WorldWideScience

Sample records for determines satellite galaxy

  1. Demise of faint satellites around isolated early-type galaxies

    Science.gov (United States)

    Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul

    2018-02-01

    The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.

  2. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Park, Changbom

    2010-01-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z -1 . It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R vir,host ), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through hydrodynamic interactions with their host galaxies.

  3. Quenching of satellite galaxies at the outskirts of galaxy clusters

    Science.gov (United States)

    Zinger, Elad; Dekel, Avishai; Kravtsov, Andrey V.; Nagai, Daisuke

    2018-04-01

    We find, using cosmological simulations of galaxy clusters, that the hot X-ray emitting intracluster medium (ICM) enclosed within the outer accretion shock extends out to Rshock ˜ (2-3)Rvir, where Rvir is the standard virial radius of the halo. Using a simple analytic model for satellite galaxies in the cluster, we evaluate the effect of ram-pressure stripping on the gas in the inner discs and in the haloes at different distances from the cluster centre. We find that significant removal of star-forming disc gas occurs only at r ≲ 0.5Rvir, while gas removal from the satellite halo is more effective and can occur when the satellite is found between Rvir and Rshock. Removal of halo gas sets the stage for quenching of the star formation by starvation over 2-3 Gyr, prior to the satellite entry to the inner cluster halo. This scenario explains the presence of quenched galaxies, preferentially discs, at the outskirts of galaxy clusters, and the delayed quenching of satellites compared to central galaxies.

  4. GALAXIES IN FILAMENTS HAVE MORE SATELLITES: THE INFLUENCE OF THE COSMIC WEB ON THE SATELLITE LUMINOSITY FUNCTION IN THE SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Quan; Libeskind, N. I. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Tempel, E., E-mail: qguo@aip.de [Tartu Observatory, Observatooriumi 1, 61602 Tõravere (Estonia)

    2015-02-20

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M {sub sat.} < M {sub prim.} + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.

  5. GALAXIES IN FILAMENTS HAVE MORE SATELLITES: THE INFLUENCE OF THE COSMIC WEB ON THE SATELLITE LUMINOSITY FUNCTION IN THE SDSS

    International Nuclear Information System (INIS)

    Guo, Quan; Libeskind, N. I.; Tempel, E.

    2015-01-01

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M sat. < M prim. + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation

  6. Do satellite galaxies trace matter in galaxy clusters?

    Science.gov (United States)

    Wang, Chunxiang; Li, Ran; Gao, Liang; Shan, Huanyuan; Kneib, Jean-Paul; Wang, Wenting; Chen, Gang; Makler, Martin; Pereira, Maria E. S.; Wang, Lin; Maia, Marcio A. G.; Erben, Thomas

    2018-04-01

    The spatial distribution of satellite galaxies encodes rich information of the structure and assembly history of galaxy clusters. In this paper, we select a red-sequence Matched-filter Probabilistic Percolation cluster sample in SDSS Stripe 82 region with 0.1 ≤ z ≤ 0.33, 20 0.7. Using the high-quality weak lensing data from CS82 Survey, we constrain the mass profile of this sample. Then we compare directly the mass density profile with the satellite number density profile. We find that the total mass and number density profiles have the same shape, both well fitted by an NFW profile. The scale radii agree with each other within a 1σ error (r_s,gal=0.34_{-0.03}^{+0.04} Mpc versus r_s=0.37_{-0.10}^{+0.15} Mpc).

  7. THE MASSIVE SATELLITE POPULATION OF MILKY-WAY-SIZED GALAXIES

    International Nuclear Information System (INIS)

    Rodríguez-Puebla, Aldo; Avila-Reese, Vladimir; Drory, Niv

    2013-01-01

    Several occupational distributions for satellite galaxies more massive than m * ≈ 4 × 10 7 M ☉ around Milky-Way (MW)-sized hosts are presented and used to predict the internal dynamics of these satellites as a function of m * . For the analysis, a large galaxy group mock catalog is constructed on the basis of (sub)halo-to-stellar mass relations fully constrained with currently available observations, namely the galaxy stellar mass function decomposed into centrals and satellites, and the two-point correlation functions at different masses. We find that 6.6% of MW-sized galaxies host two satellites in the mass range of the Small and Large Magellanic Clouds (SMC and LMC, respectively). The probabilities of the MW-sized galaxies having one satellite equal to or larger than the LMC, two satellites equal to or larger than the SMC, or three satellites equal to or larger than Sagittarius (Sgr) are ≈0.26, 0.14, and 0.14, respectively. The cumulative satellite mass function of the MW, N s (≥m * ) , down to the mass of the Fornax dwarf is within the 1σ distribution of all the MW-sized galaxies. We find that MW-sized hosts with three satellites more massive than Sgr (as the MW) are among the most common cases. However, the most and second most massive satellites in these systems are smaller than the LMC and SMC by roughly 0.7 and 0.8 dex, respectively. We conclude that the distribution N s (≥m * ) for MW-sized galaxies is quite broad, the particular case of the MW being of low frequency but not an outlier. The halo mass of MW-sized galaxies correlates only weakly with N s (≥m * ). Then, it is not possible to accurately determine the MW halo mass by means of its N s (≥m * ); from our catalog, we constrain a lower limit of 1.38 × 10 12 M ☉ at the 1σ level. Our analysis strongly suggests that the abundance of massive subhalos should agree with the abundance of massive satellites in all MW-sized hosts, i.e., there is not a missing (massive) satellite problem

  8. DWARF GALAXY CLUSTERING AND MISSING SATELLITES

    International Nuclear Information System (INIS)

    Carlberg, R. G.; Sullivan, M.; Le Borgne, D.

    2009-01-01

    At redshifts around 0.1 the Canada-France-Hawaii Telescope Legacy Survey Deep fields contain some 6 x 10 4 galaxies spanning the mass range from 10 5 to 10 12 M sun . We measure the stellar mass dependence of the two-point correlation using angular measurements to largely bypass the errors, approximately 0.02 in the median, of the photometric redshifts. Inverting the power-law fits with Limber's equation we find that the autocorrelation length increases from a very low 0.4 h -1 Mpc at 10 5.5 M sun to the conventional 4.5 h -1 Mpc at 10 10.5 M sun . The power-law fit to the correlation function has a slope which increases from γ ≅ 1.6 at high mass to γ ≅ 2.3 at low mass. The spatial cross-correlation of dwarf galaxies with more massive galaxies shows fairly similar trends, with a steeper radial dependence at low mass than predicted in numerical simulations of subhalos within galaxy halos. To examine the issue of 'missing satellites' we combine the cross-correlation measurements with our estimates of the low-mass galaxy number density. We find on the average there are 60 ± 20 dwarfs in subhalos with M(total)>10 7 M sun for a typical Local Group M(total)/M(stars) = 30, corresponding to M/L V ≅ 100 for a galaxy with no recent star formation. The number of dwarfs per galaxy is about a factor of 2 larger than currently found for the Milky Way. Nevertheless, the average dwarf counts are about a factor of 30 below lambda cold dark matter (LCDM) simulation results. The divergence from LCDM predictions is one of the slope of the relation, approximately dN/dln M ≅ -0.5 rather than the predicted -0.9, not sudden onset at some characteristic scale. The dwarf galaxy star formation rates span the range from passive to bursting, which suggests that there are few completely dark halos.

  9. GALAXIES IN X-RAY GROUPS. III. SATELLITE COLOR AND MORPHOLOGY TRANSFORMATIONS

    Energy Technology Data Exchange (ETDEWEB)

    George, Matthew R.; Ma, Chung-Pei [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Bundy, Kevin; Leauthaud, Alexie; Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Tinker, Jeremy [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Finoguenov, Alexis, E-mail: mgeorge@astro.berkeley.edu [Department of Physics, University of Helsinki, Gustaf Haellstroemin katu 2a, FI-00014 Helsinki (Finland)

    2013-06-20

    While the star formation rates and morphologies of galaxies have long been known to correlate with their local environment, the process by which these correlations are generated is not well understood. Galaxy groups are thought to play an important role in shaping the physical properties of galaxies before entering massive clusters at low redshift, and transformations of satellite galaxies likely dominate the buildup of local environmental correlations. To illuminate the physical processes that shape galaxy evolution in dense environments, we study a sample of 116 X-ray selected galaxy groups at z = 0.2-1 with halo masses of 10{sup 13}-10{sup 14} M{sub Sun} and centroids determined with weak lensing. We analyze morphologies based on Hubble Space Telescope imaging and colors determined from 31 photometric bands for a stellar mass-limited population of 923 satellite galaxies and a comparison sample of 16,644 field galaxies. Controlling for variations in stellar mass across environments, we find significant trends in the colors and morphologies of satellite galaxies with group-centric distance and across cosmic time. Specifically at low stellar mass (log (M{sub *}/M{sub Sun }) = 9.8-10.3), the fraction of disk-dominated star-forming galaxies declines from >50% among field galaxies to <20% among satellites near the centers of groups. This decline is accompanied by a rise in quenched galaxies with intermediate bulge+disk morphologies, and only a weak increase in red bulge-dominated systems. These results show that both color and morphology are influenced by a galaxy's location within a group halo. We suggest that strangulation and disk fading alone are insufficient to explain the observed morphological dependence on environment, and that galaxy mergers or close tidal encounters must play a role in building up the population of quenched galaxies with bulges seen in dense environments at low redshift.

  10. GALAXIES IN X-RAY GROUPS. III. SATELLITE COLOR AND MORPHOLOGY TRANSFORMATIONS

    International Nuclear Information System (INIS)

    George, Matthew R.; Ma, Chung-Pei; Bundy, Kevin; Leauthaud, Alexie; Vulcani, Benedetta; Tinker, Jeremy; Wechsler, Risa H.; Finoguenov, Alexis

    2013-01-01

    While the star formation rates and morphologies of galaxies have long been known to correlate with their local environment, the process by which these correlations are generated is not well understood. Galaxy groups are thought to play an important role in shaping the physical properties of galaxies before entering massive clusters at low redshift, and transformations of satellite galaxies likely dominate the buildup of local environmental correlations. To illuminate the physical processes that shape galaxy evolution in dense environments, we study a sample of 116 X-ray selected galaxy groups at z = 0.2-1 with halo masses of 10 13 -10 14 M ☉ and centroids determined with weak lensing. We analyze morphologies based on Hubble Space Telescope imaging and colors determined from 31 photometric bands for a stellar mass-limited population of 923 satellite galaxies and a comparison sample of 16,644 field galaxies. Controlling for variations in stellar mass across environments, we find significant trends in the colors and morphologies of satellite galaxies with group-centric distance and across cosmic time. Specifically at low stellar mass (log (M * /M ☉ ) = 9.8-10.3), the fraction of disk-dominated star-forming galaxies declines from >50% among field galaxies to <20% among satellites near the centers of groups. This decline is accompanied by a rise in quenched galaxies with intermediate bulge+disk morphologies, and only a weak increase in red bulge-dominated systems. These results show that both color and morphology are influenced by a galaxy's location within a group halo. We suggest that strangulation and disk fading alone are insufficient to explain the observed morphological dependence on environment, and that galaxy mergers or close tidal encounters must play a role in building up the population of quenched galaxies with bulges seen in dense environments at low redshift.

  11. Dark Satellites and the Morphology of Dwarf Galaxies

    NARCIS (Netherlands)

    Helmi, Amina; Sales, L. V.; Starkenburg, E.; Starkenburg, T. K.; Vera Ciro, C.; De Lucia, G.; Li, Y. -S.

    2012-01-01

    One of the strongest predictions of the Delta CDM cosmological model is the presence of dark satellites orbiting all types of galaxies. We focus here on the dynamical effects of such satellites on disky dwarf galaxies, and demonstrate that these encounters can be dramatic. Although mergers with

  12. Dark influences: imprints of dark satellites on dwarf galaxies

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.

    Context. In the context of the current Λ cold dark matter cosmological model small dark matter halos are abundant and satellites of dwarf galaxies are expected to be predominantly dark. Since low mass galaxies have smaller baryon fractions, interactions with these satellites may leave particularly

  13. The post-infall evolution of a satellite galaxy

    OpenAIRE

    {Nichols} M.; {Revaz} Y.; {Jablonka} P.

    2015-01-01

    As galaxy simulations increase in resolution more attention is being paid towards the evolution of dwarf galaxies and how the simulations compare to observations. Despite this increasing resolution we are however, far away from resolving the interactions of satellite dwarf galaxies and the hot coronae which surround host galaxies. We describe a new method which focuses only on the local region surrounding an infalling dwarf in an effort to understand how the hot baryonic halo will alter the c...

  14. Wobbling The Galactic Disk with Bombardment of Satellite Galaxies

    Science.gov (United States)

    D'Onghia, Elena

    We propose to assess the effect of impacts of large visible satellite galaxies on a disk, as well as the relevance of the continuing bombardment of the Galactic disk by dark matter clumps as predicted by the current cosmological framework that can wobble the disk, heating it and eventually exciting ragged spiral structures. In particular, we make detailed predictions for observable features such as spiral arms, rings and their associated stars in galactic disks and relate them to the physical processes that drive their formation and evolution in our Milky Way galaxy and nearby spirals. To do this, we will combine analytic methods and numerical simulations that allow us to calculate observables, which we will compare to present and forthcoming observations. Our methodology utilizes a combination of state of the art hydrodynamic simulations of galaxy evolution and multi- wavelength radiative transfer simulations. Our primary goals are: (1) To identify the physical processes that are responsible for spiral structure formation observed in our Milky Way and nearby disk galaxies, from the flocculent to grand- designed spiral galaxies and to provide observable signatures to be compared with data on nearby galaxies combining maps of 24 micron emission (Spitzer) and cold gas, CO (Heracles) and HI (THINGS). (2) To explore different morphologies of spiral galaxies: from the multi-armed galaxies to the Milky Way sized galaxies with few arms. (3) For a Milky Way disk we will assess the effect of impacts of substructures passing through the disk to origin the asymmetry in the number density of stars recently discovered from SDSS and SEGUE data and confirmed from RAVE data. We will also investigate the disk heating in the vertical plane due to the formation of vertical oscillations that are produced by the impact and migration of stars in the disk as consequence of the heating as compared to the classical stellar migration mechanism. (4) We will measure the spiral pattern speed

  15. Impacts of satellite galaxies on the redshift-space distortions

    Energy Technology Data Exchange (ETDEWEB)

    Hikage, Chiaki [Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602 (Japan); Yamamoto, Kazuhiro, E-mail: hikage@kmi.nagoya-u.ac.jp, E-mail: kazuhiro@hiroshima-u.ac.jp [Department of Physical Sciences, Hiroshima University, Higashi-hiroshima, Kagamiyama 1-3-1, 739-8526 (Japan)

    2013-08-01

    We study the impacts of the satellite galaxies on the redshift-space distortions. In our multipole power spectrum analysis of the luminous red galaxies (LRGs) samples of the Sloan digital sky survey (SDSS), we have clearly detected the non-zero signature of the hexadecapole and tetrahexadecapole spectrum, which almost disappears in the power spectrum with the sample of the brightest LRGs only. We thus demonstrate that the satellite LRGs in multiple systems make a significant contribution to the multipole power spectrum though its fraction is small. The behavior can be understood by a simple halo model, in which the one-halo term, describing the Finger of God (FoG) effect from the satellite galaxies, makes the dominant contribution to the higher multipole spectra. We demonstrate that the small-scale information of higher multipole spectrum is useful for calibrating the satellite FoG effect and improves the measurement of the cosmic growth rate dramatically. We further demonstrate that the fiber collision in the galaxy survey influences the one-halo term and the higher multipole spectra, because the number of satellite galaxies in the halo occupation distribution (HOD) is changed. We also discuss about the impact of satellite galaxies on future high-redshift surveys targeting the H-alpha emitters.

  16. A dichotomy in satellite quenching around L* galaxies

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.

    2014-01-01

    We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.

  17. Listening to Shells: Galaxy Masses from Disrupted Satellites

    Science.gov (United States)

    Westfall, Kyle; Sanderson, R.

    2014-01-01

    Our ability to measure the dynamical mass of an individual galaxy is limited by the radial extent of the luminous tracers of its potential. For elliptical galaxies, it is difficult to go much beyond two effective radii using integrated light. Appealing to particle tracers like globular clusters has allowed for mass measurements out to ten effective radii. The extended atomic-gas disks of spiral galaxies allow one to measure rotation curves well beyond the optical disk to a few effective radii; however, such mass measurements are limited to a single plane and can often be confused by warps. As surface-brightness limits have pushed ever deeper, the revealed abundance of disrupted satellites in galaxy halos may present a unique opportunity for determining the enclosed mass at very large radii (more than five effective radii), provided our technology is up to the challenge. Here, we discuss the prospect of using integrated light spectroscopy of tidal shells to measure the masses of individual galaxies at redshifts of up to 0.1. Our study considers the limitations of current and projected instrumentation on 4-, 10-, and 30-meter class telescopes. The observational constraints are indeed very stringent, requiring both high sensitivity (with V-band surface brightness limits below 25 mag per square arsecond) and high spectral resolution (R>10k), whereas spatial resolution is effectively irrelevant. Bigger is not necessarily better for our application because of the limited field-of-view (FOV) of large telescopes, which dramatically limits their total grasp. We find the two most-promising setups are (1) a large FOV (1 square arcminute) integral-field unit (IFU) on a 4-meter class telescope and (2) a multiplexed suite of small FOV (10 square arcseconds) IFUs on a 10- or 30-meter class telescope. Two prospective instruments that may meet these requirements are WEAVE, an instrument currently planned for the William Herschel Telescope at La Palma, and an OPTIMOS

  18. Satellite Photometric Error Determination

    Science.gov (United States)

    2015-10-18

    Satellite Photometric Error Determination Tamara E. Payne, Philip J. Castro, Stephen A. Gregory Applied Optimization 714 East Monument Ave, Suite...advocate the adoption of new techniques based on in-frame photometric calibrations enabled by newly available all-sky star catalogs that contain highly...filter systems will likely be supplanted by the Sloan based filter systems. The Johnson photometric system is a set of filters in the optical

  19. SDSS-IV MaNGA: Uncovering the Angular Momentum Content of Central and Satellite Early-type Galaxies

    Science.gov (United States)

    Greene, J. E.; Leauthaud, A.; Emsellem, E.; Ge, J.; Aragón-Salamanca, A.; Greco, J.; Lin, Y.-T.; Mao, S.; Masters, K.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.; Yan, R.; van den Bosch, F.

    2018-01-01

    We study 379 central and 159 satellite early-type galaxies with two-dimensional kinematics from the integral-field survey Mapping Nearby Galaxies at APO (MaNGA) to determine how their angular momentum content depends on stellar and halo mass. Using the Yang et al. group catalog, we identify central and satellite galaxies in groups with halo masses in the range {10}12.5 {h}-1 {M}ȯ {10}11 {h}-2 {M}ȯ tend to have very little rotation, while nearly all galaxies at lower mass show some net rotation. The ∼30% of high-mass galaxies that have significant rotation do not stand out in other galaxy properties, except for a higher incidence of ionized gas emission. Our data are consistent with recent simulation results suggesting that major merging and gas accretion have more impact on the rotational support of lower-mass galaxies. When carefully matching the stellar mass distributions, we find no residual differences in angular momentum content between satellite and central galaxies at the 20% level. Similarly, at fixed mass, galaxies have consistent rotation properties across a wide range of halo mass. However, we find that errors in classification of central and satellite galaxies with group finders systematically lower differences between satellite and central galaxies at a level that is comparable to current measurement uncertainties. To improve constraints, the impact of group-finding methods will have to be forward-modeled via mock catalogs.

  20. Mismatch and misalignment: dark haloes and satellites of disc galaxies

    Science.gov (United States)

    Deason, A. J.; McCarthy, I. G.; Font, A. S.; Evans, N. W.; Frenk, C. S.; Belokurov, V.; Libeskind, N. I.; Crain, R. A.; Theuns, T.

    2011-08-01

    We study the phase-space distribution of satellite galaxies associated with late-type galaxies in the GIMIC suite of simulations. GIMIC consists of resimulations of five cosmologically representative regions from the Millennium Simulation, which have higher resolution and incorporate baryonic physics. Whilst the disc of the galaxy is well aligned with the inner regions (r˜ 0.1r200) of the dark matter halo, both in shape and angular momentum, there can be substantial misalignments at larger radii (r˜r200). Misalignments of >45° are seen in ˜30 per cent of our sample. We find that the satellite population aligns with the shape (and angular momentum) of the outer dark matter halo. However, the alignment with the galaxy is weak owing to the mismatch between the disc and dark matter halo. Roughly 20 per cent of the satellite systems with 10 bright galaxies within r200 exhibit a polar spatial alignment with respect to the galaxy - an orientation reminiscent of the classical satellites of the Milky Way. We find that a small fraction (˜10 per cent) of satellite systems show evidence for rotational support which we attribute to group infall. There is a bias towards satellites on prograde orbits relative to the spin of the dark matter halo (and to a lesser extent with the angular momentum of the disc). This preference towards co-rotation is stronger in the inner regions of the halo where the most massive satellites accreted at relatively early times are located. We attribute the anisotropic spatial distribution and angular momentum bias of the satellites at z= 0 to their directional accretion along the major axes of the dark matter halo. The satellite galaxies have been accreted relatively recently compared to the dark matter mass and have experienced less phase-mixing and relaxation - the memory of their accretion history can remain intact to z= 0. Understanding the phase-space distribution of the z= 0 satellite population is key for studies that estimate the host halo

  1. LUMINOUS SATELLITES OF EARLY-TYPE GALAXIES. I. SPATIAL DISTRIBUTION

    International Nuclear Information System (INIS)

    Nierenberg, A. M.; Auger, M. W.; Treu, T.; Marshall, P. J.; Fassnacht, C. D.

    2011-01-01

    We study the spatial distribution of faint satellites of intermediate redshift (0.1 s = 1.7 +0.9 -0.8 ) that is comparable to the number of Milky Way satellites with similar host-satellite contrast. The average projected radial profile of the satellite distribution is isothermal (γ p = -1.0 +0.3 -0.4 ), which is consistent with the observed central mass density profile of massive early-type galaxies. Furthermore, the satellite distribution is highly anisotropic (isotropy is ruled out at a >99.99% confidence level). Defining φ to be the offset between the major axis of the satellite spatial distribution and the major axis of the host light profile, we find a maximum posterior probability of φ = 0 and |φ| less than 42 0 at the 68% confidence level. The alignment of the satellite distribution with the light of the host is consistent with simulations, assuming that light traces mass for the host galaxy as observed for lens galaxies. The anisotropy of the satellite population enhances its ability to produce the flux ratio anomalies observed in gravitationally lensed quasars.

  2. Testing Lorentz invariance of dark matter with satellite galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Bettoni, Dario [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Nusser, Adi [Physics Department and the Asher Space Science Institute—Technion, Haifa 32000 (Israel); Blas, Diego; Sibiryakov, Sergey, E-mail: d.bettoni@thphys.uni-heidelberg.de, E-mail: adi@physics.technion.ac.il, E-mail: diego.blas@cern.ch, E-mail: sergey.sibiryakov@cern.ch [Theoretical Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)

    2017-05-01

    We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introduce a numerical model for the dynamics of satellites in a galactic halo and for a galaxy in a rich cluster to explore observational consequences of such an LV field. The orbital motion of a satellite excites a time dependent LV force which greatly affects its internal dynamics. Our analysis points out key observational signatures which serve as probes of LV forces. These include modifications to the line of sight velocity dispersion, mass profiles and shapes of satellites. With future data and a more detailed modeling these signatures can be exploited to constrain a new region of the parameter space describing the LV in the dark matter sector.

  3. STATISTICS OF SATELLITE GALAXIES AROUND MILKY-WAY-LIKE HOSTS

    International Nuclear Information System (INIS)

    Busha, Michael T.; Wechsler, Risa H.; Behroozi, Peter S.; Gerke, Brian F.; Klypin, Anatoly A.; Primack, Joel R.

    2011-01-01

    We calculate the probability that a Milky-Way (MW)-like halo in the standard cosmological model has the observed number of Magellanic Clouds (MCs). The statistics of the number of MCs in the lambda cold dark matter model are in good agreement with observations of a large sample of Sloan Digital Sky Survey (SDSS) galaxies. Under the subhalo abundance matching assumption of a relationship with small scatter between galaxy r-band luminosities and halo internal velocities v max , we make detailed comparisons to similar measurements using SDSS Data Release 7 data by Liu et al. Models and observational data give very similar probabilities for having zero, one, and two MC-like satellites. In both cases, MW luminosity hosts have just a ∼10% chance of hosting two satellites similar to the MCs. In addition, we present a prediction for the probability for a host galaxy to have N sats satellite galaxies as a function of the magnitudes of both the host and satellite. This probability and its scaling with host properties is significantly different from that of mass-selected objects because of scatter in the mass-luminosity relation and because of variations in the star formation efficiency with halo mass.

  4. RED FRACTION AMONG SATELLITE GALAXIES WITH DISK-LIKE LIGHT PROFILES: EVIDENCE FOR INFLOW IN THE H I DISK

    International Nuclear Information System (INIS)

    Hester, J. A.

    2010-01-01

    The relationships between color, characterized with respect to the g - r red sequence; stellar structure, as determined using the i-band Sersic index; and group membership are explored using the Sloan Digital Sky Survey (SDSS). The new results place novel constraints on theories of galaxy evolution, despite the strong correlation between color and stellar structure. Observed correlations are of three independent types-those based on stellar structure, on the color of disk-like galaxies, and on the color of elliptical galaxies. Of particular note, the fraction of galaxies residing on the red sequence measured among galaxies with disk-like light profiles is enhanced for satellite galaxies compared to central galaxies. This fraction increases with group mass. When these new results are considered, theoretical treatments of galaxy evolution that adopt a gas accretion model centered on the hot galactic halo cannot consistently account for all observations of disk galaxies. The hypothesis is advanced that inflow within the extended H I disk prolongs star formation in satellite galaxies. When combined with partial ram pressure stripping (RPS) of this disk, this new scenario is consistent with the observations. This is demonstrated by applying an analytical model of RPS of the extended H I disk to the SDSS groups. These results motivate incorporating more complex modes of gas accretion into models of galaxy evolution, including cold mode accretion, an improved treatment of gas dynamics within disks, and disk stripping.

  5. Problem of spiral galaxies and satellite radio sources

    International Nuclear Information System (INIS)

    Arp, H.; Carpenter, R.; Gulkis, S.; Klein, M.

    1976-01-01

    A detailed comparison is made between the results of this program and the results of previous investigators. In particular, attention is called to the potentially important implications of an investigation by Tovmasyan, who searched a large number of spirals and found evidence that a small percentage of them apparently have radio satellites located up to 20' from the central galaxy. 15 sources were measured selected from Tovmasyan's list of 43 satellite sources. Results confirm his positions and relative flux densities for each of the sources

  6. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    Science.gov (United States)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; Bernstein, Gary; Neil, Andrew; Rozo, Eduardo; Rykoff, Eli

    2018-04-01

    We study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.

  7. The mass dependence of dwarf satellite galaxy quenching

    International Nuclear Information System (INIS)

    Slater, Colin T.; Bell, Eric F.

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M * ≲ 10 7 M ☉ ) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  8. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Muzzin, Adam; Franx, Marijn [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Patel, Shannon G.; Quadri, Ryan F. [Carnegie Observatories, Pasadena, CA 91101 (United States); Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Skelton, Rosalind E. [South African Astronomical Observatory, Observatory Road, Cape Town (South Africa); Wake, David A. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Whitaker, Katherine E., E-mail: tal@ucolick.org [Astrophysics Science Division, Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-10

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M{sub *}/M{sub ☉} = 6.5 × 10{sup 10}) to nearby massive ellipticals (M{sub *}/M{sub ☉} = 1.5 × 10{sup 11}). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M{sub *}/M{sub ☉} = 6.5 × 10{sup 9}). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10{sup 12} and 10{sup 13} M{sub ☉}, consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  9. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    International Nuclear Information System (INIS)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel; Dekel, Avishai; Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J.; Muzzin, Adam; Franx, Marijn; Brammer, Gabriel B.; Marchesini, Danilo; Patel, Shannon G.; Quadri, Ryan F.; Rix, Hans-Walter; Skelton, Rosalind E.; Wake, David A.; Whitaker, Katherine E.

    2014-01-01

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M * /M ☉ = 6.5 × 10 10 ) to nearby massive ellipticals (M * /M ☉ = 1.5 × 10 11 ). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M * /M ☉ = 6.5 × 10 9 ). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10 12 and 10 13 M ☉ , consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  10. PERSEUS I: A DISTANT SATELLITE DWARF GALAXY OF ANDROMEDA

    International Nuclear Information System (INIS)

    Martin, Nicolas F.; Laevens, Benjamin P. M.; Schlafly, Edward F.; Rix, Hans-Walter; Slater, Colin T.; Bell, Eric F.; Bernard, Edouard J.; Ferguson, Annette M. N.; Finkbeiner, Douglas P.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.

    2013-01-01

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3π survey. Located 27.°9 away from M31, Perseus I has a heliocentric distance of 785 ± 65 kpc, compatible with it being a satellite of M31 at 374 −10 +14 kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M V = –10.3 ± 0.7), with an exponential half-light radius of r h = 1.7 ± 0.4 arcmin or r h =400 −85 +105 pc at this distance, and a moderate ellipticity (ϵ=0.43 −0.17 +0.15 ). The late discovery of Perseus I is due to its fairly low surface brightness (μ 0 =25.7 −0.9 +1.0  mag arcsec –2 ), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31

  11. Effects of the environment on galaxies in the Catalogue of Isolated Galaxies: physical satellites and large scale structure

    Science.gov (United States)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Leon, S.; Sánchez-Expósito, S.; Santander-Vela, J. D.; Verdes-Montenegro, L.

    2014-04-01

    Context. We present a study of the 3D environment for a sample of 386 galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973) using the Ninth Data Release of the Sloan Digital Sky Survey (SDSS-DR9). Aims: We aim to identify and quantify the effects of the satellite distribution around a sample of galaxies in the CIG, as well as the effects of the large-scale structure (LSS). Methods: To recover the physically bound galaxies we first focused on the satellites that are within the escape speed of each CIG galaxy. We also propose a more conservative method using the stacked Gaussian distribution of the velocity difference of the neighbours. The tidal strengths affecting the primary galaxy were estimated to quantify the effects of the local and LSS environments. We also defined the projected number density parameter at the fifth nearest neighbour to characterise the LSS around the CIG galaxies. Results: Out of the 386 CIG galaxies considered in this study, at least 340 (88% of the sample) have no physically linked satellite. Following the more conservative Gaussian distribution of physical satellites around the CIG galaxies leads to upper limits. Out of the 386 CIG galaxies, 327 (85% of the sample) have no physical companion within a projected distance of 0.3 Mpc. The CIG galaxies are distributed following the LSS of the local Universe, although presenting a large heterogeneity in their degree of connection with it. When present around a CIG galaxy, the effect of physically bound galaxies largely dominates (typically by more than 90%) the tidal strengths generated by the LSS. Conclusions: The CIG samples a variety of environments, from galaxies with physical satellites to galaxies without neighbours within 3 Mpc. A clear segregation appears between early-type CIG galaxies with companions and isolated late-type CIG galaxies. Isolated galaxies are in general bluer, with probably younger stellar populations and very high star formation compared with older

  12. MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION. II. THE QUENCHING OF SATELLITE GALAXIES AS THE ORIGIN OF ENVIRONMENTAL EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yingjie; Lilly, Simon J.; Carollo, Marcella [Institute of Astronomy, ETH Zurich, 8093 Zurich (Switzerland); Renzini, Alvio [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2012-09-20

    We extend the phenomenological study of the evolving galaxy population of Peng et al. (2010) to the central/satellite dichotomy in Yang et al. Sloan Digital Sky Survey (SDSS) groups. We find that satellite galaxies are responsible for all the environmental effects in our earlier work. The fraction of centrals that are red does not depend on their environment but only on their stellar masses, whereas that of the satellites depends on both. We define a relative satellite quenching efficiency {epsilon}{sub sat}, which is the fraction of blue centrals that are quenched upon becoming the satellite of another galaxy. This is shown to be independent of stellar mass, but to depend strongly on local overdensity, {delta}, ranging between 0.2 and at least 0.8. The red fraction of satellites correlate much better with the local overdensity {delta}, a measure of location within the group, than with the richness of the group, i.e., dark matter halo mass. This, and the fact that satellite quenching depends on local density and not on either the stellar mass of the galaxy or the dark matter halo mass, gives clues as to the nature of the satellite-quenching process. We furthermore show that the action of mass quenching on satellite galaxies is also independent of the dark matter mass of the parent halo. We then apply the Peng et al. approach to predict the mass functions of central and satellite galaxies, split into passive and active galaxies, and show that these match very well the observed mass functions from SDSS, further strengthening the validity of this phenomenological approach. We highlight the fact that the observed M* is exactly the same for the star-forming centrals and satellites and the observed M* for the star-forming satellites is independent of halo mass above 10{sup 12} M{sub Sun }, which emphasizes the universality of the mass-quenching process that we identified in Peng et al. Post-quenching merging modifies the mass function of the central galaxies but can

  13. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology.

    Science.gov (United States)

    Müller, Oliver; Pawlowski, Marcel S; Jerjen, Helmut; Lelli, Federico

    2018-02-02

    The Milky Way and Andromeda galaxies are each surrounded by a thin plane of satellite dwarf galaxies that may be corotating. Cosmological simulations predict that most satellite galaxy systems are close to isotropic with random motions, so those two well-studied systems are often interpreted as rare statistical outliers. We test this assumption using the kinematics of satellite galaxies around the Centaurus A galaxy. Our statistical analysis reveals evidence for corotation in a narrow plane: Of the 16 Centaurus A satellites with kinematic data, 14 follow a coherent velocity pattern aligned with the long axis of their spatial distribution. In standard cosmological simulations, cosmological paradigm. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  15. THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX

    International Nuclear Information System (INIS)

    López-Corredoira, Martín; Kroupa, Pavel

    2016-01-01

    We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation

  16. Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

    Science.gov (United States)

    Ackermann, M.; Albert, A.; Anderson, B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; hide

    2013-01-01

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma ray flux upper limits between 500MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma ray background modeling, and assumed dark matter density profile.

  17. Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; et al.

    2014-02-11

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma-ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma-ray flux upper limits between 500 MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical Standard Model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma-ray background modeling, and assumed dark matter density profile.

  18. Accretion of satellites on to central galaxies in clusters: merger mass ratios and orbital parameters

    Science.gov (United States)

    Nipoti, Carlo; Giocoli, Carlo; Despali, Giulia

    2018-05-01

    We study the statistical properties of mergers between central and satellite galaxies in galaxy clusters in the redshift range 0 identify dark-matter haloes, we construct halo merger trees for different values of the overdensity Δc. While the virial overdensity definition allows us to probe the accretion of satellites at the cluster virial radius rvir, higher overdensities probe satellite mergers in the central region of the cluster, down to ≈0.06rvir, which can be considered a proxy for the accretion of satellite galaxies on to central galaxies. We find that the characteristic merger mass ratio increases for increasing values of Δc: more than 60 per cent of the mass accreted by central galaxies since z ≈ 1 comes from major mergers. The orbits of satellites accreting on to central galaxies tend to be more tangential and more bound than orbits of haloes accreting at the virial radius. The obtained distributions of merger mass ratios and orbital parameters are useful to model the evolution of the high-mass end of the galaxy scaling relations without resorting to hydrodynamic cosmological simulations.

  19. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Alis [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA (United States); Wetzel, Andrew [TAPIR, California Institute of Technology, Pasadena, CA (United States); Garrison-Kimmel, Shea, E-mail: alis@ucolick.org [Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA (United States)

    2014-10-20

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  20. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    International Nuclear Information System (INIS)

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M star > 10 6 M ☉ that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  1. Alignment between Satellite and Central Galaxies in the SDSS DR7: Dependence on Large-scale Environment

    Science.gov (United States)

    Wang, Peng; Luo, Yu; Kang, Xi; Libeskind, Noam I.; Wang, Lei; Zhang, Youcai; Tempel, Elmo; Guo, Quan

    2018-06-01

    The alignment between satellites and central galaxies has been studied in detail both in observational and theoretical works. The widely accepted fact is that satellites preferentially reside along the major axis of their central galaxy. However, the origin and large-scale environmental dependence of this alignment are still unknown. In an attempt to determine these variables, we use data constructed from Sloan Digital Sky Survey DR7 to investigate the large-scale environmental dependence of this alignment with emphasis on examining the alignment’s dependence on the color of the central galaxy. We find a very strong large-scale environmental dependence of the satellite–central alignment (SCA) in groups with blue centrals. Satellites of blue centrals in knots are preferentially located perpendicular to the major axes of the centrals, and the alignment angle decreases with environment, namely, when going from knots to voids. The alignment angle strongly depends on the {}0.1(g-r) color of centrals. We suggest that the SCA is the result of a competition between satellite accretion within large-scale structure (LSS) and galaxy evolution inside host halos. For groups containing red central galaxies, the SCA is mainly determined by the evolution effect, while for blue central dominated groups, the effect of the LSS plays a more important role, especially in knots. Our results provide an explanation for how the SCA forms within different large-scale environments. The perpendicular case in groups and knots with blue centrals may also provide insight into understanding similar polar arrangements, such as the formation of the Milky Way and Centaurus A’s satellite system.

  2. A redshift determination of the host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y. [RIKEN, Saitama (Japan); Tokyo Institute of Technology, Tokyo (Japan). Department of Physics; Yoshida, A. [Aoyama Garkuin Univ., Kanagawa (Japan). Department of Physics; Yamada, T. [National Astronomical Observatory, Tokyo (Japan)] (and others)

    2005-07-15

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically {approx} 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 {+-} 0.4) x 10{sup 54} erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10{sup 51} ergs, their opening angle is calculated as {theta}{sub j} = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts.0.

  3. A redshift determination of the host galaxy

    International Nuclear Information System (INIS)

    Urata, Y.

    2005-01-01

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically ∼ 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 ± 0.4) x 10 54 erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10 51 ergs, their opening angle is calculated as θ j = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts

  4. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Science.gov (United States)

    Wheeler, Coral; Oñorbe, Jose; Bullock, James S.; Boylan-Kolchin, Michael; Elbert, Oliver D.; Garrison-Kimmel, Shea; Hopkins, Philip F.; Kereš, Dušan

    2015-10-01

    We present Feedback in Realistic Environment (FIRE)/GIZMO hydrodynamic zoom-in simulations of isolated dark matter haloes, two each at the mass of classical dwarf galaxies (Mvir ≃ 1010 M⊙) and ultra-faint galaxies (Mvir ≃ 109 M⊙), and with two feedback implementations. The resulting central galaxies lie on an extrapolated abundance matching relation from M⋆ ≃ 106 to 104 M⊙ without a break. Every host is filled with subhaloes, many of which form stars. Each of our dwarfs with M⋆ ≃ 106 M⊙ has 1-2 well-resolved satellites with M⋆ = 3-200 × 103 M⊙. Even our isolated ultra-faint galaxies have star-forming subhaloes. If this is representative, dwarf galaxies throughout the Universe should commonly host tiny satellite galaxies of their own. We combine our results with the Exploring the Local Volume in Simulations (ELVIS) simulations to show that targeting ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35 per cent compared to random pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆ ≃ 3-30 × 103 M⊙) form within Mpeak ≃ 0.5-3 × 109 M⊙ haloes. Each has a uniformly ancient stellar population ( > 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ≃ 5 × 109 M⊙ is a probable dividing line between haloes hosting reionization `fossils' and those hosting dwarfs that can continue to form stars in isolation after reionization.

  5. Estimating the Mass of the Milky Way Using the Ensemble of Classical Satellite Galaxies

    Science.gov (United States)

    Patel, Ekta; Besla, Gurtina; Sohn, Sangmo Tony; Mandel, Kaisey

    2018-06-01

    High precision proper motions are currently available for approximately 20% of the Milky Way's known satellite galaxies. Often, the 6D phase space information of each satellite is used separately to constrain the mass of the MW. In this talk, I will discuss the Bayesian framework outlined in Patel et al. 2017b to make inferences of the MW's mass using satellite properties such as specific orbital angular momentum, rather than just position and velocity. By extending this framework from one satellite to a population of satellites, we can now form simultaneous MW mass estimates using the Illustris-Dark cosmological simulation that are unbiased by high speed satellites such as Leo I (Patel et al., submitted). Our resulting MW mass estimates reduce the current factor of two uncertainty in the mass range of the MW and show promising signs for improvement as upcoming ground- and space-based observatories obtain proper motions for additional MW satellite galaxies.

  6. SATELLITE DWARF GALAXIES IN A HIERARCHICAL UNIVERSE: THE PREVALENCE OF DWARF-DWARF MAJOR MERGERS

    OpenAIRE

    Deason, A; Wetzel, A; Garrison-Kimmel, S

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host...

  7. THE DISTRIBUTION OF FAINT SATELLITES AROUND CENTRAL GALAXIES IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. Y.; Jing, Y. P.; Li, Cheng [Key Laboratory for Research in Galaxies and Cosmology of Chinese Academy of Sciences, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China)

    2012-11-20

    We investigate the radial number density profile and the abundance distribution of faint satellites around central galaxies in the low-redshift universe using the Canada-France-Hawaii Telescope (CFHT) Legacy Survey. We consider three samples of central galaxies with magnitudes of M {sub r} = -21, -22, and -23 selected from the Sloan Digital Sky Survey group catalog of Yang et al. The satellite distribution around these central galaxies is obtained by cross-correlating these galaxies with the photometric catalog of the CFHT Legacy Survey. The projected radial number density of the satellites obeys a power-law form with the best-fit logarithmic slope of -1.05, independent of both the central galaxy luminosity and the satellite luminosity. The projected cross-correlation function between central and satellite galaxies exhibits a non-monotonic trend with satellite luminosity. It is most pronounced for central galaxies with M {sub r} = -21, where the decreasing trend of clustering amplitude with satellite luminosity is reversed when satellites are fainter than central galaxies by more than 2 mag. A comparison with the satellite luminosity functions in the Milky Way (MW) and M31 shows that the MW/M31 system has about twice as many satellites as around a typical central galaxy of similar luminosity. The implications for theoretical models are briefly discussed.

  8. History of Satellite Orbit Determination at NSWCDD

    Science.gov (United States)

    2018-01-31

    meeting of the Satellite Division of ION, Palm Springs, CA., 12–15 Sep 1995. Hughey, Raymond H., Jr., “ History of Mathematics and Computing Technology ...TR-17/229 HISTORY OF SATELLITE ORBIT DETERMINATION AT NSWCDD BY EVERETT R. SWIFT WARFARE SYSTEMS ENGINEERING AND INTEGRATION...AND SUBTITLE History of Satellite Orbit Determination at NSWCDD 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  9. Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes

    Science.gov (United States)

    Masaki, Shogo; Hikage, Chiaki; Takada, Masahiro; Spergel, David N.; Sugiyama, Naoshi

    2013-08-01

    We develop a novel abundance matching method to construct a mock catalogue of luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), using catalogues of haloes and subhaloes in N-body simulations for a Λ-dominated cold dark matter model. Motivated by observations suggesting that LRGs are passively evolving, massive early-type galaxies with a typical age ≳5 Gyr, we assume that simulated haloes at z = 2 (z2-halo) are progenitors for LRG-host subhaloes observed today, and we label the most tightly bound particles in each progenitor z2-halo as LRG `stars'. We then identify the subhaloes containing these stars to z = 0.3 (SDSS redshift) in descending order of the masses of z2-haloes until the comoving number density of the matched subhaloes becomes comparable to the measured number density of SDSS LRGs, bar{n}_LRG=10^{-4} h^3 Mpc^{-3}. Once the above prescription is determined, our only free parameter is the number density of haloes identified at z = 2 and this parameter is fixed to match the observed number density at z = 0.3. By tracing subsequent merging and assembly histories of each progenitor z2-halo, we can directly compute, from the mock catalogue, the distributions of central and satellite LRGs and their internal motions in each host halo at z = 0.3. While the SDSS LRGs are galaxies selected by the magnitude and colour cuts from the SDSS images and are not necessarily a stellar-mass-selected sample, our mock catalogue reproduces a host of SDSS measurements: the halo occupation distribution for central and satellite LRGs, the projected autocorrelation function of LRGs, the cross-correlation of LRGs with shapes of background galaxies (LRG-galaxy weak lensing) and the non-linear redshift-space distortion effect, the Finger-of-God effect, in the angle-averaged redshift-space power spectrum. The mock catalogue generated based on our method can be used for removing or calibrating systematic errors in the cosmological interpretation of LRG clustering

  10. Listening to Shells: Galaxy Masses from Disrupted Satellites

    NARCIS (Netherlands)

    Westfall, Kyle; Sanderson, R.

    Our ability to measure the dynamical mass of an individual galaxy is limited by the radial extent of the luminous tracers of its potential. For elliptical galaxies, it is difficult to go much beyond two effective radii using integrated light. Appealing to particle tracers like globular clusters has

  11. THE STRIKINGLY SIMILAR RELATION BETWEEN SATELLITE AND CENTRAL GALAXIES AND THEIR DARK MATTER HALOS SINCE z = 2

    International Nuclear Information System (INIS)

    Watson, Douglas F.; Conroy, Charlie

    2013-01-01

    Satellite galaxies in rich clusters are subject to numerous physical processes that can significantly influence their evolution. However, the typical L* satellite galaxy resides in much lower mass galaxy groups, where the processes capable of altering their evolution are generally weaker and have had less time to operate. To investigate the extent to which satellite and central galaxy evolution differs, we separately model the stellar mass-halo mass (M * -M h ) relation for these two populations over the redshift interval 0 peak . At z ∼ 0 the satellites, on average, have ∼10% larger stellar masses at fixed M peak compared to central galaxies of the same halo mass (although the two relations are consistent at 2σ-3σ for M peak ∼> 10 13 M ☉ ). This is required in order to reproduce the observed stellar mass-dependent 2PCF and satellite fractions. At low masses our model slightly under-predicts the correlation function at ∼1 Mpc scales. At z ∼ 1 the satellite and central galaxy M * -M h relations are consistent within the errors, and the model provides an excellent fit to the clustering data. At present, the errors on the clustering data at z ∼ 2 are too large to constrain the satellite model. A simple model in which satellite and central galaxies share the same M * -M h relation is able to reproduce the extant z ∼ 2 clustering data. We speculate that the striking similarity between the satellite and central galaxy M * -M h relations since z ∼ 2 arises because the central galaxy relation evolves very weakly with time and because the stellar mass of the typical satellite galaxy has not changed significantly since it was accreted. The reason for this last point is not yet entirely clear, but it is likely related to the fact that the typical ∼L* satellite galaxy resides in a poor group where transformation processes are weak and lifetimes are short

  12. Caught in the rhythm. I. How satellites settle into a plane around their central galaxy

    Science.gov (United States)

    Welker, C.; Dubois, Y.; Pichon, C.; Devriendt, J.; Chisari, N. E.

    2018-05-01

    Context. The anisotropic distribution of satellites around the central galaxy of their host halo is both well-documented in observations and predicted by the ΛCDM model. However its amplitude, direction and possible biases associated to the specific dynamics of such satellite galaxies are still highly debated. Aims: Using the cosmological hydrodynamics simulation Horizon-AGN, we aim to quantify the anisotropy of the spatial distribution of satellite galaxies relative to their central counterpart and explore its connexion to the local cosmic web, in the redshift range between 0.3 and 0.8. Methods: Haloes and galaxies were identified and their kinematics computed using their dark matter and stellar particles respectively. Sub-haloes were discarded and galaxies lying within 5 Rvir of a given halo are matched to it. The filamentary structure of the cosmic web was extracted from the density field - smoothed over a 3 h-1 Mpc typical scale - as a network of contiguous segments. We then investigated the distribution function of relevant angles, most importantly the angle α between the central-to-satellite separation vector and the group's nearest filament, aside with the angle between this same separation and the central minor axis. This allowed us to explore the correlations between filamentary infall, intra-cluster inspiralling and the resulting distribution of satellites around their central counterpart. Results: We find that, on average, satellites tend to be located on the galactic plane of the central object. This effect is detected for central galaxies with a stellar mass larger than 1010 M⊙ and found to be strongest for red passive galaxies, while blue galaxies exhibit a weaker trend. For galaxies with a minor axis parallel to the direction of the nearest filament, we find that the coplanarity is stronger in the vicinity of the central galaxy, and decreases when moving towards the outskirts of the host halo. By contrast, the spatial distribution of satellite

  13. Galactic conformity and central/satellite quenching, from the satellite profiles of M* galaxies at 0.4 < z < 1.9 in the UKIDSS UDS

    Science.gov (United States)

    Hartley, W. G.; Conselice, C. J.; Mortlock, A.; Foucaud, S.; Simpson, C.

    2015-08-01

    We explore the redshift evolution of a curious correlation between the star formation properties of central galaxies and their satellites (`galactic conformity') at intermediate to high redshift (0.4 9.7, around central galaxies at the characteristic Schechter function mass, M ˜ M*. We fit the radial profiles of satellite number densities with simple power laws, finding slopes in the range -1.1 to -1.4 for mass-selected satellites, and -1.3 to -1.6 for passive satellites. We confirm the tendency for passive satellites to be preferentially located around passive central galaxies at 3σ significance and show that it exists to at least z ˜ 2. Meanwhile, the quenched fraction of satellites around star-forming galaxies is consistent with field galaxies of equal stellar masses. We find no convincing evidence for a redshift-dependent evolution of these trends. One simple interpretation of these results is that only passive central galaxies occupy an environment that is capable of independently shutting off star formation in satellite galaxies. By examining the satellites of higher stellar mass star-forming galaxies (log(M*/M⊙) > 11), we conclude that the origin of galactic conformity is unlikely to be exclusively due to the host dark matter halo mass. A halo-mass-independent correlation could be established by either formation bias or a more physical connection between central and satellite star formation histories. For the latter, we argue that a star formation (or active galactic nucleus) related outburst event from the central galaxy could establish a hot halo environment which is then capable of quenching both central and satellite galaxies.

  14. The impact of galaxy formation on satellite kinematics and redshift-space distortions

    Science.gov (United States)

    Orsi, Álvaro A.; Angulo, Raúl E.

    2018-04-01

    Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.

  15. An LBT view of the Andromeda’s satellite galaxies

    Directory of Open Access Journals (Sweden)

    Cusano Felice

    2017-01-01

    Full Text Available Results are presented on deep (V ∼ 26.5 mag time series observations of four dwarf spheroidal galaxies (dSphs in the Andromeda (M31 complex, namely, And XIX, And XXI, And XXV and And XXVII, that we have observed with the Large Binocular Telescope (LBT. We discovered in these galaxies a total of over 200 RR Lyrae stars and 19 Anomalous Cepheids. We also characterised the stellar populations and the spatial distributions of these dSphs.

  16. GALAXY EVOLUTION AT HIGH REDSHIFT: OBSCURED STAR FORMATION, GRB RATES, COSMIC REIONIZATION, AND MISSING SATELLITES

    Energy Technology Data Exchange (ETDEWEB)

    Lapi, A.; Mancuso, C.; Celotti, A.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy)

    2017-01-20

    We provide a holistic view of galaxy evolution at high redshifts z ≳ 4, which incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic star formation rate (SFR) density from UV/IR surveys and long gamma-ray burst (GRBs) rates, the cosmic reionization history following the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. on the basis of an educated extrapolation of the latest UV/far-IR data from HST / Herschel , and already tested against a number of independent observables. Our SFR functions integrated down to a UV magnitude limit M {sub UV} ≲ −13 (or SFR limit around 10{sup −2} M {sub ⊙} yr{sup −1}) produce a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z ≲ Z {sub ⊙}/2, with the estimates from long GRB rates. They also yield a cosmic reionization history consistent with that implied by the recent measurements of the Planck mission of the electron scattering optical depth τ {sub es} ≈ 0.058; remarkably, this result is obtained under a conceivable assumption regarding the average value f {sub esc} ≈ 0.1 of the escape fraction for ionizing photons. We demonstrate via the abundance-matching technique that the above constraints concurrently imply galaxy formation becoming inefficient within dark matter halos of mass below a few 10{sup 8} M {sub ⊙}; pleasingly, such a limit is also required so as not to run into the missing satellites issue. Finally, we predict a downturn of the Galaxy luminosity function faintward of M {sub UV} ≲ −12, and stress that its detailed shape, to be plausibly probed in the near future by the JWST , will be extremely informative on the astrophysics of galaxy formation in small halos, or even on the microscopic nature of the dark matter.

  17. Orbit determination for ISRO satellite missions

    Science.gov (United States)

    Rao, Ch. Sreehari; Sinha, S. K.

    Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary

  18. Kinematic evidence of satellite galaxy populations in the potential wells of first-ranked cluster galaxies

    Science.gov (United States)

    Cowie, L. L.; Hu, E. M.

    1986-01-01

    The velocities of 38 centrally positioned galaxies (r much less than 100 kpc) were measured relative to the velocity of the first-ranked galaxy in 14 rich clusters. Analysis of the velocity distribution function of this sample and of previous data shows that the population cannot be fit by a single Gaussian. An adequate fit is obtained if 60 percent of the objects lie in a Gaussian with sigma = 250 km/s and the remainder in a population with sigma = 1400 km/s. All previous data sets are individually consistent with this conclusion. This suggests that there is a bound population of galaxies in the potential well of the central galaxy in addition to the normal population of the cluster core. This is taken as supporting evidence for the galactic cannibalism model of cD galaxy formation.

  19. DETERMINING STAR FORMATION RATES FOR INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Rieke, G. H.; Weiner, B. J.; Perez-Gonzalez, P. G.; Donley, J. L.; Alonso-Herrero, A.; Blaylock, M.; Marcillac, D.

    2009-01-01

    We show that measures of star formation rates (SFRs) for infrared galaxies using either single-band 24 μm or extinction-corrected Paα luminosities are consistent in the total infrared luminosity = L(TIR) ∼ 10 10 L sun range. MIPS 24 μm photometry can yield SFRs accurately from this luminosity upward: SFR(M sun yr -1 ) = 7.8 x 10 -10 L(24 μm, L sun ) from L(TIR) = 5x 10 9 L sun to 10 11 L sun and SFR = 7.8 x 10 -10 L(24 μm, L sun )(7.76 x 10 -11 L(24)) 0.048 for higher L(TIR). For galaxies with L(TIR) ≥ 10 10 L sun , these new expressions should provide SFRs to within 0.2 dex. For L(TIR) ≥ 10 11 L sun , we find that the SFR of infrared galaxies is significantly underestimated using extinction-corrected Paα (and presumably using any other optical or near-infrared recombination lines). As a part of this work, we constructed spectral energy distribution templates for eleven luminous and ultraluminous purely star forming infrared galaxies and over the spectral range 0.4 μm to 30 cm. We use these templates and the SINGS data to construct average templates from 5 μm to 30 cm for infrared galaxies with L(TIR) = 5x 10 9 to 10 13 L sun . All of these templates are made available online.

  20. Intrinsic alignments in redMaPPer clusters – I. Central galaxy alignments and angular segregation of satellites

    International Nuclear Information System (INIS)

    Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.; Chen, Yen-Chi

    2016-01-01

    The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes and the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.

  1. THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. I. A BAYESIAN SEARCH FOR DWARF GALAXIES USING SPATIAL AND COLOR-MAGNITUDE INFORMATION

    International Nuclear Information System (INIS)

    Martin, Nicolas F.; Ibata, Rodrigo A.; McConnachie, Alan W.; Mackey, A. Dougal; Ferguson, Annette M. N.; Irwin, Michael J.; Lewis, Geraint F.; Fardal, Mark A.

    2013-01-01

    We present a generic algorithm to search for dwarf galaxies in photometric catalogs and apply it to the Pan-Andromeda Archaeological Survey (PAndAS). The algorithm is developed in a Bayesian framework and, contrary to most dwarf galaxy search codes, makes use of both the spatial and color-magnitude information of sources in a probabilistic approach. Accounting for the significant contamination from the Milky Way foreground and from the structured stellar halo of the Andromeda galaxy, we recover all known dwarf galaxies in the PAndAS footprint with high significance, even for the least luminous ones. Some Andromeda globular clusters are also recovered and, in one case, discovered. We publish a list of the 143 most significant detections yielded by the algorithm. The combined properties of the 39 most significant isolated detections show hints that at least some of these trace genuine dwarf galaxies, too faint to be individually detected. Follow-up observations by the community are mandatory to establish which are real members of the Andromeda satellite system. The search technique presented here will be used in an upcoming contribution to determine the PAndAS completeness limits for dwarf galaxies. Although here tuned to the search of dwarf galaxies in the PAndAS data, the algorithm can easily be adapted to the search for any localized overdensity whose properties can be modeled reliably in the parameter space of any catalog

  2. Illuminating the star clusters and satellite galaxies with multi-scale baryonic simulations

    Science.gov (United States)

    Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Marinacci, Federico; Charlton, Jane; Hernquist, Lars; Knebe, Alexander

    2018-01-01

    Over the past decade, advances in computational architecture have made it possible for the first time to investigate some of the fundamental questions around the formation, evolution and assembly of the building blocks of the universe; star clusters and galaxies. In this talk, I will focus on two major questions: What is the origin of the observed universal lognormal mass function in globular clusters? What is the statistical distribution of the properties of satellite planes in a large sample of satellite systems?Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at 2X105 MSun, although the origin of this peaked distribution is unclear. We investigate the formation of star clusters in interacting galaxies using baryonic simulations and found that massive clusters preferentially form in extremely high pressure gas clouds which reside in highly shocked regions produced by galaxy interactions. These massive clusters have quasi-lognormal initial mass functions with a peak around ~106MSun which may survive dynamical evolution and slowly evolve into the universal lognormal profiles observed today.The classical Milky Way (MW) satellites are observed to be distributed in a highly-flattened plane, called Disk of Satellites (DoS). However the significance, coherence and origin of DoS is highly debated. To understand this, we first analyze all MW satellites and find that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of their angular momentum. Comparing a baryonic simulation of a MW-sized galaxy with its N-body counterpart we find that an anisotropic DoS can originate from baryonic processes. Furthermore, we explore the statistical distribution of DoS properties by analyzing 2591 satellite systems in the cosmological hydrodynamic simulation Illustris. We find that the DoS becomes more isotropic with increasing sample sizes and most (~90%) satellite

  3. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  4. Implications for the missing low-mass galaxies (satellites) problem from cosmic shear

    Science.gov (United States)

    Jimenez, Raul; Verde, Licia; Kitching, Thomas D.

    2018-06-01

    The number of observed dwarf galaxies, with dark matter mass ≲ 1011 M⊙ in the Milky Way or the Andromeda galaxy does not agree with predictions from the successful ΛCDM paradigm. To alleviate this problem a suppression of dark matter clustering power on very small scales has been conjectured. However, the abundance of dark matter halos outside our immediate neighbourhood (the Local Group) seem to agree with the ΛCDM-expected abundance. Here we connect these problems to observations of weak lensing cosmic shear, pointing out that cosmic shear can make significant statements about the missing satellites problem in a statistical way. As an example and pedagogical application we use recent constraints on small-scales power suppression from measurements of the CFHTLenS data. We find that, on average, in a region of ˜Gpc3 there is no significant small-scale power suppression. This implies that suppression of small-scale power is not a viable solution to the `missing satellites problem' or, alternatively, that on average in this volume there is no `missing satellites problem' for dark matter masses ≳ 5 × 109 M⊙. Further analysis of current and future weak lensing surveys will probe much smaller scales, k > 10h Mpc-1 corresponding roughly to masses M < 109M⊙.

  5. Indirect dark matter searches in the dwarf satellite galaxy Ursa Major II with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berse, R. Ch.; Berti, A.; Bhattacharyya, W.; Biland, A.; Blanch, O.; Bonnoli, G.; Carosi, R.; Carosi, A.; Ceribella, G.; Chatterjee, A.; Colak, S. M.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; Delfino, M.; Delgado, J.; Di Pierro, F.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Elsaesser, D.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Masuda, S.; Mazin, D.; Mielke, K.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Nagayoshi, T.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nigro, C.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pedaletti, G.; Peresano, M.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Rugliancich, A.; Saito, T.; Satalecka, K.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takahashi, M.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Teshima, M.; Torres-Albà, N.; Treves, A.; Tsujimoto, S.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.

    2018-03-01

    The dwarf spheroidal galaxy Ursa Major II (UMaII) is believed to be one of the most dark-matter dominated systems among the Milky Way satellites and represents a suitable target for indirect dark matter (DM) searches. The MAGIC telescopes carried out a deep observation campaign on UMaII between 2014 and 2016, collecting almost one hundred hours of good-quality data. This campaign enlarges the pool of DM targets observed at very high energy (E gtrsim 50 GeV) in search for signatures of DM annihilation in the wide mass range between ~100 GeV and ~100 TeV. To this end, the data are analyzed with the full likelihood analysis, a method based on the exploitation of the spectral information of the recorded events for an optimal sensitivity to the explored DM models. We obtain constraints on the annihilation cross-section for different channels that are among the most robust and stringent achieved so far at the TeV mass scale from observations of dwarf satellite galaxies.

  6. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  7. The distribution of satellites around massive galaxies at 1 < z < 3 in ZFOURGE/CANDELS: Dependence on star formation activity

    Energy Technology Data Exchange (ETDEWEB)

    Kawinwanichakij, Lalitwadee; Papovich, Casey; Quadri, Ryan F.; Tran, Kim-Vy H.; Mehrtens, Nicola [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Spitler, Lee R.; Cowley, Michael [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Kacprzak, Glenn G.; Glazebrook, Karl; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Labbé, Ivo; Straatman, Caroline M. S. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Allen, Rebecca [Australian Astronomical Observatories, P.O. Box 915, North Ryde, NSW 1670 (Australia); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hartley, W. G. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Koo, David C. [University of California Observatories/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lu, Yu, E-mail: kawinwanichakij@physics.tamu.edu [Kavli Institute for Particle Astrophysics and Cosmology, 452 Lomita Mall, Stanford, CA 94305 (United States); and others

    2014-09-10

    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1 < z < 3 using imaging from the FourStar Galaxy Evolution Survey and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey. The deep near-IR data select satellites down to log (M/M {sub ☉}) > 9 at z < 3. The radial satellite distribution around centrals is consistent with a projected Navarro-Frenk-White profile. Massive quiescent centrals, log (M/M {sub ☉}) > 10.78, have ∼2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48 < log (M/M {sub ☉}) < 10.78. Compared to the Guo et al. semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from ∼0 for log (M{sub h} /M {sub ☉}) ∼ 11 to ∼1 for log (M{sub h} /M {sub ☉}) ∼ 13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.

  8. Determining mass-to-light ratios in elliptical galaxies

    International Nuclear Information System (INIS)

    Mathews, W.G.

    1988-01-01

    If the endstate of cooling hot gas in elliptical galaxies is a population of optically dark, low-mass stars near the galactic cores, the mass-to-light ratio could be expected to vary significantly with projected radius. No strong variation in M/L is observed. To investigate the sensitivity and reliability of observational mass-to-light determinations for a variety of galactic parameters, model galaxies having de Vaucouleurs profiles (but with central cores and outer cutoffs), variable velocity ellipsoid structure, and extended dark halos are constructed. Spurious radial variations in M/L can occur when none are present if the properties of the galactic models are processed similar to observational data. Conversely, when a population of diffuse dark stellar matter is added near the galactic cores, large gradients in M/L can escape detection. However, the magnitude of the central velocity dispersion and its variation with projected radius within the effective radius both suggest that a component of dark stars is unlikely to be more massive than about 30 times the core mass of luminous stars. This restriction is important in establishing the initial mass function of stars in elliptical galaxies and the history of winds and cooling inflows in the interstellar medium. 35 references

  9. The phase space and stellar populations of cluster galaxies at z ∼ 1: simultaneous constraints on the location and timescale of satellite quenching

    Energy Technology Data Exchange (ETDEWEB)

    Muzzin, Adam; Van der Burg, R. F. J.; McGee, Sean L.; Balogh, Michael; Franx, Marijn; Hoekstra, Henk [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Hudson, Michael J. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Noble, Allison; Taranu, Dan S.; Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Webb, Tracy [Department of Physics, McGill University, Montréal, QC (Canada); Wilson, Gillian [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2014-11-20

    We investigate the velocity versus position phase space of z ∼ 1 cluster galaxies using a set of 424 spectroscopic redshifts in nine clusters drawn from the GCLASS survey. Dividing the galaxy population into three categories, that is, quiescent, star-forming, and poststarburst, we find that these populations have distinct distributions in phase space. Most striking are the poststarburst galaxies, which are commonly found at small clustercentric radii with high clustercentric velocities, and appear to trace a coherent 'ring' in phase space. Using several zoom simulations of clusters, we show that the coherent distribution of the poststarbursts can be reasonably well reproduced using a simple quenching scenario. Specifically, the phase space is best reproduced if these galaxies are quenched with a rapid timescale (0.1 <τ {sub Q} < 0.5 Gyr) after they make their first passage of R ∼ 0.5 R {sub 200}, a process that takes a total time of ∼1 Gyr after first infall. The poststarburst phase space is not well reproduced using long quenching timescales (τ {sub Q} > 0.5 Gyr) or by quenching galaxies at larger radii (R ∼ R {sub 200}). We compare this quenching timescale to the timescale implied by the stellar populations of the poststarburst galaxies and find that the poststarburst spectra are well-fit by a rapid quenching (τ {sub Q} = 0.4{sub −0.4}{sup +0.3} Gyr) of a typical star-forming galaxy. The similarity between the quenching timescales derived from these independent indicators is a strong consistency check of the quenching model. Given that the model implies satellite quenching is rapid and occurs well within R {sub 200}, this would suggest that ram-pressure stripping of either the hot or cold gas component of galaxies are the most plausible candidates for the physical mechanism. The high cold gas consumption rates at z ∼ 1 make it difficult to determine whether hot or cold gas stripping is dominant; however, measurements of the redshift

  10. GALAXY CLUSTERING AND PROJECTED DENSITY PROFILES AS TRACED BY SATELLITES IN PHOTOMETRIC SURVEYS: METHODOLOGY AND LUMINOSITY DEPENDENCE

    International Nuclear Information System (INIS)

    Wang Wenting; Jing, Y. P.; Li Cheng; Okumura, Teppei; Han Jiaxin

    2011-01-01

    We develop a new method which measures the projected density distribution w p (r p )n of photometric galaxies surrounding a set of spectroscopically identified galaxies and simultaneously the projected cross-correlation function w p (r p ) between the two populations. In this method, we are able to divide the photometric galaxies into subsamples in luminosity intervals even when redshift information is unavailable, enabling us to measure w p (r p )n and w p (r p ) as a function of not only the luminosity of the spectroscopic galaxy, but also that of the photometric galaxy. Extensive tests show that our method can measure w p (r p ) in a statistically unbiased way. The accuracy of the measurement depends on the validity of the assumption inherent to the method that the foreground/background galaxies are randomly distributed and are thus uncorrelated with those galaxies of interest. Therefore, our method can be applied to the cases where foreground/background galaxies are distributed in large volumes, which is usually valid in real observations. We have applied our method to data from the Sloan Digital Sky Survey (SDSS) including a sample of 10 5 luminous red galaxies at z ∼ 0.4 and a sample of about half a million galaxies at z ∼ 0.1, both of which are cross-correlated with a deep photometric sample drawn from the SDSS. On large scales, the relative bias factor of galaxies measured from w p (r p ) at z ∼ 0.4 depends on luminosity in a manner similar to what is found for those at z ∼ 0.1, which are usually probed by autocorrelations of spectroscopic samples in previous studies. On scales smaller than a few Mpc and at both z ∼ 0.4 and z ∼ 0.1, the photometric galaxies of different luminosities exhibit similar density profiles around spectroscopic galaxies at fixed luminosity and redshift. This provides clear observational support for the assumption commonly adopted in halo occupation distribution models that satellite galaxies of different luminosities are

  11. EVIDENCE THAT GAMMA-RAY BURST 130702A EXPLODED IN A DWARF SATELLITE OF A MASSIVE GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.; Zheng Weikang; Clubb, Kelsey I., E-mail: pkelly@astro.berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2013-09-20

    GRB 130702A is a nearby long-duration gamma-ray burst (LGRB) discovered by the Fermi satellite whose associated afterglow was detected by the Palomar Transient Factory. Subsequent photometric and spectroscopic monitoring has identified a coincident broad-lined Type Ic supernova (SN), and nebular emission detected near the explosion site is consistent with a redshift of z = 0.145. The SN-GRB exploded at an offset of {approx}7.''6 from the center of an inclined r = 18.1 mag red disk-dominated galaxy, and {approx}0.''6 from the center of a much fainter r = 23 mag object. We obtained Keck-II DEIMOS spectra of the two objects and find a 2{sigma} upper limit on their line-of-sight velocity offset of {approx}<60 km s{sup -1}. If we calculate the inclination angle of the massive red galaxy from its axis ratio and assume that its light is dominated by a very thin disk, the explosion would have a {approx}60 kpc central offset, or {approx}9 times the galaxy's half-light radius. A significant bulge or a thicker disk would imply a higher inclination angle and greater central offset. The substantial offset suggests that the faint source is a separate dwarf galaxy. The star-formation rate of the dwarf galaxy is {approx}0.05 M{sub Sun} yr{sup -1}, and we place an upper limit on its oxygen abundance of 12 + log(O/H) < 8.16 dex. The identification of an LGRB in a dwarf satellite of a massive, metal-rich primary galaxy suggests that recent detections of LGRBs spatially coincident with metal-rich galaxies may be, in some cases, superpositions.

  12. EVIDENCE THAT GAMMA-RAY BURST 130702A EXPLODED IN A DWARF SATELLITE OF A MASSIVE GALAXY

    International Nuclear Information System (INIS)

    Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.; Zheng Weikang; Clubb, Kelsey I.

    2013-01-01

    GRB 130702A is a nearby long-duration gamma-ray burst (LGRB) discovered by the Fermi satellite whose associated afterglow was detected by the Palomar Transient Factory. Subsequent photometric and spectroscopic monitoring has identified a coincident broad-lined Type Ic supernova (SN), and nebular emission detected near the explosion site is consistent with a redshift of z = 0.145. The SN-GRB exploded at an offset of ∼7.''6 from the center of an inclined r = 18.1 mag red disk-dominated galaxy, and ∼0.''6 from the center of a much fainter r = 23 mag object. We obtained Keck-II DEIMOS spectra of the two objects and find a 2σ upper limit on their line-of-sight velocity offset of ∼ –1 . If we calculate the inclination angle of the massive red galaxy from its axis ratio and assume that its light is dominated by a very thin disk, the explosion would have a ∼60 kpc central offset, or ∼9 times the galaxy's half-light radius. A significant bulge or a thicker disk would imply a higher inclination angle and greater central offset. The substantial offset suggests that the faint source is a separate dwarf galaxy. The star-formation rate of the dwarf galaxy is ∼0.05 M ☉ yr –1 , and we place an upper limit on its oxygen abundance of 12 + log(O/H) < 8.16 dex. The identification of an LGRB in a dwarf satellite of a massive, metal-rich primary galaxy suggests that recent detections of LGRBs spatially coincident with metal-rich galaxies may be, in some cases, superpositions

  13. Drag on a Satellite Moving across a Spherical Galaxy: Tidal and Frictional Forces in Short-lived Encounters

    Science.gov (United States)

    Colpi, Monica; Pallavicini, Andrea

    1998-07-01

    The drag force on a satellite of mass M moving with speed V in the gravitational field of a spherically symmetric background of stars is computed. During the encounter, the stars are subject to a time-dependent force that alters their equilibrium. The resulting distortion in the stellar density field acts back to produce a force FΔ that decelerates the satellite. This force is computed using a perturbative technique known as linear response theory. In this paper, we extend the formalism of linear response to derive the correct expression for the back-reaction force FΔ that applies when the stellar system is described by an equilibrium one-particle distribution function. FΔ is expressed in terms of a suitable correlation function that couples the satellite dynamics to the unperturbed dynamics of the stars. At time t, the force depends upon the whole history of the composite system. In the formalism, we account for the shift of the stellar center of mass resulting from linear momentum conservation. The self-gravity of the response is neglected since it contributes to a higher order in the perturbation. Linear response theory applies also to the case of a satellite orbiting outside the spherical galaxy. The case of a satellite moving on a straight line, at high speed relative to the stellar dispersion velocity, is explored. We find that the satellite during its passage raises (1) global tides in the stellar distribution and (2) a wake, i.e., an overdense region behind its trail. If the satellite motion is external to the galaxy, it suffers a dissipative force that is not exclusively acting along V but acquires a component along R, the position vector relative to the center of the spherical galaxy. We derive the analytical expression of the force in the impulse approximation. In penetrating short-lived encounters, the satellite moves across the stellar distribution and the transient wake excited in the density field is responsible for most of the deceleration. We

  14. GNSS satellite transmit power and its impact on orbit determination

    Science.gov (United States)

    Steigenberger, Peter; Thoelert, Steffen; Montenbruck, Oliver

    2018-06-01

    Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50-240 W were obtained, 20-135 W for GLONASS, 95-265 W for Galileo, and 130-185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1-27 mm depending on the transmit power, the satellite mass, and the orbital period.

  15. Distance determinations to shield galaxies from Hubble space telescope imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M.; Cave, Ian [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Adams, Elizabeth; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Juërgen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Saintonge, Amélie, E-mail: kmcquinn@astro.umn.edu [Max-Planck-Institute for Astrophysics, D-85741 Garching (Germany)

    2014-04-10

    The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc by applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.

  16. Predicting the locations of possible long-lived low-mass first stars: importance of satellite dwarf galaxies

    Science.gov (United States)

    Magg, Mattis; Hartwig, Tilman; Agarwal, Bhaskar; Frebel, Anna; Glover, Simon C. O.; Griffen, Brendan F.; Klessen, Ralf S.

    2018-02-01

    The search for metal-free stars has so far been unsuccessful, proving that if there are surviving stars from the first generation, they are rare, they have been polluted or we have been looking in the wrong place. To predict the likely location of Population III (Pop III) survivors, we semi-analytically model early star formation in progenitors of Milky Way-like galaxies and their environments. We base our model on merger trees from the high-resolution dark matter only simulation suite Caterpillar. Radiative and chemical feedback are taken into account self-consistently, based on the spatial distribution of the haloes. Our results are consistent with the non-detection of Pop III survivors in the Milky Way today. We find that possible surviving Pop III stars are more common in Milky Way satellites than in the main Galaxy. In particular, low-mass Milky Way satellites contain a much larger fraction of Pop III stars than the Milky Way. Such nearby, low-mass Milky Way satellites are promising targets for future attempts to find Pop III survivors, especially for high-resolution, high signal-to-noise spectroscopic observations. We provide the probabilities of finding a Pop III survivor in the red giant branch phase for all known Milky Way satellites to guide future observations.

  17. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    Science.gov (United States)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  18. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  19. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES

    International Nuclear Information System (INIS)

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Rockosi, Constance M.; Simon, Joshua D.; Geha, Marla C.; Sneden, Christopher; Sohn, Sangmo Tony; Majewski, Steven R.; Siegel, Michael

    2010-01-01

    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 stars in eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy (MRS) combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters (GCs). We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing to high-resolution spectroscopic abundances of the same stars. For this purpose, a sample of 132 stars with published high-resolution spectroscopy in GCs, the MW halo field, and dwarf galaxies has been observed with MRS. The standard deviations of the differences in [Fe/H] and ([α/Fe]) (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.

  20. On-board attitude determination for the Explorer Platform satellite

    Science.gov (United States)

    Jayaraman, C.; Class, B.

    1992-01-01

    This paper describes the attitude determination algorithm for the Explorer Platform satellite. The algorithm, which is baselined on the Landsat code, is a six-element linear quadratic state estimation processor, in the form of a Kalman filter augmented by an adaptive filter process. Improvements to the original Landsat algorithm were required to meet mission pointing requirements. These consisted of a more efficient sensor processing algorithm and the addition of an adaptive filter which acts as a check on the Kalman filter during satellite slew maneuvers. A 1750A processor will be flown on board the satellite for the first time as a coprocessor (COP) in addition to the NASA Standard Spacecraft Computer. The attitude determination algorithm, which will be resident in the COP's memory, will make full use of its improved processing capabilities to meet mission requirements. Additional benefits were gained by writing the attitude determination code in Ada.

  1. A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies

    Science.gov (United States)

    Martin, N. F.; Ibata, R. A.; Chapman, S. C.; Irwin, M.; Lewis, G. F.

    2007-09-01

    We present the results of a spectroscopic survey of the recently discovered faint Milky Way satellites Boötes, Ursa Major I, Ursa Major II and Willman 1 (Wil1). Using the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, we have obtained samples that contain from ~15 to ~85 probable members of these satellites for which we derive radial velocities precise to a few kms-1 down to i ~ 21-22. About half of these stars are observed with a high enough signal-to-noise ratio to estimate their metallicity to within +/-0.2 dex. The characteristics of all the observed stars are made available, along with those of the Canes Venatici I dwarf galaxy that have been analysed in a companion paper. From this data set, we show that Ursa Major II is the only object that does not show a clear radial velocity peak. However, the measured systemic radial velocity (vr = 115 +/- 5kms-1) is in good agreement with simulations in which this object is the progenitor of the recently discovered Orphan Stream. The three other satellites show velocity dispersions that make them highly dark matter dominated systems (under the usual assumptions of symmetry and virial equilibrium). In particular, we show that despite its small size and faintness, the Wil1 object is not a globular cluster given its metallicity scatter over -2.0 systemic velocity of -12.3 +/- 2.3kms-1 which implies a mass-to-light ratio of ~700 and a total mass of ~5 × 105Msolar for this satellite, making it the least massive satellite galaxy known to date. Such a low mass could mean that the 107Msolar limit that had until now never been crossed for Milky Way and Andromeda satellite galaxies may only be an observational limit and that fainter, less massive systems exist within the Local Group. However, more modelling and an extended search for potential extratidal stars are required to rule out the possibility that these systems have not been significantly heated by tidal interaction. The data presented herein

  2. DOA estimation for attitude determination on communication satellites

    Directory of Open Access Journals (Sweden)

    Yang Bin

    2014-06-01

    Full Text Available In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR with DOA estimation.

  3. THE COLORS OF CENTRAL AND SATELLITE GALAXIES IN zCOSMOS OUT TO z ≅ 0.8 AND IMPLICATIONS FOR QUENCHING

    International Nuclear Information System (INIS)

    Knobel, C.; Lilly, S. J.; Kovač, K.; Peng, Y.; Bschorr, T. J.; Carollo, C. M.; Caputi, K.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Cucciati, O.; De la Torre, S.; De Ravel, L.

    2013-01-01

    We examine the red fraction of central and satellite galaxies in the large zCOSMOS group catalog out to z ≅ 0.8, correcting for both the incompleteness in stellar mass and for the less than perfect purities of the central and satellite samples. We show that at all masses and at all redshifts, the fraction of satellite galaxies that have been quenched, i.e., that are red, is systematically higher than that of centrals, as seen locally in the Sloan Digital Sky Survey (SDSS). The satellite quenching efficiency, which is the probability that a satellite is quenched because it is a satellite rather than a central, is, as locally, independent of stellar mass. Furthermore, the average value is about 0.5, which is also very similar to that seen in the SDSS. We also construct the mass functions of blue and red centrals and satellites and show that these broadly follow the predictions of the Peng et al. analysis of the SDSS groups. Together, these results indicate that the effect of the group environment in quenching satellite galaxies was very similar to what it is today when the universe was about half its present age.

  4. Determination of atmospheric aerosol properties over land using satellite measurements

    NARCIS (Netherlands)

    Kokhanovsky, A.A.; Leeuw, G. de

    2009-01-01

    Mostly, aerosol properties are poorly understood because the aerosol properties are very sparse. The first workshop on the determination of atmospheric aerosol properties over land using satellite measurements is convened in Bremen, Germany. In this workshop, the topics of discussions included a

  5. Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at z ˜ 1-2

    Science.gov (United States)

    Fossati, M.; Wilman, D. J.; Mendel, J. T.; Saglia, R. P.; Galametz, A.; Beifiori, A.; Bender, R.; Chan, J. C. C.; Fabricius, M.; Bandara, K.; Brammer, G. B.; Davies, R.; Förster Schreiber, N. M.; Genzel, R.; Hartley, W.; Kulkarni, S. K.; Lang, P.; Momcheva, I. G.; Nelson, E. J.; Skelton, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.; Wisnioski, E.; Whitaker, K. E.; Wuyts, E.; Wuyts, S.

    2017-02-01

    We make publicly available a catalog of calibrated environmental measures for galaxies in the five 3D-Hubble Space Telescope (HST)/CANDELS deep fields. Leveraging the spectroscopic and grism redshifts from the 3D-HST survey, multiwavelength photometry from CANDELS, and wider field public data for edge corrections, we derive densities in fixed apertures to characterize the environment of galaxies brighter than {{JH}}140< 24 mag in the redshift range 0.5< z< 3.0. By linking observed galaxies to a mock sample, selected to reproduce the 3D-HST sample selection and redshift accuracy, each 3D-HST galaxy is assigned a probability density function of the host halo mass, and a probability that it is a central or a satellite galaxy. The same procedure is applied to a z = 0 sample selected from Sloan Digital Sky Survey. We compute the fraction of passive central and satellite galaxies as a function of stellar and halo mass, and redshift, and then derive the fraction of galaxies that were quenched by environment specific processes. Using the mock sample, we estimate that the timescale for satellite quenching is {t}{quench}˜ 2{--}5 {Gyr}; it is longer at lower stellar mass or lower redshift, but remarkably independent of halo mass. This indicates that, in the range of environments commonly found within the 3D-HST sample ({M}h≲ {10}14 {M}⊙ ), satellites are quenched by exhaustion of their gas reservoir in the absence of cosmological accretion. We find that the quenching times can be separated into a delay phase, during which satellite galaxies behave similarly to centrals at fixed stellar mass, and a phase where the star formation rate drops rapidly ({τ }f˜ 0.4{--}0.6 Gyr), as shown previously at z = 0. We conclude that this scenario requires satellite galaxies to retain a large reservoir of multi-phase gas upon accretion, even at high redshift, and that this gas sustains star formation for the long quenching times observed.

  6. Multi-GNSS orbit determination using satellite laser ranging

    Science.gov (United States)

    Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław

    2018-04-01

    Galileo, BeiDou, QZSS, and NavIC are emerging global navigation satellite systems (GNSSs) and regional navigation satellite systems all of which are equipped with laser retroreflector arrays for range measurements. This paper summarizes the GNSS-intensive tracking campaigns conducted by the International Laser Ranging Service and provides results from multi-GNSS orbit determination using solely SLR observations. We consider the whole constellation of GLONASS, all active Galileo, four BeiDou satellites: 1 MEO, 3 IGSO, and one QZSS. We analyze the influence of the number of SLR observations on the quality of the 3-day multi-GNSS orbit solution. About 60 SLR observations are needed for obtaining MEO orbits of sufficient quality with the root mean square (RMS) of 3 cm for the radial component when compared to microwave-based orbits. From the analysis of a minimum number of tracking stations, when considering the 3-day arcs, 5 SLR stations do not provide a sufficient geometry of observations. The solution obtained using ten stations is characterized with RMS of 4, 9, and 18 cm in the radial, along-track, and cross-track direction, respectively, for MEO satellites. We also investigate the impact of the length of orbital arc on the quality of SLR-derived orbits. Hence, 5- and 7-day arcs constitute the best solution, whereas 3-day arcs are of inferior quality due to an insufficient number of SLR observations and 9-day arcs deteriorate the along-track component. The median RMS from the comparison between 7-day orbital arcs determined using SLR data with microwave-based orbits assumes values in the range of 3-4, 11-16, and 15-27 cm in radial, along-track, and cross-track, respectively, for MEO satellites. BeiDou IGSO and QZSS are characterized by RMS values higher by a factor of 8 and 24, respectively, than MEO orbits.

  7. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  8. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  9. UKF-based attitude determination method for gyroless satellite

    Institute of Scientific and Technical Information of China (English)

    张红梅; 邓正隆

    2004-01-01

    UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF (extended Kalman filtering). As a result, the linearization error is avoided, and the filtering accuracy is greatly improved. UKF is applied to the attitude determination for gyroless satellite. Simulations are made to compare the new filter with the traditional EKF.The results indicate that under same conditions, compared with EKF, UKF has faster convergence speed, higher filtering accuracy and more stable estimation performance.

  10. Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations

    Science.gov (United States)

    Mantz, A.; Allen, S. W.

    2011-01-01

    Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.

  11. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements

    Science.gov (United States)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao

    2018-01-01

    Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate

  12. Does the galaxy-halo connection vary with environment?

    Science.gov (United States)

    Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.

    2018-05-01

    (Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.

  13. THE NEXT GENERATION VIRGO CLUSTER SURVEY XVI: THE ANGULAR MOMENTUM OF DWARF EARLY-TYPE GALAXIES FROM GLOBULAR CLUSTER SATELLITES

    Energy Technology Data Exchange (ETDEWEB)

    Toloba, Elisa; Guhathakurta, Puragra [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Li, Biao; Peng, Eric W.; Zhang, Hongxin [Department of Astronomy, Peking University, Beijing 100871 (China); Ferrarese, Laura; Côté, Patrick; Gwyn, Stephen [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Emsellem, Eric [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching (Germany); Boselli, Alessandro [Laboratoire d’Astrophysique de Marseille-LAM, Université d’Aix-Marseille and CNRS, UMR 7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Cuillandre, Jean-Charles [CEA/IRFU/SAP, Laboratoire AIM Paris-Saclay, CNRS/INSU, Université Paris Diderot, Observatoire de Paris, PSL Research University, F-91191 Gif-sur-Yvette Cedex (France); Jordan, Andres [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Vicuna Mackenna 4860, 7820436 Macul, Santiago (Chile); Liu, Chengze, E-mail: toloba@ucolick.org [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-05-01

    We analyze the kinematics of six Virgo cluster dwarf early-type galaxies (dEs) from their globular cluster (GC) systems. We present new Keck/DEIMOS spectroscopy for three of them and re-analyze the data found in the literature for the remaining three. We use two independent methods to estimate the rotation amplitude ( V {sub rot}) and velocity dispersion ( σ {sub GC}) of the GC systems and evaluate their statistical significance by simulating non-rotating GC systems with the same number of GC satellites and velocity uncertainties. Our measured kinematics agree with the published values for the three galaxies from the literature and, in all cases, some rotation is measured. However, our simulations show that the null hypothesis of being non-rotating GC systems cannot be ruled out. In the case of VCC 1861, the measured V {sub rot} and the simulations indicate that it is not rotating. In the case of VCC 1528, the null hypothesis can be marginally ruled out, and thus it might be rotating although further confirmation is needed. In our analysis, we find that, in general, the measured V {sub rot} tends to be overestimated and the measured σ {sub GC} tends to be underestimated by amounts that depend on the intrinsic V {sub rot}/ σ {sub GC}, the number of observed GCs ( N {sub GC}), and the velocity uncertainties. The bias is negligible when N {sub GC} ≳ 20. In those cases where a large N {sub GC} is not available, it is imperative to obtain data with small velocity uncertainties. For instance, errors of ≤2 km s{sup −1} lead to V {sub rot} < 10 km s{sup −1} for a system that is intrinsically not rotating.

  14. OXYGEN METALLICITY DETERMINATIONS FROM OPTICAL EMISSION LINES IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Athey, Alex E.; Bregman, Joel N.

    2009-01-01

    We measured the oxygen abundances of the warm (T ∼ 10 4 K) phase of gas in seven early-type galaxies through long-slit observations. A template spectra was constructed from galaxies void of warm gas and subtracted from the emission-line galaxies, allowing for a clean measurement of the nebular lines. The ratios of the emission lines are consistent with photoionization, which likely originates from the ultraviolet flux of postasymototic giant branch stars. We employ H II region photoionization models to determine a mean oxygen metallicity of 1.01 ± 0.50 solar for the warm interstellar medium (ISM) in this sample. This warm ISM 0.5-1.5 solar metallicity is consistent with modern determinations of the metallicity in the hot (T ∼ 10 6 -10 7 K) ISM and the upper range of this warm ISM metallicity is consistent with stellar population metallicity determinations. A solar metallicity of the warm ISM favors an internal origin for the warm ISM such as asymptotic giant branch mass loss within the galaxy.

  15. LACERTA I AND CASSIOPEIA III. TWO LUMINOUS AND DISTANT ANDROMEDA SATELLITE DWARF GALAXIES FOUND IN THE 3π PAN-STARRS1 SURVEY

    International Nuclear Information System (INIS)

    Martin, Nicolas F.; Laevens, Benjamin P. M.; Slater, Colin T.; Bell, Eric F.; Schlafly, Edward F.; Morganson, Eric; Rix, Hans-Walter; Bernard, Edouard J.; Ferguson, Annette M. N.; Finkbeiner, Douglas P.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L.; Wainscoat, Richard J.; Price, Paul A.

    2013-01-01

    We report the discovery of two new dwarf galaxies, Lacerta I/Andromeda XXXI (Lac I/And XXXI) and Cassiopeia III/Andromeda XXXII (Cas III/And XXXII), in stacked Pan-STARRS1 r P1 - and i P1 -band imaging data. Both are luminous systems (M V ∼ –12) located at projected distances of 20.°3 and 10.°5 from M31. Lac I and Cas III are likely satellites of the Andromeda galaxy with heliocentric distances of 756 +44 -28 kpc and 772 +61 -56 kpc, respectively, and corresponding M31-centric distances of 275 ± 7 kpc and 144 +6 -4 kpc. The brightest of recent Local Group member discoveries, these two new dwarf galaxies owe their late discovery to their large sizes (r h = 4.2 +0.4 -0.5 arcmin or 912 +124 -93 pc for Lac I; r h = 6.5 +1.2 -1.0 arcmin or 1456 ± 267 pc for Cas III) and consequently low surface brightness (μ 0 ∼ 26.0 mag arcsec –2 ), as well as to the lack of a systematic survey of regions at large radii from M31, close to the Galactic plane. This latter limitation is now alleviated by the 3π Pan-STARRS1 survey, which could lead to the discovery of other distant Andromeda satellite dwarf galaxies.

  16. Atmospheric density determination using high-accuracy satellite GPS data

    Science.gov (United States)

    Tingling, R.; Miao, J.; Liu, S.

    2017-12-01

    Atmospheric drag is the main error source in the orbit determination and prediction of low Earth orbit (LEO) satellites, however, empirical models which are used to account for atmosphere often exhibit density errors around 15 30%. Atmospheric density determination thus become an important topic for atmospheric researchers. Based on the relation between atmospheric drag force and the decay of orbit semi-major axis, we derived atmospheric density along the trajectory of CHAMP with its Rapid Science Orbit (RSO) data. Three primary parameters are calculated, including the ratio of cross sectional area to mass, drag coefficient, and the decay of semi-major axis caused by atmospheric drag. We also analyzed the source of error and made a comparison between GPS-derived and reference density. Result on 2 Dec 2008 shows that the mean error of GPS-derived density can decrease from 29.21% to 9.20% when time span adopted on the process of computation increase from 10min to 50min. Result for the whole December indicates that when the time span meet the condition that the amplitude of the decay of semi-major axis is much greater than its standard deviation, then density precision of 10% can be achieved.

  17. Reconciling Dwarf Galaxies with ΛCDM Cosmology: Simulating A Realistic Population of Satellites Around a Milky Way-Mass Galaxy

    OpenAIRE

    Wetzel, Andrew R.; Hopkins, Philip F.; Kim, Ji-Hoon; Faucher-Giguère, Claude-André; Kereš, Dušan; Quataert, Eliot

    2016-01-01

    � 2016. The American Astronomical Society. All rights reserved. Low-mass "dwarf" galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on Feedback in Realistic Environments (FI...

  18. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    Science.gov (United States)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  19. Next Generation Virgo Survey Photometry and Keck/DEIMOS Spectroscopy of Globular Cluster Satellites of Dwarf Elliptical Galaxies in the Virgo Cluster

    Science.gov (United States)

    Guhathakurta, Puragra; Toloba, Elisa; Peng, Eric W.; Li, Biao; Gwyn, Stephen; Ferrarese, Laura; Cote, Patrick; Chu, Jason; Sparkman, Lea; Chen, Stephanie; Yagati, Samyukta; Muller, Meredith; Next Generation Virgo Survey Collaboration

    2015-01-01

    We present results from an ongoing study of globular cluster (GC) satellites of low-luminosity dwarf elliptical (dE) galaxies in the Virgo cluster. Our 21 dE targets and candidate GC satellites around them in the apparent magnitude range g ~ 20-24 were selected from the Next Generation Virgo Survey (NGVS) and followed up with medium-resolution Keck/DEIMOS spectroscopy (resolving power: R ~ 2000; wavelength coverage: 4800-9500 Angstrom). In addition, the remaining space available on the nine DEIMOS multi-slit masks were populated with "filler" targets in the form of distant Milky Way halo star candidates in a comparable apparent magnitude range. A combination of radial velocity information (measured from the Keck/DEIMOS spectra), color-color information (from four-band NGVS photometry), and sky position information was used to sort the sample into the following categories: (1) GC satellites of dEs, (2) other non-satellite GCs in the Virgo cluster (we dub them "orphan" GCs), (3) foreground Milky Way stars that are members of the Sagittarius stream, the Virgo overdensity, or the field halo population, and (4) distant background galaxies. We stack the GC satellite population across all 21 host dEs and carry out dynamical modeling of the stacked sample in order to constrain the average mass of dark matter halos that these dEs are embedded in. We study rotation in the system of GC satellites of dEs in the handful of more populated systems in our sample - i.e., those that contain 10 or more GC satellites per dE. A companion AAS poster presented at this meeting (Chu, J. et al. 2015) presents chemical composition and age constraints for these GC satellites relative to the nuclei of the host dEs based on absorption line strengths in co-added spectra. The orphan GCs are likely to be intergalactic GCs within the Virgo cluster (or, equivalently, GCs in the remote outer envelope of the cluster's central galaxy, the giant elliptical M87).This project is funded in part by the

  20. Constraining the Nature of Dark Matter with the Star-formation History of the Faintest Local Group Dwarf Galaxy Satellites

    International Nuclear Information System (INIS)

    Chau, Alice; Mayer, Lucio; Governato, Fabio

    2017-01-01

    Λ warm dark matter (ΛWDM), realized by collisionless particles of 1–3 keV, has been proposed as an alternative scenario to Λ-Cold-Dark Matter (ΛCDM) for the dwarf galaxy scale discrepancies. We present an approach to test the viability of such WDM models using star-formation histories (SFHs) of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high-time-resolution SFHs with the collapse redshift of their dark halos in CDM and WDM. Collapse redshift is inferred after determining the subhalo infall mass. This is based on the dwarf current mass inferred from stellar kinematics, combined with cosmological simulation results on subhalo evolution. WDM subhalos close to the filtering mass scale, forming significantly later than CDM, are the most difficult to reconcile with early truncation of star formation ( z ≥ 3). The ultra-faint dwarfs (UFDs) provide the most stringent constraints. Using six UFDs and eight classical dSphs, we show that a 1 keV particle is strongly disfavored, consistently with other reported methods. Excluding other models is only hinted for a few UFDs. Other UFDs for which the lack of robust constraints on halo mass prevents us from carrying out our analysis rigorously, show a very early onset of star formation that will strengthen the constraints delivered by our method in the future. We discuss the various caveats, notably the low number of dwarfs with accurately determined SFHs and the uncertainties when determining the subhalo infall mass, most notably the baryonic physics. Our preliminary analysis may serve as a pathfinder for future investigations that will combine accurate SFHs for local dwarfs with direct analysis of WDM simulations with baryons.

  1. Constraining the Nature of Dark Matter with the Star-formation History of the Faintest Local Group Dwarf Galaxy Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Alice; Mayer, Lucio [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Governato, Fabio [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States)

    2017-08-10

    Λ warm dark matter (ΛWDM), realized by collisionless particles of 1–3 keV, has been proposed as an alternative scenario to Λ-Cold-Dark Matter (ΛCDM) for the dwarf galaxy scale discrepancies. We present an approach to test the viability of such WDM models using star-formation histories (SFHs) of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high-time-resolution SFHs with the collapse redshift of their dark halos in CDM and WDM. Collapse redshift is inferred after determining the subhalo infall mass. This is based on the dwarf current mass inferred from stellar kinematics, combined with cosmological simulation results on subhalo evolution. WDM subhalos close to the filtering mass scale, forming significantly later than CDM, are the most difficult to reconcile with early truncation of star formation ( z ≥ 3). The ultra-faint dwarfs (UFDs) provide the most stringent constraints. Using six UFDs and eight classical dSphs, we show that a 1 keV particle is strongly disfavored, consistently with other reported methods. Excluding other models is only hinted for a few UFDs. Other UFDs for which the lack of robust constraints on halo mass prevents us from carrying out our analysis rigorously, show a very early onset of star formation that will strengthen the constraints delivered by our method in the future. We discuss the various caveats, notably the low number of dwarfs with accurately determined SFHs and the uncertainties when determining the subhalo infall mass, most notably the baryonic physics. Our preliminary analysis may serve as a pathfinder for future investigations that will combine accurate SFHs for local dwarfs with direct analysis of WDM simulations with baryons.

  2. Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Ibata, R.; Murdin, P.

    2000-11-01

    The Sagittarius DWARF GALAXY is the closest member of the Milky Way's entourage of satellite galaxies. Discovered by chance in 1994, its presence had previously been overlooked because it is largely hidden by the most crowded regions of our own Galaxy with which it is merging....

  3. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers

    Science.gov (United States)

    Ge, Haibo; Li, Bofeng; Ge, Maorong; Shen, Yunzhong; Schuh, Harald

    2017-12-01

    In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.

  4. Determination of radial peculiar velocities of galaxy clusters by means of the submillimeter spectrophotometry

    International Nuclear Information System (INIS)

    Sholomitskij, G.B.

    1984-01-01

    The possibility is considered to obtain from the extraatmospheric submillimeter spectrophotometry of galaxy clusters the ratios vsub(r)/Tsub(e) for clusters intergalactic gas that permits, together with the X-ray measurements of electronic temperature Tsub(e) in the case of hot scattering gas to determine absolute radial peculiar velocities vsub(r) of galaxy clusters relative to the relic radiation. By simulating such peculiar velocities as an example for the system of bandpass filters in the wavelength range 300 μm - 2 mm the accuracy of vsub(r) estimates is proved to be about 300 km/s (not taking into account the errors in Tsub(e)) the sensitivity of deeply cooled submillimeter bolometers being 1x10 -15 W/Hzsup(1/2)

  5. Model-independent X-ray Mass Determinations for Clusters of Galaxies

    Science.gov (United States)

    Nulsen, Paul

    2005-09-01

    We propose to use high quality X-ray data from the Chandra archive to determine the mass distributions of about 60 clusters of galaxies over the largest possible range of radii. By avoiding unwarranted assumptions, model-independent methods make best use of high quality data. We will employ two model-independent methods. That used by Nulsen & Boehringer (1995) to determine the mass of the Virgo Cluster and a new method, that will be developed as part of the project. The new method will fit a general mass model directly to the X-ray spectra, making best possible use of the fitting errors to constrain mass profiles.

  6. New numerical determination of habitability in the Galaxy: the SETI connection

    Science.gov (United States)

    Ramirez, Rodrigo; Gómez-Muñoz, Marco A.; Vázquez, Roberto; Núñez, Patricia G.

    2018-01-01

    In this paper, we determine the habitability of Sun-like stars in the Galaxy using Monte Carlo simulations, which are guided by the factors of the Drake Equation for the considerations on the astrophysical and biological parameters needed to generate and maintain life on a planet's surface. We used a simple star distribution, initial mass function and star formation history to reproduce the properties and distribution of stars within the Galaxy. Using updated exoplanet data from the Kepler mission, we assign planets to some of the stars, and then follow the evolution of life on the planets that met the habitability criteria using two different civilization hypotheses. We predict that around 51% of Earth-like planets in the habitable zone (HZ) are inhabited by primitive life and 4% by technological life. We apply the results to the Kepler field of view, and predicted that there should be at least six Earth-like planets in the HZ, three of them inhabited by primitive life. According to our model, non-technological life is very common if there are the right conditions, but communicative civilizations are less likely to exist and detect. Nonetheless, we predict a considerable number of detectable civilizations within our Galaxy, making it worthwhile to keep searching.

  7. Small satellite attitude determination based on GPS/IMU data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Golovan, Andrey [Navigation and Control Laboratory, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow (Russian Federation); Cepe, Ali [Department of Applied Mechanics and Control, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-12-10

    In this paper, we present the mathematical models and algorithms that describe the problem of attitude determination for a small satellite using measurements from three angular rate sensors (ARS) and aiding measurements from multiple GPS receivers/antennas rigidly attached to the platform of the satellite.

  8. Precise Orbit Determination of GPS Satellites Using Phase Observables

    Directory of Open Access Journals (Sweden)

    Myung-Kook Jee

    1997-12-01

    Full Text Available The accuracy of user position by GPS is heavily dependent upon the accuracy of satellite position which is usually transmitted to GPS users in radio signals. The real-time satellite position information directly obtained from broadcast ephimerides has the accuracy of 3 x 10 meters which is very unsatisfactory to measure 100km baseline to the accuracy of less than a few mili-meters. There are globally at present seven orbit analysis centers capable of generating precise GPS ephimerides and their orbit quality is of the order of about 10cm. Therefore, precise orbit model and phase processing technique were reviewed and consequently precise GPS ephimerides were produced after processing the phase observables of 28 global GPS stations for 1 day. Initial 6 orbit parameters and 2 solar radiation coefficients were estimated using batch least square algorithm and the final results were compared with the orbit of IGS, the International GPS Service for Geodynamics.

  9. Determining the Cost Effectiveness of Nano-Satellites

    Science.gov (United States)

    2014-09-01

    purchased as little as $7,500 ( Pumpkin 2014) for academic focused missions. Traditional satellites often cost hundreds of millions of dollars. For...and was not easily modified. The costs for the six-year scenario were only spread over five years. If the cost model were updated to spread the...files/national_space_policy_6-28-10.pdf. Pumpkin . “ Pumpkin Price List.” Pumpkin . May 23, 2014. http://www.pumpkininc.com/content/doc/forms

  10. Orbits of massive satellite galaxies - II. Bayesian estimates of the Milky Way and Andromeda masses using high-precision astrometry and cosmological simulations

    Science.gov (United States)

    Patel, Ekta; Besla, Gurtina; Mandel, Kaisey

    2017-07-01

    In the era of high-precision astrometry, space observatories like the Hubble Space Telescope (HST) and Gaia are providing unprecedented 6D phase-space information of satellite galaxies. Such measurements can shed light on the structure and assembly history of the Local Group, but improved statistical methods are needed to use them efficiently. Here we illustrate such a method using analogues of the Local Group's two most massive satellite galaxies, the Large Magellanic Cloud (LMC) and Triangulum (M33), from the Illustris dark-matter-only cosmological simulation. We use a Bayesian inference scheme combining measurements of positions, velocities and specific orbital angular momenta (j) of the LMC/M33 with importance sampling of their simulated analogues to compute posterior estimates of the Milky Way (MW) and Andromeda's (M31) halo masses. We conclude that the resulting host halo mass is more susceptible to bias when using measurements of the current position and velocity of satellites, especially when satellites are at short-lived phases of their orbits (I.e. at pericentre). Instead, the j value of a satellite is well conserved over time and provides a more reliable constraint on host mass. The inferred virial mass of the MW (M31) using j of the LMC (M33) is {{M}}_{vir, MW} = 1.02^{+0.77}_{-0.55} × 10^{12} M⊙ ({{M}}_{vir, M31} = 1.37^{+1.39}_{-0.75} × 10^{12} M⊙). Choosing simulated analogues whose j values are consistent with the conventional picture of a previous (<3 Gyr ago), close encounter (<100 kpc) of M33 about M31 results in a very low virial mass for M31 (˜1012 M⊙). This supports the new scenario put forth in Patel, Besla & Sohn, wherein M33 is on its first passage about M31 or on a long-period orbit. We conclude that this Bayesian inference scheme, utilizing satellite j, is a promising method to reduce the current factor of 2 spread in the mass range of the MW and M31. This method is easily adaptable to include additional satellites as new 6D

  11. The dependence of halo mass on galaxy size at fixed stellar mass using weak lensing

    Science.gov (United States)

    Charlton, Paul J. L.; Hudson, Michael J.; Balogh, Michael L.; Khatri, Sumeet

    2017-12-01

    Stellar mass has been shown to correlate with halo mass, with non-negligible scatter. The stellar mass-size and luminosity-size relationships of galaxies also show significant scatter in galaxy size at fixed stellar mass. It is possible that, at fixed stellar mass and galaxy colour, the halo mass is correlated with galaxy size. Galaxy-galaxy lensing allows us to measure the mean masses of dark matter haloes for stacked samples of galaxies. We extend the analysis of the galaxies in the CFHTLenS catalogue by fitting single Sérsic surface brightness profiles to the lens galaxies in order to recover half-light radius values, allowing us to determine halo masses for lenses according to their size. Comparing our halo masses and sizes to baselines for that stellar mass yields a differential measurement of the halo mass-galaxy size relationship at fixed stellar mass, defined as Mh(M_{*}) ∝ r_{eff}^{η }(M_{*}). We find that, on average, our lens galaxies have an η = 0.42 ± 0.12, i.e. larger galaxies live in more massive dark matter haloes. The η is strongest for high-mass luminous red galaxies. Investigation of this relationship in hydrodynamical simulations suggests that, at a fixed M*, satellite galaxies have a larger η and greater scatter in the Mh and reff relationship compared to central galaxies.

  12. A COMPARISON OF METHODS FOR DETERMINING THE MOLECULAR CONTENT OF MODEL GALAXIES

    International Nuclear Information System (INIS)

    Krumholz, Mark R.; Gnedin, Nickolay Y.

    2011-01-01

    Recent observations indicate that star formation occurs only in the molecular phase of a galaxy's interstellar medium. A realistic treatment of star formation in simulations and analytic models of galaxies therefore requires that one determine where the transition from the atomic to molecular gas occurs. In this paper, we compare two methods for making this determination in cosmological simulations where the internal structures of molecular clouds are unresolved: a complex time-dependent chemistry network coupled to a radiative transfer calculation of the dissociating ultraviolet (UV) radiation field and a simple time-independent analytic approximation. We show that these two methods produce excellent agreement at all metallicities ∼>10 -2 of the Milky Way value across a very wide range of UV fields. At lower metallicities the agreement is worse, likely because time-dependent effects become important; however, there are no observational calibrations of molecular gas content at such low metallicities, so it is unclear if either method is accurate. The comparison suggests that, in many but not all applications, the analytic approximation provides a viable and nearly cost-free alternative to full time-dependent chemistry and radiative transfer.

  13. An orbit determination algorithm for small satellites based on the magnitude of the earth magnetic field

    Science.gov (United States)

    Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.

    2018-06-01

    Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.

  14. Orbit Determination from Tracking Data of Artificial Satellite Using the Method of Differential Correction

    OpenAIRE

    Byoung-Sun Lee; Jung-Hyun Jo; Sang-Young Park; Kyu-Hong Choi; Chun-Hwey Kim

    1988-01-01

    The differential correction process determining osculating orbital elements as correct as possible at a given instant of time from tracking data of artificial satellite was accomplished. Preliminary orbital elements were used as an initial value of the differential correction procedure and iterated until the residual of real observation(O) and computed observation(C) was minimized. Tracking satellite was NOAA-9 or TIROS-N series. Two types of tracking data were prediction data precomputed fro...

  15. Multi-Satellite Orbit Determination Using Interferometric Observables with RF Localization Applications

    Science.gov (United States)

    Geeraert, Jeroen L.

    Very long baseline interferometry (VLBI) specifically same-beam interferometry (SBI), and dual-satellite geolocation are two fields of research not previously connected. This is due to the different application of each field, SBI is used for relative interplanetary navigation of two satellites while dual-satellite geolocation is used to locate the source of a radio frequency (RF) signal. In this dissertation however, we leverage both fields to create a novel method for multi-satellite orbit determination (OD) using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The measurements are double differenced between the satellites and the stations, in so doing, many of the common errors are canceled which can significantly improve measurement precision. Provided with this novel OD technique, the observability is first analyzed to determine the benefits and limitations of this method. In all but a few scenarios the measurements successfully reduce the covariance when examining the Cramer-Rao Lower Bound (CRLB). Reduced observability is encountered with geostationary satellites as their motion with respect to the stations is limited, especially when only one baseline is used. However, when using satellite pairs with greater relative motion with respect to the stations, even satellites that are close to, but not exactly in a geostationary orbit can be estimated accurately. We find that in a strong majority of cases the OD technique provides lower uncertainties and solutions far more accurate than using conventional OD observables such as range and range-rate while also not being affected by common errors and biases. We specifically examine GEO-GEO, GEO-MEO, and GEO-LEO dual-satellite estimation cases. The work is further extended by developing a relative navigation scenario where the chief satellite is assumed to have perfect knowledge, or some small amount of uncertainty considered but not estimated, while estimating the deputy

  16. DETERMINING THE LARGE-SCALE ENVIRONMENTAL DEPENDENCE OF GAS-PHASE METALLICITY IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Douglass, Kelly A.; Vogeley, Michael S.

    2017-01-01

    We study how the cosmic environment affects galaxy evolution in the universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [O iii] and [S ii] transitions, provide estimates of a region’s electron temperature and number density. From these two quantities and the emission line fluxes [O ii] λ 3727, [O iii] λ 4363, and [O iii] λλ 4959, 5007, we estimate the abundance of oxygen with the direct T e  method. We estimate the metallicity of 42 blue, star-forming void dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as reprocessed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions.

  17. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  18. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Science.gov (United States)

    Kim, Ghangho; Kim, Chongwon; Kee, Changdon

    2015-01-01

    A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299

  19. Determination for regional differences of agriculture using satellite data

    Science.gov (United States)

    Saito, G.

    2006-12-01

    swath, 2. Large wavelength and many bands, 3. High-revel of geographical location, 4. Stereo pair images, 5. High performance data searching system, 6. High speed data delivery system, 7. Cheap price, 8. Seven years observation and large volume archive. A kind of project "Determination of Local Characteristics at Global Agriculture Using Archive ASTER Data" was started at middle of November 2005. We establish data processing system and get some results. Paddy rice fields analysis was started at first, we analyze 1) the Shonai Plains in Japan, 2) the Yangtze River delta in Middle-East China, 3) Mekong Delta in South Vietnam, 4) North-east Thai Plaines, Thailand, 5) Sacrament Valley, California, USA. The results of this studies are as follows, 1) Using ASTER images, we can easily understand agricultural characteristics of each local area. 2) ASTER data are high accuracy for location, and the accuracy is suitable for global study without the fine topographical maps, 3) By five years observation of ASTER, there is huge numbers of ASTER scenes, but not enough volumes for cloud free data for seasonal analysis. It means that follow-on program of ASTER is necessary, 4) We need not only paddy field, but also all crop fields and all area, 5) The studies are necessary to international corroboration.

  20. 76 FR 591 - Determination of Rates and Terms for Preexisting Subscription and Satellite Digital Audio Radio...

    Science.gov (United States)

    2011-01-05

    ... with the $150 filing fee, must be addressed to: Copyright Royalty Board, P.O. Box 70977, Washington, DC..., parties must pay the filing fee with a check or money order made payable to the ``Copyright Royalty Board... LIBRARY OF CONGRESS Copyright Royalty Board [Docket No. 2011-1 CRB PSS/Satellite II] Determination...

  1. Earth rotation, station coordinates and orbit determination from satellite laser ranging

    Science.gov (United States)

    Murata, Masaaki

    The Project MERIT, a special program of international colaboration to Monitor Earth Rotation and Intercompare the Techniques of observation and analysis, has come to an end with great success. Its major objective was to evaluate the ultimate potential of space techniques such as VLBI and satellite laser ranging, in contrast with the other conventional techniques, in the determination of rotational dynamics of the earth. The National Aerospace Laboratory (NAL) has officially participated in the project as an associate analysis center for satellite laser technique for the period of the MERIT Main Campaign (September 1983-October 1984). In this paper, the NAL analysis center results are presented.

  2. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    Science.gov (United States)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-03-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  3. DETERMINING TYPE Ia SUPERNOVA HOST GALAXY EXTINCTION PROBABILITIES AND A STATISTICAL APPROACH TO ESTIMATING THE ABSORPTION-TO-REDDENING RATIO R{sub V}

    Energy Technology Data Exchange (ETDEWEB)

    Cikota, Aleksandar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching b. München (Germany); Deustua, Susana [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marleau, Francine, E-mail: acikota@eso.org [Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, A-6020 Innsbruck (Austria)

    2016-03-10

    We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B – V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, R{sub V}, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B – V) with R{sub V} = 3.1 and investigate the color excess probabilities E(B – V) with projected radial galaxy center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa–Sap, Sab–Sbp, Sbc–Scp, Scd–Sdm, S0, and irregular galaxy classes as a function of R/R{sub 25}. We find that the largest expected reddening probabilities are in Sab–Sb and Sbc–Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio R{sub V} using color excess probability functions and find values of R{sub V} = 2.71 ± 1.58 for 21 SNe Ia observed in Sab–Sbp galaxies, and R{sub V} = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc–Scp galaxies.

  4. Study of Remote Globular Cluster Satellites of M87

    Science.gov (United States)

    Sahai, Arushi; Shao, Andrew; Toloba, Elisa; Guhathakurta, Puragra; Peng, Eric W.; Zhang, Hao

    2017-01-01

    We present a sample of “orphan” globular clusters (GCs) with previously unknown parent galaxies, which we determine to be remote satellites of M87, a massive elliptical galaxy at the center of the Virgo Cluster of Galaxies. Because GCs were formed in the early universe along with their original parent galaxies, which were cannibalized by massive galaxies such as M87, they share similar age and chemical properties. In this study, we first confirm that M87 is the adoptive parent galaxy of our orphan GCs using photometric and spectroscopic data to analyze spatial and velocity distributions. Next, we increase the signal-to-noise ratio of our samples’ spectra through a process known as coaddition. We utilize spectroscopic absorption lines to determine the age and metallicity of our orphan GCs through comparison to stellar population synthesis models, which we then relate to the GCs’ original parent galaxies using a mass-metallicity relation. Our finding that remote GCs of M87 likely developed in galaxies with ~1010 solar masses implies that M87’s outer halo is formed of relatively massive galaxies, serving as important parameters for developing theories about the formation and evolution of massive galaxies.This research was funded in part by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  5. Attitude Determination with Magnetometers and Accelerometers to Use in Satellite Simulator

    Directory of Open Access Journals (Sweden)

    Helio Koiti Kuga

    2013-01-01

    Full Text Available Attitude control of artificial satellites is dependent on information provided by its attitude determination process. This paper presents the implementation and tests of a fully self-contained algorithm for the attitude determination using magnetometers and accelerometers, for application on a satellite simulator based on frictionless air bearing tables. However, it is known that magnetometers and accelerometers need to be calibrated so as to allow that measurements are used to their ultimate accuracy. A calibration method is implemented which proves to be essential for improving attitude determination accuracy. For the stepwise real-time attitude determination, it was used the well-known QUEST algorithm which yields quick response with reduced computer resources. The algorithms are tested and qualified with actual data collected on the streets under controlled situations. For such street runaways, the experiment employs a solid-state magnetoresistive magnetometer and an IMU navigation block consisting of triads of accelerometers and gyros, with MEMS technology. A GPS receiver is used to record positional information. The collected measurements are processed through the developed algorithms, and comparisons are made for attitude determination using calibrated and noncalibrated data. The results show that the attitude accuracy reaches the requirements for real-time operation for satellite simulator platforms.

  6. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison

    Science.gov (United States)

    Guo, Jing; Xu, Xiaolong; Zhao, Qile; Liu, Jingnan

    2016-02-01

    This contribution summarizes the strategy used by Wuhan University (WHU) to determine precise orbit and clock products for Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS). In particular, the satellite attitude, phase center corrections, solar radiation pressure model developed and used for BDS satellites are addressed. In addition, this contribution analyzes the orbit and clock quality of the quad-constellation products from MGEX Analysis Centers (ACs) for a common time period of 1 year (2014). With IGS final GPS and GLONASS products as the reference, Multi-GNSS products of WHU (indicated by WUM) show the best agreement among these products from all MGEX ACs in both accuracy and stability. 3D Day Boundary Discontinuities (DBDs) range from 8 to 27 cm for Galileo-IOV satellites among all ACs' products, whereas WUM ones are the largest (about 26.2 cm). Among three types of BDS satellites, MEOs show the smallest DBDs from 10 to 27 cm, whereas the DBDs for all ACs products are at decimeter to meter level for GEOs and one to three decimeter for IGSOs, respectively. As to the satellite laser ranging (SLR) validation for Galileo-IOV satellites, the accuracy evaluated by SLR residuals is at the one decimeter level with the well-known systematic bias of about -5 cm for all ACs. For BDS satellites, the accuracy could reach decimeter level, one decimeter level, and centimeter level for GEOs, IGSOs, and MEOs, respectively. However, there is a noticeable bias in GEO SLR residuals. In addition, systematic errors dependent on orbit angle related to mismodeled solar radiation pressure (SRP) are present for BDS GEOs and IGSOs. The results of Multi-GNSS combined kinematic PPP demonstrate that the best accuracy of position and fastest convergence speed have been achieved using WUM products, particularly in the Up direction. Furthermore, the accuracy of static BDS only PPP degrades when the BDS IGSO and MEO satellites switches to orbit-normal orientation

  7. Design and Simulation of a Nano-Satellite Attitude Determination System

    Science.gov (United States)

    2009-12-01

    4 D. SURVEY OF CUBESAT ATTITUDE DETERMINATION SYSTEMS... 6 1. Pumpkin IMI ADCS...imagery satellites are going through the same trend in resolution. They have improved in the past decade, from relatively low resolution at about 5m to...this is the nearly complete lack of a pre-packaged ADS. Until August of 2009, there was only one ADS available on the market. It was the Pumpkin

  8. Satellite single-axis attitude determination based on Automatic Dependent Surveillance - Broadcast signals

    Science.gov (United States)

    Zhou, Kaixing; Sun, Xiucong; Huang, Hai; Wang, Xinsheng; Ren, Guangwei

    2017-10-01

    The space-based Automatic Dependent Surveillance - Broadcast (ADS-B) is a new technology for air traffic management. The satellite equipped with spaceborne ADS-B system receives the broadcast signals from aircraft and transfers the message to ground stations, so as to extend the coverage area of terrestrial-based ADS-B. In this work, a novel satellite single-axis attitude determination solution based on the ADS-B receiving system is proposed. This solution utilizes the signal-to-noise ratio (SNR) measurement of the broadcast signals from aircraft to determine the boresight orientation of the ADS-B receiving antenna fixed on the satellite. The basic principle of this solution is described. The feasibility study of this new attitude determination solution is implemented, including the link budget and the access analysis. On this basis, the nonlinear least squares estimation based on the Levenberg-Marquardt method is applied to estimate the single-axis orientation. A full digital simulation has been carried out to verify the effectiveness and performance of this solution. Finally, the corresponding results are processed and presented minutely.

  9. Improving the Determination of Eastern Elongations of Planetary Satellites in the Astronomical Almanac

    Science.gov (United States)

    Rura, Christopher; Stollberg, Mark

    2018-01-01

    The Astronomical Almanac is an annual publication of the US Naval Observatory (USNO) and contains a wide variety of astronomical data used by astronomers worldwide as a general reference or for planning observations. Included in this almanac are the times of greatest eastern and northern elongations of the natural satellites of the planets, accurate to 0.1 hour UT. The production code currently used to determine elongation times generates X and Y coordinates for each satellite (16 total) in 5 second intervals. This consequentially caused very large data files, and resulted in the program devoted to determining the elongation times to be computationally intensive. To make this program more efficient, we wrote a Python program to fit a cubic spline to data generated with a 6-minute time step. This resulted in elongation times that were found to agree with those determined from the 5 second data currently used in a large number of cases and was tested for 16 satellites between 2017 and 2019. The accuracy of this program is being tested for the years past 2019 and, if no problems are found, the code will be considered for production of this section of The Astronomical Almanac.

  10. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  11. Peering Into an Early Galaxy

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    Thirteen billion years ago, early galaxies ionized the gas around them, producing some of the first light that brought our universe out of its dark ages. Now the Atacama Large Millimeter/submillimeter Array (ALMA) has provided one of the first detailed looks into the interior of one of these early, distant galaxies.Sources of LightArtists illustration of the reionization of the universe (time progresses left to right), in which ionized bubbles that form around the first sources of light eventually overlap to form the fully ionized universe we observe today. [Avi Loeb/Scientific American]For the first roughly hundred million years of its existence, our universe expanded in relative darkness there were no sources of light at that time besides the cosmic microwave background. But as mass started to condense to form the first objects, these objects eventually shone as the earliest luminous sources, contributing to the reionization of the universe.To learn about the early production of light in the universe, our best bet is to study in detail the earliest luminous sources stars, galaxies, or quasars that we can hunt down. One ideal target is the galaxy COSMOS Redshift 7, known as CR7 for short.Targeting CR7CR7 is one of the oldest, most distant galaxies known, lying at a redshift of z 6.6. Its discovery in 2015 and subsequent observations of bright, ultraviolet-emitting clumps within it have led to broad speculation about the source of its emission. Does this galaxy host an active nucleus? Or could it perhaps contain the long-theorized first generation of stars, metal-free Population III stars?To determine the nature of CR7 and the other early galaxies that contributed to reionization, we need to explore their gas and dust in detail a daunting task for such distant sources! Conveniently, this is a challenge that is now made possible by ALMAs incredible capabilities. In a new publication led by Jorryt Matthee (Leiden University, the Netherlands), a team of scientists now

  12. Determination of the Impact of Urbanization on Agricultural Lands using Multi-temporal Satellite Sensor Images

    Science.gov (United States)

    Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2015-12-01

    Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.

  13. First Attempt of Orbit Determination of SLR Satellites and Space Debris Using Genetic Algorithms

    Science.gov (United States)

    Deleflie, F.; Coulot, D.; Descosta, R.; Fernier, A.; Richard, P.

    2013-08-01

    We present an orbit determination method based on genetic algorithms. Contrary to usual estimation methods mainly based on least-squares methods, these algorithms do not require any a priori knowledge of the initial state vector to be estimated. These algorithms can be applied when a new satellite is launched or for uncatalogued objects that appear in images obtained from robotic telescopes such as the TAROT ones. We show in this paper preliminary results obtained from an SLR satellite, for which tracking data acquired by the ILRS network enable to build accurate orbital arcs at a few centimeter level, which can be used as a reference orbit ; in this case, the basic observations are made up of time series of ranges, obtained from various tracking stations. We show as well the results obtained from the observations acquired by the two TAROT telescopes on the Telecom-2D satellite operated by CNES ; in that case, the observations are made up of time series of azimuths and elevations, seen from the two TAROT telescopes. The method is carried out in several steps: (i) an analytical propagation of the equations of motion, (ii) an estimation kernel based on genetic algorithms, which follows the usual steps of such approaches: initialization and evolution of a selected population, so as to determine the best parameters. Each parameter to be estimated, namely each initial keplerian element, has to be searched among an interval that is preliminary chosen. The algorithm is supposed to converge towards an optimum over a reasonable computational time.

  14. Semi-active Attitude Control and Off-line Attitude Determination for the SEETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  15. Semi-active Attitude Control and Off-line Attitude Determination for the SSETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    2005-01-01

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  16. Altitude Distribution of the Auroral Acceleration Potential Determined from Cluster Satellite Data at Different Heights

    International Nuclear Information System (INIS)

    Marklund, Goeran T.; Sadeghi, Soheil; Karlsson, Tomas; Lindqvist, Per-Arne; Nilsson, Hans; Forsyth, Colin; Fazakerley, Andrew; Lucek, Elizabeth A.; Pickett, Jolene

    2011-01-01

    Aurora, commonly seen in the polar sky, is a ubiquitous phenomenon occurring on Earth and other solar system planets. The colorful emissions are caused by electron beams hitting the upper atmosphere, after being accelerated by quasistatic electric fields at 1-2 R E altitudes, or by wave electric fields. Although aurora was studied by many past satellite missions, Cluster is the first to explore the auroral acceleration region with multiprobes. Here, Cluster data are used to determine the acceleration potential above the aurora and to address its stability in space and time. The derived potential comprises two upper, broad U-shaped potentials and a narrower S-shaped potential below, and is stable on a 5 min time scale. The scale size of the electric field relative to that of the current is shown to depend strongly on altitude within the acceleration region. To reveal these features was possible only by combining data from the two satellites.

  17. H I, galaxy counts, and reddening: Variation in the gas-to-dust ratio, the extinction at high galactic latitudes, and a new method for determining galactic reddening

    International Nuclear Information System (INIS)

    Burstein, D.; Heiles, C.

    1978-01-01

    We reanalyze the interrelationships among Shane-Wirtanen galaxy counts, H I column densities, and reddenings, and resolve many of the problems raised by Heiles. These problems were caused by two factors: subtle biases in the reddening data and a variable gas-to-dust ratio in the galaxy. We present a compilation of reddenings for RR Lyrae stars and globular clusters which are on the same system and which we believe to be relatively free of biases. The extinction at the galactic poles, as determined by galaxy counts, is reexamined by using a new method to analyze galaxy counts. This new method partially accounts for the nonrandom clustering of galaxies and permits a reasonable estimate of the error in log N/sub gal/ as a function of latitude. The analysis shows that the galaxy counts (or galaxy cluster counts) are too noisy to allow direct determination of the extinction, or variation in extinction, near the galactic poles. From all available data, we conclude that the reddening at the poles is small [< or =0.02 mag in E (B--V) over much of the north galactic pole] and irregularly distributed. We find that there are zero offsets in the relations between E (B--V) and H I, and between galaxy counts and H I, which are at least partly the result of an instrumental effect in the radio data. We also show that the gas-to-dust ratio can vary by a factor of 2 from the average, and we present two methods for correcting for this variability in predicting the reddening of objects which are located outside of the galactic absorbing layer. We present a prescription for predicting these reddenings; in the area of sky covered by the Shane-Wirtanen galaxy counts, the error in these predictions is, on average, less than 0.03 mag in E

  18. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  19. Determination of Pole and Rotation Period of not Stabilized Artificial Satellite by Use of Model "diffuse Cylinder"

    Science.gov (United States)

    Kolesnik, S. Ya.; Dobrovolsky, A. V.; Paltsev, N. G.

    The algorithm of determination of orientation of rotation axis (pole) and rotation period of satellite, simulated by a cylinder, which is precessing around of vector of angular moment of pulse with constant nutation angle is offered. The Lambert's law of light reflection is accepted. Simultaneously, dependence of light reflection coefficient versus phase angle is determined. The model's simulation confirm applicability of this method. Results of the calculations for artificial satellite No 28506 are carried out.

  20. EMERGE - an empirical model for the formation of galaxies since z ˜ 10

    Science.gov (United States)

    Moster, Benjamin P.; Naab, Thorsten; White, Simon D. M.

    2018-06-01

    We present EMERGE, an Empirical ModEl for the foRmation of GalaxiEs, describing the evolution of individual galaxies in large volumes from z ˜ 10 to the present day. We assign a star formation rate to each dark matter halo based on its growth rate, which specifies how much baryonic material becomes available, and the instantaneous baryon conversion efficiency, which determines how efficiently this material is converted to stars, thereby capturing the baryonic physics. Satellites are quenched following the delayed-then-rapid model, and they are tidally disrupted once their subhalo has lost a significant fraction of its mass. The model is constrained with observed data extending out to high redshift. The empirical relations are very flexible, and the model complexity is increased only if required by the data, assessed by several model selection statistics. We find that for the same final halo mass galaxies can have very different star formation histories. Galaxies that are quenched at z = 0 typically have a higher peak star formation rate compared to their star-forming counterparts. EMERGE predicts stellar-to-halo mass ratios for individual galaxies and introduces scatter self-consistently. We find that at fixed halo mass, passive galaxies have a higher stellar mass on average. The intracluster mass in massive haloes can be up to eight times larger than the mass of the central galaxy. Clustering for star-forming and quenched galaxies is in good agreement with observational constraints, indicating a realistic assignment of galaxies to haloes.

  1. ALIGNMENTS OF GROUP GALAXIES WITH NEIGHBORING GROUPS

    International Nuclear Information System (INIS)

    Wang Yougang; Chen Xuelei; Park, Changbom; Yang Xiaohu; Choi, Yun-Young

    2009-01-01

    Using a sample of galaxy groups found in the Sloan Digital Sky Survey Data Release 4, we measure the following four types of alignment signals: (1) the alignment between the distributions of the satellites of each group relative to the direction of the nearest neighbor group (NNG); (2) the alignment between the major axis direction of the central galaxy of the host group (HG) and the direction of the NNG; (3) the alignment between the major axes of the central galaxies of the HG and the NNG; and (4) the alignment between the major axes of the satellites of the HG and the direction of the NNG. We find strong signal of alignment between the satellite distribution and the orientation of central galaxy relative to the direction of the NNG, even when the NNG is located beyond 3r vir of the host group. The major axis of the central galaxy of the HG is aligned with the direction of the NNG. The alignment signals are more prominent for groups that are more massive and with early-type central galaxies. We also find that there is a preference for the two major axes of the central galaxies of the HG and NNG to be parallel for the system with both early central galaxies, however, not for the systems with both late-type central galaxies. For the orientation of satellite galaxies, we do not find any significant alignment signals relative to the direction of the NNG. From these four types of alignment measurements, we conclude that the large-scale environment traced by the nearby group affects primarily the shape of the host dark matter halo, and hence also affects the distribution of satellite galaxies and the orientation of central galaxies. In addition, the NNG directly affects the distribution of the satellite galaxies by inducing asymmetric alignment signals, and the NNG at very small separation may also contribute a second-order impact on the orientation of the central galaxy in the HG.

  2. A semi-physical simulation platform of attitude determination and control system for satellite

    Directory of Open Access Journals (Sweden)

    Yuanjin Yu

    2016-05-01

    Full Text Available A semi-physical simulation platform for attitude determination and control system is proposed to verify the attitude estimator and controller on ground. A simulation target, a host PC, many attitude sensors, and actuators compose the simulation platform. The simulation target is composed of a central processing unit board with VxWorks operating system and many input/output boards connected via Compact Peripheral Component Interconnect bus. The executable programs in target are automatically generated from the simulation models in Simulink based on Real-Time Workshop of MATLAB. A three-axes gyroscope, a three-axes magnetometer, a sun sensor, a star tracer, three flywheels, and a Global Positioning System receiver are connected to the simulation target, which formulates the attitude control cycle of a satellite. The simulation models of the attitude determination and control system are described in detail. Finally, the semi-physical simulation platform is used to demonstrate the availability and rationality of the control scheme of a micro-satellite. Comparing the results between the numerical simulation in Simulink and the semi-physical simulation, the semi-physical simulation platform is available and the control scheme successfully achieves three-axes stabilization.

  3. Orbit Determination from Tracking Data of Artificial Satellite Using the Method of Differential Correction

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1988-06-01

    Full Text Available The differential correction process determining osculating orbital elements as correct as possible at a given instant of time from tracking data of artificial satellite was accomplished. Preliminary orbital elements were used as an initial value of the differential correction procedure and iterated until the residual of real observation(O and computed observation(C was minimized. Tracking satellite was NOAA-9 or TIROS-N series. Two types of tracking data were prediction data precomputed from mean orbital elements of TBUS and real data obtained from tracking 1.707GHz HRPT signal of NOAA-9 using 5 meter auto-track antenna in Radio Research Laboratory. According to tracking data either Gauss method or Herrick-Gibbs method was applied to preliminary orbit determination. In the differential correction stage we used both of the Escobal(1975's analytical method and numerical ones are nearly consistent. And the differentially corrected orbit converged to the same value in spite of the differences between preliminary orbits of each time span.

  4. Dynamic and reduced-dynamic precise orbit determination of satellites in low earth orbits

    International Nuclear Information System (INIS)

    Swatschina, P.

    2009-01-01

    The precise positioning of satellites in Low Earth Orbits (LEO) has become a key technology for advanced space missions. Dedicated satellite missions, such as CHAMP, GRACE and GOCE, that aim to map the Earths gravity field and its variation over time with unprecedented accuracy, initiated the demand for highly precise orbit solutions of LEO satellites. Furthermore, a wide range of additional science opportunities opens up with the capability to generate accurate LEO orbits. For all considered satellite missions, the primary measurement system for navigation is a spaceborne GPS receiver. The goal of this thesis is to establish and implement methods for Precise Orbit Determination (POD) of LEO satellites using GPS. Striving for highest precision using yet efficient orbit generation strategies, the attained orbit solutions are aimed to be competitive with the most advanced solutions of other institutions. Dynamic and reduced-dynamic orbit models provide the basic concepts of this work. These orbit models are subsequently adjusted to the highly accurate GPS measurements. The GPS measurements are introduced at the zero difference level in the ionosphere free linear combination. Appropriate procedures for GPS data screening and editing are established to detect erroneous data and to employ measurements of good quality only. For the dynamic orbit model a sophisticated force model, especially designed for LEO satellites, has been developed. In order to overcome the limitations that are induced by the deficiencies of the purely dynamical model, two different types of empirical parameters are introduced into the force model. These reduced-dynamic orbit models allow for the generation of much longer orbital arcs while preserving the spacecraft dynamics to the most possible extent. The two methods for reduced-dynamic orbit modeling are instantaneous velocity changes (pulses) or piecewise constant accelerations. For both techniques highly efficient modeling algorithms are

  5. Possibility of determination of the Galaxy age by the method of uranium - thorium isotopic relations

    International Nuclear Information System (INIS)

    Lyutostanskij, Yu.S.; Malevannyj, S.V.; Panov, I.V.; Chechetkin, V.M.

    1988-01-01

    Calculations concerning the formation of heavy elements in an astrophysical fast nuclear process characteristics of the Supernova explosions are carried out in the kinetic model of nucleosynthesis. The age of the Galaxy T G has been calculated making use of the method of uranium-thorium isotopic relations supplemented with the data on 244 Pu abundance in meteorites. T G is shown to be strongly dependent upon the calculation method applied to production of nuclei in r process, upon the data on neutron-rich nuclei and as well upon the external conditions, i.e. the density and temperature in the explosing star. The possibility of nucleosynthesis takes place due to close Supernova explosion, which enriched the chemical content of earth matter with heavy elements is analyzed. The range of allowed values of parameters of the theory of nucleosynthesis is studied

  6. PROBLEMS AND LIMITATIONS OF SATELLITE IMAGE ORIENTATION FOR DETERMINATION OF HEIGHT MODELS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2017-05-01

    Full Text Available The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC. The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3, WorldView-2 (WV2, Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs. The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the

  7. Problems and Limitations of Satellite Image Orientation for Determination of Height Models

    Science.gov (United States)

    Jacobsen, K.

    2017-05-01

    The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC). The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py) for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3), WorldView-2 (WV2), Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs). The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the object height

  8. Error analysis of satellite attitude determination using a vision-based approach

    Science.gov (United States)

    Carozza, Ludovico; Bevilacqua, Alessandro

    2013-09-01

    Improvements in communication and processing technologies have opened the doors to exploit on-board cameras to compute objects' spatial attitude using only the visual information from sequences of remote sensed images. The strategies and the algorithmic approach used to extract such information affect the estimation accuracy of the three-axis orientation of the object. This work presents a method for analyzing the most relevant error sources, including numerical ones, possible drift effects and their influence on the overall accuracy, referring to vision-based approaches. The method in particular focuses on the analysis of the image registration algorithm, carried out through on-purpose simulations. The overall accuracy has been assessed on a challenging case study, for which accuracy represents the fundamental requirement. In particular, attitude determination has been analyzed for small satellites, by comparing theoretical findings to metric results from simulations on realistic ground-truth data. Significant laboratory experiments, using a numerical control unit, have further confirmed the outcome. We believe that our analysis approach, as well as our findings in terms of error characterization, can be useful at proof-of-concept design and planning levels, since they emphasize the main sources of error for visual based approaches employed for satellite attitude estimation. Nevertheless, the approach we present is also of general interest for all the affine applicative domains which require an accurate estimation of three-dimensional orientation parameters (i.e., robotics, airborne stabilization).

  9. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    Science.gov (United States)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  10. On-orbit real-time magnetometer bias determination for micro-satellites without attitude information

    Directory of Open Access Journals (Sweden)

    Zhang Zhen

    2015-10-01

    Full Text Available Due to the disadvantages such as complex calculation, low accuracy of estimation, and being non real time in present methods, a new real-time algorithm is developed for on-orbit magnetometer bias determination of micro-satellites without attitude knowledge in this paper. This method uses the differential value approach. It avoids the impact of quartic nature and uses the iterative method to satisfy real-time applications. Simulation results indicate that the new real-time algorithm is more accurate compared with other methods, which are also tested by an experiment system using real noise data. With the new real-time algorithm, a magnetometer calibration can be taken on-orbit and will reduce the demand for computing power effectively.

  11. Determination Gradients of the Earth's Magnetic Field from the Measurements of the Satellites and Inversion of the Kursk Magnetic Anomaly

    Science.gov (United States)

    Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann

    2014-01-01

    We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.

  12. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  13. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret

    1990-01-01

    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  14. CONNECTIONS BETWEEN GALAXY MERGERS AND STARBURST: EVIDENCE FROM THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Luo, Wentao; Yang, Xiaohu; Zhang, Youcai

    2014-01-01

    Major mergers and interactions between gas-rich galaxies with comparable masses are thought to be the main triggers of starburst. In this work, we study, for a large stellar mass range, the interaction rate of the starburst galaxies in the local universe. We focus independently on central and satellite star forming galaxies extracted from the Sloan Digital Sky Survey. Here the starburst galaxies are selected in the star formation rate (SFR) stellar mass plane with SFRs five times larger than the median value found for ''star forming'' galaxies of the same stellar mass. Through visual inspection of their images together with close companions determined using spectroscopic redshifts, we find that ∼50% of the ''starburst'' populations show evident merger features, i.e., tidal tails, bridges between galaxies, double cores, and close companions. In contrast, in the control sample we selected from the normal star forming galaxies, only ∼19% of galaxies are associated with evident mergers. The interaction rates may increase by ∼5% for the starburst sample and 2% for the control sample if close companions determined using photometric redshifts are considered. The contrast of the merger rate between the two samples strengthens the hypothesis that mergers and interactions are indeed the main causes of starburst

  15. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  16. Determining the orientation and spin period of TOPEX/Poseidon satellite by a photometric method

    Science.gov (United States)

    Kudak, V. I.; Epishev, V. P.; Perig, V. M.; Neybauer, I. F.

    2017-07-01

    We present the results of photometric observations of the TOPEX/Poseidon satellite performed during 2008-2016. The satellite become space debris after a failure in January, 2006, in a low Earth orbit. In the Laboratory of Space Research of Uzhhorod National University 73 light curves of the spacecraft were obtained. Standardization of photometric light curves is briefly explained. We have calculated the color indices of reflecting surfaces and the spin rate change. The general tendency of the latter is described by an exponential decay function. The satellite spin periods based on 126 light curves (including 53 light curves from the MMT-9 project operating since 2014) were taken into account. In 2016 the period of its own rotation reached its minimum of 10.6 s. A method to derive the direction of the spin axis of an artificial satellite and the angles of the light scattered by its surface has been developed in the Laboratory of Space Research of Uzhhorod National University. We briefly describe the "Orientation" program used for these purposes. The orientation of the TOPEX/Poseidon satellite in mid-2016 is given. The angle of precession β = 45°-50° and period of precession P pr = 141.5 s have been defined. The reasons for the identified nature of the satellite's own rotation have been found. They amount to the perturbation caused by a deviation of the Earth gravity field from a central-symmetric shape and the presence of moving parts on the satellite.

  17. Global determination of rating curves in the Amazon basin from satellite altimetry

    Science.gov (United States)

    Paris, Adrien; Paiva, Rodrigo C. D.; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stéphane; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frédérique

    2014-05-01

    The Amazonian basin is the largest hydrological basin all over the world. Over the past few years, it has experienced an unusual succession of extreme droughts and floods, which origin is still a matter of debate. One of the major issues in understanding such events is to get discharge series distributed over the entire basin. Satellite altimetry can be used to improve our knowledge of the hydrological stream flow conditions in the basin, through rating curves. Rating curves are mathematical relationships between stage and discharge at a given place. The common way to determine the parameters of the relationship is to compute the non-linear regression between the discharge and stage series. In this study, the discharge data was obtained by simulation through the entire basin using the MGB-IPH model with TRMM Merge input rainfall data and assimilation of gage data, run from 1998 to 2009. The stage dataset is made of ~900 altimetry series at ENVISAT and Jason-2 virtual stations, sampling the stages over more than a hundred of rivers in the basin. Altimetry series span between 2002 and 2011. In the present work we present the benefits of using stochastic methods instead of probabilistic ones to determine a dataset of rating curve parameters which are hydrologicaly meaningful throughout the entire Amazon basin. The rating curve parameters have been computed using an optimization technique based on Markov Chain Monte Carlo sampler and Bayesian inference scheme. This technique provides an estimate of the best value for the parameters together with their posterior probability distribution, allowing the determination of a credibility interval for calculated discharge. Also the error over discharges estimates from the MGB-IPH model is included in the rating curve determination. These MGB-IPH errors come from either errors in the discharge derived from the gage readings or errors in the satellite rainfall estimates. The present experiment shows that the stochastic approach

  18. Determination of Potential Fishing Grounds of Rastrelliger kanagurta Using Satellite Remote Sensing and GIS Technique

    International Nuclear Information System (INIS)

    Suhartono Nurdin; Muzzneena Ahmad Mustapha; Tukimat Lihan; Mazlan Abdul Ghaffar; Muzzneena Ahmad Mustapha; Nurdin, S.

    2015-01-01

    Analysis of relationship between sea surface temperature (SST) and Chlorophyll-a (chl-a) improves our understanding on the variability and productivity of the marine environment, which is important for exploring fishery resources. Monthly level 3 and daily level 1 images of Moderate Resolution Imaging Spectroradiometer Satellite (MODIS) derived SST and chl-a from July 2002 to June 2011 around the archipelagic waters of Spermonde Indonesia were used to investigate the relationship between SST and chl-a and to forecast the potential fishing ground of Rastrelliger kanagurta. The results indicated that there was positive correlation between SST and chl-a (R=0.3, p<0.05). Positive correlation was also found between SST and chl-a with the catch of R. kanagurta (R=0.7, p<0.05). The potential fishing grounds of R. kanagurta were found located along the coast (at accuracy of 76.9 %). This study indicated that, with the integration of remote sensing technology, statistical modeling and geographic information systems (GIS) technique were able to determine the relationship between SST and chl-a and also able to forecast aggregation of R. kanagurta. This may contribute in decision making and reducing search hunting time and cost in fishing activities. (author)

  19. Migration and wintering sites of Pelagic Cormorants determined by satellite telemetry

    Science.gov (United States)

    Hatch, Shyla A.; Gill, V.A.; Mulcahy, D.M.

    2011-01-01

    Factors affecting winter survival may be key determinants of status and population trends of seabirds, but connections between breeding sites and wintering areas of most populations are poorly known. Pelagic Cormorants (Phalacrocorax pelagicus; N= 6) surgically implanted with satellite transmitters migrated from a breeding colony on Middleton Island, northern Gulf of Alaska, to wintering sites in southeast Alaska and northern British Columbia. Winter locations averaged 920 km (range = 600-1190 km) from the breeding site. Migration flights in fall and spring lasted ???5 d in four instances. After reaching wintering areas, cormorants settled in narrowly circumscribed inshore locations (~10-km radius) and remained there throughout the nonbreeding period (September- March). Two juveniles tagged at the breeding colony as fledglings remained at their wintering sites for the duration of the tracking interval (14 and 22 mo, respectively). Most cormorants used multiple sites within their winter ranges for roosting and foraging. Band recoveries show that Pelagic Cormorants in southern British Columbia and Washington disperse locally in winter, rather than migrating like the cormorants in our study. Radio-tagging and monitoring cormorants and other seabirds from known breeding sites are vital for understanding migratory connectivity and improving conservation strategies for local populations. ?? 2011 The Authors. Journal of Field Ornithology ?? 2011 Association of Field Ornithologists.

  20. Study to forecast and determine characteristics of world satellite communications market

    Science.gov (United States)

    Filep, R. T.; Schnapf, A.; Fordyce, S. W.

    1983-01-01

    The world commercial communications satellite market during the spring and summer of 1983 was examined and characteristics and forecasts of the market extending to the year 2000 were developed. Past, present and planned satellites were documented in relation to frequencies, procurement and launch dates, costs, transponders, and prime contractor. Characteristics of the market are outlined for the periods 1965 - 1985, 1986 - 1989, and 1990 - 2000. Market share forecasts, discussions of potential competitors in various world markets, and profiles of major communication satellite manufacturing and user countries are documented.

  1. Determining the Pixel-to-Pixel Uncertainty in Satellite-Derived SST Fields

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2017-08-01

    Full Text Available The primary measure of the quality of sea surface temperature (SST fields obtained from satellite-borne infrared sensors has been the bias and variance of matchups with co-located in-situ values. Because such matchups tend to be widely separated, these bias and variance estimates are not necessarily a good measure of small scale (several pixels gradients in these fields because one of the primary contributors to the uncertainty in satellite retrievals is atmospheric contamination, which tends to have large spatial scales compared with the pixel separation of infrared sensors. Hence, there is not a good measure to use in selecting SST fields appropriate for the study of submesoscale processes and, in particular, of processes associated with near-surface fronts, both of which have recently seen a rapid increase in interest. In this study, two methods are examined to address this problem, one based on spectra of the SST data and the other on their variograms. To evaluate the methods, instrument noise was estimated in Level-2 Visible-Infrared Imager-Radiometer Suite (VIIRS and Advanced Very High Resolution Radiometer (AVHRR SST fields of the Sargasso Sea. The two methods provided very nearly identical results for AVHRR: along-scan values of approximately 0.18 K for both day and night and along-track values of 0.21 K for day and night. By contrast, the instrument noise estimated for VIIRS varied by method, scan geometry and day-night. Specifically, daytime, along-scan (along-track, spectral estimates were found to be approximately 0.05 K (0.08 K and the corresponding nighttime values of 0.02 K (0.03 K. Daytime estimates based on the variogram were found to be 0.08 K (0.10 K with the corresponding nighttime values of 0.04 K (0.06 K. Taken together, AVHRR instrument noise is significantly larger than VIIRS instrument noise, along-track noise is larger than along-scan noise and daytime levels are higher than nighttime levels. Given the similarity of

  2. Precise orbit determination for BDS3 experimental satellites using iGMAS and MGEX tracking networks

    Science.gov (United States)

    Li, Xingxing; Yuan, Yongqiang; Zhu, Yiting; Huang, Jiande; Wu, Jiaqi; Xiong, Yun; Zhang, Xiaohong; Li, Xin

    2018-04-01

    In this contribution, we focus on the precise orbit determination (POD) for BDS3 experimental satellites with the international GNSS Monitoring and Assessment System (iGMAS) and Multi-GNSS Experiment (MGEX) tracking networks. The datasets of DOY (day of year) 001-230 in 2017 are analyzed with different processing strategies. By comparing receiver clock biases and receiver B1I-B3I DCBs, it is confirmed that there is no obvious systematic bias between experimental BDS3 and BDS2 in the common B1I and B3I signals, which indicates that experimental BDS3 and BDS2 can be treated as one system when performing combined POD. With iGMAS-only BDS3 stations, the 24-h overlap RMS of BDS3 + BDS2 + GPS combined POD is 24.3, 16.1 and 8.4 cm in along-track, cross-track and radial components, which is better than BDS3-only POD by 80-90% and better than BDS3+BDS2 combined POD by about 10%. With more stations (totally 20 stations from both iGMAS and MGEX) and the proper ambiguity resolution strategy (GEO ambiguities are float and BDS3 ambiguities are fixed), the performance of BDS3 POD can be further improved to 14.6, 7.9 and 3.7 cm, respectively, in along-track, cross-track and radial components, which is comparable to the performance of BDS2 POD. The 230-day SLR validations of C32, C33 and C34 show that the mean differences of - 3.48 , 7.81 and 8.19 cm can be achieved, while the STD is 13.35, 13.46 and 13.11 cm, respectively. Furthermore, the 230-day overlap comparisons reveal that C31 most likely still uses an orbit-normal mode and exhibits similar orbit modeling problems in orbit-normal periods as found in most of the BDS2 satellites.

  3. The determinations of remote sensing satellite data delivery service quality: A positivistic case study in Chinese context

    Science.gov (United States)

    Jin, Jiahua; Yan, Xiangbin; Tan, Qiaoqiao; Li, Yijun

    2014-03-01

    With the development of remote sensing technology, remote-sensing satellite has been widely used in many aspects of national construction. Big data with different standards and massive users with different needs, make the satellite data delivery service to be a complex giant system. How to deliver remote-sensing satellite data efficiently and effectively is a big challenge. Based on customer service theory, this paper proposes a hierarchy conceptual model for examining the determinations of remote-sensing satellite data delivery service quality in the Chinese context. Three main dimensions: service expectation, service perception and service environment, and 8 sub-dimensions are included in the model. Large amount of first-hand data on the remote-sensing satellite data delivery service have been obtained through field research, semi-structured questionnaire and focused interview. A positivist case study is conducted to validate and develop the proposed model, as well as to investigate the service status and related influence mechanisms. Findings from the analysis demonstrate the explanatory validity of the model, and provide potentially helpful insights for future practice.

  4. The determinations of remote sensing satellite data delivery service quality: A positivistic case study in Chinese context

    International Nuclear Information System (INIS)

    Jin, Jiahua; Yan, Xiangbin; Tan, Qiaoqiao; Li, Yijun

    2014-01-01

    With the development of remote sensing technology, remote-sensing satellite has been widely used in many aspects of national construction. Big data with different standards and massive users with different needs, make the satellite data delivery service to be a complex giant system. How to deliver remote-sensing satellite data efficiently and effectively is a big challenge. Based on customer service theory, this paper proposes a hierarchy conceptual model for examining the determinations of remote-sensing satellite data delivery service quality in the Chinese context. Three main dimensions: service expectation, service perception and service environment, and 8 sub-dimensions are included in the model. Large amount of first-hand data on the remote-sensing satellite data delivery service have been obtained through field research, semi-structured questionnaire and focused interview. A positivist case study is conducted to validate and develop the proposed model, as well as to investigate the service status and related influence mechanisms. Findings from the analysis demonstrate the explanatory validity of the model, and provide potentially helpful insights for future practice

  5. Preliminary Products of Precise Orbit Determination Using Satellite Laser Ranging Observations for ILRS AAC

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2012-09-01

    Full Text Available In this study, we present preliminary results of precise orbit determination (POD using satellite laser ranging (SLR observations for International Laser Ranging Service (ILRS Associate Analysis Center (AAC. Using SLR normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2, the NASA/GSFC GEODYN II software are utilized for POD. Weekly-based orbit determination strategy is applied to process SLR observations and the post-fit residuals check, and external orbit comparison are performed for orbit accuracy assessment. The root mean square (RMS value of differences between observations and computations after final iteration of estimation process is used for post-fit residuals check. The result of ILRS consolidated prediction format (CPF is used for external orbit comparison. Additionally, we performed the precision analysis of each ILRS station by post-fit residuals. The post-fit residuals results show that the precisions of the orbits of LAGEOS-1 and LAGEOS-2 are 0.9 and 1.3 cm, and those of ETALON-1 and ETALON-2 are 2.5 and 1.9 cm, respectively. The orbit assessment results by ILRS CPF show that the radial accuracies of LAGEOS-1 and LAGEOS-2 are 4.0 cm and 5.3 cm, and the radial accuracies of ETALON-1 and ETALON-2 are 30.7 cm and 7.2 cm. These results of station precision analysis confirm that the result of this study is reasonable to have implications as preliminary results for administrating ILRS AAC.

  6. Phase Error Modeling and Its Impact on Precise Orbit Determination of GRACE Satellites

    Directory of Open Access Journals (Sweden)

    Jia Tu

    2012-01-01

    Full Text Available Limiting factors for the precise orbit determination (POD of low-earth orbit (LEO satellite using dual-frequency GPS are nowadays mainly encountered with the in-flight phase error modeling. The phase error is modeled as a systematic and a random component each depending on the direction of GPS signal reception. The systematic part and standard deviation of random part in phase error model are, respectively, estimated by bin-wise mean and standard deviation values of phase postfit residuals computed by orbit determination. By removing the systematic component and adjusting the weight of phase observation data according to standard deviation of random component, the orbit can be further improved by POD approach. The GRACE data of 1–31 January 2006 are processed, and three types of orbit solutions, POD without phase error model correction, POD with mean value correction of phase error model, and POD with phase error model correction, are obtained. The three-dimensional (3D orbit improvements derived from phase error model correction are 0.0153 m for GRACE A and 0.0131 m for GRACE B, and the 3D influences arisen from random part of phase error model are 0.0068 m and 0.0075 m for GRACE A and GRACE B, respectively. Thus the random part of phase error model cannot be neglected for POD. It is also demonstrated by phase postfit residual analysis, orbit comparison with JPL precise science orbit, and orbit validation with KBR data that the results derived from POD with phase error model correction are better than another two types of orbit solutions generated in this paper.

  7. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  8. A new system to quantify uncertainties in LEO satellite position determination due to space weather events

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a new system for quantitative assessment of uncertainties in LEO satellite position caused by storm time changes in space environmental...

  9. Improved Orbit Determination and Forecasts with an Assimilative Tool for Atmospheric Density and Satellite Drag Specification

    Science.gov (United States)

    Crowley, G.; Pilinski, M.; Sutton, E. K.; Codrescu, M.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.

    2016-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. Features of this technique include: • Satellite drag specifications with errors lower than current models • Altitude coverage up to 1000km • Background state representation using both first principles and empirical models • Assimilation of satellite drag and other datatypes • Real time capability • Ability to produce 72-hour forecasts of the atmospheric state In this paper, we will summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models including the High Accuracy Satellite Drag Model, which is currently used

  10. GNSS, Satellite Altimetry and Formosat-3/COSMIC for Determination of Ionosphere Parameters

    Science.gov (United States)

    Mahdi Alizadeh Elizei, M.; Schuh, Harald; Schmidt, Michael; Todorova, Sonya

    The dispersion of ionosphere with respect to the microwave signals allows gaining information about the parameters of this medium in terms of the electron density (Ne), or the Total Elec-tron Content (TEC). In the last decade space geodetic techniques, such as Global Navigation Satellite System (GNSS), satellite altimetry missions, and Low Earth Orbiting (LEO) satel-lites have turned into a promising tool for remote sensing the ionosphere. The dual-frequency GNSS observations provide the main input data for development of Global Ionosphere Maps (GIM). However, the GNSS stations are heterogeneously distributed, with large gaps particu-larly over the sea surface, which lowers the precision of the GIM over these areas. Conversely, dual-frequency satellite altimetry missions provide information about the ionosphere precisely above the sea surface. In addition, LEO satellites such as Formosat-3/COSMIC (F-3/C) pro-vide well-distributed information of ionosphere around the world. In this study we developed GIMs of VTEC from combination of GNSS, satellite altimetry and F-3/C data with temporal resolution of 2 hours and spatial resolution of 5 degree in longitude and 2.5 degree in latitude. The combined GIMs provide a more homogeneous global coverage and higher precision and reliability than results of each individual technique.

  11. On the Dearth of Ultra-faint Extremely Metal-poor Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Filho, M. E.; Vecchia, C. Dalla [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Skillman, E. D., E-mail: jos@iac.es [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN (United States)

    2017-02-01

    Local extremely metal-poor galaxies (XMPs) are of particular astrophysical interest since they allow us to look into physical processes characteristic of the early universe, from the assembly of galaxy disks to the formation of stars in conditions of low metallicity. Given the luminosity–metallicity relationship, all galaxies fainter than M{sub r} ≃ −13 are expected to be XMPs. Therefore, XMPs should be common in galaxy surveys. However, they are not common, because several observational biases hamper their detection. This work compares the number of faint XMPs in the SDSS-DR7 spectroscopic survey with the expected number, given the known biases and the observed galaxy luminosity function (LF). The faint end of the LF is poorly constrained observationally, but it determines the expected number of XMPs. Surprisingly, the number of observed faint XMPs (∼10) is overpredicted by our calculation, unless the upturn in the faint end of the LF is not present in the model. The lack of an upturn can be naturally understood if most XMPs are central galaxies in their low-mass dark matter halos, which are highly depleted in baryons due to interaction with the cosmic ultraviolet background and to other physical processes. Our result also suggests that the upturn toward low luminosity of the observed galaxy LF is due to satellite galaxies.

  12. Spin motion determination of the Envisat satellite through laser ranging measurements from a single pass measured by a single station

    Science.gov (United States)

    Pittet, Jean-Noël; Šilha, Jiří; Schildknecht, Thomas

    2018-02-01

    The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces. If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite's centre of mass. This behaviour is projected onto the radial component measured by the SLR. In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013-2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.

  13. Galaxy Cluster Shapes and Systematic Errors in H_0 as Determined by the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sulkanen, Martin E.; Patel, Sandeep K.

    1998-01-01

    Imaging of the Sunyaev-Zeldovich (SZ) effect in galaxy clusters combined with cluster plasma x-ray diagnostics promises to measure the cosmic distance scale to high accuracy. However, projecting the inverse-Compton scattering and x-ray emission along the cluster line-of-sight will introduce systematic error's in the Hubble constant, H_0, because the true shape of the cluster is not known. In this paper we present a study of the systematic errors in the value of H_0, as determined by the x-ray and SZ properties of theoretical samples of triaxial isothermal "beta-model" clusters, caused by projection effects and observer orientation relative to the model clusters' principal axes. We calculate three estimates for H_0 for each cluster, based on their large and small apparent angular core radii, and their arithmetic mean. We average the estimates for H_0 for a sample of 25 clusters and find that the estimates have limited systematic error: the 99.7% confidence intervals for the mean estimated H_0 analyzing the clusters using either their large or mean angular core r;dius are within 14% of the "true" (assumed) value of H_0 (and enclose it), for a triaxial beta model cluster sample possessing a distribution of apparent x-ray cluster ellipticities consistent with that of observed x-ray clusters.

  14. Galaxy Cluster Shapes and Systematic Errors in the Hubble Constant as Determined by the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sulkanen, Martin E.; Joy, M. K.; Patel, S. K.

    1998-01-01

    Imaging of the Sunyaev-Zei'dovich (S-Z) effect in galaxy clusters combined with the cluster plasma x-ray diagnostics can measure the cosmic distance scale to high accuracy. However, projecting the inverse-Compton scattering and x-ray emission along the cluster line-of-sight will introduce systematic errors in the Hubble constant, H$-O$, because the true shape of the cluster is not known. This effect remains present for clusters that are otherwise chosen to avoid complications for the S-Z and x-ray analysis, such as plasma temperature variations, cluster substructure, or cluster dynamical evolution. In this paper we present a study of the systematic errors in the value of H$-0$, as determined by the x-ray and S-Z properties of a theoretical sample of triaxial isothermal 'beta-model' clusters, caused by projection effects and observer orientation relative to the model clusters' principal axes. The model clusters are not generated as ellipsoids of rotation, but have three independent 'core radii', as well as a random orientation to the plane of the sky.

  15. GALAXY ENVIRONMENTS OVER COSMIC TIME: THE NON-EVOLVING RADIAL GALAXY DISTRIBUTIONS AROUND MASSIVE GALAXIES SINCE z = 1.6

    International Nuclear Information System (INIS)

    Tal, Tomer; Van Dokkum, Pieter G.; Leja, Joel; Franx, Marijn; Wake, David A.; Whitaker, Katherine E.

    2013-01-01

    We present a statistical study of the environments of massive galaxies in four redshift bins between z = 0.04 and z = 1.6, using data from the Sloan Digital Sky Survey and the NEWFIRM Medium Band Survey. We measure the projected radial distribution of galaxies in cylinders around a constant number density selected sample of massive galaxies and utilize a statistical subtraction of contaminating sources. Our analysis shows that massive primary galaxies typically live in group halos and are surrounded by 2-3 satellites with masses more than one-tenth of the primary galaxy mass. The cumulative stellar mass in these satellites roughly equals the mass of the primary galaxy itself. We further find that the radial number density profile of galaxies around massive primaries has not evolved significantly in either slope or overall normalization in the past 9.5 Gyr. A simplistic interpretation of this result can be taken as evidence for a lack of mergers in the studied groups and as support for a static evolution model of halos containing massive primaries. Alternatively, there exists a tight balance between mergers and accretion of new satellites such that the overall distribution of galaxies in and around the halo is preserved. The latter interpretation is supported by a comparison to a semi-analytic model, which shows a similar constant average satellite distribution over the same redshift range.

  16. Impact of ITRS 2014 realizations on altimeter satellite precise orbit determination

    Science.gov (United States)

    Zelensky, Nikita P.; Lemoine, Frank G.; Beckley, Brian D.; Chinn, Douglas S.; Pavlis, Despina E.

    2018-01-01

    This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l'Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1-2 mm RMS radial difference between 1992-2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3-4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual

  17. Star Formation Histories of Nearby Dwarf Galaxies

    OpenAIRE

    Grebel, Eva K.

    2000-01-01

    Properties of nearby dwarf galaxies are briefly discussed. Dwarf galaxies vary widely in their star formation histories, the ages of their subpopulations, and in their enrichment history. Furthermore, many dwarf galaxies show evidence for spatial variations in their star formation history; often in the form of very extended old populations and radial gradients in age and metallicity. Determining factors in dwarf galaxy evolution appear to be both galaxy mass and environment. We may be observi...

  18. Fall migration routes, timing, and wintering sites of North American ospreys as determined by satellite telemetry

    Science.gov (United States)

    Martell, M.S.; Henny, Charles J.; Nye, P.; Solensky, Matthew J.

    2001-01-01

    Satellite telemetry was used to determine fall migratory movements of Ospreys (Pandion haliaetus) breeding in the United States. Study areas were established along the lower Columbia River between Oregon and Washington; in north-central Minnesota; on Shelter Island, New York; and in southern New Jersey. Seventy-four adults (25 males, 49 females) were tracked from 1995 through 1999. Migration routes differed among populations but not by sex. Western Ospreys migrated through California and to a lesser degree other western states and wintered in Mexico (88%), El Salvador (6%), and Honduras (6%) (25.9A?N to 13.0A?N and 108.3A?W to 87.3A?W). Minnesota Ospreys migrated along three routes: (1) through the Central U.S. and then along the east coast of Mexico, (2) along the Mississippi River Valley, then across the Gulf of Mexico, or (3) through the southeastern U.S., then across the Caribbean. East Coast birds migrated along the eastern seaboard of the U.S., through Florida, and across the Caribbean. Midwestern birds wintered from Mexico south to Bolivia (22.35A?N to 13.64A?S, and 91.75A?W to 61.76A?W), while East Coast birds wintered from Florida to as far south as Brazil (27.48A?N to 18.5A?S and 80.4A?W to 57.29A?W). Dates of departure from breeding areas differed significantly between sexes and geographic regions, with females leaving earlier than males. Western birds traveled a shorter distance than either midwestern or eastern Ospreys. Females traveled farther than males from the same population, which resulted in females typically wintering south of males.

  19. Incorporation of star measurements for the determination of orbit and attitude parameters of a geosynchronous satellite: An iterative application of linear regression

    Science.gov (United States)

    Phillips, D.

    1980-01-01

    Currently on NOAA/NESS's VIRGS system at the World Weather Building star images are being ingested on a daily basis. The image coordinates of the star locations are measured and stored. Subsequently, the information is used to determine the attitude, the misalignment angles between the spin axis and the principal axis of the satellite, and the precession rate and direction. This is done for both the 'East' and 'West' operational geosynchronous satellites. This orientation information is then combined with image measurements of earth based landmarks to determine the orbit of each satellite. The method for determining the orbit is simple. For each landmark measurement one determines a nominal position vector for the satellite by extending a ray from the landmark's position towards the satellite and intersecting the ray with a sphere with center coinciding with the Earth's center and with radius equal to the nominal height for a geosynchronous satellite. The apparent motion of the satellite around the Earth's center is then approximated with a Keplerian model. In turn the variations of the satellite's height, as a function of time found by using this model, are used to redetermine the successive satellite positions by again using the Earth based landmark measurements and intersecting rays from these landmarks with the newly determined spheres. This process is performed iteratively until convergence is achieved. Only three iterations are required.

  20. Stellar chemical signatures and hierarchical galaxy formation

    NARCIS (Netherlands)

    Venn, KA; Irwin, M; Shetrone, MD; Tout, CA; Hill, [No Value; Tolstoy, E

    To compare the chemistries of stars in the Milky Way dwarf spheroidal (dSph) satellite galaxies with stars in the Galaxy, we have compiled a large sample of Galactic stellar abundances from the literature. When kinematic information is available, we have assigned the stars to standard Galactic

  1. Galaxy number counts: Pt. 2

    International Nuclear Information System (INIS)

    Metcalfe, N.; Shanks, T.; Fong, R.; Jones, L.R.

    1991-01-01

    Using the Prime Focus CCD Camera at the Isaac Newton Telescope we have determined the form of the B and R galaxy number-magnitude count relations in 12 independent fields for 21 m ccd m and 19 m ccd m 5. The average galaxy count relations lie in the middle of the wide range previously encompassed by photographic data. The field-to-field variation of the counts is small enough to define the faint (B m 5) galaxy count to ±10 per cent and this variation is consistent with that expected from galaxy clustering considerations. Our new data confirm that the B, and also the R, galaxy counts show evidence for strong galaxy luminosity evolution, and that the majority of the evolving galaxies are of moderately blue colour. (author)

  2. Rebuilding Spiral Galaxies

    Science.gov (United States)

    2005-01-01

    NASA/ESA Hubble Space Telescope, the ESA Infrared Space Observatory (ISO) satellite and the NRAO Very Large Array. With the Very Large Telescope, observations were performed on Antu and Kueyen over a two-year period using the quasi-twin instruments FORS1 and FORS2 in the visible and ISAAC in the infrared. In both cases, it was essential to rely on the unique capabilities of the VLT to obtain high-quality spectra with the required resolution. A fleet of results ESO PR Photo 02a/05 ESO PR Photo 02a/05 Luminosity - Oxygen Abundance Relation for Galaxies [Preview - JPEG: 400 x 455 pix - 81k] [Normal - JPEG: 800 x 910 pix - 208k] Caption: ESO PR Photo 02a/05 shows the oxygen abundance (expressed in fraction of the solar value) as a function of the luminosity of the galaxies (in logarithm scale). This relation is fundamental in astrophysics. The relation for local galaxies is shown by the solid red line. The blue dots are the values derived from VLT spectra in a subset of the studied galaxies. They reveal for the first time that this relation is changing with time: for a given value of the luminosity, galaxies of different ages present different values of the oxygen abundance. From their extensive set of data, the astronomers could draw a number of important conclusions. First, based on the near-infrared luminosities of the galaxies, they infer that most of the galaxies they studied contain between 30,000 million and 300,000 million times the mass of the Sun in the form of stars. This is roughly a factor 0.2 to 2 the amount of mass locked in stars in our own Milky Way. Second, they discovered that contrary to the local Universe where so-called Luminous Infrared Galaxies (LIRGs; [3]) are very rare objects, at a redshift from 0.4 to 1, that is, 4,000 to 8,000 million years ago, roughly one sixth of bright galaxies were LIRGs. Because this peculiar class of galaxies is believed to be going through a very active phase of star formation, with a doubling of the stellar mass

  3. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    DEFF Research Database (Denmark)

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D

    2013-01-01

    Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells...... (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3'UTR of Prdm16. Antagonism...... of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels...

  4. Engineering parameter determination from the radio astronomy explorer /RAE I/ satellite attitude data

    Science.gov (United States)

    Lawlor, E. A.; Davis, R. M.; Blanchard, D. L.

    1974-01-01

    An RAE-I satellite description is given, taking into account a dynamics experiment and the attitude sensing system. A computer program for analyzing flexible spacecraft attitude motions is considered, giving attention to the geometry of rod deformation. The characteristics of observed attitude data are discussed along with an analysis of the main boom root angle, the bending rigidity, and the damper plane angle.

  5. Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Hemant, K.

    2006-01-01

    of the lithospheric field down to an altitude of about 50 km at lower latitudes, with reduced accuracy in the polar regions. Crustal features come out significantly sharper than in previous models. In particular, bands of magnetic anomalies along subduction zones become visible by satellite for the first time....

  6. Study and modeling of the most energetic Active Galactic Nuclei with the Fermi satellite; Etude et modelisation des noyaux actifs de galaxie les plus energetiques avec le satellite Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, D.

    2010-06-15

    The Fermi satellite was launched in June 2008. The onboard LAT detector is dedicated to the study of galactic and extra-galactic gamma sources with an energy comprised between 200 MeV and 300 GeV. 1451 sources have been detected in less than 11 months. This document is divided into 6 chapters: 1) gamma astronomy, 2) the Fermi satellite, 3) the active galactic nuclei (NAG), 4) the observation of several blazars (PKS-2155-304 and PG-1553+113) and its simulation, 5) the observation of PKS-2155-304 with both RXTE and Fermi, and 6) conclusion

  7. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  8. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    Science.gov (United States)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the

  9. Galaxy formation

    International Nuclear Information System (INIS)

    Gribbin, J.

    1979-01-01

    The current debate on the origin and evolution of galaxies is reviewed and evidence to support the so-called 'isothermal' and 'adiabatic' fluctuation models considered. It is shown that new theories have to explain the formation of both spiral and elliptical galaxies and the reason for their differences. It is stated that of the most recent models the best indicates that rotating spiral galaxies are formed naturally when gas concentrates in the centre of a great halo and forms stars while ellipticals are explained by later interactions between spiral galaxies and merging, which can cancel out the rotation while producing an elliptical galaxy in which the stars, coming from two original galaxies, follow very elliptical, anisotropic orbits. (UK)

  10. The use of satellite data to determine the distribution of ozone in the troposphere

    Science.gov (United States)

    Fishman, Jack; Watson, Catherine E.; Brackett, Vincent G.; Fakhruzzaman, Khan; Veiga, Robert E.

    1991-01-01

    Measurements from two independent satellite data sets have been used to derive the climatology of the integrated amount of ozone in the troposphere. These data have led to the finding that large amounts of ozone pollution are generated by anthropogenic activity originating from both the industrialized regions of the Northern Hemisphere and from the southern tropical regions of Africa. To verify the existence of this ozone anomaly at low latitudes, an ozonesonde capability has been established at Ascension Island (8 deg S, 15 deg W) since July 1990. According to the satellite analyses, Ascension Island is located downwind of the primary source region of this ozone pollution, which likely results from the photochemical oxidation of emissions emanating from the widespread burning of savannas and other biomass. These in situ measurements confirm the existence of large amounts of ozone in the lower atmosphere. A summary of these ozonesonde data to date will be presented. In addition, we will present some ozone profile measurements from SAGE II which can be used to provide upper tropospheric ozone measurements directly in the tropical troposphere. A preliminary comparison between the satellite observations and the ozonesonde profiles in the upper troposphere and lower stratosphere will also be presented.

  11. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and Other Trace Species

    Science.gov (United States)

    Chance, Kelly

    2003-02-01

    This grant is an extension to our previous NASA Grant NAG5-3461, providing incremental funding to continue GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) studies. This report summarizes research done under these grants through December 31, 2002. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and participation in initial SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY was launched March 1, 2002 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  12. Dusty Dwarfs Galaxies Occulting A Bright Background Spiral

    Science.gov (United States)

    Holwerda, Benne

    2017-08-01

    The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.

  13. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    International Nuclear Information System (INIS)

    Reid, Beth A.; Spergel, David N.; Bode, Paul

    2009-01-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a ∼10% correction in the underlying power spectrum at k = 0.1 h Mpc -1 and ∼40% correction at k = 0.2 h Mpc -1 in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the ≤1% level for k ≤ 0.1 h Mpc -1 and ≤4% at k = 0.2 h Mpc -1 . The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter β induced by the FOG smearing of the linear redshift space distortions.

  14. Outskirts of galaxies

    CERN Document Server

    Lee, Janice; Paz, Armando

    2017-01-01

    This book consists of invited reviews written by world-renowned experts on the subject of the outskirts of galaxies, an upcoming field which has been understudied so far. These regions are faint and hard to observe, yet hide a tremendous amount of information on the origin and early evolution of galaxies. They thus allow astronomers to address some of the most topical problems, such as gaseous and satellite accretion, radial migration, and merging. The book is published in conjunction with the celebration of the end of the four-year DAGAL project, an EU-funded initial training network, and with a major international conference on the topic held in March 2016 in Toledo. It thus reflects not only the views of the experts, but also the scientific discussions and progress achieved during the project and the meeting. The reviews in the book describe the most modern observations of the outer regions of our own Galaxy, and of galaxies in the local and high-redshift Universe. They tackle disks, haloes, streams, and a...

  15. Determination of polar cusp position by low-energy particle measurements made aboard AUREOLE satellite

    International Nuclear Information System (INIS)

    Gladyshev, V.A.; Jorjio, M.V.; Shuiskaya, F.K.; Crasnier, J.; Sauvaud, J.A.

    1974-01-01

    The Franco-Soviet experiment ARCAD, launched aboard the satellite AUREOLE December 27, 1971, has verified the existence of a particle penetration from the transition zone up to ionospheric altitudes across the polar cusp. The polar cusp is characterized by proton fluxes >10 7 particles/(cm 2 .s.sr.KeV) at 0.5KeV, with energy spectra similar to those in the transition zone. The position and form of the polar cusp are studied from measurements of protons in the range 0.4 to 30KeV during geomagnetically quiet periods (Kp [fr

  16. Cosmological-model-parameter determination from satellite-acquired type Ia and IIP Supernova Data

    International Nuclear Information System (INIS)

    Podariu, Silviu; Nugent, Peter; Ratra, Bharat

    2000-01-01

    We examine the constraints that satellite-acquired Type Ia and IIP supernova apparent magnitude versus redshift data will place on cosmological model parameters in models with and without a constant or time-variable cosmological constant lambda. High-quality data which could be acquired in the near future will result in tight constraints on these parameters. For example, if all other parameters of a spatially-flat model with a constant lambda are known, the supernova data should constrain the non-relativistic matter density parameter omega to better than 1 (2, 0.5) at 1 sigma with neutral (worst case, best case) assumptions about data quality

  17. Orbit Determination of GPS and Koreasat 2 Satellite Using Angle-Only Data and Requirements for Optical Tracking System

    Directory of Open Access Journals (Sweden)

    Woo-Kyoung Lee

    2004-09-01

    Full Text Available Gauss method for the initial orbit determination was tested using angle-only data obtained by orbit propagation using TLE and SGP4/SDP4 orbit propagation model. As the analysis of this simulation, a feasible time span between observation time of satellite resulting the minimum error to the true orbit was found. Initial orbit determination is performed using observational data of GPS 26 and Koreasat 2 from 0.6m telescope of KAO(Korea Astronomy Observatory and precise orbit determination is also performed using simulated data. The result of precise orbit determination shows that the accuracy of resulting orbit is related to the accuracy of the observations and the number of data.

  18. Galaxy formation

    International Nuclear Information System (INIS)

    Silk, J.; Di Cintio, A.; Dvorkin, I.

    2014-01-01

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  19. The environments of Markarian galaxies

    International Nuclear Information System (INIS)

    Mackenty, J.W.; Simpson, C.; Mclean, B.

    1990-01-01

    The extensively studied Markarian sample of 1500 ultraviolet excess galaxies contains many Seyfert, starburst, and peculiar galaxies. Using the 20 minute V plates obtained for the construction of the Hubble Space Telescope Guide Star Catalog, the authors investigated the morphologies of the Markarian galaxies and the environments in which they are located. The relationship between the types of nuclear activity and the morphologies and environments of the Markarian galaxies is discussed. The authors conclude that the type of nuclear activity present in the galaxies of the Markarian sample is not dependent on either the morphology or the local environment of the galaxy. This is not to imply that nuclear activity per se is not influenced by the environment in which the nucleus is located. Rather the type of nuclear activity (at least in the Markarian population) does not appear to be determined by the environment

  20. The Accuracy Assessment of Determining the Axis of Railway Track Basing on the Satellite Surveying

    Science.gov (United States)

    Koc, Władysław; Specht, Cezary; Chrostowski, Piotr; Palikowska, Katarzyna

    2012-09-01

    In 2009, at the Gdansk University of Technology there have been carried out, for the first time, continuous satellite surveying of railway track by the use of the relative phase method based on geodesic active network ASG-EUPOS and NAVGEO service. Still continuing research works focused on the GNSS multi-receivers platform evaluation for projecting and stock-taking. In order to assess the accuracy of the railway track axis position, the values of deviations of transverse position XTE (Cross Track Error) were evaluated. In order to eliminate the influence of random measurement errors and to obtain the coordinates representing the actual shape of the track, the XTE variable was analyzed by signal analysis methods (Chebyshev low-pass filtering and fast Fourier transform). At the end the paper presents the module of the computer software SATTRACK which currently has been developing at the Gdansk University of Technology. The program serves visualization, assessment and design process of railway track, adapted to the technique of continuous satellite surveying. The module called TRACK STRAIGHT is designed to assess the straight sections. A description of its operation as well as examples of its functions has been presented.

  1. Galaxy clusters and cosmology

    CERN Document Server

    White, S

    1994-01-01

    Galaxy clusters are the largest coherent objects in Universe. It has been known since 1933 that their dynamical properties require either a modification of the theory of gravity, or the presence of a dominant component of unseen material of unknown nature. Clusters still provide the best laboratories for studying the amount and distribution of this dark matter relative to the material which can be observed directly -- the galaxies themselves and the hot,X-ray-emitting gas which lies between them.Imaging and spectroscopy of clusters by satellite-borne X -ray telescopes has greatly improved our knowledge of the structure and composition of this intergalactic medium. The results permit a number of new approaches to some fundamental cosmological questions,but current indications from the data are contradictory. The observed irregularity of real clusters seems to imply recent formation epochs which would require a universe with approximately the critical density. On the other hand, the large baryon fraction observ...

  2. Growing Galaxies Gently

    Science.gov (United States)

    2010-10-01

    helium as "heavy elements". [2] By carefully splitting up the faint light coming from a galaxy into its component colours using powerful telescopes and spectrographs, astronomers can identify the fingerprints of different chemicals in remote galaxies, and measure the amounts of heavy elements present. With the SINFONI instrument on the VLT astronomers can go one better and get a separate spectrum for each part of an object. This allows them to make a map that shows the quantity of heavy elements present in different parts of a galaxy and also determine where in the galaxy star formation is occurring most vigorously. More information This research was presented in a paper, Gas accretion in distant galaxies as the origin of chemical abundance gradients, by Cresci et al., to appear in Nature on 14 October 2010. The team is composed of G. Cresci (Osservatorio Astrofisico di Arcetri, Italy), F. Mannucci (Osservatorio Astrofisico di Arcetri, Italy), R. Maiolino (INAF, Osservatorio Astronomico di Roma, Italy), A. Marconi (Universitá di Firenze, Italy), A. Gnerucci (Universitá di Firenze, Italy) and L. Magrini (Osservatorio Astrofisico di Arcetri, Italy). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible

  3. High-Velocity Cloud Complex H and Weaver's "Jet": Two candidate dwarf satellite galaxies for which dark matter halo models indicate distances of ~27 kpc and ~108 kpc

    Science.gov (United States)

    Simonson, S. Christian

    2018-04-01

    Two anomalous-velocity H I features, High-Velocity Cloud Complex H (HVC H) (Blitz et al. 1999), and Weaver's "jet" (Weaver 1974), appear to be good candidates for dwarf satellites. In this work they are modeled as H I disks in dark matter halos that move in 3D orbits in the combined time-dependent gravitational fields of the Milky Way and M31. As they orbit in the Local Group they develop tidal distortions and produce debris. The current l,b,V appearance of the tidal features as they approach the Milky Way indicate distances of 27 ± 9 kpc for HVC H and 108 ± 36 kpc for Weaver's "jet". As these are within the distances to known Milky Way satellites, finding stellar components would be of interest for the star formation history of the Milky Way. This work uses recent Hubble Space Telescope results on M31 (van der Marel et al. 2012) to calculate the center-of-mass (COM) locations and the dark matter mass distributions of the Milky-Way—M31 system since the Big Bang. Time-dependent COM orbits of the satellites have been computed in 3D, along with rings of test particles representing their disks. Tidal effects that develop on these rings have been compared with published 21-cm line data from Lockman (2003) and Simonson (1975). For HVC H at l = 130.5°, b = +1.5°, V = -200 km/s, the dark matter mass (in solar masses) is estimated as 5.2 ± 3.5E8. The previously estimated H I mass is 6.4E6, or 1.2% of the newly derived satellite mass. For Weaver's "jet", which covers 2° by 7° at l = 197.3°, b = +2.1°, V = -30 to -87 km/s, the dark matter mass is estimated as 1.8 ± 0.6E9. The H I mass is 1.8 ± 1.1E8, or 6% to 12% of the satellite mass. In the case of HVC H, owing to its disk angle of 45°, tidal debris is thrown upward. This would presumably contribute to a halo star stream. In the case of Weaver's "jet", the streamer represents accreting material for the disk. I am grateful to Leo Blitz for bringing Lockman's work on HVC H to my attention and for many helpful

  4. Stellar-to-halo mass relation of cluster galaxies

    International Nuclear Information System (INIS)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; Giocoli, Carlo

    2017-01-01

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.

  5. QSO Pairs across Active Galaxies

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spectra for both the QSOs ...

  6. Spectral and morphological study of galaxies with UV excess. VI

    International Nuclear Information System (INIS)

    Kazaryan, M.A.; Kazaryan, E.S.; Byurakan Astrophysical Observatory)

    1985-01-01

    Results are given of a spectral and morphological study of galaxies Nos. 73, 125, and 229. The masses are determined of the gaseous components of these galaxies. It is established that galaxy No. 73 is a type Sy 2 galaxy, and in its physical properties it resembles the Sy 2 type galaxies Markaryan 744 and 1066. In some of its physical properties galaxy No. 125 is similar to galaxy No. 73, but it is evidently at a later stage of development than the latter. The results show that these galaxies differ from one another both in their physical properties and in their external structure

  7. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  8. Chemistry and Microphysics of Lower Stratospheric Aerosols Determined by Satellite Remote Sensing

    Science.gov (United States)

    Zasetsky, A. Y.; Khalizov, A.; Sloan, J.

    2003-12-01

    Observations of broadband Infrared satellites such as ILAS-II (Ministry of the Environment, Japan, launched 14 December 2002) and SciSat-1 (Canadian Space Agency, launched 12 August 2003) can provide details of the chemical composition and particle size of atmospheric aerosols by direct inversion without recourse to models. During the past decade, we have developed mathematical methods to achieve this inversion by working with FTIR observations of model atmospheric aerosols in cryogenic flowtubes. More recently, we have converted these to operational algorithms for use in the above missions. In this presentation, we will briefly outline these procedures and illustrate their capabilities using laboratory data. These laboratory results show that the chemical compositions, phases and sizes of ensembles of particles can be obtained simultaneously using these procedures. We will also report chemical and microphysical properties of lower stratospheric clouds and aerosols derived by applying these procedures to observations from space.

  9. Determining polar ionospheric electrojet currents from Swarm satellite constellation magnetic data

    DEFF Research Database (Denmark)

    Aakjær, Cecilie Drost; Olsen, Nils; Finlay, Chris

    2016-01-01

    currents at 110 km altitude (corresponding to the ionospheric E-layer) perpendicular to the satellite orbit, separated by 1° (about 113 km). We assess the reliability of our method, with the aim of a possible near-real-time application. A study of the effect of different regularization methods is therefore...... carried out. An L1 model regularization of the second-order spatial differences, and robust treatment of the data (to account for non-Gaussian error distributions), yields the most encouraging results. We apply our approach to two three-weekly data periods in March 2014 (geomagnetic quiet conditions......, Alpha and Charlie, indicating a method invariant to small changes in data input. All these results indicate a possible automated near-real-time application....

  10. Precise Determination of the Baseline Between the TerraSAR-X and TanDEM-X Satellites

    Science.gov (United States)

    Koenig, Rolf; Rothacher, Markus; Michalak, Grzegorz; Moon, Yongjin

    TerraSAR-X, launched on June 15, 2007, and TanDEM-X, to be launched in September 2009, both carry the Tracking, Occultation and Ranging (TOR) category A payload instrument package. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), for precise orbit determination and atmospheric sounding and a Laser retro-reflector (LRR) serving as target for the global Satellite Laser Ranging (SLR) ground station network. The TOR is supplied by the GeoForschungsZentrum Potsdam (GFZ) Germany, and the Center for Space Research (CSR), Austin, Texas. The objective of the German/US collaboration is twofold: provision of atmospheric profiles for use in numerical weather predictions and climate studies from the occultation data and precision SAR data processing based on precise orbits and atmospheric products. For the scientific objectives of the TanDEM- X mission, i.e., bi-static SAR together with TerraSAR-X, the dual-frequency GPS receiver is of vital importance for the millimeter level determination of the baseline or distance between the two spacecrafts. The paper discusses the feasibility of generating millimeter baselines by the example of GRACE, where for validation the distance between the two GRACE satellites is directly available from the micrometer-level intersatellite link measurements. The distance of the GRACE satellites is some 200 km, the distance of the TerraSAR-X/TanDEM-X formation will be some 200 meters. Therefore the proposed approach is then subject to a simulation of the foreseen TerraSAR-X/TanDEM-X formation. The effect of varying space environmental conditions, of possible phase center variations, multi path, and of varying center of mass of the spacecrafts are evaluated and discussed.

  11. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations

    Science.gov (United States)

    Montenbruck, Oliver; Hackel, Stefan; Jäggi, Adrian

    2017-11-01

    The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d'Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.

  12. Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry

    Science.gov (United States)

    Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.

  13. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    Science.gov (United States)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped

  14. Discussions on attitude determination and control system for micro/nano/pico-satellites considering survivability based on Hodoyoshi-3 and 4 experiences

    Science.gov (United States)

    Nakasuka, Shinichi; Miyata, Kikuko; Tsuruda, Yoshihiro; Aoyanagi, Yoshihide; Matsumoto, Takeshi

    2018-04-01

    The recent advancement of micro/nano/pico-satellites technologies encourages many universities to develop three axis stabilized satellites. As three axis stabilization is high level technology requiring the proper functioning of various sensors, actuators and control software, many early satellites failed in their initial operation phase because of shortage of solar power generation or inability to realize the initial step of missions because of unexpected attitude control system performance. These results come from failure to design the satellite attitude determination and control system (ADCS) appropriately and not considering "satellite survivability." ADCS should be designed such that even if some sensors or actuators cannot work as expected, the satellite can survive and carry out some of its missions, even if not full. This paper discusses how to realize ADCS while taking satellite survivability into account, based on our experiences of design and in-orbit operations of Hodoyoshi-3 and 4 satellites launched in 2014, which suffered from various component anomalies but could complete their missions.

  15. About the parametric interplay between ionic mach number, body-size, and satellite potential in determining the ion depletion in the wake of the S3-2 Satellite

    International Nuclear Information System (INIS)

    Samir, U.; Wildman, P.J.; Rich, F.; Brinton, H.C.; Sagalyn, R.C.

    1981-01-01

    Measurements of ion current, electron temperature, and density and values of satellite potential from the U.S. Air Force Satellite S3-2 together with ion composition measurements from the Atmosphere Explorer (AE-E) satellite were used to examine the variation of the ratio α = [I/sub +/(wake)]/[I/sub +/(ambient)] (where I/sub +/ is the ion current) with altitude and to examine the significance of the parametric interplay between ionic Mach number, normalized body size R/sub D/( = R0/lambda/sub D/, where R 0 is the satellite radius and lambda/sub D/ is the ambient debye length) and normalized body potenital phi/sub N/( = ephis/KT/sub e/, where phi/sub s/ is the satellite potential, T/sub e/ is the electron temperature, and e and K are constants). It was possible to separate between the influence of R/sub D/ and phi/sub N/ on α for a specific range parameters. Uncertainty, however, remains regarding the competiton between R/sub D/ and S(H + ) and S(O + ) are oxygen and hydrogen ionic Mach numbers, respectively) in determining the ion distribution in the nearest vicincity to the satellite surface. A brief discussion relevant to future experiments in the area of body plasma flow interactions to be conducted on board the Shuttle/Spacelab facility, is also included

  16. Angular momentum content of galaxies

    International Nuclear Information System (INIS)

    Shaya, E.J.; Tully, R.B.

    1984-01-01

    A schema of galaxy formation is developed in which the environmental influence of large-scale structure plays a dominant role. This schema was motivated by the observation that the fraction of E and S0 galaxies is much higher in clusters than in low-density regions and by an inference that those spirals that are found in clusters probably have fallen in relatively recently from the low-density regions. It is proposed that the tidal field of the Local Supercluster acts to determine the morphology of galaxies through two complementary mechanisms. In the first place, the supercluster can apply torques to protogalaxies. Galaxies which collapsed while expanding away from the central cluster decoupled from the external tidal field and conserved the angular momentum that they acquired before collapse. Galaxies which formed in the cluster while the cluster collapsed continued to feel the tidal field. In the latter case, the spin of outer collapsing layers can be halted and reversed, and tends to cancel the spin of inner layers. The result is a reduction of the total angular momentum content of the galaxy. In addition, the supercluster tidal field can regulate accretion of fresh material onto the galaxies since the field creates a Roche limit about galaxies and material beyond this limit is lost. Any material that has not collapsed onto a galaxy by the time the galaxy falls into a cluster will be tidally stripped. The angular momentum content of that part of the protogalactic cloud which has not yet collapsed . continues to grow linearly with time due to the continued torquing by the supercluster and neighbors. Galaxies at large distances from the cluster core can continue to accrete this high angular momentum material until the present, but galaxies that enter the cluster are cut off from replenishing material

  17. Environmental quenching and galactic conformity in the galaxy cross-correlation signal

    Science.gov (United States)

    Hatfield, P. W.; Jarvis, M. J.

    2017-12-01

    It has long been known that environment has a large effect on star formation in galaxies. There are several known plausible mechanisms to remove the cool gas needed for star formation, such as strangulation, harassment and ram-pressure stripping. It is unclear which process is dominant, and over what range of stellar mass. In this paper, we find evidence for suppression of the cross-correlation function between massive galaxies and less massive star-forming galaxies, giving a measure of how less likely a galaxy is to be star forming in the vicinity of a more massive galaxy. We develop a formalism for modelling environmental quenching mechanisms within the halo occupation distribution scheme. We find that at z ∼ 2 environment is not a significant factor in determining quenching of star-forming galaxies, and that galaxies are quenched with similar probabilities when they are satellites in sub-group environments, as they are globally. However, by z ∼ 0.5 galaxies are much less likely to be star forming when in a high-density (group or low-mass cluster) environment than when not. This increased probability of being quenched does not appear to have significant radial dependence within the halo at lower redshifts, supportive of the quenching being caused by the halting of fresh inflows of pristine gas, as opposed to by tidal stripping. Furthermore, by separating the massive sample into passive and star forming, we see that this effect is further enhanced when the central galaxy is passive, a manifestation of galactic conformity.

  18. Deficiency of normal galaxies among Markaryan galaxies

    International Nuclear Information System (INIS)

    Iyeveer, M.M.

    1986-01-01

    Comparison of the morphological types of Markaryan galaxies and other galaxies in the Uppsala catalog indicates a strong deficiency of normal ellipticals among the Markaryan galaxies, for which the fraction of type E galaxies is ≤ 1% against 10% among the remaining galaxies. Among the Markaryan galaxies, an excess of barred galaxies is observed - among the Markaryan galaxies with types Sa-Scd, approximately half or more have bars, whereas among the remaining galaxies of the same types bars are found in about 1/3

  19. Habitats used by black and surf scoters in eastern North America as determined by satellite radio telemetry

    Science.gov (United States)

    Perry, M.C.; Kidwell, D.M.; Wells-Berlin, A. M.; Lohnes, E.J.R.; Olsen, Glenn H.; Osenton, P.C.

    2005-01-01

    Satellite radio telemetry was used to determine the movements and habitats of black scoters (Melanitta nigra) and surf scoters (Melanitta perspicillata) in eastern North America. A total of 21 surf scoters were instrumented during five years (2001-05) and 32 black scoters were instrumented during three years (2002-04) with implanted PTT 100 satellite transmitters (39 g) with external antenna. Nesting habitat of black scoters was more open than surf scoters (44% vs. 11%), whereas nesting habitat for surf scoters was located in more forested areas (66% vs. 20%). Locations of black scoters in breeding areas on average were at significantly higher latitude and lower elevations than sites used by surf scoters. Satellite telemetry determined that James Bay was the major molting area for male black and surf scoters, although some males molted along the coast of Labrador-Newfoundland. Black scoters instrumented on the Restigouche River, which is a major staging area, were widely distributed along the Atlantic Coast from Cape Cod to Georgia during winter. Major wintering areas for black scoters were Cape Cod (Martha's Vineyard and Nantucket Island), Long Island, and New Jersey. In these northern marine wintering areas, black scoters were located farther from shore (4.2 km) and in deeper water (8.3 m) than black scoters in more southern estuarine areas, where distance from shore was 3.1 km and water depth was 5.2 m. Surf scoters instrumented in Chesapeake Bay in late winter showed a strong tendency to return to the Bay the following winter after they had migrated to and from breeding areas. In Chesapeake Bay, black scoters and surf scoters were located mostly in mesohaline areas that had similar water depths (5.1 m vs. 7.5 m) and distances from shore (3.0 km vs. 2.9 km). Distance from shore and depth of water increased over time during the winter for both species. Updated information from the ARGOS Systems aboard the NOAA satellites on scoter movements was made accessible on

  20. STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS

    International Nuclear Information System (INIS)

    High, F. William; Stubbs, Christopher W.; Rest, Armin; Stalder, Brian; Challis, Peter

    2009-01-01

    We present stellar locus regression (SLR), a method of directly adjusting the instrumental broadband optical colors of stars to bring them into accord with a universal stellar color-color locus, producing accurately calibrated colors for both stars and galaxies. This is achieved without first establishing individual zero points for each passband, and can be performed in real-time at the telescope. We demonstrate how SLR naturally makes one wholesale correction for differences in instrumental response, for atmospheric transparency, for atmospheric extinction, and for Galactic extinction. We perform an example SLR treatment of Sloan Digital Sky Survey data over a wide range of Galactic dust values and independently recover the direction and magnitude of the canonical Galactic reddening vector with 14-18 mmag rms uncertainties. We then isolate the effect of atmospheric extinction, showing that SLR accounts for this and returns precise colors over a wide range of air mass, with 5-14 mmag rms residuals. We demonstrate that SLR-corrected colors are sufficiently accurate to allow photometric redshift estimates for galaxy clusters (using red sequence galaxies) with an uncertainty σ(z)/(1 + z) = 0.6% per cluster for redshifts 0.09 < z < 0.25. Finally, we identify our objects in the 2MASS all-sky catalog, and produce i-band zero points typically accurate to 18 mmag using only SLR. We offer open-source access to our IDL routines, validated and verified for the implementation of this technique, at http://stellar-locus-regression.googlecode.com.

  1. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S

    2008-01-01

    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  2. Basking Shark (Cetorhinus maximus Movements in the Eastern North Pacific Determined Using Satellite Telemetry

    Directory of Open Access Journals (Sweden)

    Heidi Dewar

    2018-05-01

    Full Text Available To fill data gaps on movements, behaviors and habitat use, both near- and offshore, two programs were initiated to deploy satellite tags on basking sharks off the coast of California. Basking sharks are large filter-feeding sharks that are second in size only to whale sharks. Similar to many megafauna populations, available data suggest that populations are below historic levels. In the eastern North Pacific (ENP Ocean, the limited information on basking sharks comes from nearshore habitats where they forage. From 2010 to 2011, four sharks were tagged with pop-off satellite archival tags with deployments ranging from 9 to 240 days. The tags provided both transmitted and archived data on habitat use and geographic movement patterns. Nearshore, sharks tended to move north in the summer and prefer shelf and slope habitat around San Diego, Point Conception and Monterey Bay. The two sharks with 180 and 240 days deployments left the coast in the summer and fall. Offshore their paths diverged and by January one shark had moved to near the tip of the Baja Peninsula, Mexico and the other to the waters near Hawaii, USA. Vertical habitat use was variable both within and among individuals and changed as sharks moved offshore. Nearshore, most time was spent in the mixed layer but sharks did spend hours in cold waters below the mixed layer. Offshore vertical movements depended on location. The shark that went to Hawaii had a distinct diel pattern, with days spent at ~450–470 m and nights at ~250–300 m and almost no time in surface waters, corresponding with the diel migration of a specific portion of the deep scattering layer. The shark that moved south along the Baja Peninsula spent progressively more time in deep water but came to the surface daily. Movement patterns and shifts in vertical habitat and use are likely linked to shifts in prey availability and oceanography. Data collected indicate the potential for large-scale movements and the need for

  3. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC are associated with

  4. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC

  5. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  6. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  7. Evaluating Ultraviolet Radiation Exposures Determined from TOMS Satellite Data at Sites of Amphibian Declines in Central and South America

    Science.gov (United States)

    Middleton, Elizabeth M.; Smith, David E. (Technical Monitor)

    2000-01-01

    Many amphibian species have experienced substantial population declines, or have disappeared altogether, during the last several decades at a number of amphibian census sites in Central and South America. This study addresses the use of satellite-derived trends in solar ultraviolet-B (UV-B; 280-320 nm) radiation exposures at these sites over the last two decades, and is intended to demonstrate a role for satellite observations in determining whether UV-B radiation is a contributing factor in amphibian declines. UV-B radiation levels at the Earth's surface were derived from the Total Ozone Mapping Spectrometer (TOMS) satellite data, typically acquired daily since 1979. These data were used to calculate the daily erythemal (sunburning) UV-B, or UV-B(sub ery), exposures at the latitude, longitude, and elevation of each of 20 census sites. The annually averaged UV-B(sub ery) dose, as well as the maximum values, have been increasing in both Central and South America, with higher levels received at the Central American sites. The annually averaged UV-B(sub ery) exposures increased significantly from 1979-1998 at all 11 Central American sites examined (r(exp 2) = 0.60 - 0.79; P= 6750 J/sq m*d) to the annual UV-B(sub ery) total has increased from approx. 5% to approx. 15% in Central America over the 19 year period, but actual daily exposures for each species are unknown. Synergy among UV-B radiation and other factors, especially those associated with alterations of water chemistry (e.g., acidification) in aqueous habitats is discussed. These findings justify further research concerning whether UV-B(sub ery) radiation plays a role in amphibian population declines and extinctions.

  8. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems.

    Science.gov (United States)

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Limpach, Philippe; Müller, Erich

    2015-01-01

    In the sport of alpine skiing, knowledge about the centre of mass (CoM) kinematics (i.e. position, velocity and acceleration) is essential to better understand both performance and injury. This study proposes a global navigation satellite system (GNSS)-based method to measure CoM kinematics without restriction of capture volume and with reasonable set-up and processing requirements. It combines the GNSS antenna position, terrain data and the accelerations acting on the skier in order to approximate the CoM location, velocity and acceleration. The validity of the method was assessed against a reference system (video-based 3D kinematics) over 12 turn cycles on a giant slalom skiing course. The mean (± s) position, velocity and acceleration differences between the CoM obtained from the GNSS and the reference system were 9 ± 12 cm, 0.08 ± 0.19 m · s(-1) and 0.22 ± 1.28 m · s(-2), respectively. The velocity and acceleration differences obtained were smaller than typical differences between the measures of several skiers on the same course observed in the literature, while the position differences were slightly larger than its discriminative meaningful change. The proposed method can therefore be interpreted to be technically valid and adequate for a variety of biomechanical research questions in the field of alpine skiing with certain limitations regarding position.

  9. Determining the Frequency of Dry Lake Bed Formation in Semi-Arid Mongolia From Satellite Data

    Directory of Open Access Journals (Sweden)

    Yuta Demura

    2017-12-01

    Full Text Available In the Mongolian Plateau, the desert steppe, mountains, and dry lake bed surfaces may affect the process of dust storm emissions. Among these three surface types, dry lake beds are considered to contribute a substantial amount of global dust emissions and to be responsible for “hot spots” of dust outbreaks. The land cover types in the study area were broadly divided into three types, namely desert steppe, mountains, and dry lake beds, by a classification based on Normalized Difference Water Index (NDWI calculated from MODIS Terra satellite images, and Digital Elevation Model (DEM. This dry lake beds extracting method using remote sensing offers a new technique for identifying dust hot spots and potential untapped groundwater in the dry lands of the Gobi region. In the study area, frequencies of dry lake bed formation were calculated during the period of 2001 to 2014. The potential dry lake area corresponded well with the length of the river network based on hydrogeological characterization (R2 = 0.77, p < 0.001. We suggest that the threshold between dry lake bed areas and the formation of ephemeral lakes in semi-arid regions is eight days of total precipitation.

  10. Using the global positioning satellite system to determine attitude rates using doppler effects

    Science.gov (United States)

    Campbell, Charles E. (Inventor)

    2003-01-01

    In the absence of a gyroscope, the attitude and attitude rate of a receiver can be determined using signals received by antennae on the receiver. Based on the signals received by the antennae, the Doppler difference between the signals is calculated. The Doppler difference may then be used to determine the attitude rate. With signals received from two signal sources by three antennae pairs, the three-dimensional attitude rate is determined.

  11. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  12. The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group

    Science.gov (United States)

    Danieli, Shany; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2017-03-01

    We obtained follow-up HST observations of the seven low surface brightness galaxies discovered with the Dragonfly Telephoto Array in the field of the massive spiral galaxy M101. Out of the seven galaxies, only three were resolved into stars and are potentially associated with the M101 group at D = 7 Mpc. Based on HST ACS photometry in the broad F606W and F814W filters, we use a maximum likelihood algorithm to locate the Tip of the Red Giant Branch in galaxy color-magnitude diagrams. Distances are {6.38}-0.35+0.35,{6.87}-0.30+0.21 and {6.52}-0.27+0.25 {Mpc} and we confirm that they are members of the M101 group. Combining the three confirmed low-luminosity satellites with previous results for brighter group members, we find the M101 galaxy group to be a sparsely populated galaxy group consisting of seven group members, down to M V = -9.2 mag. We compare the M101 cumulative luminosity function to that of the Milky Way and M31. We find that they are remarkably similar; in fact, the cumulative luminosity function of the M101 group gets even flatter for fainter magnitudes, and we show that the M101 group might exhibit the two known small-scale flaws in the ΛCDM model, namely “the missing satellite” problem and the “too big to fail” problem. Kinematic measurements of M101's satellite galaxies are required to determine whether the “too big to fail” problem does in fact exist in the M101 group.

  13. Application of the artificial satellite of the earth to determine the velocity of the gravitational interaction within newtonian gravitational fields

    International Nuclear Information System (INIS)

    Cristea, Gh.

    1975-01-01

    In the first part of this paper, additional data are given concerning a gravimeter consisting in a pendulum-laser set proposed in a previous paper of the author (1). This gravimeter could have a sensitivity of 0.1 microgal or even 0.01 microgal in the case of statistical measurements. If processing by an on-line computer is used, the pendulum-laser can constitute a gravimeter which, used in statistical measurements on a long time interval, could reach a sensitivity of 10 -12 g. The second part of the paper points out the advantages resulting from determining the velocity of the gravitational reaction in an artificial satellite of the earth. The main advantage is the very fact that this measurement can be achieved by means of the existant gravimeters. The massive reduction of the time error is due to the increase of the ''sinusoid'' frequency resulting from the recording being made on the gravimeter set on an artificial satellite turning around the earth in about 90 minutes

  14. Evaluation of geomagnetic field models using magnetometer measurements for satellite attitude determination system at low earth orbits: Case studies

    Science.gov (United States)

    Cilden-Guler, Demet; Kaymaz, Zerefsan; Hajiyev, Chingiz

    2018-01-01

    In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.

  15. Solution Method and Precision Analysis of Double-difference Dynamic Precise Orbit Determination of BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    LIU Weiping

    2016-02-01

    Full Text Available To resolve the high relativity between the transverse element of GEO orbit and double-difference ambiguity, the classical double-difference dynamic method is improved and the method, which is to determine precise BeiDou satellite orbit using carrier phase and pseudo-range smoothed by phase, is proposed. The feasibility of the method is discussed and the influence of the method about ambiguity fixing is analyzed. Considering the characteristic of BeiDou, the method, which is to fix double-difference ambiguity of BeiDou satellites by QIF, is derived. The real data analysis shows that the new method, which can reduce the relativity and assure the precision, is better than the classical double-difference dynamic method. The result of ambiguity fixing is well by QIF, but the ambiguity fixing success rate is not high on the whole. So the precision of BeiDou orbit can't be improved clearly after ambiguity fixing.

  16. Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite tracking

    Science.gov (United States)

    Vander Zanden, Hannah B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Wunder, Michael B.; Bowen, Gabriel J.; Pajuelo, Mariela; Bolten, Alan B.; Bjorndal, Karen A.

    2015-01-01

    Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: 1) a nominal approach through discriminant analysis and 2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively

  17. Kinematic Orbit Determination Method Optimization and Test Analysis for BDS Satellites with Short-arc Tracking Data

    Directory of Open Access Journals (Sweden)

    GUO Rui

    2017-04-01

    Full Text Available Rapid orbit recovery is a puzzle for the BDS satellites after orbit maneuvers. Two kinematic orbit determination methods are studied, with two orbit determination models being established. The receiver system error and serious multipath error exist in the BDS system. The co-location method is proposed to estimate and calibrate the receiver system errors. A CNMC (code noise and multipath correction method is introduced to weaken the multipath error. Therefore the data quality is controlled efficiently for the receivers in the short tracking arc. The GEO/IGSO/MEO real data is emploied to carry out tests and validation. Using 10 min short tracking arc, the kinematic precise orbit determination accuracy is about 3.27 m for the GEOs, and 8.19 m for the IGSOs, and 5.9 m for the MEOs. Rapid orbit determination is achieved, which satisfying the orbit requirements from the BDS RDSS services. The kinematic precise orbit determination method also supports the RDSS service walking up to the global world.

  18. Early-Type Galaxy Star Formation Histories in Different Environments

    Science.gov (United States)

    Fitzpatrick, Patrick; Graves, G.

    2014-01-01

    We use very high-S/N stacked spectra of ˜29,000 nearby quiescent early-type galaxies (ETGs) from the Sloan Digital Sky Survey (SDSS) to investigate variations in their star formation histories (SFHs) with environment at fixed position along and perpendicular to the Fundamental Plane (FP). We separate galaxies in the three-dimensional FP space defined by galaxy effective radius Re, central stellar velocity dispersion σ, and surface brightness residual from the FP, ΔIe. We use the SDSS group catalogue of Yang et al. to further separate galaxies into three categories by their “identities” within their respective dark matter halos: central “Brightest Group Galaxies” (BGGs); Satellites; and Isolateds (those which are “most massive” in a dark matter halo with no Satellites). Within each category, we construct high-S/N mean stacked spectra to determine mean singleburst ages, [Fe/H], and [Mg/Fe] based on the stellar population synthesis models of R. Schiavon. This allows us to study variations in the stellar population properties (SPPs) with local group environment at fixed structure (i.e., fixed position in FP-space). We find that the SFHs of quiescent ETGs are almost entirely determined by their structural parameters σ and ΔIe. Any variation with local group environment at fixed structure is only slight: Satellites have the oldest stellar populations, 0.02 dex older than BGGs and 0.04 dex older than Isolateds; BGGs have the highest Fe-enrichments, 0.01 dex higher than Isolateds and 0.02 dex higher than Satellites; there are no differences in Mg-enhancement between BGGs, Isolateds, and Satellites. Our observation that, to zeroth-order, the SFHs of quiescent ETGs are fully captured by their structures places important qualitative constraints on the degree to which late-time evolutionary processes (those which occur after a galaxy’s initial formation and main star-forming lifetime) can alter their SFHs/structures.

  19. Habitat use and movement patterns of bull sharks Carcharhinus leucas determined using pop-up satellite archival tags.

    Science.gov (United States)

    Carlson, J K; Ribera, M M; Conrath, C L; Heupel, M R; Burgess, G H

    2010-08-01

    Habitat use, movement and residency of bull sharks Carcharhinus leucas were determined using satellite pop-up archival transmitting (PAT) tags throughout coastal areas in the U.S., Gulf of Mexico and waters off the south-east U.S. From 2005 to 2007, 18 fish (mean size = 164 cm fork length, L(F)) were tagged over all seasons. Fish retained tags for up to 85 days (median = 30 days). Based on geolocation data from initial tagging location to pop-off location, C. leucas generally travelled c. 5-6 km day(-1) and travelled an average of 143.6 km. Overall, mean proportions of time at depth revealed C. leucas spent the majority of their time in waters freshwater inflow.

  20. Determining potential 30/20 GHz domestic satellite system concepts and establishment of a suitable experimental configuration

    Science.gov (United States)

    Stevens, G. H.; Anzic, G.

    1979-01-01

    Issues and results in a NASA study of the potential concepts and markets for a multibeam 30/20 GHz domestic satellite system in the 1990s are presented. Issues considered include the reduction of signal attenuation due to rain, beam-beam interference isolation in the multibeam system, the method of access/modulation (FDMA, TDMA or hybrid) and the market for reduced reliability and wideband services. A hypothetical demonstration payload configuration which would attempt to resolve these issues is illustrated. The communications payload would employ a system of seven contiguous coverage spots in order to demonstrate a typical cell in a contiguous beam system having extensive frequency re-use, as in a direct-to-user system, and a single spot, typical of a trunking system, to determine signal isolation. The payload could be carried on several existing buses and is illustrated on an MMS bus.

  1. Tracing the first stars and galaxies of the Milky Way

    Science.gov (United States)

    Griffen, Brendan F.; Dooley, Gregory A.; Ji, Alexander P.; O'Shea, Brian W.; Gómez, Facundo A.; Frebel, Anna

    2018-02-01

    We use 30 high-resolution dark matter haloes of the Caterpillar simulation suite to probe the first stars and galaxies of Milky Way-mass systems. We quantify the environment of the high-z progenitors of the Milky Way and connect them to the properties of the host and satellites today. We identify the formation sites of the first generation of Population III (Pop III) stars (z ˜ 25) and first galaxies (z ˜ 22) with several different models based on a minimum halo mass. This includes a simple model for radiative feedback, the primary limitation of the model. Through this method we find approximately 23 000 ± 5000 Pop III potentially star-forming sites per Milky Way-mass host, though this number is drastically reduced to ˜550 star-forming sites if feedback is included. The majority of these haloes identified form in isolation (96 per cent at z = 15) and are not subject to external enrichment by neighbouring haloes (median separation ˜1 kpc at z = 15), though half merge with a system larger than themselves within 1.5 Gyr. Using particle tagging, we additionally trace the Pop III remnant population to z = 0 and find an order of magnitude scatter in their number density at small (i.e. r 50 kpc) galactocentric radii. We provide fitting functions for determining the number of progenitor minihalo and atomic cooling halo systems that present-day satellite galaxies might have accreted since their formation. We determine that observed dwarf galaxies with stellar masses below 104.6 M⊙ are unlikely to have merged with any other star-forming systems.

  2. Genesis of dwarf galaxies in interacting system

    International Nuclear Information System (INIS)

    Duc, Pierre-Alain

    1995-01-01

    This research thesis addresses the study of interacting and merging galaxies, and more particularly the associated stellar formation episodes. The author first reports an analysis of the central regions of these objects by studying a specific class among them, i.e. galaxies discovered by the IRAS satellite which are ultra-luminous in the far infrared. The author presents results obtained by optical and infrared imagery and spectroscopy of a complete sample of objects located in the southern hemisphere. In the second part, the author focusses on outside regions of interacting galaxies, discusses the observation of filaments formed under the influence of tidal forces acting during galactic collisions, and of condensations which are as luminous as dwarf galaxies. Then a multi-wavelength study of several neighbouring systems revealed the existence of a specific class of objects, the tidal dwarf galaxies, which are formed from stellar and gaseous material snatched from the disk of interacting galaxies. Gas-rich tidal dwarf galaxies contain, like dwarf irregular galaxies or blue compact galaxies, newly formed stars. But, in opposition with these ones, they are richer in heavy elements: this is one of the consequences of a specific mode of galactic formation based on a cosmic recycling [fr

  3. The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models

    Science.gov (United States)

    Godah, Walyeldeen; Krynski, Jan; Szelachowska, Malgorzata

    2018-05-01

    The objective of this paper is to demonstrate the usefulness of absolute gravity data for the validation of Global Geopotential Models (GGMs). It is also aimed at improving quasigeoid heights determined from satellite-only GGMs using absolute gravity data. The area of Poland, as a unique one, covered with a homogeneously distributed set of absolute gravity data, has been selected as a study area. The gravity anomalies obtained from GGMs were validated using the corresponding ones determined from absolute gravity data. The spectral enhancement method was implemented to overcome the spectral inconsistency in data being validated. The quasigeoid heights obtained from the satellite-only GGM as well as from the satellite-only GGM in combination with absolute gravity data were evaluated with high accuracy GNSS/levelling data. Estimated accuracy of gravity anomalies obtained from GGMs investigated is of 1.7 mGal. Considering omitted gravity signal, e.g. from degree and order 101 to 2190, satellite-only GGMs can be validated at the accuracy level of 1 mGal using absolute gravity data. An improvement up to 59% in the accuracy of quasigeoid heights obtained from the satellite-only GGM can be observed when combining the satellite-only GGM with absolute gravity data.

  4. Towards an improved determination of Earth’s lithospheric field from satellite observations

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils; Finlay, Chris

    Perhaps one of the biggest difficulties in modelling the Earth’s lithospheric magnetic field is the separation of contributions from sources of internal and external origin. In particular, the determination of smaller-scale lithospheric magnetic field features is problematic because the lithosphe......Perhaps one of the biggest difficulties in modelling the Earth’s lithospheric magnetic field is the separation of contributions from sources of internal and external origin. In particular, the determination of smaller-scale lithospheric magnetic field features is problematic because...

  5. Quasars in galaxy cluster environments

    International Nuclear Information System (INIS)

    Ellingson, E.

    1989-01-01

    The evolution of radio loud quasars is found to be strongly dependent upon their galaxy cluster environment. Previous studies have shown that bright quasars are found in rich clusters, while high luminosity quasars are found only in poorer environments. The analysis of low luminosity radio quiet quasars indicate that they are never found in rich environments, suggesting that they are a physically different class of objects. Properties of the quasar environment are investigated to determine constraints on the physical mechanisms of quasar formation and evolution. The optical cluster morphology indicates that the cluster cores have smaller radii and higher galaxy densities than are typical for low redshift clusters of similar richness. Radio morphologies may indicate that the formation of a dense intra-cluster medium is associated with the quasars' fading at these epochs. Galaxy colors appear to be normal, but there may be a tendency for clusters associated with high luminosity quasars to contain a higher fraction of gas-rich galaxies than those associated with low luminosity quasars. Multislit spectroscopic observations of galaxies associated with high luminosity quasars indicate that quasars are preferentially located in regions of low relative velocity dispersion, either in rich clusters of abnormally low dispersion, or in poor groups which are dynamically normal. This suggests that galaxy-galaxy interactions may play a role in quasar formation and sustenanace. Virialization of rich clusters and the subsequent increase in galaxy velocities may therefore be responsible for the fading of quasars in rich environments

  6. Extinction in the Galaxy from surface brightnesses of ESO-LV galaxies : Testing "standard" extinction maps

    NARCIS (Netherlands)

    Choloniewski, J.; Valentijn, E. A.

    A new method for the determination of the extinction in the Galaxy is proposed. The method uses surface brightnesses of external galaxies in the B and R-bands. The observational data have been taken from the ESO-LV galaxy catalog. As a first application of our model we derive the ratio of R-band to

  7. Formation of double galaxies by tidal capture

    International Nuclear Information System (INIS)

    Alladin, S.M.; Potdar, A.; Sastry, K.S.

    1975-01-01

    The conditions under which double galaxies may be formed by tidal capture are considered. Estimates for the increase in the internal energy of colliding galaxies due to tidal effects are used to determine the magnitudes Vsub(cap) and Vsub(dis) of the maximum relative velocities at infinite separation required for tidal capture and tidal disruption respectively. A double galaxy will be formed by tidal capture without tidal disruption of a component if Vsub(cap)>Vsub(i) and Vsub(cap)>Vsub(dis) where Vsub(i) is the initial relative speed of the two galaxies at infinite separation. If the two galaxies are of the same dimension, formulation of double galaxies by tidal capture is possible in a close collision either if the two galaxies do not differ much in mass and density distribution or if the more massive galaxy is less centrally concentrated than the other. If it is assumed as statistics suggest, that the mass of a galaxy is proportional to the square of its radius, it follows that the probability of the formation of double galaxies by tidal capture increases with the increase in mass of the galaxies and tidal distribution does not occur in a single collision for any distance of closest approach of the two galaxies. (Auth.)

  8. Superclusters and galaxy formation

    International Nuclear Information System (INIS)

    Einasto, J.; Joeveer, M.; Saar, E.

    1979-01-01

    The spatial distribution of Galaxies and Galaxy congestions in the southern galactic hemisphere is studied. The rich galaxy congestions, containing many elliptic Galaxies and radiogalaxies, are linked with each other by chains of scanty congestions with moderate content of elliptic Galaxies and radiogalaxies. The flat formation, linking the density pikes and the intermediate chains, can reasonably be called supercongestion. In the central region of supercongestions there is a thin layer of Galaxies consisting of only spiral Galaxies. The neighbouring supercongestions touch each other, while the intersupercongestion space contains no Galaxy congestions and almost no Galaxies. It is shown that such a structure was, apparently, formed before the formation of Galaxies

  9. Attitude determination for small satellites using GPS signal-to-noise ratio

    Science.gov (United States)

    Peters, Daniel

    An embedded system for GPS-based attitude determination (AD) using signal-to-noise (SNR) measurements was developed for CubeSat applications. The design serves as an evaluation testbed for conducting ground based experiments using various computational methods and antenna types to determine the optimum AD accuracy. Raw GPS data is also stored to non-volatile memory for downloading and post analysis. Two low-power microcontrollers are used for processing and to display information on a graphic screen for real-time performance evaluations. A new parallel inter-processor communication protocol was developed that is faster and uses less power than existing standard protocols. A shorted annular patch (SAP) antenna was fabricated for the initial ground-based AD experiments with the testbed. Static AD estimations with RMS errors in the range of 2.5° to 4.8° were achieved over a range of off-zenith attitudes.

  10. Experimental Verification of a Simple Method for Accurate Center of Gravity Determination of Small Satellite Platforms

    Directory of Open Access Journals (Sweden)

    Dario Modenini

    2018-01-01

    Full Text Available We propose a simple and relatively inexpensive method for determining the center of gravity (CoG of a small spacecraft. This method, which can be ascribed to the class of suspension techniques, is based on dual-axis inclinometer readings. By performing two consecutive suspensions from two different points, the CoG is determined, ideally, as the intersection between two lines which are uniquely defined by the respective rotations. We performed an experimental campaign to verify the method and assess its accuracy. Thanks to a quantitative error budget, we obtained an error distribution with simulations, which we verified through experimental tests. The retrieved experimental error distribution agrees well with the results predicted through simulations, which in turn lead to a CoG error norm smaller than 2 mm with 95% confidence level.

  11. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    OpenAIRE

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; Bosch, Frank C. van den

    2014-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy ...

  12. Measuring Extinction in Local Group Galaxies Using Background Galaxies

    Science.gov (United States)

    Wyder, T. K.; Hodge, P. W.

    1999-05-01

    Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.

  13. Investigation of Adaptive-threshold Approaches for Determining Area-Time Integrals from Satellite Infrared Data to Estimate Convective Rain Volumes

    Science.gov (United States)

    Smith, Paul L.; VonderHaar, Thomas H.

    1996-01-01

    The principal goal of this project is to establish relationships that would allow application of area-time integral (ATI) calculations based upon satellite data to estimate rainfall volumes. The research is being carried out as a collaborative effort between the two participating organizations, with the satellite data analysis to determine values for the ATIs being done primarily by the STC-METSAT scientists and the associated radar data analysis to determine the 'ground-truth' rainfall estimates being done primarily at the South Dakota School of Mines and Technology (SDSM&T). Synthesis of the two separate kinds of data and investigation of the resulting rainfall-versus-ATI relationships is then carried out jointly. The research has been pursued using two different approaches, which for convenience can be designated as the 'fixed-threshold approach' and the 'adaptive-threshold approach'. In the former, an attempt is made to determine a single temperature threshold in the satellite infrared data that would yield ATI values for identifiable cloud clusters which are closely related to the corresponding rainfall amounts as determined by radar. Work on the second, or 'adaptive-threshold', approach for determining the satellite ATI values has explored two avenues: (1) attempt involved choosing IR thresholds to match the satellite ATI values with ones separately calculated from the radar data on a case basis; and (2) an attempt involved a striaghtforward screening analysis to determine the (fixed) offset that would lead to the strongest correlation and lowest standard error of estimate in the relationship between the satellite ATI values and the corresponding rainfall volumes.

  14. S0 galaxies in Formax

    DEFF Research Database (Denmark)

    Bedregal...[], A. G.; Aragón-Salamanca, A.; Merrifield, M. R.

    2006-01-01

    Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1......Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1...

  15. CHLOE: A tool for automatic detection of peculiar galaxies

    Science.gov (United States)

    Shamir, Lior; Manning, Saundra; Wallin, John

    2014-09-01

    CHLOE is an image analysis unsupervised learning algorithm that detects peculiar galaxies in datasets of galaxy images. The algorithm first computes a large set of numerical descriptors reflecting different aspects of the visual content, and then weighs them based on the standard deviation of the values computed from the galaxy images. The weighted Euclidean distance of each galaxy image from the median is measured, and the peculiarity of each galaxy is determined based on that distance.

  16. CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT z = 1.62

    International Nuclear Information System (INIS)

    Lotz, Jennifer M.; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton M.; Papovich, Casey; Tran, Kim-Vy; Faber, S. M.; Guo Yicheng; Kocevski, Dale; Lee, Kyoung-Soo; McIntosh, Daniel; Momcheva, Ivelina; Rudnick, Gregory; Saintonge, Amelie; Van der Wel, Arjen; Willmer, Christopher

    2013-01-01

    We present the recent merger history of massive galaxies in a spectroscopically confirmed proto-cluster at z = 1.62. Using Hubble Space Telescope WFC3 near-infrared imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we select cluster and z ∼ 1.6 field galaxies with M star ≥ 3 × 10 10 M ☉ , to determine the frequency of double nuclei or close companions within projected separations less than 20 kpc co-moving. We find that four out of five spectroscopically confirmed massive proto-cluster galaxies have double nuclei, and 57 +13 -14 % of all M star ≥ 3 × 10 10 M ☉ cluster candidates are observed in either close pair systems or have double nuclei. In contrast, only 11% ± 3% of the field galaxies are observed in close pair/double nuclei systems. After correcting for the contribution from random projections, the implied merger rate per massive galaxy in the proto-cluster is ∼3-10 times higher than the merger rate of massive field galaxies at z ∼ 1.6. Close pairs in the cluster have minor merger stellar mass ratios (M primary : M satellite ≥ 4), while the field pairs consist of both major and minor mergers. At least half of the cluster mergers are gas-poor, as indicated by their red colors and low 24 μm fluxes. Two of the double-nucleated cluster members have X-ray detected active galactic nuclei with L x > 10 43 erg s –1 , and are strong candidates for dual or offset super-massive black holes. We conclude that the massive z = 1.62 proto-cluster galaxies are undergoing accelerated assembly via minor mergers, and discuss the implications for galaxy evolution in proto-cluster environments

  17. GPS satellite clock determination in case of inter-frequency clock biases for triple-frequency precise point positioning

    Science.gov (United States)

    Guo, Jiang; Geng, Jianghui

    2017-12-01

    Significant time-varying inter-frequency clock biases (IFCBs) within GPS observations prevent the application of the legacy L1/L2 ionosphere-free clock products on L5 signals. Conventional approaches overcoming this problem are to estimate L1/L5 ionosphere-free clocks in addition to their L1/L2 counterparts or to compute IFCBs between the L1/L2 and L1/L5 clocks which are later modeled through a harmonic analysis. In contrast, we start from the undifferenced uncombined GNSS model and propose an alternative approach where a second satellite clock parameter dedicated to the L5 signals is estimated along with the legacy L1/L2 clock. In this manner, we do not need to rely on the correlated L1/L2 and L1/L5 ionosphere-free observables which complicates triple-frequency GPS stochastic models, or account for the unfavorable time-varying hardware biases in undifferenced GPS functional models since they can be absorbed by the L5 clocks. An extra advantage over the ionosphere-free model is that external ionosphere constraints can potentially be introduced to improve PPP. With 27 days of triple-frequency GPS data from globally distributed stations, we find that the RMS of the positioning differences between our GPS model and all conventional models is below 1 mm for all east, north and up components, demonstrating the effectiveness of our model in addressing triple-frequency observations and time-varying IFCBs. Moreover, we can combine the L1/L2 and L5 clocks derived from our model to calculate precisely the L1/L5 clocks which in practice only depart from their legacy counterparts by less than 0.006 ns in RMS. Our triple-frequency GPS model proves convenient and efficient in combating time-varying IFCBs and can be generalized to more than three frequency signals for satellite clock determination.

  18. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe

    Science.gov (United States)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  19. Application of Semi-analytical Satellite Theory orbit propagator to orbit determination for space object catalog maintenance

    Science.gov (United States)

    Setty, Srinivas J.; Cefola, Paul J.; Montenbruck, Oliver; Fiedler, Hauke

    2016-05-01

    Catalog maintenance for Space Situational Awareness (SSA) demands an accurate and computationally lean orbit propagation and orbit determination technique to cope with the ever increasing number of observed space objects. As an alternative to established numerical and analytical methods, we investigate the accuracy and computational load of the Draper Semi-analytical Satellite Theory (DSST). The standalone version of the DSST was enhanced with additional perturbation models to improve its recovery of short periodic motion. The accuracy of DSST is, for the first time, compared to a numerical propagator with fidelity force models for a comprehensive grid of low, medium, and high altitude orbits with varying eccentricity and different inclinations. Furthermore, the run-time of both propagators is compared as a function of propagation arc, output step size and gravity field order to assess its performance for a full range of relevant use cases. For use in orbit determination, a robust performance of DSST is demonstrated even in the case of sparse observations, which is most sensitive to mismodeled short periodic perturbations. Overall, DSST is shown to exhibit adequate accuracy at favorable computational speed for the full set of orbits that need to be considered in space surveillance. Along with the inherent benefits of a semi-analytical orbit representation, DSST provides an attractive alternative to the more common numerical orbit propagation techniques.

  20. Use of Faraday-rotation data from beacon satellites to determine ionospheric corrections for interplanetary spacecraft navigation

    Science.gov (United States)

    Royden, H. N.; Green, D. W.; Walson, G. R.

    1981-01-01

    Faraday-rotation data from the linearly polarized 137-MHz beacons of the ATS-1, SIRIO, and Kiku-2 geosynchronous satellites are used to determine the ionospheric corrections to the range and Doppler data for interplanetary spacecraft navigation. The JPL operates the Deep Space Network of tracking stations for NASA; these stations monitor Faraday rotation with dual orthogonal, linearly polarized antennas, Teledyne polarization tracking receivers, analog-to-digital converter/scanners, and other support equipment. Computer software examines the Faraday data, resolves the pi ambiguities, constructs a continuous Faraday-rotation profile and converts the profile to columnar zenith total electron content at the ionospheric reference point; a second program computes the line-of-sight ionospheric correction for each pass of the spacecraft over each tracking complex. Line-of-sight ionospheric electron content using mapped Faraday-rotation data is compared with that using dispersive Doppler data from the Voyager spacecraft; a difference of about 0.4 meters, or 5 x 10 to the 16th electrons/sq m is obtained. The technique of determining the electron content of interplanetary plasma by subtraction of the ionospheric contribution is demonstrated on the plasma torus surrounding the orbit of Io.

  1. Stellar Populations in Elliptical Galaxies

    Science.gov (United States)

    Angeletti, Lucio; Giannone, Pietro

    The R1/n law for the radial surface brightness of elliptical galaxies and the "Best Accretion Model" together with the "Concentration Model" have been combined in order to determine the mass and dynamical structure of largely-populated star systems. Families of models depending on four parameters have been used to fit the observed surface radial profiles of some spectro-photometric indices of a sample of eleven galaxies. We present the best agreements of the spectral index Mg2 with observations for three selected galaxies representative of the full sample. For them we have also computed the spatial distributions of the metal abundances, which are essential to achieve a population synthesis.

  2. Innovative power management, attitude determination and control tile for CubeSat standard NanoSatellites

    Science.gov (United States)

    Ali, Anwar; Mughal, M. Rizwan; Ali, Haider; Reyneri, Leonardo

    2014-03-01

    Electric power supply (EPS) and attitude determination and control subsystem (ADCS) are the most essential elements of any aerospace mission. Efficient EPS and precise ADCS are the core of any spacecraft mission. So keeping in mind their importance, they have been integrated and developed on a single tile called CubePMT module. Modular power management tiles (PMTs) are already available in the market but they are less efficient, heavier in weight, consume more power and contain less number of subsystems. Commercial of the shelf (COTS) components have been used for CubePMT implementation which are low cost and easily available from the market. CubePMT is developed on the design approach of AraMiS architecture: a project developed at Politecnico di Torino that provides low cost and higher performance space missions with dimensions larger than CubeSats. The feature of AraMiS design approach is its modularity. These modules can be reused for multiple missions which helps in significant reduction of the overall budget, development and testing time. One has just to reassemble the required subsystems to achieve the targeted specific mission.

  3. COMBINED EFFECTS OF GALAXY INTERACTIONS AND LARGE-SCALE ENVIRONMENT ON GALAXY PROPERTIES

    International Nuclear Information System (INIS)

    Park, Changbom; Choi, Yun-Young

    2009-01-01

    We inspect the coupled dependence of physical parameters of the Sloan Digital Sky Survey galaxies on the small-scale (distance to and morphology of the nearest neighbor galaxy) and the large-scale (background density smoothed over 20 nearby galaxies) environments. The impacts of interaction on galaxy properties are detected at least out to the neighbor separation corresponding to the virial radius of galaxies, which is typically between 200 and 400 h -1 kpc for the galaxies in our sample. To detect these long-range interaction effects, it is crucial to divide galaxy interactions into four cases dividing the morphology of target and neighbor galaxies into early and late types. We show that there are two characteristic neighbor-separation scales where the galaxy interactions cause abrupt changes in the properties of galaxies. The first scale is the virial radius of the nearest neighbor galaxy r vir,nei . Many physical parameters start to deviate from those of extremely isolated galaxies at the projected neighbor separation r p of about r vir,nei . The second scale is at r p ∼ 0.05r vir,nei = 10-20 h -1 kpc, and is the scale at which the galaxies in pairs start to merge. We find that late-type neighbors enhance the star formation activity of galaxies while early-type neighbors reduce it, and that these effects occur within r vir,nei . The hot halo gas and cold disk gas must be participating in the interactions at separations less than the virial radius of the galaxy plus dark halo system. Our results also show that the role of the large-scale density in determining galaxy properties is minimal once luminosity and morphology are fixed. We propose that the weak residual dependence of galaxy properties on the large-scale density is due to the dependence of the halo gas property on the large-scale density.

  4. DETERMINATION OF THE LIGHT CURVE OF THE ARTIFICIAL SATELLITE BY ITS ROTATION PATH AS PREPARATION TO THE INVERSE PROBLEM SOLUTION

    OpenAIRE

    Pavlenko, Daniil

    2012-01-01

    Developing the algorithm of estimation of the rotational parameters of the artificial satellite by its light curve, we face the necessity to compute test light curves for various initially given types of rotation and specific features of lighting of the satellite. In the present study the algorithm of creation of such light curves with the simulation method and the obtained result are described.

  5. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    Science.gov (United States)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  6. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network

    Directory of Open Access Journals (Sweden)

    A. Rösel

    2012-04-01

    Full Text Available Melt ponds on sea ice strongly reduce the surface albedo and accelerate the decay of Arctic sea ice. Due to different spectral properties of snow, ice, and water, the fractional coverage of these distinct surface types can be derived from multispectral sensors like the Moderate Resolution Image Spectroradiometer (MODIS using a spectral unmixing algorithm. The unmixing was implemented using a multilayer perceptron to reduce computational costs.

    Arctic-wide melt pond fractions and sea ice concentrations are derived from the level 3 MODIS surface reflectance product. The validation of the MODIS melt pond data set was conducted with aerial photos from the MELTEX campaign 2008 in the Beaufort Sea, data sets from the National Snow and Ice Data Center (NSIDC for 2000 and 2001 from four sites spread over the entire Arctic, and with ship observations from the trans-Arctic HOTRAX cruise in 2005. The root-mean-square errors range from 3.8 % for the comparison with HOTRAX data, over 10.7 % for the comparison with NSIDC data, to 10.3 % and 11.4 % for the comparison with MELTEX data, with coefficient of determination ranging from R2=0.28 to R2=0.45. The mean annual cycle of the melt pond fraction per grid cell for the entire Arctic shows a strong increase in June, reaching a maximum of 15 % by the end of June. The zonal mean of melt pond fractions indicates a dependence of the temporal development of melt ponds on the geographical latitude, and has its maximum in mid-July at latitudes between 80° and 88° N.

    Furthermore, the MODIS results are used to estimate the influence of melt ponds on retrievals of sea ice concentrations from passive microwave data. Results from a case study comparing sea ice concentrations from ARTIST Sea Ice-, NASA Team 2-, and Bootstrap-algorithms with MODIS sea ice concentrations indicate an underestimation of around 40 % for sea ice concentrations retrieved with microwave

  7. Is the Milky Way an interacting galaxy?

    International Nuclear Information System (INIS)

    Verschuur, G.L.

    1988-01-01

    The Milky Way Galaxy is an interacting galaxy, according to radio astronomers. The disk of stars we live in is linked to the Magellanic Clouds, our Galaxy's satellites, by an enormous arc of neutral hydrogen called the Magellanic Stream. These startling facts have recently been established by piecing together many seemingly unrelated bits of evidence into a new picture of our Milky Way Galaxy. The discoveries that led up to this grand picture of the Milky Way's interaction data back over fifty years to create one of the best detective stories in modern astronomy. The realization that ours is an interacting galaxy is only the latest result of an intensive effort to map the Milky Way. Since the 1930s, astronomers have tried to discover just how our Galaxy is built. Charting the Milky Way hasn't been easy, because we are inside it and our view of the Milky Way is obscured by cosmic dust. This dust creates a region called the zone of avoidance, a band centered along the galactic plane that blocks visible light from objects beyond nearby objects in the Galaxy. Thus radio astronomers have become the Milky Way mappers because cosmic radio waves penetrate the dust and reveal the grand scheme of our Galaxy

  8. Crashing galaxies, cosmic fireworks

    International Nuclear Information System (INIS)

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined

  9. Resolving the faint end of the satellite luminosity function for the nearest elliptical Centaurus A

    Science.gov (United States)

    Crnojevic, Denija

    2014-10-01

    We request HST/ACS imaging to follow up 15 new faint candidate dwarfs around the nearest elliptical Centaurus A (3.8 Mpc). The dwarfs were found via a systematic ground-based (Magellan/Megacam) survey out to ~150 kpc, designed to directly confront the "missing satellites" problem in a wholly new environment. Current Cold Dark Matter models for structure formation fail to reproduce the shallow slope of the satellite luminosity function in spiral-dominated groups for which dwarfs fainter than M_V<-14 have been surveyed (the Local Group and the nearby, interacting M81 group). Clusters of galaxies show a better agreement with cosmological predictions, suggesting an environmental dependence of the (poorly-understood) physical processes acting on the evolution of low mass galaxies (e.g., reionization). However, the luminosity function completeness for these rich environments quickly drops due to the faintness of the satellites and to the difficult cluster membership determination. We target a yet unexplored "intermediate" environment, a nearby group dominated by an elliptical galaxy, ideal due to its proximity: accurate (10%) distance determinations for its members can be derived from resolved stellar populations. The proposed observations of the candidate dwarfs will confirm their nature, group membership, and constrain their luminosities, metallicities, and star formation histories. We will obtain the first complete census of dwarf satellites of an elliptical down to an unprecedented M_V<-9. Our results will crucially constrain cosmological predictions for the faint end of the satellite luminosity function to achieve a more complete picture of the galaxy formation process.

  10. Alignments of galaxies within cosmic filaments from SDSS DR7

    International Nuclear Information System (INIS)

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C.

    2013-01-01

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  11. Alignments of galaxies within cosmic filaments from SDSS DR7

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youcai; Yang, Xiaohu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lei [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Van den Bosch, Frank C., E-mail: yczhang@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2013-12-20

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  12. On order and chaos in the mergers of galaxies

    Science.gov (United States)

    Vandervoort, Peter O.

    2018-03-01

    This paper describes a low-dimensional model of the merger of two galaxies. The governing equations are the complete sets of moment equations of the first and second orders derived from the collisionless Boltzmann equations representing the galaxies. The moment equations reduce to an equation governing the relative motion of the galaxies, tensor virial equations, and equations governing the kinetic energy tensors. We represent the galaxies as heterogeneous ellipsoids with Gaussian stratifications of their densities, and we represent the mean stellar motions in terms of velocity fields that sustain those densities consistently with the equation of continuity. We reduce and solve the governing equations for a head-on encounter of a dwarf galaxy with a giant galaxy. That reduction includes the effect of dynamical friction on the relative motion of the galaxies. Our criterion for chaotic behaviour is sensitivity of the motion to small changes in the initial conditions. In a survey of encounters and mergers of a dwarf galaxy with a giant galaxy, chaotic behaviour arises mainly in non-linear oscillations of the dwarf galaxy. The encounter disrupts the dwarf, excites chaotic oscillations of the dwarf, or excites regular oscillations. Dynamical friction can drive a merger to completion within a Hubble time only if the dwarf is sufficiently massive. The survey of encounters and mergers is the basis for a simple model of the evolution of a `Local Group' consisting of a giant galaxy and a population of dwarf galaxies bound to the giant as satellites on radial orbits.

  13. Simulations of galaxy mergers

    International Nuclear Information System (INIS)

    Villumsen, J.V.; Yale Univ., New Haven, CT

    1982-01-01

    A number of N-body simulations of mergers of equal and unequal galaxies are presented. A new code is presented which determines the potential from a mass distribution by a fourth-order expansion in Tesseral harmonics in three dimensions as an approximation to a collisionless system. The total number of particles in the system is 1200. Two galaxies, each a spherical non-rotating system with isothermal or Hubble density profile, are put in orbit around each other where tidal effects and dynamical friction lead to merging. The final system has a Hubble profile, and in some mergers an 'isothermal' halo forms as found in cD galaxies. Equal mass mergers are more flattened than unequal mass mergers. The central surface brightness decreases except in a merger of isothermal galaxies which shows a major redistribution of energy towards a Hubble profile. Mixing is severe in equal mass mergers, where radial gradients are weakened, while in unequal mass encounters gradients can build up due to less mixing and the formation of a halo. Oblate systems with strong rotation form in high angular momentum encounters while prolate systems with little rotation are formed in near head-on collisions. (author)

  14. Spherical galaxies.

    Science.gov (United States)

    Telles, J. E.; de Souza, R. E.; Penereiro, J. C.

    1990-11-01

    RESUMEN. Presentamos fotometria fotografica de 8 objetos y espectrosco- pla para 3 galaxias, las cuales son buenos candidatos para galaxias esfericas. Los resultados fotometricos se presentan en la forma de iso- fotas y de perfiles radiales promedlo, de los cuales se derivan para- metros estructurales. Estas observaciones combinadas con parametros di- namicos obtenidos de observaciones espectrosc6picas, son consistentes con el plano fundamental derivado por Djorgovski y Davis (1987). ABSTRACT. We present photographic surface photometry for 8 objects and spectroscopy for 3 galaxies which are good candidates for spherical galaxies. Photometric results are presented in the form of isophotes and mean radial profiles from which we derived structural parameters. These observations combined with dynamical parameters obtained from spectroscopic observations are consistent with the fundamental plane derived by Djorgovski and Davis (1987). Keq wo : CALAXIES-ELLIPTICAL

  15. Evaluation of expert systems - An approach and case study. [of determining software functional requirements for command management of satellites

    Science.gov (United States)

    Liebowitz, J.

    1985-01-01

    Techniques that were applied in defining an expert system prototype for first-cut evaluations of the software functional requirements of NASA satellite command management activities are described. The prototype was developed using the Knowledge Engineering System. Criteria were selected for evaluating the satellite software before defining the expert system prototype. Application of the prototype system is illustrated in terms of the evaluation procedures used with the COBE satellite to be launched in 1988. The limited number of options which can be considered by the program mandates that biases in the system output must be well understood by the users.

  16. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    Science.gov (United States)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-07-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z measurements of faint, background sources in the vicinity of bright satellite galaxies. We find a small but significant bias, as light from the lenses makes the shapes of background galaxies appear radially aligned with the lens. We account for this bias by applying a correction that depends on both lens size and magnitude. We also correct for contamination of the source sample by cluster members. We use a physically motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010 M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  17. HI-Selected Galaxies in Hierarchical Models of Galaxy Formation and Evolution

    Science.gov (United States)

    Zoldan, Anna

    2017-07-01

    This poster presents the main results of a statistical study of HI-selected galaxies based on six different semi-analytic models, all run on the same cosmological N-body simulation. One of these models includes an explicit treatment for the partition of cold gas into atomic and molecular hydrogen. All models considered agree nicely with the measured HI mass function in the local Universe and with the measured scaling relations between HI and galaxy stellar mass. Most models also reproduce the observed 2-point correlation function for HI rich galaxies, with the exception of one model that predicts very little HI associated with galaxies in haloes above 10^12 Msun. We investigated the influence of satellite treatment on the final HI content and found that it introduces large uncertainties at low HI masses. We found that the assumption of instantaneous stripping of hot gas in satellites does not translate necessarily in lower HI masses. We demonstrate that the assumed stellar feedback, combined with star formation, also affect significantly the gas content of satellite galaxies. Finally, we also analyse the origin of the correlation between HI content of model galaxies and the spin of the parent haloes. Zoldan et al., 2016, MNRAS, 465, 2236

  18. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    Science.gov (United States)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  19. The galaxy clustering crisis in abundance matching

    Science.gov (United States)

    Campbell, Duncan; van den Bosch, Frank C.; Padmanabhan, Nikhil; Mao, Yao-Yuan; Zentner, Andrew R.; Lange, Johannes U.; Jiang, Fangzhou; Villarreal, Antonio

    2018-06-01

    Galaxy clustering on small scales is significantly underpredicted by sub-halo abundance matching (SHAM) models that populate (sub-)haloes with galaxies based on peak halo mass, Mpeak. SHAM models based on the peak maximum circular velocity, Vpeak, have had much better success. The primary reason for Mpeak-based models fail is the relatively low abundance of satellite galaxies produced in these models compared to those based on Vpeak. Despite success in predicting clustering, a simple Vpeak-based SHAM model results in predictions for galaxy growth that are at odds with observations. We evaluate three possible remedies that could `save' mass-based SHAM: (1) SHAM models require a significant population of `orphan' galaxies as a result of artificial disruption/merging of sub-haloes in modern high-resolution dark matter simulations; (2) satellites must grow significantly after their accretion; and (3) stellar mass is significantly affected by halo assembly history. No solution is entirely satisfactory. However, regardless of the particulars, we show that popular SHAM models based on Mpeak cannot be complete physical models as presented. Either Vpeak truly is a better predictor of stellar mass at z ˜ 0 and it remains to be seen how the correlation between stellar mass and Vpeak comes about, or SHAM models are missing vital component(s) that significantly affect galaxy clustering.

  20. A statistical model for determining impact of wildland fires on Particulate Matter (PM₂.₅) in Central California aided by satellite imagery of smoke.

    Science.gov (United States)

    Preisler, Haiganoush K; Schweizer, Donald; Cisneros, Ricardo; Procter, Trent; Ruminski, Mark; Tarnay, Leland

    2015-10-01

    As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM2.5 concentrations at ground level monitors, especially those monitors used to determine attainment values for air quality under the Clean Air Act. Using PM2.5 monitoring data from a suite of monitors throughout the Central California area, we found a significant, but weak relationship between satellite-observed smoke plumes and PM2.5 concentrations measured at the surface. However, when combined with an autoregressive statistical model that uses weather and seasonal factors to identify thresholds for flagging unusual events at these sites, we found that the presence of smoke plumes could reliably identify periods of wildfire influence with 95% accuracy. Published by Elsevier Ltd.

  1. How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?

    International Nuclear Information System (INIS)

    Capelo, Pedro R; Natarajan, Priyamvada

    2007-01-01

    The redshift distribution of galaxy lenses in known gravitational lens systems provides a powerful test that can potentially discriminate amongst cosmological models. However, applications of this elegant test have been curtailed by two factors: our ignorance of how galaxies evolve with redshift, and the absence of methods to deal with the effect of incomplete information in lensing systems. In this paper, we investigate both issues in detail. We explore how to extract the properties of evolving galaxies, assuming that the cosmology is well determined by other techniques. We propose a new nested Monte Carlo method to quantify the effects of incomplete data. We apply the lens-redshift test to an improved sample of seventy lens systems derived from recent observations, primarily from the SDSS, SLACS and the CLASS surveys. We find that the limiting factor in applying the lens-redshift test derives from poor statistics, including incomplete information samples and biased sampling. Many lenses that uniformly sample the underlying true image separation distribution will be needed to use this test as a complementary method to measure the value of the cosmological constant or the properties of evolving galaxies. Planned future surveys by missions like the SNAP satellite or LSST are likely to usher in a new era for strong lensing studies that utilize this test. With expected catalogues of thousands of new strong lenses, the lens-redshift test could offer a powerful tool to probe cosmology as well as galaxy evolution

  2. How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?

    Energy Technology Data Exchange (ETDEWEB)

    Capelo, Pedro R [Astronomy Department, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States); Natarajan, Priyamvada [Astronomy Department, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States)

    2007-12-15

    The redshift distribution of galaxy lenses in known gravitational lens systems provides a powerful test that can potentially discriminate amongst cosmological models. However, applications of this elegant test have been curtailed by two factors: our ignorance of how galaxies evolve with redshift, and the absence of methods to deal with the effect of incomplete information in lensing systems. In this paper, we investigate both issues in detail. We explore how to extract the properties of evolving galaxies, assuming that the cosmology is well determined by other techniques. We propose a new nested Monte Carlo method to quantify the effects of incomplete data. We apply the lens-redshift test to an improved sample of seventy lens systems derived from recent observations, primarily from the SDSS, SLACS and the CLASS surveys. We find that the limiting factor in applying the lens-redshift test derives from poor statistics, including incomplete information samples and biased sampling. Many lenses that uniformly sample the underlying true image separation distribution will be needed to use this test as a complementary method to measure the value of the cosmological constant or the properties of evolving galaxies. Planned future surveys by missions like the SNAP satellite or LSST are likely to usher in a new era for strong lensing studies that utilize this test. With expected catalogues of thousands of new strong lenses, the lens-redshift test could offer a powerful tool to probe cosmology as well as galaxy evolution.

  3. A statistical model for determining impact of wildland fires on Particulate Matter (PM2.5) in Central California aided by satellite imagery of smoke

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Schweizer, Donald; Cisneros, Ricardo; Procter, Trent; Ruminski, Mark; Tarnay, Leland

    2015-01-01

    As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM 2.5 concentrations at ground level monitors, especially those monitors used to determine attainment values for air quality under the Clean Air Act. Using PM 2.5 monitoring data from a suite of monitors throughout the Central California area, we found a significant, but weak relationship between satellite-observed smoke plumes and PM 2.5 concentrations measured at the surface. However, when combined with an autoregressive statistical model that uses weather and seasonal factors to identify thresholds for flagging unusual events at these sites, we found that the presence of smoke plumes could reliably identify periods of wildfire influence with 95% accuracy. - Highlights: • Satellite observed smoke is useful for predicting wildfire impacts on Particulate Matter. • A metric was developed to flag ‘exceptional events’ days as defined by EPA. • We found significant impact of wildfires on PM 2.5 at various sites in Central California. • Fires in most years had no significant impact on compliance with EPA standards. - This work quantifies the skill of satellite observations of smoke plumes in predicting wildfire impacts on PM 2.5 concentrations at ground level monitors

  4. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  5. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Vigroux, Laurent

    1979-01-01

    This research thesis addresses theories on the chemical evolution of galaxies which aim at explaining abundances of different elements in galaxies, and more particularly aims at improving the model by modifying hypotheses. After a description of the simple model and of its uncertainties, the author shows how it is possible to understand the evolution of the main elements. Predictions obtained with this model are then compared with the present knowledge on galaxies by considering them according to an increasing complexity: Sun's neighbourhood, our galaxy, other spiral galaxies, elliptical galaxies, and finally galaxy clusters. A specific attention is given to irregular galaxies which are the simplest systems [fr

  6. The dark side of galaxy colour

    Science.gov (United States)

    Hearin, Andrew P.; Watson, Douglas F.

    2013-10-01

    We present age distribution matching, a theoretical formalism for predicting how galaxies of luminosity L and colour C occupy dark matter haloes. Our model supposes that there are just two fundamental properties of a halo that determine the colour and brightness of the galaxy it hosts: the maximum circular velocity Vmax and the redshift zstarve that correlates with the epoch at which the star formation in the galaxy ceases. The halo property zstarve is intended to encompass physical characteristics of halo mass assembly that may deprive the galaxy of its cold gas supply and, ultimately, quench its star formation. The new, defining feature of the model is that, at fixed luminosity, galaxy colour is in monotonic correspondence with zstarve, with the larger values of zstarve being assigned redder colours. We populate an N-body simulation with a mock galaxy catalogue based on age distribution matching and show that the resulting mock galaxy distribution accurately describes a variety of galaxy statistics. Our model suggests that halo and galaxy assembly are indeed correlated. We make publicly available our low-redshift, Sloan Digital Sky Survey Mr < -19 mock galaxy catalogue, and main progenitor histories of all z = 0 haloes, at http://logrus.uchicago.edu/~aphearin

  7. Could a Collision Between a Ghost Galaxy and the Milky Way be the Origin of the VPOS or DoS?

    Science.gov (United States)

    Bohórquez, O. A.; Casas, A. R.

    2018-01-01

    At present within the area of astrophysics there are a number of unresolved problems, including the origin of the satellite galaxies of the Milky Way. Most of these galaxies are characterized as dwarf spheroidal galaxies. The large majority of them is distributed in a disk-like structure which is arranged almost perpendicular to the plane of the Galaxy, this structure is known as disk of satellites (DoS) or Vast Polar structure of Satellite galaxies (VPoS). So far there is not a model that fully reproduces the amount and spatial distribution of these galaxies. However there have been several proposed for the solutions, one of which suggests that these originated in the collision of two disk galaxies billions of years ago. Using the Gadget2 software, we have performed N-bodies numerical simulations of the collision between two disk galaxies that could give rise to disk of Milky Way satellites.

  8. Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime: methodology, information, and forecasts

    OpenAIRE

    Wibking, Benjamin D.; Salcedo, Andrés N.; Weinberg, David H.; Garrison, Lehman H.; Ferrer, Douglas; Tinker, Jeremy; Eisenstein, Daniel; Metchnik, Marc; Pinto, Philip

    2017-01-01

    The combination of galaxy-galaxy lensing (GGL) with galaxy clustering is one of the most promising routes to determining the amplitude of matter clustering at low redshifts. We show that extending clustering+GGL analyses from the linear regime down to $\\sim 0.5 \\, h^{-1}$ Mpc scales increases their constraining power considerably, even after marginalizing over a flexible model of non-linear galaxy bias. Using a grid of cosmological N-body simulations, we construct a Taylor-expansion emulator ...

  9. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    Science.gov (United States)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  10. X-ray emssion from normal galaxies

    International Nuclear Information System (INIS)

    Speybroeck, L. van; Bechtold, J.

    1981-01-01

    A summary of results obtained with the Einstein Observatory is presented. There are two general categories of normal galaxy investigation being pursued - detailed studies of nearby galaxies where individual sources can be detected and possibly correlated with galactic morphology, and shorter observations of many more distant objects to determine the total luminosity distribution of normal galaxies. The principal examples of the first type are the CFA study of M31 and the Columbia study of the Large Magellanic Cloud. The Columbia normal galaxy survey is the principal example of the second type, although there also are smaller CFA programs concentrating on early galaxies and peculiar galaxies, and MIT has observed some members of the local group. (Auth.)

  11. The AGN Population in Nearby Galaxies

    International Nuclear Information System (INIS)

    Filho, Mercedes; Barthel, Peter; Ho, Luis

    2006-01-01

    In order to determine the incidence of black hole accretion-driven nuclear activity in nearby galaxies, we have compiled radio data for the LINERs, composite LINER,/Hn and Seyfert galaxies from a complete magnitude-limited sample of bright nearby galaxies (Palomar sample). Our results show an overall radio detection rate of 54% (22% of all bright nearby galaxies) and we estimate that at least ∼50% (∼20% of all bright nearby galaxies) are true AGN. By comparing the radio luminosity function of the LINERs, composite LINER/Hll and Seyferts galaxies in the Palomar sample with those of selected moderate-redshift AGN, we fhd that our sources naturally extend the radio luminosity function of powerful AGN down to powers of about 10 times that of Sgr A*

  12. Radio emission in peculiar galaxies

    Science.gov (United States)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  13. Investigations of Galaxy Clusters Using Gravitational Lensing

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Matthew P. [Northern Illinois Univ., DeKalb, IL (United States)

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  14. The reionization of galactic satellite populations

    Energy Technology Data Exchange (ETDEWEB)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Knebe, A.; Yepes, G. [Grupo de Astrofísica, Departamento de Fisica Teorica, Modulo C-8, Universidad Autónoma de Madrid, Cantoblanco E-280049 (Spain); Libeskind, N.; Gottlöber, S. [Leibniz-Institute für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Hoffman, Y. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-10-10

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z {sub r}) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  15. The reionization of galactic satellite populations

    International Nuclear Information System (INIS)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J.; Knebe, A.; Yepes, G.; Libeskind, N.; Gottlöber, S.; Hoffman, Y.

    2014-01-01

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z r ) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  16. EVOLUTION OF THE GALAXY-DARK MATTER CONNECTION AND THE ASSEMBLY OF GALAXIES IN DARK MATTER HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaohu; Zhang Youcai; Han Jiaxin [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Van den Bosch, Frank C., E-mail: xhyang@shao.ac.cn [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2012-06-10

    We present a new model to describe the galaxy-dark matter connection across cosmic time, which unlike the popular subhalo abundance-matching technique is self-consistent in that it takes account of the facts that (1) subhalos are accreted at different times and (2) the properties of satellite galaxies may evolve after accretion. Using observations of galaxy stellar mass functions (SMFs) out to z {approx} 4, the conditional SMF at z {approx} 0.1 obtained from Sloan Digital Sky Survey galaxy group catalogs, and the two-point correlation function (2PCF) of galaxies at z {approx} 0.1 as a function of stellar mass, we constrain the relation between galaxies and dark matter halos over the entire cosmic history from z {approx} 4 to the present. This relation is then used to predict the median assembly histories of different stellar mass components within dark matter halos (central galaxies, satellite galaxies, and halo stars). We also make predictions for the 2PCFs of high-z galaxies as function of stellar mass. Our main findings are the following: (1) Our model reasonably fits all data within the observational uncertainties, indicating that the {Lambda}CDM concordance cosmology is consistent with a wide variety of data regarding the galaxy population across cosmic time. (2) At low-z, the stellar mass of central galaxies increases with halo mass as M{sup 0.3} and M{sup {approx}>4.0} at the massive and low-mass ends, respectively. The ratio M{sub *,c}/M reveals a maximum of {approx}0.03 at a halo mass M {approx} 10{sup 11.8} h{sup -1} M{sub Sun }, much lower than the universal baryon fraction ({approx}0.17). At higher redshifts the maximum in M{sub *,c}/M remains close to {approx}0.03, but shifts to higher halo mass. (3) The inferred timescale for the disruption of satellite galaxies is about the same as the dynamical friction timescale of their subhalos. (4) The stellar mass assembly history of central galaxies is completely decoupled from the assembly history of its host

  17. Chemical analysis of the Fornax Dwarf galaxy

    NARCIS (Netherlands)

    Letarte, Bruno

    2007-01-01

    This thesis is entitled “Chemical Analysis of the Fornax Dwarf Galaxy”, and it’s main goal is to determine what are the chemical elements present in the stars of this galaxy in order to try and understand it’s evolution. Galaxies are not “static” objects, they move, form stars and can interact with

  18. ANGULAR-MOMENTUM IN BINARY SPIRAL GALAXIES

    NARCIS (Netherlands)

    OOSTERLOO, T

    In order to investigate the relative orientations of spiral galaxies in pairs, the distribution of the angle between the spin-vectors for a new sample of 40 binary spiral galaxies is determined. From this distribution it is found, contrary to an earlier result obtained by Helou (1984), that there is

  19. Star clusters in the Whirlpool Galaxy

    NARCIS (Netherlands)

    Scheepmaker, R.A.

    2009-01-01

    This thesis presents the results of observational studies of the star cluster population in the interacting spiral galaxy M51, also known as the Whirlpool galaxy. Observations taken by the Hubble Space Telescope in the optical and the near-UV are used to determine fundamental properties of the star

  20. Galaxy-galaxy lensing in EAGLE: comparison with data from 180 deg2 of the KiDS and GAMA surveys

    Science.gov (United States)

    Velliscig, Marco; Cacciato, Marcello; Hoekstra, Henk; Schaye, Joop; Heymans, Catherine; Hildebrandt, Hendrik; Loveday, Jon; Norberg, Peder; Sifón, Cristóbal; Schneider, Peter; van Uitert, Edo; Viola, Massimo; Brough, Sarah; Erben, Thomas; Holwerda, Benne W.; Hopkins, Andrew M.; Kuijken, Konrad

    2017-11-01

    We present predictions for the galaxy-galaxy lensing (GGL) profile from the EAGLE hydrodynamical cosmological simulation at redshift z = 0.18, in the spatial range 0.02 < R/(h- 1 Mpc) < 2, and for five logarithmically equispaced stellar mass bins in the range 10.3 < log10(Mstar/ M⊙) < 11.8. We compare these excess surface density profiles to the observed signal from background galaxies imaged by the Kilo Degree Survey around spectroscopically confirmed foreground galaxies from the Galaxy And Mass Assembly (GAMA) survey. Exploiting the GAMA galaxy group catalogue, the profiles of central and satellite galaxies are computed separately for groups with at least five members to minimize contamination. EAGLE predictions are in broad agreement with the observed profiles for both central and satellite galaxies, although the signal is underestimated at R ≈ 0.5-2 h- 1 Mpc for the highest stellar mass bins. When central and satellite galaxies are considered simultaneously, agreement is found only when the selection function of lens galaxies is taken into account in detail. Specifically, in the case of GAMA galaxies, it is crucial to account for the variation of the fraction of satellite galaxies in bins of stellar mass induced by the flux-limited nature of the survey. We report the inferred stellar-to-halo mass relation and we find good agreement with recent published results. We note how the precision of the GGL profiles in the simulation holds the potential to constrain fine-grained aspects of the galaxy-dark matter connection.

  1. Water Quality Determination of Küçükçekmece Lake, Turkey by Using Multispectral Satellite Data

    Directory of Open Access Journals (Sweden)

    Erhan Alparslan

    2009-01-01

    Full Text Available This study focuses on the analysis of the Landsat-5 TM + SPOT-Pan (1992, IRS-1C/D LISS + Pan (2000, and Landsat-5 TM (2006 satellite images that reflect the drastic land use/land cover changes in the Küçükçekmece Lake region, Istanbul. Landsat-5 TM satellite data dated 2006 was used for mapping water quality. A multiple regression analysis was carried out between the unitless planetary reflectance values derived from the satellite image and in situ water quality parameters chlorophyll a, total phosphorus, total nitrogen, turbidity, and biological and chemical oxygen demand measured at a number of stations homogenously distributed over the lake surface. The results of this study provided valuable information to local administrators on the water quality of Küçükçekmece Lake, which is a large water resource of the Istanbul Metropolitan Area. Results also show that such a methodology structured by use of reflectance values provided from satellite imagery, in situ water quality measurements, and basin land use/land cover characteristics obtained from images can serve as a powerful and rapid monitoring tool for the drinking water basins that suffer from rapid urbanization and pollution, all around the world.

  2. ARCHANGEL: Galaxy Photometry System

    Science.gov (United States)

    Schombert, James

    2011-07-01

    ARCHANGEL is a Unix-based package for the surface photometry of galaxies. While oriented for large angular size systems (i.e. many pixels), its tools can be applied to any imaging data of any size. The package core contains routines to perform the following critical galaxy photometry functions: sky determination; frame cleaning; ellipse fitting; profile fitting; and total and isophotal magnitudes. The goal of the package is to provide an automated, assembly-line type of reduction system for galaxy photometry of space-based or ground-based imaging data. The procedures outlined in the documentation are flux independent, thus, these routines can be used for non-optical data as well as typical imaging datasets. ARCHANGEL has been tested on several current OS's (RedHat Linux, Ubuntu Linux, Solaris, Mac OS X). A tarball for installation is available at the download page. The main routines are Python and FORTRAN based, therefore, a current installation of Python and a FORTRAN compiler are required. The ARCHANGEL package also contains Python hooks to the PGPLOT package, an XML processor and network tools which automatically link to data archives (i.e. NED, HST, 2MASS, etc) to download images in a non-interactive manner.

  3. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Prat, J.; et al.

    2016-09-26

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited ($i_{AB} < 22.5$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($z\\sim0.3$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $b\\cdot r$ to be $0.87\\pm 0.11$, $1.12 \\pm 0.16$ and $1.24\\pm 0.23$, respectively for the three redshift bins of width $\\Delta z = 0.2$ in the range $0.2galaxy sample, except possibly at the lowest redshift bin ($z\\sim 0.3$), where we find $r = 0.71 \\pm 0.11$ when using TPZ, and $0.83 \\pm 0.12$ with BPZ, assuming the difference between the results from the two probes can be solely attributed to the cross-correlation parameter.

  4. Near-infrared photometry of bright elliptical galaxies

    NARCIS (Netherlands)

    Peletier, R. F.; Valentijn, E. A.; Jameson, R. F.

    High-quality visual-infrared color profiles have been determined for elliptical galaxies for the first time. Surface photometry in J and K is presented for 12 bright elliptical galaxies, and the results have been combined with CCD data in visual passbands. It is shown that the galaxies become bluer

  5. Determining the best phenological state for accurate mapping of Phragmites australis in wetlands using time series multispectral satellite data

    Science.gov (United States)

    Rupasinghe, P. A.; Markle, C. E.; Marcaccio, J. V.; Chow-Fraser, P.

    2017-12-01

    Phragmites australis (European common reed), is a relatively recent invader of wetlands and beaches in Ontario. It can establish large homogenous stands within wetlands and disperse widely throughout the landscape by wind and vehicular traffic. A first step in managing this invasive species includes accurate mapping and quantification of its distribution. This is challenging because Phragimtes is distributed in a large spatial extent, which makes the mapping more costly and time consuming. Here, we used freely available multispectral satellite images taken monthly (cloud free images as available) for the calendar year to determine the optimum phenological state of Phragmites that would allow it to be accurately identified using remote sensing data. We analyzed time series, Landsat-8 OLI and Sentinel-2 images for Big Creek Wildlife Area, ON using image classification (Support Vector Machines), Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). We used field sampling data and high resolution image collected using Unmanned Aerial Vehicle (UAV; 8 cm spatial resolution) as training data and for the validation of the classified images. The accuracy for all land cover classes and for Phragmites alone were low at both the start and end of the calendar year, but reached overall accuracy >85% by mid to late summer. The highest classification accuracies for Landsat-8 OLI were associated with late July and early August imagery. We observed similar trends using the Sentinel-2 images, with higher overall accuracy for all land cover classes and for Phragmites alone from late July to late September. During this period, we found the greatest difference between Phragmites and Typha, commonly confused classes, with respect to near-infrared and shortwave infrared reflectance. Therefore, the unique spectral signature of Phragmites can be attributed to both the level of greenness and factors related to water content in the leaves during late

  6. New Fast Lane towards Discoveries of Clusters of Galaxies Inaugurated

    Science.gov (United States)

    2003-07-01

    Space and Ground-Based Telescopes Cooperate to Gain Deep Cosmological Insights Summary Using the ESA XMM-Newton satellite, a team of European and Chilean astronomers [2] has obtained the world's deepest "wide-field" X-ray image of the cosmos to date. This penetrating view, when complemented with observations by some of the largest and most efficient ground-based optical telescopes, including the ESO Very Large Telescope (VLT), has resulted in the discovery of several large clusters of galaxies. These early results from an ambitious research programme are extremely promising and pave the way for a very comprehensive and thorough census of clusters of galaxies at various epochs. Relying on the foremost astronomical technology and with an unequalled observational efficiency, this project is set to provide new insights into the structure and evolution of the distant Universe. PR Photo 19a/03: First image from the XMM-LSS survey. PR Photo 19b/03: Zoom-in on PR Photo 19b/03. PR Photo 19c/03: XMM-Newton contour map of the probable extent of a cluster of galaxies, superimposed upon a CHFT I-band image. PR Photo 19d/03: Velocity distribution in the cluster field shown in PR Photo 19c/03. The universal web Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies which themselves congregate into clusters (and even clusters of clusters). These clusters are "strung" throughout the Universe in a web-like structure, cf. ESO PR 11/01. Our Galaxy, the Milky Way, for example, belongs to the so-called Local Group which also comprises "Messier 31", the Andromeda Galaxy. The Local Group contains about 30 galaxies and measures a few million light-years across. Other clusters are much larger. The Coma cluster contains thousands of galaxies and measures more than 20 million light-years. Another well known example is the Virgo cluster, covering no less than 10 degrees on the sky ! Clusters of galaxies are the most

  7. Resonantly produced 7 keV sterile neutrino dark matter models and the properties of Milky Way satellites.

    Science.gov (United States)

    Abazajian, Kevork N

    2014-04-25

    Sterile neutrinos produced through a resonant Shi-Fuller mechanism are arguably the simplest model for a dark matter interpretation of the origin of the recent unidentified x-ray line seen toward a number of objects harboring dark matter. Here, I calculate the exact parameters required in this mechanism to produce the signal. The suppression of small-scale structure predicted by these models is consistent with Local Group and high-z galaxy count constraints. Very significantly, the parameters necessary in these models to produce the full dark matter density fulfill previously determined requirements to successfully match the Milky Way Galaxy's total satellite abundance, the satellites' radial distribution, and their mass density profile, or the "too-big-to-fail problem." I also discuss how further precision determinations of the detailed properties of the candidate sterile neutrino dark matter can probe the nature of the quark-hadron transition, which takes place during the dark matter production.

  8. Dwarf Spheroidal Satellite Formation in a Reionized Local Group

    OpenAIRE

    Milosavljevic, Milos; Bromm, Volker

    2013-01-01

    Dwarf spheroidal satellite galaxies have emerged a powerful probe of small-scale dark matter clustering and of cosmic reionization. They exhibit structural and chemical continuity with dwarf irregular galaxies in the field and with spheroidal galaxies in high-density environments. By combining empirical constraints derived for star formation at low gas column densities and metallicities in the local universe with a model for dark matter and baryonic mass assembly, we provide an analytical des...

  9. TURBULENCE AND STAR FORMATION IN A SAMPLE OF SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Erin; Chien, Li-Hsin [Department of Physics and Astronomy, Northern Arizona University 527 S Beaver Street, Flagstaff, AZ 86011 (United States); Hunter, Deidre A., E-mail: erin-maier@uiowa.edu, E-mail: Lisa.Chien@nau.edu, E-mail: dah@lowell.edu [Lowell Observatory 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  10. In-flight performance analysis of MEMS GPS receiver and its application to precise orbit determination of APOD-A satellite

    Science.gov (United States)

    Gu, Defeng; Liu, Ye; Yi, Bin; Cao, Jianfeng; Li, Xie

    2017-12-01

    An experimental satellite mission termed atmospheric density detection and precise orbit determination (APOD) was developed by China and launched on 20 September 2015. The micro-electro-mechanical system (MEMS) GPS receiver provides the basis for precise orbit determination (POD) within the range of a few decimetres. The in-flight performance of the MEMS GPS receiver was assessed. The average number of tracked GPS satellites is 10.7. However, only 5.1 GPS satellites are available for dual-frequency navigation because of the loss of many L2 observations at low elevations. The variations in the multipath error for C1 and P2 were estimated, and the maximum multipath error could reach up to 0.8 m. The average code noises are 0.28 m (C1) and 0.69 m (P2). Using the MEMS GPS receiver, the orbit of the APOD nanosatellite (APOD-A) was precisely determined. Two types of orbit solutions are proposed: a dual-frequency solution and a single-frequency solution. The antenna phase center variations (PCVs) and code residual variations (CRVs) were estimated, and the maximum value of the PCVs is 4.0 cm. After correcting the antenna PCVs and CRVs, the final orbit precision for the dual-frequency and single-frequency solutions were 7.71 cm and 12.91 cm, respectively, validated using the satellite laser ranging (SLR) data, which were significantly improved by 3.35 cm and 25.25 cm. The average RMS of the 6-h overlap differences in the dual-frequency solution between two consecutive days in three dimensions (3D) is 4.59 cm. The MEMS GPS receiver is the Chinese indigenous onboard receiver, which was successfully used in the POD of a nanosatellite. This study has important reference value for improving the MEMS GPS receiver and its application in other low Earth orbit (LEO) nanosatellites.

  11. Fundamental Properties of the SHIELD Galaxies

    Science.gov (United States)

    Cannon, John; Adams, Betsey; Giovanelli, Riccardo; Haynes, Martha; Jones, Michael; McQuinn, Kristen; Rhode, Katherine; Salzer, John; Skillman, Evan

    2018-05-01

    The ALFALFA survey has significantly advanced our knowledge of the HI mass function (HIMF), particularly at the low mass end. From the ALFALFA survey, we have constructed a sample of all of the galaxies with HI masses less than 20 million solar masses. Observations of this 82 galaxy sample allow, for the first time, a characterization of the lowest HI mass galaxies at redshift zero. Specifically, this sample can be used to determine the low HI-mass ends of various fundamental scaling relations, including the critical baryonic Tully Fisher relation (BTFR) and the mass-metallicity (M-Z) relation. The M-Z relation and the BTFR are cosmologically important, but current samples leave the low-mass parameter spaces severely underpopulated. A full understanding of these relationships depends critically on accurate stellar masses of this complete sample of uniformly-selected galaxies. Here, we request imaging of the 70 galaxies in our sample that have not been observed with Spitzer. The proposed imaging will allow us to measure stellar masses and inclinations of the sample galaxies using a uniform observational approach. Comparison with (existing and in progress) interferometric HI imaging and with ground-based optical imaging and spectroscopy will enable a robust mass decomposition in each galaxy and accurate placements on the aforementioned scaling relationships. The observations proposed here will allow us to populate the mass continuum between mini-halos and bona fide dwarf galaxies, and to address a range of fundamental questions in galaxy formation and near-field cosmology.

  12. Are star formation rates of galaxies bimodal?

    Science.gov (United States)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  13. A relationship of polycyclic aromatic hydrocarbon features with galaxy merger in star-forming galaxies at z < 0.2

    Science.gov (United States)

    Murata, Katsuhiro L.; Yamada, Rika; Oyabu, Shinki; Kaneda, Hidehiro; Ishihara, Daisuke; Yamagishi, Mitsuyoshi; Kokusho, Takuma; Takeuchi, Tsutomu T.

    2017-11-01

    Using the AKARI, Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), Sloan Digital Sky Survey (SDSS) and Hubble Space Telescope (HST) data, we investigated the relation of polycyclic aromatic hydrocarbon (PAH) mass (MPAH), very small grain mass (MVSG), big grain mass (MBG) and stellar mass (Mstar) with galaxy merger for 55 star-forming galaxies at redshift z 0.1, we divided the galaxies into merger galaxies and non-merger galaxies with the morphological parameter asymmetry A, and quantified merging stages of galaxies based on the morphological indicators, the second-order momentum of the brightest 20 per cent region M20 and the Gini coefficient. We find that MPAH/MBG of merger galaxies tend to be lower than that of non-merger galaxies and there are no systematic differences of MVSG/MBG and MBG/Mstar between merger galaxies and non-merger galaxies. We find that galaxies with very low MPAH/MBG seem to be merger galaxies at late stages. These results suggest that PAHs are partly destroyed at late stages of merging processes. Furthermore, we investigated MPAH/MBG variations in radiation field intensity strength G0 and the emission line ratio of [O I] λ 6300/Hα that is a shock tracer for merger galaxies and find that MPAH/MBG decreases with increasing both G0 and [O I]/Hα. PAH destruction is likely to be caused by two processes: strong radiation fields and large-scale shocks during merging processes of galaxies.

  14. Evolution of Hot Gas in Elliptical Galaxies

    Science.gov (United States)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  15. Galaxy angular momentum

    International Nuclear Information System (INIS)

    Thompson, L.A.

    1974-01-01

    In order to test the theories which purport to explain the origin of galaxy angular momentum, this study presents new data for about 1000 individual galaxies in eight rich clusters. The clusters which are studied include Virgo, A 119, A 400, A 1656 (Coma), A 2147, A 2151 (Hercules), A 2197, and A 2199. Selected samples of these data are used to investigate systematic alignment effects in clusters of galaxies and to investigate the intrinsic ellipticities of E, SO, and spiral galaxies. The following new results are reported: Galaxies in the cluster A 2197 show a significant alignment effect (chi 2 probability less than 0.0002), and the preferential direction of alignment corresponds approximately to the major axis of the overall cluster elongation. None of the other seven clusters show any significant alignment trends. The spiral galaxy samples in four clusters (Virgo, A 1656, A 2151, and A 2197) were large enough to analyze the number distributions of forward and reverse winding spirals. Large and small spiral galaxies have identical ellipticity distributions. Large E and SO galaxies tend to be more spherical, and small E and SO galaxies more flattened. The intrinsic ellipticities of E, SO, and spiral galaxies are the same for galaxies in the ''field'' and for galaxies in rich clusters. Six models of galaxy formation are reviewed, and the major []mphasis is placed on how each model explains the origin of galaxy angular momentum. (Diss. Abstr. Int., B)

  16. Polar ring galaxies in the Galaxy Zoo

    Science.gov (United States)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  17. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  18. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngsoo [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Krause, Elisabeth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Jain, Bhuvnesh [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Amara, Adam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Becker, Matt [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bridle, Sarah [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Clampitt, Joseph [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Crocce, Martin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gaztanaga, Enrique [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sanchez, Carles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wechsler, Risa [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  19. Where do galaxies end?

    Energy Technology Data Exchange (ETDEWEB)

    Shull, J. Michael, E-mail: michael.shull@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309, USAAND (United States); Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom)

    2014-04-01

    Our current view of galaxies considers them as systems of stars and gas embedded in extended halos of dark matter, much of it formed by the infall of smaller systems at earlier times. The true extent of a galaxy remains poorly determined, with the 'virial radius' (R {sub vir}) providing a characteristic separation between collapsed structures in dynamical equilibrium and external infalling matter. Other physical estimates of the extent of gravitational influence include the gravitational radius, gas accretion radius, and 'galactopause' arising from outflows that stall at 100-200 kpc over a range of outflow parameters and confining gas pressures. Physical criteria are proposed to define bound structures, including a more realistic definition of R {sub vir}(M {sub *}, M{sub h} , z{sub a} ) for stellar mass M {sub *} and halo mass M{sub h} , half of which formed at 'assembly redshifts' ranging from z{sub a} ≈ 0.7-1.3. We estimate the extent of bound gas and dark matter around L* galaxies to be ∼200 kpc. The new virial radii, with mean (R {sub vir}) ≈ 200 kpc, are 40%-50% smaller than values estimated in recent Hubble Space Telescope/Cosmic Origins Spectrograph detections of H I and O VI absorbers around galaxies. In the new formalism, the Milky Way stellar mass, log M {sub *} = 10.7 ± 0.1, would correspond to R{sub vir}=153{sub −16}{sup +25} kpc for half-mass halo assembly at z{sub a} = 1.06 ± 0.03. The frequency per unit redshift of low-redshift O VI absorption lines in QSO spectra suggests absorber sizes ∼150 kpc when related to intervening 0.1L* galaxies. This formalism is intended to clarify semantic differences arising from observations of extended gas in galactic halos, circumgalactic medium (CGM), and filaments of the intergalactic medium (IGM). Astronomers should refer to bound gas in the galactic halo or CGM, and unbound gas at the CGM-IGM interface, on its way into the IGM.

  20. THE ORIGIN OF DUST IN EARLY-TYPE GALAXIES AND IMPLICATIONS FOR ACCRETION ONTO SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Paul [Department of Astronomy and Center for Cosmology and Astroparticle Physics, The Ohio State University, Columbus, OH 43210 (United States); Dicken, Daniel [Institut de Astrophysique Spatiale, Paris (France); Storchi-Bergmann, Thaisa [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Caixa Postal 15051, 91501-970 Porto Alegre, RS (Brazil)

    2013-04-01

    We have conducted an archival Spitzer study of 38 early-type galaxies in order to determine the origin of the dust in approximately half of this population. Our sample galaxies generally have good wavelength coverage from 3.6 {mu}m to 160 {mu}m, as well as visible-wavelength Hubble Space Telescope (HST) images. We use the Spitzer data to estimate dust masses, or establish upper limits, and find that all of the early-type galaxies with dust lanes in the HST data are detected in all of the Spitzer bands and have dust masses of {approx}10{sup 5}-10{sup 6.5} M{sub Sun }, while galaxies without dust lanes are not detected at 70 {mu}m and 160 {mu}m and typically have <10{sup 5} M{sub Sun} of dust. The apparently dust-free galaxies do have 24 {mu}m emission that scales with the shorter-wavelength flux, yet substantially exceeds the expectations of photospheric emission by approximately a factor of three. We conclude this emission is dominated by hot, circumstellar dust around evolved stars that does not survive to form a substantial interstellar component. The order-of-magnitude variations in dust masses between galaxies with similar stellar populations rule out a substantial contribution from continual, internal production in spite of the clear evidence for circumstellar dust. We demonstrate that the interstellar dust is not due to purely external accretion, unless the product of the merger rate of dusty satellites and the dust lifetime is at least an order of magnitude higher than expected. We propose that dust in early-type galaxies is seeded by external accretion, yet the accreted dust is maintained by continued growth in externally accreted cold gas beyond the nominal lifetime of individual grains. The several Gyr depletion time of the cold gas is long enough to reconcile the fraction of dusty early-type galaxies with the merger rate of gas-rich satellites. As the majority of dusty early-type galaxies are also low-luminosity active galactic nuclei and likely fueled

  1. Formation of galaxies

    International Nuclear Information System (INIS)

    Szalay, A.S.

    1984-12-01

    The present theories of galaxy formation are reviewed. The relation between peculiar velocities and the correlation function of galaxies points to the possibility that galaxies do not form uniformly everywhere. Scale invariant properties of the cluster-cluster correlations are discussed. Comparing the correlation functions in a dimensionless way, galaxies appear to be stronger clustered, in contrast with the comparison of the dimensional amplitudes of the correlation functions. Theoretical implications of several observations as Lyman-α clouds, correlations of faint galaxies are discussed. None of the present theories of galaxy formation can account for all facts in a natural way. 29 references

  2. THE STELLAR MASS COMPONENTS OF GALAXIES: COMPARING SEMI-ANALYTICAL MODELS WITH OBSERVATION

    International Nuclear Information System (INIS)

    Liu Lei; Yang Xiaohu; Mo, H. J.; Van den Bosch, Frank C.; Springel, Volker

    2010-01-01

    We compare the stellar masses of central and satellite galaxies predicted by three independent semi-analytical models (SAMs) with observational results obtained from a large galaxy group catalog constructed from the Sloan Digital Sky Survey. In particular, we compare the stellar mass functions of centrals and satellites, the relation between total stellar mass and halo mass, and the conditional stellar mass functions, Φ(M * |M h ), which specify the average number of galaxies of stellar mass M * that reside in a halo of mass M h . The SAMs only predict the correct stellar masses of central galaxies within a limited mass range and all models fail to reproduce the sharp decline of stellar mass with decreasing halo mass observed at the low mass end. In addition, all models over-predict the number of satellite galaxies by roughly a factor of 2. The predicted stellar mass in satellite galaxies can be made to match the data by assuming that a significant fraction of satellite galaxies are tidally stripped and disrupted, giving rise to a population of intra-cluster stars (ICS) in their host halos. However, the amount of ICS thus predicted is too large compared to observation. This suggests that current galaxy formation models still have serious problems in modeling star formation in low-mass halos.

  3. ROSAT Discovers Unique, Distant Cluster of Galaxies

    Science.gov (United States)

    1995-06-01

    Brightest X-ray Cluster Acts as Strong Gravitational Lens Based on exciting new data obtained with the ROSAT X-ray satellite and a ground-based telescope at the ESO La Silla Observatory, a team of European astronomers [2] has just discovered a very distant cluster of galaxies with unique properties. It emits the strongest X-ray emission of any cluster ever observed by ROSAT and is accompanied by two extraordinarily luminous arcs that represent the gravitationally deflected images of even more distant objects. The combination of these unusual characteristics makes this cluster, now known as RXJ1347.5-1145, a most interesting object for further cosmological studies. DISCOVERY AND FOLLOW-UP OBSERVATIONS This strange cluster of galaxies was discovered during the All Sky Survey with the ROSAT X-ray satellite as a moderately intense X-ray source in the constellation of Virgo. It could not be identified with any already known object and additional ground-based observations were therefore soon after performed with the Max-Planck-Society/ESO 2.2-metre telescope at the La Silla observatory in Chile. These observations took place within a large--scale redshift survey of X-ray clusters of galaxies detected by the ROSAT All Sky Survey, a so-called ``ESO Key Programme'' led by astronomers from the Max-Planck-Institut fur Extraterrestrische Physik and the Osservatorio Astronomico di Brera. The main aim of this programme is to identify cluster X-ray sources, to determine the distance to the X-ray emitting clusters and to investigate their overall properties. These observations permitted to measure the redshift of the RXJ1347.5-1145 cluster as z = 0.45, i.e. it moves away from us with a velocity (about 106,000 km/sec) equal to about one-third of the velocity of light. This is an effect of the general expansion of the universe and it allows to determine the distance as about 5,000 million light-years (assuming a Hubble constant of 75 km/sec/Mpc). In other words, we see these

  4. Satellite constellation design and radio resource management using genetic algorithm.

    OpenAIRE

    Asvial, Muhamad.

    2003-01-01

    A novel strategy for automatic satellite constellation design with satellite diversity is proposed. The automatic satellite constellation design means some parameters of satellite constellation design can be determined simultaneously. The total number of satellites, the altitude of satellite, the angle between planes, the angle shift between satellites and the inclination angle are considered for automatic satellite constellation design. Satellite constellation design is modelled using a mult...

  5. The Importance of Preventive Feedback: Inference from Observations of the Stellar Masses and Metallicities of Milky Way Dwarf Galaxies

    OpenAIRE

    Lu, Yu; Benson, Andrew; Wetzel, Andrew; Mao, Yao-Yuan; Tonnesen, Stephanie; Peter, Annika H. G.; Boylan-Kolchin, Michael; Wechsler, Risa H.

    2017-01-01

    © 2017. The American Astronomical Society. All rights reserved. Dwarf galaxies are known to have remarkably low star formation efficiency due to strong feedback. Adopting the dwarf galaxies of the Milky Way (MW) as a laboratory, we explore a flexible semi-analytic galaxy formation model to understand how the feedback processes shape the satellite galaxies of the MW. Using Markov Chain Monte Carlo, we exhaustively search a large parameter space of the model and rigorously show that the general...

  6. PAndAS' CUBS: DISCOVERY OF TWO NEW DWARF GALAXIES IN THE SURROUNDINGS OF THE ANDROMEDA AND TRIANGULUM GALAXIES

    International Nuclear Information System (INIS)

    Martin, Nicolas F.; McConnachie, Alan W.; Irwin, Mike; Chapman, Scott; Widrow, Lawrence M.; Ferguson, Annette M. N.; Ibata, Rodrigo A.; Dubinski, John; Babul, Arif; Navarro, Julio; Fardal, Mark; Lewis, Geraint F.; Rich, R. Michael

    2009-01-01

    We present the discovery of two new dwarf galaxies, Andromeda XXI and Andromeda XXII, located in the surroundings of the Andromeda and Triangulum galaxies (M31 and M33). These discoveries stem from the first year data of the Pan-Andromeda Archaeological Survey, a photometric survey of the M31/M33 group conducted with the Megaprime/MegaCam Wide-Field Camera mounted on the Canada-France-Hawaii Telescope. Both satellites appear as spatial overdensities of stars which, when plotted in a color-magnitude diagram, follow metal-poor, [Fe/H] = -1.8, red giant branches at the distance of M31/M33. Andromeda XXI is a moderately bright dwarf galaxy (M V = -9.9 ± 0.6), albeit with low surface brightness, emphasizing again that many relatively luminous M31 satellites still remain to be discovered. It is also a large satellite, with a half-light radius close to 1 kpc, making it the fourth largest Local Group dwarf spheroidal galaxy after the recently discovered Andromeda XIX, Andromeda II, and Sagittarius around the Milky Way, and supports the trend that M31 satellites are larger than their Milky Way counterparts. Andromeda XXII is much fainter (M V = -6.5 ± 0.8) and lies a lot closer in projection to M33 than it does to M31 (42 versus 224 kpc), suggesting that it could be the first Triangulum satellite to be discovered. Although this is a very exciting possibility in the context of a past interaction of M33 with M31 and the fate of its satellite system, a confirmation will have to await a good distance estimate to confirm its physical proximity to M33. Along with the dwarf galaxies found in previous surveys of the M31 surroundings, these two new satellites bring the number of dwarf spheroidal galaxies in this region to 20.

  7. INTRINSIC ALIGNMENT OF CLUSTER GALAXIES: THE REDSHIFT EVOLUTION

    International Nuclear Information System (INIS)

    Hao Jiangang; Kubo, Jeffrey M.; Feldmann, Robert; Annis, James; Johnston, David E.; Lin Huan; McKay, Timothy A.

    2011-01-01

    We present measurements of two types of cluster galaxy alignments based on a volume limited and highly pure (≥90%) sample of clusters from the GMBCG catalog derived from Data Release 7 of the Sloan Digital Sky Survey (SDSS DR7). We detect a clear brightest cluster galaxy (BCG) alignment (the alignment of major axis of the BCG toward the distribution of cluster satellite galaxies). We find that the BCG alignment signal becomes stronger as the redshift and BCG absolute magnitude decrease and becomes weaker as BCG stellar mass decreases. No dependence of the BCG alignment on cluster richness is found. We can detect a statistically significant (≥3σ) satellite alignment (the alignment of the major axes of the cluster satellite galaxies toward the BCG) only when we use the isophotal fit position angles (P.A.s), and the satellite alignment depends on the apparent magnitudes rather than the absolute magnitudes of the BCGs. This suggests that the detected satellite alignment based on isophotal P.A.s from the SDSS pipeline is possibly due to the contamination from the diffuse light of nearby BCGs. We caution that this should not be simply interpreted as non-existence of the satellite alignment, but rather that we cannot detect them with our current photometric SDSS data. We perform our measurements on both SDSS r-band and i-band data, but do not observe a passband dependence of the alignments.

  8. A galaxy lacking dark matter.

    Science.gov (United States)

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-28

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio M halo /M stars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 10 10 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052-DF2, which has a stellar mass of approximately 2 × 10 8 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 10 8 solar masses. This implies that the ratio M halo /M stars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052-DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  9. A galaxy lacking dark matter

    Science.gov (United States)

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J.; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-01

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio Mhalo/Mstars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 1010 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052–DF2, which has a stellar mass of approximately 2 × 108 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 108 solar masses. This implies that the ratio Mhalo/Mstars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052–DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  10. Kinematic Modeling of Distant Galaxies

    Directory of Open Access Journals (Sweden)

    Kipper Rain

    2012-12-01

    Full Text Available Evolution of galaxies is one of the most actual topics in astrophysics. Among the most important factors determining the evolution are two galactic components which are difficult or even impossible to detect optically: the gaseous disks and the dark matter halo. We use deep Hubble Space Telescope images to construct a two-component (bulge + disk model for stellar matter distribution of galaxies. Properties of the galactic components are derived using a three-dimensional galaxy modeling software, which also estimates disk thickness and inclination angle. We add a gas disk and a dark matter halo and use hydrodynamical equations to calculate gas rotation and dispersion profiles in the resultant gravitational potential. We compare the kinematic profiles with the Team Keck Redshift Survey observations. In this pilot study, two galaxies are analyzed deriving parameters for their stellar components; both galaxies are found to be disk-dominated. Using the kinematical model, the gas mass and stellar mass ratio in the disk are estimated.

  11. Characterising and identifying galaxy protoclusters

    Science.gov (United States)

    Lovell, Christopher C.; Thomas, Peter A.; Wilkins, Stephen M.

    2018-03-01

    We study the characteristics of galaxy protoclusters using the latest L-GALAXIES semi-analytic model. Searching for protoclusters on a scale of ˜10 cMpc gives an excellent compromise between the completeness and purity of their galaxy populations, leads to high distinction from the field in overdensity space, and allows accurate determination of the descendant cluster mass. This scale is valid over a range of redshifts and selection criteria. We present a procedure for estimating, given a measured galaxy overdensity, the protocluster probability and its descendant cluster mass for a range of modelling assumptions, particularly taking into account the shape of the measurement aperture. This procedure produces lower protocluster probabilities compared to previous estimates using fixed size apertures. The relationship between active galactic nucleus (AGN) and protoclusters is also investigated and shows significant evolution with redshift; at z ˜ 2, the fraction of protoclusters traced by AGN is high, but the fraction of all AGNs in protoclusters is low, whereas at z ≥ 5 the fraction of protoclusters containing AGN is low, but most AGNs are in protoclusters. We also find indirect evidence for the emergence of a passive sequence in protoclusters at z ˜ 2, and note that a significant fraction of all galaxies reside in protoclusters at z ≥ 2, particularly the most massive.

  12. Globular Clusters for Faint Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    .The most striking feature of these galaxies, however, is that they are surrounded by a large number of compact objects that appear to be globular clusters. From the observations, Van Dokkum and collaborators estimate that Dragonfly 44 and DFX1 have approximately 74 and 62 globulars, respectively significantly more than the low numbers expected for galaxies of this luminosity.Armed with this knowledge, the authors went back and looked at archival observations of 14 other UDGs also located in the Coma cluster. They found that these smaller and fainter galaxies dont host quite as many globular clusters as Dragonfly 44 and DFX1, but more than half also show significant overdensities of globulars.Main panel: relation between the number of globular clusters and total absolute magnitude for Coma UDGs (solid symbols) compared to normal galaxies (open symbols). Top panel: relation between effective radius and absolute magnitude. The UDGs are significantly larger and have more globular clusters than normal galaxies of the same luminosity. [van Dokkum et al. 2017]Evidence of FailureIn general, UDGs appear to have more globular clusters than other galaxies of the same total luminosity, by a factor of nearly 7. These results are consistent with the scenario in which UDGs are failed galaxies: they likely have the halo mass to have formed a large number of globular clusters, but they were quenched before they formed a disk and bulge. Because star formation never got going in UDGs, they are now much dimmer than other galaxies of the same size.The authors suggest that the next step is to obtain dynamical measurements of the UDGs to determine whether these faint galaxies really do have the halo mass suggested by their large numbers of globulars. Future observations will continue to help us pin down the origin of these dim giants.CitationPieter van Dokkum et al 2017 ApJL 844 L11. doi:10.3847/2041-8213/aa7ca2

  13. Global extinction in spiral galaxies

    NARCIS (Netherlands)

    Tully, RB; Pierce, MJ; Saunders, W; Verheijen, MAW; Witchalls, PL

    Magnitude-limited samples of spiral galaxies drawn from the Ursa Major and Pisces Clusters are used to determine their extinction properties as a function of inclination. Imaging photometry is available for 87 spirals in the B, R, I, and K' bands. Extinction causes systematic scatter in

  14. Percolation technique for galaxy clustering

    Science.gov (United States)

    Klypin, Anatoly; Shandarin, Sergei F.

    1993-01-01

    We study percolation in mass and galaxy distributions obtained in 3D simulations of the CDM, C + HDM, and the power law (n = -1) models in the Omega = 1 universe. Percolation statistics is used here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or cellular type. The very fast code used calculates the statistics of clusters along with the direct detection of percolation. We found that the two parameters mu(infinity), characterizing the size of the largest cluster, and mu-squared, characterizing the weighted mean size of all clusters excluding the largest one, are extremely useful for evaluating the percolation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribution. The percolation thresholds for the mass distributions are determined.

  15. Hydride Molecules towards Nearby Galaxies

    Science.gov (United States)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  16. The Eccentric Satellites Problem: Comparing Milky Way Satellite Orbital Properties to Simulation Results

    Science.gov (United States)

    Haji, Umran; Pryor, Carlton; Applebaum, Elaad; Brooks, Alyson

    2018-01-01

    We compare the orbital properties of the satellite galaxies of the Milky Way to those of satellites found in simulated Milky Way-like systems as a means of testing cosmological simulations of galaxy formation. The particular problem that we are investigating is a discrepancy in the distribution of orbital eccentricities. Previous studies of Milky Way-mass systems analyzed in a semi-analytic ΛCDM cosmological model have found that the satellites tend to have significantly larger fractions of their kinetic energy invested in radial motion with respect to their central galaxy than do the real-world Milky Way satellites. We analyze several high-resolution ("zoom-in") hydrodynamical simulations of Milky Way-mass galaxies and their associated satellite systems to investigate why previous works found Milky Way-like systems to be rare. We find a possible relationship between a quiescent galactic assembly history and a distribution of satellite kinematics resembling that of the Milky Way. This project has been supported by funding from National Science Foundation grant PHY-1560077.

  17. Sulphur, zinc and carbon in the Sculptor dwarf spheroidal galaxy

    OpenAIRE

    Skúladóttir, Ása

    2016-01-01

    The Sculptor dwarf spheroidal galaxy is a Milky Way satellite with predominantly old stellar population, and therefore the ideal target to study early chemical evolution. The chemical abundances of photospheres of stars reveal the composition of their birth environment; studying stars of different ages, therefore, provides insight into the chemical enrichment history of the galaxy in which they dwell. High-resolution spectra of 100 stars were used to further explore the chemical enrichment hi...

  18. The Taxonomy of Blue Amorphous Galaxies. I. Hα and UBVI Data

    Science.gov (United States)

    Marlowe, Amanda T.; Meurer, Gerhardt R.; Heckman, Timothy M.; Schommer, Robert

    1997-10-01

    Dwarf galaxies play an important role in our understanding of galaxy formation and evolution. We have embarked on a systematic study of 12 nearby dwarf galaxies (most of which have been classified as amorphous) selected preferentially by their blue colors. The properties of the galaxies in the sample suggest that they are in a burst or postburst state. It seems likely that these amorphous galaxies are closely related to other ``starburst'' dwarfs such as blue compact dwarfs (BCDs) and H II galaxies but are considerably closer and therefore easier to study. If so, these galaxies may offer important insights into dwarf galaxy evolution. In an effort to clarify the role of starbursts in evolutionary scenarios for dwarf galaxies, we present Hα and UBVI data for our sample. Blue amorphous galaxies, like BCDs and H II galaxies, have surface brightness profiles that are exponential in the outer regions (r >~ 1.5re) but have a predominantly blue central excess, which suggests a young burst in an older, redder galaxy. Seven of the galaxies have the bubble or filamentary Hα morphology and double-peaked emission lines that are the signature of superbubbles or superwind activity. These galaxies are typically the ones with the strongest central excesses. The underlying exponential galaxies are very similar to those found in BCDs and H II galaxies. How amorphous galaxies fit into the dwarf irregular-``starburst dwarf''-dwarf elliptical evolutionary debate is less clear. In this paper, we present our data and make some preliminary comparisons between amorphous galaxies and other classes of dwarf galaxies. In a future companion paper, we will compare this sample more quantitatively with other dwarf galaxy samples in an effort to determine if amorphous galaxies are a physically different class of object from other starburst dwarfs such as BCDs and H II galaxies and also investigate their place in dwarf galaxy evolution scenarios.

  19. Determining the area of influence of depression cone in the vicinity of lignite mine by means of triangle method and LANDSAT TM/ETM+ satellite images.

    Science.gov (United States)

    Zawadzki, Jarosław; Przeździecki, Karol; Miatkowski, Zygmunt

    2016-01-15

    Problems with lowering of water table are common all over the world. Intensive pumping of water from aquifers for consumption, irrigation, industrial or mining purposes often causes groundwater depletion and results in the formation of cone of depression. This can severely decrease water pressure, even over vast areas, and can create severe problems such as degradation of agriculture or natural environment sometimes depriving people and animals of water supply. In this paper, the authors present a method for determining the area of influence of a groundwater depression cone resulting from prolonged drainage, by means of satellite images in optical, near infrared and thermal infrared bands from TM sensor (Thematic Mapper) and ETM+ sensor (Enhanced Thematic Mapper +) placed on Landsat 5 and Landsat 7 satellites. The research area was Szczercowska Valley (Pol. Kotlina Szczercowska), Central Poland, located within a range of influence of a groundwater drainage system of the lignite coal mine in Belchatow. It is the biggest lignite coal mine in Poland and one of the largest in Europe exerting an enormous impact on the environment. The main method of satellite data analysis for determining soil moisture, was the so-called triangle method. This method, based on TVDI (Temperature Vegetation Dryness Index) was supported by additional spatial analysis including ordinary kriging used in order to combine fragmentary information obtained from areas covered by meadows. The results obtained are encouraging and confirm the usefulness of the triangle method not only for soil moisture determination but also for assessment of the temporal and spatial changes in the area influenced by the groundwater depression cone. The range of impact of the groundwater depression cone determined by means of above-described remote sensing analysis shows good agreement with that determined by ground measurements. The developed satellite method is much faster and cheaper than in-situ measurements

  20. Dark Galaxies and Lost Baryons (IAU S244)

    Science.gov (United States)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    ; Numerical simulation of the dwarf companions of giant galaxies A. Nelson and P. Williams; Delayed galaxies C. Struck, M. Hancock, B. Smith, P. Appleton, V. Charmandaris and M. Giroux; Probe of dark galaxies via disturbed/lopsided isolated galaxies I. Karachentsev, V. Karachentseva, W. Huchtmeier, D. Makarov and S. Kaisin; Star formation thresholds J. Schaye; Scaling relations of dwarf galaxies without supernova-driven winds K. Tassis, A. Kravtsov and N. Gnedin; Star formation in massive low surface brightness galaxies K. O'Neil; Linking clustering properties and the evolution of low surface brightness galaxies D. Bomans and S. Rosenbaum; Too small to form a galaxy: how the UV background determines the baryon fraction M. Hoeft, G. Yepes and S. Gottlober; Star formation in damped Lyman selected galaxies L. Christensen; Dark-matter content of early-type galaxies with planetary nebulae N. Napolitano et al.; Hunting for ghosts: low surface brightnesses from pixels R. Scaramella and S. Sabatini; Baryonic properties of the darkest galaxies E. Grebel; The dwarf low surface brightness population in different environments of the local universe S. Sabatini, J. Davies, S. Roberts and R. Scaramella; Mass modelling of dwarf spheroidal galaxies J. Klimentowski et al.; Evolution of dwarf galaxies in the Centaurus A Group L. Makarova and D. Makarov; A flat faint end of the Fornax cluster galaxy luminosity function S. Mieske, M. Hilker, L. Infante and C. Mendes de Oliveira; Can massive dark halos destroy the discs of dwarf galaxies? B. Fuchs and O. Esquivel; 'Dark galaxies' and local very metal-poor gas-rich galaxies: possible interrelations S. Pustilnik; Morphology and environment of dwarf galaxies in the local universe H. Ann; Arecibo survey of HI emission from disk galaxies at redshift z 0.2 B. Catinella, M. Haynes, J. Gardner, A. Connolly and R. Giovanelli; AGES observations of

  1. A Subaru galaxy redshift survey: WFMOS survey

    International Nuclear Information System (INIS)

    Takada, M

    2008-01-01

    A planned galaxy redshift survey with the Subaru 8.2m telescope, the WFMOS survey, offers a unique opportunity for probing detailed properties of large-scale structure formation in the expanding universe by measuring clustering strength of galaxy distribution as a function of distance scale and redshift. In particular, the precise measurement of the galaxy power spectrum, combined with the cosmic microwave background experiments, allows us to obtain stringent constraints on or even determine absolute mass scales of the Big-Bang relic neutrinos as the neutrinos imprint characteristic scale- and redshift-dependent modifications onto the galaxy power spectrum shape. Here we describe the basic concept of how the galaxy clustering measurement can be used to explore the neutrino masses, with particular emphasis on advantages of the WFMOS survey over the existing low-redshift surveys such as SDSS

  2. Clusters of Galaxies

    Science.gov (United States)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  3. Cosmology and galaxy formation

    International Nuclear Information System (INIS)

    Rees, M.J.

    1977-01-01

    Implications of the massive halos and ''missing mass'' for galaxy formation are addressed; it is suggested that this mass consists of ''Population III'' stars that formed before the galaxies did. 19 references

  4. Multiwavelength Mapping of Galaxy Formation and Evolution

    CERN Document Server

    Renzini, Alvio; ESO Workshop

    2005-01-01

    The possibilities of astronomical observation have dramatically increased over the last decade. Major satellites, like the Hubble Space Telescope, Chandra and XMM Newton, are complemented by numerous large ground-based observatories, from 8m-10m optical telescopes to sub-mm and radio facilities. As a result, observational astronomy has access to virtually the whole electromagnetic spectrum of galaxies, even at high redshifts. Theoretical models of galaxy formation and cosmological evolution now face a serious challenge to match the plethora of observational data. In October 2003, over 170 astronomers from 15 countries met for a 4-day workshop to extensively illustrate and discuss all major observational projects and ongoing theoretical efforts to model galaxy formation and evolution. This volume contains the complete proceedings of this meeting and is therefore a unique and timely overview of the current state of research in this rapidly evolving field.

  5. The three phases of galaxy formation

    Science.gov (United States)

    Clauwens, Bart; Schaye, Joop; Franx, Marijn; Bower, Richard G.

    2018-05-01

    We investigate the origin of the Hubble sequence by analysing the evolution of the kinematic morphologies of central galaxies in the EAGLE cosmological simulation. By separating each galaxy into disc and spheroidal stellar components and tracing their evolution along the merger tree, we find that the morphology of galaxies follows a common evolutionary trend. We distinguish three phases of galaxy formation. These phases are determined primarily by mass, rather than redshift. For M* ≲ 109.5M⊙ galaxies grow in a disorganised way, resulting in a morphology that is dominated by random stellar motions. This phase is dominated by in-situ star formation, partly triggered by mergers. In the mass range 109.5M⊙ ≲ M* ≲ 1010.5M⊙ galaxies evolve towards a disc-dominated morphology, driven by in-situ star formation. The central spheroid (i.e. the bulge) at z = 0 consists mostly of stars that formed in-situ, yet the formation of the bulge is to a large degree associated with mergers. Finally, at M* ≳ 1010.5M⊙ growth through in-situ star formation slows down considerably and galaxies transform towards a more spheroidal morphology. This transformation is driven more by the buildup of spheroids than by the destruction of discs. Spheroid formation in these galaxies happens mostly by accretion at large radii of stars formed ex-situ (i.e. the halo rather than the bulge).

  6. THE ZURICH ENVIRONMENTAL STUDY OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. I. WHICH ENVIRONMENT AFFECTS GALAXY EVOLUTION?

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, C. Marcella; Cibinel, Anna; Lilly, Simon J.; Miniati, Francesco; Cameron, Ewan; Peng, Yingjie; Pipino, Antonio; Rudick, Craig S. [Institute for Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland); Norberg, Peder [Department of Physics, Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Silverman, John D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, Chiba 277-8583 (Japan); Van Gorkom, Jacqueline [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Finoguenov, Alexis, E-mail: marcella@phys.ethz.ch [Max-Planck-Institut für extraterrestrische Physik, D-84571 Garching (Germany)

    2013-10-20

    The Zurich Environmental Study (ZENS) is based on a sample of ∼1500 galaxy members of 141 groups in the mass range ∼10{sup 12.5-14.5} M{sub ☉} within the narrow redshift range 0.05 < z < 0.0585. ZENS adopts novel approaches, described here, to quantify four different galactic environments, namely: (1) the mass of the host group halo; (2) the projected halo-centric distance; (3) the rank of galaxies as central or satellites within their group halos; and (4) the filamentary large-scale structure density. No self-consistent identification of a central galaxy is found in ∼40% of <10{sup 13.5} M{sub ☉} groups, from which we estimate that ∼15% of groups at these masses are dynamically unrelaxed systems. Central galaxies in relaxed and unrelaxed groups generally have similar properties, suggesting that centrals are regulated by their mass and not by their environment. Centrals in relaxed groups have, however, ∼30% larger sizes than in unrelaxed groups, possibly due to accretion of small satellites in virialized group halos. At M > 10{sup 10} M{sub ☉}, satellite galaxies in relaxed and unrelaxed groups have similar size, color, and (specific) star formation rate distributions; at lower galaxy masses, satellites are marginally redder in relaxed relative to unrelaxed groups, suggesting quenching of star formation in low-mass satellites by physical processes active in relaxed halos. Overall, relaxed and unrelaxed groups show similar stellar mass populations, likely indicating similar stellar mass conversion efficiencies. In the enclosed ZENS catalog, we publish all environmental diagnostics as well as the galaxy structural and photometric measurements described in companion ZENS papers II and III.

  7. A study of environmental effects on galaxy spin using MaNGA data

    Science.gov (United States)

    Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun

    2018-06-01

    We investigate environmental effects on galaxy spin using the recent public data of Mapping Nearby Galaxies at APO (MaNGA) integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large-scale (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.

  8. Tidal interaction of galaxies

    International Nuclear Information System (INIS)

    Kozlov, N.N.; Syunyaev, R.A.; Ehneev, T.M.

    1974-01-01

    One of the hypotheses explaining the occurrence of anomalous details in interacting galaxies has been investigated. Pairs of galaxies with 'tails' oppositely directed or neighbouring galaxies with cofferdams 'bridges', as if connecting the galaxies, are called interacting galaxies. The hypothesis connects the origin of cofferdams and 'tails' of interacting galaxies with tidal effects ; the action of power gravitational forces in the intergalactic space. A source of such forces may be neighbouring stellar systems or invisible bodies, for instance, 'dead' quasars after a gravitational collapse. The effect of large masses of matter on the galaxy evolution has been investigated in the Institute of Applied Mathematics of the Academy of Sciences of the USSSR in 1971-1972 by numerical simulation of the process on a digital computer with the subsequent data transmission on a display. Different versions of a massive body flight relative to a galaxy disk are considered. Photographs of a display screen at different moments of time are presented. As a result of mathematical simulation of galaxies gravitational interactions effects are discovered which resemble real structures in photographs of galaxies. It seems to be premature to state that namely these mechanisms cause the formation of 'tails' and cofferdams between galaxies. However, even now it is clear that the gravitational interaction strongly affects the dynamics of the stellar system evolution. Further studies should ascertain a true scale of this effect and its genuine role in galaxy evolution

  9. Enhancing the view of a million galaxies

    Science.gov (United States)

    2004-06-01

    archive already includes radio maps that further extend the range of wavelengths covered by the survey and provide information on the powerful quasars, the centres of distant galaxies which are releasing large amounts of energy. Although the SXDS data are already a treasure trove of information, their scientific value will multiply when planned observations at wavelengths that complement the existing data are concluded. These include ultraviolet, infrared and sub-millimetre images as well as optical spectra from a wide range of international facilities. In five years, when the survey is scheduled to be complete, the SXDS should allow astronomers to place strong constraints on the cosmological models that determine the ultimate fate of the Universe, providing insights into both its past and future. Note to Editors The coordinated release issued by the National Astronomical Observatory of Japan can be found at the following address: http://soaps.naoj.org More on the Subaru/XMM-Newton Deep Survey The SXDS is a project of international collaboration involving astronomers from the National Astronomical Observatory of Japan, Tokyo, Japan, the University of Tokyo, Japan, the Institute of Space and Astronautical Science, Sagamihara, Japan, the University of Durham, United Kingdom, and Tohoku University, Sendai, Japan, working in close collaboration with the XMM-Newton Survey Science Centre led by the University of Leicester, United Kingdom. For more information about the SXDS project and the data please visit: http://www.naoj.org/Science/SubaruProject/SDS Direct public access to the XMM-Newton data is also possible at: http://xmm.vilspa.esa.es/external/xmm_data_acc/xsa/index.shtml More about XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is

  10. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  11. Morphological survey of bar, lens, and ring components in galaxies: Secular evolution in galaxy structure

    International Nuclear Information System (INIS)

    Kormendy, J.

    1979-01-01

    A morphological survey of barred galaxies is made to investigate the frequency of occurrence, nature, and size distributions of bars, lenses, inner and outer rings, and global spiral structure. The 121 brightest available barred galaxies are examined on Sky Survey copy plates, and on deeper and larger-scale plates, with the following main results.1. Lenses and inner rings are components of major importance in barred galaxies, occurring, respectively, in 54% of SBO--SBa, and 76% of SBab--SBc galaxies. Few early-type galaxies have rings; almost no late-type ones have lenses.2. There is an intimate connection between bars and lenses: in 17 of 20 galaxies with both components, the bar exactly fills the lens in one dimension.3. We suggest that lenses originate as bars, through an unknown process which makes some bars evolve away to a nearly axisymmetric state. Several properties of the proposed process are deduced. We emphasize the possible importance of internal processes of secular evolution in galaxy structure.4. Several galaxies, notably NGC 3945, seem to have strongly triaxial bulge components.5. Inner rings are round. Lenses tend to be slightly triaxial, flattened ellipsoids, with a preferred equatorial axis ratio of approx.0.9 +- 0.05. Most outer rings are prolate, the shortest dimension being the one filled by the bar.6. The sizes of bars, rings, and lenses are well correlated with the absolute magnitude of the galaxy, such that the mean surface brightness is constant for each morphological type. The form of the correlation M/sub B/+5 log D= constant is such that these diameters cannot be used as distance indicators. We show that the galaxy mass determines the bar size uniquely.7. Spiral structure in SB galaxies is distorted to resemble inner and outer rings, showing that the arms feel the potential of the bar. Also, of 61 survey galaxies with spiral structure, 55 have global patterns usually interpreted as density waves

  12. Mobile System for the Measurement of Dose Rates with locations determined by means of satellite positioning technology

    International Nuclear Information System (INIS)

    Baeza, A.; Rio, L.M. del; Macias, J.A.; Vasco, J.

    1998-01-01

    Our laboratory has been developing and implementing a Real Time Radiological Warning Network around the Almaraz Nuclear Power Plant since 1990. It consists of six gamma dosimetry stations, two devices for the detection of radio-iodines and alpha, beta, and gamma emissions in air, a monitor for the continuous measurement of gamma radiation in water, and two basic meteorological stations. In this context, we have developed a mobile station endowed with a device for the measurement of dose rates which uses satellite positioning technology (GPS) so that it can be located remotely. The information gathered is sent back to our central laboratory in real/or deferred time through the digital mobile telephone network. A twofold utility is foreseen for this station: (a) action in the case of a radiological alert situation detected by our network, and (b) the performance of radiological-dosimetric studies of distant geographical zones. (Author)

  13. 卫星轨道Kalman滤波稳健估计%obust Kalman Filtering for Satellite Orbit Determination

    Institute of Scientific and Technical Information of China (English)

    文援兰; 王威; 杨元喜

    2001-01-01

    Kalman filtering is affected by the gross error that is inevitable in the observation of satellite. First robust kalman filtering is derived and its robustness is analyzed, then the observations of Lageos is processed. It verifies that robust kalman filtering has the capability to resist the gross error.%卫星观测数据中不可避免地存在着粗差,一般的Kalman滤波易受观测粗差的影响。首先推导Kalman滤波稳健估计公式,并分析了它的稳健性。然后用Kalman滤波稳健估计对Lageos卫星的激光实测资料进行了处理,证明它具有明显的抗粗差的能力和稳健性。

  14. Stellar Velocity Dispersion: Linking Quiescent Galaxies to their Dark Matter Halos

    OpenAIRE

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-01-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This prop...

  15. Determination of the spiral Galaxy structure parameters based on neutral hydrogen radiowave radiation in 21 cm line. 2. Nonlinear theory. 30 deg <= |l| <= 60 deg

    International Nuclear Information System (INIS)

    Berman, V.G.; Mishurov, Yu.N.

    1980-01-01

    Gas flow and its density distribution in the Galaxy spiral arm gravitational potential is calculated by means of the nonlinear theory. Line profile of H I emission in 21 cm based on the Galaxy spiral structure models proposed by Lin and Marochnik are constructed for the galactic coordinates 30 deg < or approximately |l| < or approximately 60 deg. It is shown that the conclusion about the possibility of agreement of the Marochnik model with observations made by means of the linear theory is confirmed in the nonlinear theory. In the Marochnik model distributions with R H II regions, CO-clouds, γ-radiation, supernova remnants and so on may also be understood connecting them with variation of gas compression in galactic shock with H radius

  16. Investigating nearby star-forming galaxies in the ultraviolet with HST/COS spectroscopy. I. Spectral analysis and interstellar abundance determinations

    International Nuclear Information System (INIS)

    James, B. L.; Aloisi, A.; Sohn, S. T.; Wolfe, M. A.; Heckman, T.

    2014-01-01

    This is the first in a series of three papers describing a project with the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure abundances of the neutral interstellar medium (ISM) in a sample of nine nearby star-forming galaxies. The goal is to assess the (in)homogeneities of the multiphase ISM in galaxies where the bulk of metals can be hidden in the neutral phase, yet the metallicity is inferred from the ionized gas in the H II regions. The sample, spanning a wide range in physical properties, is to date the best suited to investigate the metallicity behavior of the neutral gas at redshift z = 0. ISM absorption lines were detected against the far-ultraviolet spectra of the brightest star-forming region(s) within each galaxy. Here we report on the observations, data reduction, and analysis of these spectra. Column densities were measured by a multicomponent line-profile fitting technique, and neutral-gas abundances were obtained for a wide range of elements. Several caveats were considered, including line saturation, ionization corrections, and dust depletion. Ionization effects were quantified with ad hoc CLOUDY models reproducing the complex photoionization structure of the ionized and neutral gas surrounding the UV-bright sources. An 'average spectrum of a redshift z = 0 star-forming galaxy' was obtained from the average column densities of unsaturated profiles of neutral-gas species. This template can be used as a powerful tool for studies of the neutral ISM at both low and high redshift.

  17. Planck intermediate results XXV. The Andromeda galaxy as seen by Planck

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    2015-01-01

    The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spir...

  18. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  19. Indirect research of dark matter toward dwarf galaxies with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Dumas, Alexis

    2014-01-01

    The first part of this document summarizes the astrophysical arguments to suppose the existence of dark matter. The cosmological model γCDM is presented as well as the concept of cross section of dark matter self-annihilation. Dwarf galaxies satellites of the Milky Way, the sources of our study are introduced into a second chapter. After recalling the large structures that make up the universe, the issues related to dwarf galaxies are addressed: missing satellites problem, distribution of dark matter density within them and tidal forces due to the Milky Way. The second part discusses the modeling of the dark matter density in dwarf galaxies. The methodology, using the Jeans equation and dispersion of projected stars velocities, is presented. Three dark matter profiles are retained: NFW, Burkert and Einasto and fifteen dwarf galaxies. Neutrino production during the self-annihilation of dark matter is then addressed. The energy spectra of neutrinos are generated with PYTHIA software and compared with other results for the galactic center. Twenty-three assumptions of mass dark matter candidates are chosen, ranging from 25 GeV/c 2 100 TeV/c 2 . Five self-annihilation channels are selected for analysis: b - b, W + W - T + T - μ + μ - νμ νμ. The third part includes a presentation of the detector used for the study, the ANTARES neutrino telescope. Three reconstruction algorithms developed and used in collaboration are also detailed: AAFIT, BBFit and GridFit. The analysis of data ANTARES aimed to find a neutrinos excess characteristic of dark matter self-annihilation is summarized in the sixth and final chapter. No excess was observed, a limit on the cross section of dark matter self-annihilation was determined. (author)

  20. Interstellar matter in Shapley-Ames elliptical galaxies. IV. A diffusely distributed component of dust and its effect on colour gradients.

    Science.gov (United States)

    Goudfrooij, P.; de Jong, T.

    1995-06-01

    We have investigated IRAS far-infrared observations of a complete, blue magnitude limited sample of 56 elliptical galaxies selected from the Revised Shapley-Ames Catalog. Data from a homogeneous optical CCD imaging survey as well as published X-ray data from the EINSTEIN satellite are used to constrain the infrared data. Dust masses as determined from the IRAS flux densities are found to be roughly an order of magnitude higher than those determined from optical extinction values of dust lanes and patches, in strong contrast with the situation in spiral galaxies. This "mass discrepancy" is found to be independent of the (apparent) inclination of the dust lanes. To resolve this dilemma we postulate that the majority of the dust in elliptical galaxies exists as a diffusely distributed component of dust which is undetectable at optical wavelengths. Using observed radial optical surface brightness profiles, we have systematically investigated possible heating mechanisms for the dust within elliptical galaxies. We find that heating of the dust in elliptical galaxies by the interstellar radiation field is generally sufficient to account for the dust temperatures as indicated by the IRAS flux densities. Collisions of dust grains with hot electrons in elliptical galaxies which are embedded in a hot, X-ray-emitting gas is found to be another effective heating mechanism for the dust. Employing model calculations which involve the transfer of stellar radiation in a spherical distribution of stars mixed with a diffuse distribution of dust, we show that the observed infrared luminosities imply total dust optical depths of the postulated diffusely distributed dust component in the range 0.1<~τ_V_<~0.7 and radial colour gradients 0.03<~{DELTA}(B-I)/{DELTA}log r<~0.25. The observed IRAS flux densities can be reproduced within the 1σ uncertainties in virtually all ellipticals in this sample by this newly postulated dust component, diffusely distributed over the inner few kpc of

  1. Demographics of Starbursts in Nearby Seyfert Galaxies

    Science.gov (United States)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.; Heckman, T.

    2002-12-01

    We investigate the frequency of circumnuclear starbursts in Seyfert galaxies using medium-resolution H and K band spectroscopy. An unbiased sample of ~20 nearby Seyfert galaxies was observed at the KeckII telescope with an average seeing of ~0.7''. Preliminary analysis shows strong stellar absorption lines for most galaxies in our sample. Comparison of stellar equivalent widths in the H and K band will allow us to determine the average age of the dominating stellar population. Evidence for an age trend with Seyfert type would provide a strong hint toward a starburst/AGN connection.

  2. Masses of galaxies and the greatest redshifts of quasars

    Energy Technology Data Exchange (ETDEWEB)

    Hills, J G [Illinois Univ., Urbana (USA)

    1977-04-01

    The outer parts of a typical galaxy follows an R/sup -2/ density distribution which results in the collapse time of its protogalaxy being proportional to its mass. Since quasars probably occur in the nuclei of galaxies which can only form after the collapse of their parent galaxies, their greatest observed redshift, Zsub(max), is largely determined by the mass, Msub(t), of a typical protogalaxy. The observed Zsub(max) of quasars indicates that Msub(t) = 1 x 10/sup 12/ solar masses. This mass is consistent with the masses of galaxies found in recent dynamical studies. It indicates that most of the mass in a typical galaxy is in the halo lying beyond the familiar optically-bright core, but the mass of a standard galaxy is still only 0.3 of that required for galaxies alone to close the universe.

  3. Density wave theory and the classification of spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Roberts, M.S.; Shu, F.H.

    1975-01-01

    Axisymmetric models of disk galaxies taken together with the density wave theory allow us to distinguish and categorize spiral galaxies by means of two fundamental galactic parameters: the total mass of the galaxy, divided by a characteristic dimension; and the degree of concentration of mass toward the galactic center. These two parameters govern the strength of the galactic shocks in the interstellar gas and the geometry of the spiral wave pattern. In turn, the shock strength and the theoretical pitch angle of the spiral arms play a major role in determining the degree of development of spiral structure in a galaxy and its Hubble type. The application of these results to 24 external galaxies demonstrates that the categorization of galaxies according to this theoretical framework correlates well with the accepted classification of these galaxies within the observed sequences of luminosity class and Hubble type

  4. Galaxy Zoo: dust in spiral galaxies star

    OpenAIRE

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anze; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-01-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24 276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 mag for the ugri passbands (estimating 0.3 mag of extinction in z band). We split the sample into ‘bulgy’ (early-type) and ‘discy’ (late-typ...

  5. A Study of Environmental Effects on Galaxy Spin Using MaNGA Data

    Science.gov (United States)

    Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun

    2018-03-01

    We investigate environmental effects on galaxy spin using the recent public data of MaNGA integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large- (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.

  6. Determining the Uncertainties in Prescribed Burn Emissions Through Comparison of Satellite Estimates to Ground-based Estimates and Air Quality Model Evaluations in Southeastern US

    Science.gov (United States)

    Odman, M. T.; Hu, Y.; Russell, A. G.

    2016-12-01

    Prescribed burning is practiced throughout the US, and most widely in the Southeast, for the purpose of maintaining and improving the ecosystem, and reducing the wildfire risk. However, prescribed burn emissions contribute significantly to the of trace gas and particulate matter loads in the atmosphere. In places where air quality is already stressed by other anthropogenic emissions, prescribed burns can lead to major health and environmental problems. Air quality modeling efforts are under way to assess the impacts of prescribed burn emissions. Operational forecasts of the impacts are also emerging for use in dynamic management of air quality as well as the burns. Unfortunately, large uncertainties exist in the process of estimating prescribed burn emissions and these uncertainties limit the accuracy of the burn impact predictions. Prescribed burn emissions are estimated by using either ground-based information or satellite observations. When there is sufficient local information about the burn area, the types of fuels, their consumption amounts, and the progression of the fire, ground-based estimates are more accurate. In the absence of such information satellites remain as the only reliable source for emission estimation. To determine the level of uncertainty in prescribed burn emissions, we compared estimates derived from a burn permit database and other ground-based information to the estimates by the Biomass Burning Emissions Product derived from a constellation of NOAA and NASA satellites. Using these emissions estimates we conducted simulations with the Community Multiscale Air Quality (CMAQ) model and predicted trace gas and particulate matter concentrations throughout the Southeast for two consecutive burn seasons (2015 and 2016). In this presentation, we will compare model predicted concentrations to measurements at monitoring stations and evaluate if the differences are commensurate with our emission uncertainty estimates. We will also investigate if

  7. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  8. The height variation of supergranular velocity fields determined from simultaneous OSO 8 satellite and ground-based observations

    Science.gov (United States)

    November, L. J.; Toomre, J.; Gebbie, K. B.; Simon, G. W.

    1979-01-01

    Results are reported for simultaneous satellite and ground-based observations of supergranular velocities in the sun, which were made using a UV spectrometer aboard OSO 8 and a diode-array instrument operating at the exit slit of an echelle spectrograph attached to a vacuum tower telescope. Observations of the steady Doppler velocities seen toward the limb in the middle chromosphere and the photosphere are compared; the observed spectral lines of Si II at 1817 A and Fe I at 5576 A are found to differ in height of formation by about 1400 km. The results show that supergranular motions are able to penetrate at least 11 density scale heights into the middle chromosphere, that the patterns of motion correlate well with the cellular structure seen in the photosphere, and that the motion increases from about 800 m/s in the photosphere to at least 3000 m/s in the middle chromosphere. These observations imply that supergranular velocities should be evident in the transition region and that strong horizontal shear layers in supergranulation should produce turbulence and internal gravity waves.

  9. The accuracy of satellite radar altimeter data over the Greenland ice sheet determined from airborne laser data

    DEFF Research Database (Denmark)

    Bamber, J.L.; Ekholm, Simon; Krabill, W.

    1998-01-01

    with airborne laser altimeter data an absolute accuracy typically in the range 2-10 cm +/- 10 cm. Comparison of differences between the radar and laser derived elevations, showed a correlation with surface slope. The difference between the two data sets ranged from 84 cm +/- 79 cm for slopes below 0.1 degrees......The 336 days of the geodetic phase of ERS-1 provides dense coverage, by satellite radar altimetry, of the whole of the Greenland ice sheet. These data have been used to produce a digital elevation model of the ice sheet. The errors present in the altimeter data were investigated via a comparison......, to 10.3 m +/- 8.4 m for a slope of 0.7 degrees ( the half power beam-width of the ERS-1 radar altimeter). An explanation for the behaviour of the difference as a function of surface slope is given in terms of the pattern of surface roughness on the ice sheet....

  10. Mass of the spirals galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Maupome, L; Pismis, P; Aguilar, L [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    In an earlier paper we have found that the total mass of galaxies-especially of the spirals-based on values published until 1975, decreased as the Hubble type varied from Sa through Sc and Irregulars. It was also pointed out that masses determined from the hydrogen 21-cm line were higher than the optically determined masses. To investigate the cause of these tendencies we have estimated the masses using an analytic rotation curve of Brandt adjusted to the optical observations in order to include all the mass of a galaxy up to the last observed point. Although the masses computed in this manner were found to be larger, as expected, the decrease of mass with Hubble type found earlier is confirmed. However, there is a discrepancy in the earlier types (Sa, Sab) in that their radio-masses are smaller than the optically determined ones. At present, the cause of this is not clear.

  11. Dampak Periklanan terhadap Minat Beli pada Hp Samsung Galaxy ( Studi Eksplorasi Pengguna Hp Samsung Galaxy di Semarang )

    OpenAIRE

    Mufarihah, Hanik; -, Triyono

    2013-01-01

    The purpose of this research is to determine the influence of advertising on buyer interest of Samsung Galaxy cell phone user in Semarang. Knowing and analyzing what factor of the message in the advertisement, the model of the advertisement, and the frequency of the advertisement broadcast on the television can influence the buying interest of Samsung Galaxy cell phone users. This research also determines which factor that has big influence on buying interest of Samsung Galaxy cell phone user...

  12. Probability of satellite collision

    Science.gov (United States)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  13. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    Energy Technology Data Exchange (ETDEWEB)

    Hearin, Andrew P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Fermilab Center for Particle Astrophysics; Watson, Douglas F. [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Becker, Matthew R. [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); KICP, Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Reyes, Reinabelle [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Berlind, Andreas A. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Physics and Astronomy; Zentner, Andrew R. [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), PA (United States)

    2014-08-12

    The age matching model has recently been shown to predict correctly the luminosity L and g-r color of galaxies residing within dark matter halos. The central tenet of the model is intuitive: older halos tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g-r color trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new measurements of the galaxy two-point correlation function and the galaxy-galaxy lensing signal as a function of M* and g-r color from the Sloan Digital Sky Survey, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of Conditional Abundance Matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM provides compelling evidence that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  14. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    Science.gov (United States)

    Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.

    2014-10-01

    The age-matching model has recently been shown to predict correctly the luminosity L and g - r colour of galaxies residing within dark matter haloes. The central tenet of the model is intuitive: older haloes tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g - r colour trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new Sloan Digital Sky Survey (SDSS) measurements of galaxy clustering and the galaxy-galaxy lensing signal ΔΣ as a function of M* and g - r colour, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the ΔΣ signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of conditional abundance matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM suggests that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  15. GALAXY INFALL BY INTERACTING WITH ITS ENVIRONMENT: A COMPREHENSIVE STUDY OF 340 GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Liyi [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Wen, Zhonglue [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Gandhi, Poshak [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Inada, Naohisa [Department of Physics, Nara National College of Technology, Yamatokohriyama, Nara 639-1080 (Japan); Kawaharada, Madoka [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Kodama, Tadayuki [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Konami, Saori [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Nakazawa, Kazuhiro; Makishima, Kazuo [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Xu, Haiguang [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240 (China)

    2016-07-20

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra / XMM-Newton . For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 10{sup 4445} erg s{sup 1} per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.

  16. Analysis of spiral components in 16 galaxies

    International Nuclear Information System (INIS)

    Considere, S.; Athanassoula, E.

    1988-01-01

    A Fourier analysis of the intensity distributions in the plane of 16 spiral galaxies of morphological types from 1 to 7 is performed. The galaxies processed are NGC 300,598,628,2403,2841,3031,3198,3344,5033,5055,5194,5247,6946,7096,7217, and 7331. The method, mathematically based upon a decomposition of a distribution into a superposition of individual logarithmic spiral components, is first used to determine for each galaxy the position angle PA and the inclination ω of the galaxy plane onto the sky plane. Our results, in good agreement with those issued from different usual methods in the literature, are discussed. The decomposition of the deprojected galaxies into individual spiral components reveals that the two-armed component is everywhere dominant. Our pitch angles are then compared to the previously published ones and their quality is checked by drawing each individual logarithmic spiral on the actual deprojected galaxy images. Finally, the surface intensities for angular periodicities of interest are calculated. A choice of a few of the most important ones is used to elaborate a composite image well representing the main spiral features observed in the deprojected galaxies

  17. Isolated galaxies, pairs, and groups of galaxies

    International Nuclear Information System (INIS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G 1 be any galaxy and G 2 be its nearest neighbor at a distance R 2 . If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G 1 is an isolated galaxy. Let the midpoint of G 1 and G 2 be O 2 and r 2 =R 2 2. For the volume V 2 , defined with the radius r 2 , the density D 2 less than k mu, the galaxy G 2 is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3)), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten

  18. Diversity among galaxy clusters

    International Nuclear Information System (INIS)

    Struble, M.F.; Rood, H.J.

    1988-01-01

    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  19. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  20. Population of the Galaxy

    International Nuclear Information System (INIS)

    Troitskii, V.

    1981-01-01

    A new theory of the population of the Galaxy, based on the hypothesis of explosive: simultaneous and one-time-origination of life in the universe at a certain moment of its evolutionary development, is discussed in the report. According to the proposed theory, civilizations began to arise around the present moment of the history of the universe. Their possible number is limited even when their lifetime is unlimited. The age and number of simultaneously existing civilizations when their lifetime is unlimited is determined by the duration and dispersion of the time of evolution of life on different planets from the cell level to civilization. The proposed theory explains better than Drake's theory the negative results of the search for evidence of the existence of superpowerful extraterrestrial civilizations and the noncolonization of the earth

  1. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  2. An Empirical Determination of the Intergalactic Background Light Using Near-Infrared Deep Galaxy Survey Data Out to 5 Micrometers and the Gamma-Ray Opacity of the Universe

    Science.gov (United States)

    Scully, Sean T.; Malkan, Matthew A.; Stecker, Floyd W.

    2014-01-01

    We extend our previous model-independent determination of the intergalactic background light, based purely on galaxy survey data, out to a wavelength of 5 micrometers. Our approach enables us to constrain the range of photon densities, based on the uncertainties from observationally determined luminosity densities and colors. We further determine a 68% confidence upper and lower limit on the opacity of the universe to gamma-rays up to energies of 1.6/(1 + z) terraelectron volts. A comparison of our lower limit redshift-dependent opacity curves to the opacity limits derived from the results of both ground-based air Cerenkov telescope and Fermi-LAT observations of PKS 1424+240 allows us to place a new upper limit on the redshift of this source, independent of IBL modeling.

  3. THE METALLICITY BIMODALITY OF GLOBULAR CLUSTER SYSTEMS: A TEST OF GALAXY ASSEMBLY AND OF THE EVOLUTION OF THE GALAXY MASS-METALLICITY RELATION

    International Nuclear Information System (INIS)

    Tonini, Chiara

    2013-01-01

    We build a theoretical model to study the origin of the globular cluster metallicity bimodality in the hierarchical galaxy assembly scenario. The model is based on empirical relations such as the galaxy mass-metallicity relation [O/H]-M star as a function of redshift, and on the observed galaxy stellar mass function up to redshift z ∼ 4. We make use of the theoretical merger rates as a function of mass and redshift from the Millennium simulation to build galaxy merger trees. We derive a new galaxy [Fe/H]-M star relation as a function of redshift, and by assuming that globular clusters share the metallicity of their original parent galaxy at the time of their formation, we populate the merger tree with globular clusters. We perform a series of Monte Carlo simulations of the galaxy hierarchical assembly, and study the properties of the final globular cluster population as a function of galaxy mass, assembly and star formation history, and under different assumptions for the evolution of the galaxy mass-metallicity relation. The main results and predictions of the model are the following. (1) The hierarchical clustering scenario naturally predicts a metallicity bimodality in the galaxy globular cluster population, where the metal-rich subpopulation is composed of globular clusters formed in the galaxy main progenitor around redshift z ∼ 2, and the metal-poor subpopulation is composed of clusters accreted from satellites, and formed at redshifts z ∼ 3-4. (2) The model reproduces the observed relations by Peng et al. for the metallicities of the metal-rich and metal-poor globular cluster subpopulations as a function of galaxy mass; the positions of the metal-poor and metal-rich peaks depend exclusively on the evolution of the galaxy mass-metallicity relation and the [O/Fe], both of which can be constrained by this method. In particular, we find that the galaxy [O/Fe] evolves linearly with redshift from a value of ∼0.5 at redshift z ∼ 4 to a value of ∼0.1 at

  4. The origin of galaxies

    International Nuclear Information System (INIS)

    Carr, B.J.

    1982-01-01

    The existence of galaxies implies that the early Universe must have contained initial density fluctuations. Overdense regions would then expand more slowly than the background and eventually - providing the fluctuations were not damped out first - they would stop expanding altogether and collapse to form bound objects. To understand how galaxies form we therefore need to know: how the initial density fluctuations arise, under what circumstances they evolve into bound objects, and how the bound objects develop the observed characteristics of galaxies. (author)

  5. Galaxy correlations and cosmology

    International Nuclear Information System (INIS)

    Fall, S.M.

    1979-01-01

    Correlations in the distribution of galaxies provide some important clues about the structure and evolution of the Universe on scales larger than individual galaxies. In recent years much effort has been devoted to estimating and interpreting galaxy correlations. This is a review of these efforts. It is meant to provide both an introductory overview of the subject and a critical assessment of some recent developments

  6. Neighbours of our galaxy

    International Nuclear Information System (INIS)

    Wielebinski, R.

    1982-01-01

    Large telescope and radio-astronomy bring remote regions of the universe into view. Radio waves are emitted by all celestial objects. Precise examination of our own galaxy, the Milky Way, is useful for investigating more remote objects. Some of the remote galaxies are noteworthy, because they emit up to 1,000 times more radio waves than their neighbours. Centaurus A is an example of such an active galaxy. (orig.)

  7. The fate of high redshift massive compact galaxies in dense environments

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Tobias; /Zurich, ETH; Mayer, Lucio; /Zurich U.; Carollo, Marcella; /Zurich, ETH; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  8. The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos

    Science.gov (United States)

    Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder

    2018-01-01

    We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.

  9. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    Science.gov (United States)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-05-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z physically-motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  10. Carbon-enhanced metal-poor stars in dwarf galaxies

    NARCIS (Netherlands)

    Salvadori, Stefania; Skúladóttir, Ása; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation

  11. Sulphur, zinc and carbon in the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Skúladóttir, Ása

    2016-01-01

    The Sculptor dwarf spheroidal galaxy is a Milky Way satellite with predominantly old stellar population, and therefore the ideal target to study early chemical evolution. The chemical abundances of photospheres of stars reveal the composition of their birth environment; studying stars of different

  12. GMRT HI Observations of the Eridanus Group of Galaxies A. Omar ...

    Indian Academy of Sciences (India)

    The Fornax cluster having the highest galaxy density has the lowest spiral fraction, ... The present GMRT HI observations offer several advantages over studies carried ..... with coarser velocity resolutions for a model galaxy, and determined the ...

  13. Optical spectrophotometry of Wolf-Rayet galaxies

    Science.gov (United States)

    Vacca, William D.; Conti, Peter S.

    1992-01-01

    We have obtained long-slit optical spectra of 10 Wolf-Rayet galaxies and four other starburst galaxies. Using the nebular emission lines we have determined the electron temperatures, electron densities, extinctions, oxygen abundances, mass of ionized hydrogen, and numbers of ionizing photons due to hot stars in these galaxies. The various forbidden line ratios clearly indicate a stellar origin for the emission-line spectrum. From the flux of the broad He II 4686 A emission feature we have estimated the number of Wolf-Rayet stars present. We have accounted for the contribution of these stars to the total ionizing flux and have calculated the ratio of the number of these stars to the number of O stars. Wolf-Rayet galaxies are among the youngest examples of the starburst phenomenon, which we observed at a propitious moment.

  14. Dynamics of Galaxy Clusters and their Outskirts

    DEFF Research Database (Denmark)

    Falco, Martina

    Galaxy clusters have demonstrated to be powerful probes of cosmology, since their mass and abundance depend on the cosmological model that describes the Universe and on the gravitational formation process of cosmological structures. The main challenge in using clusters to constrain cosmology...... is that their masses cannot be measured directly, but need to be inferred indirectly through their observable properties. The most common methods extract the cluster mass from their strong X-ray emission or from the measured redshifts of the galaxy members. The gravitational lensing effect caused by clusters...... on the background galaxies is also an important trace of their total mass distribution.In the work presented within this thesis, we exploit the connection between the gravitational potential of galaxy clusters and the kinematical properties of their surroundings, in order to determine the total cluster mass...

  15. Early Gas Stripping as the Origin of the Darkest Galaxies in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Lucio; /Zurich, ETH /Zurich U.; Kazantzidis, Stelios; /KIPAC, Menlo Park /KICP, Chicago; Mastropietro, Chiara; /Munich U. Observ.; Wadsley, James; /McMaster U.

    2007-02-28

    The known galaxies most dominated by dark matter (Draco, Ursa Minor and Andromeda IX) are satellites of the Milky Way and the Andromeda galaxies. They are members of a class of faint galaxies, devoid of gas, known as dwarf spheroidals, and have by far the highest ratio of dark to luminous matter. None of the models proposed to unravel their origin can simultaneously explain their exceptional dark matter content and their proximity to a much larger galaxy. Here we report simulations showing that the progenitors of these galaxies were probably gas-dominated dwarf galaxies that became satellites of a larger galaxy earlier than the other dwarf spheroidals. We find that a combination of tidal shocks and ram pressure swept away the entire gas content of such progenitors about ten billion years ago because heating by the cosmic ultraviolet background kept the gas loosely bound: a tiny stellar component embedded in a relatively massive dark halo survived until today. All luminous galaxies should be surrounded by a few extremely dark-matter-dominated dwarf spheroidal satellites, and these should have the shortest orbital periods among dwarf spheroidals because they were accreted early.

  16. The mass dependence of satellite quenching in Milky Way-like haloes

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Tollerud, Erik

    2015-02-01

    Using the Sloan Digital Sky Survey, we examine the quenching of satellite galaxies around isolated Milky Way-like hosts in the local Universe. We find that the efficiency of satellite quenching around isolated galaxies is low and roughly constant over two orders of magnitude in satellite stellar mass (M⋆ = 108.5-1010.5 M⊙), with only ˜20 per cent of systems quenched as a result of environmental processes. While largely independent of satellite stellar mass, satellite quenching does exhibit clear dependence on the properties of the host. We show that satellites of passive hosts are substantially more likely to be quenched than those of star-forming hosts, and we present evidence that more massive haloes quench their satellites more efficiently. These results extend trends seen previously in more massive host haloes and for higher satellite masses. Taken together, it appears that galaxies with stellar masses larger than about 108 M⊙ are uniformly resistant to environmental quenching, with the relative harshness of the host environment likely serving as the primary driver of satellite quenching. At lower stellar masses (<108 M⊙), however, observations of the Local Group suggest that the vast majority of satellite galaxies are quenched, potentially pointing towards a characteristic satellite mass scale below which quenching efficiency increases dramatically.

  17. The baryonic mass function of galaxies.

    Science.gov (United States)

    Read, J I; Trentham, Neil

    2005-12-15

    In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade.

  18. A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups

    Science.gov (United States)

    Dvornik, Andrej; Cacciato, Marcello; Kuijken, Konrad; Viola, Massimo; Hoekstra, Henk; Nakajima, Reiko; van Uitert, Edo; Brouwer, Margot; Choi, Ami; Erben, Thomas; Fenech Conti, Ian; Farrow, Daniel J.; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; McFarland, John; Norberg, Peder; Schneider, Peter; Sifón, Cristóbal; Valentijn, Edwin; Wang, Lingyu

    2017-07-01

    We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the Galaxy And Mass Assembly (GAMA) survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric Kilo-Degree Survey. We use GAMA groups with an apparent richness larger than 4 to identify samples with comparable mean host halo masses but with a different radial distribution of satellite galaxies, which is a proxy for the formation time of the haloes. We measure the weak lensing signal for groups with a steeper than average and with a shallower than average satellite distribution and find no sign of halo assembly bias, with the bias ratio of 0.85^{+0.37}_{-0.25}, which is consistent with the Λ cold dark matter prediction. Our galaxy groups have typical masses of 1013 M⊙ h-1, naturally complementing previous studies of halo assembly bias on galaxy cluster scales.

  19. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  20. Cosmological aspects and properties evolution of galaxy clusters

    International Nuclear Information System (INIS)

    Majerowicz, Sebastien

    2003-01-01

    In the standard scenario for galaxy cluster formation, galaxy clusters form by material accretion and violent merger events. Between two merger events, galaxy cluster components which are the dark matter (75 %), the intra-cluster medium (20 %) and the galaxies (5 %), reach for equilibrium. The intra-cluster medium is the main baryonic component. This is a hot optically thin gas and its temperature tells something about the gravitational potential well. This well is essentially the consequence of the dark matter distribution. The intra-cluster medium is so hot than its emission produces only x-ray photons. We studied the properties of the intra-cluster medium for some clusters by using the observations coming from the european satellite XMM-NEWTON [fr

  1. A Pool of Distant Galaxies

    Science.gov (United States)

    2008-11-01

    that are so far away that they are seen as they were when the Universe was only 2 billion years old. In this sea of galaxies - or island universes as they are sometimes called - only a very few stars belonging to the Milky Way are seen. One of them is so close that it moves very fast on the sky. This "high proper motion star" is visible to the left of the second brightest star in the image. It appears as a funny elongated rainbow because the star moved while the data were being taken in the different filters over several years. Notes Because the Universe looks the same in all directions, the number, types and distribution of galaxies is the same everywhere. Consequently, very deep observations of the Universe can be performed in any direction. A series of fields were selected where no foreground object could affect the deep space observations (such as a bright star in our galaxy, or the dust from our Solar System). These fields have been observed using a number of telescopes and satellites, so as to collect information at all possible wavelengths, and characterise the full spectrum of the objects in the field. The data acquired from these deep fields are normally made public to the whole community of astronomers, constituting the basis for large collaborations. Observations in the U-band, that is, at the boundary between visible light and ultraviolet are challenging: the Earth's atmosphere becomes more and more opaque out towards the ultraviolet, a useful property that protects people's skin, but limiting to ground-based telescopes. At shorter wavelengths, observations can only be done from space, using, for example, the Hubble Space Telescope. On the ground, only the very best sites, such as ESO's Paranal Observatory in the Atacama Desert, can perform useful observations in the U-band. Even with the best atmospheric conditions, instruments are at their limit at these wavelengths: the glass of normal lenses transmits less UV light, and detectors are less sensitive, so

  2. Statistical properties of Faraday rotation measure in external galaxies - I. Intervening disc galaxies

    Science.gov (United States)

    Basu, Aritra; Mao, S. A.; Fletcher, Andrew; Kanekar, Nissim; Shukurov, Anvar; Schnitzeler, Dominic; Vacca, Valentina; Junklewitz, Henrik

    2018-06-01

    Deriving the Faraday rotation measure (RM) of quasar absorption line systems, which are tracers of high-redshift galaxies intervening background quasars, is a powerful tool for probing magnetic fields in distant galaxies. Statistically comparing the RM distributions of two quasar samples, with and without absorption line systems, allows one to infer magnetic field properties of the intervening galaxy population. Here, we have derived the analytical form of the probability distribution function (PDF) of RM produced by a single galaxy with an axisymmetric large-scale magnetic field. We then further determine the PDF of RM for one random sight line traversing each galaxy in a population with a large-scale magnetic field prescription. We find that the resulting PDF of RM is dominated by a Lorentzian with a width that is directly related to the mean axisymmetric large-scale field strength of the galaxy population if the dispersion of B0 within the population is smaller than . Provided that RMs produced by the intervening galaxies have been successfully isolated from other RM contributions along the line of sight, our simple model suggests that in galaxies probed by quasar absorption line systems can be measured within ≈50 per cent accuracy without additional constraints on the magneto-ionic medium properties of the galaxies. Finally, we discuss quasar sample selection criteria that are crucial to reliably interpret observations, and argue that within the limitations of the current data base of absorption line systems, high-metallicity damped Lyman-α absorbers are best suited to study galactic dynamo action in distant disc galaxies.

  3. Statistical properties of Faraday rotation measure in external galaxies - I: intervening disc galaxies

    Science.gov (United States)

    Basu, Aritra; Mao, S. A.; Fletcher, Andrew; Kanekar, Nissim; Shukurov, Anvar; Schnitzeler, Dominic; Vacca, Valentina; Junklewitz, Henrik

    2018-03-01

    Deriving the Faraday rotation measure (RM) of quasar absorption line systems, which are tracers of high-redshift galaxies intervening background quasars, is a powerful tool for probing magnetic fields in distant galaxies. Statistically comparing the RM distributions of two quasar samples, with and without absorption line systems, allows one to infer magnetic field properties of the intervening galaxy population. Here, we have derived the analytical form of the probability distribution function (PDF) of RM produced by a single galaxy with an axisymmetric large-scale magnetic field. We then further determine the PDF of RM for one random sight line traversing each galaxy in a population with a large-scale magnetic field prescription. We find that the resulting PDF of RM is dominated by a Lorentzian with a width that is directly related to the mean axisymmetric large-scale field strength ⟨B0⟩ of the galaxy population if the dispersion of B0 within the population is smaller than ⟨B0⟩. Provided that RMs produced by the intervening galaxies have been successfully isolated from other RM contributions along the line of sight, our simple model suggests that ⟨B0⟩ in galaxies probed by quasar absorption line systems can be measured within ≈50 per cent accuracy without additional constraints on the magneto-ionic medium properties of the galaxies. Finally, we discuss quasar sample selection criteria that are crucial to reliably interpret observations, and argue that within the limitations of the current database of absorption line systems, high-metallicity damped Lyman-α absorbers are best suited to study galactic dynamo action in distant disc galaxies.

  4. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark [California Institute of Technology, MC 405-47, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Gonçalves, Thiago S. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio, 43, Saude, Rio de Janeiro-RJ 20080-090 (Brazil); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

    2017-06-10

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  5. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    Science.gov (United States)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  6. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    International Nuclear Information System (INIS)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark; Gonçalves, Thiago S.; Schiminovich, David

    2017-01-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  7. Determining spatio-temporal distribution of bee forage species of Al-Baha region based on ground inventorying supported with GIS applications and Remote Sensed Satellite Image analysis

    Directory of Open Access Journals (Sweden)

    Nuru Adgaba

    2017-07-01

    distribution of the bee forage resources as determined by the ground inventory work. An integrated approach, combining the ground inventory work with GIS and satellite image processing techniques could be an important tool for characterizing and mapping the available bee forage resources leading to their efficient and sustainable utilization.

  8. Redshift determination of the BL Lac object 3C 66A by the detection of its host galaxy cluster at z = 0.340

    Science.gov (United States)

    Torres-Zafra, Juanita; Cellone, Sergio A.; Buzzoni, Alberto; Andruchow, Ileana; Portilla, José G.

    2018-03-01

    The BL Lac object 3C 66A is one of the most luminous extragalactic sources at TeV γ-rays (very high energy, i.e. E > 100 GeV). Since TeV γ-ray radiation is absorbed by the extragalactic background light (EBL), it is crucial to know the redshift of the source in order to reconstruct its original spectral energy distribution, as well as to constrain EBL models. However, the optical spectrum of this BL Lac is almost featureless, so a direct measurement of z is very difficult; in fact, the published redshift value for this source (z = 0.444) has been strongly questioned. Based on EBL absorption arguments, several constraints to its redshift, in the range 0.096 GMOS-N multi-object spectroscopy. We found spectroscopic evidence of two galaxy groups along the blazar's line of sight: one at z ≃ 0.020 and the second one at z ≃ 0.340. The first one is consistent with a known foreground structure, while the second group presented here has six spectroscopically confirmed members. Their location along a red sequence in the colour-magnitude diagram allows us to identify 34 additional candidate members of the more distant group. The blazar's spectrum shows broad absorption features that we identify as arising in the intergalactic medium, thus allowing us to tentatively set a redshift lower limit at z_3C66A ≳ 0.33. As a consequence, we propose that 3C 66A is hosted in a galaxy that belongs to a cluster at z = 0.340.

  9. The formation of galaxies

    International Nuclear Information System (INIS)

    Gunn, J.E.

    1983-01-01

    The presently fashionable ideas for galaxy formation are reviewed briefly, and it is concluded that the standard isothermal heirarchy fits the available data best. A simple infall picture is presented which explains many of the observed properties of disk galaxies. (orig.)

  10. The galaxy builders

    Science.gov (United States)

    Cho, Adrian

    2018-06-01

    Philip Hopkins, a theoretical astrophysicist at the California Institute of Technology in Pasadena, likes to prank his colleagues. An expert in simulating the formation of galaxies, Hopkins sometimes begins his talks by projecting images of his creations next to photos of real galaxies and defying his audience to tell them apart. "We can even trick astronomers," Hopkins says. For decades, scientists have tried to simulate how the trillions of galaxies in the observable universe arose from clouds of gas after the big bang. But only in the past few years have the simulations begun to reproduce both the details of individual galaxies and their distribution of masses and shapes. As the fake universes improve, their role is also changing. Previously, information flowed one way: from the astronomers studying real galaxies to the modelers trying to simulate them. Now, insight is flowing the other way, too, with the models helping guide astronomers and astrophysicists. The models suggest that the earliest galaxies were oddly pickle-shaped, that wafer-thin spiral galaxies are surprisingly rugged in the face of collisions, and, perhaps most important, that galaxies must form stars far more slowly than astrophysicists expected. Progress is coming so fast, says Tiziana Di Matteo, a numerical cosmologist at Carnegie Mellon University in Pittsburgh, Pennsylvania, that "the whole thing has reached this little golden age."

  11. The Evolution of Galaxies

    Czech Academy of Sciences Publication Activity Database

    Palouš, Jan

    2007-01-01

    Roč. 17, - (2007), s. 34-40 ISSN 1220-5168. [Heliospere and galaxy. Sinaia, 03.05.2007-05.05.2007] R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : ISM structure * stars formation * evolution of galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Dwarf Elliptical Galaxies

    Science.gov (United States)

    Caldwell, N.; Murdin, P.

    2000-11-01

    DWARF SPHEROIDAL GALAXIES were first identified by Shapley, who had noticed two very diffuse collections of stars on Harvard patrol plates. Although these systems had about as many stars as a GLOBULAR CLUSTER, they were of much lower density, and hence much larger radius, and thus were considered distinct galaxies. These two, named Fornax and Sculptor after the constellations in which they ap...

  13. Hubble's Menagerie of Galaxies

    Indian Academy of Sciences (India)

    Srimath

    astronom ers have even w ondered ifH ubble's galaxy typ es form an evolutionary sequence: does one type of galaxy evolve into another? 1. T he D iscovery of G alaxies. A stronom ers began to ponder these issues only after they discovered w hat ...

  14. Our galaxy is exploding

    International Nuclear Information System (INIS)

    Closets, Francois de.

    1977-01-01

    Improvements made in radioastronomy, and infrared, X and γ emission studies of the Galaxy have allowed to study the galactic nucleus, which is characterized by an intense activity. The most recent hypotheses made to explain this activity and replace it in the general context of the evolution of the galaxies are presented [fr

  15. Our aging galaxy

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1980-01-01

    The origin and evolution of the galaxies is described, according to the presently prevailing theories. The various types of galaxy and their structures are described, and also the formation of stars from the gas clouds. The spiral structure and the evolution of the disc are discussed. Finally the future development on the time scale of thousands of millions of years is briefly discussed. (JIW)

  16. The Seyfert galaxy population

    International Nuclear Information System (INIS)

    Meurs, E.

    1982-01-01

    A large sample of Seyfert galaxies, many of which are Markarian galaxies, has been observed with the WSRT in lambda 21 cm continuum radiation. The results are presented, and the number of radio detected Seyferts has now increased considerably. A number of accurate optical positions are given that were needed to identify radio sources with the Seyfert galaxies observed. Optical and radio luminosity functions of Seyfert galaxies are derived. The results are compared with such functions for other categories of objects that may be related to these galaxies. The discussions focus on the possible connections between normal galaxies, Seyferts, and optically selected quasars. Three investigations are reported on individual objects that are related to Seyfert galaxies. WSRT observations of four bright, optically selected quasars are presented. The identification of an X-ray discovered BL Lacertae object is discussed. Its radio emission is on a much lower level than for other BL Lacs. Perhaps it is a radio-quiet object in this class, suggesting a comparable difference in radio emission for BL Lacs as is known for quasars. Photo-electric photometry for the Seyfert galaxy NGC 1566 is reported. Besides a monitoring programme, multi-aperture photometry is described. (Auth.)

  17. Visibility of galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.

    1976-01-01

    It is stated that counts of galaxies could be seriously biased by selection effects, largely influenced by the brightness of the night sky. To illustrate this suppose the Earth were situated near the center of a giant elliptical galaxy. The mean surface brightness of the sky would then appear some 8 to 9 mag. brighter than is observed from our position in the Galaxy. Extragalactic space would then appear to be empty void; spiral and irregular galaxies would be invisible, and all that could be easily detected would be the core regions of galaxy ellipticals very similar to our own. Much of the Universe would be blinded by the surface brightness of the parent galaxy. This blinding, however, is a relative matter and the question arises as to what extent we are blinded by the spiral galaxy in which we exist. Strong indirect evidence exists that our knowledge of galaxies is heavily biased by the sky background, and the true population of extragalactic space may be very different from that seen. Other relevant work is also discussed, and further investigational work is indicated. (U.K.)

  18. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  19. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  20. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    International Nuclear Information System (INIS)

    Hua, Mengjuan; Wang, Chengquan; Qian, Jing; Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping; Wang, Kun

    2015-01-01

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg 2+ . The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg 2+ , the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg 2+ in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg 2+ contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg 2+ quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg 2+ detection. • The Hg 2+ content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg 2+ detection. • The ratiometric probe is of good simplicity, low toxicity, and excellent stability

  1. Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument

    Science.gov (United States)

    Xu, J.-W.; Martin, R. V.; van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; Wang, Y.; Chen, H.; Che, H.; Lin, P.; Lin, N.

    2015-11-01

    We determine and interpret fine particulate matter (PM2.5) concentrations in eastern China for January to December 2013 at a horizontal resolution of 6 km from aerosol optical depth (AOD) retrieved from the Korean geostationary ocean color imager (GOCI) satellite instrument. We implement a set of filters to minimize cloud contamination in GOCI AOD. Evaluation of filtered GOCI AOD with AOD from the Aerosol Robotic Network (AERONET) indicates significant agreement with mean fractional bias (MFB) in Beijing of 6.7 % and northern Taiwan of -1.2 %. We use a global chemical transport model (GEOS-Chem) to relate the total column AOD to the near-surface PM2.5. The simulated PM2.5 / AOD ratio exhibits high consistency with ground-based measurements in Taiwan (MFB = -0.52 %) and Beijing (MFB = -8.0 %). We evaluate the satellite-derived PM2.5 versus the ground-level PM2.5 in 2013 measured by the China Environmental Monitoring Center. Significant agreement is found between GOCI-derived PM2.5 and in situ observations in both annual averages (r2 = 0.66, N = 494) and monthly averages (relative RMSE = 18.3 %), indicating GOCI provides valuable data for air quality studies in Northeast Asia. The GEOS-Chem simulated chemical composition of GOCI-derived PM2.5 reveals that secondary inorganics (SO42-, NO3-, NH4+) and organic matter are the most significant components. Biofuel emissions in northern China for heating increase the concentration of organic matter in winter. The population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg m-3, with 400 million residents in regions that exceed the Interim Target-1 of the World Health Organization.

  2. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    International Nuclear Information System (INIS)

    Benson, Andrew; Venkatesan, Aparna; Shull, J. Michael

    2013-01-01

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  3. The X-ray properties of normal galaxies

    Science.gov (United States)

    Fabbiano, G.

    1986-01-01

    X-ray observations with the Einstein satellite have shown that normal galaxies of all morphological types are spatially extended sources of X-ray emission with luminosities in the range of L(x) of about 10 to the 39th to 10 to the 41st erg/s. Although this is only a small fraction of the total energy output of a normal galaxy, X-ray observations are uniquely suited to study phenomena that are otherwise elusive. In X-rays one can study directly the end products of stellar evolution (SNRs and compact remnants). X-ray observations have led to the discovery of gaseous outflows linked to starburst nuclear activity in spiral galaxies and to the detection of a hot interstellar medium in early-type galaxies. Through X-ray observations it is possible to set constraints on structural galaxy parameters, such as the mass of elliptical galaxies, and perhaps get new insight on the origin of cosmic rays and the properties of the magnetic fields of spiral galaxies.

  4. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Andrew [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Venkatesan, Aparna [Department of Physics and Astronomy, University of San Francisco, San Francisco, CA 94117 (United States); Shull, J. Michael, E-mail: abenson@obs.carnegiescience.edu, E-mail: avenkatesan@usfca.edu, E-mail: michael.shull@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2013-06-10

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  5. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    Science.gov (United States)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  6. Starbursts and IRAS galaxies

    International Nuclear Information System (INIS)

    Belfort, P.

    1987-01-01

    Several observational hints suggest that most of the IRAS galaxies are undergoing bursts of star formation. A simple photometric model of starburst galaxy was developed in order to check whether starburst events are really able to account for the far-infrared and optical properties of all the IRAS galaxies with HII region-like spectra. FIR activities up to a few hundred are actually easily reached with rather small bursts in red host-galaxies, and L IR /L B , EW(Hα) and U-B) versus (B-V) diagrams can be used to estimate burst strength and extinction. But more observations are required to conclude about the most extreme cases. Four typical infrared-selected IRAS galaxies are presented and their burst strength and extinction estimated

  7. MULTIPLE GALAXY COLLISIONS

    Science.gov (United States)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  8. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  9. Spectral evolution of galaxies

    International Nuclear Information System (INIS)

    Rocca-Volmerange, B.

    1989-01-01

    A recent striking event in Observational Cosmology is the discovery of a large population of galaxies at extreme cosmological distances (extended from spectral redshifts ≅ 1 to ≥ 3) corresponding to a lookback time of 80% of the Universe's age. However when galaxies are observed at such remote epochs, their appearances are affected by at least two simultaneous effects which are respectively a cosmological effect and the intrinsic evolution of their stellar populations which appear younger than in our nearby galaxies. The fundamental problem is first to disentangle the respective contributions of these two effects to apparent magnitudes and colors of distant galaxies. Other effects which are likely to modify the appearance of galaxies are amplification by gravitational lensing and interaction with environment will also be considered. (author)

  10. Observations of ultraviolet spectra of H II regions and galaxies with IUE

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1982-08-01

    The ultraviolet spectra, obtained with the International Ultraviolet Explorer, of a sample of H II regions and the nuclear regions of spiral and elliptical galaxies are described. The star formation rates in the nuclei of spiral galaxies are similar to the star formation rate in the solar neighbourhood. The data indicate that the current thinking on the synthesis of carbon and nitrogen in galaxies has to be revised and the K-corrections determined from the ultraviolet spectra of galaxies when compared with the photometry of distant galaxies suggests colour evolution of galaxies at z > 0.3. (author)

  11. Alignments of the galaxies in and around the Virgo cluster with the local velocity shear

    International Nuclear Information System (INIS)

    Lee, Jounghun; Rey, Soo Chang; Kim, Suk

    2014-01-01

    Observational evidence is presented for the alignment between the cosmic sheet and the principal axis of the velocity shear field at the position of the Virgo cluster. The galaxies in and around the Virgo cluster from the Extended Virgo Cluster Catalog that was recently constructed by Kim et al. are used to determine the direction of the local sheet. The peculiar velocity field reconstructed from the Sloan Digital Sky Survey Data Release 7 is analyzed to estimate the local velocity shear tensor at the Virgo center. Showing first that the minor principal axis of the local velocity shear tensor is almost parallel to the direction of the line of sight, we detect a clear signal of alignment between the positions of the Virgo satellites and the intermediate principal axis of the local velocity shear projected onto the plane of the sky. Furthermore, the dwarf satellites are found to appear more strongly aligned than their normal counterparts, which is interpreted as an indication of the following. (1) The normal satellites and the dwarf satellites fall in the Virgo cluster preferentially along the local filament and the local sheet, respectively. (2) The local filament is aligned with the minor principal axis of the local velocity shear while the local sheet is parallel to the plane spanned by the minor and intermediate principal axes. Our result is consistent with the recent numerical claim that the velocity shear is a good tracer of the cosmic web.

  12. Analysis of the star formation histories of galaxies in different environments: from low to high density

    Science.gov (United States)

    Ortega-Minakata, René A.

    2015-11-01

    In this thesis, a value-added cataloge of 403,372 SDSS-DR7 galaxies is presented. This catalogue incorporates information on their stellar populations, including their star formation histories, their dominant emission-line activity type, inferred morphology and a measurement of their environmental density. The sample that formed this catalogue was selected from the SDSS-DR7 (Legacy) spectroscopic catalogue of galaxies in the Northern Galactic Cap, selecting only galaxies with high-quality spectra and redshift determination, and photometric measurements with small errors. Also, galaxies near the edge of the photometric survey footprint were excluded to avoid errors in the determination of their environment. Only galaxies in the 0.03-0.30 redshift range were considered. Starlight fits of the spectra of these galaxies were used to obtain information on their star formation history and stellar mass, velocity dispersion and mean age. From the fit residuals, emission-line fluxes were measured and used to obtain the dominant activity type of these galaxies using the BPT diagnostic diagram. A neighbour search code was written and applied to the catalogue to measure the local environmental density of these galaxies. This code counts the number of neighbours within a fixed search radius and a radial velocity range centered at each galaxy's radial velocity. A projected radius of 1.5 Mpc and a range of ± 2,500 km/s, both centered at the redshift of the target galaxy, were used to search and count all the neighbours of each galaxy in the catalogue. The neighbours were counted from the photometric catalogue of the SDSS-DR7 using photometric redshifts, to avoid incompleteness of the spectroscopic catalogue. The morphology of the galaxies in the catalogue was inferred by inverting previously found relations between subsamples of galaxies with visual morphology classification and their optical colours and concentration of light. The galaxies in the catalogue were matched to six

  13. The galaxy ancestor problem

    Science.gov (United States)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  14. Estimating the tumble rates of galaxy halos

    International Nuclear Information System (INIS)

    Simonson, G.F.; Tohline, J.E.

    1983-01-01

    It has previously been demonstrated that cold gas in a static spheroidal galaxy will damp to a preferred plane, in which the angular momentum vector of the gas is aligned with the symmetry axis of the potential, through dissipative processes. We show now that, if the same galaxy rigidly tumbles about a nonsymmetry axis, the preferred orientation of the gas can become a permanently and smoothly warped sheet, in which rings of gas at large radii may be fully orthogonal to those near the galaxy's core. Detailed numerical orbit calculations closely match an analytic prediction made previously for the structure of the warp. This structure depends primarily on the eccentricity, density profile, and tumble rate of the spheroid. We show that the tumble rate can now be determined for a galaxy containing a significantly warped disk. Ordinary observations used in conjunction with graphs such as those we present, yield at least firm lower limits to the tumble periods of these objects. We have applied this method to the two peculiar systems NGC 5128 and NGC 2685 and found that, if they are prolate systems supporting permanently warped gaseous disks, they must tumble with periods near 5 x 10 9 yr and 2 x 10 9 yr respectively. In a preliminary investigation, we also find that the massive, unseen halos surrounding spiral galaxies must tumble with periods longer than or on the same order as those of the elliptical galaxies

  15. Dynamics of Cosmic Neutrinos in Galaxies

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2014-06-01

    Full Text Available The cosmic background of massive (about 1 eV rest-energy neutrinos can be cooled to extremely low temperatures, reaching almost completely degenerated state. The Fermi velocity of the neutrinos becomes less than 100 km/s. The equations of dynamics for the cosmic background neutrinos are derived for the spherical and axisymmetrical thin circular disk galaxies. The equations comprise the gravitational potential and gravity of the uniform baryonic disk galaxies. Then the equations are integrated analytically over the disk radius. The constant radial neutrino flux in spherical galaxies favors formation of the wide unipotential wells in them. The neutrino flux in the axisymmetrical galaxies suggests to favor the evolution in the direction of a spherically symmetrical potential. The generated unipotential wells are observed as plateaux in the velocity curves of circular stellar orbits. The constant neutrino density at galactic centers gives the linear part of the curves. The derived system of quasilinear differential equations for neutrinos in the axisymmetrical galaxies have been reduced to the system of the Lagrange-Charpit equations: the coupled differential equations, specifying the local neutrino velocities and dynamics of motion along trajectories, and an additional interconnected equation of the neutrino mass conservation, which can be applied for the determination of density of the neutrino component in galaxies.

  16. Star formation in active galaxies and quasars

    International Nuclear Information System (INIS)

    Heckman, T.M.

    1987-01-01

    I review the observational evidence for a causal or statistical link between star formation and active galactic nuclei. The chief difficulty is in quantitatively ascertaining the star formation rate in active galaxies: most of the readily observable manifestations of star formation superficially resemble those of an active nucleus. Careful multi-wavelength spatially-resolved observations demonstrate that many Seyfert galaxies are undergoing star formation. Our survey of CO emission from Seyferts (interpreted in conjunction IRAS data) suggests that type 2 Seyferts have unusually high rates of star formation, but type 1 Seyferts do not. Recent work also suggests that many powerful radio galaxies may be actively forming stars: radio galaxies with strong emission-lines often have blue colors and strong far-infrared emission. Determining the star formation rate in the host galaxies of quasars is especially difficult. Multi-color imaging and long-slit spectroscopy suggests that many of the host galaxies of radio-loud quasars are blue and a cold interstellar medium has been detected in some quasar hosts

  17. Hunting for Dark Matter in Spheroidal Galaxies

    Science.gov (United States)

    Steele, Rebecca; Holwerda, Benne; Kielkopf, John F.

    2018-06-01

    Searches for blended spectra have been highly successful in identifying strongly lensing galaxies: these spectra show a low-redshift passive galaxy with much stronger emission lines from the source being lensed. We have recently identified 112 strong lensing candidates in the Galaxy and Mass Assembly Survey (GAMA). The improved sensitivity and redshift determination makes this a very clean sample of two-galaxy spectra, spanning both lower-mass galaxy strong lenses as well as a higher redshiftregime (z > 0.4). As a first step of a PhD project, we will vet the 112 candidate strong gravitational lenses using the new Kilo Degree Survey (KiDS), which is both deeper and sharper than existing Sloan images. Once confirmed, these lower mass gravitational lenses can be targeted with the soon-to-launch James Webb Space Telescope or the Hubble Space Telescope for follow-up observations. Models of the gravitational lenses give us direct measures of the dark matter content of these low-mass galaxies, thought to be dominated by dark matter.

  18. The host galaxy of GRB 990712

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    We present a comprehensive study of the z = 0.43 host galaxy of GRB 990712, involving ground-based photometry, spectroscopy, and HST imaging. The broad-band UBVRIJHKs photometry is used to determine the global spectral energy distribution (SED) of the host galaxy. Comparison with that of known...... galaxy types shows that the host is similar to a moderately kreddened starburst galaxy with a young stellar population. The estimated internal extinction in the host is A(V) = 0.15 +/- 0.1 and the star-formation rate (SFR) from the UV continuum is 1.3 +/- 0.3 M-circle dot yr(-1) (not corrected...... for the effects of extinction). Other galaxy template spectra than starbursts failed to reproduce the observed SED. We also present VLT spectra leading to the detection of Halpha from the GRB host galaxy. A SFR of 2.8 +/- 0.7 M-circle dot yr(-1) is inferred from the Halpha line flux, and the presence of a young...

  19. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  20. A new star tracker concept for satellite attitude determination based on a multi-purpose panoramic camera

    Science.gov (United States)

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele; Pernechele, Claudio; Dionisio, Cesare

    2017-11-01

    This paper presents an innovative algorithm developed for attitude determination of a space platform. The algorithm exploits images taken from a multi-purpose panoramic camera equipped with hyper-hemispheric lens and used as star tracker. The sensor architecture is also original since state-of-the-art star trackers accurately image as many stars as possible within a narrow- or medium-size field-of-view, while the considered sensor observes an extremely large portion of the celestial sphere but its observation capabilities are limited by the features of the optical system. The proposed original approach combines algorithmic concepts, like template matching and point cloud registration, inherited from the computer vision and robotic research fields, to carry out star identification. The final aim is to provide a robust and reliable initial attitude solution (lost-in-space mode), with a satisfactory accuracy level in view of the multi-purpose functionality of the sensor and considering its limitations in terms of resolution and sensitivity. Performance evaluation is carried out within a simulation environment in which the panoramic camera operation is realistically reproduced, including perturbations in the imaged star pattern. Results show that the presented algorithm is able to estimate attitude with accuracy better than 1° with a success rate around 98% evaluated by densely covering the entire space of the parameters representing the camera pointing in the inertial space.

  1. Galaxy-galaxy lensing estimators and their covariance properties

    Science.gov (United States)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose

    2017-11-01

    We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.

  2. Are spiral galaxies heavy smokers?

    International Nuclear Information System (INIS)

    Davies, J.; Disney, M.; Phillipps, S

    1990-01-01

    The dustiness of spiral galaxies is discussed. Starburst galaxies and the shortage of truly bright spiral galaxies is cited as evidence that spiral galaxies are far dustier than has been thought. The possibility is considered that the dust may be hiding missing mass

  3. A statistical model for determining impact of wildland fires on Particulate Matter (PM2.5) in Central California aided by satellite imagery of smoke

    Science.gov (United States)

    Haiganoush K. Preisler; Donald Schweizer; Ricardo Cisneros; Trent Procter; Mark Ruminski; Leland Tarnay

    2015-01-01

    As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM2.5 concentrations...

  4. The Hunt for Missing Dwarf Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    galaxies that resemble the UDGs found in Virgo and Coma clusters, verifying that such objects exist in environments beyond only massive clusters.And at the faint end of the sample, the authors find additional extremely low-surface-brightness dwarfs that are several orders of magnitude fainter even than classical UDGs.The authors describe the properties of these galaxies and compare them to systems like classical UDGs and dwarf spheroidal galaxies in our own Local Cluster. The next step is to determine which of the differences between the sample of NGFS dwarfs and previously known systems are explained by the environmental factors of their host cluster, and which are simply due to sample biases.With much more data from the NGFS still to come, it seems likely that we will soon be able to examine an even larger sample of no-longer-missing dwarfs!CitationRoberto P. Muoz et al 2015 ApJ 813 L15. doi:10.1088/2041-8205/813/1/L15

  5. Too Fast, Too Furious: A Galaxy's Fatal Plunge

    Science.gov (United States)

    2004-01-01

    straight through the dense core of the colliding cluster. "This helps explain the weird X-ray and radio emissions we see," says Keel. "The galaxy is a laboratory for studying how gas can be stripped away when it flies through the hot cluster gas, shutting down star birth and transforming the galaxy." The first suggestion of galactic mayhem in this cluster came in 1994 when the Very Large Array radio telescope near Socorro, N.M., detected an unusual number of radio galaxies in the cluster, called Abell 2125. Radio sources trace both star formation and the feeding of central black holes in galaxy clusters. The radio observations also showed that C153 stood out from the other galaxies as an exceptionally powerful radio source. Keel's team began an extensive program of further observations to uncover details about the galaxies. "This was designed to see what the connection could possibly be between events on the 10-million-light-year scale of the cluster merger and what happens deep inside individual galaxies," says Keel. X-ray observations from the ROSAT satellite (an acronym for the Roentgen Satellite) demonstrated that the cluster contains vast amounts of 36-million-degree Fahrenheit (20-million-degree Kelvin) gas that envelops the galaxies. The gas is concentrated into two main lumps rather than smoothly distributed across the cluster, as is more commonly the case. This bolstered the suspicion that two galaxy clusters are actually colliding. In the mid-to-late 1990s astronomers turned the Mayall 4-meter telescope and the WIYN 3.5-meter telescope at the Kitt Peak National Observatory on the cluster to analyze the starlight via spectroscopy. They found many star-forming systems and even active galactic black holes fueled by the collision. The disintegrating galaxy C153 stood out dramatically when the KPNO telescopes were used to photomap the cluster in color. Astronomers then trained NASA's Hubble Space Telescope (HST) onto C153 and resolved a bizarre shape. They found that

  6. Dwarf galaxies : Important clues to galaxy formation

    NARCIS (Netherlands)

    Tolstoy, E

    2003-01-01

    The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous

  7. QSO Pairs across Active Galaxies: Evidence of Blueshifts? D. Basu

    Indian Academy of Sciences (India)

    2006-12-04

    Dec 4, 2006 ... Abstract. Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spec- tra for both ...

  8. A Fundamental Plane of Spiral Structure in Disk Galaxies

    NARCIS (Netherlands)

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Westfall, Kyle B.; Shields, Douglas W.; Flatman, Russell; Hartley, Matthew T.; Berrier, Joel C.; Martinsson, Thomas P. K.; Swaters, Rob A.

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We

  9. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Albada, T.S. van; Sancisi, R.

    1986-01-01

    Mass models of spiral galaxies based on the observed light distribution, assuming constant M/L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M/L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to 'conspire' to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results. (author)

  10. Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group

    NARCIS (Netherlands)

    Tolstoy, Eline; Hill, Vanessa; Tosi, Monica; Blandford, R; Kormendy, J; VanDishoeck, E

    2009-01-01

    Within the Local Universe galaxies can be studied in great detail star by star, and here we review the results of quantitative studies in nearby dwarf galaxies. The color-magnitude diagram synthesis method is well established as the most accurate way to determine star-formation histories of galaxies

  11. Stellar populations of elliptical galaxies in Virgo Cluster. I. The data and stellar population analysis

    NARCIS (Netherlands)

    Yamada, Y; Arimoto, N; Vazdekis, A; Peletier, RF

    2006-01-01

    We have determined spectroscopic ages of elliptical galaxies in the Virgo Cluster using spectra of very high signal-to-noise ratio (S/N > 100 angstrom(-1)). We observed eight galaxies with the Subaru Telescope and have combined this sample with six galaxies previously observed with the WHT. To

  12. Superclusters and galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Einasto, J; Joeveer, M; Saar, E [Tartu Astrophysical Observatory, Toravere, Estonia (USSR)

    1980-01-03

    A study of the structure of superclusters in the Southern galactic hemisphere using Zwicky clusters as principal tracers of the large-scale structure of the Universe is reported. The data presented suggest that the formation of galaxies was a two stage process involving larger spatial dimensions than earlier workers have postulated. In the first stage proto-superclusters and big holes had to form from the non-dissipative dark matter while in the second hot gas, by cooling and settling down into the potential wells caused by dark matter, will form galaxies and clusters of galaxies.

  13. Comparison of precise orbit determination methods of zero-difference kinematic, dynamic and reduced-dynamic of GRACE-A satellite using SHORDE software

    Science.gov (United States)

    Li, Kai; Zhou, Xuhua; Guo, Nannan; Zhao, Gang; Xu, Kexin; Lei, Weiwei

    2017-09-01

    Zero-difference kinematic, dynamic and reduced-dynamic precise orbit determination (POD) are three methods to obtain the precise orbits of Low Earth Orbit satellites (LEOs) by using the on-board GPS observations. Comparing the differences between those methods have great significance to establish the mathematical model and is usefull for us to select a suitable method to determine the orbit of the satellite. Based on the zero-difference GPS carrier-phase measurements, Shanghai Astronomical Observatory (SHAO) has improved the early version of SHORDE and then developed it as an integrated software system, which can perform the POD of LEOs by using the above three methods. In order to introduce the function of the software, we take the Gravity Recovery And Climate Experiment (GRACE) on-board GPS observations in January 2008 as example, then we compute the corresponding orbits of GRACE by using the SHORDE software. In order to evaluate the accuracy, we compare the orbits with the precise orbits provided by Jet Propulsion Laboratory (JPL). The results show that: (1) If we use the dynamic POD method, and the force models are used to represent the non-conservative forces, the average accuracy of the GRACE orbit is 2.40cm, 3.91cm, 2.34cm and 5.17cm in radial (R), along-track (T), cross-track (N) and 3D directions respectively; If we use the accelerometer observation instead of non-conservative perturbation model, the average accuracy of the orbit is 1.82cm, 2.51cm, 3.48cm and 4.68cm in R, T, N and 3D directions respectively. The result shows that if we use accelerometer observation instead of the non-conservative perturbation model, the accuracy of orbit is better. (2) When we use the reduced-dynamic POD method to get the orbits, the average accuracy of the orbit is 0.80cm, 1.36cm, 2.38cm and 2.87cm in R, T, N and 3D directions respectively. This method is carried out by setting up the pseudo-stochastic pulses to absorb the errors of atmospheric drag and other

  14. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    International Nuclear Information System (INIS)

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter; Berta, Stefano; Popesso, Paola; McKee, Christopher F.; Pozzi, Francesca

    2013-01-01

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 ∼> z ∼> 0.3) and luminosities, finding an average accuracy in (1 + z phot )/(1 + z spec ) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M) ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 μm flux ∼> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L IR ∼> 10 12 L ☉ ), and 3% of the total SFRD at z ∼ 2

  15. Comparing Chemical Compositions of Dwarf Elliptical Galaxies and Globular Clusters

    Science.gov (United States)

    Chu, Jason; Sparkman, Lea; Toloba, Elisa; Guhathakurta, Puragra

    2015-01-01

    Because of their abundance in cluster environments and fragility due to their low mass, dwarf elliptical galaxies (dEs) are excellent specimens for studying the physical processes that occur inside galaxy clusters. These studies can be used to expand our understanding of the process of galaxy (specifically dE) formation and the role of dark matter in the Universe. To move closer to better understanding these topics, we present a study of the relationship between dEs and globular clusters (GCs) by using the largest sample of dEs and GC satellites to date. We focus on comparing the ages and chemical compositions of dE nuclei with those of satellite GCs by analyzing absorption lines in their spectra. To better view the spectral features of these relatively dim objects, we employ a spectral co-addition process, where we add the fluxes of several objects to produce a single spectrum with high signal-to-noise ratio. Our finding that dE nuclei are younger and more metal rich than globular clusters establishes important benchmarks that future dE formation theories will consider. We also establish a means to identify GCs whose parent galaxies are uncertain, which allows us to make comparisons between this GC group and the satellite GCs.

  16. DID THE MILKY WAY DWARF SATELLITES ENTER THE HALO AS A GROUP?

    International Nuclear Information System (INIS)

    Metz, Manuel; Kroupa, Pavel; Theis, Christian; Hensler, Gerhard; Jerjen, Helmut

    2009-01-01

    The dwarf satellite galaxies in the Local Group are generally considered to be hosted in dark matter subhalos that survived the disruptive processes during infall onto their host halos. It has recently been argued that if the majority of satellites entered the Milky Way (MW) halo in a group rather than individually, this could explain the spatial and dynamical peculiarities of its satellite distribution. Such groups were identified as dwarf galaxy associations that are found in the nearby universe. In this paper, we address the question whether galaxies in such associations can be the progenitors of the MW satellite galaxies. We find that the dwarf associations are much more extended than would be required to explain the disklike distribution of the MW and Andromeda satellite galaxies. We further identify a possible minor filamentary structure, perpendicular to the supergalactic plane, in which the dwarf associations are located, that might be related to the direction of infall of a progenitor galaxy of the MW satellites, if they are of tidal origin.

  17. EXTREMELY METAL-POOR GALAXIES: THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Filho, M. E. [Universidad de Las Palmas de Gran Canaria–Universidad de La Laguna, CIE Canarias: Tri-Continental Atlantic Campus, Canary Islands (Spain); Almeida, J. Sánchez; Muñoz-Tuñón, C. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nuza, S. E.; Kitaura, F.; Heß, S., E-mail: mfilho@astro.up.pt [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-04-01

    We have analyzed bibliographical observational data and theoretical predictions, in order to probe the environment in which extremely metal-poor dwarf galaxies (XMPs) reside. We have assessed the H i component and its relation to the optical galaxy, the cosmic web type (voids, sheets, filaments and knots), the overdensity parameter and analyzed the nearest galaxy neighbors. The aim is to understand the role of interactions and cosmological accretion flows in the XMP observational properties, particularly the triggering and feeding of the star formation. We find that XMPs behave similarly to Blue Compact Dwarfs; they preferably populate low-density environments in the local universe: ∼60% occupy underdense regions, and ∼75% reside in voids and sheets. This is more extreme than the distribution of irregular galaxies, and in contrast to those regions preferred by elliptical galaxies (knots and filaments). We further find results consistent with previous observations; while the environment does determine the fraction of a certain galaxy type, it does not determine the overall observational properties. With the exception of five documented cases (four sources with companions and one recent merger), XMPs do not generally show signatures of major mergers and interactions; we find only one XMP with a companion galaxy within a distance of 100 kpc, and the H i gas in XMPs is typically well-behaved, demonstrating asymmetries mostly in the outskirts. We conclude that metal-poor accretion flows may be driving the XMP evolution. Such cosmological accretion could explain all the major XMP observational properties: isolation, lack of interaction/merger signatures, asymmetric optical morphology, large amounts of unsettled, metal-poor H i gas, metallicity inhomogeneities, and large specific star formation.

  18. A fixed full-matrix method for determining ice sheet height change from satellite altimeter: an ENVISAT case study in East Antarctica with backscatter analysis

    Science.gov (United States)

    Yang, Yuande; Hwang, Cheinway; E, Dongchen

    2014-09-01

    A new method, called the fixed full-matrix method (FFM), is used to compute height changes at crossovers of satellite altimeter ground tracks. Using the ENVISAT data in East Antarctica, FFM results in crossovers of altimeter heights that are 1.9 and 79 times more than those from the fixed half method (FHM) and the one-row method (ORM). The mean standard error of height changes is about 14 cm from ORM, which is reduced to 7 cm by FHM and to 3 cm by FFM. Unlike FHM, FFM leads to uniform errors in the first-half and second-half height-change time series. FFM has the advantage in improving the accuracy of the change of height and backscattered power over ORM and FHM. Assisted by the ICESat-derived height changes, we determine the optimal threshold correlation coefficient (TCC) for a best correction for the backscatter effect on ENVISAT height changes. The TCC value of 0.92 yields an optimal result for FFM. With this value, FFM yields ENVISAT-derived height change rates in East Antarctica mostly falling between and 3 cm/year, and matching the ICESat result to 0.94 cm/year. The ENVISAT result will provide a constraint on the current mass balance result along the Chinese expedition route CHINARE.

  19. Classifying the Optical Morphology of Shocked POststarburst Galaxies

    Science.gov (United States)

    Stewart, Tess; SPOGs Team

    2018-01-01

    The Shocked POststarburst Galaxy Survey (SPOGS) is a sample of galaxies in transition from blue, star forming spirals to red, inactive ellipticals. These galaxies are earlier in the transition than classical poststarburst samples. We have classified the physical characteristics of the full sample of 1067 SPOGs in 7 categories, covering (1) their shape; (2) the relative prominence of their nuclei; (3) the uniformity of their optical color; (4) whether the outskirts of the galaxy were indicative of on-going star formation; (5) whether they are engaged in interactions with other galaxies, and if so, (6) the kinds of galaxies with which they are interacting; and (7) the presence of asymmetrical features, possibly indicative of recent interactions. We determined that a plurality of SPOGs are in elliptical galaxies, indicating morphological transformations may tend to conclude before other indicators of transitions have faded. Further, early-type SPOGs also tend to have the brightest optical nuclei. Most galaxies do not show signs of current or recent interactions. We used these classifications to search for correlations between qualitative and quantitative characteristics of SPOGs using Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer magnitudes. We find that relative optical nuclear brightness is not a good indicator of the presence of an active galactic nuclei and that galaxies with visible indications of active star formation also cluster in optical color and diagnostic line ratios.

  20. Statistical deprojection of galaxy pairs

    Science.gov (United States)

    Nottale, Laurent; Chamaraux, Pierre

    2018-06-01

    Aims: The purpose of the present paper is to provide methods of statistical analysis of the physical properties of galaxy pairs. We perform this study to apply it later to catalogs of isolated pairs of galaxies, especially two new catalogs we recently constructed that contain ≈1000 and ≈13 000 pairs, respectively. We are particularly interested by the dynamics of those pairs, including the determination of their masses. Methods: We could not compute the dynamical parameters directly since the necessary data are incomplete. Indeed, we only have at our disposal one component of the intervelocity between the members, namely along the line of sight, and two components of their interdistance, i.e., the projection on the sky-plane. Moreover, we know only one point of each galaxy orbit. Hence we need statistical methods to find the probability distribution of 3D interdistances and 3D intervelocities from their projections; we designed those methods under the term deprojection. Results: We proceed in two steps to determine and use the deprojection methods. First we derive the probability distributions expected for the various relevant projected quantities, namely intervelocity vz, interdistance rp, their ratio, and the product rp v_z^2, which is involved in mass determination. In a second step, we propose various methods of deprojection of those parameters based on the previous analysis. We start from a histogram of the projected data and we apply inversion formulae to obtain the deprojected distributions; lastly, we test the methods by numerical simulations, which also allow us to determine the uncertainties involved.

  1. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Mengjuan [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Chengquan [School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013 (China); Qian, Jing, E-mail: qianj@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kun, E-mail: wangkun@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-08-12

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg{sup 2+}. The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg{sup 2+}, the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg{sup 2+} in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg{sup 2+} contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg{sup 2+} quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg{sup 2+} detection. • The Hg{sup 2+} content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg{sup 2+} detection. • The ratiometric probe is of good simplicity, low toxicity, and

  2. The Feasibility of Tropospheric and Total Ozone Determination Using a Fabry-perot Interferometer as a Satellite-based Nadir-viewing Atmospheric Sensor. Ph.D. Thesis

    Science.gov (United States)

    Larar, Allen Maurice

    1993-01-01

    Monitoring of the global distribution of tropospheric ozone (O3) is desirable for enhanced scientific understanding as well as to potentially lessen the ill-health impacts associated with exposure to elevated concentrations in the lower atmosphere. Such a capability can be achieved using a satellite-based device making high spectral resolution measurements with high signal-to-noise ratios; this would enable observation in the pressure-broadened wings of strong O3 lines while minimizing the impact of undesirable signal contributions associated with, for example, the terrestrial surface, interfering species, and clouds. The Fabry-Perot Interferometer (FPI) provides high spectral resolution and high throughput capabilities that are essential for this measurement task. Through proper selection of channel spectral regions, the FPI optimized for tropospheric O3 measurements can simultaneously observe a stratospheric component and thus the total O3 column abundance. Decreasing stratospheric O3 concentrations may lead to an increase in biologically harmful solar ultraviolet radiation reaching the earth's surface, which is detrimental to health. In this research, a conceptual instrument design to achieve the desired measurement has been formulated. This involves a double-etalon fixed-gap series configuration FPI along with an ultra-narrow bandpass filter to achieve single-order operation with an overall spectral resolution of approximately .068 cm(exp -1). A spectral region of about 1 cm(exp -1) wide centered at 1054.73 cm(exp -1) within the strong 9.6 micron ozone infrared band is sampled with 24 spectral channels. Other design characteristics include operation from a nadir-viewing satellite configuration utilizing a 9 inch (diameter) telescope and achieving horizontal spatial resolution with a 50 km nadir footprint. A retrieval technique has been implemented and is demonstrated for a tropical atmosphere possessing enhanced tropospheric ozone amounts. An error analysis

  3. Cosmology and galaxy formation

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Gonzalez, E.M.

    1985-05-01

    The aim of the present series of lectures is to be unashamedly pedagogical and present, in simple terms, an overview of our current thinking about our universe and the way in which we believe galaxies have formed. (orig./WL)

  4. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  5. Interpretation of galaxy counts

    International Nuclear Information System (INIS)

    Tinsely, B.M.

    1980-01-01

    New models are presented for the interpretation of recent counts of galaxies to 24th magnitude, and predictions are shown to 28th magnitude for future comparison with data from the Space Telescope. The results supersede earlier, more schematic models by the author. Tyson and Jarvis found in their counts a ''local'' density enhancement at 17th magnitude, on comparison with the earlier models; the excess is no longer significant when a more realistic mixture of galaxy colors is used. Bruzual and Kron's conclusion that Kron's counts show evidence for evolution at faint magnitudes is confirmed, and it is predicted that some 23d magnitude galaxies have redshifts greater than unity. These may include spheroidal systems, elliptical galaxies, and the bulges of early-type spirals and S0's, seen during their primeval rapid star formation

  6. On the Evolution of the Central Density of Quiescent Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Tacchella, Sandro; Carollo, C. Marcella; Woo, Joanna [Department of Physics, Institute for Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland); Faber, S. M.; Koo, David C. [Department of Astronomy and Astrophysics, University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA (United States); Cibinel, Anna [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Renzini, Alvio, E-mail: sandro.tacchella@phys.ethz.ch [INAF Osservatorio Astronomico di Padova, vicolo dellOsservatorio 5, I-35122 Padova (Italy)

    2017-07-20

    We investigate the origin of the evolution of the population-averaged central stellar mass density (Σ{sub 1}) of quiescent galaxies (QGs) by probing the relation between stellar age and Σ{sub 1} at z ∼ 0. We use the Zurich ENvironmental Study (ZENS), which is a survey of galaxy groups with a large fraction of satellite galaxies. QGs shape a narrow locus in the Σ{sub 1}– M {sub ⋆} plane, which we refer to as Σ{sub 1} ridgeline. Colors of ( B − I ) and ( I − J ) are used to divide QGs into three age categories: young (<2 Gyr), intermediate (2–4 Gyr), and old (>4 Gyr). At fixed stellar mass, old QGs on the Σ{sub 1} ridgeline have higher Σ{sub 1} than young QGs. This shows that galaxies landing on the Σ{sub 1} ridgeline at later epochs arrive with lower Σ{sub 1}, which drives the zeropoint of the ridgeline down with time. We compare the present-day zeropoint of the oldest population at z = 0 with the zeropoint of the quiescent population 4 Gyr back in time, at z = 0.37. These zeropoints are identical, showing that the intrinsic evolution of individual galaxies after they arrive on the Σ{sub 1} ridgeline must be negligible, or must evolve parallel to the ridgeline during this interval. The observed evolution of the global zeropoint of 0.07 dex over the last 4 Gyr is thus largely due to the continuous addition of newly quenched galaxies with lower Σ{sub 1} at later times (“progenitor bias”). While these results refer to the satellite-rich ZENS sample as a whole, our work suggests a similar age–Σ{sub 1} trend for central galaxies.

  7. On the Evolution of the Central Density of Quiescent Galaxies

    International Nuclear Information System (INIS)

    Tacchella, Sandro; Carollo, C. Marcella; Woo, Joanna; Faber, S. M.; Koo, David C.; Cibinel, Anna; Dekel, Avishai; Renzini, Alvio

    2017-01-01

    We investigate the origin of the evolution of the population-averaged central stellar mass density (Σ_1) of quiescent galaxies (QGs) by probing the relation between stellar age and Σ_1 at z ∼ 0. We use the Zurich ENvironmental Study (ZENS), which is a survey of galaxy groups with a large fraction of satellite galaxies. QGs shape a narrow locus in the Σ_1– M _⋆ plane, which we refer to as Σ_1 ridgeline. Colors of ( B − I ) and ( I − J ) are used to divide QGs into three age categories: young ( 4 Gyr). At fixed stellar mass, old QGs on the Σ_1 ridgeline have higher Σ_1 than young QGs. This shows that galaxies landing on the Σ_1 ridgeline at later epochs arrive with lower Σ_1, which drives the zeropoint of the ridgeline down with time. We compare the present-day zeropoint of the oldest population at z = 0 with the zeropoint of the quiescent population 4 Gyr back in time, at z = 0.37. These zeropoints are identical, showing that the intrinsic evolution of individual galaxies after they arrive on the Σ_1 ridgeline must be negligible, or must evolve parallel to the ridgeline during this interval. The observed evolution of the global zeropoint of 0.07 dex over the last 4 Gyr is thus largely due to the continuous addition of newly quenched galaxies with lower Σ_1 at later times (“progenitor bias”). While these results refer to the satellite-rich ZENS sample as a whole, our work suggests a similar age–Σ_1 trend for central galaxies.

  8. Carbon-enhanced metal-poor stars in dwarf galaxies

    OpenAIRE

    Salvadori, Stefania; Skuladottir, Asa; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation with dwarf galaxy luminosity of the observed: i) frequency and [Fe/H] range of CEMP stars; ii) metallicity distribution functions; iii) star formation histories. We show that if primordial faint sup...

  9. Automated galaxy surface photometry

    International Nuclear Information System (INIS)

    Cawson, M.G.M.; Kibblewhite, E.J.; Disney, M.J.; Phillipps, S.

    1987-01-01

    Two-dimensional surface photometry of a very large number of galaxies on a deep Schmidt plate has been obtained using the Automatic Plate Measuring System (APM). A method of photometric calibration, suitable for APM measurements, via pixel-by-pixel comparison with CCD frames of a number of the brighter galaxies is described and its advantages are discussed. The same method is used to demonstrate the consistency of measurement of the APM machine when used for surface photometry. (author)

  10. Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies

    Science.gov (United States)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; Madore, B. F.; Seibert, M.; Taylor, E. N.; Alpaslan, M.; Brown, M. J. I.; Cluver, M. E.; Driver, S. P.; Bland-Hawthorn, J.; Holwerda, B. W.; Hopkins, A. M.; Lopez-Sanchez, A. R.; Loveday, J.; Rushton, M.

    2017-03-01

    We quantify the effect of the galaxy group environment (for group masses of 1012.5-1014.0 M ⊙) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (I.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M * ≥ 109.5 M ⊙. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy-galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M * is controlled for by measuring offsets Δlog(ψ *) of grouped galaxies about a single power-law relation in specific SFR, {\\psi }* \\propto {M}* -0.45+/- 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ * statistically indistinguishable from their field counterparts, for all M *, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ *), we find that (I) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ˜1.5-5 x SFR and ˜1-4 x SFR, respectively; and (II) the independence of the continuity of these gas flow cycles on M * appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ˜100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ˜Mpc scales, I.e., from gas not initially associated with the galaxies upon infall. Consequently, the color

  11. Satellite Radio

    Indian Academy of Sciences (India)

    Satellites have been a highly effective platform for multi- form broadcasts. This has led to a ... diversity offormats, languages, genre, and a universal reach that cannot be met by .... programs can be delivered to whom it is intended. In the case of.