleus test. Results of these studies showed significant reduction in DNA damage by curcumin. The micronucleus data showed marginal increase in the frequency of micronucleated erythrocytes in curcumin fed group as compared to the controls. Mice receiving curcumin for 3 weeks in diet followed by gamma radiation (3 Gy), showed approximately 50% reduction in the frequency of micro nucleated polychromatic erythrocytes. Pre-treatment of mice with taurine significantly (p < 0.01) reduced the frequency of gamma rays induced mn-PCEs in bone marrow tissue. Malabaricone-C at 1.5 ìM concentration showed very good protection

  18. Importance of the neutron spectrum for determination of radiation damage

    International Nuclear Information System (INIS)

    Hehn, G.; Stiller, P.; Mattes, M.

    1977-01-01

    Since the radiation effects of neutrons depend strongly on the neutron energy, the correlation between the induced damage and the fluence of the fast neutrons shows appreciable disadvantages. The measured values of changes in material properties resulted in large differences for the same fast neutron fluence, being partly due to different neutron spectra. The uncertainties in damage data led to strong overdesign of important structural components. Different neutron environment at surveillance sample position may give an underestimation of the embrittlement in the reactor pressure vessel, which has to be avoided. The application of damage functions combined with accurately calculated neutron spectra, promise to be a reasonable solution. The damage function has the advantage of a phenomenological quantity that all spectral effects are included. But the correlation quantity has to be determined of high experimental costs. Therefore approximations of its energy distributions are very important. For the keV energy region the kerma function is reasonably good. For the MeV energy region a higher effort is needed to calculate the displacement cross section. The same holds for the low energy part. In all three parts the formation of stable material property levels may vary, so that the final correlation can be determined only by measurements of material properties in different neutron spectra. In material samples the spectra distribution of the displacement production rate was determined at different local positions outside the reactor core of a PWR and a fast breeder showing the most important energy regions of both reactors. (orig.) [de

  19. Genipin crosslinker releasing sutures for improving the mechanical/repair strength of damaged connective tissue.

    Science.gov (United States)

    Sundararaj, Sharath; Slusarewicz, Paul; Brown, Matt; Hedman, Thomas

    2017-11-01

    The most common mode of surgical repair of ruptured tendons and ligaments involves the use of sutures for reattachment. However, there is a high incidence of rerupture and repair failure due to pulling out of the suture material from the damaged connective tissue. The main goal of this research was to achieve a localized delivery of crosslinking agent genipin (GP) from rapid-release biodegradable coatings on sutures, for strengthening the repair of ruptured connective tissue. Our hypothesis is that GP released from the suture coating will lead to exogenous crosslinking of native connective tissue resulting in beneficial effects on clinically relevant mechanical parameters such as tear resistance, tissue strength, and energy required to rupture the tissue (toughness). Sutures were successfully coated with a biodegradable polymer layer loaded with the crosslinking agent genipin, without compromising the mechanical properties of the suture. The rapid-release of genipin was achieved under both in vitro and ex vivo conditions. Exogenous crosslinking using these genipin releasing sutures was demonstrated using equine tendons. The tendons treated with genipin releasing sutures showed significant improvement in failure load, energy required for pull-out failure, and stiffness. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2199-2205, 2017. © 2016 Wiley Periodicals, Inc.

  20. Modification by cystamine of radiation-induced free radical damages to biomolecules in tissues of mouse organs

    International Nuclear Information System (INIS)

    Svistunenko, D.A.; Gudtsova, K.V.

    1989-01-01

    The method of low-temperature ESR-spectroscopy was used to study a modifying effect of cystamine on the yield of radiation-induced free radicals in different biomolecules of liver and spleen tissues of mice. Intraperitoneal administration of cystamine (150 mg/kg) 15 min before isolation and freezing of the tissues was shown to reduce by 11 per cent the yield of radicals of H-adducts of thymine DNA bases, to decrease by 23 per cent the yield of radicals of triacyglycerol and phospholipid radiolysis, and to increase by 24 per cent the yield of radicals of lipid fatty acid residues in splenic tissues. According to the criterion used, cystamine has no modyfying action on the yield of free-radical damages to liver biomolecules

  1. Comparison of single, fractionated and hyperfractionated irradiation on the development of normal tissue damage in rat lung

    International Nuclear Information System (INIS)

    Giri, P.G.S.; Kimler, B.F.; Giri, U.P.; Cox, G.G.; Reddy, E.K.

    1985-01-01

    The effect of fractionated thoracic irradiation on the development of normal tissue damage in rats was compared to that produced by single doses. Animals received a single dose of 15 Gy, 30 Gy in 10 daily fractions of 3 Gy each (fractionation), or 30 Gy in 30 fractions of 1 Gy each 3 times a day (hyperfractionation). The treatments produced minimal lethality since a total of only 6 animals died between days 273 and 475 after the initiation of treatment, with no difference in survival observed between the control and any of the 3 treated groups. Despite the lack of lethality, evidence of lung damage was obtained by histological examination. Animals that had received either single doses or fractionated doses had more of the pulmonary parenchyma involved than did animals that had received hyperfractionated doses. The authors conclude that, in the rat lung model, a total radiation dose of 30 Gy fractionated over 14 days produces no more lethality nor damage to lung tissue than does 15 Gy delivered as a single dose. However, long-term effects as evidenced by deposits of collagen and development of fibrosis are significantly reduced by hyperfractionation when compared to single doses and daily fractionation

  2. Determination of the tissue-to-blood partition coefficient for 131iodo-antipyrine in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Jelnes, R; Astrup, A

    1985-01-01

    131Iodo-antipyrine (131I-AP) is commonly used for blood flow measurements in adipose tissue. These estimations have been based on the assumption of the tissue-to-blood partition coefficient being 1 ml g-1. No exact determination of the tissue-to-blood partition coefficient for 131I-AP in adipose...... tissue has been carried out. In the present study a partition coefficient of 1.12 +/- 0.06 (mean +/- S.D.) for 131I-AP in adipose tissue has been determined based on the partition coefficient for 131I-AP between lipid-saline (1.24 ml g-1), red blood cells-plasma (0.64 ml g-1), protein-saline (0.19 ml g-1...

  3. [Connective tissue and inflammation].

    Science.gov (United States)

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  4. Protective effect of hydroalcoholic extract of tribulus terrestris on Cisplatin induced renal tissue damage in male mice.

    Science.gov (United States)

    Raoofi, Amir; Khazaei, Mozafar; Ghanbari, Ali

    2015-01-01

    According beneficial effects of Tribulus terrestris (TT) extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS) (EBEWE Pharma, Unterach, Austria) induced renal tissue damage in male mice. Thirty mice were divided into five groups (n = 6). The first group (control) was treated with normal saline (0.9% NaCl) and experimental groups with CIS (E1), CIS + 100 mg/kg extract of TT (E2), CIS + 300 mg/kg extract of TT (E3), CIS + 500 mg/kg extract of TT (E4) intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. The data were analyzed using one-way analysis of variance followed by Tukey's post-hoc test, paired-sample t-test, Kruskal-Wallis and Mann-Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman's capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice.

  5. Photothermal effects of laser tissue soldering

    International Nuclear Information System (INIS)

    McNally, K.M.; Sorg, B.S.; Welch, A.J.; Dawes, J.M.; Owen, E.R.

    1999-01-01

    Low-strength anastomoses and thermal damage of tissue are major concerns in laser tissue welding techniques where laser energy is used to induce thermal changes in the molecular structure of the tissues being joined, hence allowing them to bond together. Laser tissue soldering, on the other hand, is a bonding technique in which a protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. The addition of protein solders to augment tissue repair procedures significantly reduces the problems of low strength and thermal damage associated with laser tissue welding techniques. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. An in vitro study was performed using an 808 nm diode laser in conjunction with indocyanine green (ICG)-doped albumin protein solders to repair bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The efficacy of temperature feedback control in enhancing the soldering process was also investigated. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the repairs. A reduction in dye concentration from 2.5mgml -1 to 0.25mgml -1 was also found to result in an increase in tensile strength. Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. The strongest repairs were produced with an irradiance of 6.4Wcm -2 using a solid protein solder composed of 60% BSA and 0.25mgml -1 ICG. Using this combination of laser and solder parameters, surface temperatures were observed to reach 85±5 deg. C with a

  6. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.

    Science.gov (United States)

    Calo, Eliezer; Gu, Bo; Bowen, Margot E; Aryan, Fardin; Zalc, Antoine; Liang, Jialiang; Flynn, Ryan A; Swigut, Tomek; Chang, Howard Y; Attardi, Laura D; Wysocka, Joanna

    2018-02-01

    Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and

  7. Gefarnate stimulates mucin-like glycoprotein secretion in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models

    Directory of Open Access Journals (Sweden)

    Dota A

    2013-01-01

    Full Text Available Atsuyoshi Dota, Yuko Takaoka-Shichijo, Masatsugu NakamuraOphthalmic Research and Development Center, Santen Pharmaceutical Co, Ltd, Ikoma-shi, Nara, JapanPurpose: The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models.Methods: Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model.Results: Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score.Conclusion: These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye.Keywords: gefarnate, fluorescein staining, rose bengal permeability, rabbit, cat, dry eye

  8. Improvement of oxygen supply by an artificial carrier in combination with normobaric oxygenation decreases the volume of tissue hypoxia and tissue damage from transient focal cerebral ischemia

    NARCIS (Netherlands)

    Seiffge, David J.; Lapina, Natalia E.; Tsagogiorgas, Charalambos; Theisinger, Bastian; Henning, Robert H.; Schilling, Lothar

    Tissue hypoxia may play an important role in the development of ischemic brain damage. In the present study we investigated in a rat model of transient focal brain ischemia the neuroprotective effects of increasing the blood oxygen transport capacity by applying a semifluorinated alkane

  9. Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint.

    LENUS (Irish Health Repository)

    Biniecka, Monika

    2012-02-01

    OBJECTIVES: To assess levels of oxidative DNA damage (8-oxo-7,8-dihydro-2\\'-deoxyguanine; 8-oxo-dG) and lipid peroxidation (4-hydroxy-2-nonenal; 4-HNE) in serum, synovial fluid and tissue of patients with inflammatory arthritis in relation to in vivo hypoxia levels, disease activity and angiogenic markers. METHODS: Oxygen levels in synovial tissue were assessed using an oxygen\\/temperature probe. Nuclear and cytoplasmic 8-oxo-dG and 4-HNE levels were assessed in synovial tissue from 23 patients by immunohistochemistry. 8-Oxo-dG and 4-HNE levels in serum and synovial fluid were determined using 8-oxo-dG and hexanoyl-Lys (HEL) adduct ELISAs, respectively. Serum vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) levels were also measured by ELISA. RESULTS: The median oxygen tension in synovial tissue was profoundly hypoxic at 19.35 mm Hg (2.5%). Nuclear 8-oxo-dG levels were significantly higher than nuclear 4-HNE levels in the lining and sublining layers (all p<0.001). In contrast, cytoplasmic 4-HNE levels were higher than cytoplasmic 8-oxo-dG levels in both cell layers (all p<0.001). Reduced in vivo oxygen tension correlated with high lipid peroxidation in synovial fluid (p=0.027; r=0.54) and tissue (p=0.004; r=0.58). Serum VEGF levels were positively correlated with cytoplasmic 4-HNE expression (p=0.05; r=0.43) and intensity (p=0.006; r=0.59) in the lining layer. Serum Ang2 levels were positively correlated with nuclear 4-HNE expression and intensity in both cell layers (all p < or = 0.05). DAS28-C-reactive protein was correlated with nuclear 4-HNE expression in the sublining layer (p=0.02; r=0.48) and DAS28-erythrocyte sedimentation rate was correlated with nuclear 4-HNE expression in both cell layers (p < or = 0.03). CONCLUSIONS: Lipid peroxidation is associated with low oxygen tension in vivo, disease activity and angiogenic marker expression in inflammatory arthritis.

  10. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage

    Science.gov (United States)

    Lokhandwalla, Murtuza; Sturtevant, Bradford

    2000-07-01

    Focused shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) cause stone fragmentation. The process of stone fragmentation is described in terms of a dynamic fracture process. As is characteristic of all brittle materials, fragmentation requires nucleation, growth and coalescence of flaws, caused by a tensile or shear stress. The mechanisms, operative in the stone, inducing these stresses have been identified as spall and compression-induced tensile microcracks, nucleating at pre-existing flaws. These mechanisms are driven by the lithotripter-generated shock wave and possibly also by cavitation effects in the surrounding fluid. In this paper, the spall mechanism has been analysed, using a cohesive-zone model for the material. The influence of shock wave parameters, and physical properties of stone, on stone comminution is described. The analysis suggests a potential means to exploit the difference between the stone and tissue physical properties, so as to make stone comminution more effective, without increasing tissue damage.

  11. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats.

    Science.gov (United States)

    Baghcheghi, Yousef; Beheshti, Farimah; Shafei, Mohammad Naser; Salmani, Hossein; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Anaeigoudari, Akbar; Hosseini, Mahmoud

    2018-06-01

    The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P E (P E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.

  12. Milk phospholipid's protective effects against UV damage in skin equivalent models

    Science.gov (United States)

    Dargitz, Carl; Russell, Ashley; Bingham, Michael; Achay, Zyra; Jimenez-Flores, Rafael; Laiho, Lily H.

    2012-03-01

    Exposure of skin tissue to UV radiation has been shown to cause DNA photodamage. If this damaged DNA is allowed to replicate, carcinogenesis may occur. DNA damage is prevented from being passed on to daughter cells by upregulation of the protein p21. p21 halts the cells cycle allowing the cell to undergo apoptosis, or repair its DNA before replication. Previous work suggested that milk phospholipids may possess protective properties against UV damage. In this study, we observed cell morphology, cell apoptosis, and p21 expression in tissue engineered epidermis through the use of Hematoxylin and Eosin staining, confocal microscopy, and western blot respectively. Tissues were divided into four treatment groups including: a control group with no UV and no milk phospholipid treatment, a group exposed to UV alone, a group incubated with milk phospholipids alone, and a group treated with milk phospholipids and UV. All groups were incubated for twenty-four hours after treatment. Tissues were then fixed, processed, and embedded in paraffin. Performing western blots resulted in visible p21 bands for the UV group only, implying that in every other group, p21 expression was lesser. Numbers of apoptotic cells were determined by observing the tissues treated with Hoechst dye under a confocal microscope, and counting the number of apoptotic and total cells to obtain a percentage of apoptotic cells. We found a decrease in apoptotic cells in tissues treated with milk phospholipids and UV compared to tissues exposed to UV alone. Collectively, these results suggest that milk phospholipids protect cell DNA from damage incurred from UV light.

  13. Chemical determination of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, M

    1991-01-01

    Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.

  14. Progressive damage to rat skin induced by protons

    International Nuclear Information System (INIS)

    Molinari, Beatriz L.; Saint-Martin, Maria L.G.; Bernaola, Omar A.; Duran, Hebe; Policastro, Lucia L.; O'Connor, Silvia E.; Palmieri, Monica; Davidson, Miguel; Davidson, Jorge

    2003-01-01

    Wistar rats were locally irradiated with proton beams. Dorsal portions of the skin were irradiated to a dose of 20 Gy employing a plastic wedge as a variable thickness energy degrader. The animals were sacrificed 2,5,6,7,and 9 days post-irradiation. The doses were monitored with a transmission camera. Solid track detectors (Makrofold E) were placed on the area to be irradiated to determine spatial correlation with the dose. Tissue reactions were clearly observed and were quantitatively assessed as a function of dose. Track detectors proved to be valuable to determine the correlation between the dose and tissue damage . This biological experimental model proved useful to analyze the response of tissues to a gradient of doses yielded by a proton beam. (author)

  15. Protective effect of hydroalcoholic extract of tribulus terrestris on cisplatin induced renal tissue damage in male mice

    Directory of Open Access Journals (Sweden)

    Amir Raoofi

    2015-01-01

    Full Text Available Background: According beneficial effects of Tribulus terrestris (TT extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS (EBEWE Pharma, Unterach, Austria induced renal tissue damage in male mice. Methods: Thirty mice were divided into five groups (n = 6. The first group (control was treated with normal saline (0.9% NaCl and experimental groups with CIS (E1, CIS + 100 mg/kg extract of TT (E2, CIS + 300 mg/kg extract of TT (E3, CIS + 500 mg/kg extract of TT (E4 intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. Results: The data were analyzed using one-way analysis of variance followed by Tukey′s post-hoc test, paired-sample t-test, Kruskal-Wallis and Mann-Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman′s capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. Conclusions: The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice.

  16. Protective Effect of Hydroalcoholic Extract of Tribulus Terrestris on Cisplatin Induced Renal Tissue Damage in Male Mice

    Science.gov (United States)

    Raoofi, Amir; Khazaei, Mozafar; Ghanbari, Ali

    2015-01-01

    Background: According beneficial effects of Tribulus terrestris (TT) extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS) (EBEWE Pharma, Unterach, Austria) induced renal tissue damage in male mice. Methods: Thirty mice were divided into five groups (n = 6). The first group (control) was treated with normal saline (0.9% NaCl) and experimental groups with CIS (E1), CIS + 100 mg/kg extract of TT (E2), CIS + 300 mg/kg extract of TT (E3), CIS + 500 mg/kg extract of TT (E4) intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. Results: The data were analyzed using one-way analysis of variance followed by Tukey's post-hoc test, paired-sample t-test, Kruskal–Wallis and Mann–Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman's capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. Conclusions: The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice. PMID:25789143

  17. MRI in diagnostic of soft tissue damages by fractures of lateral tibial plate

    International Nuclear Information System (INIS)

    Dimitrova, D.; Proichev, V.; Popov, I.

    2015-01-01

    Full text: The knee is one of the most often injured joint. Fractures of tibial condyles are the most common articular damages. Koton and Berg call them „bumper“ fractures the tibia plateau is vulnerable to both high- and low-energy injury mechanisms due to its vulnerable position in the lower extremity. It must bear significant weight and sustain significant impact and deceleration forces with little skeletal constraint, and has scant surrounding soft tissue and a tethered medial and lateral integument. Furthermore, the tibial plateau has relatively forgiving ligamentous attachments that must allow for a large range of motion in a single plane. Not surprisingly, given the diversity of injury, management of these fractures has come to include a wide variety of treatment strategies. traditionally, ligament injury associated with plateau fractures has been diagnosed indirectly with stress radiographs and physical examination. With increasing use of more sensitive MRI and arthroscopy, associated ligament and meniscus injuries have been found in significant percentages of plateau fractures. these soft tissue injuries consist primarily of MCL lesions, meniscal injuries, and ACL disruptions. However, studies addressing associated soft tissue injuries all agree that neither the type of plateau fracture nor the presence or absence of ligament injury correlates with the incidence of meniscal tears

  18. Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration

    Science.gov (United States)

    Torres, Samantha M.; Schreurs, Ann-Sofie; Truong, Tiffany A.; Tahimic, Candice; Globus, Ruth

    2017-01-01

    Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.

  19. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    OpenAIRE

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues a...

  20. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  1. Antibodies trap tissue migrating helminth larvae and prevent tissue damage by driving IL-4Rα-independent alternative differentiation of macrophages.

    Directory of Open Access Journals (Sweden)

    Julia Esser-von Bieren

    Full Text Available Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα, but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp. Mice lacking antibodies (JH (-/- or activating Fc receptors (FcRγ(-/- harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.

  2. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    Science.gov (United States)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  3. A Voting TOPSIS Approach for Determining the Priorities of Areas Damaged in Disasters

    Directory of Open Access Journals (Sweden)

    Yanjin He

    2018-05-01

    Full Text Available In this paper, we investigate the priority determination problem for areas that have been damaged during disasters. Relief distribution should be planned while considering the priorities of the damaged areas. To determine the priorities of the damaged areas, we first define four criteria and then propose a voting TOPSIS (technique for order of preference by similarity to ideal solution that utilizes the fuzzy pair-wise comparison, data envelopment analysis, and TOPSIS. Since the voting TOPSIS is based on the voting results of multiple experts, it can be applied to urgent situations quickly, regardless of the consistency of comparison, the number of alternatives, and the number of participating experts. The proposed approach is validated using a real-world case, and this case analysis shows that the voting TOPSIS is viable.

  4. Determination of americium and plutonium in autopsy tissue: methods and problems

    International Nuclear Information System (INIS)

    Boyd, H.A.; Eutsler, B.C.; McInroy, J.F.

    1979-01-01

    The current methods used by the tissue analysis program at LASL for the determination of americium and plutonium in autopsy tissue are described. Problems affecting radiochemical yield are discussed. Included are problems associated with sample preparation, separation of plutonium from large amounts of bone ash, and reagent contamination. The average 242 Pu tracer yield for 1800 Pu determinations is 78 +- 12%. The average 242 Am tracer yield is 85 +- 7% for 40 determinations

  5. Quantitative and qualitative determination of enrofloxacin residues in fish tissues

    OpenAIRE

    Đorđević Vesna; Baltić M.; Ćirković M.; Kilibarda Nataša; Glamočlija Nataša; Stefanović S.; Miščević Mirjana

    2009-01-01

    Presence of enrofloxacin residues in fish liver, kidney and muscle tissue was investigated after per os application of the drug. For the purpose of determination of enrofloxacin, the following analytical methods were used: microbiological method - plate pH 8 with Escherichia coli ATCC 11303 and HPLC method with fluorescence detection. After a 5-day oral treatment of carps, enrofloxacin residues in tissues were determined up to the 10th day after the end of the drug application. Enrofloxacin c...

  6. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage.

    Directory of Open Access Journals (Sweden)

    Jae-Yol Lim

    Full Text Available OBJECTIVES: Cell-based therapy has been reported to repair or restore damaged salivary gland (SG tissue after irradiation. This study was aimed at determining whether systemic administration of human adipose-derived mesenchymal stem cells (hAdMSCs can ameliorate radiation-induced SG damage. METHODS: hAdMSCs (1 × 10(6 were administered through a tail vein of C3H mice immediately after local irradiation, and then this infusion was repeated once a week for 3 consecutive weeks. At 12 weeks after irradiation, functional evaluations were conducted by measuring salivary flow rates (SFRs and salivation lag times, and histopathologic and immunofluorescence histochemistry studies were performed to assay microstructural changes, apoptosis, and proliferation indices. The engraftment and in vivo differentiation of infused hAdMSCs were also investigated, and the transdifferentiation of hAdMSCs into amylase-producing SG epithelial cells (SGCs was observed in vitro using a co-culture system. RESULTS: The systemic administration of hAdMSCs exhibited improved SFRs at 12 weeks after irradiation. hAdMSC-transplanted SGs showed fewer damaged and atrophied acinar cells and higher mucin and amylase production levels than untreated irradiated SGs. Immunofluorescence TUNEL assays revealed fewer apoptotic cells in the hAdMSC group than in the untreated group. Infused hAdMSCs were detected in transplanted SGs at 4 weeks after irradiation and some cells were found to have differentiated into SGCs. In vitro, a low number of co-cultured hAdMSCs (13%-18% were observed to transdifferentiate into SGCs. CONCLUSION: The findings of this study indicate that hAdMSCs have the potential to protect against irradiation-induced cell loss and to transdifferentiate into SGCs, and suggest that hAdMSC administration should be viewed as a candidate therapy for the treatment of radiation-induced SG damage.

  7. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  8. DNA damage in plant herbarium tissue.

    NARCIS (Netherlands)

    Staats, M.; Cuenca, A.; Richardson, J.E.; Ginkel, R.V.; Petersen, G.; Seberg, O.; Bakker, F.T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of

  9. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    Science.gov (United States)

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  10. Renal deterioration caused by carcinogens as a consequence of free radical mediated tissue damage: a review of the protective action of melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, Fatih; Hicyilmaz, Hicran [Suleyman Demirel University, School of Medicine, Department of Biochemistry, Isparta (Turkey)

    2007-10-15

    This brief review summarizes some of the publications that document the preventive role of melatonin in kidney damage caused by carcinogens such as 2-nitropropane, arsenic, carbon tetrachloride, nitrilotriacetic acid and potassium bromate. Numerous chemicals generate excessive free radicals that eventually induce renal worsening. Melatonin partially or totally prevents free radical mediated tissue damages induced by many carcinogens. Protective actions of melatonin against the harmful effects of carcinogens are believed to stem from its direct free radical scavenging and indirect antioxidant activities. Dietary or pharmacologically given melatonin may attenuate the oxidative stress, thereby mitigating the subsequent renal damage. (orig.)

  11. Extensive tissue damage of bovine ovaries after bipolar ovarian drilling compared to monopolar electrocoagulation or carbon dioxide laser.

    Science.gov (United States)

    Hendriks, Marja-Liisa; van der Valk, Paul; Lambalk, Cornelis B; Broeckaert, Mark A M; Homburg, Roy; Hompes, Peter G A

    2010-02-01

    To evaluate the size of ovarian damage caused by ovarian drilling in polycystic ovary syndrome, the amount of inflicted damage was assessed for the most frequently used ovarian drilling techniques. Experimental prospective design. University clinic. Six fresh bovine ovaries per technique. Carbon dioxide (CO(2)) laser, monopolar electrocoagulation, and bipolar electrocoagulation were used for in vitro ovarian drilling. Amount of inflicted ovarian damage per procedure. Bipolar electrocoagulation resulted in significantly more destruction per burn than the CO(2) laser and monopolar electrocoagulation (287.6 versus 24.0 and 70.0 mm(3), respectively). The damage found per lesion was multiplied by the regularly applied number of punctures per procedure in daily practice (based on the literature). Again, the bipolar electrocoagulation resulted in significantly more tissue damage than the CO(2) laser and monopolar coagulation (2,876 versus 599 and 700 mm(3), respectively). Ovarian drilling, especially bipolar electrocoagulation, causes extensive destruction of the ovary. Given the same clinical effectiveness of the various procedures, it is essential to use the lowest possible dose that works; thus, the first choice should be CO(2) laser or monopolar electrocoagulation. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Use of positron emission tomography for determination of tissue specific kinetics

    International Nuclear Information System (INIS)

    Miller, L.F.; Kabalka, G.; Khan, M.; Rahim, A.; Wyatt, M.; Thie, J.; Apostoaei, I.; Nichols, T.; Smith, G.

    2000-01-01

    Dynamic PET scans from several patients with GBM are analyzed to determine the biokinetic characteristics of various tissue types. Time-dependent responses are extracted from several regions of interest (ROIs), and these time-dependent data sets are analyzed to obtain biokinetic information from normal brain tissue, from various regions of tumors, and from areas that represent concentration in blood. Uptake rates, time constants, and other biokinetic data are obtained. It is noted that rates of uptake in tumor regions are approximately twice as fast as in normal tissue and that two rates of uptake are clearly identified in each tissue region and in blood. This information is useful for optimization of BNCT treatment protocols and for determining rate constants that can be related to cellular-level distributions of pharmaceuticals. (author)

  13. Enzymatic determination of photoproducts in DNA molecules damaged by UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kleibl, K; Brozmanova, J [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Ustav Experimentalnej Onkologie

    1981-01-01

    Two basic analytical procedures are described for the detection of photoproducts in UV-irradiated DNA. In the former, the selective release of thymine dimers of the cyclobutane type (TT) from the UV-irradiated DNA during excision repair can be measured by chromatographic analysis of radioactive DNA hydrolysis products. The technique allows studying TT irrespective of other products. It is only reliable for UV doses higher than 5 Jm/sup -2/. In the latter, a Micrococcus luteus extract containing specific enzymes, ie., endonucleases, for the repair of UV-induced damage of DNA is used for the enzyme determination of pyrimidine dimers. The endonucleotide analysis of DNA damage can be applied both in vitro and in vivo. In the in-vitro detection, the efficacy of photoproduct determination attains almost 100% while in the in-vivo detection it ranges between 30% and 70% in dependence on the method used. 31 references are given.

  14. Brain Tissues Oxidative Damage as a Possible Mechanism of Deleterious Effects of Propylthiouracil- Induced Hypothyroidism on Learning and Memory in Neonatal and Juvenile Growth in Rats

    Directory of Open Access Journals (Sweden)

    Esmeil Farrokhi

    2014-11-01

    randomly selected and tested in the Morris water maze (MWM. Then, samples of blood were collected to measure thyroxine. Finally, the brains were removed and total thiol groups and molondialdehyde (MDA concentrations were determined. Results: Compared to the control group’s offspring, serum thyroxine levels in the PTU group’s off spring were significantly low (P<0.001. In MWM, the escape latency and traveled path in the PTU group were significantly higher than that in the control group (P<0.01- P<0.001. In PTU group, the total thiol concentrations in both cortical and hippocampal tissues were significantly lower and MDA concentrations were higher than control group (P<0.001. Discussion: It seems that deleterious effect of hypothyroidism during neonatal and juvenile growth on learning and memory is at least in part due to brain tissues oxidative damage.

  15. Fitness consequences of cotyledon and mature-leaf damage in the ivyleaf morning glory.

    Science.gov (United States)

    Stinchcombe, John R

    2002-04-01

    To understand the evolutionary and ecological consequences of natural enemy damage to plants, it is essential to determine how the fitness effects of damage differ depending on the tissues damaged and the subsequent pattern of damage. In a field experiment with the ivyleaf morning glory, the direct and indirect effects on fitness of herbivore damage to cotyledons and mature leaves was evaluated. Damage to mature leaves had negligible direct effects on fitness and no indirect effects on fitness through other correlated traits. Damage to cotyledons also did not directly affect fitness, but did so indirectly through its effects on plant size. These findings suggest that increased resistance to cotyledon damage or increased compensatory growth following cotyledon damage could be effective strategies for plants of this species to counteract the negative effects of herbivory.

  16. In-vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin

    Science.gov (United States)

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Joshua T.; Mackanos, Mark A.; Nanney, Lillian B.; Contag, Christopher H.; Davidson, Jeffrey M.; Jansen, E. Duco

    2013-01-01

    Laser surgical ablation is achieved by selecting laser parameters that remove confined volumes of target tissue and cause minimal collateral damage. Previous studies have measured the effects of wavelength on ablation, but neglected to measure the cellular impact of ablation on cells outside the lethal zone. In this study, we use optical imaging in addition to conventional assessment techniques to evaluate lethal and sublethal collateral damage after ablative surgery with a free-electron laser (FEL). Heat shock protein (HSP) expression is used as a sensitive quantitative marker of sublethal damage in a transgenic mouse strain, with the hsp70 promoter driving luciferase and green fluorescent protein (GFP) expression (hsp70A1-L2G). To examine the wavelength dependence in the mid-IR, laser surgery is conducted on the hsp70A1-L2G mouse using wavelengths targeting water (OH stretch mode, 2.94 μm), protein (amide-II band, 6.45 μm), and both water and protein (amide-I band, 6.10 μm). For all wavelengths tested, the magnitude of hsp70 expression is dose-dependent and maximal 5 to 12 h after surgery. Tissues treated at 6.45 μm have approximately 4× higher hsp70 expression than 6.10 μm. Histology shows that under comparable fluences, tissue injury at the 2.94-μm wavelength was 2× and 3× deeper than 6.45 and 6.10 μm, respectively. The 6.10-μm wavelength generates the least amount of epidermal hyperplasia. Taken together, this data suggests that the 6.10-μm wavelength is a superior wavelength for laser ablation of skin. PMID:19021444

  17. Subepidermal moisture (SEM) and bioimpedance: a literature review of a novel method for early detection of pressure-induced tissue damage (pressure ulcers).

    Science.gov (United States)

    Moore, Zena; Patton, Declan; Rhodes, Shannon L; O'Connor, Tom

    2017-04-01

    Current detection of pressure ulcers relies on visual and tactile changes at the skin surface, but physiological changes below the skin precede surface changes and have a significant impact on tissue health. Inflammatory and apoptotic/necrotic changes in the epidermal and dermal layers of the skin, such as changes in interstitial fluid (also known as subepidermal moisture (SEM)), may precede surface changes by 3-10 days. Those same epidermal and subepidermal changes result in changes in the electrical properties (bioimpedance) of the tissue, thereby presenting an objective, non-invasive method for assessing tissue damage. Clinical studies of bioimpedance for the detection of pressure ulcers have demonstrated that changes in bioimpedance correlate with increasing severity of pressure ulcer stages. Studies have also demonstrated that at anatomical locations with pressure ulcers, bioimpedance varies with distance from the centre of the pressure ulcers. The SEM Scanner, a handheld medical device, offers an objective and reliable method for the assessment of local bioimpedance, and therefore, assessment of tissue damage before signs become visible to the unaided eye. This literature review summarises pressure ulcer pathophysiology, principles of bioimpedance and clinical research using bioimpedance technology to assess pressure ulcers. © 2016 The Authors. International Wound Journal published by Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  18. Clinical light damage to the eye

    International Nuclear Information System (INIS)

    Miller, D.

    1987-01-01

    This book contains four sections: The Nature of Light and of Light Damage to Biological Tissues; Light Damage to the Eye; Protecting the Eye from Light Damage; and Overview of Light Damage to the Eye. Some of the paper titles are: Ultraviolet-Absorbing Intraocular Lens Implants; Phototoxic Changes in the Retina; Light Damage to the Lens; and Radiation, Light, and Sight

  19. Analysis of feature stability for laser-based determination of tissue thickness

    Science.gov (United States)

    Ernst, Floris; Schweikard, Achim; Stüber, Patrick; Bruder, Ralf; Wagner, Benjamin; Wissel, Tobias

    2015-03-01

    Localisation of the cranium is necessary for accurate stereotactic radiotherapy of malign lesions in the brain. This is achieved by immobilizing the patient's head (typically by using thermoplastic masks, bite blocks or combinations thereof) and x-ray imaging to determine the actual position of the patient with respect to the treatment device. In previous work we have developed a novel method for marker-less and non-invasive tracking of the skull using a combination of laser-based surface triangulation and the analysis of backscattered feature patterns of a tightly collimated NIR laser beam scanned over the patient's forehead. An HDR camera is coupled into the beam path of the laser scanning system to acquire one image per projected laser point. We have demonstrated that this setup is capable of accurately determining the tissue thickness for each triangulation point and consequently allows detecting the surface of the cranial bone with sub-millimetre accuracy. Typical clinical settings (treatment times of 15-90 min) require feature stability over time, since the determination of tissue thickness is achieved by machine learning methods trained on initial feature scans. We have collected initial scans of the forehead as well as long-term backscatter data (20 images per seconds over 30 min) from five subjects and extracted the relevant tissue features from the image streams. Based on the knowledge of the relationship between the tissue feature values and the tissue thickness, the analysis of the long-term data showed that the noise level is low enough to allow robust discrimination of tissue thicknesses of 0.5 mm.

  20. Imidacloprid enhances liver damage in Wistar rats: Biochemical, oxidative damage and histological assessment

    Directory of Open Access Journals (Sweden)

    Sana Chakroun

    2017-12-01

    Full Text Available Objective: To investigate the potential adverse effects of imidacloprid on biochemical parameters, oxidative stress and liver damage induced in the rat by oral sub-chronic imidaclopride exposure. Methods: Rats received three different doses of imidacloprid (1/45, 1/22 and 1/10 of LD50 given through gavage for 60 days. Two dozen of male Wistar rats were randomly divided into four experimental groups. Liver damage was determined by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase leakages. The prooxidant-antioxydant status in hepatic tissue homogenate was evaluated by measuring the degree of lipid peroxidation, the antioxidant enzymes activities such as catalase, superoxide dismutase and glutathione peroxidase (GPx. Results: The relative liver weight was significantly higher than that of control and other treated groups at the highest dose 1/10 of LD50 of imidacloprid. Additionally, treatment of rats with imidacloprid significantly increased liver lipid peroxidation (P ≤ 0.05 or 0.01 which went together with a significant decrease in the levels of superoxide dismutase and catalase activities. Parallel to these changes, imidacloprid treatment enhanced liver damage as evidence by sharp increase in the liver enzyme activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase. These results were also confirmed by histopathology. Conclusions: In light of the available data, it is our thought that after imidacloprid sub-chronic exposure, depletion of antioxidant enzymes is accompanied by induction of potential oxidative stress in the hepatic tissues that might affect the function of the liver which caused biochemical and histopathological alteration.

  1. Heat transfer modelling of pulsed laser-tissue interaction

    Science.gov (United States)

    Urzova, J.; Jelinek, M.

    2018-03-01

    Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.

  2. SU-E-T-168: Evaluation of Normal Tissue Damage in Head and Neck Cancer Treatments

    International Nuclear Information System (INIS)

    Ai, H; Zhang, H

    2014-01-01

    Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant that represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients

  3. Relationship between opioid therapy, tissue-damaging procedures, and brain metabolites as measured by proton MRS in asphyxiated term neonates.

    Science.gov (United States)

    Angeles, Danilyn M; Ashwal, Stephen; Wycliffe, Nathaniel D; Ebner, Charlotte; Fayard, Elba; Sowers, Lawrence; Holshouser, Barbara A

    2007-05-01

    To examine the effects of opioid and tissue-damaging procedures (TDPs) [i.e. procedures performed in the neonatal intensive care unit (NICU) known to result in pain, stress, and tissue damage] on brain metabolites, we reviewed the medical records of 28 asphyxiated term neonates (eight opioid-treated, 20 non-opioid treated) who had undergone magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) within the first month of life as well as eight newborns with no clinical findings of asphyxial injury. We found that lower creatine (Cr), myoinositol (Ins), and N-acetylaspartate (NAA)/choline (Cho) (p OGM) NAA/Cr was decreased (p = 0.03) and lactate (Lac) was present in a significantly higher amount (40%; p = 0.03) in non-opioid-treated neonates compared with opioid-treated neonates. Compared with controls, untreated neonates showed larger changes in more metabolites in basal ganglia (BG), thalami (TH), and OGM with greater significance than treated neonates. Our data suggest that TDPs affect spectral metabolites and that opioids do not cause harm in asphyxiated term neonates exposed to repetitive TDPs in the first 2-4 DOL and may provide a degree of neuroprotection.

  4. Ultrasonic energy vs monopolar electrosurgery in laparoscopic cholecystectomy: a comparison of tissue damage

    Directory of Open Access Journals (Sweden)

    Mehdi Asgari

    2016-04-01

    Full Text Available Background: Laparoscopic cholecystectomy is a minimally invasive procedure whereby the gallbladder is removed using laparoscopic techniques. Monopolar electerosurgical energy is the method of dissection of gallbladder from liver bed. Ultrasonic energy causes less thermal damage and suggests an alternative to monopolar elevterocautery. Leptin is a tissue factor and C-reactive protein (CRP is an acute phase protein that builds up in surgical damages. In laparoscopy, pneumoperitoneum and thermal damage cause this increase. In this study, after completion of surgery with both methods, plasma leptin and CPR were measured. Next, the complications and benefits of the two methods were compared. Methods: This single blind randomized clinical trial was conducted on 78 patients who were candidate for laparoscopic cholecystectomy in surgery clinic of Razi Teaching Hospital in Ahvaz Jundishapur University of Medical Sciences from March 2013 to March 2015. Patients were divided randomly into two groups of ultrasonic and electerocautery. Then, leptin’s level and CRP’s level were measured at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in the two groups. Results: This study shows that the average rate of leptin at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in ultrasonic group had less increase than electerocautery group and the difference was statistically significant (P= 0.0001. The average rate of CRP at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in ultrasonic group had less increase than electerocautery group and the difference was statistically significant (P= 0.0001. Conclusion: The level of leptin and CRP shows that surgery with ultrasonic method will provoke the immune system less than electerocautery method.

  5. Effects of cryotherapy combined with therapeutic ultrasound on oxidative stress and tissue damage after musculoskeletal contusion in rats.

    Science.gov (United States)

    Martins, C N; Moraes, M B; Hauck, M; Guerreiro, L F; Rossato, D D; Varela, A S; da Rosa, C E; Signori, L U

    2016-12-01

    To investigate the combined effects of cryotherapy and pulsed ultrasound therapy (PUT) on oxidative stress parameters, tissue damage markers and systemic inflammation after musculoskeletal injury. Experimental animal study. Research laboratory. Seventy male Wistar rats were divided into five groups: control, lesion, cryotherapy, PUT, and cryotherapy+PUT. The gastrocnemius muscle was injured by mechanical crushing. Cryotherapy was applied immediately after injury (immersion in water at 10°C for 20minutes). PUT was commenced 24hours after injury (1MHz, 0.4W/cm 2SPTA , 20% duty cycle, 5minutes). All animals were treated every 8hours for 3 days. Oxidative stress in muscle was evaluated by concentration of reactive oxygen species (ROS), lipid peroxidation (LPO), anti-oxidant capacity against peroxyl radicals (ACAP) and catalase. Plasma levels of creatine kinase (CK), lactate dehydrogenase (LDH) and C-reactive protein (CRP) were assessed. When applied individually, cryotherapy and PUT reduced CK, LDH, CRP and LPO caused by muscle damage. Cryotherapy+PUT in combination maintained the previous results, caused a reduction in ROS [P=0.005, mean difference -0.9×10 -8 relative area, 95% confidence interval (CI) -0.2 to -1.9], and increased ACAP {P=0.007, mean difference 0.34 1/[relative area with/without 2,2-azobis(2-methylpropionamidine)dihydrochloride], 95% CI 0.07 to 0.61} and catalase (P=0.002, mean difference 0.41units/mg protein, 95% CI 0.09 to 0.73) compared with the lesion group. Cryotherapy+PUT in combination reduced oxidative stress in muscle, contributing to a reduction in adjacent damage and tissue repair. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  6. Determination of trimethoprim in tissues using liquid chromatography-thermospray mass spectrometry.

    Science.gov (United States)

    Cannavan, A; Hewitt, S A; Floyd, S D; Kennedy, D G

    1997-11-01

    A method is described for the determination of the antibacterial drug trimethoprim in tissues. Minced tissue is homogenised with chloroform-acetone (1 + 1 v/v), filtered, and the filtrate evaporated to an oily residue using a rotary evaporator. The residue is redissolved in methanol-water-acetic acid (50 + 48.7 + 1.3 v/v) and any fats present are partitioned into hexane. The aqueous phase is analysed by liquid chromatography-thermospray mass spectrometry in positive mode with the protonated molecular ion at m/z 291 being monitored. Recoveries ranged between 60% in liver and 79% in muscle. The limit of determination was 25 micrograms kg-1 and the limit of detection was approximately 4 micrograms kg-1. The method is suitable for monitoring tissues taken under national surveillance schemes for veterinary drug residues.

  7. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    International Nuclear Information System (INIS)

    Ralfs, Julie D.

    2002-01-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as 'soft' and 'wet'. The location and size of the cavities formed from ice crystals, depended on the particular plant tissue being frozen, the processing it was subjected to prior to freezing, the size of the sample and the cooling regime employed to freeze the tissue. Cavitation in the tissue resulted in an increase in tissue porosity, which enabled fluid to flow more easily from the tissue on compression, thus affecting the mechanical properties and sensory perception. Freezing damage to plant tissues was shown to be reduced, and sometimes prevented, when active antifreeze proteins (AFPs) were introduced into the tissues by vacuum infiltration or transformation and the tissue was frozen at a suitable cooling rate. Theoretical modelling was applied to the fluid flow and porosity data to test the validity of the models and to subsequently predict the mechanical behaviour of potato from the structural properties of the tissue. (author)

  8. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    Directory of Open Access Journals (Sweden)

    Germana Zaccagnini

    Full Text Available Magnetic resonance imaging (MRI provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time, diffusion-tensor imaging (Fractional Anisotropy and perfusion by Dynamic Contrast-Enhanced MRI (K-trans were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1 T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2 Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3 K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  9. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    Science.gov (United States)

    Zaccagnini, Germana; Palmisano, Anna; Canu, Tamara; Maimone, Biagina; Lo Russo, Francesco M; Ambrogi, Federico; Gaetano, Carlo; De Cobelli, Francesco; Del Maschio, Alessandro; Esposito, Antonio; Martelli, Fabio

    2015-01-01

    Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  10. Hair cell counts in a rat model of sound damage: Effects of tissue preparation & identification of regions of hair cell loss.

    Science.gov (United States)

    Neal, Christopher; Kennon-McGill, Stefanie; Freemyer, Andrea; Shum, Axel; Staecker, Hinrich; Durham, Dianne

    2015-10-01

    Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The comparison of thermal tissue injuries caused by ultrasonic scalpel and electrocautery use in rabbit tongue tissue

    Science.gov (United States)

    Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan

    2012-01-01

    The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (pelectrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541

  12. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    International Nuclear Information System (INIS)

    Herppich, Werner B.; Zabler, Simon; Dawson, Martin; Choinka, Gerard; Manke, Ingo

    2015-01-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  13. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herppich, Werner B. [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V., Potsdam (Germany). Abt. Technik im Gartenbau; Matsushima, Uzuki [Iwate Univ., Morioka (Japan). Faculty of Agriculture; Graf, Wolfgang [Association for Technology and Structures in Agriculture (KTBL), Darmstadt (Germany); Zabler, Simon [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Wuerzburg (Germany). Project group NanoCT Systems (NCTS); Dawson, Martin [Salford Univ., Greater Manchester (United Kingdom); Choinka, Gerard; Manke, Ingo [Helmholtz Center Berlin for Materials and Energy (HZB), Berlin (Germany)

    2015-02-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  14. Ex vivo irradiation of human blood to determine DNA damage using molecular techniques

    International Nuclear Information System (INIS)

    Montes, Angel; Agapito, Juan

    2014-01-01

    Biological dosimetry is the assessment of absorbed dose in individuals exposed to ionizing radiation from blood samples based on the radiation induced damage in cellular DNA. The aim of this study was to determine the damage in the DNA through the assessment of an experimental ex vivo assay using irradiated samples of human blood cells. For this purpose, blood samples were irradiated at low doses (<100 mGy) considering the following parameters: blood volume (3mL), temperature (37 °C) and incubation time (0.5, 2, 4, 8 and 24 h). Dose values were: 0, 12.5, 25 and 50 mGy using Cesium -137 gamma rays at 662 keV and a dose rate of 38.46 mGy/h. The qualitative damage in the genomic DNA was determined using agarose gel electrophoresis and polymerase chain reaction (PCR) for the p53 gene in a sequence of 133 pb of exon 7, related to the protein that acts in the cell repair process. The results of the qualitative analysis showed no degradation of genomic DNA; also an increase in the DNA concentration was observed up to the fourth hour of incubation, finding maximum values for all doses in the two samples. As a conclusion, the effects of ionizing radiation at doses used in this experiment do not generate a detectable damage, by means of molecular techniques such as those used in the present study. (authors).

  15. Determination of electrical characteristics of body tissues for computational dosimetry studies

    International Nuclear Information System (INIS)

    Silva, Rafael Monteiro da Cruz; Domingues, Luis Adriano M.C.; Neto, Athanasio Mpalantinos; Barbosa, Carlos Ruy Nunez

    2008-01-01

    Increasing public concern about human exposure to electromagnetic fields led to the development of International Exposure Standards, which reflect the actual scientific knowledge on this subject. Existing exposure limits (reference levels), are based on maximum admissible fields or induced currents densities inside human bodies, called basic restrictions. Since those physical quantities can not be readily measured, they must be estimated using techniques of computational dosimetry. These techniques rely on accurate computational modelling of human bodies to establish the relation of external field (electric / magnetic) to induced current (internal field). Nowadays the models available for human body simulation (FEM, FDM,...) are quite accurate, specially when using geometric discretization obtained from medical imaging techniques, however the determination of tissues characteristics (permittivity and conductivity) is still an issue to be dealt with. In current studies the electrical characteristics (permittivity and conductivity) of body tissues are based on values which were obtained from measurements done on tissue simples obtained from dead bodies. However those values may not represent adequately the behaviour of living tissues. In this paper a research designed to characterize the permittivity of human body tissues is presented, consisting of measurements and simulations designed to determine, using indirect methods, the electrical behaviour of living tissues. A study of exposure assessment on a real high voltage transmission line in Brazil, using measured permittivity values combined with a finite element model of the human body is presented in the panel. (author)

  16. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ralfs, Julie D

    2002-07-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as 'soft' and 'wet'. The location and size of the cavities formed from ice crystals, depended on the particular plant tissue being frozen, the processing it was subjected to prior to freezing, the size of the sample and the cooling regime employed to freeze the tissue. Cavitation in the tissue resulted in an increase in tissue porosity, which enabled fluid to flow more easily from the tissue on compression, thus affecting the mechanical properties and sensory perception. Freezing damage to plant tissues was shown to be reduced, and sometimes prevented, when active antifreeze proteins (AFPs) were introduced into the tissues by vacuum infiltration or transformation and the tissue was frozen at a suitable cooling rate. Theoretical modelling was applied to the fluid flow and porosity data to test the validity of the models and to subsequently predict the mechanical behaviour of potato from the structural properties of the tissue. (author)

  17. Immunological methods for the detection and determination of connective tissue proteoglycans

    DEFF Research Database (Denmark)

    Caterson, B; Baker, J R; Christner, J E

    1982-01-01

    In this paper we report the use of immunological methods for specifically detecting and determining proteoglycan in cartilage and other connective tissues. Antibodies (polyclonal and monoclonal) have been raised against specific components of cartilage proteoglycan aggregates (i.e., proteoglycan...... surrounding invaginating hair follicles. These immunological procedures are currently being used to complement conventional biochemical analyses of proteoglycans found in different connective tissue matrices....

  18. Multi-scale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    International Nuclear Information System (INIS)

    Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.; Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.

    2010-01-01

    We present the latest advances of the multi-scale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multi-scale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This quantification allows the studying of how the clusterization of DNA lesions affects the lethality of damage. We discuss the first results of molecular dynamics simulations of ubiquitin in the environment of thermal spikes, predicted to occur in tissue for a short time after an ion's passage in the vicinity of the ions' tracks. (authors)

  19. Automated Damage Onset Analysis Techniques Applied to KDP Damage and the Zeus Small Area Damage Test Facility

    International Nuclear Information System (INIS)

    Sharp, R.; Runkel, M.

    1999-01-01

    Automated damage testing of KDP using LLNL's Zeus automated damage test system has allowed the statistics of KDP bulk damage to be investigated. Samples are now characterized by the cumulative damage probability curve, or S-curve, that is generated from hundreds of individual test sites per sample. A HeNe laser/PMT scatter diagnostic is used to determine the onset of damage at each test site. The nature of KDP bulk damage is such that each scatter signal may possess many different indicators of a damage event. Because of this, the determination of the initial onset for each scatter trace is not a straightforward affair and has required considerable manual analysis. The amount of testing required by crystal development for the National Ignition Facility (NIF) has made it impractical to continue analysis by hand. Because of this, we have developed and implemented algorithms for analyzing the scatter traces by computer. We discuss the signal cleaning algorithms and damage determination criteria that have lead to the successful implementation of a LabView based analysis code. For the typical R/1 damage data set, the program can find the correct damage onset in more than 80% of the cases, with the remaining 20% being left to operator determination. The potential time savings for data analysis is on the order of ∼ 100X over manual analysis and is expected to result in the savings of at least 400 man-hours over the next 3 years of NIF quality assurance testing

  20. Toe Tissue Transfer for Reconstruction of Damaged Digits due to Electrical Burns

    Directory of Open Access Journals (Sweden)

    Hyung-Do Kim

    2012-03-01

    Full Text Available Background Electrical burns are one of the most devastating types of injuries, and can becharacterized by the conduction of electric current through the deeper soft tissue such asvessels, nerves, muscles, and bones. For that reason, the extent of an electric burn is veryfrequently underestimated on initial impression.Methods From July 1999 to June 2006, we performed 15 cases of toe tissue transfer for thereconstruction of finger defects caused by electrical burns. We performed preoperative rangeof motion exercise, early excision, and coverage of the digital defect with toe tissue transfer.Results We obtained satisfactory results in both functional and aesthetic aspects in all 15cases without specific complications. Static two-point discrimination results in the transferredtoe cases ranged from 8 to 11 mm, with an average of 9.5 mm. The mean range of motionof the transferred toe was 20° to 36° in the distal interphalangeal joint, 16° to 45° in theproximal interphalangeal joint, and 15° to 35° in the metacarpophalangeal joint. All of thepatients were relatively satisfied with the function and appearance of their new digits.Conclusions The strategic management of electrical injury to the hands can be both challengingand complex. Because the optimal surgical method is free tissue transfer, maintenance ofvascular integrity among various physiological changes works as a determining factor for thepostoperative outcome following the reconstruction.

  1. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    Science.gov (United States)

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Determination of ion track and shapes with damage simulations on the base of ellipsometric and backscattering spectrometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Polgar, O.; Fried, M.; Khanh, N.; Petrik, P.; Barsony, I. [Research Institute for Technical Phisycs and Materials Science, Budapest (Hungary)

    2008-05-15

    On the base of geometrical and statistical considerations a damage simulator was created in order to determine the ion track-radius and -shape of ion-implantation caused damage in single-crystalline Si. Damage vs. dose curves calculated by spectroscopic ellipsometry (SE) and Rutherford backscattering/channeling spectrometry (RBS/C) measurements, using different doses of 100 keV Xe implantation, gave information about the damage profile in depth. Both methods are required, because of dose-dependent discrepancies of SE compared with RBS/C [Fried et al., Thin Solid Films 455/456, 404 (2004)]. Different kinds of damage models were investigated to calculate the ion track-radius and to describe the damages in depth and the shape of ion track. Comparing directly the simulated and the measured damage vs. dose curves, the damage function and the other simulation parameters were optimized and hence the ion track size and even the shape can be determined. The dose dependent mean size of the unchanged crystalline regions, obtained from the simulation was correlated with the complex dielectric functions, obtained from the SE analysis. The results clearly show the effect of decreasing size of the unchanged crystalline regions. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Trefoil factors in saliva and gingival tissues of patients with chronic periodontitis

    DEFF Research Database (Denmark)

    Chaiyarit, Ponlatham; Chayasadom, Anek; Wara-Aswapati, Nawarat

    2012-01-01

    BACKGROUND: Trefoil factors (TFFs) are secreted molecules that are involved in cytoprotection against tissue damage and the immune response. TFFs have been detected in saliva and oral tissues, but their clinical significance has never been investigated in patients with chronic periodontitis....... The objective of this study is to determine whether TFF expression in saliva and gingival tissues is associated with periodontal pathology. METHODS: Saliva and gingival tissue samples were collected from 25 non-periodontitis individuals and 25 patients with chronic periodontitis (CP). Enzyme...... observed in patients with CP (P = 0.003 and P periodontal pathology and number of Porphyromonas gingivalis...

  4. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  5. Can Rotational Atherectomy Cause Thermal Tissue Damage? A Study of the Potential Heating and Thermal Tissue Effects of a Rotational Atherectomy Device

    International Nuclear Information System (INIS)

    Gehani, Abdurrazzak A.; Rees, Michael R.

    1998-01-01

    Purpose: Thermal tissue damage (TTD) is customarily associated with some lasers. The thermal potential of rotational atherectomy (RA) devices is unknown. We investigated the temperature profile and potential TTD as well as the value of fluid flushing of an RA device. Methods: We used a high-resolution infrared imaging system that can detect changes as small as 0.1 deg. C to measure the temperature changes at the tip of a fast RA device with and without fluid flushing. To assess TTD, segments of porcine aorta were subjected to the rotating tip under controlled conditions, stained by a special histochemical stain (picrisirius red) and examined under normal and polarized light microscopy. Results: There was significant heating of the rotating cam. The mean 'peak' temperature rise was 52.8 ± 16.9 deg. C. This was related to rotational speed; thus the 'peak' temperature rise was 88.3 ± 12.6 deg. C at 80,000 rpm and 17.3 ± 3.8 deg. C at 20,000 rpm (p < 0.001, t-test). Fluid flushing at 18 ml/min reduced, but did not abolish, heating of the device (11.8 ± 2.9 deg. C). A crater was observed in all segments exposed to the rotating tip. The following features were most notable: (i) A zone of 'thermal' tissue damage extended radially from the crater reaching adventitia in some sections, especially at high speeds. This zone showed markedly reduced or absent birefringence. (ii) Fluid flushing of the catheter reduced the above changes but increased the incidence and extent of dissections in the media, especially when combined with high atherectomy speeds. (iii) These changes were observed in five of six specimens exposed to RA without flushing, but in only one of six with flushing (p < 0.05). (iv) None of the above changes was seen in control segments. Conclusion: RA is capable of generating significant heat and potential TTD. Fluid flushing reduced heating and TTD. These findings warrant further studies in vivo, and may influence the design of atherectomy devices

  6. Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues

    International Nuclear Information System (INIS)

    Curtis, Carol D; Thorngren, Daniel L; Nardulli, Ann M

    2010-01-01

    During the course of normal cellular metabolism, oxygen is consumed and reactive oxygen species (ROS) are produced. If not effectively dissipated, ROS can accumulate and damage resident proteins, lipids, and DNA. Enzymes involved in redox regulation and DNA repair dissipate ROS and repair the resulting damage in order to preserve a functional cellular environment. Because increased ROS accumulation and/or unrepaired DNA damage can lead to initiation and progression of cancer and we had identified a number of oxidative stress and DNA repair proteins that influence estrogen responsiveness of MCF-7 breast cancer cells, it seemed possible that these proteins might be differentially expressed in normal mammary tissue, benign hyperplasia (BH), ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC). Immunohistochemistry was used to examine the expression of a number of oxidative stress proteins, DNA repair proteins, and damage markers in 60 human mammary tissues which were classified as BH, DCIS or IBC. The relative mean intensity was determined for each tissue section and ANOVA was used to detect statistical differences in the relative expression of BH, DCIS and IBC compared to normal mammary tissue. We found that a number of these proteins were overexpressed and that the cellular localization was altered in human breast cancer tissue. Our studies suggest that oxidative stress and DNA repair proteins not only protect normal cells from the damaging effects of ROS, but may also promote survival of mammary tumor cells

  7. UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): developmental and cellular heterogeneity of damage and repair

    International Nuclear Information System (INIS)

    Stapleton, A.E.; Thornber, C.S.; Walbot, V.

    1997-01-01

    Ultraviolet radiation has diverse morphogenetic and damaging effects on plants. The end point of damage is reduced plant growth, but in the short term UV radiation damages specific cellular components. We measured cyclobutane pyrimidine dimers in maize DNA from plants grown in natural solar radiation. Green maize tissues had detectable DNA damage, roots had less damage, and anthers had much more damage than green leaves. This heterogeneity in damage levels may reflect differences in dose received or in damage repair. The architecture of green tissues had no measurable effects on DNA damage levels, as leaf sheath and leaf blade were equivalent. We observed a slight increase in damage levels in plants sampled at the end of the day, but there was no accumulation of damage over the growing season. We measured photoreactivation, and found substantial levels of this light-dependent repair in both the epidermis and inner cell layers of leaves, and in all organelles that contain DNA – the nucleus, chloroplasts and mitochondria. We conclude that maize has efficient mechanisms for photo repair of daily UV-induced DNA damage that prevent accumulation

  8. Fibroblast implantation enhances wound healing as indicated by breaking strength determinations

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W W; Goepfert, H; Romsdahl, M; Hersen, J; Withers, R H; Jesse, R H

    1978-09-01

    Irradiation of normal tissues at the dose/time factor employed in the treatment of solid tumors impairs the subsequent healing of surgical wounds made in those tissues. Irreversible radiation damage to regional fibroblasts is one cause of impared healing. This study was conducted to determine whether syngeneic guinea pig fibroblasts is one cause of impared healing. This study was conducted to determine whether syngeneic guinea pig fibroblasts, harvested from tissue culture when injected into irradiated guinea pig skin at the time of wound closure, could improve wound healing. Breaking strength determinations indicate that irradiated wounds demonstrate enhanced wound healing if implanted with fibroblasts.

  9. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    Directory of Open Access Journals (Sweden)

    Simona Carfagna

    2015-01-01

    Full Text Available We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion.

  10. Dietary supplementation with the microalga Galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues.

    Science.gov (United States)

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion.

  11. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.

    Science.gov (United States)

    Nagarajan, Vivek Krishna; Yu, Bing

    2016-09-01

    Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, and , for native porcine tissues (n = 66) at room temperature, were 5.4

  12. Putative photoacoustic damage in skin induced by pulsed ArF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Flotte, T.J.; McAuliffe, D.J.; Jacques, S.L.

    1988-05-01

    Argon-fluoride excimer laser ablation of guinea pig stratum corneum causes deeper tissue damage than expected for thermal or photochemical mechanisms, suggesting that photoacoustic waves have a role in tissue damage. Laser irradiation (193 nm, 14-ns pulse) at two different radiant exposures, 62 and 156 mJ/cm2 per pulse, was used to ablate the 15-microns-thick stratum corneum of the skin. Light and electron microscopy of immediate biopsies demonstrated damage to fibroblasts as deep as 88 and 220 microns, respectively, below the ablation site. These depths are far in excess of the optical penetration depth of 193-nm light (1/e depth = 1.5 micron). The damage is unlikely to be due to a photochemical mechanism because (a) the photons will not penetrate to these depths, (b) it is a long distance for toxic photoproducts to diffuse, and (c) damage is proportional to laser pulse intensity and not the total dose that accumulates in the residual tissue; therefore, reciprocity does not hold. Damage due to a thermal mechanism is not expected because there is not sufficient energy deposited in the tissue to cause significant heating at such depths. The damage is most likely due to a photoacoustic mechanism because (a) photoacoustic waves can propagate deep into tissue, (b) the depth of damage increases with increasing laser pulse intensity rather than with increasing total residual energy, and (c) the effects are immediate. These effects should be considered in the evaluation of short pulse, high peak power laser-tissue interactions.

  13. Garlic and vitamin E provides antioxidant defence in tissues of ...

    African Journals Online (AJOL)

    Nicotine is known to induce oxidative stress in rat tissues and the antioxidant properties of garlic have been reported. This study was designed to determine if the peroxidative damage caused by nicotine administration can be effectively prevented with garlic juice, and vitamin E, a known antioxidant.Four groups of six rats ...

  14. Models for radiation-induced tissue degeneration and conceptualization of rehabilitation of irradiated tissue by cell therapy

    International Nuclear Information System (INIS)

    Phulpin, Berengere

    2011-01-01

    Radiation therapy induced acute and late sequelae within healthy tissue included in the irradiated area. In general, lesions are characterized by ischemia, cell apoptosis and fibrosis. In this context, cell therapy using bone marrow mesenchymal stem cells (BMSC) might represent an attractive new therapeutic approach, based partly on their angiogenic ability and their involvement in the natural processes of tissue repair. The first part of this work consisted in the development of experimental mouse model of radio-induced tissue degeneration similar to that occurring after radiotherapy. The aim was to better understand the physiopathological mechanisms of radiation-induced tissue damage and to determine the best treatment strategy. The second part of this work investigated the feasibility of autologous BMSC therapy on the murine model of radiation previously established with emphasis on two pre-requisites: the retention of the injected cells within the target tissue and the evaluation of the graft on bone metabolism. This preclinical investigation in a mouse model constitutes an essential step allowing an evaluation of the benefit of cell therapy for the treatment of radiation-induced tissue injury. Data from these studies could allow the proposal of clinical studies [fr

  15. Microbeam Radiation-Induced Tissue Damage Depends on the Stage of Vascular Maturation

    International Nuclear Information System (INIS)

    Sabatasso, Sara; Laissue, Jean Albert; Hlushchuk, Ruslan; Graber, Werner; Bravin, Alberto; Braeuer-Krisch, Elke; Corde, Stephanie; Blattmann, Hans; Gruber, Guenther; Djonov, Valentin

    2011-01-01

    Purpose: To explore the effects of microbeam radiation (MR) on vascular biology, we used the chick chorioallantoic membrane (CAM) model of an almost pure vascular system with immature vessels (lacking periendothelial coverage) at Day 8 and mature vessels (with coverage) at Day 12 of development. Methods and Materials: CAMs were irradiated with microplanar beams (width, ∼25 μm; interbeam spacing, ∼200 μm) at entrance doses of 200 or 300 Gy and, for comparison, with a broad beam (seamless radiation [SLR]), with entrance doses of 5 to 40 Gy. Results: In vivo monitoring of Day-8 CAM vasculature 6 h after 200 Gy MR revealed a near total destruction of the immature capillary plexus. Conversely, 200 Gy MR barely affected Day-12 CAM mature microvasculature. Morphological evaluation of Day-12 CAMs after the dose was increased to 300 Gy revealed opened interendothelial junctions, which could explain the transient mesenchymal edema immediately after irradiation. Electron micrographs revealed cytoplasmic vacuolization of endothelial cells in the beam path, with disrupted luminal surfaces; often the lumen was engorged with erythrocytes and leukocytes. After 30 min, the capillary plexus adopted a striated metronomic pattern, with alternating destroyed and intact zones, corresponding to the beam and the interbeam paths within the array. SLR at a dose of 10 Gy caused growth retardation, resulting in a remarkable reduction in the vascular endpoint density 24 h postirradiation. A dose of 40 Gy damaged the entire CAM vasculature. Conclusions: The effects of MR are mediated by capillary damage, with tissue injury caused by insufficient blood supply. Vascular toxicity and physiological effects of MR depend on the stage of capillary maturation and appear in the first 15 to 60 min after irradiation. Conversely, the effects of SLR, due to the arrest of cell proliferation, persist for a longer time.

  16. Accumulation of DNA Double-Strand Breaks in Normal Tissues After Fractionated Irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Fricke, Andreas; Wendorf, Juliane; Stuetzel, Annika; Kuehne, Martin; Ong, Mei Fang; Lipp, Peter; Ruebe, Christian

    2010-01-01

    Purpose: There is increasing evidence that genetic factors regulating the recognition and/or repair of DNA double-strand breaks (DSBs) are responsible for differences in radiosensitivity among patients. Genetically defined DSB repair capacities are supposed to determine patients' individual susceptibility to develop adverse normal tissue reactions after radiotherapy. In a preclinical murine model, we analyzed the impact of different DSB repair capacities on the cumulative DNA damage in normal tissues during the course of fractionated irradiation. Material and Methods: Different strains of mice with defined genetic backgrounds (SCID -/- homozygous, ATM -/- homozygous, ATM +/- heterozygous, and ATM +/+ wild-type mice) were subjected to single (2 Gy) or fractionated irradiation (5 x 2 Gy). By enumerating γH2AX foci, the formation and rejoining of DSBs were analyzed in organs representative of both early-responding (small intestine) and late-responding tissues (lung, kidney, and heart). Results: In repair-deficient SCID -/- and ATM -/- homozygous mice, large proportions of radiation-induced DSBs remained unrepaired after each fraction, leading to the pronounced accumulation of residual DNA damage after fractionated irradiation, similarly visible in early- and late-responding tissues. The slight DSB repair impairment of ATM +/- heterozygous mice was not detectable after single-dose irradiation but resulted in a significant increase in unrepaired DSBs during the fractionated irradiation scheme. Conclusions: Radiation-induced DSBs accumulate similarly in acute- and late-responding tissues during fractionated irradiation, whereas the whole extent of residual DNA damage depends decisively on the underlying genetically defined DSB repair capacity. Moreover, our data indicate that even minor impairments in DSB repair lead to exceeding DNA damage accumulation during fractionated irradiation and thus may have a significant impact on normal tissue responses in clinical

  17. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage.

    Science.gov (United States)

    Venditti, P; Pamplona, R; Ayala, V; De Rosa, R; Caldarone, G; Di Meo, S

    2006-03-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T3)- or thyroxine (T4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most extensive damage to lipids and proteins was found in T3-treated and cold-exposed rats, respectively. Increase in oxygen reactive species released by mitochondria and microsomes was found to contribute to tissue oxidative damage, whereas the determination of single antioxidants did not provide information about the possible contribution of a reduced effectiveness of the antioxidant defence system. Indeed, liver oxidative damage in hyperthyroid rats was scarcely related to levels of the liposoluble antioxidants and activities of antioxidant enzymes. Conversely, other biochemical changes, such as the degree of fatty acid unsaturation and hemoprotein content, appeared to predispose hepatic tissue to oxidative damage associated with oxidative challenge elicited by hyperthyroid state. As a whole, our results confirm the idea that T3 plays a key role in metabolic changes and oxidative damage found in cold liver. However, only data concerning changes in glutathione peroxidase activity and mitochondrial protein content favour the idea that dissimilarities in effects of cold exposure and T3 treatment could depend on differences in serum levels of T4.

  18. Non-contact hematoma damage and healing assessment using reflectance photoplethysmographic imaging

    Science.gov (United States)

    Amelard, Robert; Pfisterer, Kaylen J.; Clausi, David A.; Wong, Alexander

    2016-03-01

    Impact trauma may cause a hematoma, which is the leakage of venous blood into surrounding tissues. Large hematomas can be dangerous as they may inhibit local blood ow. Hematomas are often diagnosed visually, which may be problematic if the hematoma leaks deeper than the visible penetration depth. Furthermore, vascular wound healing is often monitored at home without the aid of a clinician. We therefore investigated the use of near infrared (NIR) re ectance photoplethysmographic imaging (PPGI) to assess vascular damage resulting from a hematoma, and monitor the healing process. In this case study, the participant experienced internal vascular damage in the form of a hematoma. Using a PPGI system with dual-mode temporally coded illumination for ambient-agnostic data acquisition and mounted optical elements, the tissue was illuminated with a spatially uniform irradiance pattern of 850 nm wavelength light for increased tissue penetration and high oxy-to-deoxyhemoglobin absorption ratio. Initial and follow-up PPGI data collection was performed to assess vascular damage and healing. The tissue PPGI sequences were spectrally analyzed, producing spectral maps of the tissue area. Experimental results show that spatial differences in spectral information can be observed around the damaged area. In particular, the damaged site exhibited lower pulsatility than the surrounding healthy tissue. This pulsatility was largely restored in the follow-up data, suggesting that the tissue had undergone vascular healing. These results indicate that hematomas can be assessed and monitored in a non-contact visual manner, and suggests that PPGI can be used for tissue health assessment, with potential extensions to peripheral vascular disease.

  19. Determination of optical properties of tissue and other bio-materials

    CSIR Research Space (South Africa)

    Singh, A

    2008-11-01

    Full Text Available appears less diffusively scattered. Determination of optical properties of tissue and other bio-materials A SINGH, AE KARSTEN, JS DAM CSIR National Laser Centre, Biophotonics Group PO Box 395, Pretoria, 0001, South Africa Email: ASingh1@csir.co.za K...

  20. Determination of trace elements in human brain tissues using neutron activation analysis

    International Nuclear Information System (INIS)

    Leite, R.E.P.; Jacob-Filho, W.; Grinberg, L.T.; Ferretti, R.E.L.

    2008-01-01

    Neutron activation analysis was applied to assess trace element concentrations in brain tissues from normal (n = 21) and demented individuals (n = 21) of both genders aged more than 50 years. Concentrations of the elements Br, Fe, K, Na, Rb, Se and Zn were determined. Comparisons were made between the results obtained for the hippocampus and frontal cortex tissues, as well as, those obtained in brains of normal and demented individuals. Certified reference materials, NIST 1566b Oyster Tissue and NIST 1577b Bovine Liver were analyzed for quality of the analytical results. (author)

  1. Tissue Engineering of the Penis

    Directory of Open Access Journals (Sweden)

    Manish N. Patel

    2011-01-01

    Full Text Available Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissue engineering allows the development of biological substitutes which could potentially restore normal function. Tissue engineering efforts designed to treat or replace most organs are currently being undertaken. Most of these efforts have occurred within the past decade. However, before these engineering techniques can be applied to humans, further studies are needed to ensure the safety and efficacy of these new materials. Recent progress suggests that engineered urologic tissues and cell therapy may soon have clinical applicability.

  2. Effect of time intervals between irradiation and chemotherapeutic agents on the normal tissue damage. Comparison between in vivo and in vitro experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hisao; Nakayama, Toshitake; Hashimoto, Shozo (Keio Univ., Tokyo (Japan). School of Medicine)

    1989-05-01

    Experiments have been carried out to determine the effect on the cell survivals at different time intervals between irradiation and chemotherapeutic agents (BLM, cisDDP, ADM and ACNU) in either the in vivo or the in vitro system. The intestinal epithelial assay was applied on the in vivo system. The clonogenic cell survivals of V/sub 79/ cells, both in the proliferative and the plateau phases, were determined in the in vitro system. The V/sub 79/ cells in the plateau phase were more sensitive to BLM, cisDDP and ACNU than those in the proliferative phase, however, the result was reverse with ADM. When BLM, cisDDP or ACNU was combined with irradiation at different time intervals, the response of the plateau phase V/sub 79/ cells to combination therapies were very similar to those of the intestinal epithelial cells. On the other hand, V/sub 79/ cells in the proliferative phase, which were treated with ADM and irradiation, showed the similar response as the intestinal cells. These results suggest that studies of chemo-radiotherapy with cultured cells which are sensitive to chemotherapeutic agents might be suitable to expect the in vivo damage of the normal tissue. (author).

  3. Determining the appropriate number and duration of leech therapy in congested tissues using tissue spectrophotometry and laser Doppler flowmetry.

    Science.gov (United States)

    Rothenberger, Jens; Petersen, Wiebke; Schaller, Hans-Eberhard; Held, Manuel

    2016-11-01

    A universal protocol determining the number of leeches and their application time does not exist. The aim of this study, therefore, is to quantify perfusion dynamics in venous congested tissues after leech application to get more detailed information about changes due to leech-induced skin microcirculation and to evaluate the usability of the Oxygen to See (O2C) device in terms of determining the appropriate number of leeches and the duration of therapy. Twelve patients with the need for leech therapy participated in the study. Perfusion dynamics of the congested tissue was assessed using the O2C device, which determines blood flow (BF), the relative amount of hemoglobin (rHB), and the oxygen saturation (SO2). Measurements were carried out before leech application and on various intervals like 10 minutes, one hour, and three hours after leech application. The leech application effectuated after 10 minutes a nonsignificant perfusion improvement, which further increased after one hour with a significant reduction of the relative amount of hemoglobin and a significant increase of blood flow and oxygen saturation (BF= +56.7%; rHB= -25.5%; SO2= +53.7%). After three hours, the values returned to the levels before leech administration. In two cases, in which further administration of leeches within the measurement period was necessary, no substantial perfusion changes were obtained. The results of this study forms a more precise pattern of microcirculatory changes of leech therapy in congested tissues. According to our measurements a venous drainage improvement can be expected in congested tissue one hour after leech administration. The O2C seems to be a useful method to determine the appropriate number and duration of leech therapy. © 2016 by the Wound Healing Society.

  4. Pre-damage biomass allocation and not invasiveness predicts tolerance to damage in seedlings of woody species in Hawaii.

    Science.gov (United States)

    Lurie, Matthew H; Barton, Kasey E; Daehler, Curtis C

    2017-12-01

    Plant-herbivore interactions have been predicted to play a fundamental role in plant invasions, although support for this assertion from previous research is mixed. While plants may escape from specialist herbivores in their introduced ranges, herbivory from generalists is common. Tolerance traits may allow non-native plants to mitigate the negative consequences of generalist herbivory that they cannot avoid in their introduced range. Here we address whether tolerance to herbivory, quantified as survival and compensatory growth, is associated with plant invasion success in Hawaii and investigate traits that may enhance tolerance in seedlings, the life stage most susceptible to herbivory. In a greenhouse experiment, we measured seedling tolerance to simulated herbivory through mechanical damage (50% leaf removal) of 16 non-native woody plant species differing in invasion status (invasive vs. non-invasive). Seedlings were grown for 2 weeks following damage and analyzed for biomass to determine whether damaged plants could fully compensate for the lost leaf tissue. Over 99% of all seedlings survived defoliation. Although species varied significantly in their levels of compensation, there was no consistent difference between invasive and non-invasive species. Seedlings of 11 species undercompensated and remained substantially smaller than control seedlings 2 weeks after damage; four species were close to compensating, while one species overcompensated. Across species, compensation was positively associated with an increased investment in potential storage reserves, specifically cotyledons and roots, suggesting that these organs provide resources that help seedlings re-grow following damage. Our results add to a growing consensus that pre-damage growth patterns determine tolerance to damage, even in young seedlings which have relatively low biomass. The lack of higher tolerance in highly invasive species may suggest that invaders overcome herbivory barriers to invasion

  5. Microgel Technology to Advance Modular Tissue Engineering

    NARCIS (Netherlands)

    Kamperman, Tom

    2018-01-01

    The field of tissue engineering aims to restore the function of damaged or missing tissues by combining cells and/or a supportive biomaterial scaffold into an engineered tissue construct. The construct’s design requirements are typically set by native tissues – the gold standard for tissue

  6. Grapevine tissues and phenology differentially affect soluble carbohydrates determination by capillary electrophoresis.

    Science.gov (United States)

    Moreno, Daniela; Berli, Federico; Bottini, Rubén; Piccoli, Patricia N; Silva, María F

    2017-09-01

    Soluble carbohydrates distribution depends on plant physiology and, among other important factors, determines fruit yield and quality. In plant biology, the analysis of sugars is useful for many purposes, including metabolic studies. Capillary electrophoresis (CE) proved to be a powerful green separation technique with minimal sample preparation, even in complex plant tissues, that can provide high-resolution efficiency. Matrix effect refers to alterations in the analytical response caused by components of a sample other than the analyte of interest. Thus, the assessment and reduction of the matrix factor is fundamental for metabolic studies in different matrices. The present study evaluated the source and levels of matrix effects in the determination of most abundant sugars in grapevine tissues (mature and young leaves, berries and roots) at two phenological growth stages. Sucrose was the sugar that showed the least matrix effects, while fructose was the most affected analyte. Based on plant tissues, young leaves presented the smaller matrix effects, irrespectively of the phenology. These changes may be attributed to considerable differences at chemical composition of grapevine tissues with plant development. Therefore, matrix effect should be an important concern for plant metabolomics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. DNA damage and repair in plants

    International Nuclear Information System (INIS)

    Britt, A.B.

    1996-01-01

    The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned frommicrobes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products. (author)

  8. Trace element determinations in brain tissues from normal and clinically demented individuals

    International Nuclear Information System (INIS)

    Saiki, Mitiko; Genezini, Frederico A.; Leite, Renata E.P.; Grinberg, Lea T.; Ferretti, Renata E.L.; Suemoto, Claudia; Pasqualucci, Carlos A.; Jacob-Filho, Wilson

    2013-01-01

    Studies on trace element levels in human brains under normal and pathological conditions have indicated a possible correlation between some trace element concentrations and neurodegenerative diseases. In this study, analysis of brain tissues was carried out to investigate if there are any differences in elemental concentrations between brain tissues from a normal population above 50 years of age presenting Clinical Dementia Rating (CDR) equal to zero (CDR=0) and that cognitively affected population ( CDR=3). The tissues were dissected, ground, freeze-dried and then analyzed by instrumental neutron activation analysis. Samples and elemental standards were irradiated in a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. The induced gamma ray activities were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. The one-way ANOVA test (p< 0.05) was used to compare the results. All the elements determined in the hippocampus brain region presented differences between the groups presenting CDR=0 and CDR=3. In the case of frontal region only the elements Na, Rb and Zn showed differences between these two groups. These findings proved the correlation between elemental levels present in brain tissues neurodegenerative diseases. Biological standard reference materials SRM 1566b Oyster Tissue and SRM 1577b Bovine Liver analyzed for quality control indicated good accuracy and precision of the results. (author)

  9. "Tissue oxygen tension, a determinant of resistance to infection and ...

    African Journals Online (AJOL)

    "Tissue oxygen tension, a determinant of resistance to infection and healing" - An Inaugural Lecture. K Jönsson. Abstract. An Inaugural Lecture Given in the University of Zimbabwe on 21 June 2001. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  10. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    OpenAIRE

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-01-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at ...

  11. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage

    Science.gov (United States)

    Jordan, Jennifer J; Chhim, Sophea; Margulies, Carrie M; Allocca, Mariacarmela; Bronson, Roderick T; Klungland, Arne; Samson, Leona D; Fu, Dragony

    2017-01-01

    Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents. PMID:28726787

  12. Rate process analysis of thermal damage in cartilage

    International Nuclear Information System (INIS)

    Diaz, Sergio H; Nelson, J Stuart; Wong, Brian J F

    2003-01-01

    Cartilage laser thermoforming (CLT) is a new surgical procedure that allows in situ treatment of deformities in the head and neck with less morbidity than traditional approaches. While some animal and human studies have shown promising results, the clinical feasibility of CLT depends on preservation of chondrocyte viability, which has not been extensively studied. The present paper characterizes cellular damage due to heat in rabbit nasal cartilage. Damage was modelled as a first order rate process for which two experimentally derived coefficients, A=1.2x10 70 s -1 and E a =4.5x10 5 J mole -1 , were determined by quantifying the decrease in concentration of healthy chondrocytes in tissue samples as a function of exposure time to constant-temperature water baths. After immersion, chondrocytes were enzymatically isolated from the matrix and stained with a two-component fluorescent dye. The dye binds nuclear DNA differentially depending upon chondrocyte viability. A flow cytometer was used to detect differential cell fluorescence to determine the percentage of live and dead cells in each sample. As a result, a damage kinetic model was obtained that can be used to predict the onset, extent and severity of cellular injury to thermal exposure

  13. Neutron RBE for normal tissues

    International Nuclear Information System (INIS)

    Field, S.B.; Hornsey, S.

    1979-01-01

    RBE for various normal tissues is considered as a function of neutron dose per fraction. Results from a variety of centres are reviewed. It is shown that RBE is dependent on neutron energy and is tissue dependent, but is not specially high for the more critical tissues or for damage occurring late after irradiation. (author)

  14. Nonlinear dynamics and damage induced properties of soft matter with application in oncology

    Science.gov (United States)

    Naimark, O.

    2017-09-01

    Molecular-morphological signs of oncogenesis could be linked to multiscale collective effects in molecular, cell and tissue related to defects (damage) dynamics. It was shown that nonlinear behavior of biological systems can be linked to the existence of characteristic collective open state modes providing the coherent expression dynamics. New type of criticality in nonequilibrium systems with defects—structural-scaling transition allows the definition of the `driving force' for a biological soft matter related to consolidated open states. The set of collective open states (breathers, autosolitons and blow-up modes) in the molecular ensembles provides the collective expression dynamics to attract the entire system (cell, tissue) toward a few preferred global states. The co-existence of three types of collective modes determines the multifractal scenario of biological soft matter dynamics. The appearance of `globally convergent' dynamics corresponding to the coherent behavior of multiscale blow-up open states (blow-up gene expression) leads to anomalous localized softening (blow-up localized damage) and the subjection of the cells (or tissue) to monofractal dynamics. This dynamics can be associated with cancer progression.

  15. Engineering vascular development for tissue regeneration

    NARCIS (Netherlands)

    Rivron, N.C.

    2010-01-01

    Tissue engineering and regenerative medicine aim at restoring a damaged tissue by recreating in vitro or promoting its regeneratin in vovo. The vasculature is central to these therapies for the irrigation of the defective tissue (oxygen, nutrients or circulating regenerative cells) and as an

  16. Direct determination of a radiation-damage profile with atomic resolution in ion-irradiated platinum. MSC report No. 5030

    International Nuclear Information System (INIS)

    Pramanik, D.; Seidman, D.N.

    1983-05-01

    The field-ion microscope (FIM) technique has been employed to determine directly a radiation damage profile, with atomic resolution, in a platinum specimen which had been irradiated at 80 0 K with 20-keV Kr + ions to a fluence of 5 x 10 12 cm - 2 . It is shown that the microscopic spatial-vacancy distribution (radiation-damage profile) is directly related to the elastically-deposited-energy profile. The experimentally constructed radiation-damage profile is compared with a theoretical damage profile - calculated employing the TRIM Monte Carlo code - and excellent agreement is obtained between the two, thus demonstrating that it is possible to go directly from a microscopic spatial distribution of vacancies to a continuous radiation-damage profile

  17. Determination of damage and In vivo DNA repairing through the unicellular in gel electrophoresis technique

    International Nuclear Information System (INIS)

    Mendiola C, M.T.; Morales R, P.

    1997-01-01

    The experimental conditions were standardized for the unicellular in gel electrophoresis technique setting up (EUG) at the Cellular Radiobiology laboratory. Preliminary experiments were realized with human cells and mouse which were exposed to ionizing radiation or hydroxide peroxide (H 2 O 2 ) to induce DNA damage and to verify the technique performance. It was analysed the In vivo repairing kinetics of induced damage by gamma radiation in mouse leukocytes which were exposed to 137 Cs source and taking samples of peripheric blood of the tail of each mouse at different exposure times and processing them for EUG. In function of the cells proportion with damage in each time it was determined the existence of fast repairing mechanism at the first 15 minutes followed by a slight increase in the damage and a late repairing stage between 30 and 90 minutes. It was analysed this behavior and the potentiality of this In vivo system. (Author)

  18. [Lasers in dentistry. Part B--Interaction with biological tissues and the effect on the soft tissues of the oral cavity, the hard tissues of the tooth and the dental pulp].

    Science.gov (United States)

    Moshonov, J; Stabholz, A; Leopold, Y; Rosenberg, I; Stabholz, A

    2001-10-01

    The interaction of laser energy with target tissue is mainly determined by two non operator-dependent factors: the specific wavelength of the laser and the optical properties of the target tissues. Power density, energy density, pulse repetition rate, pulse duration and the mode of energy transferring to the tissue are dictated by the clinician. Combination of these factors enables to control optimal response for the clinical application. Four responses are described when the laser beam hits the target tissue: reflection, absorption, transmission and scattering. Three main mechanisms of interaction between the laser and the biological tissues exist: photothermic, photoacoustic and photochemical. The effect of lasers on the soft tissues of the oral cavity is based on transformation of light energy into thermal energy which, in turn heats the target tissue to produce the desirable effect. In comparison to the scalpel used in surgical procedures, the laser beam is characterized by tissue natural sterility and by minimum bleeding during the surgical procedures due to blood vessels welding. The various effects achieved by the temperature elevation during the laser application on the soft tissue are: I. coagulation and hemostasis II. tissue sterilization III. tissue welding IV. incision and excision V. ablation and vaporization Ablation and melting are the two basic modalities by which the effect of lasers on the hard tissues of the tooth is produced. When discussing the effect of laser on dental hard tissues, the energy absorption in the hydroxyapatite plays a major role in addition to its absorption in water. When laser energy is absorbed in the water of the hard tissues, a rapid volume expansion of the evaporating water occurs as a result of a substantial temperature elevation in the interaction site. Microexplosions are produced causing hard tissue disintegration. If pulp temperatures are raised beyond 5 degrees C level, damage to the dental pulp is irreversible

  19. Spectroscopic photoacoustics for assessing ischemic kidney damage

    Science.gov (United States)

    Berndl, Elizabeth S. L.; He, Xiaolin; Yuen, Darren A.; Kolios, Michael C.

    2018-02-01

    Ischemic reperfusion injuries (IRIs) are caused by return of blood to a tissue or organ after a period without oxygen or nutrients. Damage in the microvasculature causes an inflammatory response and heterogeneous scarring, which is associated with an increase in collagen in the extracellular matrix. Although most often associated with heart attacks and strokes, IRI also occurs when blood reperfuses a transplanted organ. Currently, monitoring for IRI is limited to biopsies, which are invasive and sample a limited area. In this work, we explored photoacoustic (PA) biomarkers of scarring. IRI events were induced in mice (n=2) by clamping the left renal artery, then re-establishing flow. At 53 days post-surgery, kidneys were saline perfused and cut in half laterally. One half was immediately imaged with a VevoX system (Fujifilm-VisualSonics, Toronto) in two near infrared ranges - 680 to 970 nm (NIR), and 1200 to 1350 nm (NIR II). The other half was decellularized and then imaged at NIR and NIR II. Regions of interest were manually identified and analyzed for each kidney. For both cellularized and decellularized samples, the PA signal ratio based on irradiation wavelengths of 715:930 nm was higher in damaged kidneys than for undamaged kidneys (p collagen in the NIR II range, while healthy kidneys did not. Collagen rich spectra were more apparent in decellularized kidneys, suggesting that in the cellularized samples, other components may be contributing to the signal. PA imaging using spectral ratios associated with collagen signatures may provide a non-invasive tool to determine areas of tissue damage due to IRIs.

  20. Membrane supported scaffold architectures for tissue engineering

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.

    2011-01-01

    Tissue engineering aims at restoring or regenerating a damaged tissue. Often the tissue recreation occurs by combining cells, derived from a patient biopsy, onto a 3D porous matrix, functioning as a scaffold. One of the current limitations of tissue engineering is the inability to provide sufficient

  1. Protective effect of 4-coumaric acid from UVB ray damage in the rabbit eye.

    Science.gov (United States)

    Lodovici, Maura; Caldini, Silvia; Morbidelli, Lucia; Akpan, Victor; Ziche, Marina; Dolara, Piero

    2009-01-08

    UV-induced oxidation damage seems to play a major role in a number of specific pathological conditions of intraocular tissues, such as cataract formation and retinal degeneration. Therefore, antioxidant and/or scavenger compounds might protect the eyes from UV-induced cellular damage. We previously reported that 4-coumaric acid (4-CA) is able to protect rabbit corneal-derived cells (SIRC) from UVB-induced oxidation damage. In this study we evaluated the protective effect of 4-CA against UVB-induced cell damage in rabbit cornea in vivo. Twelve male New Zealand albino rabbits were used; four rabbits were used as a control and received vehicle in one eye and 4-CA acid in the contralateral eye; eight rabbits were exposed to UVB rays (79.2mJ/cm(2)) and three days before to UV exposure each animal received 1 drop/day of vehicle in one eye and 1 drop/day of vehicle containing 4-CA (164ng) in the contralateral eye. Corneal and sclera tissues were removed and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) levels were measured. Superoxide dismutase (SOD) and xanthine oxidase (XO) activities were determined in aqueous humour. UVB-induced vessel hyper-reactivity was strongly reduced at 4 and 24h after UVB exposure after local treatment with 4-CA, 8-oxodGuo levels, a marker of oxidative DNA damage, were significantly increased (Peyes. Our results indicate that the administration of 4-CA protects eye tissues, thus reducing the harmful effect of UVB radiation at low concentration, probably through its free radical scavenging and antioxidant properties. Therefore, 4-CA may be useful in protecting the eye from free radical damage following UVB exposure from sunlight, UV lamps and welding torches.

  2. Oxidative stress and antioxidant activity in orbital fibroadipose tissue in Graves' ophthalmopathy.

    Science.gov (United States)

    Hondur, Ahmet; Konuk, Onur; Dincel, Aylin Sepici; Bilgihan, Ayse; Unal, Mehmet; Hasanreisoglu, Berati

    2008-05-01

    To investigate the oxidative stress and antioxidant activity in the orbit in Graves' ophthalmopathy (GO). Orbital fibroadipose tissue samples were obtained from 13 cases during orbital fat decompression surgery. All cases demonstrated features of moderate or severe GO according to the European Group on Graves' Orbitopathy classification. The disease activity was evaluated with the Clinical Activity Score, and the clinical features of GO were evaluated with the Ophthalmopathy Index. Orbital fibroadipose tissue samples of 8 patients without any thyroid or autoimmune disease were studied as controls. In the tissue samples, lipid hydroperoxide level was examined to determine the level of oxidative stress; glutathione level to determine antioxidant level; superoxide dismutase, glutathione reductase, and glutathione peroxidase activities to determine antioxidant activity. Lipid hydroperoxide level and all three antioxidant enzyme activities were found to be significantly elevated, while glutathione level significantly diminished in tissue samples from GO cases compared to controls (p < 0.05). Glutathione levels in tissue samples of GO cases showed negative correlation with Ophthalmopathy Index (r = -0.59, p < 0.05). The antioxidant activity in the orbit is enhanced in GO. However, the oxidative stress appears to be severe enough to deplete the tissue antioxidants and leads to oxidative tissue damage. This study may support the possible value of antioxidant treatment in GO.

  3. Protective effect of pumpkin powder (Cucurbita pepo L. on fetal testicular tissue damage in alloxan- induced diabetic rats

    Directory of Open Access Journals (Sweden)

    2014-08-01

    Full Text Available The occurrence of abnormalities in different organs of the fetus and newborn of diabetic mothers has been proven today. Considering the irreversible damages of the disease in newborns’ reproductive system any action to reduce the abnormalities has an especial importance and necessity. In this experimental study, the protective effects of pumpkin powder on reducing testicular tissue damages of rats born from diabetic mothers has been studied. The pregnant rats were divided into 4 groups of 10 rats, as follows: 1 treatment group with pumpkin powder, 2 diabetic control group, 3 treatment group (diabetic animals treated with pumpkin powder and 4 healthy control group. Experimental diabetes was induced in pregnant rats by intraperitoneal injection of 120 mg/kg b.w. alloxan monohydrate. The first and third groups received 2 g/kg b.w. pumpkin powder for 4 weeks via gavage. The histological and morphometric changes such as weight, seminiferous tubules diameter, spermatogonia, leydig and sertoli cell numbers were compared. Data was analyzed using the ANOVA and Tukey multiple comparisons test and p

  4. Determination of some heavy metals concentration in the tissues of ...

    African Journals Online (AJOL)

    Lead (Pb), Cobalt (Co), and Copper (Cu) concentrations were determined in bone, muscle and gill of two fish species (tilapia fish and cat-fish) collected from Tiga dam Kano, Nigeria during October, 2010. The mean concentrations of the heavy metals varied depending on the type of the tissue and fish species. Generally ...

  5. High-speed scanning ablation of dental hard tissues with a λ=9.3-μm CO2 laser: heat accumulation and peripheral thermal damage

    Science.gov (United States)

    Nguyen, Daniel; Staninec, Michal; Lee, Chulsung; Fried, Daniel

    2010-02-01

    A mechanically scanned CO2 laser operated at high laser pulse repetition rates can be used to rapidly and precisely remove dental decay. This study aims to determine whether these laser systems can safely ablate enamel and dentin without excessive heat accumulation and peripheral thermal damage. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. Samples were derived from noncarious extracted molars. Pulpal temperatures were recorded using microthermocouples situated at the pulp chamber roof of samples (n=12), which were occlusally ablated using a rapid-scanning, water-cooled 300 Hz CO2 laser over a two minute time course. The mechanical strength of facially ablated dentin (n=10) was determined via four-point bend test and compared to control samples (n=10) prepared with 320 grit wet sand paper to simulate conventional preparations. Composite-to-enamel bond strength was measured via single-plane shear test for ablated/non-etched (n=10) and ablated/acid-etched (n=8) samples and compared to control samples (n=9) prepared by 320 grit wet sanding. Thermocouple measurements indicated that the temperature remained below ambient temperature at 19.0°C (s.d.=0.9) if water-cooling was used. There was no discoloration of either dentin and enamel, the treated surfaces were uniformly ablated and there were no cracks observable on the laser treated surfaces. Fourpoint bend tests yielded mean mechanical strengths of 18.2 N (s.d.=4.6) for ablated dentin and 18.1 N (s.d.=2.7) for control (p>0.05). Shear tests yielded mean bond strengths of 31.2 MPa (s.d.=2.5, penamel without excessive heat accumulation and with minimal thermal damage. It is not clear whether the small (16%) but statistically significant reduction in the shear bond strength to enamel is clinically significant since the mean shear bond strength exceeded 30 MPa.

  6. Radiation damage prediction system using damage function

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Mori, Seiji

    1979-01-01

    The irradiation damage analysis system using a damage function was investigated. This irradiation damage analysis system consists of the following three processes, the unfolding of a damage function, the calculation of the neutron flux spectrum of the object of damage analysis and the estimation of irradiation effect of the object of damage analysis. The damage function is calculated by applying the SAND-2 code. The ANISN and DOT3, 5 codes are used to calculate neutron flux. The neutron radiation and the allowable time of reactor operation can be estimated based on these calculations of the damage function and neutron flux. The flow diagram of the process of analyzing irradiation damage by a damage function and the flow diagram of SAND-2 code are presented, and the analytical code for estimating damage, which is determined with a damage function and a neutron spectrum, is explained. The application of the irradiation damage analysis system using a damage function was carried out to the core support structure of a fast breeder reactor for the damage estimation and the uncertainty evaluation. The fundamental analytical conditions and the analytical model for this work are presented, then the irradiation data for SUS304, the initial estimated values of a damage function, the error analysis for a damage function and the analytical results are explained concerning the computation of a damage function for 10% total elongation. Concerning the damage estimation of FBR core support structure, the standard and lower limiting values of damage, the permissible neutron flux and the allowable years of reactor operation are presented and were evaluated. (Nakai, Y.)

  7. Determination of iodine in oyster tissue by isotope dilution laser resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fassett, J.D.; Murphy, T.J.

    1990-01-01

    The technique of laser resonance ionization mass spectrometry has been combined with isotope dilution analysis to determine iodine in oyster tissue. The long-lived radioisotope, 129I, was used to spike the samples. Samples were equilibrated with the 129I, wet ashed under controlled conditions, and iodine separated by coprecipitation with silver chloride. The analyte was dried as silver ammonium iodide upon a tantalum filament from which iodine was thermally desorbed in the resonance ionization mass spectrometry instrument. A single-color, two-photon resonant plus one-photon ionization scheme was used to form positive iodine ions. Long-lived iodine signals were achieved from 100 ng of iodine. The precision of 127I/129I measurement has been evaluated by replicate determinations of the spike, the spike calibration samples, and the oyster tissue samples and was 1.0%. Measurement precision among samples was 1.9% for the spike calibration and 1.4% for the oyster tissue. The concentration of iodine determined in SRM 1566a, Oyster Tissue, was 4.44 micrograms/g with an estimate of the overall uncertainty for the analysis of +/- 0.12 microgram/g

  8. T lymphocytes and normal tissue responses to radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; McBride, William H.

    2012-01-01

    There is compelling evidence that lymphocytes are a recurring feature in radiation damaged normal tissues, but assessing their functional significance has proven difficult. Contradictory roles have been postulated in both tissue pathogenesis and protection, although these are not necessarily mutually exclusive as the immune system can display what may seem to be opposing faces at any one time. While the exact role of T lymphocytes in irradiated normal tissue responses may still be obscure, their accumulation after tissue damage suggests they may be critical targets for radiotherapeutic intervention and worthy of further study. This is accentuated by recent findings that pathologically damaged “self,” such as occurs after exposure to ionizing radiation, can generate danger signals with the ability to activate pathways similar to those that activate adoptive immunity to pathogens. In addition, the demonstration of T cell subsets with their recognition radars tuned to “self” moieties has revolutionized our ideas on how all immune responses are controlled and regulated. New concepts of autoimmunity have resulted based on the dissociation of immune functions between different subsets of immune cells. It is becoming axiomatic that the immune system has the power to regulate radiation-induced tissue damage, from failure of regeneration to fibrosis, to acute and chronic late effects, and even to carcinogenesis. Our understanding of the interplay between T lymphocytes and radiation-damaged tissue may still be rudimentary but this is a good time to re-examine their potential roles, their radiobiological and microenvironmental influences, and the possibilities for therapeutic manipulation. This review will discuss the yin and yang of T cell responses within the context of radiation exposures, how they might drive or protect against normal tissue side effects and what we may be able do about it.

  9. Studies on the strategies of minimizing radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hee Yong; Sohn, Young Sook

    1998-04-01

    We studied on the strategies of minimizing radiation damage in animal system. To this end we studied following areas of research (1) mechanisms involved in bone marrow damage after total body irradiation, (2) extraction of components that are useful in protecting hematopoietic system from radiation damage, (3) cell therapy approach in restoring the damaged tissue, (4) development of radioprotective chemical reagent, and (5) epidemiological study on the population that had been exposed to radiation.

  10. Studies on the strategies of minimizing radiation damage

    International Nuclear Information System (INIS)

    Chung, Hee Yong; Sohn, Young Sook

    1998-04-01

    We studied on the strategies of minimizing radiation damage in animal system. To this end we studied following areas of research 1) mechanisms involved in bone marrow damage after total body irradiation, 2) extraction of components that are useful in protecting hematopoietic system from radiation damage, 3) cell therapy approach in restoring the damaged tissue, 4) development of radioprotective chemical reagent, and 5) epidemiological study on the population that had been exposed to radiation

  11. Cellular proliferation and regeneration following tissue damage. Progress report. [Eyes

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.V.

    1976-10-01

    Results are reported from a study of wound healing in tissues of the eye, particularly lens, cornea, and surrounding tissues. The reactions of these tissues to mechanical injuries, as well as injuries induced by chemotoxic agents were studied. It is postulated that a better understanding of the basic reactions of the eye to injurious agents may be of importance in the evaluation of potential environmental hazards.

  12. Determination of Bruising Damages of Tomato during Road Transportation Process

    Directory of Open Access Journals (Sweden)

    A Mansouri Alam

    2018-03-01

    Full Text Available Introduction The most important post-harvest mechanical damage is bruising. Bruising occurs during the stages of handling, transporting and packaging due to quasi-static and dynamic loads. Vibrations of tomato fruits during transportation by truck will decrease their quality. More than 2.5 million tons damages have been reported during tomato transportation in Iran. Therefore, it is necessary to recognize different parameters of damages during road transportation in order to detect and prevent bruising injury. Materials and Methods In this study, healthy Super Queen verity of tomatoes devoid of any corrosion and mechanical damage multipliers were used. Aaverage of 7 and 5 pieces of fruit in each length and width, respectively in 13*25*37 cm boxes with a capacity of 8 kg were arranged. The boxes were divided into 2 types of truck suspension (model M2631 AIMCO, manufactured in 2010 with air suspension and Nissan trucks 2400, manufactured in 2010 with suspension spring. Boxes were established in three different heights truck, floor truck, height of middle and top of truck, in addition to two different situation boxes on the front axle (S1 and rear axle (S2. In each situation, three levels of height (H1, floor truck, the truck (H2 and the truck (H3 there. The location of each sample inside the fruit boxes bottom row (Loc1 and top (Loc2 boxes marked with marker. In this study, two types of road, highway asphalt and asphalt secondary road was used for transportation. Trucks and vans had the same distance route about 400 km. Fruits were transferred to Hamadan agricultural college. Rheology lab test was a hit with the pendulum. In this study, the amount of energy absorbed from the index (as a parameter to determine the sensitivity and the fruits bruises were used. Hit test was done after transportation of fruits and transferring those to the laboratory in less than 2 hours. Impact energy products were considered higher than the dynamic submission

  13. Laser-induced cartilage damage: an ex-vivo model using confocal microscopy

    Science.gov (United States)

    Frenz, Martin; Zueger, Benno J.; Monin, D.; Weiler, C.; Mainil-Varlet, P. M.; Weber, Heinz P.; Schaffner, Thomas

    1999-06-01

    Although there is an increasing popularity of lasers in orthopedic surgery, there is a growing concern about negative side effects of this therapy e.g. prolonged restitution time, radiation damage to adjacent cartilage or depth effects like bone necrosis. Despite case reports and experimental investigations over the last few years little is known about the extent of acute cartilage damage induced by different lasers types and energies. Histological examination offers only limited insights in cell viability and metabolism. Ho:YAG and Er:YAG lasers emitting at 2.1 micrometer and 2.94 micrometer, respectively, are ideally suited for tissue treatment because these wavelengths are strongly absorbed in water. The Purpose of the present study is to evaluate the effect of laser type and energy on chondrocyte viability in an ex vivo model. Free running Er:YAG (E equals 100 and 150 mJ) and Ho:YAG (E equals 500 and 800 mJ) lasers were used at different energy levels using a fixed pulse length of 400 microseconds. The energy was delivered at 8 Hz through optical fibers. Fresh bovine hyaline cartilage samples were mounted in a water bath at room temperature and the fiber was positioned at 30 degree and 180 degree angles relative to the tissue surface. After laser irradiation the samples were assessed by a life-dead cell viability test using a confocal microscope and by standard histology. Thermal damage was much deeper with Ho:YAG (up to 1800 micrometer) than with the Er:YAG laser (up to 70 micrometer). The cell viability test revealed a damage zone about twice the one determined by standard histology. Confocal microscopy is a powerful tool for assessing changes in tissue structure after laser treatment. In addition this technique allows to quantify these alterations without necessitating time consuming and expensive animal experiments.

  14. Damage analysis: damage function development and application

    International Nuclear Information System (INIS)

    Simons, R.L.; Odette, G.R.

    1975-01-01

    The derivation and application of damage functions, including recent developments for the U.S. LMFBR and CTR programs, is reviewed. A primary application of damage functions is in predicting component life expectancies; i.e., the fluence required in a service spectrum to attain a specified design property change. An important part of the analysis is the estimation of the uncertainty in such fluence limit predictions. The status of standardizing the procedures for the derivation and application of damage functions is discussed. Improvements in several areas of damage function development are needed before standardization can be completed. These include increasing the quantity and quality of the data used in the analysis, determining the limitations of the analysis due to the presence of multiple damage mechanisms, and finally, testing of damage function predictions against data obtained from material surveillance programs in operating thermal and fast reactors. 23 references. (auth)

  15. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest

    2015-01-01

    -reactivity with other molecules in cells. This review provides an overview of efforts to reliably detect oxidatively damaged DNA and a critical assessment of the published studies on DNA damage levels. Animal studies with high baseline levels of oxidatively damaged DNA are more likely to show positive associations...... of oxidatively damaged DNA in lung tissue. Oral exposure to nanosized carbon black, TiO2 , carbon nanotubes and ZnO is associated with elevated levels of oxidatively damaged DNA in tissues. These observations are supported by cell culture studies showing concentration-dependent associations between ENM exposure...... and oxidatively damaged DNA measured by the comet assay. Cell culture studies show relatively high variation in the ability of ENMs to oxidatively damage DNA; hence, it is currently impossible to group ENMs according to their DNA damaging potential. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc....

  16. A new method of damage determination in geothermal wells from geothermal inflow with application to Los Humeros, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Moya, S. L [Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico); Garcia-Gutierrez, A; Arellano, V [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-10-15

    Geothermal inflow type curves were obtained for different values of well damage (i.e., inflow performance relationships). The method was evaluated by diagnosing the damage of thirteen producing wells in the Los Humeros, Puebla, Mexico geothermal field. Permeability determinations were carried out for these wells and their productivity indices were estimated. Comparison of the diagnoses made via damage effects against the results of field pressure tests showed that the maximum difference between both approaches is on the order of 0.7 damage units. The methodology allows reservoir characterization along its productive life, since several production tests are carried out while the reservoir is producing. The data obtained from production tests are used to determine the damage effect and permeability of the rock formation. Previously the damage (skin factor) could only be determined from the analyses of transient pressure tests. [Spanish] Se presenta la obtencion de curvas-tipo de influjo geotermico para diferentes valores de dano, y se demuestra su aplicacion en los analisis de produccion de pozos geotermicos determinando el dano en trece pozos del campo geotermico de Los Humeros, Puebla, Mexico. Tambien se hicieron determinaciones de la permeabilidad en las zonas de produccion de estos pozos y de sus respectivos indices de productividad. Se compararon los resultados del valor de dano obtenido con la metodologia propuesta, con los valores de dano obtenidos a partir de pruebas de presion, encontrando que las diferencias maximas entre ambas tecnicas es del orden de 0.7 unidades de dano. La presente metodologia permite la caracterizacion del yacimiento a lo largo de su vida productiva a partir de las mediciones de las pruebas de produccion efectuadas en los pozos. La metodologia propuesta es innovadora porque anteriormente el dano solamente se podia determinar a partir de los analisis de las mediciones de la pruebas de presion.

  17. DEPENDENCIES TO DETERMINE THE MEASURE OF DAMAGE AND CALCULATION OF RESIDUAL LIFE OF REINFORCED CONCRETE SUPERSTRUCTURE, EXPOSED TO SALT CORROSION

    OpenAIRE

    SAATOVA NODIRA ZIYAYEVNA

    2016-01-01

    In this paper we consider the current method of determining the measure of damage of concrete and reinforcement. The proposed dependence measures of damage, convenient for use in predicting the life of structures superstructures.The practical method of calculation determination of residual resource of the exploited superstructures developed. The main source of data for calculating the residual life are the parameters defined by the technical diagnosis.

  18. Oxidative damage and aging: spotlight on mitochondria.

    Science.gov (United States)

    Linford, Nancy J; Schriner, Samuel E; Rabinovitch, Peter S

    2006-03-01

    Whereas free radical damage has been proposed as a key component in the tissue degeneration associated with aging, there has been little evidence that free radical damage limits life span in mammals. The current research shows that overexpression of the antioxidant enzyme catalase in mitochondria can extend mouse life span. These results highlight the importance of mitochondrial damage in aging and suggest that when targeted appropriately, boosting antioxidant defenses can increase mammalian life span.

  19. Investigations of nephrotoxicity caused by ionic and non-ionic contrast media in rats with previously damaged and not previously damaged kidneys and special view to urinary enzyme determinations

    International Nuclear Information System (INIS)

    Hofmeister, R.

    1988-01-01

    In this study ionic (meglumine amidotrizoate) and non-ionic contrast media (SHH 340 AB, Iohexol, Iopromide, Iosimide and Iopamidol) were tested for their nephrotoxicity in rats. During the experiment detections of urea nitrogen, serum creatinine and urinary enzymes as well as histological examinations of the kidneys were carried out for the diagnosis of acute renal damage. The results obtained in this study demonstrate that rats are not very sensitive to non-ionic contrast media with regard to kidney damage and determinations of urinary enzymes are valuable for the diagnosis of contrast media induced acute kidney damage in living animals. (orig./MG) [de

  20. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mary C Vázquez

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+; WT and homozygous-mutant (Npc1(-/-; NPC mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE: In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress

  1. Changes in the rate of proliferation in normal tissues after irradiation

    International Nuclear Information System (INIS)

    Denekamp, J.

    1975-01-01

    In tissues where reproductive cell death is known to cause the functional tissue damage (e.g., intestine and skin), repopulation becomes important only after the death of the radiation-damaged cells. Since these tissues have a fairly rapid turnover, this can occur within a short period of time and can assist in the healing of tissues during fractionated therapy. However, in tissues which express their damage late, such as the lung, it is very unlikely that repopulation will be stimulated before cell death is manifested and this does not occur during the period over which fractionated radiotherapy is administered. Although repopulation may be of no importance in these tissues, e.g., lungs and kidneys, there appears to be some other ''repair'' process which requires additional radiation dose to be administered to achieve the same endpoint if the overall time is increased

  2. Synthetic Secoisolariciresinol Diglucoside (LGM2605 Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    Directory of Open Access Journals (Sweden)

    Anastasia Velalopoulou

    2017-11-01

    Full Text Available Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS, pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  3. Stem cell-derived angiogenic/vasculogenic cells: Possible therapies for tissue repair and tissue engineering

    NARCIS (Netherlands)

    Zwaginga, J. J.; Doevendans, P.

    2003-01-01

    1. The recent ability to isolate stem cells and study their specific capacity of self-renewal with the formation of different cell types has opened up exciting vistas to help the repair of damaged tissue and even the formation of new tissue. In the present review, we deal with the characteristics

  4. [Effect of oxidative stress-associated damage to the lung tissue caused by different body mass index in the rat models].

    Science.gov (United States)

    Li, X Y; Zhang, X J; Zhao, J H; Xu, J Y

    2016-12-12

    Objective: To investigate the influence of different diets on serum protein expression levels of 4-hydroxynonenal (4-HNE), thioredoxin (Trx), thioredoxin reductase (TrxR) and the activities of Trx and TrxR, and to explore the effect of damage to the lung tissue and the underlying mechanisms of different body mass index caused by different diets in the rat models . Method: Healthy clean male SD rats were randomly divided into normal group, emaciation group and fat group, which were raised by different diets for 6 months.Then the rats were sacrificed and the serum and lung tissue were prepared. The levels of 4-HNE, Trx and TrxR in peripheral blood were quantitatively analyzed by enzyme-linked immunosorbent assay(ELISA), and the activities of Trx and TrxR were measured by chemical methods. Results: Compared with the normal group, the lung tissue had more apparent emphysema in the emaciation and the fat groups under light microscope, and more inflammatory cell infiltration in alveolar septum was observed in the fat group.The levels of 4-HNE in the fat group[(24.7±8.7)mg/L]was significantly higher than that in the normal group[(15.4±4.7)mg/L, P 0.05)in the levels of 4-HNE between the emaciation and the normal groups. The levels of TrxR in the emaciation group[(7.7±1.4)μg/ml]was significantly higher than that in the normal and the fat groups[(6.2±1.1), (4.9±1.4)μg/ml, all P 0.05). The activity of Trx in the emaciation group[(32.4±8.5)×10 -3 A ·min -1 ·mg -1 ]was significantly higher than that in the normal group[(19.6±3.3)×10 -3 A ·min -1 ·mg -1 ]and the fat group[(11.3±7.5)×10 -3 A ·min -1 ·mg -1 , all P 0.05). Conclusion: Both high BMI and low BMI can affect the oxidative stress of the body, resulting in increased oxidants and decreased antioxidants, and can cause damage to the lung tissue in the rat models.

  5. Is reproduction costly? No increase of oxidative damage in breeding bank voles.

    Science.gov (United States)

    Ołdakowski, Łukasz; Piotrowska, Zaneta; Chrzaácik, Katarzyna M; Sadowska, Edyta T; Koteja, Paweł; Taylor, Jan R E

    2012-06-01

    According to life-history theory, investment in reproduction is associated with costs, which should appear as decreased survival to the next reproduction or lower future reproductive success. It has been suggested that oxidative stress may be the proximate mechanism of these trade-offs. Despite numerous studies of the defense against reactive oxygen species (ROS) during reproduction, very little is known about the damage caused by ROS to the tissues of wild breeding animals. We measured oxidative damage to lipids and proteins in breeding bank vole (Myodes glareolus) females after rearing one and two litters, and in non-breeding females. We used bank voles from lines selected for high maximum aerobic metabolic rates (which also had high resting metabolic rates and food intake) and non-selected control lines. The oxidative damage was determined in heart, kidneys and skeletal muscles by measuring the concentration of thiobarbituric acid-reactive substances, as markers of lipid peroxidation, and carbonyl groups in proteins, as markers of protein oxidation. Surprisingly, we found that the oxidative damage to lipids in kidneys and muscles was actually lower in breeding than in non-breeding voles, and it did not differ between animals from the selected and control lines. Thus, contrary to our predictions, females that bred suffered lower levels of oxidative stress than those that did not reproduce. Elevated production of antioxidant enzymes and the protective role of sex hormones may explain the results. The results of the present study do not support the hypothesis that oxidative damage to tissues is the proximate mechanism of reproduction costs.

  6. In vitro determination of inorganic constituents in bone tissues using neutron activation analysis

    International Nuclear Information System (INIS)

    Takata, Marcelo Kazuo

    2003-01-01

    In the past years, there has been an increasing interest in bone analyses since they are deposits of essential and toxic elements. Besides they have supporting function of human body and protect vital organs. Besides, analyses of inorganic constituents in bones have been carried out to study bone diseases such as osteoporosis and tumors in bones. In this work, an adequate experimental procedure was established for bone tissue treatment, and instrumental neutron activation analysis was applied to trace element determinations in freeze-dried cortical and trabecular tissues and whole bone ash from animal (porcine and bovine) and human ribs. Using short and long-period irradiations at the IEA-R1 nuclear research reactor, the elements Ba, Br, Ca, Cl, Fe, K, Mg, Mn, Na, P, Rb, Sb, Sr and Zn were determined in bone tissues. To validate the analytical methodology, biological certified reference materials were analyzed and their results showed good precision and accuracy. Besides analyses of a bovine rib bone presented precise data for most elements with relative standard deviations lower than 14 %. This result demonstrated that the procedure defined for bone tissue treatment was appropriate to obtain homogeneous samples. However, the calcination was not suitable for whole bone treatment due to loss of Br and Cl. Statistical t test was applied to compare the results obtained for different tissues of bone and also the results found for ribs of two animal species. Comparisons between the results obtained for correspondent tissues of porcine and bovine ribs present different element concentration. Moreover, cortical and trabecular tissues of humans presented different concentrations for all the elements analyzed in this work. These findings indicate that trace elements in bone samples have to be separately studied. (author)

  7. [In vitro examination of the influence of lipase and amylase on dog's pancreas tissue incubated with endotoxins, phospholipase A2 or cytokines].

    Science.gov (United States)

    Kerekes, László; Antal-Szalmás, Péter; Dezso, Balázs; Sipka, Sándor; Furka, Andrea; Mikó, Irén; Sápy, Péter

    2005-04-01

    Proinflammatory cytokines are elevated during acute pancreatitis. The endotoxins and Phospholipase A2 (PLA2) also have important role in acute pancreatitis. The aim of this study was to determine, what factors are responsible for the tissue damage in acute pancreatitis. The examinations were performed on fixed and frozen sections of healthy dog's pancreas tissue. Direct effects of endotoxins, PLA2, and proinflammatory cytokines together with pancreas enzymes were examined on pancreatic tissue. Pancreas enzymes themselves did not cause any change in the structure of pancreas. The common influence of endotoxins, PLA2 and pancreas enzymes was examined, and finally the effect of proinflammatory cytokines and enzymes was examined on pancreas tissue. Our results show, that besides enzymes many other factors are necessary to inflict tissue damage in acute pancreatitis, but for necrosis the presence of TNF alfa is a must.

  8. Proton energy determinations in water and in tissue-like material

    Energy Technology Data Exchange (ETDEWEB)

    Laitano, R F [Ist. Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA, Roma (Italy); Rosetti, M [Div. di Fisica Applicata, ENEA, Bologna (Italy)

    1997-09-01

    The mean energy of proton beams in water and in a tissue substitute, respectively, were determined as a function of SOBP width, beam size and initial energy spread. Then an analytical expression to obtain the proton mean energy as a function of phantom depth and initial energy was established. This expression differs from the analogous ones reported in some current dosimetry protocols in that it accounts for the nuclear interaction effects in determining the mean energy. The preliminary results of the calculations referred to above are reported together with some comments on the specification of the proton beam quality for clinical dosimetry. (orig.)

  9. Damage detection in high-rise buildings using damage-induced rotations

    International Nuclear Information System (INIS)

    Sung, Seung Hun; Jung, Ho Youn; Lee, Jung Hoon; Jung, Hyung Jo

    2016-01-01

    In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not

  10. Damage detection in high-rise buildings using damage-induced rotations

    International Nuclear Information System (INIS)

    Sung, Seung Hoon; Jung, Ho Youn; Lee, Jung Hoon; Jung, Hyung Jo

    2014-01-01

    In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not.

  11. Determination of elemental tissue composition following proton treatment using positron emission tomography

    International Nuclear Information System (INIS)

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Min, Chul Hee; Zhu, Xuping; El Fakhri, Georges; Paganetti, Harald; Mawlawi, Osama

    2013-01-01

    Positron emission tomography (PET) has been suggested as an imaging technique for in vivo proton dose and range verification after proton induced-tissue activation. During proton treatment, irradiated tissue is activated and decays while emitting positrons. In this paper, we assessed the feasibility of using PET imaging after proton treatment to determine tissue elemental composition by evaluating the resultant composite decay curve of activated tissue. A phantom consisting of sections composed of different combinations of 1 H, 12 C, 14 N, and 16 O was irradiated using a pristine Bragg peak and a 6 cm spread-out Bragg-peak (SOBP) proton beam. The beam ranges defined at 90% distal dose were 10 cm; the delivered dose was 1.6 Gy for the near monoenergetic beam and 2 Gy for the SOBP beam. After irradiation, activated phantom decay was measured using an in-room PET scanner for 30 min in list mode. Decay curves from the activated 12 C and 16 O sections were first decomposed into multiple simple exponential decay curves, each curve corresponding to a constituent radioisotope, using a least-squares method. The relative radioisotope fractions from each section were determined. These fractions were used to guide the decay curve decomposition from the section consisting mainly of 12 C + 16 O and calculate the relative elemental composition of 12 C and 16 O. A Monte Carlo simulation was also used to determine the elemental composition of the 12 C + 16 O section. The calculated compositions of the 12 C + 16 O section using both approaches (PET and Monte Carlo) were compared with the true known phantom composition. Finally, two patients were imaged using an in-room PET scanner after proton therapy of the head. Their PET data and the technique described above were used to construct elemental composition ( 12 C and 16 O) maps that corresponded to the proton-activated regions. We compared the 12 C and 16 O compositions of seven ROIs that corresponded to the vitreous humor, adipose

  12. Relationship between X-ray irradiation and chromosomal damage in bone marrow tissue of mice

    International Nuclear Information System (INIS)

    Chaubey, R.C.; George, K.P.; Sundaram, K.

    1976-01-01

    X-ray induced chromosomal damage in bone-marrow tissue of male mice was studied using micronucleus technique. Dose response relationship was evaluated. Male Swiss mice received whole body x-ray irradiation at different doses from 25-1000 rads. Animals were sacrificed at the end of 24 hours, bone-marrow smears were made and stained in May-Grunwald-Giemsa. The preparatians were scored for the following types of aberrations: micronuclei in young erythocytes-polychromatic cells and in the mature erythrocytes-normechromatic cells. A dose dependent increase in the frequency of micronuclei in polychromatic cells up to a dose of 100 rads was observed. In addition the effect of post-irradiation duration on the frequency of micronuclei in polychromatic and normochromatic cells were studied. Male Swiss mice were exposed to 200 rads x-rays and were then sacrificed at different time intervals after irradiation and bone-marrow preparations were made and scored. Maximum polychromatic cells with micronuclei were observed in 24 hours post-irradiated animals, thereafter a decrease in the frequency of polychromatic cells with micronuclei was observed in 40 hours post irradiated animals. (author

  13. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  14. Mechanisms of Sensorineural Cell Damage, Death and Survival in the Cochlea

    Directory of Open Access Journals (Sweden)

    Allen Frederic Ryan

    2015-04-01

    Full Text Available The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss. Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed.

  15. Ozone damage to tobacco in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Macdowall, F D.H.; Vickery, L S; Runeckles, V C; Patrick, Z A

    1963-12-01

    Tobacco weather fleck has caused significant losses of flue-cured tobacco in southern Ontario since 1955. Fleck damage was greatest near the coast of Lake Erie and decreased progressively inland. Ozone has been shown to be one of the most important incitants of the fleck response in tobacco whereas parasitic fungi, bacteria and viruses were proven not to be implicated as causes of the disorder. The inherently susceptible variety White Gold, used in all tests, was rendered more susceptible by irrigation and nitrogen deficiency. It was also more susceptible during flowering and when producing lateral shoots. The degree and duration of stomatal opening were important factors in determining the amount of injury. Concentration of ozone in the air was shown experimentally to affect the speed of fleck response as well as the severity of symptoms. Statistically significant correlations between ozone concentrations and fleck damage were obtained from field data when the response of highly susceptible tissues only was considered. The merits of several visual rating methods are compared and discussed. 22 references, 5 figures, 11 tables.

  16. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue

    Science.gov (United States)

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-04-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here inspired by the endoparasite Pomphorhynchus laevis, which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~3.5-fold increase in adhesion strength compared with staples in skin graft fixation, and removal force of ~4.5 N cm-2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics.

  17. Evaluation of normal tissue responses to high-LET radiations

    International Nuclear Information System (INIS)

    Halnan, K.E.

    1979-01-01

    Clinical results presented have been analysed to evaluate normal tissue responses to high-LET radiations. Damage to brain, spinal cord, gut, skin, connective tissue and bone has occurred. A high RBE is probable for brain and possible for spinal cord and gut but other reasons for damage are also discussed. A net gain seems likely. Random controlled trials are advocated. (author)

  18. Determination of fat tissue area in the abdomen and evaluation of degree of obesity. Pt. 2. Clinical application of a unique densitometry CT technique for determination of fat tissue areas

    International Nuclear Information System (INIS)

    Nakayama, Fumie

    1995-01-01

    Abdominal CT scanning was performed to establish normal spectra of abdominal tissue areas on 291 subjects. Using the data file of measurements of abdominal fat tissue areas of 133 normal subjects, means and their standard deviations (S.D.) were calculated for each fat tissue area at the four levels for each gender. On 158 persons with abnormal body mass index (BMI) values, S.D.-distance of each fat tissue area from the mean of the control in each age group of each gender was compared with each other. Ratios of visceral fat tissue area to subcutaneous fat tissue area (V/S ratio) were also calculated. The visceral fat tissue area of normal male subjects was significantly larger at all the four levels than those of female ones, while the subcutaneous fat tissue area were smaller at all levels. Although the area of entire and subcutaneous fat tissues of female subjects showed a peak at the age of 50 years old, those in male subjects did not show any peak at any age group. Although there was a statistically significant correlation between values of BMI and S.D.-distance of each fat tissue area at each level, the coefficient between BMI and S.D.-distance of subcutaneous fat tissue area was very low at the level of 60 mm in female. Seven of 74 female subjects with abnormal BMI had more than 10 S.D.-distance of subcutaneous fat tissue area at all levels and 8 of them had more S.D.-distance than of all fat tissue area at any level. The V/S ratio of the male subjects was significantly larger than that in female. Besides, there was no correlation between V/S ratio and S.D.-distance of visceral fat tissue area in both male and female subjects. These findings indicate that the V/S ratio does not reflect the size of fat tissue area. The determination of fat tissue areas by the abdominal CT at several levels is quite a useful way for accurate evaluation of obesity. (S.Y.)

  19. Determination of fat tissue area in the abdomen and evaluation of degree of obesity. Pt. 2. Clinical application of a unique densitometry CT technique for determination of fat tissue areas

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Fumie [Saint Marianna Univ., Kawasaki, Kanagawa (Japan). School of Medicine

    1995-06-01

    Abdominal CT scanning was performed to establish normal spectra of abdominal tissue areas on 291 subjects. Using the data file of measurements of abdominal fat tissue areas of 133 normal subjects, means and their standard deviations (S.D.) were calculated for each fat tissue area at the four levels for each gender. On 158 persons with abnormal body mass index (BMI) values, S.D.-distance of each fat tissue area from the mean of the control in each age group of each gender was compared with each other. Ratios of visceral fat tissue area to subcutaneous fat tissue area (V/S ratio) were also calculated. The visceral fat tissue area of normal male subjects was significantly larger at all the four levels than those of female ones, while the subcutaneous fat tissue area were smaller at all levels. Although the area of entire and subcutaneous fat tissues of female subjects showed a peak at the age of 50 years old, those in male subjects did not show any peak at any age group. Although there was a statistically significant correlation between values of BMI and S.D.-distance of each fat tissue area at each level, the coefficient between BMI and S.D.-distance of subcutaneous fat tissue area was very low at the level of 60 mm in female. Seven of 74 female subjects with abnormal BMI had more than 10 S.D.-distance of subcutaneous fat tissue area at all levels and 8 of them had more S.D.-distance than of all fat tissue area at any level. The V/S ratio of the male subjects was significantly larger than that in female. Besides, there was no correlation between V/S ratio and S.D.-distance of visceral fat tissue area in both male and female subjects. These findings indicate that the V/S ratio does not reflect the size of fat tissue area. The determination of fat tissue areas by the abdominal CT at several levels is quite a useful way for accurate evaluation of obesity. (S.Y.).

  20. Damage of rat liver tissue caused by repeated and sustained +Gz exposure and the mechanism thereof

    Directory of Open Access Journals (Sweden)

    Wen-bing LI

    2014-03-01

    Full Text Available Objective  To explore the mechanisms of positive acceleration (+Gz on the damage of rat liver tissue and the effect of +Gz on the expression of JNK/c-Jun in liver cells. Methods  Twenty four male Wistar rats were randomly divided into 4 groups (n=6: control, +2Gz, +6Gz and +10Gz group. With prone position, the rats in control group were fixed to the turning arm of centrifuge with head towards the axis for 5 minutes. The fixation method in +2Gz, +6Gz and +10Gz group was the same as in the control group. The increase rate of acceleration was 1G/s with a peak-time of 3 minutes, and each +Gz exposure repeated 5 times with an interval of 30 minutes. HE staining was used to observe the morphological changes of liver tissue, fluorescence real-time quantitative PCR to detect the expression of hepatic c-Jun mRNA, and Western blotting to detect the hepatic protein expression of p-c-Jun, c-Jun, p-JNK and JNK. Plasma aspartate aminotransferase (AST and alanine aminotransferase (ALT were determined. Results  The levels of serum ALT and AST increased significantly in +6Gz and, especially, the +10Gz group than in control group and +2Gz group (P<0.05. The same situation also existed in the increase of c-Jun mRNA expression (P<0.05. Hepatic c-jun and p-c-Jun (c-Jun activated form protein expression increased with the increase of G value. Compared with control group, no change was found in JNK protein expression in the other three groups, but the expression of p-JNK (activated form of JNK increased in +6Gz and +10Gz groups (P<0.05. HE staining showed the disorganized liver cells with irregular shapes, the unclear cell gap and the vacuolar changes in +6Gz and +10Gz groups. Conclusions  Repeated and sustained +Gz may cause enhanced expression of c-Jun/ p-c-Jun and p-JNK in hepatic cells. JNK/c-Jun signaling pathway may play an important role in the process of hepatic stress injury. DOI: 10.11855/j.issn.0577-7402.2014.03.15

  1. Pulp tissue in sex determination: A fluorescent microscopic study

    Science.gov (United States)

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  2. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading

    NARCIS (Netherlands)

    Loerakker, S.; Manders, E.; Strijkers, G.J.; Nicolay, K.; Baaijens, F.P.T.; Bader, D.L.; Oomens, C.W.J.

    2011-01-01

    Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. In the present study, the contributions of deformation, ischemia, and reperfusion to skeletal muscle damage development were examined in a rat model during a 6-h period.

  3. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    N.B.R. Colombo

    2015-01-01

    Full Text Available The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.

  4. Hyperspectral imaging based on compressive sensing to determine cancer margins in human pancreatic tissue ex vivo

    Science.gov (United States)

    Peller, Joseph; Thompson, Kyle J.; Siddiqui, Imran; Martinie, John; Iannitti, David A.; Trammell, Susan R.

    2017-02-01

    Pancreatic cancer is the fourth leading cause of cancer death in the US. Currently, surgery is the only treatment that offers a chance of cure, however, accurately identifying tumor margins in real-time is difficult. Research has demonstrated that optical spectroscopy can be used to distinguish between healthy and diseased tissue. The design of a single-pixel imaging system for cancer detection is discussed. The system differentiates between healthy and diseased tissue based on differences in the optical reflectance spectra of these regions. In this study, pancreatic tissue samples from 6 patients undergoing Whipple procedures are imaged with the system (total number of tissue sample imaged was N=11). Regions of healthy and unhealthy tissue are determined based on SAM analysis of these spectral images. Hyperspectral imaging results are then compared to white light imaging and histological analysis. Cancerous regions were clearly visible in the hyperspectral images. Margins determined via spectral imaging were in good agreement with margins identified by histology, indicating that hyperspectral imaging system can differentiate between healthy and diseased tissue. After imaging the system was able to detect cancerous regions with a sensitivity of 74.50±5.89% and a specificity of 75.53±10.81%. Possible applications of this imaging system include determination of tumor margins during surgery/biopsy and assistance with cancer diagnosis and staging.

  5. Metric to quantify white matter damage on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M.; Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni; Dickie, David Alexander; Royle, Natalie A.; Armitage, Paul A.; Deary, Ian J.

    2017-01-01

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in image processing methods and scanning protocols, and sensitive to subtle and severe white

  6. Effect of sucralfate and its components on taurocholate-induced damage to rat gastric mucosal cells in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Romano, M.; Razandi, M.; Ivey, K.J. (Long Beach VA Medical Center, CA (USA))

    1990-04-01

    The present study evaluated the effect of sucralfate and its components, sucrose octasulfate and aluminum hydroxide, on: (1) damage to rat cultured gastric mucosal cells induced by sodium taurocholate in a neutral environment and in conditions independent of systemic factors, (2) prostaglandin E2 and on 6-keto prostaglandin F1 alpha release by cultured cells, and (3) sulfhydryl content of cultured cells. Cell damage was quantitated by chromium-51 release assay. Prostaglandin E2 and 6-keto prostaglandin F1 alpha were measured by radioimmunoassay. Total sulfhydryl content of cultured cells was determined calorimetrically. Microscopically, sucralfate was found to adhere tightly to epithelial cell surfaces despite frequent washings. Sucralfate 2 mg/ml and 5 mg/ml significantly decreased taurocholate-induced damage, reducing taurocholate-induced specific 51Cr release by 11.8 points (equal to 29% decrease in cell damage, P less than 0.01) and 22.9 points (equal to 56% decrease in cell damage, P less than 0.001), respectively. Sucrose octasulfate and aluminum hydroxide did not exert significant protection against damage induced by sodium taurocholate. The protective effect of sucralfate was not prevented by indomethacin, nor was it counteracted by the sulfhydryl blocker, iodoacetamide. Sucralfate, but not its components, significantly and dose-dependently stimulated prostaglandin E2 (r = 0.94, P less than 0.05) and 6-keto prostaglandin F1 alpha (r = 0.89, P less than 0.05) production by cultured cells. Neither sucralfate nor its components affected sulfhydryl content of cultured cells. In conclusion, sucralfate, but not its components, (1) protects rat gastric mucosal cells against taurocholate-induced damage in conditions independent of systemic factors and in a neutral environment and (2) significantly stimulates prostaglandin production by cultured cells.

  7. Effect of sucralfate and its components on taurocholate-induced damage to rat gastric mucosal cells in tissue culture

    International Nuclear Information System (INIS)

    Romano, M.; Razandi, M.; Ivey, K.J.

    1990-01-01

    The present study evaluated the effect of sucralfate and its components, sucrose octasulfate and aluminum hydroxide, on: (1) damage to rat cultured gastric mucosal cells induced by sodium taurocholate in a neutral environment and in conditions independent of systemic factors, (2) prostaglandin E2 and on 6-keto prostaglandin F1 alpha release by cultured cells, and (3) sulfhydryl content of cultured cells. Cell damage was quantitated by chromium-51 release assay. Prostaglandin E2 and 6-keto prostaglandin F1 alpha were measured by radioimmunoassay. Total sulfhydryl content of cultured cells was determined calorimetrically. Microscopically, sucralfate was found to adhere tightly to epithelial cell surfaces despite frequent washings. Sucralfate 2 mg/ml and 5 mg/ml significantly decreased taurocholate-induced damage, reducing taurocholate-induced specific 51Cr release by 11.8 points (equal to 29% decrease in cell damage, P less than 0.01) and 22.9 points (equal to 56% decrease in cell damage, P less than 0.001), respectively. Sucrose octasulfate and aluminum hydroxide did not exert significant protection against damage induced by sodium taurocholate. The protective effect of sucralfate was not prevented by indomethacin, nor was it counteracted by the sulfhydryl blocker, iodoacetamide. Sucralfate, but not its components, significantly and dose-dependently stimulated prostaglandin E2 (r = 0.94, P less than 0.05) and 6-keto prostaglandin F1 alpha (r = 0.89, P less than 0.05) production by cultured cells. Neither sucralfate nor its components affected sulfhydryl content of cultured cells. In conclusion, sucralfate, but not its components, (1) protects rat gastric mucosal cells against taurocholate-induced damage in conditions independent of systemic factors and in a neutral environment and (2) significantly stimulates prostaglandin production by cultured cells

  8. Measurement of DNA biomarkers for the safety of tissue-engineered medical products, using artificial skin as a model.

    Science.gov (United States)

    Rodriguez, Henry; O'Connell, Catherine; Barker, Peter E; Atha, Donald H; Jaruga, Pawel; Birincioglu, Mustafa; Marino, Michael; McAndrew, Patricia; Dizdaroglu, Miral

    2004-01-01

    To test the hypothesis that the process of tissue engineering introduces genetic damage to tissue-engineered medical products, we employed the use of five state-of-the-art measurement technologies to measure a series of DNA biomarkers in commercially available tissue-engineered skin as a model. DNA was extracted from the skin and compared with DNA from cultured human neonatal control cells (dermal fibroblasts and epidermal keratinocytes) and adult human fibroblasts from a 55-year-old donor and a 96-year-old donor. To determine whether tissue engineering caused oxidative DNA damage, gas chromatography/isotope-dilution mass spectrometry and liquid chromatography/isotope-dilution mass spectrometry were used to measure six oxidatively modified DNA bases as biomarkers. Normal endogenous levels of the modified DNA biomarkers were not elevated in tissue-engineered skin when compared with control cells. Next, denaturing high-performance liquid chromatography and capillary electrophoresis-single strand conformation polymorphism were used to measure genetic mutations. Specifically, the TP53 tumor suppressor gene was screened for mutations, because it is the most commonly mutated gene in skin cancer. The tissue-engineered skin was found to be free of TP53 mutations at the level of sensitivity of these measurement technologies. Lastly, fluorescence in situ hybridization was employed to measure the loss of Y chromosome, which is associated with excessive cell passage and aging. Loss of Y chromosome was not detected in the tissue-engineered skin and cultured neonatal cells used as controls. In this study, we have demonstrated that tissue engineering (for TestSkin II) does not introduce genetic damage above the limits of detection of the state-of-the-art technologies used. This work explores the standard for measuring genetic damage that could be introduced during production of novel tissue-engineered products. More importantly, this exploratory work addresses technological

  9. Mechanisms of lymphatic regeneration after tissue transfer.

    Directory of Open Access Journals (Sweden)

    Alan Yan

    2011-02-01

    Full Text Available Lymphedema is the chronic swelling of an extremity that occurs commonly after lymph node resection for cancer treatment. Recent studies have demonstrated that transfer of healthy tissues can be used as a means of bypassing damaged lymphatics and ameliorating lymphedema. The purpose of these studies was to investigate the mechanisms that regulate lymphatic regeneration after tissue transfer.Nude mice (recipients underwent 2-mm tail skin excisions that were either left open or repaired with full-thickness skin grafts harvested from donor transgenic mice that expressed green fluorescent protein in all tissues or from LYVE-1 knockout mice. Lymphatic regeneration, expression of VEGF-C, macrophage infiltration, and potential for skin grafting to bypass damaged lymphatics were assessed.Skin grafts healed rapidly and restored lymphatic flow. Lymphatic regeneration occurred beginning at the peripheral edges of the graft, primarily from ingrowth of new lymphatic vessels originating from the recipient mouse. In addition, donor lymphatic vessels appeared to spontaneously re-anastomose with recipient vessels. Patterns of VEGF-C expression and macrophage infiltration were temporally and spatially associated with lymphatic regeneration. When compared to mice treated with excision only, there was a 4-fold decrease in tail volumes, 2.5-fold increase in lymphatic transport by lymphoscintigraphy, 40% decrease in dermal thickness, and 54% decrease in scar index in skin-grafted animals, indicating that tissue transfer could bypass damaged lymphatics and promote rapid lymphatic regeneration.Our studies suggest that lymphatic regeneration after tissue transfer occurs by ingrowth of lymphatic vessels and spontaneous re-connection of existing lymphatics. This process is temporally and spatially associated with VEGF-C expression and macrophage infiltration. Finally, tissue transfer can be used to bypass damaged lymphatics and promote rapid lymphatic regeneration.

  10. Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry.

    Science.gov (United States)

    Hudnut, Alexa W; Babaei, Behzad; Liu, Sonya; Larson, Brent K; Mumenthaler, Shannon M; Armani, Andrea M

    2017-10-01

    Characterizing the mechanical behavior of living tissue presents an interesting challenge because the elasticity varies by eight orders of magnitude, from 50Pa to 5GPa. In the present work, a non-destructive optical fiber photoelastic polarimetry system is used to analyze the mechanical properties of resected samples from porcine liver, kidney, and pancreas. Using a quasi-linear viscoelastic fit, the elastic modulus values of the different organ systems are determined. They are in agreement with previous work. In addition, a histological assessment of compressed and uncompressed tissues confirms that the tissue is not damaged during testing.

  11. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  12. Cellular radiosensitivity and DNA damage in primary human fibroblasts

    International Nuclear Information System (INIS)

    Wurm, R.; Burnet, N.G.; Duggal, N.

    1994-01-01

    To evaluate the relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts to decide whether the initial or residual DNA damage levels are more predictive of normal tissue cellular radiosensitivity. Five primary human nonsyndromic and two primary ataxia telangiectasia fibroblast strains grown in monolayer were studied. Cell survival was assessed by clonogenic assay. Irradiation was given at high dose rate (HDR) 1-2 Gy/min. DNA damage was measured in stationary phase cells and expressed as fraction released from the well by pulsed-field gel electrophoresis (PFGE). For initial damage, cells were embedded in agarose and irradiated at HDR on ice. Residual DNA damage was measured in monolayer by allowing a 4-h repair period after HDR irradiation. Following HDR irradiation, cell survival varied between SF 2 0.025 to 0.23. Measurement of initial DNA damage demonstrated linear induction up to 30 Gy, with small differences in the slope of the dose-response curve between strains. No correlation between cell survival and initial damage was found. Residual damage increased linearly up to 80 Gy with a variation in slope by a factor of 3.2. Cell survival correlated with the slope of the dose-response curves for residual damage of the different strains (p = 0.003). The relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts of differing radiosensitivity is closest with the amount of DNA damage remaining after repair. If assays of DNA damage are to be used as predictors of normal tissue response to radiation, residual DNA damage provides the most likely correlation with cell survival. 52 refs., 5 figs., 2 tabs

  13. The metabolism of 32P-CP-PLLA seed implanted in the liver and its damage to the normal liver tissue: a study in the experimental dogs

    International Nuclear Information System (INIS)

    Tan Zhongbao; Liu Lu; Guo Jinhe; Zhu Guangyu; Wang Fuan; Nie Qi; Gao Hailin; Teng Gaojun

    2010-01-01

    Objective: To investigate the effects of intratumoral implantation of 32 P -CP-PLLA seeds on the normal canine liver tissue and to explore the metabolism of 32 P-CP-PLLA seeds implanted in the liver of experimental dogs. Methods: Twelve beagles were enrolled in this study. The dogs were randomly and equally divided into four groups: group A (185 MBq), group B (370 MBq), group C (740 MBq) and group D (0 MBq). By using laparotomy procedure 32 P-CP-PLLA seeds were implanted into dog's liver. CT scan was performed before operation as well as before the dog was sacrificed. All dogs were sacrificed three months after the implantation. Before the procedure and 1, 2, 4, 8 and 12 weeks after the procedure the blood tests and serum biochemical tests were conducted. One dog from group B and group C was selected respectively and was fed in a metabolic cage. Within one month after the procedure the cpm in feces and in urine was determined every 24 hours. One dog was picked out from each of the three groups and was punctured to get its liver tissue for pathologic exam each time at 1, 2, 4, 8 and 12 weeks after the implantation, and SPECT imaging was also performed at the same time. Pathologic study, both macroscopic and microscopic (including optical and electronic microscopy) was made to observe the liver damage after the dog was sacrificed. The statistical analysis was processed by using SPSS 13.0 software and the measuring data were expressed with mean ± standard deviation (x ± s). Results: Two months after the procedure, serological examination found that the serum alkaline phosphatase (BKP) in both group B and group C was significantly higher than that in other groups, the difference was statistically significant (P 32 P-CP-PLLA seeds was manifested as a spherical lesion which was encysted by a layer of fibrous tissue with an edematous zone peripherally. Conclusion: The implantation of 32 P-CP-PLLA seeds in dog's liver causes only localized hepatic damage with no general

  14. Low doses of ionizing radiation: Relationship between biological benefit and damage induction. A synopsis

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2005-01-01

    Absorption of ionizing radiation in biological tissue stochastically interacts with constituent atoms and molecules and always generates energy deposition (track) events accompanied by bursts of reactive oxygen species (ROS). These ROS are quite similar to those ROS that arise abundantly and constantly by normal oxidative metabolism. ROS effects from either source need attention when assessing radiation-induced alterations in biological structure and function. Endogenous ROS alone induce about 10 6 DNA oxyadducts per cell per day compared to about 5x10 -3 total DNA damage per average cell per day from background radiation exposure (1 mGy per year). At this background level, the corresponding ratio of probabilities of endogenous versus radiogenic DNA double strand breaks (DSBs) per cell per day is about 103 with some 25-40 % of low-LET caused radiogenic DNA-DSBs being of the multi-damage-site type. Radiogenic DNA damage increases in proportion to absorbed dose over a certain dose range. By evolution, tissues possess physiological mechanisms of protection against an array of potentially toxic agents, externally from the environment and endogenously from metabolism, mainly against the abundantly and constantly produced ROS. Ad hoc protection operates at a level that is genetically determined. Following small to moderate perturbation of cell-tissue homeostasis by a toxic impact, adaptive responses develop with a delay and may last from hours to weeks, even months, and aim at protecting the system against renewed insults. Protective responses encompass defense by scavenging mechanisms, DNA repair, damage removal largely by apoptosis and immune responses, as well as changes in cell proliferation. Acute low-dose irradiation below about 0.2 Gy can not only disturb cell-tissue homeostasis but also initiate adaptived protection that appears with a delay of hours and may last from less than a day to months. The balance between damage production and adaptive protection favors

  15. Reparative inflammation takes charge of tissue regeneration

    NARCIS (Netherlands)

    Karin, Michael; Clevers, Hans

    2016-01-01

    Inflammation underlies many chronic and degenerative diseases, but it also mitigates infections, clears damaged cells and initiates tissue repair. Many of the mechanisms that link inflammation to damage repair and regeneration in mammals are conserved in lower organisms, indicating that it is an

  16. The prediction of creep damage in type 347 weld metal. Part I: the determination of material properties from creep and tensile tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In the case of the time fraction approach the rupture strength is used to calculate creep damage, whereas creep ductility is used in the ductility exhaustion approach. In part I of this paper the methods that are used to determine these material properties are applied to some creep and constant strain rate tests on a Type 347 weld metal. In addition, new developments to the ductility exhaustion approach are described which give improved predictions of creep damage at failure in these tests. These developments use reverse modelling to determine the most appropriate creep damage model as a function of strain rate, stress and temperature. Hence, the new approach is no longer a ductility exhaustion approach but is a true creep damage model

  17. [Determination of acyclovir in mouse plasma and tissues by reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Xu, Y; Zhou, S W; Tang, J L; Huang, L Q

    2001-11-01

    The aim of this study was to establish an high performance liquid chromatographic method for determining acyclovir (ACV) concentration in mouse plasma and tissues. A solution of 0.25 mL 60 g/L perchloric acid and 0.25 mL acetonitrile was added into 0.2 mL plasma or 0.2 g tissues to precipitate proteins. Following centrifugation, the supernatant obtained was injected into a reversed-phase column. Operating conditions were Hypersil ODS column(250 mm x 4.6 mm i.d., 5 microns), methanol-water-acetic acid(1:99:0.5, volume ratio) solution as mobile phase at a flow rate of 1.5 mL/min, UV detection at 252 nm. The detection limit of ACV concentration in plasma was 20 micrograms/L and that in tissues was 50 ng/g. The standard curves for ACV were linear in plasma and homogenate of tissues (r > 0.99). The precision of the method was good and the recoveries of ACV were higher than 97.5%. So this method is rapid, accurate and convenient for determination of ACV concentrations in plasma and tissues.

  18. Trace Elements in the Conductive Tissue of Beef Heart Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P O

    1965-08-15

    By means of neutron activation analysis, samples of four beef hearts taken from the bundle of His and adjacent ventricular muscle, the AV node and adjacent atrial muscle are investigated with respect to the concentration of 23 trace elements. The bulk elements K, Na and P are also determined. A recently developed ion-exchange technique, combined with subsequent {gamma}-spectrometry, is used. The following trace elements are determined: Ag, As, Au, Ba, Br, .Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Rb, Sb, Sc, Se, Sm, W and Zn. In the conductive tissue compared to adjacent muscle tissue, calculations on a wet weight basis show a lower concentration of Cs, Cu, Fe, K, P, Rb and Zn in the former, and a higher concentration of Ag, Au, Br, Ca and Na. The mean differences ({mu}g/g wet tissue), as well as their degree of significance, between the bundle of His and adjacent tissue from the ventricular septum, between the AV node and adjacent atrial muscle, between the ventricular septum and the right atrium, and between the bundle of His and the AV node are given for the elements Cu, Fe, K, Na, P and Zn.

  19. Trace Elements in the Conductive Tissue of Beef Heart Determined by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Wester, P.O.

    1965-08-01

    By means of neutron activation analysis, samples of four beef hearts taken from the bundle of His and adjacent ventricular muscle, the AV node and adjacent atrial muscle are investigated with respect to the concentration of 23 trace elements. The bulk elements K, Na and P are also determined. A recently developed ion-exchange technique, combined with subsequent γ-spectrometry, is used. The following trace elements are determined: Ag, As, Au, Ba, Br, .Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Rb, Sb, Sc, Se, Sm, W and Zn. In the conductive tissue compared to adjacent muscle tissue, calculations on a wet weight basis show a lower concentration of Cs, Cu, Fe, K, P, Rb and Zn in the former, and a higher concentration of Ag, Au, Br, Ca and Na. The mean differences (μg/g wet tissue), as well as their degree of significance, between the bundle of His and adjacent tissue from the ventricular septum, between the AV node and adjacent atrial muscle, between the ventricular septum and the right atrium, and between the bundle of His and the AV node are given for the elements Cu, Fe, K, Na, P and Zn

  20. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI

    Science.gov (United States)

    2014-09-29

    objective of this project is to determine the conditions conducive for cavitation in cerebrospinal fluid (CSF) and corresponding tissue injury in 2-D brain...the radius of an isolated spherical bubble in an infinite, incompressible liquid is given by Where, R is the instantaneous bubble radius, which can...by the pressure transducer placed in the test chamber, and PR is the pressure in the liquid at the boundary of the bubble. The measurable bubble

  1. The Role of Recipient T Cells in Mesenchymal Stem Cell-Based Tissue Regeneration

    OpenAIRE

    Liu, Yi; Wang, Songlin; Shi, Songtao

    2012-01-01

    Significant progress has been made in stem cell biology, regenerative medicine, and stem cell-based tissue engineering. Such scientific strides highlight the potential of replacing or repairing damaged tissues in congenital abnormalities, diseases, or injuries, as well as constructing functional tissue or organs in vivo. Since mesenchymal stem cells (MSCs) are capable of differentiating into bone-forming cells, they constitute an appropriate cell source to repair damaged bone tissues. In addi...

  2. Contribution to the microchemistry of smoke damage by fluoride. The migration of fluorides in plant tissue. 2. The visible damage

    Energy Technology Data Exchange (ETDEWEB)

    Reckendorfer, P

    1953-01-01

    In continuation of former investigations, a theory of damage caused by fluorine compounds on green plants was developed. It is possible to differentiate between acute and chronic damages by use of microanalytical estimation of total fluorine and inorganic and organic fluorine compounds in the plants.

  3. Osteochondral tissue engineering: scaffolds, stem cells and applications

    Science.gov (United States)

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R

    2012-01-01

    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848

  4. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Peter [University of Oxford; Anderson, Jennifer [University of Oxford

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  5. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    International Nuclear Information System (INIS)

    Cucinotta, Francis A

    2016-01-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  6. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Cucinotta, Francis A [Univ. of Nevada, Las Vegas, NV (United States)

    2016-09-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  7. Effect of the Toll-Like Receptor 4 Antagonist Eritoran on Retinochoroidal Inflammatory Damage in a Rat Model of Endotoxin-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Feyzahan Ekici

    2014-01-01

    Full Text Available Purpose. We investigated the effect of eritoran, a Toll-like receptor 4 antagonist, on retinochoroidal inflammatory damage in an endotoxin-induced inflammatory rat model. Methods. Endotoxin-induced inflammatory model was obtained by intraperitoneal injection of 1.5 mg/kg lipopolysaccharide (LPS. Group 1 had control rats; in groups 2-3 LPS and 0.5 mg/kg sterile saline were injected; and in groups 4-5 LPS and 0.5 mg/kg eritoran were injected. Blood samples were taken and eyes were enucleated after 12 hours (h (groups 2 and 4 or 24 hours (Groups 3 and 5. Tumor necrosis factor-α (TNF-α and malondialdehyde (MDA levels in the serum and retinochoroidal tissue and nuclear factor kappa-B (NFκB levels in retinochoroidal tissue were determined. Histopathological examination was performed and retinochoroidal changes were scored. Results. Eritoran treatment resulted in lower levels of TNF-α, MDA, and NFκB after 12 h which became significant after 24 h. Serum TNF-α and retinochoroidal tissue NFκB levels were similar to control animals at the 24th h of the study. Eritoran significantly reversed histopathological damage after 24 h. Conclusions. Eritoran treatment resulted in less inflammatory damage in terms of serum and retinochoroidal tissue parameters.

  8. DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

    Science.gov (United States)

    Mueller, Michael M; Castells-Roca, Laia; Babu, Vipin; Ermolaeva, Maria A; Müller, Roman-Ulrich; Frommolt, Peter; Williams, Ashley B; Greiss, Sebastian; Schneider, Jennifer I; Benzing, Thomas; Schermer, Bernhard; Schumacher, Björn

    2014-12-01

    Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature ageing. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with ageing. Here we show that the FOXO transcription factor DAF-16 is activated in response to DNA damage during development, whereas the DNA damage responsiveness of DAF-16 declines with ageing. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA-damage-induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16-mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

  9. Re-generation of tissue about an animal-based scaffold: AMS studies of the fate of the scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Rickey, Frank A. E-mail: far@physics.purdue.edu; Elmore, David; Hillegonds, Darren; Badylak, Stephen; Record, Rae; Simmons-Byrd, Abby

    2000-10-01

    Small intestinal submucosa (SIS) is an unusual tissue, which shows great promise for the repair of damaged tissues in humans. When the SIS is used as a surgical implant, the porcine-derived material is not rejected by the host immune system, and in fact stimulates the constructive re-modeling of damaged tissue. In dogs, these SIS scaffolds have been used to grow new arteries, tendons, and urinary bladders. Moreover, the SIS scaffold tissue seems to disappear from the implant region after a few months. The fate of this SIS tissue is of considerable importance if it is to be used in human tissue repair. SIS is obtained from pigs. We have labeled the SIS in several pigs by intraveneous administration of {sup 14}C enriched proline from the age of three weeks until they reach market weight. The prepared SIS was then implanted in dogs as scaffolds for urinary bladder patches. During the remaining life of each dog, blood, urine and feces samples were collected on a regular schedule. AMS analyses of these specimens were performed to measure the elimination rate of the SIS. At different intervals, the dogs were sacrificed. Tissue samples were analyzed by AMS to determine the whole-body distribution of the labeled SIS.

  10. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    Science.gov (United States)

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  11. Molecular assays for determining Mycobacterium leprae viability in tissues of experimentally infected mice.

    Science.gov (United States)

    Davis, Grace L; Ray, Nashone A; Lahiri, Ramanuj; Gillis, Thomas P; Krahenbuhl, James L; Williams, Diana L; Adams, Linda B

    2013-01-01

    The inability of Mycobacterium leprae to grow on axenic media has necessitated specialized techniques in order to determine viability of this organism. The purpose of this study was to develop a simple and sensitive molecular assay for determining M. leprae viability directly from infected tissues. Two M. leprae-specific quantitative reverse transcription PCR (qRT-PCR) assays based on the expression levels of esxA, encoding the ESAT-6 protein, and hsp18, encoding the heat shock 18 kDa protein, were developed and tested using infected footpad (FP) tissues of both immunocompetent and immunocompromised (athymic nu/nu) mice. In addition, the ability of these assays to detect the effects of anti-leprosy drug treatment on M. leprae viability was determined using rifampin and rifapentine, each at 10 mg/kg for 1, 5, or 20 daily doses, in the athymic nu/nu FP model. Molecular enumeration (RLEP PCR) and viability determinations (qRT-PCR) were performed via Taqman methodology on DNA and RNA, respectively, purified from ethanol-fixed FP tissue and compared with conventional enumeration (microscopic counting of acid fast bacilli) and viability assays (radiorespirometry, viability staining) which utilized bacilli freshly harvested from the contralateral FP. Both molecular and conventional assays demonstrated growth and high viability of M. leprae in nu/nu FPs over a 4 month infection period. In contrast, viability was markedly decreased by 8 weeks in immunocompetent mice. Rifapentine significantly reduced bacterial viability after 5 treatments, whereas rifampin required up to 20 treatments for the same efficacy. Neither drug was effective after a single treatment. In addition, host gene expression was monitored with the same RNA preparations. hsp18 and esxA qRT-PCR are sensitive molecular indicators, reliably detecting viability of M. leprae in tissues without the need for bacterial isolation or immediate processing, making these assays applicable for in vivo drug screening and

  12. Effects of Resveratrol on Methotrexate-Induced Testicular Damage in Rats

    Directory of Open Access Journals (Sweden)

    Esin Yuluğ

    2013-01-01

    Full Text Available This study investigated the probable protective effects of resveratrol (RES, an antioxidant, against methotrexate- (MTX- induced testis damage. Twenty-four male Sprague Dawley rats were randomly divided into four groups: control, RES, MTX, and MTX + RES groups. Rats were sacrificed at the end of the experiment. Plasma and tissue malondialdehyde (MDA levels, superoxide dismutase (SOD and catalase (CAT activity in tissue, testicular histopathological damage scores, and testicular and epididymal epithelial apoptotic index (AI were evaluated. The MTX group had significantly higher plasma and tissue MDA levels and significantly lower SOD and CAT activity than those of the control group. In the MTX + RES group, plasma and tissue MDA levels decreased significantly and SOD activity rose significantly compared to the MTX group. The MTX group had significantly lower Johnsen’s testicular biopsy score (JTBS values than those of the control group. JTBS was significantly higher in the MTX + RES group than in the MTX group. AI increased in the testis and epididymis in the MTX group and significantly decreased in the MTX + RES group. Our results indicate that RES has protective effects against MTX-induced testis damage at the biochemical, histopathological, and apoptotic levels.

  13. Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation

    Science.gov (United States)

    Dark, Marta L.; Perelman, Lev T.; Itzkan, Irving; Schaffer, Jonathan L.; Feld, Michael S.

    2000-02-01

    Knee meniscus is a hydrated tissue; it is a fibrocartilage of the knee joint composed primarily of water. We present results of interferometric surface monitoring by which we measure physical properties of human knee meniscal cartilage. The physical response of biological tissue to a short laser pulse is primarily thermomechanical. When the pulse is shorter than characteristic times (thermal diffusion time and acoustic relaxation time) stresses build and propagate as acoustic waves in the tissue. The tissue responds to the laser-induced stress by thermoelastic expansion. Solving the thermoelastic wave equation numerically predicts the correct laser-induced expansion. By comparing theory with experimental data, we can obtain the longitudinal speed of sound, the effective optical penetration depth and the Grüneisen coefficient. This study yields information about the laser-tissue interaction and determines properties of the meniscus samples that could be used as diagnostic parameters.

  14. Tissue Distribution of a Therapeutic Monoclonal Antibody Determined by Large Pore Microdialysis.

    Science.gov (United States)

    Jadhav, Satyawan B; Khaowroongrueng, Vipada; Fueth, Matthias; Otteneder, Michael B; Richter, Wolfgang; Derendorf, Hartmut

    2017-09-01

    Therapeutic monoclonal antibodies (mAbs) exhibit limited distribution to the target tissues. Determination of target tissue interstitial concentration of mAbs is an important aspect in the assessment of their pharmacokinetic/pharmacodynamics relationship especially for mAbs targeting membrane bound receptors. The pharmacokinetics of R7072, a full length mAb (IgG) targeting human insulin-like growth factor-1 receptor was evaluated following a single intravenous dose at 1, 6.25, and 25 mg/kg in healthy female SCID-beige mice. R7072 showed linear pharmacokinetics over the dose range tested and was characterized by low systemic clearance and long terminal half-life. Furthermore, interstitial distribution of R7072 was evaluated in liver, skin, kidney, and muscle tissues using large pore microdialysis (MD) after intravenous administration of 10 mg/kg dose in mice. The relative recoveries of R7072 were consistent and similar between in vitro and in vivo MD experiments. The tissue and interstitial concentrations were significantly lower compared to serum concentrations and found to be highest in liver and lowest in muscle. The interstitial concentrations of R7072 were approximately 2-fold to 4-fold lower than corresponding total tissue concentrations. Large pore MD appears to be an attractive approach for direct measurement of pharmacologically relevant concentrations of therapeutic mAbs in tissue interstitial fluid. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Biomechanics Analysis of Pressure Ulcer Using Damaged Interface Model between Bone and Muscle in the Human Buttock

    Science.gov (United States)

    Slamet, Samuel Susanto; Takano, Naoki; Tanabe, Yoshiyuki; Hatano, Asako; Nagasao, Tomohisa

    This paper aims at building up a computational procedure to study the bio-mechanism of pressure ulcer using the finite element method. Pressure ulcer is a disease that occurs in the human body after 2 hours of continuous external force. In the very early stage of pressure ulcer, it is found that the tissues inside the body are damaged, even though skin surface looks normal. This study assumes that tension and/or shear strain will cause damage to loose fibril tissue between the bone and muscle and that propagation of damaged area will lead to fatal stage. Analysis was performed using the finite element method by modeling the damaged fibril tissue as a cutout. By varying the loading directions and watching both tensile and shear strains, the risk of fibril tissue damage and propagation of the damaged area is discussed, which may give new insight for the careful nursing for patients, particularly after surgical treatment. It was found that the pressure ulcer could reoccur for a surgical flap treatment. The bone cut and surgical flap surgery is not perfect to prevent the bone-muscle interfacial damage.

  16. Determination of Magnesium in Needle Biopsy Samples of Muscle Tissue by Means of Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Sjoeberg, H E

    1964-07-15

    Magnesium has been determined by means of neutron-activation analysis in needle biopsy samples of the order of magnitude 1 mg dry weight. The procedure applied was to extract the Mg-27 activity from irradiated muscle tissue with concentrated hydrochloric acid followed by a fast hydroxide precipitation and gamma-spectrometric measurements. The Mg activity was recovered in the muscle tissue samples to (97 {+-} 2) per cent. The sensitivity for the magnesium determination is estimated as 0.3 {mu}g.

  17. Activation of EGFR and ERBB2 by Helicobacter pylori Results in Survival of Gastric Epithelial Cells with DNA Damage

    Science.gov (United States)

    Chaturvedi, Rupesh; Asim, Mohammad; Piazuelo, M. Blanca; Yan, Fang; Barry, Daniel P.; Sierra, Johanna Carolina; Delgado, Alberto G.; Hill, Salisha; Casero, Robert A.; Bravo, Luis E.; Dominguez, Ricardo L.; Correa, Pelayo; Polk, D. Brent; Washington, M. Kay; Rose, Kristie L.; Schey, Kevin L.; Morgan, Douglas R.; Peek, Richard M.; Wilson, Keith T.

    2014-01-01

    BACKGROUND & AIMS The gastric cancer-causing pathogen Helicobacter pylori upregulates spermine oxidase (SMOX) in gastric epithelial cells, causing oxidative stress-induced apoptosis and DNA damage. A subpopulation of SMOXhigh cells are resistant to apoptosis, despite their high levels of DNA damage. Because epidermal growth factor receptor (EGFR) activation can regulate apoptosis, we determined its role in SMOX-mediated effects. METHODS SMOX, apoptosis, and DNA damage were measured in gastric epithelial cells from H pylori-infected Egfrwa5 mice (which have attenuated EGFR activity), Egfr wild-type mice, or in infected cells incubated with EGFR inhibitors or deficient in EGFR. Phosphoproteomic analysis was performed. Two independent tissue microarrays containing each stage of disease, from gastritis to carcinoma, and gastric biopsies from Colombian and Honduran cohorts were analyzed by immunohistochemistry. RESULTS SMOX expression and DNA damage were decreased, and apoptosis increased in H pylori-infected Egfrwa5 mice. H pylori-infected cells with deletion or inhibition of EGFR had reduced levels of SMOX, DNA damage, and DNA damagehigh apoptosislow cells. Phosphoproteomic analysis revealed increased EGFR and ERBB2 signaling. Immunoblot analysis demonstrated the presence of a phosphorylated (p)EGFR–ERBB2 heterodimer and pERBB2; knockdown of ErbB2 facilitated apoptosis of DNA damagehigh apoptosislow cells. SMOX was increased in all stages of gastric disease, peaking in tissues with intestinal metaplasia, whereas pEGFR, pEGFR–ERBB2, and pERBB2 were increased predominantly in tissues demonstrating gastritis or atrophic gastritis. Principal component analysis separated gastritis tissues from patients with cancer vs those without cancer. pEGFR, pEGFR–ERBB2, pERBB2, and SMOX were increased in gastric samples from patients whose disease progressed to intestinal metaplasia or dysplasia, compared with patients whose disease did not progress. CONCLUSIONS In an analysis

  18. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    Science.gov (United States)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal

  19. A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.

    Science.gov (United States)

    Acun, A; Vural, D C; Zorlutuna, P

    2017-07-11

    Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.

  20. CO2 laser milling of hard tissue

    Science.gov (United States)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  1. Determination of gold accumulation in human tissues caused by gold therapy using x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Bacso, J.; Uzonyi, I.; Dezsoe, B.

    1986-08-01

    Human autopsy tissues from five patients with rheumatoid arthritis treated earlier with aqueous solution of gold and those from untreated control with the same disease were analyzed by x-ray fluorescence spectrometry using a conventional Si(Li) detection system. The gold and zinc concentrations of tissues were determined and compared with literature data. Correlation was found between Zn and Au concentrations in heart, lung, kidney and liver tissues. (author)

  2. The role of connective tissue in late effects of radiation

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1979-01-01

    Connective tissues not only serve as support, but also filter and censor the physical and molecular information reaching cells. The late change in connective tissues, i.e. fibrosis several months or years after the irradiation with 1000 rad or more, has been well known, and the dreaded sequel of radiation therapy, but connective tissues are affected already at much earlier time. The change in irradiated connective tissues may be distinguished in 3 phases after irradiation, the change in permeability within hours, damage to cell replacement systems within days and months and the late change of fibrosis, vascular damage and parenchymal atrophy after months and years. Glomerular sclerosis, tubular atrophy and interstitial fibrosis after the excessive irradiation of kidneys, accompanied by renal failure and hypertension, are usually considered as the consequence of vascular or tubular damage, but recent investigation suggested that the change in blood flow is correlated also with the increase in collagen, so that fibrosis may represent an important factor in the pathogenesis of renal damage. Radiofibrosis is considered simply as a result of the vascular damage due to the deficient or abnormal replacement of endothelial cells and/or due to arteriolo-capillary fibrosis. The late effects depend on early ones, and the endothelial cells would be only one. Other possible paths could depend on low fibrinolytic activity and immunological reactions. (Yamashita, S.)

  3. Damage threshold in adult rabbit eyes after scleral cross-linking by riboflavin/blue light application.

    Science.gov (United States)

    Iseli, Hans Peter; Körber, Nicole; Karl, Anett; Koch, Christian; Schuldt, Carsten; Penk, Anja; Liu, Qing; Huster, Daniel; Käs, Josef; Reichenbach, Andreas; Wiedemann, Peter; Francke, Mike

    2015-10-01

    Several scleral cross-linking (SXL) methods were suggested to increase the biomechanical stiffness of scleral tissue and therefore, to inhibit axial eye elongation in progressive myopia. In addition to scleral cross-linking and biomechanical effects caused by riboflavin and light irradiation such a treatment might induce tissue damage, dependent on the light intensity used. Therefore, we characterized the damage threshold and mechanical stiffening effect in rabbit eyes after application of riboflavin combined with various blue light intensities. Adult pigmented and albino rabbits were treated with riboflavin (0.5 %) and varying blue light (450 ± 50 nm) dosages from 18 to 780 J/cm(2) (15 to 650 mW/cm(2) for 20 min). Scleral, choroidal and retinal tissue alterations were detected by means of light microscopy, electron microscopy and immunohistochemistry. Biomechanical changes were measured by shear rheology. Blue light dosages of 480 J/cm(2) (400 mW/cm(2)) and beyond induced pathological changes in ocular tissues; the damage threshold was defined by the light intensities which induced cellular degeneration and/or massive collagen structure changes. At such high dosages, we observed alterations of the collagen structure in scleral tissue, as well as pigment aggregation, internal hemorrhages, and collapsed blood vessels. Additionally, photoreceptor degenerations associated with microglia activation and macroglia cell reactivity in the retina were detected. These pathological alterations were locally restricted to the treated areas. Pigmentation of rabbit eyes did not change the damage threshold after a treatment with riboflavin and blue light but seems to influence the vulnerability for blue light irradiations. Increased biomechanical stiffness of scleral tissue could be achieved with blue light intensities below the characterized damage threshold. We conclude that riboflavin and blue light application increased the biomechanical stiffness of scleral tissue at

  4. Age determination of soft tissue hematomas.

    Science.gov (United States)

    Neumayer, Bernhard; Hassler, Eva; Petrovic, Andreas; Widek, Thomas; Ogris, Kathrin; Scheurer, Eva

    2014-11-01

    In clinical forensic medicine, the estimation of the age of injuries such as externally visible subcutaneous hematomas is important for the reconstruction of violent events, particularly to include or exclude potential suspects. Since the estimation of the time of origin based on external inspection is unreliable, the aim of this study was to use contrast in MRI to develop an easy-to-use model for hematoma age estimation. In a longitudinal study, artificially created subcutaneous hematomas were repetitively imaged using MRI over a period of two weeks. The hemorrhages were created by injecting autologous blood into the subcutaneous tissue of the thigh in 20 healthy volunteers. For MRI, standard commercially available sequences, namely proton-density-weighted, T2 -weighted and inversion recovery sequences, were used. The hematomas' MRI data were analyzed regarding their contrast behavior using the most suitable sequences to derive a model allowing an objective estimation of the age of soft tissue hematomas. The Michelson contrast between hematoma and muscle in the proton-density-weighted sequence showed an exponentially decreasing behavior with a dynamic range of 0.6 and a maximum standard deviation of 0.1. The contrast of the inversion recovery sequences showed increasing characteristics and was hypointense for TI = 200ms and hyperintense for TI =1000ms. These sequences were used to create a contrast model. The cross-validation of the model finally yielded limits of agreement for hematoma age determination (corresponding to ±1.96 SD) of ±38.7h during the first three days and ±54 h for the entire investigation period. The developed model provides lookup tables which allow for the estimation of a hematoma's age given a single contrast measurement applicable by a radiologist or a forensic physician. This is a first step towards an accurate and objective dating method for subcutaneous hematomas, which will be particularly useful in child abuse. Copyright © 2014 John

  5. Increased abundance of ADAM9 transcripts in the blood is associated with tissue damage [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Darawan Rinchai

    2016-10-01

    Full Text Available Background: Members of the ADAM (a disintegrin and metalloprotease domain family have emerged as critical regulators of cell-cell signaling during development and homeostasis. ADAM9 is consistently overexpressed in various human cancers, and has been shown to play an important role in tumorigenesis. However, little is known about the involvement of ADAM9 during immune-mediated processes. Results: Mining of an extensive compendium of transcriptomic datasets identified important gaps in knowledge regarding the possible role of ADAM9 in immunological homeostasis and inflammation: 1 The abundance of ADAM9 transcripts in the blood was increased in patients with acute infection but, 2 changed very little after in vitro exposure to a wide range of pathogen-associated molecular patterns (PAMPs. 3 Furthermore it was found to increase significantly in subjects as a result of tissue injury or tissue remodeling, in absence of infectious processes. Conclusions: Our findings indicate that ADAM9 may constitute a valuable biomarker for the assessment of tissue damage, especially in clinical situations where other inflammatory markers are confounded by infectious processes.

  6. Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma

    International Nuclear Information System (INIS)

    Nathan, Fatima M; Singh, Vivek A; Dhanoa, Amreeta; Palanisamy, Uma D

    2011-01-01

    Oxidative stress is characterised by an increased level of reactive oxygen species (ROS) that disrupts the intracellular reduction-oxidation (redox) balance and has been implicated in various diseases including cancer. Malignant tumors of connective tissue or sarcomas account for approximately 1% of all cancer diagnoses in adults and around 15% of paediatric malignancies per annum. There exists no information on the alterations of oxidant/antioxidant status of sarcoma patients in literature. This study was aimed to determine the levels of oxidative stress and antioxidant defence in patients with primary bone and soft tissue sarcoma and to investigate if there exists any significant differences in these levels between both the sarcomas. The study cohort consisted of 94 subjects; 20 soft tissue sarcoma, 27 primary bone sarcoma and 47 healthy controls. Malondialdehyde (MDA) and protein carbonyls were determined to assess their oxidative stress levels while antioxidant status was evaluated using catalase (CAT), superoxide dismutase (SOD), thiols and trolox equivalent antioxidant capacity (TEAC). Sarcoma patients showed significant increase in plasma and urinary MDA and serum protein carbonyl levels (p < 0.05) while significant decreases were noted in TEAC, thiols, CAT and SOD levels (p < 0.05). No significant difference in oxidative damage was noted between both the sarcomas (p > 0.05). In conclusion, an increase in oxidative stress and decrease in antioxidant status is observed in both primary bone and soft tissue sarcomas with a similar extent of damage. This study offers the basis for further work on whether the manipulation of redox balance in patients with sarcoma represents a useful approach in the design of future therapies for bone disease

  7. Trace elements determinations in cancerous and non-cancerous human tissues using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Choi, Insup.

    1989-01-01

    Recent improvements in analyzing techniques when coupled to the growing knowledge of trace element biochemistry provide a powerful tool to investigate the relationship between trace elements and cancer. It is hoped that selective delivery or restriction of specific minerals may aid in cancer prevention or treatment. Tissues were collected at the time of surgery of various cancer patients including colon cancer and breast cancer. Three kinds of tissues were taken from a patient; cancerous, noncancerous, and transitional tissue obtained from a region located between the cancer and healthy tissues. A total of 57 tissues were obtained from 19 cancer patients. Seven of them were colon cancer patients, and 5 of them were breast cancer patients. Nine elements were determined using instrumental activation analysis. Cancerous colon tissue had significantly higher concentrations of selenium and iron than healthy tissues. Cancerous breast tissue had significantly higher concentrations of selenium, iron, manganese, and rubidium than healthy tissues. Iron can be enriched in cancer tissue because cancer tissue retains more blood vessels. Selenium is enriched in cancer tissue, possibly in an effort of the body to inhibit the growth of tumors. The manganese enrichment can be explained in the same manner as selenium considering its suspected anticarcinogenicity. It is not certain why rubidium was enriched in cancer tissue. It could be that this is the result of alteration of cell membrane permeability, change in extracellular matrix, or increased metabolism in cancer tissue

  8. Validity of reciprocity rule on mouse skin thermal damage due to CO2 laser irradiation

    Science.gov (United States)

    Parvin, P.; Dehghanpour, H. R.; Moghadam, M. S.; Daneshafrooz, V.

    2013-07-01

    CO2 laser (10.6 μm) is a well-known infrared coherent light source as a tool in surgery. At this wavelength there is a high absorbance coefficient (860 cm-1), because of vibration mode resonance of H2O molecules. Therefore, the majority of the irradiation energy is absorbed in the tissue and the temperature of the tissue rises as a function of power density and laser exposure duration. In this work, the tissue damage caused by CO2 laser (1-10 W, ˜40-400 W cm-2, 0.1-6 s) was measured using 30 mouse skin samples. Skin damage assessment was based on measurements of the depth of cut, mean diameter of the crater and the carbonized layer. The results show that tissue damage as assessed above parameters increased with laser fluence and saturated at 1000 J cm-2. Moreover, the damage effect due to high power density at short duration was not equivalent to that with low power density at longer irradiation time even though the energy delivered was identical. These results indicate the lack of validity of reciprocity (Bunsen-Roscoe) rule for the thermal damage.

  9. Severe blood-brain barrier disruption and surrounding tissue injury.

    Science.gov (United States)

    Chen, Bo; Friedman, Beth; Cheng, Qun; Tsai, Phil; Schim, Erica; Kleinfeld, David; Lyden, Patrick D

    2009-12-01

    Blood-brain barrier opening during ischemia follows a biphasic time course, may be partially reversible, and allows plasma constituents to enter brain and possibly damage cells. In contrast, severe vascular disruption after ischemia is unlikely to be reversible and allows even further extravasation of potentially harmful plasma constituents. We sought to use simple fluorescent tracers to allow wide-scale visualization of severely damaged vessels and determine whether such vascular disruption colocalized with regions of severe parenchymal injury. Severe vascular disruption and ischemic injury was produced in adult Sprague Dawley rats by transient occlusion of the middle cerebral artery for 1, 2, 4, or 8 hours, followed by 30 minutes of reperfusion. Fluorescein isothiocyanate-dextran (2 MDa) was injected intravenously before occlusion. After perfusion-fixation, brain sections were processed for ultrastructure or fluorescence imaging. We identified early evidence of tissue damage with Fluoro-Jade staining of dying cells. With increasing ischemia duration, greater quantities of high molecular weight dextran-fluorescein isothiocyanate invaded and marked ischemic regions in a characteristic pattern, appearing first in the medial striatum, spreading to the lateral striatum, and finally involving cortex; maximal injury was seen in the mid-parietal areas, consistent with the known ischemic zone in this model. The regional distribution of the severe vascular disruption correlated with the distribution of 24-hour 2,3,5-triphenyltetrazolium chloride pallor (r=0.75; P<0.05) and the cell death marker Fluoro-Jade (r=0.86; P<0.05). Ultrastructural examination showed significantly increased areas of swollen astrocytic foot process and swollen mitochondria in regions of high compared to low leakage, and compared to contralateral homologous regions (ANOVA P<0.01). Dextran extravasation into the basement membrane and surrounding tissue increased significantly from 2 to 8 hours of

  10. Accumulation of DNA damage-induced chromatin alterations in tissue-specific stem cells: the driving force of aging?

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available Accumulation of DNA damage leading to stem cell exhaustion has been proposed to be a principal mechanism of aging. Using 53BP1-foci as a marker for DNA double-strand breaks (DSBs, hair follicle stem cells (HFSCs in mouse epidermis were analyzed for age-related DNA damage response (DDR. We observed increasing amounts of 53BP1-foci during the natural aging process independent of telomere shortening and after protracted low-dose radiation, suggesting substantial accumulation of DSBs in HFSCs. Electron microscopy combined with immunogold-labeling showed multiple small 53BP1 clusters diffusely distributed throughout the highly compacted heterochromatin of aged HFSCs, but single large 53BP1 clusters in irradiated HFSCs. These remaining 53BP1 clusters did not colocalize with core components of non-homologous end-joining, but with heterochromatic histone modifications. Based on these results we hypothesize that these lesions were not persistently unrepaired DSBs, but may reflect chromatin rearrangements caused by the repair or misrepair of DSBs. Flow cytometry showed increased activation of repair proteins and damage-induced chromatin modifications, triggering apoptosis and cellular senescence in irradiated, but not in aged HFSCs. These results suggest that accumulation of DNA damage-induced chromatin alterations, whose structural dimensions reflect the complexity of the initial genotoxic insult, may lead to different DDR events, ultimately determining the biological outcome of HFSCs. Collectively, our findings support the hypothesis that aging might be largely the remit of structural changes to chromatin potentially leading to epigenetically induced transcriptional deregulation.

  11. Metric to quantify white matter damage on brain magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Dickie, David Alexander; Royle, Natalie A. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); Armitage, Paul A. [University of Sheffield, Department of Cardiovascular Sciences, Sheffield (United Kingdom); Deary, Ian J. [University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); University of Edinburgh, Department of Psychology, Edinburgh (United Kingdom)

    2017-10-15

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in

  12. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage.

    Science.gov (United States)

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazale; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system.The aim of this study was to evaluate the antioxidant role of melatonin against radiation-induced oxidative injury to the rat liver after whole body irradiation. In this experimental study,thirty-two rats were divided into four groups. Group 1 was the control group, group 2 only received melatonin (30 mg/kg on the first day and 30 mg/kg on the following days), group 3 only received whole body gamma irradiation of 10 Gy, and group 4 received 30 mg/kg melatonin 30 minutes prior to radiation plus whole body irradiation of 10 Gy plus 30 mg/kg melatonin daily through intraperitoneal (IP) injection for three days after irradiation. Three days after irradiation, all rats were sacrificed and their livers were excised to measure the biochemical parameters malondialdehyde (MDA) and glutathione (GSH). Each data point represents mean ± standard error on the mean (SEM) of at least eight animals per group. A one-way analysis of variance (ANOVA) was performed to compare different groups, followed by Tukey's multiple comparison tests (p<0.05). The results demonstrated that whole body irradiation induced liver tissue damage by increasing MDA levels and decreasing GSH levels. Hepatic MDA levels in irradiated rats that were treated with melatonin (30 mg/kg) were significantly decreased, while GSH levels were significantly increased, when compared to either of the control groups or the melatonin only group. The data suggest that administration of melatonin before and after irradiation may reduce liver damage caused by gamma irradiation.

  13. Study on determination of durability analysis process and fatigue damage parameter for rubber component

    International Nuclear Information System (INIS)

    Moon, Seong In; Cho, Il Je; Woo, Chang Su; Kim, Wan Doo

    2011-01-01

    Rubber components, which have been widely used in the automotive industry as anti-vibration components for many years, are subjected to fluctuating loads, often failing due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop a durability analysis process for vulcanized rubber components, that can predict fatigue life at the initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. Also, to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and normal and shear strain was proposed as the fatigue damage parameter for rubber components. Fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed

  14. Estimate of the damage in organs induced by neutrons in three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Benites R, J. L.; Vega C, H. R.; Uribe, M. del R.

    2014-08-01

    By means of Monte Carlo methods was considered the damage in the organs, induced by neutrons, of patients with cancer that receive treatment in modality of three-dimensional conformal radiotherapy (3D-CRT) with lineal accelerator Varian Ix. The objective of this work was to estimate the damage probability in radiotherapy patients, starting from the effective dose by neutrons in the organs and tissues out of the treatment region. For that a three-dimensional mannequin of equivalent tissue of 30 x 100 x 30 cm 3 was modeled and spherical cells were distributed to estimate the Kerma in equivalent tissue and the absorbed dose by neutrons. With the absorbed dose the effective dose was calculated using the weighting factors for the organ type and radiation type. With the effective dose and the damage factors, considered in the ICRP 103, was considered the probability of damage induction in organs. (Author)

  15. An analysis of particle track effects on solid mammalian tissues

    International Nuclear Information System (INIS)

    Todd, P.

    1992-01-01

    The relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV μm -1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p 3 n, per track, where n is the number of cells per track based on tissue and organ geometry, and p 3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p 3 n is high. (author)

  16. Microjet-assisted dye-enhanced diode laser ablation of cartilaginous tissue

    Science.gov (United States)

    Pohl, John; Bell, Brent A.; Motamedi, Massoud; Frederickson, Chris J.; Wallace, David B.; Hayes, Donald J.; Cowan, Daniel

    1994-08-01

    Recent studies have established clinical application of laser ablation of cartilaginous tissue. The goal of this study was to investigate removal of cartilaginous tissue using diode laser. To enhance the interaction of laser light with tissue, improve the ablation efficiency and localize the extent of laser-induced thermal damage in surrounding tissue, we studied the use of a novel delivery system developed by MicroFab Technologies to dispense a known amount of Indocyanine Green (ICG) with a high spatial resolution to alter the optical properties of the tissue in a controlled fashion. Canine intervertebral disks were harvested and used within eight hours after collection. One hundred forty nL of ICG was topically applied to both annulus and nucleus at the desired location with the MicroJet prior to each irradiation. Fiber catheters (600 micrometers ) were used and positioned to irradiate the tissue with a 0.8 mm spot size. Laser powers of 3 - 10 W (Diomed, 810 nm) were used to irradiate the tissue with ten pulses (200 - 500 msec). Discs not stained with ICG were irradiated as control samples. Efficient tissue ablation (80 - 300 micrometers /pulse) was observed using ICG to enhance light absorption and confine thermal damage while there was no observable ablation in control studied. The extent of tissue damage observed microscopically was limited to 50 - 100 micrometers . The diode laser/Microjet combination showed promise for applications involving removal of cartilaginous tissue. This procedure can be performed using a low power compact diode laser, is efficient, and potentially more economical compared to procedures using conventional lasers.

  17. Determination of tylosin residues in pig tissues using high-performance liquid chromatography.

    Science.gov (United States)

    De Liguoro, M; Anfossi, P; Angeletti, R; Montesissa, C

    1998-06-01

    In accordance with the maximum residue limit of 100 micrograms kg-1 established by EU legislation, a simple and sensitive high-performance liquid chromatographic (HPLC) method was developed for the measurement of tylosin residues in pig tissues (fat, kidney, liver and muscle). Tylosin, a macrolide antibiotic, is extracted with water-methanol and cleaned-up by solid-phase extraction (SPE) on cation-exchange cartridges using methanol elution. Tylosin was determined by reversed-phase HPLC with UV detection at 280 nm and the mean recovery from pig tissues fortified in the range 50-200 micrograms kg-1 was 70-85%, with intra- and inter-day RSDs in the ranges 3.4-9.1 and 3.9-10.1% respectively.

  18. Ovarian damage due to cyst removal

    DEFF Research Database (Denmark)

    Perlman, Signe; Kjer, Jens J

    2016-01-01

    INTRODUCTION: Surgical treatment of endometriomas and potential damage to the ovary have been debated. Studies have described the inconsistent risk of unintended removal of ovarian tissue when a cystectomy of an endometrioma is performed. We evaluated the risk of inadvertently removed ovarian tis...

  19. DNA from keratinous tissue

    DEFF Research Database (Denmark)

    Bengtsson, Camilla F.; Olsen, Maja E.; Brandt, Luise Ørsted

    2011-01-01

    Keratinous tissues such as nail, hair, horn, scales and feather have been used as a source of DNA for over 20 years. Particular benefits of such tissues include the ease with which they can be sampled, the relative stability of DNA in such tissues once sampled, and, in the context of ancient...... genetic analyses, the fact that sampling generally causes minimal visual damage to valuable specimens. Even when freshly sampled, however, the DNA quantity and quality in the fully keratinized parts of such tissues is extremely poor in comparison to other tissues such as blood and muscle – although little...... systematic research has been undertaken to characterize how such degradation may relate to sample source. In this review paper we present the current understanding of the quality and limitations of DNA in two key keratinous tissues, nail and hair. The findings indicate that although some fragments of nuclear...

  20. Disruption of the ECM33 Gene in Candida albicans Prevents Biofilm Formation, Engineered Human Oral Mucosa Tissue Damage and Gingival Cell Necrosis/Apoptosis

    Directory of Open Access Journals (Sweden)

    Mahmoud Rouabhia

    2012-01-01

    Full Text Available In this study we demonstrated that ΔCaecm33 double mutant showed reduced biofilm formation and causes less damage to gingival mucosa tissues. This was confirmed by the reduced level of necrotic cells and Bax/Bcl2 gene expression as apoptotic markers. In contrast, parental and Caecm33 mutant strains decreased basement membrane protein production (laminin 5 and type IV collagen. We thus propose that ECM33 gene/protein represents a novel target for the prevention and treatment of infections caused by Candida.

  1. Evaluation of sample preparation methods and optimization of nickel determination in vegetable tissues

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernando dos Santos Salazar

    2011-02-01

    Full Text Available Nickel, although essential to plants, may be toxic to plants and animals. It is mainly assimilated by food ingestion. However, information about the average levels of elements (including Ni in edible vegetables from different regions is still scarce in Brazil. The objectives of this study were to: (a evaluate and optimize a method for preparation of vegetable tissue samples for Ni determination; (b optimize the analytical procedures for determination by Flame Atomic Absorption Spectrometry (FAAS and by Electrothermal Atomic Absorption (ETAAS in vegetable samples and (c determine the Ni concentration in vegetables consumed in the cities of Lorena and Taubaté in the Vale do Paraíba, State of São Paulo, Brazil. By means of the analytical technique for determination by ETAAS or FAAS, the results were validated by the test of analyte addition and recovery. The most viable method tested for quantification of this element was HClO4-HNO3 wet digestion. All samples but carrot tissue collected in Lorena contained Ni levels above the permitted by the Brazilian Ministry of Health. The most disturbing results, requiring more detailed studies, were the Ni concentrations measured in carrot samples from Taubaté, where levels were five times higher than permitted by Brazilian regulations.

  2. Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles

    Directory of Open Access Journals (Sweden)

    Lummis Sarah CR

    2011-06-01

    Full Text Available Abstract Background Biolistic transfection is proving an increasingly popular method of incorporating DNA or RNA into cells that are difficult to transfect using traditional methods. The technique routinely uses 'microparticles', which are ~1 μm diameter projectiles, fired into tissues using pressurised gas. These microparticles are efficient at delivering DNA into cells, but cannot efficiently transfect small cells and may cause significant tissue damage, thus limiting their potential usefulness. Here we describe the use of 40 nm diameter projectiles - nanoparticles - in biolistic transfections to determine if they are a suitable alternative to microparticles. Results Examination of transfection efficiencies in HEK293 cells, using a range of conditions including different DNA concentrations and different preparation procedures, reveals similar behaviour of microparticles and nanoparticles. The use of nanoparticles, however, resulted in ~30% fewer damaged HEK293 cells following transfection. Biolistic transfection of mouse ear tissue revealed similar depth penetration for the two types of particles, and also showed that 20% in microparticle-transfected samples. Visualising details of small cellular structures was also considerably enhanced when using nanoparticles. Conclusions We conclude that nanoparticles are as efficient for biolistic transfection as microparticles, and are more appropriate for use in small cells, when examining cellular structures and/or where tissue damage is a problem.

  3. Sonographic diagnostics of subcutaneous fibrosis and its significance in medical expertise of radiation damage

    International Nuclear Information System (INIS)

    Arndt, D.; Strohmann, G.

    1984-01-01

    In assessing radiation damage of the skin and of underlying tissue - particularly in judging the ability to work of persons with widespread subcutaneous fibrosis in the framework of expertises for invalidity - difficulties are occasionally encountered. One of the reasons for such difficulties is the observed intact state of upper layers of the skin, e.g. after exposure to gamma radiation in telecobalt therapy, which may conceal to the inexperienced doctor the tissue changes present in the deep layers. The experience gained by means of ultrasonic tomography with the purpose of reaching objective findings and determining the exact extent of fibrosis, is reported and examples of expertise are given and demonstrated by figures. The method is easy to handle and, provided by the doctor's expert knowledge, makes possible an exact assessment of the 3-dimensional extension of subcutaneous fibrosis of the squamous cell- and jacket-type, e.g. in the abdominal wall. Thus, sonographic measuring has proved to be a reliable means of expertise in cases of health damage after exposure to ionizing radiation which impairs the person's ability to work. (author)

  4. Use of radioimmunoassay procedures for the determination of sex hormones in animal tissues

    International Nuclear Information System (INIS)

    Hoffmann, B.

    1983-01-01

    Radioimmunoassay methods for the determination of sex steroids and other compounds with sex hormone-like activities in various edible animal tissues and endocrine glands have been developed. Reliability of these methods, allowing quantification in a range of 10 -11 M, has been adequately demonstrated. When applied to monitoring residues of anabolic sex hormones in edible tissues of veal calves, physiological baseline levels of some endogenous ''anabolic'' steroids (like testosterone, oestrogens) were established; in the case of xenobiotics residues at the scheduled time of slaughter could be quantified (trenbolone) and a regulatory method to implement the ban of diethylstilbestrol was introduced. (author)

  5. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    International Nuclear Information System (INIS)

    Lundby, Carsten; Pilegaard, Henriette; Hall, Gerrit van; Sander, Mikael; Calbet, Jose; Loft, Steffen; Moeller, Peter

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming tissue. Muscle biopsies from seven healthy humans were obtained at sea level and after 2 and 8 weeks of hypoxia at 4100 m.a.s.l. We found increased levels of strand breaks and endonuclease III-sensitive sites after 2 weeks of hypoxia, whereas oxidative DNA damage detected by formamidopyrimidine DNA glycosylase (FPG) protein was unaltered. The expression of 8-oxoguanine DNA glycosylase 1 (OGG1), determined by quantitative RT-PCR of mRNA levels did not significantly change during high-altitude hypoxia, although the data could not exclude a minor upregulation. The expression of heme oxygenase-1 (HO-1) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite increased generation of oxidative DNA damage

  6. Determination of a tissue-level failure evaluation standard for rat femoral cortical bone utilizing a hybrid computational-experimental method.

    Science.gov (United States)

    Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun

    2018-01-01

    Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.

  7. Optimization and real-time control for laser treatment of heterogeneous soft tissues.

    Science.gov (United States)

    Feng, Yusheng; Fuentes, David; Hawkins, Andrea; Bass, Jon M; Rylander, Marissa Nichole

    2009-01-01

    Predicting the outcome of thermotherapies in cancer treatment requires an accurate characterization of the bioheat transfer processes in soft tissues. Due to the biological and structural complexity of tumor (soft tissue) composition and vasculature, it is often very difficult to obtain reliable tissue properties that is one of the key factors for the accurate treatment outcome prediction. Efficient algorithms employing in vivo thermal measurements to determine heterogeneous thermal tissues properties in conjunction with a detailed sensitivity analysis can produce essential information for model development and optimal control. The goals of this paper are to present a general formulation of the bioheat transfer equation for heterogeneous soft tissues, review models and algorithms developed for cell damage, heat shock proteins, and soft tissues with nanoparticle inclusion, and demonstrate an overall computational strategy for developing a laser treatment framework with the ability to perform real-time robust calibrations and optimal control. This computational strategy can be applied to other thermotherapies using the heat source such as radio frequency or high intensity focused ultrasound.

  8. Experimental Determination of Damage Threshold Characteristics of IR Compatible Optical Materials

    International Nuclear Information System (INIS)

    Soong, Ken

    2011-01-01

    The accelerating gradient in a laser-driven dielectric accelerating structure is often limited by the laser damage threshold of the structure. For a given laser-driven dielectric accelerator design, we can maximize the accelerating gradient by choosing the best combination of the accelerator's constituent material and operating wavelength. We present here a model of the damage mechanism from ultrafast infrared pulses and compare that model with experimental measurements of the damage threshold of bulk silicon. Additionally, we present experimental measurements of a variety of candidate materials, thin films, and nanofabricated accelerating structures.

  9. From DNA lesions to tissue malfunction

    International Nuclear Information System (INIS)

    Denekamp, J.

    1989-01-01

    After large doses of radiation, tissues fail to function when the proliferating cells lose their clonogenic ability. This results from unrepaired or misrepaired double strand breaks in the DNA. The lesions are inflicted immediately but there is a variable latent period before tissue damage is expressed. This ranges from a few days in intestine, to weeks in skin, and to months or years in deep visceral tissues, e.g. heart, lung, kidney, spinal cord. The latency relates to the proliferation kinetics of each tissue component. Doses of 10-30 Gy do not cause serious functional defects in differentiated cells, but they prevent successful mitosis in proliferating cells. Thus each tissue continues to function until its differentiated cells are lost by normal wear and tear processes. After a time which relates to the natural lifespan of the differentiated cells, failure to provide replacement cells from the proliferating compartment becomes important and the tissue shows atrophy and eventually a functional deficit. If the radiation exposure is divided into a series of smaller exposures or is given at a low dose-rate, the biochemical repair of DNA is more effective and less damage is observed. After high LET ionizing radiation, e.g. neutrons or α particles, the response is almost linear and is not affected by doserate or fractionation. (author)

  10. Extensive scarring induced by chronic intrathecal tubing augmented cord tissue damage and worsened functional recovery after rat spinal cord injury.

    Science.gov (United States)

    Zhang, Shu-xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G

    2010-08-30

    Intrathecal infusion has been widely used to directly deliver drugs or neurotrophins to a lesion site following spinal cord injury. Evidence shows that intrathecal infusion is efficient for 7 days but is markedly reduced after 14 days, due to time dependent occlusion. In addition, extensive fibrotic scarring is commonly observed with intrathecal infusion. These anomalies need to be clearly elucidated in histology. In the present study, all adult Long-Evans rats received a 25 mm contusion injury on spinal cord T10 produced using the NYU impactor device. Immediately after injury, catheter tubing with an outer diameter of 0.38 mm was inserted through a small dural opening at L3 into the subdural space with the tubing tip positioned near the injury site. The tubing was connected to an Alzet mini pump, which was filled with saline solution and was placed subcutaneously. Injured rats without tubing served as control. Rats were behaviorally tested for 6 weeks using the BBB locomotor rating scale and histologically assessed for tissue scarring. Six weeks later, we found that the intrathecal tubing caused extensive scarring and inflammation, related to neutrophils, macrophages and plasma cells. The tubing's tip was occluded by scar tissue and inflammatory cells. The scar tissue surrounding the tubing consists of 20-70 layers of fibroblasts and densely compacted collagen fibers, seriously compressing and damaging the cord tissue. BBB scores of rats with intrathecal tubing were significantly lower than control rats (p<0.01) from 2 weeks after injury, implying serious impairment of functional recovery caused by the scarring. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Tissue Trace Elements and Lipid Peroxidation in Breeding Female Bank Voles Myodes glareolus.

    Science.gov (United States)

    Bonda-Ostaszewska, Elżbieta; Włostowski, Tadeusz; Łaszkiewicz-Tiszczenko, Barbara

    2018-04-27

    Recent studies have demonstrated that reproduction reduces oxidative damage in various tissues of small mammal females. The present work was designed to determine whether the reduction of oxidative stress in reproductive bank vole females was associated with changes in tissue trace elements (iron, copper, zinc) that play an essential role in the production of reactive oxygen species. Lipid peroxidation (a marker of oxidative stress) and iron concentration in liver, kidneys, and skeletal muscles of reproducing bank vole females that weaned one litter were significantly lower than in non-reproducing females; linear regression analysis confirmed a positive relation between the tissue iron and lipid peroxidation. The concentrations of copper were significantly lower only in skeletal muscles of reproductive females and correlated positively with lipid peroxidation. No changes in tissue zinc were found in breeding females when compared with non-breeding animals. These data indicate that decreases in tissue iron and copper concentrations may be responsible for the reduction of oxidative stress in reproductive bank vole females.

  12. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats.

    Science.gov (United States)

    Zhang, R Y; Jin, W; Feng, P F; Liu, J H; Mao, S Y

    2018-03-19

    In the current intensive production system, ruminants are often fed high-grain (HG) diets. However, this feeding pattern often causes rumen metabolic disorders and may further trigger laminitis, the exact mechanism is not clear. This study investigated the effect of HG diet feeding on fermentative and microbial changes in the rumen and on the expression of pro-inflammatory cytokines and matrix metalloproteinases (MMPs) in the lamellar tissue. In all, 12 male goats were fed a hay diet (0% grain; n=6) or an HG diet (56.5% grain; n=6). On day 50 of treatment, samples of blood, rumen content, and lamellar tissue of hooves of goats were collected. The data showed that compared with the hay group, HG-fed goats had lower (Pdiet feeding altered the composition of rumen bacterial community, and correspondingly, the results suggested that their functions in the HG group were also altered. HG diet feeding increased (Pbacterial community, and lead to higher levels of LPS in the peripheral blood, and further activated the inflammatory response in lamellar tissues, which may progress to the level of laminar damage.

  13. Tissue engineered devices for ligament repair, replacement and ...

    African Journals Online (AJOL)

    potential, severe damage warrants surgical intervention including complete replacement. Ligaments are longitudinally arranged, complex tissues; the mechanical properties of ligaments are a direct result of their components and the arrangement of these components in the tissue. It is these mechanics that have made ...

  14. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Veverková, Lenka [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Hradilová, Šárka [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Milde, David, E-mail: david.mlde@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Panáček, Aleš [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Skopalová, Jana [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Kvítek, Libor [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Petrželová, Kamila [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); National Reference Laboratory for Chemical Elements, Department of Residues in Kroměříž, State Veterinary Institute Olomouc, Hulínská 2286, CZ 767 60 Kroměříž (Czech Republic); and others

    2014-12-01

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO{sub 3} and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl{sub 2}{sup −} and AgCl{sub 3}{sup 2−} for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results. - Highlights: • We performed detailed optimization of microwave assisted digestion procedure of animal tissue used prior to Ag determination by ICP-MS. • We provide basic equilibrium calculations to give theoretical explanation of results from optimization of tested mineralization mixtures. • Results from method validation that was done by analysis of several matrix CRMs are presented.

  15. Effect of aqueous extract of Capparis spinosa on biochemical and histological changes in paracetamol–induced liver damage in rats

    Directory of Open Access Journals (Sweden)

    R. J. M. Alnuaimy

    2012-01-01

    Full Text Available This study showed that paracetamol administration to male rats at 1 g /kg of body weight for 21 days resulted in significant increase in activities of serum alanine amino transferase and aspartate amino transferase. There was an increase in the total bilirubin and creatinine levels. Paracetamol caused hepatic damage in appearance characterized with degeneration, necrosis and fatty changes in liver, as well as central vein congestion. Treatment of the damaged liver rats with 25, 50, 100, 200 mg/kg of body weight with aqueous extract of Capparis spinosa for 7, 14, 21 days led to a decrease in alanine amino transferase, aspartate amino transferase activity, total bilirubin and creatinine levels, as well as an improve in the damaged liver tissues with increasing extract concentration. The results showed that treatment of the damaged liver rats with 100, 200 mg/kg of body weight of aqueous extract of Capparis spinosa for 14, 21 days gave protection against harmful effects of paracetamol.The protective effects of this extract determined by the rebound of the enzymes and biochemical variable levels to the pretreatment levels. High doses of this extract gave a decrease in harmful effects which resulted from the paracetamol in hepatic tissues.

  16. Protective function of complement against alcohol-induced rat liver damage.

    Science.gov (United States)

    Bykov, Igor L; Väkevä, Antti; Järveläinen, Harri A; Meri, Seppo; Lindros, Kai O

    2004-11-01

    The complement system can promote tissue damage or play a homeostatic role in the clearance and disposal of damaged tissue. We assessed the role of the terminal complement pathway in alcohol-induced liver damage in complement C6 (C6-/-) genetically deficient rats. C6-/- and corresponding C6+/+ rats were continuously exposed to ethanol by feeding ethanol-supplemented liquid diet for six weeks. Liver samples were analyzed for histopathology and complement component deposition by immunofluorescence microscopy. Prostaglandin E receptors and cytokine mRNA levels were analyzed by RT-PCR and plasma cytokines by ELISA. Deposition of complement components C1, C3, C8 and C9 was observed in C6+/+ rats, but not in C6-/- animals. The histopathological changes, the liver weight increase and the elevation of the plasma pro-/anti-inflammatory TNF-alpha/IL-10 ratio were, on the other hand, more marked in C6-/- rats. Furthermore, ethanol enhanced the hepatic mRNA expression of the prostaglandin E receptors EP2R and EP4R exclusively in the C6-/- rats. Our results indicate that a deficient terminal complement pathway predisposes to tissue injury and promotes a pro-inflammatory cytokine response. This suggests that an intact complement system has a protective function in the development of alcoholic liver damage.

  17. Determination of ultra-short laser induced damage threshold of KH2PO4 crystal: Numerical calculation and experimental verification

    Directory of Open Access Journals (Sweden)

    Jian Cheng

    2016-03-01

    Full Text Available Rapid growth and ultra-precision machining of large-size KDP (KH2PO4 crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionization and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.

  18. Establishment of a Pcr Technique for Determination of Htlv-1 Infection in Paraffin-Embedded Tissues

    Directory of Open Access Journals (Sweden)

    M Rastin

    2007-04-01

    Full Text Available Introduction: HTLV-1 , the first known human retrovirus belongs to oncovirus subfamily of retroviruses. The major characteristic of HTLV-1 is its highly restricted geographic prevalence. Northern part of Khorasan is an endemic region of HTLV-1 infection. Epidemiological studies can help in designing preventive programs for HTLV-1 infection. The aim of this study was the establishment of a PCR technique for determination of HTLV-1 infection in paraffin-embedded tissues. Methods: In this experimental laboratory study for establishment of a technique, PCR was initially optimized using Beta-actin primers on various formalin fixed paraffin-embedded tissues from liver, spleen, skin and lymph nodes. The optimized concentration of Mgcl2 was 2mm, primer was 8 pmol. Optimized concentration of DNA was different according to the kind of tissue. HTLV-1 infection was determined by applying tax, pol, env and LTR primers on 50 paraffin-embedded lymph node tissues . The reporoducibility of this technique was shown for skin and lymph node tissues infected with HTLV-1. Resuls: In 50 lymph node tissues, one case with pathologic diagnosis of NHL was positive with all 5 sets of primers (tax, Pol, env and LTR primers and the other case was positive with only two sets of tax primers but was negative with pol, env and LTR primers. The prevalence of infection was 2% among lymph node specimens. (1 of 50 specimens and if the second case is considered, the prevalence would be 4%. Conclusion: Comparison of the results of this study with another study on blood specimens (seroprevalence2.3% was not statistically significant thus confirming the results of one another. (P=0.883

  19. Use of radioimmunoassay procedures for the determination of sex hormones in animal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, B. (Institut fuer Veterinaermedizin des Bundesgesundheitsamtes (Robert von Ostertag-Institut), Berlin (Germany, F.R.))

    1983-07-01

    Radioimmunoassay methods for the determination of sex steroids and other compounds with sex hormone-like activities in various edible animal tissues and endocrine glands have been developed. Reliability of these methods, allowing quantification in a range of 10/sup -11/ M, has been adequately demonstrated. When applied to monitoring residues of anabolic sex hormones in edible tissues of veal calves, physiological baseline levels of some endogenous ''anabolic'' steroids (like testosterone, oestrogens) were established; in the case of xenobiotics residues at the scheduled time of slaughter could be quantified (trenbolone) and a regulatory method to implement the ban of diethylstilbestrol was introduced.

  20. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Sondhaus, C.A.; Altman, K.I.

    1998-01-01

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts

  1. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.; Bond, V.P. [Washington State Univ., Richland, WA (United States); Sondhaus, C.A. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Radiology and Radiation Control Office; Altman, K.I. [Univ. of Rochester Medical Center, NY (United States). Dept. of Biochemistry and Biophysics

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  2. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    Directory of Open Access Journals (Sweden)

    Akbar Anaeigoudari

    2016-03-01

    Full Text Available Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum, on pentylenetetrazole (PTZ-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1 vehicle, (2 PTZ (90 mg/kg, (3 water fraction (WF of C. sativum (25 and 100 mg/kg, (4 n-butanol fraction (NBF of C. sativum (25 and 100 mg/kg, and (5 ethyl acetate fraction (EAF of C. sativum (25 and 100 mg/kg. Results: The first generalized tonic-clonic seizures (GTCS latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p< 0.01. In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS latency. Malondialdehyde (MDA levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p< 0.001. Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (pConclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  3. Determination of mercury in human tissues after acute poisoning by neutron activation

    International Nuclear Information System (INIS)

    Rakovic, M.; Glagolicova, A.; Prouza, Z.; Gregora, Z.

    1976-01-01

    The non-destructive determination of mercury in human tissues after acute poisoning based on the use of a γ-ray spectometer with a Ge(Li) semiconductor detector is described. Samples were irradiated at a thermal neutron flux density of about 10 12 n cm -2 s -1 for 4 hrs. From the results of the preliminary experiments the following conclusions have been drawn. The mercury losses should be negligible when drying of the biological samples at 80 deg C. To irradiate samples for mercury determination is preferable in silica tubes than in polyethylene ones. (T.I.)

  4. STING-IRF3 Triggers Endothelial Inflammation in Response to Free Fatty Acid-Induced Mitochondrial Damage in Diet-Induced Obesity

    Science.gov (United States)

    Mao, Yun; Luo, Wei; Zhang, Lin; Wu, Weiwei; Yuan, Liangshuai; Xu, Hao; Song, Juhee; Fujiwara, Keigi; Abe, Jun-ichi; LeMaire, Scott A.; Wang, Xing Li; Shen, Ying. H.

    2017-01-01

    Objective Metabolic stress in obesity induces endothelial inflammation and activation, which initiates adipose tissue inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms underlying endothelial inflammation induction are not completely understood. Stimulator of interferon genes (STING) is an important molecule in immunity and inflammation. In the present study, we sought to determine the role of STING in palmitic acid (PA)-induced endothelial activation/inflammation. Approach and Results In cultured endothelial cells, PA treatment activated STING, as indicated by its perinuclear translocation and binding to interferon regulatory factor 3 (IRF3), leading to IRF3 phosphorylation and nuclear translocation. The activated IRF3 bound to the promoter of intercellular adhesion molecule 1 (ICAM-1) and induced ICAM-1 expression and monocyte–endothelial cell adhesion. When analyzing the upstream signaling, we found that PA activated STING by inducing mitochondrial damage. PA treatment caused mitochondrial damage and leakage of mitochondrial DNA (mtDNA) into the cytosol. Through the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), the mitochondrial damage and leaked cytosolic mtDNA activated the STING-IRF3 pathway and increased ICAM-1 expression. In mice with diet-induced obesity, the STING-IRF3 pathway was activated in adipose tissue. However, STING deficiency (Stinggt/gt) partially prevented diet-induced adipose tissue inflammation, obesity, insulin resistance, and glucose intolerance. Conclusions The mitochondrial damage-cGAS-STING-IRF3 pathway is critically involved in metabolic stress-induced endothelial inflammation. STING may be a potential therapeutic target for preventing cardiovascular diseases and insulin resistance in obese individuals. PMID:28302626

  5. Determination of quantitative tissue composition by iterative reconstruction on 3D DECT volumes

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Maria [Linkoeping Univ. (Sweden). Dept. of Electrical Engineering; Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Linkoeping Univ. (Sweden). Center for Medical Image Science and Visualization (CMIV); Malusek, Alexandr [Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Linkoeping Univ. (Sweden). Center for Medical Image Science and Visualization (CMIV); Nuclear Physics Institute AS CR, Prague (Czech Republic). Dept. of Radiation Dosimetry; Muhammad, Arif [Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Carlsson, Gudrun Alm [Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Linkoeping Univ. (Sweden). Center for Medical Image Science and Visualization (CMIV)

    2011-07-01

    Quantitative tissue classification using dual-energy CT has the potential to improve accuracy in radiation therapy dose planning as it provides more information about material composition of scanned objects than the currently used methods based on single-energy CT. One problem that hinders successful application of both single- and dual-energy CT is the presence of beam hardening and scatter artifacts in reconstructed data. Current pre- and post-correction methods used for image reconstruction often bias CT attenuation values and thus limit their applicability for quantitative tissue classification. Here we demonstrate simulation studies with a novel iterative algorithm that decomposes every soft tissue voxel into three base materials: water, protein, and adipose. The results demonstrate that beam hardening artifacts can effectively be removed and accurate estimation of mass fractions of each base material can be achieved. Our iterative algorithm starts with calculating parallel projections on two previously reconstructed DECT volumes reconstructed from fan-beam or helical projections with small conebeam angle. The parallel projections are then used in an iterative loop. Future developments include segmentation of soft and bone tissue and subsequent determination of bone composition. (orig.)

  6. Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, Akke, E-mail: akke.bakker@amc.uva.nl [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands); Kolff, M. Willemijn [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands); Holman, Rebecca [Clinical Research Unit, Academic Medical Center (AMC), Amsterdam (Netherlands); Leeuwen, Caspar M. van; Korshuize-van Straten, Linda; Kroon-Oldenhof, Rianne de; Rasch, Coen R.N.; Tienhoven, Geertjan van; Crezee, Hans [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands)

    2017-06-01

    Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79 sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.

  7. Chitosan adhesive for laser tissue repair

    Science.gov (United States)

    Lauto, A.; Stoodley, M.; Avolio, A.; Foster, L. J. R.

    2006-02-01

    Background. Laser tissue repair usually relies on haemoderivate solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited repair strength, high solubility, brittleness and viral transmission. Furthermore, the solder activation temperature (65-70 °C) can induce significant damage to tissue. In this study, a new laser-activated biomaterial for tissue repair was developed and tested in vitro and in vivo to overcome some of the shortcomings of traditional solders. Materials and Methods. Flexible and insoluble strips of chitosan adhesive (surface area ~34 mm2, thickness ~20 μm) were developed and bonded on sheep intestine with a laser fluence and irradiance of 52 +/- 2 J/cm2 and ~15 W/cm2 respectively. The temperature between tissue and adhesive was measured using small thermocouples. The strength of repaired tissue was tested by a calibrated tensiometer. The adhesive was also bonded in vivo to the sciatic nerve of rats to assess the thermal damage induced by the laser (fluence = 65 +/- 11 J/cm2, irradiance = 15 W/cm2) four days post-operatively. Results. Chitosan adhesives successfully repaired intestine tissue, achieving a repair strength of 0.50 +/- 0.15 N (shear stress = 14.7 +/- 4.7 KPa, n=30) at a temperature of 60-65 °C. The laser caused demyelination of axons at the operated site; nevertheless, the myelinated axons retained their normal morphology proximally and distally.

  8. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    International Nuclear Information System (INIS)

    Antoniassi, M.; Conceicao, A.L.C.; Poletti, M.E.

    2011-01-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90 o (x=0.99 A -1 ). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z eff ) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z eff of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  9. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Science.gov (United States)

    Antoniassi, M.; Conceição, A. L. C.; Poletti, M. E.

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90° ( x=0.99 Å -1). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number ( Zeff) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Zeff of breast tissues, which are mainly related to the elemental composition of carbon ( Z=6) and oxygen ( Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  10. Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L.B.; Stuart, B.C.; Celliers, P.M.; Feit, M.D.; Glinsky, M.E.; Heredia, N.J.; Herman, S.; Lane, S.M.; London, R.A.; Matthews, D.L.; Perry, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Chang, T.D. [Veterans Administration Hospital, Martinez, CA (United States); Neev, J. [Beckman Laser Inst. and Medical Clinic, Irvine, CA (United States)

    1996-05-01

    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented.

  11. [Interference of vitamin E on the brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats].

    Science.gov (United States)

    Gao, Xian; Luo, Rui; Ma, Bin; Wang, Hui; Liu, Tian; Zhang, Jing; Lian, Zhishun; Cui, Xi

    2013-07-01

    To investigate the interlerence ot vitamin E on brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats. 40 pregnant rats were randomly divided into five groups (positive control, negative control, low, middle and high dosage of vitamin E groups). The low, middle and high dosage of vitamin E groups were supplemented with 5, 15 and 30 mg/ml vitamin E respectively since the first day of pregnancy. And the negative control group and the positive control group were given peanut oil without vitamin E. All groups except for the negative control group were exposed to 900MHz intensity of cell phone radiation for one hour each time, three times per day for 21 days. After accouchement, the right hippocampus tissue of fetal rats in each group was taken and observed under electron microscope. The vitality of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) in pregnant and fetal rats' brain tissue were tested. Compared with the negative control group, the chondriosomes in neuron and neuroglia of brain tissues was swelling, mild edema was found around the capillary, chromatin was concentrated and collected, and bubbles were formed in vascular endothelial cells (VEC) in the positive fetal rat control group, whereas the above phenomenon was un-conspicuous in the middle and high dosage of vitamin E groups. We can see uniform chromatin, abundant mitochondrion, rough endoplasmic reticulum and free ribosomes in the high dosage group. The apoptosis has not fond in all groups'sections. In the antioxidase activity analysis, compared with the negative control group, the vitality of SOD and GSH-Px significantly decreased and the content of MDA significantly increased both in the pregnant and fetal rats positive control group (P electromagnetic radiation of cell phone in pregnant rats and fetal rats.

  12. Morphologic alterations in normal and neoplastic tissues following hyperthermia treatment

    International Nuclear Information System (INIS)

    Badylak, S.F.; Babbs, C.F.

    1984-01-01

    The sequential morphologic alterations in normal skeletal muscle in rats, Walker 256 tumors in rats, and transmissible venereal tumors (TVT) in dogs following microwave-induced hyperthermia (43 0 C and 45 0 for 20 minutes) were studied by light and electron microscopy. Normal muscle and Walker 256 tumors showed vascular damage at 5 minutes post-heating (PH), followed by suppuration and thrombosis at 6 and 48 hours PH, and by regeneration and repair at 7 days PH. Endothelial damage and parenchymal degeneration were present 5 minutes PH. Progressive ischemic injury occurred for at least 48 hours PH. Two hyperthermia treatments, separated by a 30 or 60 minute cooling interval, were applied to rats implanted with Walker 256 tumors. Increased selective heating of tumor tissue versus surrounding normal tissue, and increased intratumoral temperatures were found during the second hyperthermia treatment. Canine TVTs were resistant to hyperthermia damage. These results characterized the sequential morphologic alterations following hyperthermia treatment and showed that: 1) vascular damage contributed to the immediate and latent cytotoxic effects of hyperthermia, 2) selective heating occurred in the neoplastic tissue disrupted by prior heat treatment, and 3) not all neoplasms are responsive to hyperthermia treatment

  13. Optical monitoring of spinal cord subcellular damage after acute spinal cord injury

    Science.gov (United States)

    Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.

    2018-02-01

    Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, pElevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.

  14. Determination of emamectin residues in the tissues of Atlantic salmon (Salmo salar L.) using HPLC with fluorescence detection.

    Science.gov (United States)

    Kim-Kang, H; Crouch, L S; Bova, A; Robinson, R A; Wu, J

    2001-11-01

    An accurate, reliable, and reproducible assay for the determination of residual concentrations of emamectin B(1a) in muscle, skin, and intact muscle/skin in natural proportions from Atlantic salmon treated with SCH 58854 (emamectin benzoate) is described. The determinative method was developed and validated using fortified control tissues at five levels over a range of 50-800 ng/g as well as tissues containing incurred levels in the same range. Incurred tissues were obtained from a metabolism study of [(3)H]emamectin benzoate in Atlantic salmon. The assay employs processing of a tissue ethyl acetate extract on a propylsulfonic acid solid phase extraction cartridge, followed by derivatization with trifluoroacetic anhydride in the presence of N-methylimidazole. Following separation using reversed phase HPLC, the amount of derivatized emamectin B(1a) is determined by fluorescence detection. The theoretical limits of detection were determined from the analysis of control tissue matrices to be 2.6, 3.3, and 3.8 ng/g as emamectin B(1a) for muscle, skin, and intact muscle/skin, respectively. Likewise, the theoretical limits of quantitation (LOQ) were determined to be 6.9, 8.1, and 9.5 ng/g as emamectin B(1a) for muscle, skin, and intact muscle/skin, respectively. The lowest fortification level used for method validation was 50 ng/g, which served as the effective LOQ for the method. The overall percent recoveries (+/-% CV) were 94.4 +/- 6.89% (n = 25) for muscle, 88.4 +/- 5.35% (n = 25) for skin, and 88.0 +/- 3.73% for intact muscle/skin (n = 25). Accuracy, precision, linearity, selectivity, and ruggedness were demonstrated. The structure of the final fluorescent derivative of emamectin B(1a) free base was identified by ESI(+)/LC-MS. The frozen storage stability of [(3)H]emamectin B(1a) in tissues with incurred residues was demonstrated for approximately 15 months by radiometric analysis and for an additional approximately 13 months by fluorometric analysis for a total of

  15. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  16. DNA damage in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Coppedè, Fabio; Migliore, Lucia

    2015-01-01

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  17. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  18. Evidence for the ectopic synthesis of melanin in human adipose tissue.

    Science.gov (United States)

    Randhawa, Manpreet; Huff, Tom; Valencia, Julio C; Younossi, Zobair; Chandhoke, Vikas; Hearing, Vincent J; Baranova, Ancha

    2009-03-01

    Melanin is a common pigment in animals. In humans, melanin is produced in melanocytes, in retinal pigment epithelium (RPE) cells, in the inner ear, and in the central nervous system. Previously, we noted that human adipose tissue expresses several melanogenesis-related genes. In the current study, we confirmed the expression of melanogenesis-related mRNAs and proteins in human adipose tissue using real-time polymerase chain reaction and immunohistochemical staining. TYR mRNA signals were also detected by in situ hybridization in visceral adipocytes. The presence of melanin in human adipose tissue was revealed both by Fontana-Masson staining and by permanganate degradation of melanin coupled with liquid chromatography/ultraviolet/mass spectrometry determination of the pyrrole-2,3,5-tricarboxylic acid (PTCA) derivative of melanin. We also compared melanogenic activities in adipose tissues and in other human tissues using the L-[U-(14)C] tyrosine assay. A marked heterogeneity in the melanogenic activities of individual adipose tissue extracts was noted. We hypothesize that the ectopic synthesis of melanin in obese adipose may serve as a compensatory mechanism that uses its anti-inflammatory and its oxidative damage-absorbing properties. In conclusion, our study demonstrates for the first time that the melanin biosynthesis pathway is functional in adipose tissue.

  19. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  20. Myocardial regeneration potential of adipose tissue-derived stem cells

    International Nuclear Information System (INIS)

    Bai, Xiaowen; Alt, Eckhard

    2010-01-01

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  1. Repairable-conditionally repairable damage model based on dual Poisson processes.

    Science.gov (United States)

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  2. Methodology for determining void swelling at very high damage under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Getto, E., E-mail: embecket@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Sun, K. [Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Taller, S.; Monterrosa, A.M.; Jiao, Z. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Was, G.S. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-08-15

    At very high damage levels in ion irradiated samples, the decrease in effective density of the irradiated material due to void swelling can lead to errors in quantifying swelling. HT9 was pre-implanted with 10 appm He and subjected to a raster-scanned beam with a damage rate of ∼1 × 10{sup −3} dpa/s at 460{sup o}C. Voids were characterized from 0 to 1300 nm. Fixed damage rate and fixed depth methods were developed to account for damage-dependent porosity increase and resulting dependence on depth. The fixed depth method was more appropriate as it limits undue effects from the injected interstitial while maintaining a usable void distribution. By keeping the depth fixed and accounting for the change in damage rate due to reduced density, the steady state swelling rate was 10% higher than calculation of swelling from raw data. This method is easily translatable to other materials, ion types and energies and limits the impact of the injected interstitial.

  3. Determination of natural radioactivity in beach sediments collected from Kovalam, Chennai

    International Nuclear Information System (INIS)

    Rajalakshmi, A.; Jananee, B.; Thangam, V.; Chandrasekaran, A.

    2018-01-01

    Long lived radioactive elements such as uranium, thorium, potassium and their decay products such as radium and radon are examples of naturally occurring radioactive materials abbreviated as NORM. All living things are exposed to ionizing radiation from NORM contributing to about 90% of human radiation exposure. The interaction of ionizing radiation with human body leads to several biological damages like leukemia, cancer etc due to damage and modification of cells and tissues in the body. Hence, the present work is carried out to determine the natural radioactivity of beach sediments along Kovalam Beach, Chennai. Associated parameters are also calculated

  4. Protective role of S-Adenosylmethionine against fructose-induced oxidative damage in obesity

    Directory of Open Access Journals (Sweden)

    Kameliya Zh Bratoeva

    2017-10-01

    Full Text Available Introduction. It has been shown that S-adenosylmethionine (S-AMe stimulates glutathione synthesis and increases cell resistance to the cytotoxic action of free radicals and pro-inflammatory cytokines. The aim of this study was to determine the effect of Sadenosylmethionine on the oxidative stress in adipose tissue in a model of fructose-induced obesity. Methods. The study was performed on male Wistar rats divided into 3 groups: control, fructose fed (HFD (35%, 16 weeks, and HFD + S-AMe (20 mg/kg. We examined the changes in the ratio of retroperitoneal adipose tissue weight / body weight; levels of reduced glutathione (GSH and malondialdehyde (MDA in the retroperitoneal adipose tissue, and serum levels of GSH and TNF-α. Results. Significant increases in the retroperitoneal adipose tissue, MDA, and serum TNF-α were identified, as well as decreased tissue and serum levels of GSH in rats fed with a high-fructose diet as compared with the control group. In the group fed with HFD and SAMe, we found significant reduction in the retroperitoneal adipose tissue and decreased levels of MDA and serum TNF-α, as well as increased tissue and serum levels of GSH as compared with the group only on HFD. In conclusion, our results show that fructose-induced obesity causes oxidative stress in hypertrophic visceral adipose tissue. The administration of S-AMe improves the antioxidative protection of adipocytes, and reduces oxidative damage and excessive accumulation of lipids and inflammation.

  5. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90{sup o} (x=0.99 A{sup -1}). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z{sub eff} of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  6. Protective effect of 4-coumaric acid from UVB ray damage in the rabbit eye

    International Nuclear Information System (INIS)

    Lodovici, Maura; Caldini, Silvia; Morbidelli, Lucia; Akpan, Victor; Ziche, Marina; Dolara, Piero

    2009-01-01

    UV-induced oxidation damage seems to play a major role in a number of specific pathological conditions of intraocular tissues, such as cataract formation and retinal degeneration. Therefore, antioxidant and/or scavenger compounds might protect the eyes from UV-induced cellular damage. We previously reported that 4-coumaric acid (4-CA) is able to protect rabbit corneal-derived cells (SIRC) from UVB-induced oxidation damage. In this study we evaluated the protective effect of 4-CA against UVB-induced cell damage in rabbit cornea in vivo. Twelve male New Zealand albino rabbits were used; four rabbits were used as a control and received vehicle in one eye and 4-CA acid in the contralateral eye; eight rabbits were exposed to UVB rays (79.2 mJ/cm 2 ) and three days before to UV exposure each animal received 1 drop/day of vehicle in one eye and 1 drop/day of vehicle containing 4-CA (164 ng) in the contralateral eye. Corneal and sclera tissues were removed and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) levels were measured. Superoxide dismutase (SOD) and xanthine oxidase (XO) activities were determined in aqueous humour. UVB-induced vessel hyper-reactivity was strongly reduced at 4 and 24 h after UVB exposure after local treatment with 4-CA, 8-oxodGuo levels, a marker of oxidative DNA damage, were significantly increased (P < 0.05) in sclera and cornea by UVB irradiation, but when 4-CA was administered to the conjunctiva in a buffered solution once a day for 3 d before and 6 d after UVB exposure, levels of 8-oxodGuo were similar to controls and significantly reduced (P < 0.05) compared to UVB-treated corneas. XO activity in the aqueous humour was significantly increased. The administration of 4-CA for 3 d before and 6 d after UVB irradiation induced a small but significant (P < 0.05) reduction of XO compared with control eyes. Our results indicate that the administration of 4-CA protects eye tissues, thus reducing the harmful effect of UVB radiation at low

  7. A general native-state method for determination of proliferation capacity of human normal and tumor tissues in vitro

    International Nuclear Information System (INIS)

    Hoffman, R.M.; Connors, K.M.; Meerson-Monosov, A.Z.; Herrera, H.; Price, J.H.

    1989-01-01

    An important need in cancer research and treatment is a physiological means in vitro by which to assess the proliferation capacity of human tumors and corresponding normal tissue for comparison. The authors have recently developed a native-state, three-dimensional, gel-supported primary culture system that allows every type of human cancer to grow in vitro at more than 90% frequency, with maintenance of tissue architecture, tumor-stromal interaction, and differentiated functions. Here they demonstrate that the native-state culture system allows proliferation indices to be determined for all solid cancer types explanted directly from surgery into long-term culture. Normal tissues also proliferate readily in this system. The degree of resolution of measurement of cell proliferation by histological autoradiography within the cultured tissues is greatly enhanced with the use of epi-illumination polarization microscopy. The histological status of the cultured tissues can be assessed simultaneously with the proliferation status. Carcinomas generally have areas of high epithelial proliferation with quiescent stromal cells. Sarcomas have high proliferation of cells of mesenchymal organ. Normal tissues can also proliferate at high rates. An image analysis system has been developed to automate proliferation determination. The high-resolution physiological means described here to measure the proliferation capacity of tissues will be important in further understanding of the deregulation of cell proliferation in cancer as well as in cancer prognosis and treatment

  8. Defense mechanisms against radiation induced teratogenic damage in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Nomoto, S.; Norimura, T.

    2002-01-01

    Experimental studies with mice have established that fetuses at midgestational stage are highly susceptible to malformation at high, but not low, doses of radiation. When DNA damage is produced by a small amount of radiation, it is efficiently eliminated by DNA repair. However, DNA repair is not perfect. There must be defense mechanisms other than DNA repair. In order to elucidate the essential role of p53 gene in apoptotic tissue repair, we compared the incidence of radiation-induced malformations and deaths (deaths after day 10) in wild-type p53 (+/+) mice and null p53 (-/-) mice. For p53 (+/+) mice, an X-ray dose of 2 Gy given at a high dose-rate (450 mGy/min) to fetuses at 9.5 days of gestation was highly lethal and considerably teratogenic whereas it was only slightly lethal but highly teratogenic for p53 (-/-) fetuses. This reciprocal relationship of radiosensitivity to malformations and deaths supports the notion that fetal tissues have a p53 -dependent idguardianln of the tissue that aborts cells bearing radiation-induced teratogenic DNA damage. When an equal dose of 2 Gy given at a 400-fold lower dose-rate (1.2 mGy/min), this dose became not teratogenic for p53 (+/+) fetuses exhibiting p53 -dependent apoptosis, whereas this dose remained teratogenic for p53 (-/-) fetuses unable to carry out apoptosis. Furthermore, when the dose was divided into two equal dose fractions (1+1 Gy) at high dose rate, separated by 24 hours, the incidences of malformations were equal with control level for p53 (+/+), but higher for p53 (-/-) mice. Hence, complete elimination of teratogenic damage from irradiated tissues requires a concerted cooperation of two mechanisms; proficient DNA repair and p53-dependent apoptotic tissue repair

  9. Identification of molecular mechanisms of radiation-induced vascular damage in normal tissues using microarray analyses

    International Nuclear Information System (INIS)

    Kruse, J.J.C.M.; Te Poele, J.A.M.; Russell, N.S.; Boersma, L.J.; Stewart, F.A.

    2003-01-01

    Radiation-induced telangiectasia, characterized by thin-walled dilated blood vessels, can be a serious late complication in patients that have been previously treated for cancer. It might cause cosmetic problems when occurring in the skin, and excessive bleeding requiring surgery when occurring in rectal mucosa. The mechanisms underlying the development of radiation-induced telangiectasia are unclear. The aim of the present study is to determine whether microarrays are useful for studying mechanisms of radiation-induced telangiectasia. The second aim is to test the hypotheses that telangiectasia is characterized by a final common pathway in different tissues. Microarray experiments were performed using amplified RNA from (sham)irradiated mouse tissues (kidney, rectum) at different intervals (1-30 weeks) after irradiation. After normalization procedures, the differentially expressed genes were identified. Control/repeat experiments were done to confirm that the observations were not artifacts of the array procedure. The mouse kidney experiments showed significant upregulation of 31 and 42 genes and downregulation of 9 and 4 genes at 10 and 20 weeks after irradiation, respectively. Irradiated mouse rectum has 278 upregulated and 537 downregulated genes at 10 weeks and 86 upregulated and 29 downregulated genes at 20 weeks. During the development of telangiectasia, 19 upregulated genes and 5 downregulated genes were common to both tissues. Upregulation of Jagged-1, known to play a role in angiogenesis, is particularly interesting in the context of radiation-induced telangiectasia. Microarrays are affective discovery tools to identify novel genes of interest, which may be involved in radiation-induced normal tissue injury. Using information from control arrays (particularly straight color, color reverse and self-self experiments) allowed for a more accurate and reproducible identification of differentially expressed genes than the selection of an arbitrary 2-fold change

  10. The involvement of oxidative stress in the mechanisms of damaging cadmium action in bone tissue: A study in a rat model of moderate and relatively high human exposure

    International Nuclear Information System (INIS)

    Brzoska, Malgorzata M.; Rogalska, Joanna; Kupraszewicz, Elzbieta

    2011-01-01

    It was investigated whether cadmium (Cd) may induce oxidative stress in the bone tissue in vivo and in this way contribute to skeleton damage. Total antioxidative status (TAS), antioxidative enzymes (glutathione peroxidase, superoxide dismutase, catalase), total oxidative status (TOS), hydrogen peroxide (H 2 O 2 ), lipid peroxides (LPO), total thiol groups (TSH) and protein carbonyl groups (PC) as well as Cd in the bone tissue at the distal femoral epiphysis and femoral diaphysis of the male rats that received drinking water containing 0, 5, or 50 mg Cd/l for 6 months were measured. Cd, depending on the level of exposure and bone location, decreased the bone antioxidative capacity and enhanced its oxidative status resulting in oxidative stress and oxidative protein and/or lipid modification. The treatment with 5 and 50 mg Cd/l decreased TAS and activities of antioxidative enzymes as well as increased TOS and concentrations of H 2 O 2 and PC at the distal femur. Moreover, at the higher exposure, the concentration of LPO increased and that of TSH decreased. The Cd-induced changes in the oxidative/antioxidative balance of the femoral diaphysis, abundant in cortical bone, were less advanced than at the distal femur, where trabecular bone predominates. The results provide evidence that, even moderate, exposure to Cd induces oxidative stress and oxidative modifications in the bone tissue. Numerous correlations noted between the indices of oxidative/antioxidative bone status, and Cd accumulation in the bone tissue as well as indices of bone turnover and bone mineral status, recently reported by us (Toxicology 2007, 237, 89-103) in these rats, allow for the hypothesis that oxidative stress is involved in the mechanisms of damaging Cd action in the skeleton. The paper is the first report from an in vivo study indicating that Cd may affect bone tissue through disorders in its oxidative/antioxidative balance resulting in oxidative stress.

  11. Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues.

    Science.gov (United States)

    Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L

    2018-02-19

    Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.

  12. Simple micellar electrokinetic chromatography method for the determination of hydrogen sulfide in hen tissues.

    Science.gov (United States)

    Kubalczyk, Paweł; Borowczyk, Kamila; Chwatko, Grażyna; Głowacki, Rafał

    2015-04-01

    A new method for the determination of hydrogen sulfide in hen tissues has been developed and validated. For estimation of hydrogen sulfide content, a sample (0.1 g) of hen tissue was treated according to the procedure consisted of some essential steps: simultaneous homogenization of a tissue and derivatization of hydrogen sulfide to its S-quinolinium derivative with 2-chloro-1-methylquinolinium tetrafluoroborate, separation of so-formed derivative by micellar electrokinetic chromatography with sweeping, and detection and quantitation with the use of UV detector set to measure analytical signals at 375 nm. Effective electrophoretic separation was achieved using fused silica capillary (effective length 41.5 cm, 75 μm id) and 0.05 mol/L, pH 8 phosphate buffer with the addition of 0.04 mol/L SDS and 26% ACN. The lower limit of quantification was 0.12 μmol hydrogen sulfide in 1 g of tissue. The calibration curve prepared in tissue homogenate for hydrogen sulfide showed linearity in the range from 0.15 to 2.0 μmol/g, with the coefficient of correlation 0.9978. The relative standard deviation of the points of the calibration curve varied from 8.3 to 3.2% RSD. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Determination of piroxicam from rat articular tissue and plasma based on LC-MS/MS.

    Science.gov (United States)

    Kim, Han Sol; Cho, Ha Ra; Ho, Myoung Jin; Kang, Myung Joo; Choi, Yong Seok

    2016-12-01

    Osteoarthritis (OA) is the most common type of arthritis. To manage OA, in general, oral administration of non-steroidal anti-inflammatory drugs (NSAIDs) is used. Recently, the analgesic and anti-inflammatory efficacy of piroxicam (PX), a long-acting NSAID, by intra-articular (IA) administration in OA was reported, and the possibility that PX is distributed in articular tissues at a certain concentration was raised. Thus, herein, novel LC-MS/MS methods to detect PX in rat articular tissue and plasma are presented. For articular tissue, solvent extraction with acetonitrile for 12 h was employed and a protein precipitation method was used for the preparation of a plasma sample. The developed methods were validated by following the FDA guidelines, and the validated methods were successfully applied to a PK study of IA PX. The present study presents, to our knowledge, the first method of determining a drug in articular tissue. Additionally, the level of PX in articular tissue after IA PX administration was experimentally confirmed for the first time using the present methods. Therefore, the present methods provide a new direction for in vivo evaluation for IA PX formulations and contribute to the development of alternative IA PX formulations with better effects for the treatment of OA.

  14. Illicit drug detection with laser 1: investigation of optimal parameters in stomach tissue

    Science.gov (United States)

    Özer, Ayşen Gürkan; Tabakoğlu, Haşim Özgür; Cengiz, Salih

    2014-05-01

    The main purpose of this study is to establish radiation-safe scanning of passersby at high security areas, such as airports and customs. The stomach was selected as the organ to be analyzed. In order to determine whether a substance found inside a human body as wrapped in a plastic bag is filled narcotics or not, many substances in white powder form including morphine-HCL were inspected. Inspection was carried out with on-ionizing radiation by irradiating stomach tissue with laser light. Optical transmittance of lamb stomach tissue was analyzed at different wavelengths. We showed that detection by 650-nm diode laser irradiation would be suitable for such a radiation-safe scan. Different materials were also investigated for absorptive properties, and closed system Raman studies were performed. The spectrum of a molecule found inside white powder placed behind the lamb stomach tissue was detected as a fingerprint. This allowed the detection of target substances without any physical contact or damage to the biological tissue.

  15. Acrolein: An Effective Biomarker for Tissue Damage Produced from Polyamines.

    Science.gov (United States)

    Igarashi, Kazuei; Uemura, Takeshi; Kashiwagi, Keiko

    2018-01-01

    It is thought that the major factor responsible for cell damage is reactive oxygen species (ROS), but our recent studies have shown that acrolein (CH 2 =CH-CHO) produced from spermine and spermidine is more toxic than ROS. Thus, (1) the mechanism of acrolein production during brain stroke, (2) one of the mechanisms of acrolein toxicity, and (3) the role of glutathione in acrolein detoxification are described in this chapter.

  16. INHIBITION OF FRIED MEAT-INDUCED DNA DAMAGE: A DIETARY INTERVENTION STUDY IN HUMANS

    Science.gov (United States)

    Dietary exposures have been implicated as risk factors in colorectal cancer. Such agents may act by causing DNA damage or may be protective against DNA damage. The effects of dietary exposures in causing or preventing damage have not been assessed directly in colon tissues. In th...

  17. DNA damage repair and radiosensitivity

    International Nuclear Information System (INIS)

    Suzuki, Norio

    2003-01-01

    Tailored treatment is not new in radiotherapy; it has been the major subject for the last 20-30 years. Radiation responses and RBE (relative biological effectiveness) depend on assay systems, endpoints, type of tissues and tumors, radiation quality, dose rate, dose fractionation, physiological and environmental factors etc, Latent times to develop damages also differ among tissues and endpoints depending on doses and radiation quality. Recent progress in clarification of radiation induced cell death, especially of apoptotic cell death, is quite important for understanding radiosensitivity of tumor cure process as well as of tumorigenesis. Apoptotic cell death as well as dormant cells had been unaccounted and missed into a part of reproductive cell death. Another area of major progress has been made in clarifying repair mechanisms of radiation damage, i.e., non-homologous end joining (NHEJ) and homologous recombinational repair (HRR). New approaches and developments such as cDNA or protein micro arrays and so called informatics in addition to basic molecular biological analysis are expected to aid identifying molecules and their roles in signal transduction pathways, which are multi-factorial and interactive each other being involved in radiation responses. (authors)

  18. Normal tissue complication probability (NTCP), the clinician,s perspective

    International Nuclear Information System (INIS)

    Yeoh, E.K.

    2011-01-01

    Full text: 3D radiation treatment planning has enabled dose distributions to be related to the volume of normal tissues irradiated. The dose volume histograms thus derived have been utilized to set NTCP dose constraints to facilitate optimization of treatment planning. However, it is not widely appreciated that a number of important variables other than DYH's which determine NTCP in the individual patient. These variables will be discussed under the headings of patient and treatment related as well as tumour related factors. Patient related factors include age, co-morbidities such as connective tissue disease and diabetes mellitus, previous tissue/organ damage, tissue architectural organization (parallel or serial), regional tissue/organ and individual tissue/organ radiosensitivities as well as the development of severe acute toxicity. Treatment related variables which need to be considered include dose per fraction (if not the conventional 1.8012.00 Gy/fraction, particularly for IMRT), number of fractions and total dose, dose rate (particularly if combined with brachytherapy) and concurrent chemotherapy or other biological dose modifiers. Tumour related factors which impact on NTCP include infiltration of normal tissue/organ usually at presentation leading to compromised function but also with recurrent disease after radiation therapy as well as variable tumour radiosensitivities between and within tumour types. Whilst evaluation of DYH data is a useful guide in the choice of treatment plan, the current state of knowledge requires the clinician to make an educated judgement based on a consideration of the other factors.

  19. ALK1 heterozygosity delays development of late normal tissue damage in the irradiated mouse kidney

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Korlaar, Regina; Russell, Nicola S.; Stewart, Fiona A.

    2011-01-01

    Background and Purpose: Activin receptor-like kinase 1 (ALK1) is a transforming growth factor β (TGF-β) receptor, which is mainly expressed in endothelial cells regulating proliferation and migration in vitro and angiogenesis in vivo. Endothelial cells also express the co-receptor endoglin, which modulates ALK1 effects on endothelial cells. Our previous studies showed that mice with reduced endoglin levels develop less irradiation-induced vascular damage and fibrosis, caused by an impaired inflammatory response. This study was aimed at investigating the role of ALK1 in late radiation toxicity. Material and Methods: Kidneys of ALK +/+ and ALK1 +/- mice were irradiated with 14 Gy. Mice were sacrificed at 10, 20, and 30 weeks after irradiation and gene expression and protein levels were analyzed. Results: Compared to wild type littermates, ALK1 +/- mice developed less inflammation and fibrosis at 20 weeks after irradiation, but displayed an increase in pro-inflammatory and pro-fibrotic gene expression at 30 weeks. In addition, ALK1 +/- mice showed superior vascular integrity at 10 and 20 weeks after irradiation which deteriorated at 30 weeks coinciding with changes in the VEGF pathway. Conclusions: ALK1 +/- mice develop a delayed normal tissue response by modulating the inflammatory response and growth factor expression after irradiation.

  20. Recent advances in hydrogels for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    SL Vega

    2017-01-01

    Full Text Available Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks, new techniques to process hydrogels (e.g. 3D printing and better incorporation of biological signals (e.g. controlled release. This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  1. Recent advances in hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Vega, S L; Kwon, M Y; Burdick, J A

    2017-01-30

    Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  2. Impact of genomic damage and ageing on stem cell function

    Science.gov (United States)

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  3. Tissue effects of Ho:YAG laser with varying fluences and pulse widths

    Science.gov (United States)

    Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1994-02-01

    We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.

  4. Determination of the numerical parameters of a continuous damage model for the structural analysis of clay brick masonry

    Directory of Open Access Journals (Sweden)

    Felipe Barbosa Mangueira

    2012-12-01

    Full Text Available Models based on the continuous damage theory present good responses in representing the nonlinear behavior of reinforced concrete structures with loss of strength and stiffness of the material. However, damage theory is rarely employed in the analysis of masonry structures and numerical simulations are currently performed mostly by Finite Element Method formulations. A computational program was designed to determine the numerical parameters of a damage model of the physical properties of masonry components, solid clay brick and mortar. The model was formulated based on the composition of tensile and compressive surface strengths in the plane stress state. The numerical parameters, the corresponding curves of the activation surfaces and the evolution of the surfaces are presented. The results were fed into the computational program based on the Boundary Element Method (BEM for the simulation of masonry walls, and two types of masonry were simulated. The results confirm the good performance of the model and the program based on the BEM.

  5. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E

    2003-07-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  6. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2003-01-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  7. Large area damage testing of optics

    International Nuclear Information System (INIS)

    Sheehan, L.; Kozlowski, M.; Stolz, C.

    1996-01-01

    The damage threshold specifications for the National Ignition Facility will include a mixture of standard small-area tests and new large-area tests. During our studies of laser damage and conditioning processes of various materials we have found that some damage morphologies are fairly small and this damage does not grow with further illumination. This type of damage might not be detrimental to the laser performance. We should therefore assume that some damage can be allowed on the optics, but decide on a maximum damage allowance of damage. A new specification of damage threshold termed open-quotes functional damage thresholdclose quotes was derived. Further correlation of damage size and type to system performance must be determined in order to use this measurement, but it is clear that it will be a large factor in the optics performance specifications. Large-area tests have verified that small-area testing is not always sufficient when the optic in question has defect-initiated damage. This was evident for example on sputtered polarizer and mirror coatings where the defect density was low enough that the features could be missed by standard small- area testing. For some materials, the scale-length at which damage non-uniformities occur will effect the comparison of small-area and large-area tests. An example of this was the sub-aperture tests on KD*P crystals on the Beamlet test station. The tests verified the large-area damage threshold to be similar to that found when testing a small-area. Implying that for this KD*P material, the dominate damage mechanism is of sufficiently small scale-length that small-area testing is capable of determining the threshold. The Beamlet test station experiments also demonstrated the use of on-line laser conditioning to increase the crystals damage threshold

  8. Determination of the relationship between collagen cross-links and the bone-tissue stiffness in the porcine mandibular condyle

    NARCIS (Netherlands)

    Willems, N.M.B.K.; Mulder, L.; Bank, R.A.; Grünheid, T.; Toonder, J.M.J. den; Zentner, A.; Langenbach, G.E.J.

    2011-01-01

    Although bone-tissue stiffness is closely related to the degree to which bone has been mineralized, other determinants are yet to be identified. We, therefore, examined the extent to which the mineralization degree, collagen, and its cross-links are related to bone-tissue stiffness. A total of 50

  9. Investigation of retinal damage during refractive eye surgery

    Science.gov (United States)

    Schumacher, S.; Sander, M.; Dopke, C.; Grone, A.; Ertmer, W.; Lubatschowski, H.

    2005-04-01

    Ultrashort laser pulses are increasingly used in refractive eye surgery to cut inside transparent corneal tissue. This is exploited by the fs-LASIK procedure which affords the opportunity to correct ametropia without any mechanical effects. The cutting process is caused by the optical breakdown occurring in the laser focus. During this process only a certain amount of the pulse energy is deposited into the tissue. The remaining pulse energy propagates further through the eye and interacts with the retina and the strong absorbing tissue layers behind. Therefore this investigation shall clarify if the intensity of the remaining laser pulse and the resulting temperature field can damage the retina and the surrounding tissue. Threshold values of the retinal tissue and theoretical calculations of the temperature field will be presented.

  10. The effects of lycopene on DNA damage and oxidative stress on indomethacin-induced gastric ulcer in rats.

    Science.gov (United States)

    Boyacioglu, Murat; Kum, Cavit; Sekkin, Selim; Yalinkilinc, Hande Sultan; Avci, Hamdi; Epikmen, Erkmen Tugrul; Karademir, Umit

    2016-04-01

    Lycopene, the main antioxidant compound present in tomatoes, has high singlet oxygen- and peroxyl radicals-quenching ability, resulting in protection against oxidative damage in aerobic cell. Indomethacin is a nonsteroidal anti-inflammatory drug, and can promote oxidative damage in gastric tissue. The aim of this study was to investigate the protective effects of lycopene on an indomethacin-induced gastric ulcer model. A total of 42 adult male Wistar rats were divided into six groups of seven animals as follows: control, indomethacin, lansoprazole, lycopene 10 mg/kg, lycopene 50 mg/kg and lycopene 100 mg/kg. Gastric ulcers were induced by oral administration of indomethacin, after which the differing doses of lycopene were administered by oral gavage. The efficacy of lycopene was compared with lansoprazole. DNA damage of lymphocytes was measured by comet assay. Activities of superoxide dismutase, catalase and myeloperoxidase, as well as malondialdehyde and glutathione levels were determined in stomach tissue. This tissue was also taken for pathological investigations. The TUNEL method was used to detect apoptotic cells in paraffin sections. The results showed that 100 mg/kg lycopene administration significantly decreased % Tail DNA and Mean Tail Moment in the gastric ulcer group, compared with the other treatment groups. This same dose of lycopene also significantly decreased high malondialdehyde level and myeloperoxidase activity, and increased the activity of antioxidant enzymes (with the exception of catalase) in tissue. Apoptosis rates in the stomachs of the rats correlated with the biochemical and histopathological findings. These results indicated that lycopene might have a protective effect against indomethacin-induced gastric ulcer and oxidative stress in rats. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Impact of Hot Environment on Fluid and Electrolyte Imbalance, Renal Damage, Hemolysis, and Immune Activation Postmarathon

    Directory of Open Access Journals (Sweden)

    Rodrigo Assunção Oliveira

    2017-01-01

    Full Text Available Previous studies have demonstrated the physiological changes induced by exercise exposure in hot environments. We investigated the hematological and oxidative changes and tissue damage induced by marathon race in different thermal conditions. Twenty-six male runners completed the São Paulo International Marathon both in hot environment (HE and in temperate environment (TE. Blood and urine samples were collected 1 day before, immediately after, 1 day after, and 3 days after the marathon to analyze the hematological parameters, electrolytes, markers of tissue damage, and oxidative status. In both environments, the marathon race promotes fluid and electrolyte imbalance, hemolysis, oxidative stress, immune activation, and tissue damage. The marathon runner’s performance was approximately 13.5% lower in HE compared to TE; however, in HE, our results demonstrated more pronounced fluid and electrolyte imbalance, renal damage, hemolysis, and immune activation. Moreover, oxidative stress induced by marathon in HE is presumed to be related to protein/purine oxidation instead of other oxidative sources. Fluid and electrolyte imbalance and protein/purine oxidation may be important factors responsible for hemolysis, renal damage, immune activation, and impaired performance after long-term exercise in HE. Nonetheless, we suggested that the impairment on performance in HE was not associated to the muscle damage and lipoperoxidation.

  12. Role of plasminogen activator inhibitor type-1 in radiation-induced normal tissues injury

    International Nuclear Information System (INIS)

    Abderrahmani, R.

    2010-01-01

    Radiotherapy is an essential tool for cancer treatment, but there is a balance between benefits and risks related to the use of ionizing radiation: the objective is to deliver a maximum dose to the tumour to destroy or to sterilize it while protecting surrounding normal tissues. Radio-induced damages to normal tissues are therefore a limiting factor when increasing the dose delivered to the tumour. One of the objectives of this research thesis is to bring to the fore a relationship between the initiation of lesions and the development of late damages, more particularly in the intestine, and to identify the involved molecular actors and their inter-connectivity. After a first part presenting ionizing radiation, describing biological effects of ionizing radiation and their use in radiotherapy, presenting the intestine and the endothelium and discussing the intestine radio-sensitivity, discussing the radio-induced intestine damages and radiotherapy-induced complications, and presenting the plasminogen activator inhibitor (PAI-1) and its behaviour in presence of ionizing radiation, two articles are reproduced. The first one addresses the effect of a pharmacological inhibition and of genetic deficiency in PAI-1 on the evolution of radio-induced intestine lesions. The second one discusses the fact that radio-induced PAI-1-related death of endothelial cells determines the severity of early radio-induced intestine lesions

  13. Possible role of licorice roots (glycyrrhiza glabra) as a natural radioprotector against oxidative damage in rats

    International Nuclear Information System (INIS)

    Darwish, M. M.; Hussien, E. M.; Haggag, A. M.

    2007-01-01

    This study was conducted to investigate the possible role of Licorice against damages induced by gamma rays. Adult female albino rats (130-140 g) were divided into four groups. Group 1: control animals, group 2: rats whole body exposed to gamma radiations (6.5 Gy), group 3: animals received Licorice in drinking water for four weeks (100 mg/ kg body wt/ day), and group 4: received Licorice two weeks before and two weeks after irradiation. Blood and liver samples were obtained two weeks post-irradiation. Total cholesterol (TC), triglycerides (TG), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C), glucose, sodium (Na + ) and potassium (K + ) levels were determined in serum. Per oxidative hepatic damage was studied by assessing; thiobarbituric acid reactive substances (TBARs) and reduced glutathione (GSH) contents, as well as, superoxide dismutase (SOD) and catalase (CAT) activities in liver tissue. The data obtained revealed a significant increase in serum glucose, K + , TC, TG and LDL-C and liver TABRs. While, significant decreases were recorded for serum Na + and HDL-C levels, liver GSH content, SOD and CAT activities. On the other hand, Licorice treated irradiation rats showed a significant amelioration in the changes produced by gamma radiation with variable degree. Thus, it could be concluded that Licorice might provide protection against radiation-induced disturbances in metabolic activities and oxidative damage in liver tissues

  14. Validation of a method to determine methylmercury in fish tissues using gas chromatography

    International Nuclear Information System (INIS)

    Vega Bolannos, Luisa O.; Arias Verdes, Jose A.; Beltran Llerandi, Gilberto; Castro Diaz, Odalys; Moreno Tellez, Olga L.

    2000-01-01

    We validated a method to determine methylmercury in fish tissues using gas chromatography with an electron capture detector as described by the Association of Official Analytical Chemist (AOAC) International. The linear curve range was 0.02 to 1 g/ml and linear correlation coefficient was 0.9979. A 1 mg/kg methylmercury-contaminated fish sample was analyzed 20 times to determine repeatability of the method. The quantification limit was 0.16 mg/kg and detection limit was 0.06 ppm. Fish samples contaminated with 0.2 to 10 mg/kg methylmercury showed recovery indexes from 94.66 to 108.8%

  15. Accumulation of senescent cells in mitotic tissue of aging primates.

    Science.gov (United States)

    Jeyapalan, Jessie C; Ferreira, Mark; Sedivy, John M; Herbig, Utz

    2007-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over 40 years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event.

  16. Determining tissue-lead levels in large game mammals harvested with lead bullets: human health concerns.

    Science.gov (United States)

    Tsuji, L J S; Wainman, B C; Jayasinghe, R K; VanSpronsen, E P; Liberda, E N

    2009-04-01

    Recently, the use of lead isotope ratios has definitively identified lead ammunition as a source of lead exposure for First Nations people, but the isotope ratios for lead pellets and bullets were indistinguishable. Thus, lead-contaminated meat from game harvested with lead bullets may also be contributing to the lead body burden; however, few studies have determined if lead bullet fragments are present in big game carcasses. We found elevated tissue-lead concentrations (up to 5,726.0 microg/g ww) in liver (5/9) and muscle (6/7) samples of big game harvested with lead bullets and radiographic evidence of lead fragments. Thus, we would advise that the tissue surrounding the wound channel be removed and discarded, as this tissue may be contaminated by lead bullet fragments.

  17. Tissue reaction surrounding miniscrews for orthodontic anchorage: An animal experiment

    Directory of Open Access Journals (Sweden)

    Stephanie Shih-Hsuan Chen

    2012-03-01

    Results and conclusions: (1 Tissue surrounding roots damaged by a miniscrew showed a significant inflammatory response. (2 Root resorption was occasionally observed after 3 weeks following insertion of a miniscrew even if the miniscrew was not in direct contact with the root. (3 Root repair was noted with a cementoblast lining along the resorption surface at as early as 3 weeks after miniscrew insertion. Alveolar bone filled in the lesion when the root damage was large so that the contour of the alveolar bone followed that of the damaged root, with the width of the periodontal ligament space being maintained. (4 Stable miniscrews were mainly those which did not contact adjacent roots, and for which the surrounding tissue showed only a small inflammatory response with some extent of direct bone contact around the miniscrew. On the contrary, most of the failed miniscrews were those which had direct contact with adjacent roots, and which exhibited severe tissue inflammation and were covered by thick layers of soft tissue. Failure was detected 3 weeks after insertion. Surprisingly, the epithelial lining surrounding the miniscrews might not have spontaneously resolved 6 weeks after screw removal. Persistent infection in the sinus tract was noted, and this would require attention.

  18. Porcine skin damage thresholds for pulsed nanosecond-scale laser exposure at 1064-nm

    Science.gov (United States)

    DeLisi, Michael P.; Peterson, Amanda M.; Noojin, Gary D.; Shingledecker, Aurora D.; Tijerina, Amanda J.; Boretsky, Adam R.; Schmidt, Morgan S.; Kumru, Semih S.; Thomas, Robert J.

    2018-02-01

    Pulsed high-energy lasers operating in the near-infrared (NIR) band are increasingly being used in medical, industrial, and military applications, but there are little available experimental data to characterize their hazardous effects on skin tissue. The current American National Standard for the Safe Use of Lasers (ANSI Z136.1-2014) defines the maximum permissible exposure (MPE) on the skin as either a single-pulse or total exposure time limit. This study determined the minimum visible lesion (MVL) damage thresholds in Yucatan miniature pig skin for the single-pulse case and several multiple-pulse cases over a wide range of pulse repetition frequencies (PRFs) (10, 125, 2,000, and 10,000 Hz) utilizing nanosecond-scale pulses (10 or 60 ns). The thresholds are expressed in terms of the median effective dose (ED50) based on varying individual pulse energy with other laser parameters held constant. The results confirm a decrease in MVL threshold as PRF increases for exposures with a constant number of pulses, while also noting a PRF-dependent change in the threshold as a function of the number of pulses. Furthermore, this study highlights a change in damage mechanism to the skin from melanin-mediated photomechanical events at high irradiance levels and few numbers of pulses to bulk tissue photothermal additivity at lower irradiance levels and greater numbers of pulses. The observed trends exceeded the existing exposure limits by an average factor of 9.1 in the photothermally-damaged cases and 3.6 in the photomechanicallydamaged cases.

  19. Cartilage damage and bone erosion are more prominent determinants of functional impairment in longstanding experimental arthritis than synovial inflammation

    Directory of Open Access Journals (Sweden)

    Silvia Hayer

    2016-11-01

    Full Text Available Chronic inflammation of articular joints causing bone and cartilage destruction consequently leads to functional impairment or loss of mobility in affected joints from individuals affected by rheumatoid arthritis (RA. Even successful treatment with complete resolution of synovial inflammatory processes does not lead to full reversal of joint functionality, pointing to the crucial contribution of irreversibly damaged structural components, such as bone and cartilage, to restricted joint mobility. In this context, we investigated the impact of the distinct components, including synovial inflammation, bone erosion or cartilage damage, as well as the effect of blocking tumor necrosis factor (TNF on functional impairment in human-TNF transgenic (hTNFtg mice, a chronic inflammatory erosive animal model of RA. We determined CatWalk-assisted gait profiles as objective quantitative measurements of functional impairment. We first determined body-weight-independent gait parameters, including maximum intensity, print length, print width and print area in wild-type mice. We observed early changes in those gait parameters in hTNFtg mice at week 5 – the first clinical signs of arthritis. Moreover, we found further gait changes during chronic disease development, indicating progressive functional impairment in hTNFtg mice. By investigating the association of gait parameters with inflammation-mediated joint pathologies at different time points of the disease course, we found a relationship between gait parameters and the extent of cartilage damage and bone erosions, but not with the extent of synovitis in this chronic model. Next, we observed a significant improvement of functional impairment upon blocking TNF, even at progressed stages of disease. However, blocking TNF did not restore full functionality owing to remaining subclinical inflammation and structural microdamage. In conclusion, CatWalk gait analysis provides a useful tool for quantitative

  20. Identification of the IGF-1 processing product human Ec/rodent Eb peptide in various tissues: Evidence for its differential regulation after exercise-induced muscle damage in humans.

    Science.gov (United States)

    Vassilakos, George; Philippou, Anastassios; Koutsilieris, Michael

    2017-02-01

    Insulin-like growth factor-1 (IGF-1) is a pleiotropic factor expressed in various tissues and plays a critical role in skeletal muscle physiology. Alternative splicing of the IGF-1 gene gives rise to different precursor polypeptides (isoforms) which could undergo post-translational cleavage, generating the common mature IGF-1 peptide and different carboxyl terminal extension (E-) peptides, with the fate of the latter being, so far, unknown. The objective if this study was to identify the IGF-1Ec forms or processing product(s), other than mature IGF-1, generated in different human and rodent tissues and particularly in human skeletal muscle after exercise-induced damage. Protein lysates from a wide range of human and rodent tissues were immunoblotted with a rabbit anti-human Ec polyclonal antibody raised against the last 24 amino acids of the C-terminal of the Ec peptide. This antibody can recognize the Ec peptide, both as part of IGF-1Ec and alone, and also the corresponding rodent forms, due to the high homology that the human Ec shares with the rodent Eb. We were able to confirm, for the first time, that the human Ec peptide and its rodent homologous Eb peptide are produced simultaneously with their precursor protein (pro-IGF-1Ec/Eb) in vivo, in a wide range of tissues (e.g. muscle, liver, heart). Proprotein convertase furin digestion of human muscle and liver protein lysates confirmed that the higher molecular form, pro-IGF-1Ec, can be cleaved to produce the free Ec peptide. Furthermore, initial evidence is provided that Ec peptide is differentially regulated during the process of muscle regeneration after exercise-induced damage in humans. The findings of this study possibly imply that the post-translational modification of the IGF-1Ec pro-peptide may regulate the bioavailability and activity of the processing product(s). Copyright © 2016. Published by Elsevier Ltd.

  1. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells.

    Science.gov (United States)

    Salmasi, Shima; Kalaskar, Deepak M; Yoon, Wai-Weng; Blunn, Gordon W; Seifalian, Alexander M

    2015-03-26

    Recent regenerative medicine and tissue engineering strategies (using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional (3D) organs, such as bone, skin, liver, kidney and ear, using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nano-surface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.

  2. Endomorphin 1 effectively protects cadmium chloride-induced hepatic damage in mice

    International Nuclear Information System (INIS)

    Gong Pin; Chen Fuxin; Ma Guofen; Feng Yun; Zhao Qianyu; Wang Rui

    2008-01-01

    The antioxidative capacity of endomorphin 1 (EM1), an endogenous μ-opioid receptor agonist, has been demonstrated by in vivo assays. The present study reports the effect of EM1 on hepatic damage induced by cadmium chloride (Cd(II)) in adult male mouse. Mouse were given intraperitoneally (i.p.) a single dose of Cd(II) (1 mg/kg body weight per day) and the animals were co-administrated with a dose of EM1 (50 μM/kg body weight per day) for 6 days. Since hepatic damage induced by Cd(II) is related to oxidative stress, lipid peroxidation (LPO), protein carbonyl (PCO), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were evaluated. The parameter indicating tissue damage such as liver histopathology was also determined. In addition, the concentrations of Cd and zinc (Zn) in the liver were analyzed. The intoxication of Cd(II) lead to the enhanced production of LPO and PCO, treatment with EM1 can effectively ameliorate the increase of LPO and PCO compared to the Cd(II) group. The increased activities of CAT, SOD and the elevated GSH induced by Cd(II) may relate to an adaptive-response to the oxidative damage, the effect of EM1 can restore the elevated antioxidant defense. Our results suggested that the structure features and the ability of chelating metal of EM1 may play a major role in the antioxidant effect of EM1 in vivo and opioid receptors may be involved in the protection of hepatic damage induced by Cd(II)

  3. Mitigation of Radiation-Induced Epithelial Damage by the TLR5 Agonist Entolimod in a Mouse Model of Fractionated Head and Neck Irradiation.

    Science.gov (United States)

    Toshkov, Ilia A; Gleiberman, Anatoli S; Mett, Vadim L; Hutson, Alan D; Singh, Anurag K; Gudkov, Andrei V; Burdelya, Lyudmila G

    2017-05-01

    Radiation treatment of head and neck cancer frequently causes severe collateral damage to normal tissues including mouth mucosa, salivary glands and skin. This toxicity limits the radiation dose that can be delivered and affects the patient's quality of life. Previous studies in mice and nonhuman primates showed that entolimod, a toll-like receptor 5 (TLR5) agonist derived from bacterial flagellin, effectively reduced radiation damage to hematopoietic and gastrointestinal tissues in both total-body and local irradiation scenarios, with no protection of tumors. Here, using a mouse model, we analyzed the efficacy of entolimod administered before or after irradiation in reducing damage to normal tissues. Animals received local fractionated radiation to the head and neck area, thus modeling radiotherapy of head and neck cancer. Tissue damage was evaluated through histomorphological examination of samples collected at different time points up to four weeks, mice were exposed locally to five daily fractions of 5, 6 or 7 Gy. A semiquantitative scoring system was used to assess the severity of observed pathomorphological changes. In this model, radiation damage was most severe in the lips, tongue and skin, moderate in the upper esophagus and minor in salivary glands. The kinetics of injury appearance and recovery of normal morphology varied among tissues, with maximal damage to the tongue, esophagus and salivary glands developing at earlier times (days 8-11 postirradiation) relative to that of lip and skin mucosa (days 11-15 postirradiation). While both tested regimens of entolimod significantly reduced the extent of radiation damage and accelerated restoration of normal structure in all tissues analyzed, administration of entolimod 1 h after each irradiation was more effective than treatment 30 min before irradiation. These results support the potential clinical use of entolimod as an adjuvant for improving the therapeutic index of head and neck cancer radiotherapy by

  4. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita

    2012-01-01

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  5. Determination of ultra-short laser induced damage threshold of KH{sub 2}PO{sub 4} crystal: Numerical calculation and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian [Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210 (United States); Chen, Mingjun, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu; Wang, Jinghe; Xiao, Yong [Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Kafka, Kyle; Austin, Drake; Chowdhury, Enam, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu [Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210 (United States)

    2016-03-15

    Rapid growth and ultra-precision machining of large-size KDP (KH{sub 2}PO{sub 4}) crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT) of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionization and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.

  6. Benfotiamine Protects against Peritoneal and Kidney Damage in Peritoneal Dialysis

    OpenAIRE

    Kihm, Lars P.; Müller-Krebs, Sandra; Klein, Julia; Ehrlich, Gregory; Mertes, Laura; Gross, Marie-Luise; Adaikalakoteswari, Antonysunil; Thornalley, Paul J.; Hammes, Hans-Peter; Nawroth, Peter P.; Zeier, Martin; Schwenger, Vedat

    2011-01-01

    Residual renal function and the integrity of the peritoneal membrane contribute to morbidity and mortality among patients treated with peritoneal dialysis. Glucose and its degradation products likely contribute to the deterioration of the remnant kidney and damage to the peritoneum. Benfotiamine decreases glucose-induced tissue damage, suggesting the potential for benefit in peritoneal dialysis. Here, in a model of peritoneal dialysis in uremic rats, treatment with benfotiamine decreased peri...

  7. Insertion mechanics of bioinspired needles into soft tissues.

    Science.gov (United States)

    Sahlabadi, Mohammad; Khodaei, Seyedvahid; Jezler, Kyle; Hutapea, Parsaoran

    2017-12-22

    Most studies to date confirm that any increase in the needle insertion force increases the damage to the tissue. When it comes to brain tissue, even minor damage can cause a long-lasting traumatic brain injury. Thus there is a great demand for innovative minimally invasive needles among the medical community. In our previous studies a novel bioinspired needle design with specially designed barbs was used to perform insertion tests into Polyvinyl chloride (PVC) tissue-mimicking gels, in which it decreased the insertion force by as much as 25%. In this work, bioinspired needles were designed using a CAD software, and were then manufactured using a 3 D printer. The insertion tests into bovine brain and liver were then performed to further investigate the performance of our bioinspired needles in real tissues. Our results show that there was a 10-25% decrease in the insertion force for insertions into bovine brain, and a 35-45% reduction in the insertion force for insertions into bovine liver using the proposed bioinspired needles. The reduction in the insertion force is due to the decrease in the friction force of the bioinspired needle with the bovine tissues, and its results are consistent with our previous results.

  8. Determination of lead in bone tissues by axially viewed inductively coupled plasma multichannel-based emission spectrometry.

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Dalla Riva, Simona; Soggia, Francesco; Frache, Roberto

    2005-04-01

    A new procedure for determining low levels of lead in bone tissues has been developed. After wet acid digestion in a pressurized microwave-heated system, the solution was analyzed by inductively coupled plasma multichannel-based emission spectrometry. Internal standardization using the Co 228.615 nm reference line was chosen as the optimal method to compensate for the matrix effects from the presence of calcium and nitric acid at high concentration levels. The detection limit of the procedure was 0.11 microg Pb g(-1) dry mass. Instrumental precision at the analytical concentration of approximately 10 microg l(-1) ranged from 6.1 to 9.4%. Precision of the sample preparation step was 5.4%. The concentration of lead in SRM 1486 (1.32+/-0.04 microg g(-1)) found using the new procedure was in excellent agreement with the certified level (1.335+/-0.014 microg g(-1)). Finally, the method was applied to determine the lead in various fish bone tissues, and the analytical results were found to be in good agreement with those obtained through differential pulse anodic stripping voltammetry. The method is therefore suitable for the reliable determination of lead at concentration levels of below 1 microg g(-1) in bone samples. Moreover, the multi-element capability of the technique allows us to simultaneously determine other major or trace elements in order to investigate inter-element correlation and to compute enrichment factors, making the proposed procedure particularly useful for investigating lead occurrence and pathways in fish bone tissues in order to find suitable biomarkers for the Antarctic marine environment.

  9. Construction of Time-Dependent Spectra Using Wavelet Analysis for Determination of Global Damage

    DEFF Research Database (Denmark)

    Micaletti, R. C.; Cakmak, A. S.; Nielsen, Søren R.K.

    A new method for computing Maximum Softening Damage Index (MSDI) is proposed. The MSDI, a measure of global damage, is based on the relative reduction of the first eigenfrequency (or equivalently, the relative increase in the fundamental period) of a structure over the course of a damage event. T....... The method proposed here makes use of wavelet transform coefficients of measured output response records to provide time-localized information on structural softening....

  10. Rapid methods to determine procyanidins, anthocyanins, theobromine and caffeine in rat tissues by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Serra, Aida; Macià, Alba; Romero, Maria-Paz; Piñol, Carme; Motilva, Maria-José

    2011-06-01

    Rapid, selective and sensitive methods were developed and validated to determine procyanidins, anthocyanins and alkaloids in different biological tissues, such as liver, brain, the aorta vein and adipose tissue. For this purpose, standards of procyanidins (catechin, epicatechin, and dimer B(2)), anthocyanins (cyanidin-3-glucoside and malvidin-3-glucoside) and alkaloids (theobromine, caffeine and theophylline) were used. The methods included the extraction of homogenized tissues by off-line liquid-solid extraction, and then solid-phase extraction to analyze alkaloids, or microelution solid-phase extraction plate for the analysis of procyanidins and anthocyanins. The eluted extracts were then analyzed by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, using a triple quadrupole as the analyzer. The optimum extraction solution was water/methanol/phosphoric acid 4% (94/4.5/1.5, v/v/v). The extraction recoveries were higher than 81% for all the studied compounds in all the tissues, except the anthocyanins, which were between 50 and 65% in the liver and brain. In order to show the applicability of the developed methods, different rat tissues were analyzed to determine the procyanidins, anthocyanins and alkaloids and their generated metabolites. The rats had previously consumed 1g of a grape pomace extract (to analyze procyanidins and anthocyanins) or a cocoa extract (to analyze alkaloids) per kilogram of body weight. Different tissues were extracted 4h after administration of the respective extracts. The analysis of the metabolites revealed a hepatic metabolism of procyanidins. The liver was the tissue which produced a greater accumulation of these metabolites. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Determination of mechanical damage from wells under oil and gas flow condition; Determinacao de dano mecanico em pocos sob condicao de escoamento de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Marques, J. B.D. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Trevisan, O. V. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2008-07-01

    The well bore effect is one of the most difficult variables obtained from well test analysis under two-phase condition. The presence of the gas in a well inserted in reservoir, which operates under gas drive solution, hinders the development of the analytical model to determine the mechanical damage. It is one of the reasons of the using the single phase well test analysis methodologies become suitable to the multiphase cases. The determination of the well bore effect is justified; therefore it is possible to work over in the well in order to determinate the real potential productive. The main objective of this work is to reevaluate a method of determination of the mechanical damage gotten from a well test under two-phase condition. In this work a simplified model of reservoir simulation is constructed in a commercial simulator in order to validate the methodology. The refinement of the blocks near to the well adopted in the simulation is a good representation of the well mechanical damage which occurs in a homogeneous reservoir. The types of well test analysis used in this work are two: drawdown and buildup test. The results gotten for this methodology, as will be shown, are excellent quality and the model of simulation presented here can be used for other analytical methods studies in order to determinate the mechanical damage or other variable of the reservoir. (author)

  12. Study on lethal effect on cells by determination of 10B in biological tissues and (n, α) reaction

    International Nuclear Information System (INIS)

    Ishida, Masahiro; Tsuruta, Takao; Takagaki, Masao

    1980-01-01

    As for the macroscopic distribution in tissues and microscopic distribution in cells of 10 B administrated to patients, which are important in thermal neutron capture therapy, it is difficult to say that the method of quantitative determination has been established. The authors tried some experiments by solid state track detection for the determination. That is, the trial determinations of boron in cells by solution method (wet process), filter paper method (dry process) and the method using an electron microscope are reported. If the maximum thermal neutron fluence available is assumed to be 10 14 /cm 2 and the minimum detectable surface density of etch pits is 10 4 /cm 2 , the detection limit of 10 B concentration is estimated as about 10 -2 μg/ml either in the solution method or in the filter paper method. In the quantitative determination of boron distribution at cell level with an electron microscope, a sample of tissue was covered with a plastic thin film, etched after the irradiation with thermal neutrons, and the tissue and the thin film were simultaneously observed with the transmission electron microscope. The thin film thickness of about 0.1 μm is suitable for the sliced tissue of about 0.1 μm thick. The existence of fast neutrons at the time of thermal neutron irradiation causes the generation of etch pits by recoiled particles in celluloid, and increases background counts, while γ-dose above 10 6 rad leads to the deterioration of celluloid composition. Some automatic methods of counting etch pits under consideration are described. (Wakatsuki, Y.)

  13. Determination of manganese in tissues by neutron activation analysis using an antomony pentoxide column

    International Nuclear Information System (INIS)

    Miyata, S.; Nakamura, S.; Toyoshima, M.; Hirata, Y.; Saito, M.; Kameyama, M.; Matsushita, R.; Koyama, M.

    1980-01-01

    A rapid and accurate method is presented for the determination of manganese in biological samples, using neutron activation analysis. Biological samples were irradiated at 5000 kW for 30 min. The samples were ashed on a hot plate with 14 mol/l HNO 3 and 6 mol/l HClO 4 , and resolved in 1 mol/l HClO 4 . 24 Na and 42 K were removed by passing each sample through an antimony pentoxide column. 54 Mn was added as a tracer to calculate the ratio of manganese recovered by the separation procedure. Recovery was over 90%. This method was applied in order to determine manganese in various tissues. In the cervical spinal cord of the controls, the mean manganese concentrations in the anterior horn, the lateral and the posterior columns were 1.14, 1.06 and 0.90 ng/mg of dried tissue, respectively. In two cases of amyotrophic lateral sclerosis the manganese concentrations in the cervical spinal cord were elevated, particularly in the anterior horn and the lateral column. (Auth.)

  14. The thyroid hormone receptor β induces DNA damage and premature senescence.

    Science.gov (United States)

    Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M; Garesse, Rafael; Aranda, Ana

    2014-01-06

    There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.

  15. Effect of artemether on rat hepatocytes during acute damage

    African Journals Online (AJOL)

    Chief OGBUZULU F

    2011-10-10

    Oct 10, 2011 ... could have regenerative effect on acute liver damage. Oguntibeju et al. .... the synthesis of the alkaline phosphatase in the tissues ... This sug- gests that artemether may have a possible repair effect ... human biology. Talwar ...

  16. Cryogen spray cooling during laser tissue welding.

    Science.gov (United States)

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.

  17. Stingless bees damage broccoli inflorescences when collecting fibers for nest building

    Directory of Open Access Journals (Sweden)

    Adriano Jorge Nunes dos Santos

    2012-01-01

    Full Text Available The stingless bee Trigona spinipes (Fabricius, 1793 (Hymenoptera: Apidae is an important pollinator for various crops, but constitutes an occasional pest of other plant species since it causes injury to leaves, stems, flowers and fruits while collecting nest materials. The aim of the present study was to determine the damage caused by T. spinipes to a broccoli (Brassica oleracea L. var. italica, Brassicaceae growing on an organic farm. A significant number of plants (72.5 % presented damaged inflorescences, while 39% of all of the inflorescences suffered some degree of injury. The activities of T. spinipes caused scarifications on the stems of the inflorescences, and these typically evolved to epidermal cicatrices up to 10 mm wide. In some cases, the lesions were sufficiently deep to cause partial destruction of the vascular tissues, and this lead to thinner (< 5 mm diameter floral stems that may collapse. To the best of our knowledge, this is the first report concerning the attack of broccoli plants by T. spinipes. The results obtained should serve to highlight the possibility that stingless bees could be responsible for direct and/or indirect damage to vegetable crops, and to stimulate the development of control strategies for these incidental pests.

  18. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading.

    Science.gov (United States)

    Loerakker, S; Manders, E; Strijkers, G J; Nicolay, K; Baaijens, F P T; Bader, D L; Oomens, C W J

    2011-10-01

    Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. In the present study, the contributions of deformation, ischemia, and reperfusion to skeletal muscle damage development were examined in a rat model during a 6-h period. Magnetic resonance imaging (MRI) was used to study perfusion (contrast-enhanced MRI) and tissue integrity (T2-weighted MRI). The levels of tissue deformation were estimated using finite element models. Complete ischemia caused a gradual homogeneous increase in T2 (∼20% during the 6-h period). The effect of reperfusion on T2 was highly variable, depending on the anatomical location. In experiments involving deformation, inevitably associated with partial ischemia, a variable T2 increase (17-66% during the 6-h period) was observed reflecting the significant variation in deformation (with two-dimensional strain energies of 0.60-1.51 J/mm) and ischemia (50.8-99.8% of the leg) between experiments. These results imply that deformation, ischemia, and reperfusion all contribute to the damage process during prolonged loading, although their importance varies with time. The critical deformation threshold and period of ischemia that cause muscle damage will certainly vary between individuals. These variations are related to intrinsic factors, such as pathological state, which partly explain the individual susceptibility to the development of DTI and highlight the need for regular assessments of individual subjects.

  19. The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration

    OpenAIRE

    Rivera, Francisco J.; Silva, Maria Elena; Aigner, Ludwig

    2017-01-01

    Editorial on the Research Topic The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration In mammals, although regeneration is quite restricted to a number of tissues and organs, this particular healing process is possible through the existence of tissue-resident stem/progenitor cells. Upon injury, these cells are activated, they proliferate, migrate, and differentiate into tissue-specific cells and functionally replace the damaged or lost cells. Besides this, angio...

  20. Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney.

    Science.gov (United States)

    Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio

    2011-01-01

    It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.

  1. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    Science.gov (United States)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Gold, David M.; Darrow, Christopher B.; Marion, John E., II; Da Silva, Luiz B.

    1998-05-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using an ultrashort pulse laser. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so bone tissue is selectively ablated while preserving the spinal cord.

  2. Determination of the subcutaneous tissue to blood partition coefficient in patients with severe leg ischaemia by a double isotope washout technique

    DEFF Research Database (Denmark)

    Bjerre-Jepsen, K; Faris, I; Henriksen, O

    1982-01-01

    Knowledge of the tissue to blood partition coefficient (lambda) is essential for calculation of the perfusion coefficient in a single tissue based on measurements of the washout of locally injected isotopes. No measurements of lambda for Xenon in subcutaneous tissue in the leg have been done...... in patients with occlusive arterial disease. In 12 patients with occlusive arterial disease in the legs lambda for Xenon was determined in subcutaneous tissue in the calf region and foot as the ratio between the washout rate constant of 131I-Antipyrine and 133Xe. A mixture of the two indicators was injected....... Mean value was 3.7 ml X g-1 (range: 1 X 7-10 X 7) in the calf and 2 X 7 ml X g-1 (range: 1 X 2-4 X 9) in the foot. It is concluded that lambda measurements are necessary for determination of subcutaneous blood flow from 133Xe washout curves in these patients. Determination of lambda is especially...

  3. Importance of secondary damage in downer cows.

    Science.gov (United States)

    Poulton, P J; Vizard, A L; Anderson, G A; Pyman, M F

    2016-05-01

    To investigate the relative importance in downer cows of the primary cause of recumbency in comparison with secondary complications. Downer dairy cows were monitored during their recumbency under field conditions in South Gippsland, Victoria, Australia. The cause of the original recumbency of the 218 cows was determined and secondary damage, status on day 7 and final outcome were recorded. Some type of secondary damage was found in 183/218 (84%) cows, of which 173/218 (79%) had damage deemed to be clinically important. By day 7, 52 (24%) had recovered and 69 (32%) eventually recovered. Of the 149 (68%) cows that were euthanased or died, 23 (15%) were deemed to have been lost solely from the primary cause, 107 (72%) from secondary damage and 19 (13%) from a combination of both. There was no difference in recovery among the five broad groups of causes of primary recumbency. Secondary damage was very common and presented in a large variety of ways, with many cows having multiple types of secondary damage concurrently. For most cows the secondary damage was more important than the initial primary damage in determining their fate. © 2016 Australian Veterinary Association.

  4. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  5. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  6. Determination of changes in tastes of İpsala and Kırkağaç melons against Melon fly [Myiopardalis pardalina (Bigot, 1891

    Directory of Open Access Journals (Sweden)

    Aydemir BARIŞ

    2016-06-01

    Full Text Available Melon fly [Myiopardalis pardalina (Bigot, 1891 (Diptera: Tephritidae] is the most important pest of the melons (Cucumis melo L. (Cucurbitaceae: Cucurbitales. The larvae cause to damage by feeding in seed cavity. Also, the tissues damaged by larvae turn brown and occurring scent spread in melon. This study aims to determine change in the taste of melon tissues damaged by larvae for the first time in Turkey. For this purpose, Kırkağaç and İpsala variety melons widely utilized in the province Ankara were selected in this study. Fruit taste (points, water-soluble dry matter, titratable acidity (TA and pH measurements were included in analysis of melon. Statistical differences were determined in Kırkağaç melon with melon fly with respect to control in terms of all of the features discussed in the fruit analysis. A statistically significant difference was observed compared to the control in the other measurements excluding the only titratable acidity in İpsala melon with melon fly.

  7. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy.

    Science.gov (United States)

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog; Jurkunas, Ula V

    2016-06-20

    Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.

  8. Determination of fat tissue area in the abdomen and evaluation of degree of obesity. Pt. 1. A unique application of a densitometric technique of computed tomography for CT values of fat tissue area

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Fumie [Saint Marianna Univ., Kawasaki, Kanagawa (Japan). School of Medicine

    1995-06-01

    Computed tomography (CT) scanning images were taken from 26 normal subjects, 23 obesity patients and 11 with leanness to determine fat tissue values. Setting three regions of interest (ROIs) for fat tissues identified by a double-window display, a total of 52 images were employed. Histograms were constructed for each of the 3 ROIs, and the maximum, mean and minimum values were computed for each fat tissues. Areas of entire fat tissues were computed on each image with the above-cited CT software for thyroidal iodine contents by setting ROIs along the outline of body, the abdominal wall and the wall of colon, respectively. Areas of subcutaneous fat tissues were calculated by simply subtracting the values of visceral fat tissues from those of entire fat tissues. Means of maximum and minimum CT values of visceral fat tissues on 52 images were -34.7 HU and -162.1 HU, respectively. The double-window display indicated that the spectrum of CT values of fat tissue included not only visceral and subcutaneous fat tissues but fecal materials with air bubbles in the colon. Areas of fecal materials with the same CT values as that of the fat tissues occupied 2.5{+-}3.0% of that of the visceral fat tissue. The areas of subcutaneous and visceral fat tissues were largest at the levels of -20 to 0 mm and 60 to 100 mm, respectively, on all images. At the level of 0 mm, the areas of visceral fat tissue did not show any differences among normal subjects, obesity patients and patients with leanness. It was concluded that the CT software is applicable to obtain satisfactory values for areas of visceral fat tissue, and that CT images at the levels of 0, 40, 60 and 100 mm are necessary to accurately determine areas of visceral fat tissues. (S.Y.).

  9. Determination of fat tissue area in the abdomen and evaluation of degree of obesity. Pt. 1. A unique application of a densitometric technique of computed tomography for CT values of fat tissue area

    International Nuclear Information System (INIS)

    Nakayama, Fumie

    1995-01-01

    Computed tomography (CT) scanning images were taken from 26 normal subjects, 23 obesity patients and 11 with leanness to determine fat tissue values. Setting three regions of interest (ROIs) for fat tissues identified by a double-window display, a total of 52 images were employed. Histograms were constructed for each of the 3 ROIs, and the maximum, mean and minimum values were computed for each fat tissues. Areas of entire fat tissues were computed on each image with the above-cited CT software for thyroidal iodine contents by setting ROIs along the outline of body, the abdominal wall and the wall of colon, respectively. Areas of subcutaneous fat tissues were calculated by simply subtracting the values of visceral fat tissues from those of entire fat tissues. Means of maximum and minimum CT values of visceral fat tissues on 52 images were -34.7 HU and -162.1 HU, respectively. The double-window display indicated that the spectrum of CT values of fat tissue included not only visceral and subcutaneous fat tissues but fecal materials with air bubbles in the colon. Areas of fecal materials with the same CT values as that of the fat tissues occupied 2.5±3.0% of that of the visceral fat tissue. The areas of subcutaneous and visceral fat tissues were largest at the levels of -20 to 0 mm and 60 to 100 mm, respectively, on all images. At the level of 0 mm, the areas of visceral fat tissue did not show any differences among normal subjects, obesity patients and patients with leanness. It was concluded that the CT software is applicable to obtain satisfactory values for areas of visceral fat tissue, and that CT images at the levels of 0, 40, 60 and 100 mm are necessary to accurately determine areas of visceral fat tissues. (S.Y.)

  10. Damage development in 9%Cr steels

    International Nuclear Information System (INIS)

    Rauch, M.; Maile, K.

    2003-01-01

    Modern 9-11% martensitic steels are candidate materials to be used in modern fossil fired power plants with high efficiency rates. The focus of the R and D work is put on the further development and optimisation, the determination of material characteristics but also on the identification and quantification of damage mechanisms and the damage evolution. For this purpose extensive experiments such as long creep tests on specimens under internal pressure, metallurgical examinations and theoretical investigations for determination of stress-strain state which have been conducted. The laboratory tests are completed by examination of real components. As a result an empirical description of the creep cavity density as a function of deformation and multiaxiality of stress state has been carried out which can be used in further FE-calculations determining the damage state. The results of all metallographical examinations on specimens with different heat treatments and service loads are summarised in a structure atlas and are published for further usage. Damage development, martensitic 9 % Cr steels, creep cavity density, creep tests under multiaxial load, metallographical investigations, and measurements on pipe bends. (author)

  11. Benfotiamine protects against peritoneal and kidney damage in peritoneal dialysis.

    Science.gov (United States)

    Kihm, Lars P; Müller-Krebs, Sandra; Klein, Julia; Ehrlich, Gregory; Mertes, Laura; Gross, Marie-Luise; Adaikalakoteswari, Antonysunil; Thornalley, Paul J; Hammes, Hans-Peter; Nawroth, Peter P; Zeier, Martin; Schwenger, Vedat

    2011-05-01

    Residual renal function and the integrity of the peritoneal membrane contribute to morbidity and mortality among patients treated with peritoneal dialysis. Glucose and its degradation products likely contribute to the deterioration of the remnant kidney and damage to the peritoneum. Benfotiamine decreases glucose-induced tissue damage, suggesting the potential for benefit in peritoneal dialysis. Here, in a model of peritoneal dialysis in uremic rats, treatment with benfotiamine decreased peritoneal fibrosis, markers of inflammation, and neovascularization, resulting in improved characteristics of peritoneal transport. Furthermore, rats treated with benfotiamine exhibited lower expression of advanced glycation endproducts and their receptor in the peritoneum and the kidney, reduced glomerular and tubulointerstitial damage, and less albuminuria. Increased activity of transketolase in tissue and blood contributed to the protective effects of benfotiamine. In primary human peritoneal mesothelial cells, the addition of benfotiamine led to enhanced transketolase activity and decreased expression of advanced glycation endproducts and their receptor. Taken together, these data suggest that benfotiamine protects the peritoneal membrane and remnant kidney in a rat model of peritoneal dialysis and uremia. Copyright © 2011 by the American Society of Nephrology

  12. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available PURPOSE: In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. METHODS AND MATERIALS: In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. RESULTS: Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. CONCLUSIONS: Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  13. Gustatory tissue injury in man: radiation dose response relationships and mechanisms of taste loss

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1986-01-01

    In this report dose response data for gustatory tissue damage in patients given total radiation doses ranging from 3000 to 6000 cGy are presented. In order to evaluate direct radiation injury to gustatory tissues as a mechanism of taste loss, measurements of damage to specific taste structures in bovine and murine systems following radiation exposure in the clinical range are correlated to taste impairment observed in radiotherapy patients. (author)

  14. DNA damage and polyploidization.

    Science.gov (United States)

    Chow, Jeremy; Poon, Randy Y C

    2010-01-01

    A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.

  15. Simultaneous Determination of Black Tea-Derived Catechins and Theaflavins in Tissues of Tea Consuming Animals Using Ultra-Performance Liquid-Chromatography Tandem Mass Spectrometry

    Science.gov (United States)

    Ganguly, Souradipta; G., Taposh Kumar; Mantha, Sudarshan

    2016-01-01

    The bioavailability, tissue distribution and metabolic fate of the major tea polyphenols, catechins and theaflavins as well as their gallated derivatives are yet to be precisely elucidated on a single identification platform for assessment of their relative bioefficacy in vivo. This is primarily due to the lack of suitable analytical tools for their simultaneous determination especially in an in vivo setting, which continues to constrain the evaluation of their relative health beneficiary potential and therefore prospective therapeutic application. Herein, we report a rapid and sensitive Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) based method for the simultaneous determination of the major catechins and theaflavins in black tea infusions as well as in different vital tissues and body fluids of tea-consuming guinea pigs. This method allowed efficient separation of all polyphenols within seven minutes of chromatographic run and had a lower limit of quantification (LLOQ) of ~5 ng/ml. Using this method, almost all bioactive catechins and theaflavins could be simultaneously detected in the plasma of guinea pigs orally administered 5% black tea for 14 days. Our method could further detect the majority of these polyphenols in the lung and kidney as well as identify the major catechin metabolites in the urine of the tea-consuming animals. Overall, our study presents a novel tool for simultaneous detection and quantitation of both catechins and theaflavins in a single detection platform that could potentially enable precise elucidation of their relative bioavailability and bioefficacy as well as true health beneficiary potential in vivo. Such information would ultimately facilitate the accurate designing of therapeutic strategies utilizing high efficacy formulations of tea polyphenols for effective mitigation of oxidative damage and inflammation in humans as well as prevention of associated diseases. PMID:27695123

  16. Biologically important radiation damage in DNA

    International Nuclear Information System (INIS)

    Ward, J.F.

    1994-01-01

    Most DNA damage by the hydroxyl radical is confined to the bases, and this base damage represents an important component of locally multiply demanded sites (LMOS). The yields of the major damaged bases have been determined by gas chromatography mass spectrometry. For our propose, it was necessary to convert a known fraction of these damaged bases to strand breaks and then assay these labile sites as the increase in strand break yield over the normally observed level. Three potential agents by which this strategy of conversion of base damage to strand break could be implemented were identified in the original application: 1, Sl nuclease; 2, piperidine; and 3, base damage specific enzymes

  17. Commentary: Photothermal effects of laser tissue soldering

    International Nuclear Information System (INIS)

    Menovsky, T.; Beek, J.F.; Gemert, M.J.C. van

    1999-01-01

    Full text: Laser tissue welding is the process of using laser energy to join tissues without sutures or with a reduced number of sutures. Recently, diode lasers have been added to the list of fusion lasers (Lewis and Uribe 1993, Reali et al 1993). Typically, for tissue welding, deep penetrating diode lasers emitting at 800-810 nm are used, in combination with a strong absorbing protein solder containing the dye indocyanine green. Indocyanine green has a maximum absorption coefficient at 805 nm and binds preferentially with proteins (Sauda et al 1986). The greatest advantage of diode lasers is their compact size, easy use and low cost. In this issue of Physics in Medicine and Biology (pp 983-1002, 'Photothermal effects of laser tissue soldering'), in an in vitro study, McNally et al investigate the optimal laser settings and welding temperatures in relation to the tensile strength and thermal damage of bovine aorta specimens. An interesting statement in their introduction is that the low strength of laser produced anastomoses can lead to aneurysm formation. The increased chance of aneurysm formation may merely be due to the thermal effect of the laser on the vascular wall, especially on the adventitia and media layers, which become necrotic after thermal injury. Subsequent haemodynamic stress exerted on a damaged vascular wall is a significant contributing factor for aneurysmal initiation. Also interesting is the remark that 'by the application of wavelength-specific chromophores in tissue welding ... the requirement for precise focusing and aiming of the laser beam may be removed'. Though perhaps not yet fully justified, this statement, if true, would facilitate surgical procedures. While the experiments are conducted in a proper manner, the use of bovine aorta specimens, which were stored at -70 deg. C and subsequently thawed for the tissue welding experiments, may not be the most appropriate for studying tissue effects or tensile strength measurements, as the

  18. Introduction of neutron metrology for reactor radiation damage

    International Nuclear Information System (INIS)

    Alberman, A.; Genthon, J.P.; Schneider, W.; Wright, S.B.; Zijp, W.L.

    1979-01-01

    The background of the procedures for determining irradiation parameters which are of interest in radiation damage experiments is described. The first two chapters outline the concept of damage functions and damage models. The next two chapters give information on methods to determine neutron fluences and neutron spectra. The fifth chapter gives a review of correlation data available for graphite and steels. The last chapter gives guidance how to report the relevant irradiation parameters. Attention is given to the role of the neutron spectrum in deriving values for damage fluence, energy transferred to the lattice, and number of displacements

  19. Hydrodynamic cavitation kills prostate cells and ablates benign prostatic hyperplasia tissue.

    Science.gov (United States)

    Itah, Zeynep; Oral, Ozlem; Perk, Osman Yavuz; Sesen, Muhsincan; Demir, Ebru; Erbil, Secil; Dogan-Ekici, A Isin; Ekici, Sinan; Kosar, Ali; Gozuacik, Devrim

    2013-11-01

    Hydrodynamic cavitation is a physical phenomenon characterized by vaporization and bubble formation in liquids under low local pressures, and their implosion following their release to a higher pressure environment. Collapse of the bubbles releases high energy and may cause damage to exposed surfaces. We recently designed a set-up to exploit the destructive nature of hydrodynamic cavitation for biomedical purposes. We have previously shown that hydrodynamic cavitation could kill leukemia cells and erode kidney stones. In this study, we analyzed the effects of cavitation on prostate cells and benign prostatic hyperplasia (BPH) tissue. We showed that hydrodynamic cavitation could kill prostate cells in a pressure- and time-dependent manner. Cavitation did not lead to programmed cell death, i.e. classical apoptosis or autophagy activation. Following the application of cavitation, we observed no prominent DNA damage and cells did not arrest in the cell cycle. Hence, we concluded that cavitation forces directly damaged the cells, leading to their pulverization. Upon application to BPH tissues from patients, cavitation could lead to a significant level of tissue destruction. Therefore similar to ultrasonic cavitation, we propose that hydrodynamic cavitation has the potential to be exploited and developed as an approach for the ablation of aberrant pathological tissues, including BPH.

  20. Elements determination of clinical relevance in biological tissues Dmdmdx/J dystrophic mice strains investigated by NAA

    International Nuclear Information System (INIS)

    Metairon, Sabrina

    2012-01-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD mdx /J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd mdx /J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  1. Interdependence theory of tissue failure: bulk and boundary effects

    Science.gov (United States)

    Suma, Daniel; Acun, Aylin; Zorlutuna, Pinar; Vural, Dervis Can

    2018-02-01

    The mortality rate of many complex multicellular organisms increases with age, which suggests that net ageing damage is accumulative, despite remodelling processes. But how exactly do these little mishaps in the cellular level accumulate and spread to become a systemic catastrophe? To address this question we present experiments with synthetic tissues, an analytical model consistent with experiments, and a number of implications that follow the analytical model. Our theoretical framework describes how shape, curvature and density influences the propagation of failure in a tissue subjected to oxidative damage. We propose that ageing is an emergent property governed by interaction between cells, and that intercellular processes play a role that is at least as important as intracellular ones.

  2. Probabilistic structural damage identification based on vibration data

    International Nuclear Information System (INIS)

    Hao, H.; Xia, Y.

    2001-01-01

    Vibration-based methods are being rapidly developed and applied to detect structural damage in civil, mechanical and aerospace engineering communities in the last two decades. But uncertainties existing in the structural model and measured vibration data might lead to unreliable results. This paper will present some recent research results to tackle the above mentioned uncertainty problems. By assuming each of the FE model parameters and measured vibration data as a normally distributed random variable, a probabilistic damage detection procedure is developed based on perturbation method and validated by Monte Carlo simulation technique. With this technique, the damage probability of each structural element can be determined. The method developed has been verified by applying it to identify the damages of laboratory tested structures. It was proven that, as compared to the deterministic damage identification method, the present method can not only reduce the possibility of false identification, but also give the identification results in terms of probability. which is deemed more realistic and practical in detecting possible damages in a structure. It has also been found that the modal data included in damage identification analysis have a great influence on the identification results. With a sensitivity study, an optimal measurement set for damage detection is determined. This set includes the optimal measurement locations and the most appropriate modes that should be used in the damage identification analysis. Numerical results indicated that if the optimal set determined in a pre-analysis is used in the damage detection better results will be achieved. (author)

  3. Improvement scheme for the determination of arsenic species in mussel and fish tissues

    DEFF Research Database (Denmark)

    Lagarde, F.; Amran, M. B.; Leroy, M. J. F.

    1999-01-01

    Six interlaboratory studies were organised by the Standard, Measurement and Testing Programme of the European Commission on the determination of arsenic species (arsenobetaine, arsenocholine, monomethylarsonic acid, dimethylarsinic acid, As(III) and As(V)) in marine matrices and soil. A step-by-s...... and at the end of the six campaigns allowed the certification of a reference material of tuna-fish tissue (BCR-CRM 627) for its total arsenic, arsenobetaine and dimethylarsinic acid contents....

  4. Damage Detection and Deteriorating Structural Systems

    DEFF Research Database (Denmark)

    Long, Lijia; Thöns, Sebastian; Döhler, Michael

    2017-01-01

    This paper addresses the quantification of the value of damage detection system and algorithm information on the basis of Value of Information (VoI) analysis to enhance the benefit of damage detection information by providing the basis for its optimization before it is performed and implemented....... The approach of the quantification the value of damage detection information builds upon the Bayesian decision theory facilitating the utilization of damage detection performance models, which describe the information and its precision on structural system level, facilitating actions to ensure the structural...... detection information is determined utilizing Bayesian updating. The damage detection performance is described with the probability of indication for different component and system damage states taking into account type 1 and type 2 errors. The value of damage detection information is then calculated...

  5. Determination of bone and tissue concentrations of teicoplanin mixed with hydroxyapatite cement to repair cortical defects.

    Science.gov (United States)

    Eggenreich, K; Zeipper, U; Schwendenwein, E; Hadju, S; Kaltenecker, G; Laslo, I; Lang, S; Roschger, P; Vecsei, V; Wintersteiger, R

    2002-01-01

    A highly specific and sensitive isocratic reversed-phase high performance liquid chromatography (HPLC) method for the determination of the major component of teicoplanin in tissue is reported. Comparing fluorescamine and o-phthalaldehyde (OPA) as derivatizing agents, the derivative formed with the latter exhibits superior fluorescence intensity allowing detection of femtomole quantities. Pretreatment for tissue samples is by solid-phase extraction which uses Bakerbond PolarP C(18) cartridges and gives effective clean up from endogenous by-products. Linearity was given from 0.6 to 100 ng per injection. The coefficient of variation did not exceed 5.8% for both interday and intraday assays. It was found that when bone defects are repaired with a hydroxyapatite-teicoplanin mixture, the antibiotic does not degrade, even when it is in the cement for several months. The stability of teicoplanin in bone cement was determined fluorodensitometrically.

  6. General and selective isolation procedure for high-performance liquid chromatographic determination of anabolic steroids in tissues.

    Science.gov (United States)

    Laganà, A; Marino, A

    1991-12-27

    A multi-residue method has been developed for the determination of anabolic steroids in animal tissue. The analytes are extracted from tissue with methanol and the extract is subjected to two solid-phase extractions, one using a non-specific adsorbing material, such as graphitized carbon black (Carbopack B), and the other Amberlite CG-400 I in the OH form. This procedure allowed the neutral anabolics (testosterone, trenbolone and progesterone) to be isolated and separated from the acidic type (phenolic group), such as diethylstilbestrol, oestradiol, zeranol/zearalenone and their respective metabolites. The determination was effected using high-performance liquid chromatography with different detectors (ultraviolet, fluorimetric and electrochemical). Several analytical parameters were studied: chromatographic conditions, recoveries, evaporation step, solvent flow-rate, cartridges reusability, interference of plastic cartridges. For all the anabolics investigated the recoveries were greater than 83.6%.

  7. Sensitivity improvements, in the determination of mercury in biological tissues by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, C R; Samudralwar, D L; Ehmann, W D [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Markesbery, W R [Kentucky Univ., Lexington, KY (United States)

    1995-08-01

    The possible association of dental amalgam surface exposure, brain mercury (Hg) levels, and pathological markers of Alzheimer`s disease (AD) in the brain is the subject of an on-going study in our laboratory. Two radiochemical neutron activation analysis methods and the use of instrumental neutron activation analysis (INAA) with Compton suppression spectrometry have been evaluated for improving our INAA Hg detection limit (2.8{+-}0.6 ng/g, wet-weight basis) in human tissue. Large numbers of samples dictated the use of a purely instrumental method or rapid, simple radiochemical separations. Human brain tissues and NIST biological standards were analyzed using a precipitation of Hg{sub 2}Cl{sub 2}, a solvent extraction utilizing sodium diethyldithiocarbomate, conventional INAA, and INAA with Compton suppression. The radiochemical precipitation of Hg{sub 2}Cl{sub 2} proved to be the most useful method for use in our study because it provided a simultaneous, quantitative determination of silver (Ag) and a Hg detection limit in brain tissue of 1.6{+-}0.1 ng/g (wet-weight basis). (author). 12 refs., 2 tabs.

  8. Safety and effectiveness of a polyvinyl alcohol barrier in reducing risks of vascular tissue damage during anterior spinal revision surgery.

    Science.gov (United States)

    Jeffords, Paul; Li, Jinsheng; Panchal, Deepal; Denoziere, Guilhem; Fetterolf, Donald

    2012-05-01

    This study was conducted as a controlled, prospective investigation to show the safety and efficacy of a polyvinyl alcohol (PVA) device in a sheep model. To evaluate the ability of a permanent PVA hydrogel barrier to reduce the risk of potential vessel damage during anterior vertebral revision surgery, to provide a nonadhesive barrier at the surgical site, and to create a surgical revision plane of dissection. The development of scar tissue and adhesions presents a significant postoperative problem in spine surgery, where adhesion involvement of overlying structures can cause pain, neurovascular complications, and present a difficult surgical environment during revisions. The devices were implanted onto the ventral surface of exposed lumbar intervertebral discs using an anterolateral approach. One disc separated from the study site was also exposed to serve as a control. Three sheep each were then evaluated with an explant procedure at 30 and 90 days. Extensive sampling was undertaken to evaluate gross anatomic, micropathologic, and biochemical environments and properties of the device. The structural properties and appearance of the device remained intact at both 30 and 90 days. The material remained flexible, hydrophilic, and soft, without visible resorption or decomposition. The material was well tolerated by the animal, with minimal histologic signs of inflammation or rejection. Tissue planes were easily able to be localized by the surgeon attempting to locate the prior surgical site at the time of resection. The PVA vessel shield effectively protected the structures overlying the sheep spine during revision, providing a clear dissection plane for resection at repeat surgery. The overlying structures separated from the previous surgical site with no adhesion, and allowed safe separation of adjacent tissues without the use of sharp dissection.

  9. Modification of damage following low doses

    International Nuclear Information System (INIS)

    Braby, L.A.; Nelson, J.M.; Metting, N.F.

    1988-01-01

    At very low doses the damage-interaction mechanism is responsible for very little lethal or potentially lethal damage, and repair of the latter should essentially disappear. An alternative model suggests that potentially lethal damage is either repaired with a constant half time or misrepaired at a rate which is proportional to the square of the damage concentration. In this case, as the dose decreases, the probability of misrepair decreases faster than the probability of repair, and repair becomes a more pronounced feature of the cell response. Since the consequence of unrepaired damage is an important question in determining the effects of low doses of radiation delivered at low dose rates, we have attempted to determine which of these two types of models is consistent with the response of plateau-phase CHO cells. In the earlier experiments, there was no indication of repair after a 50-rad exposure with a 24-hour split dose or plating delay; in fact, immediate plating resulted in survival slightly above control and delayed plating in survival slightly below the control value

  10. Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury.

    Science.gov (United States)

    Bosmann, Markus; Grailer, Jamison J; Ruemmler, Robert; Russkamp, Norman F; Zetoune, Firas S; Sarma, J Vidya; Standiford, Theodore J; Ward, Peter A

    2013-12-01

    We investigated how complement activation promotes tissue injury and organ dysfunction during acute inflammation. Three models of acute lung injury (ALI) induced by LPS, IgG immune complexes, or C5a were used in C57BL/6 mice, all models requiring availability of both C5a receptors (C5aR and C5L2) for full development of ALI. Ligation of C5aR and C5L2 with C5a triggered the appearance of histones (H3 and H4) in bronchoalveolar lavage fluid (BALF). BALF from humans with ALI contained H4 histone. Histones were absent in control BALF from healthy volunteers. In mice with ALI, in vivo neutralization of H4 with IgG antibody reduced the intensity of ALI. Neutrophil depletion in mice with ALI markedly reduced H4 presence in BALF and was highly protective. The direct lung damaging effects of extracellular histones were demonstrated by airway administration of histones into mice and rats (Sprague-Dawley), which resulted in ALI that was C5a receptor-independent, and associated with intense inflammation, PMN accumulation, damage/destruction of alveolar epithelial cells, together with release into lung of cytokines/chemokines. High-resolution magnetic resonance imaging demonstrated lung damage, edema and consolidation in histone-injured lungs. These studies confirm the destructive C5a-dependent effects in lung linked to appearance of extracellular histones.

  11. Deoxyribonucleoprotein structure and radiation injury - Cellular radiosensitivity is determined by LET-infinity-dependent DNA damage in hydrated deoxyribonucleoproteins and the extent of its repair

    Science.gov (United States)

    Lett, J. T.; Peters, E. L.

    1992-01-01

    Until recently, OH radicals formed in bulk nuclear water were believed to be the major causes of DNA damage that results in cell death, especially for sparsely ionizing radiations. That hypothesis has now been challenged, if not refuted. Lethal genomic DNA damage is determined mainly by energy deposition in deoxyribonucleoproteins, and their hydration shells, and charge (energy) transfer processes within those structures.

  12. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    Science.gov (United States)

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue