WorldWideScience

Sample records for detector counting capabilities

  1. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    International Nuclear Information System (INIS)

    Bergamaschi, Anna; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura

    2011-01-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems

  2. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Anna, E-mail: anna.bergamaschi@psi.ch; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2011-11-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.

  3. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, E.N., E-mail: Eva.Gimenez@diamond.ac.uk [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom); Astromskas, V. [University of Surrey (United Kingdom); Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom)

    2016-07-11

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e{sup −} collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system. - Highlights: • A high atomic number (CdTe sensor based) photon-counting detector was developed. • Polarization effects affected the image were minimized by regularly refreshing the bias voltage and stabilizing the temperature. • Good spatial resolution and image quality was achieved following this procedure.

  4. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  5. Photon counting detector for the personal radiography inspection system “SIBSCAN”

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, E.A.; Baru, S.E. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Grigoriev, D.N. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk 630073 (Russian Federation); Leonov, V.V. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Oleynikov, V.P. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Porosev, V.V., E-mail: porosev@inp.nsk.su [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Savinov, G.A. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation)

    2017-02-11

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator – SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  6. Photon counting detector for the personal radiography inspection system “SIBSCAN”

    International Nuclear Information System (INIS)

    Babichev, E.A.; Baru, S.E.; Grigoriev, D.N.; Leonov, V.V.; Oleynikov, V.P.; Porosev, V.V.; Savinov, G.A.

    2017-01-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator – SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  7. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    Muehllehner, G.; Buchin, M.P.

    1980-01-01

    Improvements to a positron camera imaging system are described. A pair of Angear-type scintillation cameras serve as the detectors, each camera being positioned on opposite sides of the organ of interest. Pulse shaping circuits reduce the pulse duration below 900 nanoseconds and the integration time below 500 noneseconds, improving the count rate capability and the counting statistics of the system and thus the image quality and processing speed. The invention also provides means for rotating the opposed camera heads about an axis which passes through the organ of interest. The cameras do not use collimators, and are capable of accepting radiation travelling in planes not perpendicular to the scintillation crystals. (LL)

  8. Neutron counting and gamma spectroscopy with PVT detectors

    International Nuclear Information System (INIS)

    Mitchell, Dean James; Brusseau, Charles A.

    2011-01-01

    Radiation portals normally incorporate a dedicated neutron counter and a gamma-ray detector with at least some spectroscopic capability. This paper describes the design and presents characterization data for a detection system called PVT-NG, which uses large polyvinyl toluene (PVT) detectors to monitor both types of radiation. The detector material is surrounded by polyvinyl chloride (PVC), which emits high-energy gamma rays following neutron capture reactions. Assessments based on high-energy gamma rays are well suited for the detection of neutron sources, particularly in border security applications, because few isotopes in the normal stream of commerce have significant gamma ray yields above 3 MeV. Therefore, an increased count rate for high-energy gamma rays is a strong indicator for the presence of a neutron source. The sensitivity of the PVT-NG sensor to bare 252 Cf is 1.9 counts per second per nanogram (cps/ng) and the sensitivity for 252 Cf surrounded by 2.5 cm of polyethylene is 2.3 cps/ng. The PVT-NG sensor is a proof-of-principal sensor that was not fully optimized. The neutron detector sensitivity could be improved, for instance, by using additional moderator. The PVT-NG detectors and associated electronics are designed to provide improved resolution, gain stability, and performance at high-count rates relative to PVT detectors in typical radiation portals. As well as addressing the needs for neutron detection, these characteristics are also desirable for analysis of the gamma-ray spectra. Accurate isotope identification results were obtained despite the common impression that the absence of photopeaks makes data collected by PVT detectors unsuitable for spectroscopic analysis. The PVT detectors in the PVT-NG unit are used for both gamma-ray and neutron detection, so the sensitive volume exceeds the volume of the detection elements in portals that use dedicated components to detect each type of radiation.

  9. A high-throughput, multi-channel photon-counting detector with picosecond timing

    CERN Document Server

    Lapington, J S; Miller, G M; Ashton, T J R; Jarron, P; Despeisse, M; Powolny, F; Howorth, J; Milnes, J

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchanne...

  10. Tutorial on X-ray photon counting detector characterization.

    Science.gov (United States)

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2018-01-01

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  11. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.

    Science.gov (United States)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-05-01

    High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54

  12. Direct photon-counting scintillation detector readout using an SSPM

    International Nuclear Information System (INIS)

    Stapels, Christopher J.; Squillante, Michael R.; Lawrence, William G.; Augustine, Frank L.; Christian, James F.

    2007-01-01

    Gamma-ray detector technologies, capable of providing adequate energy information, use photomultiplier tubes (PMTs) or silicon avalanche photodiodes to detect the light pulse from a scintillation crystal. A new approach to detect the light from scintillation materials is to use an array of small photon counting detectors, or a 'detector-on-a-chip' based on a novel 'Solid-state Photomultiplier' (SSPM) concept. A CMOS SSPM coupled to a scintillation crystal uses an array of CMOS Geiger photodiode (GPD) pixels to collect light and produce a signal proportional to the energy of the radiation. Each pixel acts as a binary photon detector, but the summed output is an analog representation of the total photon intensity. We have successfully fabricated arrays of GPD pixels in a CMOS environment, which makes possible the production of miniaturized arrays integrated with the detector electronics in a small silicon chip. This detector technology allows for a substantial cost reduction while preserving the energy resolution needed for radiological measurements. In this work, we compare designs for the SSPM detector. One pixel design achieves maximum detection efficiency (DE) for 632-nm photons approaching 30% with a room temperature dark count rate (DCR) of less than 1 kHz for a 30-μm-diameter pixel. We characterize after pulsing and optical cross talk and discuss their effects on the performance of the SSPM. For 30-μm diameter, passively quenched CMOS GPD pixels, modeling suggests that a pixel spacing of approximately 90 μm optimizes the SSPM performance with respect to DE and cross talk

  13. A high-throughput, multi-channel photon-counting detector with picosecond timing

    Science.gov (United States)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  14. A high-throughput, multi-channel photon-counting detector with picosecond timing

    International Nuclear Information System (INIS)

    Lapington, J.S.; Fraser, G.W.; Miller, G.M.; Ashton, T.J.R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  15. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    Energy Technology Data Exchange (ETDEWEB)

    Kitaygorsky, J. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States); Słysz, W., E-mail: wslysz@ite.waw.pl [Institute of Electron Technology, PL-02 668 Warsaw (Poland); Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Sobolewski, Roman [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)

    2017-01-15

    Highlights: • A new operation regime of NbN superconducting single-photon detectors (SSPDs). • A better understanding of the origin of dark counts generated by the detector. • A promise of PNR functionality in SSPD measurements. - Abstract: We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  16. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu; Shi, Linxi; Gounis, Matthew J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo [Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy and Pixirad Imaging Counters s.r.l., L. Pontecorvo 3, Pisa 56127 (Italy)

    2016-05-15

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54

  17. Phoswich Detector for Simultaneous Counting of Alpha- and Beta-ray in a Pipe during Decommissioning

    International Nuclear Information System (INIS)

    Seo, B.K.; Kim, G.H.; Woo, Z.H.; Jung, Y.H.; Oh, W.Z.; Lee, K.W.; Han, M.J.

    2006-01-01

    A great quantity of waste has been generated during the decommissioning of nuclear facilities. These wastes are contaminated with various types of alpha, beta, and gamma nuclides. The contamination level of the decommissioning wastes must be surveyed for free release, but it is very difficult to monitor the radioactive contamination level of the pipe inside using conventional counting methods because of the small diameter. In this study a Phoswich detector for simultaneous counting of alpha- and beta-rays in a pipe was developed. The Phoswich detector is convenient for monitoring of alpha and beta contamination using only a single detector, which was composed of thin cylindrical ZnS(Ag) and plastic scintillator. The scintillator for counting an alpha particle has been applied a cylindrical polymer composite sheet, having a double layer structure of an inorganic scintillator ZnS(Ag) layer adhered onto a polymer sub-layer. The sub-layer in an alpha particle counting sheet is made of polysulfone, working as a mechanical and optical support. The ZnS(Ag) layer is formed by coating a ternary mixture of ZnS(Ag), cyano resin as a binder and solvent onto the top of a sub-layer via the screen printing method. The other layer for counting a beta particle used a commercially available plastic scintillator. The plastic scintillator was simulated by using the Monte Carlo simulation method for detection of beta radiation emitted from internal surfaces of small diameter pipe. Simulation results predicted the optimum thickness and geometry of plastic scintillator at which energy absorption for beta radiation was maximized. Characteristics of the detector fabricated were also estimated. As a result, it was confirmed that detector capability was suitable for counting the beta ray. The overall counting results reveal that the developed Phoswich detector is efficient for simultaneous counting of alpha and beta ray in a pipe. (authors)

  18. Optimization of a photon rejecter to separate electronic noise in a photon-counting detector

    International Nuclear Information System (INIS)

    Cho, Hyo-Min; Choi, Yu-Na; Lee, Seung-Wan; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2012-01-01

    Photon-counting-based X-ray imaging technology provides the capability to count individual photons and to characterize photon energies. The cadmium telluride (CdTe)-based photon-counting detector is limited in capability, however, under a high X-ray flux. A photon rejecter composed of aluminum, for example, can reduce this limitation by modulating the incident number of photons. In addition to this function, the optimal photon rejecter can separate electronic noise, which degrades image quality. The aim of this work was to optimize a photon rejecter for high-quality image acquisition by removing electronic noise from the actual pulse signal. The images and spectra were acquired using a micro-focus X-ray source with a CdTe-based photon-counting detector. We acquired data with various types of photon-rejecter materials composed of aluminum (Al) and iodine at three different tube voltages (50, 70, and 90 kVp). A phantom composed of high-atomic-number materials was imaged to evaluate the efficiency of the photon rejecter. Photon rejecters composed of 1-mm Al, 10-mm Al, and a combination of 10-mm Al and iodine provided optimum capability at 50, 70, and 90 kVp, respectively. Each optimal combination of photon-rejecter material and voltage effectively separated electronic noise from the actual pulse signal and gave the highest contrast-to-noise ratio for materials on the image. These optimized types of photon rejecters can effectively discriminate electronic noise and improve image quality at different tube voltages.

  19. Proposals of counting method for bubble detectors and their intercomparisons

    International Nuclear Information System (INIS)

    Ramalho, Eduardo; Silva, Ademir X.; Bellido, Luis F.; Facure, Alessandro; Pereira, Mario

    2009-01-01

    The study of neutron's spectrometry and dosimetry has become significantly easier due to relatively new devices called bubble detectors. Insensitive to gamma rays and composed by superheated emulsions, they still are subjects of many researches in Radiation Physics and Nuclear Engineering. In bubble detectors, either exposed to more intense neutron fields or for a long time, when more bubbles are produced, the statistical uncertainty during the dosimetric and spectrometric processes is reduced. A proposal of this nature is set up in this work, which presents ways to perform counting processes for bubble detectors and an updated proceeding to get the irradiated detectors' images in order to make the manual counting easier. Twelve BDS detectors were irradiated by RDS111 cyclotron from IEN's (Instituto de Engenharia Nuclear) and photographed using an assembly specially designed for this experiment. Counting was proceeded manually in a first moment; simultaneously, ImagePro was used in order to perform counting automatically. The bubble counting values, either manual or automatic, were compared and the time to get them and their difficult levels as well. After the bubble counting, the detectors' standardizes responses were calculated in both cases, according to BDS's manual and they were also compared. Among the results, the counting on these devices really becomes very hard at a large number of bubbles, besides higher variations in counting of many bubbles. Because of the good agreement between manual counting and the custom program, the last one revealed a good alternative in practical and economical levels. Despite the good results, the custom program needs of more adjustments in order to achieve more accuracy on higher counting on bubble detectors for neutron measurement applications. (author)

  20. Development of a high-count-rate neutron detector with position sensitivity and high efficiency

    International Nuclear Information System (INIS)

    Nelson, R.; Sandoval, J.

    1996-01-01

    While the neutron scattering community is bombarded with hints of new technologies that may deliver detectors with high-count-rate capability, high efficiency, gamma-ray insensitivity, and high resolution across large areas, only the time-tested, gas-filled 3 He and scintillation detectors are in widespread use. Future spallation sources with higher fluxes simply must exploit some of the advanced detector schemes that are as yet unproved as production systems. Technologies indicating promise as neutron detectors include pixel arrays of amorphous silicon, silicon microstrips, microstrips with gas, and new scintillation materials. This project sought to study the competing neutron detector technologies and determine which or what combination will lead to a production detector system well suited for use at a high-intensity neutron scattering source

  1. Comprehensive nuclear counting and detector characterisation system for the radiochemistry laboratory

    International Nuclear Information System (INIS)

    Parthasarathy, R.; Saisubalakshmi, D.; Mishra, G.K.; Srinivas, K.C.; Venkatasubramani, C.R.

    2004-01-01

    The paper describes a comprehensive nuclear pulse counting system that can cater to up to seven nuclear detector set-ups located in different places in the laboratory. Each detector set up has an interfacing module that conditions the amplifier pulses and transmits them to a common counting system. The microcontroller-based system receives these pulses through a multiplexer and counts the pulses for a user specified preset time. The system has a routine to determine detector plateau characteristics and fix the detector operating voltage. In this mode, the system collects the EHT-versus- counts data in a EHT programmed sequence and plots the profile. The system conducts the counting routine for a stipulated number of times and does all necessary statistical tests to ensure the proper functioning of the detector under test. The system also includes a test routine that checks the performance of the counting system by connecting it to a local pulse generator. The microcontroller based system interacts with a PC through RS232 communication for user interaction and reporting. (author)

  2. Detector Motion Method to Increase Spatial Resolution in Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejon (Korea, Republic of)

    2017-03-15

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photoncounting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former's high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55-μm-pixel image was achieved by application of the proposed method to a 110-μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  3. Musculoskeletal imaging with a prototype photon-counting detector.

    Science.gov (United States)

    Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F

    2012-01-01

    To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.

  4. A counting silicon microstrip detector for precision compton polarimetry

    CERN Document Server

    Doll, D W; Hillert, W; Krüger, H; Stammschroer, K; Wermes, N

    2002-01-01

    A detector for the detection of laser photons backscattered off an incident high-energy electron beam for precision Compton polarimetry in the 3.5 GeV electron stretcher ring ELSA at Bonn University has been developed using individual photon counting. The photon counting detector is based on a silicon microstrip detector system using dedicated ASIC chips. The produced hits by the pair converted Compton photons are accumulated rather than individually read out. A transverse profile displacement can be measured with mu m accuracy rendering a polarization measurement of the order of 1% on the time scale of 10-15 min possible.

  5. TU-FG-209-03: Exploring the Maximum Count Rate Capabilities of Photon Counting Arrays Based On Polycrystalline Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liang, A K; Koniczek, M; Antonuk, L E; El-Mohri, Y; Zhao, Q [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: Photon counting arrays (PCAs) offer several advantages over conventional, fluence-integrating x-ray imagers, such as improved contrast by means of energy windowing. For that reason, we are exploring the feasibility and performance of PCA pixel circuitry based on polycrystalline silicon. This material, unlike the crystalline silicon commonly used in photon counting detectors, lends itself toward the economic manufacture of radiation tolerant, monolithic large area (e.g., ∼43×43 cm2) devices. In this presentation, exploration of maximum count rate, a critical performance parameter for such devices, is reported. Methods: Count rate performance for a variety of pixel circuit designs was explored through detailed circuit simulations over a wide range of parameters (including pixel pitch and operating conditions) with the additional goal of preserving good energy resolution. The count rate simulations assume input events corresponding to a 72 kVp x-ray spectrum with 20 mm Al filtration interacting with a CZT detector at various input flux rates. Output count rates are determined at various photon energy threshold levels, and the percentage of counts lost (e.g., due to deadtime or pile-up) is calculated from the ratio of output to input counts. The energy resolution simulations involve thermal and flicker noise originating from each circuit element in a design. Results: Circuit designs compatible with pixel pitches ranging from 250 to 1000 µm that allow count rates over a megacount per second per pixel appear feasible. Such rates are expected to be suitable for radiographic and fluoroscopic imaging. Results for the analog front-end circuitry of the pixels show that acceptable energy resolution can also be achieved. Conclusion: PCAs created using polycrystalline silicon have the potential to offer monolithic large-area detectors with count rate performance comparable to those of crystalline silicon detectors. Further improvement through detailed circuit

  6. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  7. Microcomputed tomography with a second generation photon-counting x-ray detector: contrast analysis and material separation

    Science.gov (United States)

    Wang, X.; Meier, D.; Oya, P.; Maehlum, G. E.; Wagenaar, D. J.; Tsui, B. M. W.; Patt, B. E.; Frey, E. C.

    2010-04-01

    The overall aim of this work was to evaluate the potential for improving in vivo small animal microCT through the use of an energy resolved photon-counting detector. To this end, we developed and evaluated a prototype microCT system based on a second-generation photon-counting x-ray detector which simultaneously counted photons with energies above six energy thresholds. First, we developed a threshold tuning procedure to reduce the dependence of detector uniformity and to reduce ring artifacts. Next, we evaluated the system in terms of the contrast-to-noise ratio in different energy windows for different target materials. These differences provided the possibility to weight the data acquired in different windows in order to optimize the contrast-to-noise ratio. We also explored the ability of the system to use data from different energy windows to aid in distinguishing various materials. We found that the energy discrimination capability provided the possibility for improved contrast-to-noise ratios and allowed separation of more than two materials, e.g., bone, soft-tissue and one or more contrast materials having K-absorption edges in the energy ranges of interest.

  8. Track counting in radon dosimetry

    International Nuclear Information System (INIS)

    Fesenbeck, Ingo; Koehler, Bernd; Reichert, Klaus-Martin

    2013-01-01

    The newly developed, computer-controlled track counting system is capable of imaging and analyzing the entire area of nuclear track detectors. The high optical resolution allows a new analysis approach for the process of automated counting using digital image processing technologies. This way, higher exposed detectors can be evaluated reliably by an automated process as well. (orig.)

  9. The intensity detection of single-photon detectors based on photon counting probability density statistics

    International Nuclear Information System (INIS)

    Zhang Zijing; Song Jie; Zhao Yuan; Wu Long

    2017-01-01

    Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conventional methods adopt sampling gates with fixed width and count the triggered number of sampling gates, which is capable of obtaining photon counting probability to estimate the echo signal intensity. In this paper, we not only count the number of triggered sampling gates, but also record the triggered time position of photon counting pulses. The photon counting probability density distribution is obtained through the statistics of a series of the triggered time positions. Then Minimum Variance Unbiased Estimation (MVUE) method is used to estimate the echo signal intensity. Compared with conventional methods, this method can improve the estimation accuracy of echo signal intensity due to the acquisition of more detected information. Finally, a proof-of-principle laboratory system is established. The estimation accuracy of echo signal intensity is discussed and a high accuracy intensity image is acquired under low-light level environments. (paper)

  10. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    Science.gov (United States)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  11. Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.

    Science.gov (United States)

    Stierstorfer, Karl

    2018-01-01

    To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.

  12. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization

    Energy Technology Data Exchange (ETDEWEB)

    Peronio, P.; Acconcia, G.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2015-11-15

    Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.

  13. A gas pixel detector for X-ray imaging

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1991-11-01

    A simple, robust form of gas pixel detector is discussed which is based on the use of electronic connector pins as the gain elements. With a rate capability of >10 5 counts/s per pin, an X-ray imaging detector system capable of counting at global rates of the order of 10 10 counts/s is foreseen. (author)

  14. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    International Nuclear Information System (INIS)

    Jurdit, M.; Moulin, V.; Ouvrier-Buffet, P.; Verger, L.; Brambilla, A.; Radisson, P.

    2017-01-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm 2 . Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 10 6 incident photons.s −1 .mm −2 .

  15. Multiplicity counting from fission detector signals with time delay effects

    Science.gov (United States)

    Nagy, L.; Pázsit, I.; Pál, L.

    2018-03-01

    In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).

  16. Virtual point detector: On the interpolation and extrapolation of scintillation detectors counting efficiencies

    International Nuclear Information System (INIS)

    Presler, Oren; German, Uzi; Pushkarsky, Vitaly; Alfassi, Zeev B.

    2006-01-01

    The concept of transforming the detector volume to a virtual point detector, in order to facilitate efficiency evaluations for different source locations, was proposed in the past for HPGe and Ge(Li) detectors. The validity of this model for NaI(Tl) and BGO scintillation detectors was studied in the present work. It was found that for both scintillation detectors, the point detector model does not seem to fit too well to the experimental data, for the whole range of source-to-detector distances; however, for source-to-detector cap distances larger than 4 cm, the accuracy was found to be high. A two-parameter polynomial expression describing the dependence of the normalized count rate versus the source-to-detector distance was fitted to the experimental data. For this fit, the maximum deviations are up to about 12%. These deviations are much smaller than the values obtained by applying the virtual point concept, even for distances greater than 4 cm, thus the polynomial fitting is to be preferred for scintillation detectors

  17. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    Science.gov (United States)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  18. Performances of photodiode detectors for top and bottom counting detectors of ISS-CREAM experiment

    International Nuclear Information System (INIS)

    Hyun, H.J.; Anderson, T.; Angelaszek, D.; Baek, S.J.; Copley, M.; Coutu, S.; Han, J.H.; Huh, H.G.; Hwang, Y.S.; Im, S.; Jeon, H.B.; Kah, D.H.; Kang, K.H.; Kim, H.J.; Kim, K.C.; Kwashnak, K.; Lee, J.; Lee, M.H.; Link, J.T.; Lutz, L.

    2015-01-01

    The Cosmic Ray Energetics and Mass (CREAM) experiment at the International Space Station (ISS) aims to elucidate the source and acceleration mechanisms of high-energy cosmic rays by measuring the energy spectra from protons to iron. The instrument is planned for launch in 2015 at the ISS, and it comprises a silicon charge detector, a carbon target, top and bottom counting detectors, a calorimeter, and a boronated scintillator detector. The top and bottom counting detectors are developed for separating the electrons from the protons, and each of them comprises a plastic scintillator and a 20×20 silicon photodiode array. Each photodiode is 2.3 cm×2.3 cm in size and exhibits good electrical characteristics. The leakage current is measured to be less than 20 nA/cm 2 at an operating voltage. The signal-to-noise ratio is measured to be better than 70 using commercial electronics, and the radiation hardness is tested using a proton beam. A signal from the photodiode is amplified by VLSI (very-large-scale integration) charge amp/hold circuits, the VA-TA viking chip. Environmental tests are performed using whole assembled photodiode detectors of a flight version. Herein, we present the characteristics of the developed photodiode along with the results of the environmental tests

  19. Performances of photodiode detectors for top and bottom counting detectors of ISS-CREAM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, H.J. [Kyungpook National University, Daegu 702-701 (Korea, Republic of); Anderson, T. [Pennsylvania State University, University Park, PA 16802 (United States); Angelaszek, D. [University of Maryland, College Park, MD 20740 (United States); Baek, S.J. [Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Copley, M. [University of Maryland, College Park, MD 20740 (United States); Coutu, S. [Pennsylvania State University, University Park, PA 16802 (United States); Han, J.H.; Huh, H.G. [University of Maryland, College Park, MD 20740 (United States); Hwang, Y.S. [Kyungpook National University, Daegu 702-701 (Korea, Republic of); Im, S. [Pennsylvania State University, University Park, PA 16802 (United States); Jeon, H.B.; Kah, D.H.; Kang, K.H.; Kim, H.J. [Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, K.C.; Kwashnak, K. [University of Maryland, College Park, MD 20740 (United States); Lee, J. [Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, M.H. [University of Maryland, College Park, MD 20740 (United States); Link, J.T. [NASA GSFC, Greenbelt, MD 20771 (United States); CRESST(USRA), Columbia, MD 21044 (United States); Lutz, L. [University of Maryland, College Park, MD 20740 (United States); and others

    2015-07-01

    The Cosmic Ray Energetics and Mass (CREAM) experiment at the International Space Station (ISS) aims to elucidate the source and acceleration mechanisms of high-energy cosmic rays by measuring the energy spectra from protons to iron. The instrument is planned for launch in 2015 at the ISS, and it comprises a silicon charge detector, a carbon target, top and bottom counting detectors, a calorimeter, and a boronated scintillator detector. The top and bottom counting detectors are developed for separating the electrons from the protons, and each of them comprises a plastic scintillator and a 20×20 silicon photodiode array. Each photodiode is 2.3 cm×2.3 cm in size and exhibits good electrical characteristics. The leakage current is measured to be less than 20 nA/cm{sup 2} at an operating voltage. The signal-to-noise ratio is measured to be better than 70 using commercial electronics, and the radiation hardness is tested using a proton beam. A signal from the photodiode is amplified by VLSI (very-large-scale integration) charge amp/hold circuits, the VA-TA viking chip. Environmental tests are performed using whole assembled photodiode detectors of a flight version. Herein, we present the characteristics of the developed photodiode along with the results of the environmental tests.

  20. Novel Photon-Counting Detectors for Free-Space Communication

    Science.gov (United States)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  1. Determination of efficiency curves for HPGE detector in different counting geometries

    International Nuclear Information System (INIS)

    Rodrigues, Josianne L.; Kastner, Geraldo F.; Ferreira, Andrea V.

    2011-01-01

    This paper presents the first experimental results related to determination of efficiency curves for HPGe detector in different counting geometries. The detector is a GX2520 Canberra belonging to CDTN/CNEN. Efficiency curves for punctual were determined by using a certified set of gamma sources. These curves were determined for three counting geometries. Following that, efficiency curves for non punctual samples were determined by using standard solutions of radionuclides in 500 ml and 1000 ml wash bottle Marinelli

  2. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    International Nuclear Information System (INIS)

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  3. The determination of the optimum counting conditions for a ZnS(Ag) scintillation detector

    International Nuclear Information System (INIS)

    Djurasevic, M.M.; Kandic, A.B.; Novkovic, D.N; Vukanac, I.S. . E-mail address of corresponding author: mirad@vin.bg.ac.yu; Djurasevic, M.M.)

    2005-01-01

    The methods that use scintillation counting with ZnS(Ag) scintillation detector are widely used for gross alpha activity determination. The common criteria for the selection of optimum counting condition for a ZnS(Ag) scintillation detector do not consider simultaneously operating voltage and discrimination level variation. In presented method a relationship between voltage and discrimination level is derived for counting efficiency. (author)

  4. Photon-Counting Kinetic Inductance Detectors (KID) for Far/Mid-Infrared Space Spectroscopy with the Origins Space Telescope (OST)

    Science.gov (United States)

    Noroozian, Omid; Barrentine, Emily M.; Stevenson, Thomas R.; Brown, Ari D.; Moseley, Samuel Harvey; Wollack, Edward; Pontoppidan, Klaus Martin; U-Yen, Konpop; Mikula, Vilem

    2018-01-01

    Photon-counting detectors are highly desirable for reaching the ~ 10-20 W/√Hz power sensitivity permitted by the Origins Space Telescope (OST). We are developing unique Kinetic Inductance Detectors (KIDs) with photon counting capability in the far/mid-IR. Combined with an on-chip far-IR spectrometer onboard OST these detectors will enable a new data set for exploring galaxy evolution and the growth of structure in the Universe. Mid-IR spectroscopic surveys using these detectors will enable mapping the composition of key volatiles in planet-forming material around protoplanetary disks and their evolution into solar systems. While these OST science objectives represent a well-organized community agreement they are impossible to reach without a significant leap forward in detector technology, and the OST is likely not to be recommended if a path to suitable detectors does not exist.To reach the required sensitivity we are experimenting with superconducting resonators made from thin aluminum films on single-crystal silicon substrates. Under the right conditions, small-volume inductors made from these films can become ultra-sensitive to single photons >90 GHz. Understanding the physics of these superconductor-dielectric systems is critical to performance. We achieved a very high quality factor of 0.5 x 106 for a 10-nm Al resonator at n ~ 1 microwave photon drive power, by far the highest value for such thin films in the literature. We measured a residual electron density of detector when illuminated with randomly arriving photon events. Our results show that photon counting with >95% efficiency at 0.5 - 1.0 THz is achievable.We report on these developments and discuss plans to test in our facility through funding from our recently awarded ROSES-APRA grant and Roman Technology Fellowship award.

  5. Investigation of reduction in background counts of clover detector

    International Nuclear Information System (INIS)

    Kshetri, Ritesh

    2015-01-01

    The peak-to-total ratio can be improved by increasing the full energy peak (FEP) counts and/or by decreasing the background counts. It is notable that FEP counts will be effected by mode of operation, while background counts will be effected by both modes of operation and suppression cases. It would be interesting to know if the reduction in background is caused more by active suppression or by add back process. We introduce a simple formalism to investigate the reduction of background counts for different cases-single crystal or add back mode with active or passive suppression. A more sophisticated formalism for modeling a general composite detector had been presented in a series of six recent papers by the author

  6. Cascaded systems analysis of photon counting detectors.

    Science.gov (United States)

    Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H

    2014-10-01

    Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of

  7. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  8. Fluctuations and dark count rates in superconducting NbN single-photon detectors

    International Nuclear Information System (INIS)

    Engel, Andreas; Semenov, Alexei; Huebers, Heinz-Wilhelm; Il'in, Kostya; Siegel, Michael

    2005-01-01

    We measured the temperature- and current-dependence of dark count rates of a superconducting singlephoton detector. The detector's key element is a 84 nm wide meander strip line fabricated from a 5 nm thick NbN film. Due to its reduced dimensions various types of fluctuations can cause temporal and localized transitions into a resistive state leading to dark count events. Adopting a recent refinement of the hotspot model we achieve a satisfying description of the experimental dark count rates taking into account fluctuations of the Cooper-pair density and current-assisted unbinding of vortex-antivortex pairs. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Cascaded systems analysis of photon counting detectors

    International Nuclear Information System (INIS)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Lundqvist, M.; Fredenberg, E.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f 50 (spatial-frequency at

  10. Cascaded systems analysis of photon counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lundqvist, M.; Fredenberg, E. [Philips Healthcare, Solna 171 41 (Sweden); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  11. Practical prototype of a cluster-counting transition radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Fabjan, C W; Willis, W [European Organization for Nuclear Research, Geneva (Switzerland); Gavrilenko, I; Maiburov, S; Shmeleva, A; Vasiliev, P [AN SSSR, Moscow. Fizicheskij Inst.; Chernyatin, V; Dolgoshein, B; Kantserov, V; Nevski, P [Moskovskij Inzhenerno-Fizicheskij Inst. (USSR)

    1981-06-15

    A transition radiation detector using a method of cluster counting measurements has been tested. The performance is considerably better than with the usual method of total charge measurements, as well as offering advantages in simplicity of construction and operation.

  12. Decision for counting condition of radioactive waste activities measuring by Ludlum detector

    International Nuclear Information System (INIS)

    Bambang-Purwanto

    2000-01-01

    Radioactive waste must measured for activities before be throw out to environment. Measuring will be important in ordered to know activities can be given management direction. For activities radioactive waste on limit threshold value must processed, but for under limit threshold value activities can be throw out to environment. Activities measuring for solid radioactive waste and liquid by (Total, β, γ) Ludlum detector connected Mode-1000 Scaler Counting. Before measuring for solid waste activities was decisioned optimally counting condition, and be obtained are : sample weight 3.5 gram, heating temperature of 125 o C and heating time at 60 minutes. Activities measuring result by total detector ranges from (0.68-0.71) 10 -1 μCi/gram, β detector ranges from (0.24-0.25) 10 -1 μCi/gram and γ detector ranges from (0.35-0.37) μCi/gram

  13. Variable sampling-time technique for improving count rate performance of scintillation detectors

    International Nuclear Information System (INIS)

    Tanaka, E.; Nohara, N.; Murayama, H.

    1979-01-01

    A new technique is presented to improve the count rate capability of a scintillation spectrometer or a position sensitive detector with minimum loss of resolution. The technique is based on the combination of pulse shortening and selective integration in which the integration period is not fixed but shortened by the arrival of the following pulse. Theoretical analysis of the degradation of the statiscal component of resolution is made for the proposed system with delay line pulse shortening, and the factor of resolution loss is formulated as a function of the input pulse rate. A new method is also presented for determining the statistical component of resolution separately from the non-statistical system resolution. Preliminary experiments with a NaI(Tl) detector have been carried out, the results of which are consistent with the theoretical prediction. However, due to the non-exponential scintillation decay of the NaI(Tl) crystal, a simple delay line clipping is not satisfactory, and an RC high-pass filter has been added, which results in further degradation of the statistical resolution. (Auth.)

  14. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    International Nuclear Information System (INIS)

    Jansen, Frank; Behrens, Joerg; Pospisil, Stanislav; Kudela, Karel

    2011-01-01

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  15. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  16. The effect of event shape on centroiding in photon counting detectors

    International Nuclear Information System (INIS)

    Kawakami, Hajime; Bone, David; Fordham, John; Michel, Raul

    1994-01-01

    High resolution, CCD readout, photon counting detectors employ simple centroiding algorithms for defining the spatial position of each detected event. The accuracy of centroiding is very dependent upon a number of parameters including the profile, energy and width of the intensified event. In this paper, we provide an analysis of how the characteristics of an intensified event change as the input count rate increases and the consequent effect on centroiding. The changes in these parameters are applied in particular to the MIC photon counting detector developed at UCL for ground and space based astronomical applications. This detector has a maximum format of 3072x2304 pixels permitting its use in the highest resolution applications. Individual events, at light level from 5 to 1000k events/s over the detector area, were analysed. It was found that both the asymmetry and width of event profiles were strongly dependent upon the energy of the intensified event. The variation in profile then affected the centroiding accuracy leading to loss of resolution. These inaccuracies have been quantified for two different 3 CCD pixel centroiding algorithms and one 2 pixel algorithm. The results show that a maximum error of less than 0.05 CCD pixel occurs with the 3 pixel algorithms and 0.1 CCD pixel for the 2 pixel algorithm. An improvement is proposed by utilising straight pore MCPs in the intensifier and a 70 μm air gap in front of the CCD. ((orig.))

  17. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    Science.gov (United States)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  18. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    Science.gov (United States)

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  19. Spectral and spatial resolution properties of photon counting X-ray detectors like the Medipix-Detector

    International Nuclear Information System (INIS)

    Korn, A.

    2007-01-01

    The Medipix detector is a hybrid photon counting X-ray detector, consisting of an ASIC and a semiconducting layer as the sensor. This makes the Medipix a direct converting detector. A special feature of the Medipix is a signal processing circuit in every single pixel. This circuit amplifies the input signal triggered by a photon and then transforms the pulse into a digital signal. This early stage digitalisation is one of the main advantages of the detector, since no dark currents are integrated into the signal. Furthermore, the energy information of each single photon is partly preserved. The high number of pixels lends the detector a wide dynamic range, starting from single counts up to a rate of 1010 photons per cm2 and second. Apart from the many advantages, there are still some problems with the detector. Some effects lead to a deterioration of the energy resolution as well as the spatial resolution. The main reasons for this are two effects occuring in the detector, charge sharing and backscattering inside the detector. This study investigates the influence of those two effects on both the energy and spatial resolution. The physical causes of these effects are delineated and their impact on the detector output is examined. In contrast to high energy photon detectors, the repulsion of the charge carriers drifting inside the sensor must not be neglected in a detailed model of X-ray detectors with an energy range of 5 keV-200 keV. For the simulation of the Medipix using Monte Carlo simulations, the software ROSI was augmented. The added features allow a detailed simulation of the charge distribution, using the relevant physical effects that alter the distribution width during the drift towards the sensor electrodes as well further influences on the detector output, including electronical noise, threshold noise or the geometry of the detector. The measured energy and spatial resolution of several different models of Medipix is compared to the simulated

  20. The OSMOND detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Dalgliesh, R. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.uk [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Holt, S.A.; Kinane, C.J. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Spill, E.J.; Stephenson, R. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom)

    2013-01-11

    The development and testing of the Off Specular MicrOstrip Neutron Detector (OSMOND) is described. Based on a microstrip gas chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing rate limited scintillator detectors currently in use on the CRISP reflectometer for off specular reflectometry experiments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  1. Counting radon tracks in Makrofol detectors with the 'image reduction and analysis facility' (IRAF) software package

    International Nuclear Information System (INIS)

    Hernandez, F.; Gonzalez-Manrique, S.; Karlsson, L.; Hernandez-Armas, J.; Aparicio, A.

    2007-01-01

    Makrofol detectors are commonly used for long-term radon ( 222 Rn) measurements in houses, schools and workplaces. The use of this type of passive detectors for the determination of radon concentrations requires the counting of the nuclear tracks produced by alpha particles on the detecting material. The 'image reduction and analysis facility' (IRAF) software package is a piece of software commonly used in astronomical applications. It allows detailed counting and mapping of sky sections where stars are grouped very closely, even forming clusters. In order to count the nuclear tracks in our Makrofol radon detectors, we have developed an inter-disciplinary application that takes advantage of the similitude that exist between counting stars in a dark sky and tracks in a track-etch detector. Thus, a low cost semi-automatic system has been set up in our laboratory which utilises a commercially available desktop scanner and the IRAF software package. A detailed description of the proposed semi-automatic method and its performance, in comparison to ocular counting, is described in detail here. In addition, the calibration factor for this procedure, 2.97+/-0.07kBqm -3 htrack -1 cm 2 , has been calculated based on the results obtained from exposing 46 detectors to certified radon concentrations. Furthermore, the results of a preliminary radon survey carried out in 62 schools in Tenerife island (Spain), using Makrofol detectors, counted with the mentioned procedure, are briefly presented. The results reported here indicate that the developed procedure permits a fast, accurate and unbiased determination of the radon tracks in a large number of detectors. The measurements carried out in the schools showed that the radon concentrations in at least 12 schools were above 200Bqm -3 and, in two of them, above 400Bqm -3 . Further studies should be performed at those schools following the European Union recommendations about radon concentrations in buildings

  2. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    Science.gov (United States)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  3. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  4. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  5. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    International Nuclear Information System (INIS)

    Kumpová, I.; Jandejsek, I.; Jakůbek, J.; Vopálenský, M.; Vavřík, D.; Fíla, T.; Koudelka, P.; Kytýř, D.; Zlámal, P.; Gantar, A.

    2016-01-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical

  6. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    Science.gov (United States)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  7. 18F-FDG positron autoradiography with a particle counting silicon pixel detector.

    Science.gov (United States)

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C; Marotta, M; Aloj, L; Lastoria, S

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  8. Development of a counting pixel detector for 'Digitales Roentgen'

    International Nuclear Information System (INIS)

    Lindner, M.

    2001-08-01

    The development of a single photon counting X-ray imaging detector for medical applications using hybrid pixel detectors is reported. The electronics development from the first prototype derived from detector development for particle physics experiments (ATLAS) to the imaging chip MPEC (multi picture element counters) for medical applications is described. This chip consists of 32 x 32 pixels of 200 μm x 200 μm size, each containing the complete read out electronics, i.e. an amplifier, two discriminators with adjustable thresholds and two 18-bit linear feedback shift-counters allowing energy windowing for contrast increase. Results on electronics performance are shown as well as measurements with several semiconductor materials (Si, GaAs, CdTe). Important aspects like detection efficiency, sensor homogeneity, linearity and spatial resolution are discussed. (orig.)

  9. Photon counting microstrip X-ray detectors with GaAs sensors

    Science.gov (United States)

    Ruat, M.; Andrä, M.; Bergamaschi, A.; Barten, R.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Lozinskaya, A. D.; Mezza, D.; Mozzanica, A.; Novikov, V. A.; Ramilli, M.; Redford, S.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Tolbanov, O. P.; Tyazhev, A.; Vetter, S.; Zarubin, A. N.; Zhang, J.

    2018-01-01

    High-Z sensors are increasingly used to overcome the poor efficiency of Si sensors above 15 keV, and further extend the energy range of synchrotron and FEL experiments. Detector-grade GaAs sensors of 500 μm thickness offer 98% absorption efficiency at 30 keV and 50% at 50 keV . In this work we assess the usability of GaAs sensors in combination with the MYTHEN photon-counting microstrip readout chip developed at PSI. Different strip length and pitch are compared, and the detector performance is evaluated in regard of the sensor material properties. Despite increased leakage current and noise, photon-counting strips mounted with GaAs sensors can be used with photons of energy as low as 5 keV, and exhibit excellent linearity with energy. The charge sharing is doubled as compared to silicon strips, due to the high diffusion coefficient of electrons in GaAs.

  10. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  11. Neutron detection and multiplicity counting using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array

    International Nuclear Information System (INIS)

    Miller, M.C.

    1998-03-01

    Neutron detection and multiplicity counting has been investigated using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array. Boron-loaded plastic combines neutron moderation (H) and detection ( 10 B) at the molecular level, thereby physically coupling increasing detection efficiency and decreasing die-away time with detector volume. Both of these characteristics address a fundamental limitation of thermal-neutron multiplicity counters, where 3 He proportional counters are embedded in a polyethylene matrix. Separation of the phoswich response into its plastic scintillator and bismuth germanate components was accomplished on a pulse-by-pulse basis using custom integrator and timing circuits. In addition, a custom time-tag module was used to provide a time for each detector event. Analysis of the combined energy and time event stream was performed by calibrating each detector's response and filtering based on the presence of a simultaneous energy deposition corresponding to the 10 B(n,alpha) reaction products in the plastic scintillator (93 keV ee ) and the accompanying neutron-capture gamma ray in the bismuth germanate (478 keV). Time-correlation analysis was subsequently performed on the filtered event stream to obtain shift-register-type singles and doubles count rates. Proof-of-principle measurements were conducted with a variety of gamma-ray and neutron sources including 137 Cs, 54 Mn, AmLi, and 252 Cf. Results of this study indicate that a neutron-capture probability of ∼10% and a die-away time of ∼10 micros are possible with a 4-detector array with a detector volume of 1600 cm 3 . Simulations were performed that indicate neutron-capture probabilities on the order of 50% and die-away times of less than 4 micros are realistically achievable. While further study will be required for practical application of such a detection system, the results obtained in this investigation are encouraging and may lead to a new class of high

  12. Spatio-energetic cross talk in photon counting detectors: Detector model and correlated Poisson data generator.

    Science.gov (United States)

    Taguchi, Katsuyuki; Polster, Christoph; Lee, Okkyun; Stierstorfer, Karl; Kappler, Steffen

    2016-12-01

    An x-ray photon interacts with photon counting detectors (PCDs) and generates an electron charge cloud or multiple clouds. The clouds (thus, the photon energy) may be split between two adjacent PCD pixels when the interaction occurs near pixel boundaries, producing a count at both of the pixels. This is called double-counting with charge sharing. (A photoelectric effect with K-shell fluorescence x-ray emission would result in double-counting as well). As a result, PCD data are spatially and energetically correlated, although the output of individual PCD pixels is Poisson distributed. Major problems include the lack of a detector noise model for the spatio-energetic cross talk and lack of a computationally efficient simulation tool for generating correlated Poisson data. A Monte Carlo (MC) simulation can accurately simulate these phenomena and produce noisy data; however, it is not computationally efficient. In this study, the authors developed a new detector model and implemented it in an efficient software simulator that uses a Poisson random number generator to produce correlated noisy integer counts. The detector model takes the following effects into account: (1) detection efficiency; (2) incomplete charge collection and ballistic effect; (3) interaction with PCDs via photoelectric effect (with or without K-shell fluorescence x-ray emission, which may escape from the PCDs or be reabsorbed); and (4) electronic noise. The correlation was modeled by using these two simplifying assumptions: energy conservation and mutual exclusiveness. The mutual exclusiveness is that no more than two pixels measure energy from one photon. The effect of model parameters has been studied and results were compared with MC simulations. The agreement, with respect to the spectrum, was evaluated using the reduced χ 2 statistics or a weighted sum of squared errors, χ red 2 (≥1), where χ red 2 =1 indicates a perfect fit. The model produced spectra with flat field irradiation that

  13. Muon counting using silicon photomultipliers in the AMIGA detector of the Pierre Auger observatory

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-03-01

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be formed by an infill of surface water-Cherenkov detectors associated with buried scintillation counters employed for muon counting. Each counter is composed of three scintillation modules, with a 10 m2 detection area per module. In this paper, a new generation of detectors, replacing the current multi-pixel photomultiplier tube (PMT) with silicon photo sensors (aka. SiPMs), is proposed. The selection of the new device and its front-end electronics is explained. A method to calibrate the counting system that ensures the performance of the detector is detailed. This method has the advantage of being able to be carried out in a remote place such as the one where the detectors are deployed. High efficiency results, i.e. 98% efficiency for the highest tested overvoltage, combined with a low probability of accidental counting (~2%), show a promising performance for this new system.

  14. Control of the neutron detector count rate by optical imaging

    International Nuclear Information System (INIS)

    Roquemore, A.L.; Johnson, L.C.

    1992-01-01

    The signal processing electronics used for the NE451 detectors on the TFTR multichannel neutron collimator are presently showing saturation effects at high counting rates equivalent to neutron yields of ∼10 16 n/s. While nonlinearity due to pulse pileup can be corrected for in most present TFTR experiments, additional steps are required for neutron source strengths above ∼3x10 16 n/s. These pulse pileup effects could be reduced by inserting sleeves in the collimator shielding to reduce the neutron flux in the vicinity of the detectors or by reducing the volume of detector exposed to the flux. We describe a novel method of avoiding saturation by optically controlling the number neutron events processed by the detector electronics. Because of the optical opacity of the ZnS-plastic detectors such as NE451, photons from a proton-recoil scintillation arise from a spatially localized area of the detector. By imaging a selected portion of the detector onto a photomultiplier, we reduce the effective volume of the detector in a controllable, reversible way. A prototype system, consisting of a focusing lens, a field lens, and a variable aperture, has been constructed. Results of laboratory feasibility tests are presented

  15. Evaluation of a hybrid photon counting pixel detector for X-ray polarimetry

    International Nuclear Information System (INIS)

    Michel, T.; Durst, J.

    2008-01-01

    It has already been shown in literature that X-ray sensitive CCDs can be used to measure the degree of linear polarization of X-rays using the effect that photoelectrons are emitted with a non-isotropic angular distribution in respect to the orientation of the electric field vector of impinging photons. Up to now hybrid semiconductor pixel detectors like the Timepix-detector have never been used for X-ray polarimetry. The main reason for this is that the pixel pitch is large compared to CCDs which results in a much smaller analyzing power. On the other hand, the active thickness of the sensor layer can be larger than in CCDs leading to an increased efficiency. Therefore hybrid photon counting pixel detectors may be used for imaging and polarimetry at higher photon energies. For irradiation with polarized X-ray photons we were able to measure an asymmetry between vertical and horizontal double hit events in neighboring pixels of the hybrid photon counting Timepix-detector at room temperature. For the specific spectrum used in our experiment an average polarization asymmetry of (0.96±0.02)% was measured. Additionally, the Timepix-detector with its spectroscopic time-over-threshold-mode was used to measure the dependence of the polarization asymmetry on energy deposition in the detector. Polarization asymmetries between 0.2% at 29 keV and 3.4% at 78 keV energy deposition were determined. The results can be reproduced with our EGS4-based Monte-Carlo simulation

  16. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.

    Science.gov (United States)

    Maigné, Alan; Wolf, Matthias

    2018-03-01

    Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.

  17. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)

    2016-05-15

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.

  18. Highly Sensitive Photon Counting Detectors for Deep Space Optical Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of a photon-counting photodetector is proposed to advance the state-of the-art in deep space optical communications technology. The proposed detector...

  19. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    Science.gov (United States)

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; Hunt, Alan W.; Ludewigt, Bernhard

    2018-01-01

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ∼6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the art and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2" (length) × 2" (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ∼3 Mcps. An experimental methodology was developed that uses the average current from the PMT's anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ∼3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.

  20. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  1. Spectral resolution and high-flux capability tradeoffs in CdTe detectors for clinical CT.

    Science.gov (United States)

    Hsieh, Scott S; Rajbhandary, Paurakh L; Pelc, Norbert J

    2018-04-01

    than the ideal photon counting detector. The optimal pixel size depends on a number of factors such as x-ray technique and object size. At high technique (140 kVp/500 mA), the ratio of variance for a 450 micron pixel compared to a 250 micron pixel size is 2126%, 200%, 97%, and 78% when imaging 10, 15, 20, and 25 cm of water, respectively. If 300 mg/cm 2 of iodine is also added to the object, the variance ratio is 117%, 91%, 74%, and 72%, respectively. Nonspectral tasks, such as equivalent monoenergetic imaging, are less sensitive to spectral distortion. The detector pixel size is an important design consideration in CdTe detectors. Smaller pixels allow for improved capabilities at high flux but increase charge sharing, which in turn compromises spectral performance. The optimal pixel size will depend on the specific task and on the charge shaping time. © 2018 American Association of Physicists in Medicine.

  2. Solid-State Neutron Multiplicity Counting System Using Commercial Off-the-Shelf Semiconductor Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rozhdestvenskyy, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    This work iterates on the first demonstration of a solid-state neutron multiplicity counting system developed at Lawrence Livermore National Laboratory by using commercial off-the-shelf detectors. The system was demonstrated to determine the mass of a californium-252 neutron source within 20% error requiring only one-hour measurement time with 20 cm2 of active detector area.

  3. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  4. Characterization of a mammographic system based on single photon counting pixel arrays coupled to GaAs x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Amendolia, S. R.; Bisogni, M. G.; Delogu, P.; Fantacci, M. E.; Paternoster, G.; Rosso, V.; Stefanini, A. [Str. Dip. di Matematica e Fisica dell' Universita di Sassari, Via Vienna 2, I-07100, Sassari (Italy) and Istituto Nazionale di Fisica Nucleare INFN Sezione di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy); Dip. di Fisica ' ' E. Fermi' ' , Universita di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy) and Istituto Nazionale di Fisica Nucleare INFN Sezione di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy); Dip. di Fisica ' ' E. Fermi' ' , Universita di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy); Dip. di Fisica ' ' E. Fermi' ' , Universita di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy) and Istituto Nazionale di Fisica Nucleare INFN Sezione di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy)

    2009-04-15

    The authors report on the imaging capabilities of a mammographic system demonstrator based on GaAs pixel detectors operating in single photon counting (SPC) mode. The system imaging performances have been assessed by means of the transfer functions: The modulation transfer function (MTF), the normalized noise power spectrum, and the detective quantum efficiency (DQE) have been measured following the guidelines of the IEC 62220-1-2 protocol. The transfer function analysis has shown the high spatial resolution capabilities of the GaAs detectors. The MTF calculated at the Nyquist frequency (2.94 cycles/mm) is indeed 60%. The DQE, measured with a standard mammographic beam setup (Mo/Mo, 28 kVp, with 4 mm Al added filter) and calculated at zero frequency, is 46%. Aiming to further improve the system's image quality, the authors investigate the DQE limiting factors and show that they are mainly related to system engineering. For example, the authors show that optimization of the image equalization procedure increases the DQE(0) up to 74%, which is better than the DQE(0) of most clinical mammographic systems. The authors show how the high detection efficiency of GaAs detectors and the noise discrimination associated with the SPC technology allow optimizing the image quality in mammography. In conclusion, the authors propose technological solutions to exploit to the utmost the potentiality of GaAs detectors coupled to SPC electronics.

  5. Status of the Top and Bottom Counting Detectors for the ISS-CREAM Experiment

    Science.gov (United States)

    Park, J. M.; ISS-CREAM Collaboration

    2017-11-01

    It is important to measure the cosmic ray spectra to study the origin, acceleration and propagation mechanisms of high-energy cosmic rays. A payload of the Cosmic Ray Energetics And Mass experiment is scheduled to be launched in 2017 to the International Space Station for measuring cosmic ray elemental spectra at energies beyond the reach of balloon instruments. Top Counting Detector and Bottom Counting Detector (T/BCD) as a two-dimensional detector are to separate electrons from protons for electron/gamma-ray physics. The T/BCD each consists of a plastic scintillator read out by 20 by 20 photodiodes and is placed before and after the Calorimeter, respectively. Energy and hit information of the T/BCD can distinguish shower profiles of electrons and protons, which show narrower and shorter showers from electrons at a given energy. The T/BCD performance has been studied with the Silicon Charge Detector and the calorimeter by using a GEANT3 + FLUKA 3.21 simulation package. By comparing the number of hits and shower width distributions between electrons and protons, we have studied optimal parameters for the e/p separation.

  6. Neutron generation time of the reactor 'crocus' by an interval distribution method for counts collected by two detectors

    International Nuclear Information System (INIS)

    Haldy, P.-A.; Chikouche, M.

    1975-01-01

    The distribution is considered of time intervals between a count in one neutron detector and the consequent event registered in a second one. A 'four interval' probability generating function was derived by means of which the expression for the distribution of the time intervals, lasting from triggering detection in the first detector to subsequent count in the second, one could be obtained. The experimental work was conducted in the zero thermal power reactor Crocus, using a neutron source provided by spontaneous fission, a BF 3 counter for the first detector and an He 3 detector for the second instrument. (U.K.)

  7. Counting radon tracks in Makrofol detectors with the 'image reduction and analysis facility' (IRAF) software package

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, F. [Laboratorio de Fisica Medica y Radioactividad Ambiental, Departamento de Medicina Fisica y Farmacologia, Universidad de La Laguna, 38320 La Laguna, Tenerife (Spain)]. E-mail: fimerall@ull.es; Gonzalez-Manrique, S. [Laboratorio de Fisica Medica y Radioactividad Ambiental, Departamento de Medicina Fisica y Farmacologia, Universidad de La Laguna, 38320 La Laguna, Tenerife (Spain); Karlsson, L. [Laboratorio de Fisica Medica y Radioactividad Ambiental, Departamento de Medicina Fisica y Farmacologia, Universidad de La Laguna, 38320 La Laguna, Tenerife (Spain); Hernandez-Armas, J. [Laboratorio de Fisica Medica y Radioactividad Ambiental, Departamento de Medicina Fisica y Farmacologia, Universidad de La Laguna, 38320 La Laguna, Tenerife (Spain); Aparicio, A. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Departamento de Astrofisica, Universidad de La Laguna. Avenida. Astrofisico Francisco Sanchez s/n, 38071 La Laguna, Tenerife (Spain)

    2007-03-15

    Makrofol detectors are commonly used for long-term radon ({sup 222}Rn) measurements in houses, schools and workplaces. The use of this type of passive detectors for the determination of radon concentrations requires the counting of the nuclear tracks produced by alpha particles on the detecting material. The 'image reduction and analysis facility' (IRAF) software package is a piece of software commonly used in astronomical applications. It allows detailed counting and mapping of sky sections where stars are grouped very closely, even forming clusters. In order to count the nuclear tracks in our Makrofol radon detectors, we have developed an inter-disciplinary application that takes advantage of the similitude that exist between counting stars in a dark sky and tracks in a track-etch detector. Thus, a low cost semi-automatic system has been set up in our laboratory which utilises a commercially available desktop scanner and the IRAF software package. A detailed description of the proposed semi-automatic method and its performance, in comparison to ocular counting, is described in detail here. In addition, the calibration factor for this procedure, 2.97+/-0.07kBqm{sup -3}htrack{sup -1}cm{sup 2}, has been calculated based on the results obtained from exposing 46 detectors to certified radon concentrations. Furthermore, the results of a preliminary radon survey carried out in 62 schools in Tenerife island (Spain), using Makrofol detectors, counted with the mentioned procedure, are briefly presented. The results reported here indicate that the developed procedure permits a fast, accurate and unbiased determination of the radon tracks in a large number of detectors. The measurements carried out in the schools showed that the radon concentrations in at least 12 schools were above 200Bqm{sup -3} and, in two of them, above 400Bqm{sup -3}. Further studies should be performed at those schools following the European Union recommendations about radon concentrations in

  8. Monte Carlo simulation of gamma-ray total counting efficiency for a Phoswich detector

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey)], E-mail: syalcin@kastamonu.edu.tr; Gurler, O. [Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gundogdu, O. [Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); NCCPM, Medical Physics, Royal Surrey County Hospital, Guildford, GU2 7XX (United Kingdom); Kaynak, G. [Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)

    2009-01-15

    The LB 1000-PW detector is mainly used for determining total alpha, beta and gamma activity of low activity natural sources such as water, soil, air filters and any other environmental sources. Detector efficiency needs to be known in order to measure the absolute activity of such samples. This paper presents results on the total gamma counting efficiency of a Phoswich detector from point and disk sources. The directions of photons emitted from the source were determined by Monte Carlo techniques and the true path lengths in the detector were determined by analytical equations depending on photon directions. Results are tabulated for various gamma energies.

  9. Monte Carlo simulation of gamma-ray total counting efficiency for a Phoswich detector

    International Nuclear Information System (INIS)

    Yalcin, S.; Gurler, O.; Gundogdu, O.; Kaynak, G.

    2009-01-01

    The LB 1000-PW detector is mainly used for determining total alpha, beta and gamma activity of low activity natural sources such as water, soil, air filters and any other environmental sources. Detector efficiency needs to be known in order to measure the absolute activity of such samples. This paper presents results on the total gamma counting efficiency of a Phoswich detector from point and disk sources. The directions of photons emitted from the source were determined by Monte Carlo techniques and the true path lengths in the detector were determined by analytical equations depending on photon directions. Results are tabulated for various gamma energies

  10. Parametric Adaptive Radar Detector with Enhanced Mismatched Signals Rejection Capabilities

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2010-01-01

    Full Text Available We consider the problem of adaptive signal detection in the presence of Gaussian noise with unknown covariance matrix. We propose a parametric radar detector by introducing a design parameter to trade off the target sensitivity with sidelobes energy rejection. The resulting detector merges the statistics of Kelly's GLRT and of the Rao test and so covers Kelly's GLRT and the Rao test as special cases. Both invariance properties and constant false alarm rate (CFAR behavior for this detector are studied. At the analysis stage, the performance of the new receiver is assessed and compared with several traditional adaptive detectors. The results highlight better rejection capabilities of this proposed detector for mismatched signals. Further, we develop two two-stage detectors, one of which consists of an adaptive matched filter (AMF followed by the aforementioned detector, and the other is obtained by cascading a GLRT-based Subspace Detector (SD and the proposed adaptive detector. We show that the former two-stage detector outperforms traditional two-stage detectors in terms of selectivity, and the latter yields more robustness.

  11. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  12. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    International Nuclear Information System (INIS)

    Talla, Patrick Takoukam

    2011-01-01

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 μm. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  13. High-Sensitivity Fast Neutron Detector KNK-2-8M

    Science.gov (United States)

    Koshelev, A. S.; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M.; Chuklyaev, S. V.; Pepyolyshev, Yu. N.

    2017-12-01

    The design of the fast neutron detector KNK-2-8M is outlined. The results of he detector study in the pulse counting mode with pulses from 238U nuclei fission in the radiator of the neutron-sensitive section and in the current mode with separation of functional section currents are presented. The possibilities of determination of the effective number of 238U nuclei in the radiator of the neutron-sensitive section are considered. The diagnostic capabilities of the detector in the counting mode are demonstrated, as exemplified by the analysis of reference data on characteristics of neutron fields in the BR-1 reactor hall. The diagnostic capabilities of the detector in the current mode are demonstrated, as exemplified by the results of measurements of 238U fission intensity in the power startup of the BR-K1 reactor in the fission pulse generation mode with delayed neutrons and the detector placed in the reactor cavity in conditions of large-scale variation of the reactor radiation fields.

  14. Remote system for counting of nuclear pulses

    International Nuclear Information System (INIS)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A.

    1999-01-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  15. Determining random counts in liquid scintillation counting

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1979-01-01

    During measurements involving coincidence counting techniques, errors can arise due to the detection of chance or random coincidences in the multiple detectors used. A method and the electronic circuits necessary are here described for eliminating this source of error in liquid scintillation detectors used in coincidence counting. (UK)

  16. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    Science.gov (United States)

    Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution

  17. Evaluation of the charge-sharing effects on spot intensity in XRD setup using photon-counting pixel detectors

    International Nuclear Information System (INIS)

    Nilsson, H.-E.; Mattsson, C.G.; Norlin, B.; Froejdh, C.; Bethke, K.; Vries, R. de

    2006-01-01

    In this study, we examine how charge loss due to charge sharing in photon-counting pixels detectors affects the recording of spot intensity in an X-ray diffraction (XRD) setup. In the photon-counting configuration, the charge from photons that are absorbed at the boarder of a pixel will be shared between two pixels. If the threshold is high enough, these photons will not be counted whereas if it is low enough, they will be counted twice. In an XRD setup, the intensity and position of various spots should be recorded. Thus, the intensity measure will be affected by the setting of the threshold. In this study, we used a system level Monte Carlo simulator to evaluate the variations in the intensity signals for different threshold settings and spot sizes. The simulated setup included an 8keV mono-chromatic source (providing a Gaussian shaped spot) and the MEDIPIX2 photon-counting pixel detector (55 μm x 55 μm pixel size with 300μm silicon) at various detector biases. Our study shows that the charge-sharing distortion can be compensated by numerical post processing and that high resolution in both charge distribution and position can be achieved

  18. Fluorescence decay data analysis correcting for detector pulse pile-up at very high count rates

    Science.gov (United States)

    Patting, Matthias; Reisch, Paja; Sackrow, Marcus; Dowler, Rhys; Koenig, Marcelle; Wahl, Michael

    2018-03-01

    Using time-correlated single photon counting for the purpose of fluorescence lifetime measurements is usually limited in speed due to pile-up. With modern instrumentation, this limitation can be lifted significantly, but some artifacts due to frequent merging of closely spaced detector pulses (detector pulse pile-up) remain an issue to be addressed. We propose a data analysis method correcting for this type of artifact and the resulting systematic errors. It physically models the photon losses due to detector pulse pile-up and incorporates the loss in the decay fit model employed to obtain fluorescence lifetimes and relative amplitudes of the decay components. Comparison of results with and without this correction shows a significant reduction of systematic errors at count rates approaching the excitation rate. This allows quantitatively accurate fluorescence lifetime imaging at very high frame rates.

  19. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    1979-01-01

    A system with improved count rate capability for detecting the radioactive distribution of positron events within an organ of interest in a living subject is described. Objects of the invention include improving the scintillation crystal and pulse processing electronics, avoiding the limitations of collimators and provide an Arger camera positron imaging system that avoids the use of collimators. (U.K.)

  20. Speckle imaging with the PAPA detector. [Precision Analog Photon Address

    Science.gov (United States)

    Papaliolios, C.; Nisenson, P.; Ebstein, S.

    1985-01-01

    A new 2-D photon-counting camera, the PAPA (precision analog photon address) detector has been built, tested, and used successfully for the acquisition of speckle imaging data. The camera has 512 x 512 pixels and operates at count rates of at least 200,000/sec. In this paper, technical details on the camera are presented and some of the laboratory and astronomical results are included which demonstrate the detector's capabilities.

  1. Photon Counting Using Edge-Detection Algorithm

    Science.gov (United States)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  2. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-01-01

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., ''white'') difference in their NPS exists such that NPS PC ≥NPS EI and hence DQE PC ≤DQE EI . The necessary and sufficient condition for equality is that the PSF

  3. Physics capabilities of the second stage Baikal detector NT-200

    International Nuclear Information System (INIS)

    Spiering, C.; Heller, R.; Heukenkamp, H.; Krabi, J.; Mikolajski, T.; Thon, T.; Wischnewski, R.; Alatin, S.D.; Fialkovsky, S.V.; Kulepov, V.F.; Milenin, M.B.; Belolaptikov, I.A.; Bezrukov, L.B.; Borisovets, B.A.; Bugaev, E.V.; Djilkibaev, Zh.A.M.; Domogatsky, G.V.; Donskich, L.A.; Doroshenko, A.A.; Galperin, M.D.; Gushtan, M.N.; Klabukov, A.M.; Klimushin, S.I.; Lanin, O.J.; Lubsandorzhiev, B.K.; Ogievietzky, N.V.; Panfilov, A.I.; Sokalsky, I.A.; Trofimenko, I.I.; Budnev, N.M.; Chensky, A.G.; Dobrynin, V.I.; Gress, O.A.; Koshechkin, A.P.; Lanin, J.B.; Litunenko, G.A.; Lopin, A.L.; Naumov, V.A.; Nemchenko, M.I.; Parfenov, Yu.V.; Pavlov, A.A.; Pokalev, O.P.; Primin, V.A.; Sumanov, A.A.; Tarashansky, V.A.; Zurbanov, V.L.; Dudkin, G.N.; Egorov, V.Yu.; Lukanin, A.A.; Ovcharov, A.M.; Padalko, V.M.; Padusenko, A.H.; Golikov, A.V.; Kabikov, V.B.; Kuzmichov, L.A.; Osipova, E.A.; Zaslavskaya, E.S.; Jenek, L.; Kiss, D.; Tanko, L.; Kusner, Yu.S.; Poleschuk, V.A.; Sherstyankin, P.P.; Levin, A.A.; Nikiforov, A.I.; Rosanov, M.I.

    1991-12-01

    We describe the lake Baikal deep underwater detector 'NT-200' and discuss its physics capabilities to investigate problems in the field of neutrino astrophysics, cosmic ray physics and particle physics. (orig.)

  4. Development of bonded semiconductor device for high counting rate high efficiency photon detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo

    2008-01-01

    We are trying to decrease dose exposure in medical diagnosis by way of measuring the energy of X-rays. For this purpose, radiation detectors for X-ray energy measurement with high counting rate should be developed. Direct bonding of Si wafers was carried out to make a radiation detector, which had separated X-ray absorber and detector. The resistivity of bonding interface was estimated with the results of four-probe measurements and model calculations. Direct bonding of high resistivity p and n-Si wafers was also performed. The resistance of the pn bonded diode was 0.7 MΩ. The resistance should be increased in the future. (author)

  5. EIGER: Next generation single photon counting detector for X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Dinapoli, Roberto, E-mail: roberto.dinapoli@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bergamaschi, Anna; Henrich, Beat; Horisberger, Roland; Johnson, Ian; Mozzanica, Aldo; Schmid, Elmar; Schmitt, Bernd; Schreiber, Akos; Shi, Xintian; Theidel, Gerd [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2011-09-11

    EIGER is an advanced family of single photon counting hybrid pixel detectors, primarily aimed at diffraction experiments at synchrotrons. Optimization of maximal functionality and minimal pixel size (using a 0.25{mu}m process and conserving the radiation tolerant design) has resulted in 75x75{mu}m{sup 2} pixels. Every pixel comprises a preamplifier, shaper, discriminator (with a 6 bit DAC for threshold trimming), a configurable 4/8/12 bit counter with double buffering, as well as readout, control and test circuitry. A novel feature of this chip is its double buffered counter, meaning a next frame can be acquired while the previous one is being readout. An array of 256x256 pixels fits on a {approx}2x2cm{sup 2} chip and a sensor of {approx}8x4cm{sup 2} will be equipped with eight readout chips to form a module containing 0.5 Mpixel. Several modules can then be tiled to form larger area detectors. Detectors up to 4x8 modules (16 Mpixel) are planned. To achieve frame rates of up to 24 kHz the readout architecture is highly parallel, and the chip readout happens in parallel on 32 readout lines with a 100 MHz Double Data Rate clock. Several chips and singles (i.e. a single chip bump-bonded to a single chip silicon sensor) were tested both with a lab X-ray source and at Swiss Light Source (SLS) beamlines. These tests demonstrate the full functionality of the chip and provide a first assessment of its performance. High resolution X-ray images and 'high speed movies' were produced, even without threshold trimming, at the target system frame rates (up to {approx}24kHz in 4 bit mode). In parallel, dedicated hardware, firmware and software had to be developed to comply with the enormous data rate the chip is capable of delivering. Details of the chip design and tests will be given, as well as highlights of both test and final readout systems.

  6. Fabrication and characterization of a 32 x 32 array digital Si-PIN X-ray detector for a single photon counting image sensor

    International Nuclear Information System (INIS)

    Seo, Jungho; Kim, Jinyoung; Lim, Hyunwoo; Park, Jingoo; Lee, Songjun; Kim, Bonghoe; Jeon, Sungchae; Huh, Young

    2010-01-01

    A Si-PIN X-ray detector for digital x-ray imaging with single photon counting capability has been fabricated and characterized. It consists of an array of 32 x 32 pixels with an area of 80 x 80 μm 2 . An extrinsic gettering process was performed to reduce the leakage current by removing the impurities and defects from the X-ray detector's Si substrate. Multiple guard-rings (MGRs) and metal filed plates (MFPs) techniques were adopted to reduce the leakage current and to improve the breakdown performance. The simulation verified that the breakdown voltage was improved with the MGRs and that the leakage current was significantly reduced with the MFPs. The electrical properties, such as the leakage current and the breakdown voltage, of the Si-PIN X-ray detector were characterized. The extrinsic gettering process played a significant role in reducing the leakage current, and a leakage current lower than 60 pA could be achieved at 100 V dc .

  7. X-ray Imaging Using a Hybrid Photon Counting GaAs Pixel Detector

    CERN Document Server

    Schwarz, C; Göppert, R; Heijne, Erik H M; Ludwig, J; Meddeler, G; Mikulec, B; Pernigotti, E; Rogalla, M; Runge, K; Smith, K M; Snoeys, W; Söldner-Rembold, S; Watt, J

    1999-01-01

    The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consists of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (...

  8. Fly's Eye: a counting camera for thermal neutrons, some applications, problems, and prospects

    International Nuclear Information System (INIS)

    Davidson, J.B.

    1975-01-01

    An area detector for thermal neutrons based on image intensification techniques is described and some capabilities and limitations of the detection system are discussed. Among the former are high spatial resolution high instantaneous counting rate, electronic zoom, time-gating, and integration. The detector is limited in that the maximum counting rate for a resolution element is 60 regularly spaced counts per second. Also, the nonuniformity of response over the detector limits the useful size and requires point-by-point calibration. In addition, a higher efficiency for neutron detection would be desirable. Some typical applications of the system are: crystal inspection, neutron magnetic diffraction topography, and searches for temperature induced changes in diffraction patterns. The future application of solid state television sensors and microchannel plate intensifiers to improve the system are briefly mentioned. (U.S.)

  9. Fly's eye: a counting camera for thermal neutrons: some applications, problems, and prospects

    International Nuclear Information System (INIS)

    Davidson, J.B.

    1976-01-01

    An area detector for thermal neutrons based on image intensification techniques is described. Some capabilities and limitations of the detection system are discussed. Among the former are high spatial resolution, high instantaneous counting rate, electronic zoom, time-gating, and integration. The detector is limited in that the maximum counting rate for a resolution element is 60 regularly spaced counts per second. Also, the nonuniformity of response over the detector puts a limit on the useful size and necessitates point-by-point calibration. In addition, a higher efficiency for neutron detection would be desirable. Some typical applications of the system are crystal inspection, neutron magnetic diffraction topography, and searches for temperature-induced changes in diffraction patterns. The future application of solid-state television sensors and microchannel-plate intensifiers to improve the system is briefly mentioned

  10. Detector response artefacts in spectral reconstruction

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Christensen, Erik D.; Khalil, Mohamad

    2017-01-01

    Energy resolved detectors are gaining traction as a tool to achieve better material contrast. K-edge imaging and tomography is an example of a method with high potential that has evolved on the capabilities of photon counting energy dispersive detectors. Border security is also beginning to see...... instruments taking advantage of energy resolved detectors. The progress of the field is halted by the limitations of the detectors. The limitations include nonlinear response for both x-ray intensity and x-ray spectrum. In this work we investigate how the physical interactions in the energy dispersive...

  11. Analysis of the performance capability of an infrared interior intrusion detector

    International Nuclear Information System (INIS)

    Dunn, D.R.

    1977-01-01

    Component performances are required by the LLL assessment procedure for material control and accounting (MC and A) systems. Monitors are an example of an MC and A component whose functions are to process measurements or observations for purposes of detecting abnormalities. This report develops a methodology for characterizing the performance of a class of infrared (IR) interior intrusion monitors or detectors. The methodology is developed around a specific commercial IR detector, the InfrAlarm, manufactured by Barnes Engineering Company (Models 19-124 and 19-115A). Statistical detection models for computing probabilities of detection and false alarms were derived, and the performance capability of the InfrAlarm IR detector was shown using these measures. The results obtained in the performance analysis show that the detection capability of the InfrAlarm is excellent (approx. 1), with very low false alarm rates, for a wide range in target characteristics. These results should be representative and particularly for non-hostile environments

  12. Photon-counting digital radiography using high-pressure xenon filled detectors

    CERN Document Server

    Li, Maozhen; Johns, P C

    2001-01-01

    Digital radiography overcomes many of the limitations of the traditional screen/film system. Further enhancements in the digital radiography image are possible if the X-ray image receptor could measure the energy of individual photons instead of simply integrating their energy, as is the case at present. A prototype photon counting scanned projection radiography system has been constructed, which combines a Gas Electron Multiplier (GEM) and a Gas Microstrip Detector (GMD) using Xe : CH sub 4 (90 : 10) at high pressure. With the gain contribution from the GEM, the GMD can be operated at lower and safer voltages making the imaging system more reliable. Good energy resolution, and spatial resolution comparable to that of screen/film, have been demonstrated for the GEM/GMD hybrid imaging system in photon counting mode for X-ray spectra up to 50 kV.

  13. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    Science.gov (United States)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  14. Low background germanium detectors: From environmental laboratory to underground counting facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceuppens, M [Canberra Semiconductor N.V., Geel (Belgium); [Canberra Industries, Inc., Meriden (United States); Verplancke, J [Canberra Semiconductor N.V., Geel (Belgium); [Canberra Industries, Inc., Meriden (United States); Tench, O [Canberra Semiconductor N.V., Geel (Belgium); [Canberra Industries, Inc., Meriden (United States)

    1997-03-01

    Presentation and overview of different Low Level measuring systems ranging from the environmental lab to low-background detection systems and to the deep underground counting facility. Examples and performances for each of these will be given. Attention will be given to the standardised ultra low-background detectors and shields which provide excellent performance without the high cost in time and money associated with custom designed systems. (orig./DG)

  15. Low background germanium detectors: From environmental laboratory to underground counting facility

    International Nuclear Information System (INIS)

    Ceuppens, M.; Verplancke, J.; Tench, O.

    1997-01-01

    Presentation and overview of different Low Level measuring systems ranging from the environmental lab to low-background detection systems and to the deep underground counting facility. Examples and performances for each of these will be given. Attention will be given to the standardised ultra low-background detectors and shields which provide excellent performance without the high cost in time and money associated with custom designed systems. (orig./DG)

  16. Ballistic deficit correction methods for large Ge detectors-high counting rate study

    International Nuclear Information System (INIS)

    Duchene, G.; Moszynski, M.

    1995-01-01

    This study presents different ballistic correction methods versus input count rate (from 3 to 50 kcounts/s) using four large Ge detectors of about 70 % relative efficiency. It turns out that the Tennelec TC245 linear amplifier in the BDC mode (Hinshaw method) is the best compromise for energy resolution throughout. All correction methods lead to narrow sum-peaks indistinguishable from single Γ lines. The full energy peak throughput is found representative of the pile-up inspection dead time of the corrector circuits. This work also presents a new and simple representation, plotting simultaneously energy resolution and throughput versus input count rate. (TEC). 12 refs., 11 figs

  17. Investigation of the behaviour of both dead time and observed counting rates of He-3 gas filled neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Eid, Y.; Abdel Kawy, A.; Maayouf, R.M.A.; Shuriet, G.M.; Hamouda, I.

    1981-01-01

    The behaviour of the dead time of He-3 detector, operating at both the proportional and the corona discharge regions, is investigated as a function of the neutron reaction rate inside the detector. The applied experimental method makes use of the fluctuations, due to the detector dead time in the observed counting rates from Poisson's distribution. In order to check the validity of the experimental method used in the present work, the dead time of BF/sub 3/ neutron detectors with different efficiencies (due to different enrichement in B-10) were determined. It is shown that the observed counting rate from the He-3 detector operating at the proportional region for neutron reaction rates ranging from 8 x 10/sup 3/ to 2.5 x 10/sup 4/ reaction/sec decreases with the increase of the neutron reaction rate. Such behaviour was not observed when operating the He-3 detector at the corona discharge region.

  18. Investigation of the behaviour of both dead time and observed counting rates of He-3 gas filled neutron detector

    International Nuclear Information System (INIS)

    Adib, M.; Eid, Y.; Abdel Kawy, A.; Maayouf, R.M.A.; Shuriet, G.M.; Hamouda, I.

    1981-01-01

    The behaviour of the dead time of He-3 detector, operating at both the proportional and the corona discharge regions, is investigated as a function of the neutron reaction rate inside the detector. The applied experimental method makes use of the fluctuations, due to the detector dead time in the observed counting rates from Poisson's distribution. In order to check the validity of the experimental method used in the present work, the dead time of BF 3 neutron detectors with different efficiencies (due to different enrichement in B-10) were determined. It is shown that the observed counting rate from the He-3 detector operating at the proportional region for neutron reaction rates ranging from 8 x 10 3 to 2.5 x 10 4 reaction/sec decreases with the increase of the neutron reaction rate. Such behaviour was not observed when operating the He-3 detector at the corona discharge region. (orig.) [de

  19. Criticality monitoring with digital systems and solid state neutron detectors

    International Nuclear Information System (INIS)

    Willhoite, S.B.

    1984-01-01

    A commercially available system for criticality monitoring combines the well established technology of digital radiation monitoring with state-of-the art detector systems capable of detecting criticality excursions of varying length and intensity with a high degree of confidence. The field microcomputer servicing the detector clusters contains hardware and software to acquire detector information in both the digital count rate and bit sensing modes supported by the criticality detectors. In both cases special criticality logic in the field microcomputer is used to determine the validity of the criticality event. The solid-state neutron detector consists of a 6 LiF wafer coupled to a diffused-junction charged particle detector. Alpha particles resulting from (n,α) interactions within the lithium wafer produce a pulsed signal corresponding to neutron intensity. Special detector circuitry causes the setting of a criticality bit recognizable by the microcomputer should neutron field intensities either exceed a hardware selectable frequency or saturate the detector resulting in a high current condition. These two modes of criticality sensing, in combination with the standard method of comparing an operator selectable alarm setpoint with the detector count rate, results in a criticality system capable of effective operation under the most demanding criticality monitoring conditions

  20. Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.

    Science.gov (United States)

    Tanguay, Jesse; Cunningham, Ian A

    2018-05-01

    Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded

  1. Theoretical analysis of the effect of charge-sharing on the Detective Quantum Efficiency of single-photon counting segmented silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, J [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)], E-mail: julien.marchal@diamond.ac.uk

    2010-01-15

    A detector cascaded model is proposed to describe charge-sharing effect in single-photon counting segmented silicon detectors. Linear system theory is applied to this cascaded model in order to derive detector performance parameters such as large-area gain, presampling Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE) as a function of energy detection threshold. This theory is used to model one-dimensional detectors (i.e. strip detectors) where X-ray-generated charge can be shared between two sampling elements, but the concepts developed in this article can be generalized to two-dimensional arrays of detecting elements (i.e. pixels detectors). The zero-frequency DQE derived from this model is consistent with expressions reported in the literature using a different method. The ability of this model to simulate the effect of charge sharing on image quality in the spatial frequency domain is demonstrated by applying it to a hypothetical one-dimensional single-photon counting detector illuminated with a typical mammography spectrum.

  2. K-edge energy-based calibration method for photon counting detectors

    Science.gov (United States)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  3. A rotation-symmetric, position-sensitive annular detector for maximum counting rates

    International Nuclear Information System (INIS)

    Igel, S.

    1993-12-01

    The Germanium Wall is a semiconductor detector system containing up to four annular position sensitive ΔE-detectors from high purity germanium (HPGe) planned to complement the BIG KARL spectrometer in COSY experiments. The first diode of the system, the Quirl-detector, has a two dimensional position sensitive structure defined by 200 Archimedes' spirals on each side with opposite orientation. In this way about 40000 pixels are defined. Since each spiral element detects almost the same number of events in an experiment the whole system can be optimized for maximal counting rates. This paper describes a test setup for a first prototype of the Quirl-detector and the results of test measurements with an α-source. The detector current and the electrical separation of the spiral elements were measured. The splitting of signals due to the spread of charge carriers produced by an incident ionizing particle on several adjacent elements was investigated in detail and found to be twice as high as expected from calculations. Its influence on energy and position resolution is discussed. Electronic crosstalk via signal wires and the influence of noise from the magnetic spectrometer has been tested under experimental conditions. Additionally, vacuum feedthroughs based on printed Kapton foils pressed between Viton seals were fabricated and tested successfully concerning their vacuum and thermal properties. (orig.)

  4. Joint preprocesser-based detector for cooperative networks with limited hardware processing capability

    KAUST Repository

    Abuzaid, Abdulrahman I.

    2015-02-01

    In this letter, a joint detector for cooperative communication networks is proposed when the destination has limited hardware processing capability. The transmitter sends its symbols with the help of L relays. As the destination has limited hardware, only U out of L signals are processed and the energy of the remaining relays is lost. To solve this problem, a joint preprocessing based detector is proposed. This joint preprocessor based detector operate on the principles of minimizing the symbol error rate (SER). For a realistic assessment, pilot symbol aided channel estimation is incorporated for this proposed detector. From our simulations, it can be observed that our proposed detector achieves the same SER performance as that of the maximum likelihood (ML) detector with all participating relays. Additionally, our detector outperforms selection combining (SC), channel shortening (CS) scheme and reduced-rank techniques when using the same U. Our proposed scheme has low computational complexity.

  5. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    Czech Academy of Sciences Publication Activity Database

    Pichotka, Martin; Jakůbek, Jan; Vavřík, Daniel

    2015-01-01

    Roč. 10, č. 12 (2015), C12033 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LO1219 Keywords : micro-tomography * photon-counting detectors * metallic-organic composites Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.310, year: 2015 http://iopscience.iop.org/article/10.1088/1748-0221/10/12/C12033/pdf

  6. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    Science.gov (United States)

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  7. High-Dose Neutron Detector Development Using 10B Coated Cells

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    During FY16 the boron-lined parallel-plate technology was optimized to fully benefit from its fast timing characteristics in order to enhance its high count rate capability. To facilitate high count rate capability, a novel fast amplifier with timing and operating properties matched to the detector characteristics was developed and implemented in the 8” boron plate detector that was purchased from PDT. Each of the 6 sealed-cells was connected to a fast amplifier with corresponding List mode readout from each amplifier. The FY16 work focused on improvements in the boron-10 coating materials and procedures at PDT to significantly improve the neutron detection efficiency. An improvement in the efficiency of a factor of 1.5 was achieved without increasing the metal backing area for the boron coating. This improvement has allowed us to operate the detector in gamma-ray backgrounds that are four orders of magnitude higher than was previously possible while maintaining a relatively high counting efficiency for neutrons. This improvement in the gamma-ray rejection is a key factor in the development of the high dose neutron detector.

  8. Performance of Drift-Tube Detectors at High Counting Rates for High-Luminosity LHC Upgrades

    CERN Document Server

    Bittner, Bernhard; Kortner, Oliver; Kroha, Hubert; Manfredini, Alessandro; Nowak, Sebastian; Ott, Sebastian; Richter, Robert; Schwegler, Philipp; Zanzi, Daniele; Biebel, Otmar; Hertenberger, Ralf; Ruschke, Alexander; Zibell, Andre

    2016-01-01

    The performance of pressurized drift-tube detectors at very high background rates has been studied at the Gamma Irradiation Facility (GIF) at CERN and in an intense 20 MeV proton beam at the Munich Van-der-Graaf tandem accelerator for applications in large-area precision muon tracking at high-luminosity upgrades of the Large Hadron Collider (LHC). The ATLAS muon drifttube (MDT) chambers with 30 mm tube diameter have been designed to cope with and neutron background hit rates of up to 500 Hz/square cm. Background rates of up to 14 kHz/square cm are expected at LHC upgrades. The test results with standard MDT readout electronics show that the reduction of the drift-tube diameter to 15 mm, while leaving the operating parameters unchanged, vastly increases the rate capability well beyond the requirements. The development of new small-diameter muon drift-tube (sMDT) chambers for LHC upgrades is completed. Further improvements of tracking e?ciency and spatial resolution at high counting rates will be achieved with ...

  9. Development and characterisation of a visible light photon counting imaging detector system

    CERN Document Server

    Barnstedt, J

    2002-01-01

    We report on the development of a visible light photon counting imaging detector system. The detector concept is based on standard 25 mm diameter microchannel plate image intensifiers made by Proxitronic in Bensheim (Germany). Modifications applied to these image intensifiers are the use of three microchannel plates instead of two and a high resistance ceramics plate used instead of the standard phosphor output screen. A wedge and strip anode mounted directly behind the high resistance ceramics plate was used as a read out device. This wedge and strip anode picks up the image charge of electron clouds emerging from the microchannel plates. The charge pulses are fed into four charge amplifiers and subsequently into a digital position decoding electronics, achieving a position resolution of up to 1024x1024 pixels. Mounting the anode outside the detector tube is a new approach and has the great advantage of avoiding electrical feedthroughs from the anode so that the standard image intensifier fabrication process...

  10. Calculation of total counting efficiency of a NaI(Tl) detector by hybrid Monte-Carlo method for point and disk sources

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey)], E-mail: yalcin@gazi.edu.tr; Gurler, O.; Kaynak, G. [Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gundogdu, O. [Department of Physics, School of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2007-10-15

    This paper presents results on the total gamma counting efficiency of a NaI(Tl) detector from point and disk sources. The directions of photons emitted from the source were determined by Monte-Carlo techniques and the photon path lengths in the detector were determined by analytic equations depending on photon directions. This is called the hybrid Monte-Carlo method where analytical expressions are incorporated into the Monte-Carlo simulations. A major advantage of this technique is the short computation time compared to other techniques on similar computational platforms. Another advantage is the flexibility for inputting detector-related parameters (such as source-detector distance, detector radius, source radius, detector linear attenuation coefficient) into the algorithm developed, thus making it an easy and flexible method to apply to other detector systems and configurations. The results of the total counting efficiency model put forward for point and disc sources were compared with the previous work reported in the literature.

  11. Calculation of total counting efficiency of a NaI(Tl) detector by hybrid Monte-Carlo method for point and disk sources

    International Nuclear Information System (INIS)

    Yalcin, S.; Gurler, O.; Kaynak, G.; Gundogdu, O.

    2007-01-01

    This paper presents results on the total gamma counting efficiency of a NaI(Tl) detector from point and disk sources. The directions of photons emitted from the source were determined by Monte-Carlo techniques and the photon path lengths in the detector were determined by analytic equations depending on photon directions. This is called the hybrid Monte-Carlo method where analytical expressions are incorporated into the Monte-Carlo simulations. A major advantage of this technique is the short computation time compared to other techniques on similar computational platforms. Another advantage is the flexibility for inputting detector-related parameters (such as source-detector distance, detector radius, source radius, detector linear attenuation coefficient) into the algorithm developed, thus making it an easy and flexible method to apply to other detector systems and configurations. The results of the total counting efficiency model put forward for point and disc sources were compared with the previous work reported in the literature

  12. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    Science.gov (United States)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  13. A direct electron detector for time-resolved MeV electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vecchione, T.; Denes, P.; Jobe, R. K.; Johnson, I. J.; Joseph, J. M.; Li, R. K.; Perazzo, A.; Shen, X.; Wang, X. J.; Weathersby, S. P.; Yang, J.; Zhang, D.

    2017-03-01

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.

  14. The pin pixel detector--X-ray imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a soft X-ray gas pixel detector, which uses connector pins for the anodes is reported. Based on a commercial 100 pin connector block, a prototype detector of aperture 25.4 mm centre dot 25.4 mm can be economically fabricated. The individual pin anodes all show the expected characteristics of small gas detectors capable of counting rates reaching 1 MHz per pin. A 2-dimensional resistive divide readout system has been developed to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics.

  15. Capability of abdominal 320-detector row CT for small vasculature assessment compared with that of 64-detector row CT

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro, E-mail: kitajima@med.kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Maeda, Tetsuo; Ohno, Yoshiharu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Radiology, Kobe University Hospital, Kobe (Japan); Yoshikawa, Takeshi [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Konishi, Minoru [Division of Radiology, Kobe University Hospital, Kobe (Japan); Kanda, Tomonori; Onishi, Yumiko; Matsumoto, Keiko; Koyama, Hisanobu; Takenaka, Daisuke; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan)

    2011-11-15

    Objective: To compare the capability of 320-detector row CT (area-detector CT: ADCT) with step-and-shoot scan protocol for small abdominal vasculature assessment with that of 64-detector row CT with helical scan protocol. Materials and methods: Total of 60 patients underwent contrast-enhanced abdominal CT for preoperative assessment. Of all, 30 suspected to have lung cancer underwent ADCT using step-and-shoot scan protocol. The other 30 suspected to have renal cell carcinoma underwent 64-MDCT using helical scan protocol. Two experienced radiologists independently assessed inferior epigastric, hepatic subsegmental (in the segment 8), mesenteric marginal (Griffith point) and inferior phrenic arteries by using 5-point visual scoring systems. Kappa analysis was used for evaluation of interobserver agreement. To compare the visualization capability of the two systems, the Mann-Whitney U-test was used to compare the scores for each of the arteries. Results: Overall interobserver agreements for both systems were almost perfect ({kappa} > 0.80). Visualization scores for inferior epigastric and mesenteric arteries were significantly higher for ADCT than for 64-detector row CT (p < 0.05). No significant difference was found for hepatic subsegmental and inferior phrenic arteries. Conclusion: Small abdominal vasculature assessment by ADCT with step-and-shoot scan protocol is potentially equal to or better than that by 64-detector row CT with helical scan protocol.

  16. Capability of abdominal 320-detector row CT for small vasculature assessment compared with that of 64-detector row CT

    International Nuclear Information System (INIS)

    Kitajima, Kazuhiro; Maeda, Tetsuo; Ohno, Yoshiharu; Yoshikawa, Takeshi; Konishi, Minoru; Kanda, Tomonori; Onishi, Yumiko; Matsumoto, Keiko; Koyama, Hisanobu; Takenaka, Daisuke; Sugimura, Kazuro

    2011-01-01

    Objective: To compare the capability of 320-detector row CT (area-detector CT: ADCT) with step-and-shoot scan protocol for small abdominal vasculature assessment with that of 64-detector row CT with helical scan protocol. Materials and methods: Total of 60 patients underwent contrast-enhanced abdominal CT for preoperative assessment. Of all, 30 suspected to have lung cancer underwent ADCT using step-and-shoot scan protocol. The other 30 suspected to have renal cell carcinoma underwent 64-MDCT using helical scan protocol. Two experienced radiologists independently assessed inferior epigastric, hepatic subsegmental (in the segment 8), mesenteric marginal (Griffith point) and inferior phrenic arteries by using 5-point visual scoring systems. Kappa analysis was used for evaluation of interobserver agreement. To compare the visualization capability of the two systems, the Mann-Whitney U-test was used to compare the scores for each of the arteries. Results: Overall interobserver agreements for both systems were almost perfect (κ > 0.80). Visualization scores for inferior epigastric and mesenteric arteries were significantly higher for ADCT than for 64-detector row CT (p < 0.05). No significant difference was found for hepatic subsegmental and inferior phrenic arteries. Conclusion: Small abdominal vasculature assessment by ADCT with step-and-shoot scan protocol is potentially equal to or better than that by 64-detector row CT with helical scan protocol.

  17. EXCALIBUR: a small-pixel photon counting area detector for coherent X-ray diffraction - Front-end design, fabrication and characterisation

    Science.gov (United States)

    Marchal, J.; Horswell, I.; Willis, B.; Plackett, R.; Gimenez, E. N.; Spiers, J.; Ballard, D.; Booker, P.; Thompson, J. A.; Gibbons, P.; Burge, S. R.; Nicholls, T.; Lipp, J.; Tartoni, N.

    2013-03-01

    Coherent X-ray diffraction experiments on synchrotron X-ray beamlines require detectors with high spatial resolution and large detection area. The read-out chip developed by the MEDIPIX3 collaboration offers a small pixel size of 55 microns resulting in a very high spatial resolution when coupled to a direct X-ray conversion segmented silicon sensor. MEDIPIX3 assemblies present also the advantages of hybrid pixel detectors working in single photon counting mode: noiseless imaging, large dynamic range, extremely high frame rate. The EXCALIBUR detector is under development for the X-ray Coherence and Imaging Beamline I13 of the Diamond Light Source. This new detector consists of three modules, each with 16 MEDIPIX3 chips which can be read-out at 100 frames per second in continuous mode or 1000 frames per second in burst mode. In each module, the sensor is a large single silicon die covering 2 rows of 8 individual MEDIPIX3 read-out chips and provides a continuous active detection region within a module. Each module includes 1 million solder bumps connecting the 55 microns pixels of the silicon sensor to the 55 microns pixels of the 16 MEDIPIX3 read-out chips. The detection area of the 3-module EXCALIBUR detector is 115 mm × 100 mm with a small 6.8 mm wide inactive region between modules. Each detector module is connected to 2 FPGA read-out boards via a flexi-rigid circuit to allow a fully parallel read-out of the 16 MEDIPIX3 chips. The 6 FPGA read-out boards used in the EXCALIBUR detector are interfaced to 6 computing nodes via 10Gbit/s fibre-optic links to maintain the very high frame-rate capability. The standard suite of EPICS control software is used to operate the detector and to integrate it with the Diamond Light Source beamline software environment. This article describes the design, fabrication and characterisation of the MEDIPIX3-based modules composing the EXCALIBUR detector.

  18. EXCALIBUR: a small-pixel photon counting area detector for coherent X-ray diffraction - Front-end design, fabrication and characterisation

    International Nuclear Information System (INIS)

    Marchal, J; Horswell, I; Willis, B; Plackett, R; Gimenez, E N; Spiers, J; Thompson, J A; Gibbons, P; Tartoni, N; Ballard, D; Booker, P; Burge, S R; Nicholls, T; Lipp, J

    2013-01-01

    Coherent X-ray diffraction experiments on synchrotron X-ray beamlines require detectors with high spatial resolution and large detection area. The read-out chip developed by the MEDIPIX3 collaboration offers a small pixel size of 55 microns resulting in a very high spatial resolution when coupled to a direct X-ray conversion segmented silicon sensor. MEDIPIX3 assemblies present also the advantages of hybrid pixel detectors working in single photon counting mode: noiseless imaging, large dynamic range, extremely high frame rate. The EXCALIBUR detector is under development for the X-ray Coherence and Imaging Beamline I13 of the Diamond Light Source. This new detector consists of three modules, each with 16 MEDIPIX3 chips which can be read-out at 100 frames per second in continuous mode or 1000 frames per second in burst mode. In each module, the sensor is a large single silicon die covering 2 rows of 8 individual MEDIPIX3 read-out chips and provides a continuous active detection region within a module. Each module includes 1 million solder bumps connecting the 55 microns pixels of the silicon sensor to the 55 microns pixels of the 16 MEDIPIX3 read-out chips. The detection area of the 3-module EXCALIBUR detector is 115 mm × 100 mm with a small 6.8 mm wide inactive region between modules. Each detector module is connected to 2 FPGA read-out boards via a flexi-rigid circuit to allow a fully parallel read-out of the 16 MEDIPIX3 chips. The 6 FPGA read-out boards used in the EXCALIBUR detector are interfaced to 6 computing nodes via 10Gbit/s fibre-optic links to maintain the very high frame-rate capability. The standard suite of EPICS control software is used to operate the detector and to integrate it with the Diamond Light Source beamline software environment. This article describes the design, fabrication and characterisation of the MEDIPIX3-based modules composing the EXCALIBUR detector.

  19. On selecting a sensitive region thickness of a silicon semiconductor detector for operation under counting conditions

    International Nuclear Information System (INIS)

    Pronkin, N.S.; Khakhalin, V.V.

    1972-01-01

    The paper discusses the selection of a thickness of a sensitive area of a silicon semiconductor detector, used in the count regime based on the signal to noise ratio and β-radiation registration efficiency. (author)

  20. Evaluation of In-Vacuum Imaging Plate Detector for X-Ray Diffraction Microscopy

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Takahashi, Yukio; Yamamoto, Masaki; Ishikawa, Tetsuya

    2007-01-01

    We performed evaluation tests of a newly developed in-vacuum imaging plate (IP) detector for x-ray diffraction microscopy. IP detectors have advantages over direct x-ray detection charge-coupled device (CCD) detectors, which have been commonly used in x-ray diffraction microscopy experiments, in the capabilities for a high photon count and for a wide area. The detector system contains two IPs to make measurement efficient by recording data with the one while reading or erasing the other. We compared speckled diffraction patterns of single particles taken with the IP and a direct x-ray detection CCD. The IP was inferior to the CCD in spatial resolution and in signal-to-noise ratio at a low photon count

  1. Track counting and thickness measurement of LR115 radon detectors using a commercial image scanner

    International Nuclear Information System (INIS)

    De Cicco, F.; Pugliese, M.; Roca, V.; Sabbarese, C.

    2014-01-01

    An original optical method for track counting and film thickness determination of etched LR115 radon detectors was developed. The method offers several advantages compared with standard techniques. In particular, it is non-destructive, very simple and rather inexpensive, since it uses a commercial scanner and a free software. The complete analysis and the calibration procedure carried out for the determination of radon specific activity are reported. A comparison with the results of spark counting defines the accuracy and the precision of the new technique. (authors)

  2. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.

    Science.gov (United States)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-02-21

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  3. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    International Nuclear Information System (INIS)

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; Chen, Baiyu; Yu, Lifeng; McCollough, Cynthia H; Jorgensen, Steven M; Ritman, Erik L; Gutjahr, Ralf; Kappler, Steffen; Halaweish, Ahmed F

    2016-01-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  4. Neutron detector development at Brookhaven

    International Nuclear Information System (INIS)

    Yu, B.; Harder, J.A.; Mead, J.A.; Radeka, V.; Schaknowski, N.A.; Smith, G.C.

    2003-01-01

    Two-dimensional thermal neutron detectors have been the subject of research and development at Brookhaven for over 20 years. Based primarily on multi-wire chambers filled with a gas mixture containing 3 He, these detectors have been used in wide-ranging studies of molecular biology and material science samples. At each phase of development, experimenters have sought improvements in key parameters such as position resolution, counting rate, efficiency, solid-angle coverage and stability. A suite of detectors has been developed with sensitive areas ranging from 5x5 to 50x50 cm 2 . These devices incorporate low-noise-position readout and the best position resolution for thermal neutron gas detectors. Recent developments include a 1.5 mx20 cm detector containing multiple segments with continuously sensitive readout, and detectors with unity gain for ultra-high rate capability and long-term stability

  5. Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector

    International Nuclear Information System (INIS)

    Doncel, M.; Recchia, F.; Quintana, B.; Gadea, A.; Farnea, E.

    2010-01-01

    The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the γ-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the γ rays originated outside the target, the new generation of position sensitive γ-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the γ rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back γ rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.

  6. WE-DE-207B-01: Optimization for Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ding, H; Molloi, S [University of California, Irvine, CA (United States)

    2016-06-15

    Purpose: To investigate the feasibility of optimizing the imaging parameters for contrast-enhanced spectral mammography based on Si strip photon-counting detectors. Methods: A computer simulation model using polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector was evaluated for contrast-enhanced spectral mammography. The simulation traces the emission of photons from the x-ray source, attenuation through the breast and subsequent absorption in the detector. The breast was modeled as a mixture of adipose and mammary gland tissues with a breast density of 30%. A 4 mm iodine signal with a concentration of 4 mg/ml was used to simulate the enhancement of a lesion. Quantum efficiency of the detector was calculated based on the effective attenuation length in the Si strips. The figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and pre-filtrations for breast of various thicknesses and densities. Results: The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy of 45 kVp with a splitting energy at 34 keV for an averaged breast thickness of 4 cm with a standard 0.75 mm Al pre-filtration. The optimal tube voltage varied slightly from 46 to 44 kVp as the breast thickness increases from 2 to 8 cm. The optimal tube voltage decreased to 42 kVp when the Al pre-filtration was increased to 3 mm. Conclusion: This simulation study predicted the optimal imaging parameters for application of photon-counting spectral mammography to contrast-enhanced imaging. The simulation results laid the ground work for future phantom and clinical studies. Grant funding from Philips Medical Systems.

  7. Renal stone characterization using high resolution imaging mode on a photon counting detector CT system

    Science.gov (United States)

    Ferrero, A.; Gutjahr, R.; Henning, A.; Kappler, S.; Halaweish, A.; Abdurakhimova, D.; Peterson, Z.; Montoya, J.; Leng, S.; McCollough, C.

    2017-03-01

    In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.

  8. 15Mcps photon-counting X-ray computed tomography system using a ZnO-MPPC detector and its application to gadolinium imaging.

    Science.gov (United States)

    Sato, Eiichi; Sugimura, Shigeaki; Endo, Haruyuki; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-01-01

    15Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15Mcps (mega counts per second) at a tube voltage of 100kV and a tube current of 1.95mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15min, and photon-counting CT was accomplished using gadolinium-based contrast media. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Systematic implementation of spectral CT with a photon counting detector for liquid security inspection

    Science.gov (United States)

    Xu, Xiaofei; Xing, Yuxiang; Wang, Sen; Zhang, Li

    2018-06-01

    X-ray liquid security inspection system plays an important role in homeland security, while the conventional dual-energy CT (DECT) system may have a big deviation in extracting the atomic number and the electron density of materials in various conditions. Photon counting detectors (PCDs) have the capability of discriminating the incident photons of different energy. The technique becomes more and more mature in nowadays. In this work, we explore the performance of a multi-energy CT imaging system with a PCD for liquid security inspection in material discrimination. We used a maximum-likelihood (ML) decomposition method with scatter correction based on a cross-energy response model (CERM) for PCDs so that to improve the accuracy of atomic number and electronic density imaging. Experimental study was carried to examine the effectiveness and robustness of the proposed system. Our results show that the concentration of different solutions in physical phantoms can be reconstructed accurately, which could improve the material identification compared to current available dual-energy liquid security inspection systems. The CERM-base decomposition and reconstruction method can be easily used to different applications such as medical diagnosis.

  10. Thermoelectric single-photon detector

    International Nuclear Information System (INIS)

    Kuzanyan, A A; Petrosyan, V A; Kuzanyan, A S

    2012-01-01

    The ability to detect a single photon is the ultimate level of sensitivity in the measurement of optical radiation. Sensors capable of detecting single photons and determining their energy have many scientific and technological applications. Kondo-enhanced Seebeck effect cryogenic detectors are based on thermoelectric heat-to-voltage conversion and voltage readout. We evaluate the prospects of CeB 6 and (La,Ce)B 6 hexaboride crystals for their application as a sensitive element in this type of detectors. We conclude that such detectors can register a single UV photon, have a fast count rate (up to 45 MHz) and a high spectral resolution of 0.1 eV. We calculate the electric potential generated along the thermoelectric sensor upon registering a UV single photon.

  11. Neutron television camera detector

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.

    1976-01-01

    A neutron area detector system is being developed at the Institut Laue-Langevin which is based on a system for x-rays. The system has a large counting rate capability; this is extremely important where the total background count exceeds the total counts in the signals of interest. Its spatial resolution is of the order of one mm, while the screen size is 400 mm. The main limitation of the system is its limited counting efficiency, and this is directly attributable to the optical self-absorption of the neutron phosphor. All coherent noise in the system, i.e., all noise synchronized with the TV scans, has to be kept lower than the first bit threshold. However, this requirement can be relaxed when dealing with diffraction patterns, such as those from single crystals, for which a local background is subtracted from the pattern

  12. Numerical simulations on efficiency and measurement of capabilities of BGO detectors for high energy gamma ray

    CERN Document Server

    Wen Wan Xin

    2002-01-01

    The energy resolution and time resolution of two phi 75 x 100 BGO detectors for high energy gamma ray newly made were measured with sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co resources. The two characteristic gamma rays of high energy emitted from the thermal neutron capture of germanium in BGO crystal were used for the energy calibration of gamma spectra. The intrinsic photopeak efficiency, single escape probability and double escape probabilities of BGO detectors in photon energy range of 4-30 MeV are numerically calculated with GEANT code. The real count response and count ratio of the uniformly distributed incident photons in energy range of 0-30 MeV are also calculated. The distortion of gamma spectra caused by the photon energy loss extension to lower energy in detection medium is discussed

  13. MCNP-REN a Monte Carlo tool for neutron detector design

    CERN Document Server

    Abhold, M E

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel w...

  14. Photon counting and energy discriminating X-ray detectors. Benefits and applications

    International Nuclear Information System (INIS)

    Walter, David; Zscherpel, Uwe; Ewert, Uwe

    2016-01-01

    Since a few years the direct detection of X-ray photons into electrical signals is possible by usage of highly absorbing photo conducting materials (e.g. CdTe) as detection layer of an underlying CMOS semiconductor X-ray detector. Even NDT energies up to 400 keV are possible today, as well. The image sharpness and absorption efficiency is improved by the replacement of the unsharp scintillation layer (as used at indirect detecting detectors) by a photo conducting layer of much higher thickness. If the read-out speed is high enough (ca. 50 - 100 ns dead time) single X-ray photons can be counted and their energy measured. Read-out noise and dark image correction can be avoided. By setting energy thresholds selected energy ranges of the X-ray spectrum can be detected or suppressed. This allows material discrimination by dual-energy techniques or the reduction of image contributions of scattered radiation, which results in an enhanced contrast sensitivity. To use these advantages in an effective way, a special calibration procedure has to be developed, which considers also time dependent processes in the detection layer. This contribution presents some of these new properties of direct detecting digital detector arrays (DDAs) and shows first results on testing fiber reinforced composites as well as first approaches to dual energy imaging.

  15. A simulation study of high-resolution x-ray computed tomography imaging using irregular sampling with a photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2013-01-01

    The purpose of this study was to improve the spatial resolution for the x-ray computed tomography (CT) imaging with a photon-counting detector using an irregular sampling method. The geometric shift-model of detector was proposed to produce the irregular sampling pattern and increase the number of samplings in the radial direction. The conventional micro-x-ray CT system and the novel system with the geometric shift-model of detector were simulated using analytic and Monte Carlo simulations. The projections were reconstructed using filtered back-projection (FBP), algebraic reconstruction technique (ART), and total variation (TV) minimization algorithms, and the reconstructed images were compared in terms of normalized root-mean-square error (NRMSE), full-width at half-maximum (FWHM), and coefficient-of-variation (COV). The results showed that the image quality improved in the novel system with the geometric shift-model of detector, and the NRMSE, FWHM, and COV were lower for the images reconstructed using the TV minimization technique in the novel system with the geometric shift-model of detector. The irregular sampling method produced by the geometric shift-model of detector can improve the spatial resolution and reduce artifacts and noise for reconstructed images obtained from an x-ray CT system with a photon-counting detector. -- Highlights: • We proposed a novel sampling method based on a spiral pattern to improve the spatial resolution. • The novel sampling method increased the number of samplings in the radial direction. • The spatial resolution was improved by the novel sampling method

  16. Remote system for counting of nuclear pulses; Sistema remoto de conteo de pulsos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A. [Instituto Nacional de Investigaciones Nucleares, Ingenieria Electronica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  17. Front-end electronics for high rate, position sensitive neutron detectors

    CERN Document Server

    Yu, B; Harder, J A; Hrisoho, A; Radeka, V; Smith, G C

    2002-01-01

    Advanced neutron detectors for experiments at new spallation sources will require greater counting rate capabilities than previously attainable. This necessitates careful design of both detector and readout electronics. As part of a new instrument for protein crystallography at LANSCE, we are constructing a detector whose concept was described previously (IEEE Trans. Nucl. Sci. NS-46 (1999) 1916). Here, we describe the signal processing circuit, which is well suited for sup 3 He detectors with a continuous interpolating readout. The circuit is based on standard charge preamplification, transmission of this signal over 20 meters or so, followed by sample and hold using a second order gated baseline restorer. This latter unit provides high rate capability without requiring pole-zero and tail cancellation circuits. There is also provision for gain-adjustment. The circuits are produced in surface mounted technology.

  18. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, S. [University of California (United States)

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  19. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    International Nuclear Information System (INIS)

    Molloi, S.

    2015-01-01

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  20. Spectral and spatial resolution properties of photon counting X-ray detectors like the Medipix-Detector; Spektrale und bildgebende Eigenschaften photonenzaehlender Roentgendetektoren am Beispiel des Medipix-Detektors

    Energy Technology Data Exchange (ETDEWEB)

    Korn, A.

    2007-05-14

    The Medipix detector is a hybrid photon counting X-ray detector, consisting of an ASIC and a semiconducting layer as the sensor. This makes the Medipix a direct converting detector. A special feature of the Medipix is a signal processing circuit in every single pixel. This circuit amplifies the input signal triggered by a photon and then transforms the pulse into a digital signal. This early stage digitalisation is one of the main advantages of the detector, since no dark currents are integrated into the signal. Furthermore, the energy information of each single photon is partly preserved. The high number of pixels lends the detector a wide dynamic range, starting from single counts up to a rate of 1010 photons per cm2 and second. Apart from the many advantages, there are still some problems with the detector. Some effects lead to a deterioration of the energy resolution as well as the spatial resolution. The main reasons for this are two effects occuring in the detector, charge sharing and backscattering inside the detector. This study investigates the influence of those two effects on both the energy and spatial resolution. The physical causes of these effects are delineated and their impact on the detector output is examined. In contrast to high energy photon detectors, the repulsion of the charge carriers drifting inside the sensor must not be neglected in a detailed model of X-ray detectors with an energy range of 5 keV-200 keV. For the simulation of the Medipix using Monte Carlo simulations, the software ROSI was augmented. The added features allow a detailed simulation of the charge distribution, using the relevant physical effects that alter the distribution width during the drift towards the sensor electrodes as well further influences on the detector output, including electronical noise, threshold noise or the geometry of the detector. The measured energy and spatial resolution of several different models of Medipix is compared to the simulated

  1. Pulse laser irradiation into superconducting MgB2 detector

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Miki, Shigehito; Satoh, Kazuo; Yotsuya, Tsutomu; Shimakage, Hisashi; Wang, Zhen; Okayasu, Satoru; Katagiri, Masaki; Machida, Masahiko; Kato, Masaru; Ishida, Takekazu

    2005-01-01

    We performed 20-ps pulse laser irradiation experiments on a MgB 2 neutron detector to know a thermal-relaxation process for designing a MgB 2 neutron detector. The membrane-type structured MgB 2 device was fabricated to minimize the heat capacity of sensing part of a detector as well as to enhance its sensitivity. We successfully observed a thermal-relaxation signal resulting from pulse laser irradiation by developing a detection circuit. The response time was faster than 1 μs, meaning that the detector would be capable of counting neutrons at a rate of more than 10 6 events per second

  2. A Comparison Framework for Reactor Anti-Neutrino Detectors in Near-Field Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brodsky, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-03

    Electron anti-neutrino ( e) detectors can support nuclear safeguards, from reactor monitoring to spent fuel characterization. In recent years, the scientific community has developed multiple detector concepts, many of which have been prototyped or deployed for specific measurements by their respective collaborations. However, the diversity of technical approaches, deployment conditions, and analysis techniques complicates direct performance comparison between designs. We have begun development of a simulation framework to compare and evaluate existing and proposed detector designs for nonproliferation applications in a uniform manner. This report demonstrates the intent and capabilities of the framework by evaluating four detector design concepts, calculating generic reactor antineutrino counting sensitivity, and capabilities in a plutonium disposition application example.

  3. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  4. Performance of a single photon counting microstrip detector for strip pitches down to 10 μm

    International Nuclear Information System (INIS)

    Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E.; Gozzo, F.; Henrich, B.; Kobas, M.; Kraft, P.; Patterson, B.; Schmitt, B.

    2008-01-01

    The MYTHEN detector is a one-dimensional microstrip detector with single photon counting readout optimized for time resolved powder diffraction experiments at the Swiss Light Source (SLS). The system has been successfully tested for many different synchrotron radiation applications including phase contrast and tomographic imaging, small angle scattering, diffraction and time resolved pump and probe experiments for X-ray energies down to 5 keV and counting rate up to 3 MHz. The frontend electronics is designed in order to be coupled to 50 μm pitch microstrip sensors but some interest in enhancing the spatial resolution is arising for imaging and powder diffraction experiments. A test structure with strip pitches in the range 10-50 μm has been tested and the gain and noise on the readout electronics have been measured for the different strip pitches, observing no large difference down to 25 μm. Moreover, the effect of the charge sharing between neighboring strips on the spatial resolution has been quantified by measuring the Point Spread Function (PSF) of the system for the different pitches

  5. Performance of a single photon counting microstrip detector for strip pitches down to 10 μm

    Science.gov (United States)

    Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E.; Gozzo, F.; Henrich, B.; Kobas, M.; Kraft, P.; Patterson, B.; Schmitt, B.

    2008-06-01

    The MYTHEN detector is a one-dimensional microstrip detector with single photon counting readout optimized for time resolved powder diffraction experiments at the Swiss Light Source (SLS). The system has been successfully tested for many different synchrotron radiation applications including phase contrast and tomographic imaging, small angle scattering, diffraction and time resolved pump and probe experiments for X-ray energies down to 5 keV and counting rate up to 3 MHz. The frontend electronics is designed in order to be coupled to 50 μm pitch microstrip sensors but some interest in enhancing the spatial resolution is arising for imaging and powder diffraction experiments. A test structure with strip pitches in the range 10-50 μm has been tested and the gain and noise on the readout electronics have been measured for the different strip pitches, observing no large difference down to 25 μm. Moreover, the effect of the charge sharing between neighboring strips on the spatial resolution has been quantified by measuring the Point Spread Function (PSF) of the system for the different pitches.

  6. Placement of HPGE detectors for whole body counting applications using simulations of voxel phantoms

    International Nuclear Information System (INIS)

    Marzocchi, O.; Breustedt, B.; Zankl, M.

    2010-01-01

    The partial body counter at KIT is going to be rebuilt in order to replace the old Ge detectors with four new HPGe detectors. The new installation will also add whole body capabilities to the system, thanks to an improved mechanics able to position the detectors with a high degree of freedom in the chamber. During the definition of the position of the detectors a compromise between the opposite goals of high efficiency and small dependence of the detection efficiency on the position of the source had to be sought. High detection efficiency involves placing the detector near the skin, where the photon flux is maximal, while the second goal involves placing the detectors at a greater distance from the body. The same concept was applied during the definition of the partial body measurement configurations, but the goal was the increase of the specificity of the measurement. In addition, the mechanical installation poses some constraints: two detectors are mounted on carts and therefore can be placed independently around the subjects, but not in front of it, while the other two detectors are mounted on carts hanging from the same rail on the ceiling, therefore their distance from the subject is constrained by the maximum offset between them. (orig.)

  7. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-01-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  8. Increasing the Working Capabilities of the Egyptian Scanning Landmine Detectors

    International Nuclear Information System (INIS)

    Mohamed, M.S.A.

    2013-01-01

    This work describes and discusses the developments which were performed to increase the potential uses of Egyptian Scanning Landmine Detectors, ESCALAD. The ESCALAD apply two nuclear techniques for allocation and identification of landmines buried in arid soil like landmine fields in Egypt. The first technique is based on measuring thermal neutrons backscattered from the soil and the second one is based on measuring gamma-rays emitted from elements of landmine interrogated by fast and thermal neutrons when the soil is irradiated by fast neutrons from Pu-α-Be sources. The developed systems with their associated detectors, neutron sources, measuring electronics and data analysis modules are mounted on an electrically driven trolley. The neutron backscattering NBS device detects landmines by the recognition of hydrogen density variation between explosive material, of a landmine and its surroundings, soil and other scattered objects. When a high energy neutron flux from Pu-α-Be sources penetrates the soil in which the landmine is buried, the neutrons undergo successive moderation processes until they come back with thermal energy. An array of two dimensional position sensitive thermal neutron detectors of 3 He was used to monitor the backscattered thermal neutrons and for each neutron the position of hit along the tube with respect to the position on the ground is recorded. The elemental analysis technique is regarded as a complementary sensor of ESCALAD in which the gamma rays produced from fast/thermal neutrons interactions with the buried objects (i.e., a landmine) are measured. The measured response for gamma-rays is given as gamma ray spectrum. A mine is recognized through measuring the difference in the elemental composition, especially H, C, N and O. To increase the working capabilities of ESCALAD, different design mechanisms were developed for mount the detectors tray to overcome the effect of soil surface roughness and standoff distance on scanning

  9. Detectability of changes in cosmic-ray counting rate measured with the Liulin detector

    International Nuclear Information System (INIS)

    Malusek, A.; Kubancak, J.; Ambrozova, I.

    2011-05-01

    Experimental data are needed to improve and validate models predicting the dynamics of solar particle events because the mechanisms of processes leading to the acceleration of solar energetic particles are not yet fully understood. The aim of this work was to examine whether the spectrometer of deposited energy, Liulin, positioned at the Lomnický štít mountain observatory can collect such data. Decision thresholds and detection limits for the increase or decrease in the average number of particles detected by Liulin were determined for a period in February 2011. The changes in counts corresponding to the decision thresholds and detection limits relative to the average number of detected particles were about 17% and 33%, respectively. The Forbush decrease with a maximum change of about 6.8%, which started on February 18, was detectable neither during the 10-minute acquisition time nor during any other, longer period. Statistical analysis showed that an acquisition time about 7 hours would be needed to detect a 5% decrease. As this time was shorter than the duration of the Forbush decrease (about 56 hours), we theorize that the current placement of the Liulin detector inside a living room shielded by a thick concrete ceiling may have had an adverse impact on the detectability of the the cosmic ray counting rate decrease. To test this hypothesis, we recommend positioning the Liulin detector outside the main observatory building.. (author)

  10. Feasibility of photon-counting K-edge imaging in X-ray and computed tomographic systems: Monte Carlo simulation studies

    International Nuclear Information System (INIS)

    Lee, Seung-Wan; Choi, Yu-Na; Cho, Hyo-Min; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2011-01-01

    Conventional X-ray systems and X-ray computed tomography (CT) systems, which use detectors operated in the integrating mode, are not able to reflect spectral information because the detector output is proportional to the energy fluence integrated over the whole spectrum. Photon-counting detectors have been considered as alternative devices. These detectors can measure the photon energy deposited by each event and improve the image quality. In this study, we investigated the feasibility of K-edge imaging using a photon-counting detector and evaluated the capability of material decomposition in X-ray images. The geometries of X-ray imaging systems equipped with cadmium telluride (CdTe) detectors and phantoms consisting of different materials were designed using Geant4 Application for Tomographic Emission (GATE) version 6.0. To observe the effect of a discontinuity in the attenuation due to the K-edge of a high atomic number material, we chose the energy windows to be one below and one above the K-edge absorption energy of the target material. The contrast-to-noise ratios (CNRs) of the target materials were increased at selective energy levels above the K-edge absorption energy because the attenuation is more dramatically increased at energies above the K-edge absorption energy of the material than at energies below that. The CNRs for the target materials in the K-edge image were proportional to the material concentration. The results of this study show that K-edge imaging can be carried out in conventional X-ray systems and X-ray CT systems using CdTe photon-counting detectors and that the target materials can be separated from background materials by using K-edge imaging. The photon-counting detector has potential to provide improved image quality, and this study will be used as a basis for future studies on photon-counting X-ray imaging.

  11. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs)

    International Nuclear Information System (INIS)

    Fronk, Ryan G.; Bellinger, Steven L.; Henson, Luke C.; Ochs, Taylor R.; Smith, Colten T.; Kenneth Shultis, J.; McGregor, Douglas S.

    2015-01-01

    Microstructured semiconductor neutron detectors (MSNDs) have in recent years received much interest as high-efficiency replacements for thin-film-coated thermal neutron detectors. The basic device structure of the MSND involves micro-sized trenches that are etched into a vertically-oriented pvn-junction diode that are backfilled with a neutron converting material. Neutrons absorbed within the converting material induce fission of the parent nucleus, producing a pair of energetic charged-particle reaction products that can be counted by the diode. The MSND deep-etched microstructures produce good neutron-absorption and reaction-product counting efficiencies, offering a 10× improvement in intrinsic thermal neutron detection efficiency over thin-film-coated devices. Performance of present-day MSNDs are nearing theoretical limits; streaming paths between the conversion-material backfilled trenches, allow a considerable fraction of neutrons to pass undetected through the device. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs) have been developed that utilize a complementary second set of trenches on the back-side of the device to count streaming neutrons. DSMSND devices are theoretically capable of greater than 80% intrinsic thermal neutron detection efficiency for a 1-mm thick device. The first such prototype DSMSNDs, presented here, have achieved 29.48±0.29% nearly 2× better than MSNDs with similar microstructure dimensions.

  12. 2Kx2K resolution element photon counting MCP sensor with >200 kHz event rate capability

    CERN Document Server

    Vallerga, J V

    2000-01-01

    Siegmund Scientific undertook a NASA Small Business Innovative Research (SBIR) contract to develop a versatile, high-performance photon (or particle) counting detector combining recent technical advances in all aspects of Microchannel Plate (MCP) detector development in a low cost, commercially viable package that can support a variety of applications. The detector concept consists of a set of MCPs whose output electron pulses are read out with a crossed delay line (XDL) anode and associated high-speed event encoding electronics. The delay line anode allows high-resolution photon event centroiding at very high event rates and can be scaled to large formats (>40 mm) while maintaining good linearity and high temporal stability. The optimal sensitivity wavelength range is determined by the choice of opaque photocathodes. Specific achievements included: spatial resolution of 200 000 events s sup - sup 1; local rates of >100 events s sup - sup 1 per resolution element; event timing of <1 ns; and low background ...

  13. YAP:Ce and CsI(Tl) detectors for dielectronic recombination experiment at the CSRm

    International Nuclear Information System (INIS)

    Wen, W.Q.; Ma, X.; Xu, W.Q.; Meng, L.J.; Zhu, X.L.; Gao, Y.; Wang, S.L.; Zhang, P.J.; Zhao, D.M.; Liu, H.P.; Zhu, L.F.; Yang, X.D.; Li, J.; Ma, X.M.; Yan, T.L.; Yang, J.C.; Yuan, Y.J.; Xia, J.W.; Xu, H.S.; Xiao, G.Q.

    2013-01-01

    Highlights: • YAP:Ce and CsI(Tl) scintillation detectors are developed to detect heavy ions at the storage ring. • A high count rate of ∼10 7 s −1 is obtained with the YAP:Ce detector for heavy ion detection. • YAP:Ce detector shows good performance for DR experiment with 3.7 MeV/u 112 Sn 35+ . -- Abstract: The storage ring CSRm in Lanzhou provides good possibilities for electron-ion collision studies with cooled ion beams. To carry on the recombination experiment at the CSRm, a scintillation detector CsI(Tl) to detect the recombined ions was developed and tested. In addition, a YAP:Ce detector has been developed and installed at CSRm and capability of handling a high count rate of ∼10 7 s −1 has been obtained which is sufficient for the future dielectronic recombination experiment at the CSRm. The comparison of the characteristics of these two detectors is presented

  14. Modelling and simulation of pixelated photon counting X-ray detectors for imaging; Modellierung und Simulation physikalischer Eigenschaften photonenzaehlender Roentgenpixeldetektoren fuer die Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Juergen

    2008-07-22

    First of all the physics processes generating the energy deposition in the sensor volume are investigated. The spatial resolution limits of photon interactions and the range of secondary electrons are discussed. The signatures in the energy deposition spectrum in pixelated detectors with direct conversion layers are described. The energy deposition for single events can be generated by the Monte-Carlo-Simulation package ROSI. The basic interactions of photons with matter are evaluated, resulting in the ability to use ROSI as a basis for the simulation of photon counting pixel detectors with direct conversion. In the context of this thesis a detector class is developed to simulate the response of hybrid photon counting pixel detectors using high-Z sensor materials like Cadmium Telluride (CdTe) or Gallium Arsenide (GaAs) in addition to silicon. To enable the realisation of such a simulation, the relevant physics processes and properties have to be implemented: processes in the sensor layer (provided by EGS4/LSCAT in ROSI), generation of charge carriers as electron hole pairs, diffusion and repulsion of charge carriers during drift and lifetime. Furthermore, several noise contributions of the electronics can be taken into account. The result is a detector class which allows the simulation of photon counting detectors. In this thesis the multiplicity framework is developed, including a formula to calculate or measure the zero frequency detective quantum efficiency (DQE). To enable the measurement of the multiplicity of detected events a cluster analysis program was developed. Random and systematic errors introduced by the cluster analysis are discussed. It is also shown that the cluster analysis method can be used to determine the averaged multiplicity with high accuracy. The method is applied to experimental data. As an example using the implemented detector class, the discriminator threshold dependency of the DQE and modulation transfer function is investigated in

  15. 15 Mcps photon-counting X-ray computed tomography system using a ZnO-MPPC detector and its application to gadolinium imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Eiichi, E-mail: dresato@iwate-med.ac.jp [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Sugimura, Shigeaki [Tokyo Denpa Co. Ltd., 82-5 Ueno, Ichinohe, Iwate 028-5321 (Japan); Endo, Haruyuki [Iwate Industrial Research Insutitute 3, 3-35-2 Shinden, Iioka, Morioka, Iwate 020-0852 (Japan); Oda, Yasuyuki [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Abudurexiti, Abulajiang [Faculty of Software and Information Science, Iwate Prefectural University, 152-52 Sugo, Takizawa, Iwate 020-0193 (Japan); Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya [3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Ogawa, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537 (Japan)

    2012-01-15

    15 Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2 mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15 Mcps (mega counts per second) at a tube voltage of 100 kV and a tube current of 1.95 mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15 min, and photon-counting CT was accomplished using gadolinium-based contrast media. - Highlights: Black-Right-Pointing-Pointer We developed a first-generation 15 Mcps photon-counting X-ray computed tomography (CT) system. Black-Right-Pointing-Pointer High-speed photon counting was carried out using a zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module in the X-ray CT system. Black-Right-Pointing-Pointer Tomography is accomplished by repeated translations and rotations of an object. Black-Right-Pointing-Pointer The minimum exposure time for obtaining a tomogram was 15 min. Black-Right-Pointing-Pointer The photon-counting CT was accomplished using gadolinium-based contrast media.

  16. In vivo counting of uranium

    International Nuclear Information System (INIS)

    Palmer, H.E.

    1985-03-01

    A state-of-the-art radiation detector system consisting of six individually mounted intrinsic germanium planar detectors, each 20 cm 2 by 13 mm thick, mounted together such that the angle of the whole system can be changed to match the slope of the chest of the person being counted, is described. The sensitivity of the system for counting uranium and plutonium in vivo and the precedures used in calibrating the system are also described. Some results of counts done on uranium mill workers are presented. 15 figs., 2 tabs

  17. Project and construction of counting system for neutron probe

    International Nuclear Information System (INIS)

    Monteiro, W.P.

    1985-01-01

    A counting system was developed for coupling neutron probe aiming to register pulses produced by slow neutron interaction in the detector. The neutron probe consists of fast neutron source, thermal neutron detector, amplifier circuit and pulse counting circuit. The counting system is composed by counting circuit, timer and signal circuit. (M.C.K.)

  18. Si and gaas pixel detectors for medical imaging applications

    International Nuclear Information System (INIS)

    Bisogni, M. G.

    2001-01-01

    As the use of digital radiographic equipment in the morphological imaging field is becoming the more and more diffuse, the research of new and more performing devices from public institutions and industrial companies is in constant progress. Most of these devices are based on solid-state detectors as X-ray sensors. Semiconductor pixel detectors, originally developed in the high energy physics environment, have been then proposed as digital detector for medical imaging applications. In this paper a digital single photon counting device, based on silicon and GaAs pixel detector, is presented. The detector is a thin slab of semiconductor crystal where an array of 64 by 64 square pixels, 170- m side, has been built on one side. The data read-out is performed by a VLSI integrated circuit named Photon Counting Chip (PCC), developed within the MEDIPIX collaboration. Each chip cell geometrically matches the sensor pixel. It contains a charge preamplifier, a threshold comparator and a 15 bits pseudo-random counter and it is coupled to the detector by means of bump bonding. Most important advantages of such system, with respect to a traditional X-rays film/screen device, are the wider linear dynamic range (3x104) and the higher performance in terms of MTF and DQE. Besides the single photon counting architecture allows to detect image contrasts lower than 3%. Electronics read-out performance as well as imaging capabilities of the digital device will be presented. Images of mammographic phantoms acquired with a standard Mammographic tube will be compared with radiographs obtained with traditional film/screen systems

  19. Secondary electrons detectors for beam tracking: micromegas and wire chamber

    International Nuclear Information System (INIS)

    Pancin, J; Chaminade, T; Drouart, A; Kebbiri, M; Riallot, M; Fernandez, B; Naqvi, F

    2009-01-01

    SPIRAL2 or FAIR will be able to deliver beams of radioactive isotopes of low energy (less than 10 MeV/n). The emittance of these new beams will impose the use of beam tracking detectors to reconstruct the exact impact position of the nuclei on the experimental target. However, due to their thickness, the classical detectors will generate a lot of energy and angular straggling. A possible alternative is the SED principle (Secondary Electron Detector). It consists of an emissive foil placed in beam and a detector for the secondary electrons ejected by the passing of the nuclei through the foil. An R and D program has been initiated at CEA Saclay to study the possibility to use low pressure gaseous detectors as SED for beam tracking. Some SED have been already used on the VAMOS spectrometer at GANIL since 2004. We have constructed new detectors on this model to measure their performances in time and spatial resolution, and counting rate. Other detector types are also under study. For the first time, a test with different micromegas detectors at 4 Torr has been realized. A comparison on the time resolution has been performed between wire chamber and micromegas at very low pressure. The use of micromegas could be promising to improve the counting rate capability and the robustness of beam tracking detectors.

  20. Uncooled Radiation Hard SiC Schottky VUV Detectors Capable of Single Photon Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize very large area, uncooled and radiative hard 4H-SiC VUV detectors capable of near single...

  1. Low-priced, time-saving, reliable and stable LR-115 counting system

    International Nuclear Information System (INIS)

    Tchorz-Trzeciakiewicz, D.E.

    2015-01-01

    Nuclear alpha particles leave etches (tracks) when they hit the surface of a LR-115 detector. The density of these tracks is used to measure radon concentration. Counting these tracks by human sense is tedious and time-consuming procedure and may introduce counting error, whereas most available automatic and semiautomatic counting systems are expensive or complex. An uncomplicated, robust, reliable and stable counting system using freely available on the Internet software as Digimizer™ and PhotoScape was developed and proposed. The effectiveness of the proposed procedure was evaluated by comparing the amount of tracks counted by software with the amount of tracks counted manually for 223 detectors. The percentage error for each analysed detector was obtained as a difference between automatic and manual counts divided by manual count. For more than 97% of detectors, the percentage errors oscillated between −3% and 3%. - Highlights: • Semiautomatic, uncomplicated procedure was proposed to count the amount of alpha tracks. • Freely available software on the Internet used as alpha tracks counting system for LR-115. • LR-115 detectors used to measure radon concentration and radon exhalation rate

  2. CERNDxCTA counting mode chip

    International Nuclear Information System (INIS)

    Moraes, D.; Kaplon, J.; Nygard, E.

    2008-01-01

    This ASIC is a counting mode front-end electronic optimized for the readout of CdZnTe/CdTe and silicon sensors, for possible use in applications where the flux of ionizing radiation is high. The chip is implemented in 0.25 μm CMOS technology. The circuit comprises 128 channels equipped with a transimpedance amplifier followed by a gain shaper stage with 21 ns peaking time, two discriminators and two 18-bit counters. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at counting rates of up to 5 M counts/second. The amplifier shows a linear sensitivity of 118 mV/fC and an equivalent noise charge of about 711 e - , for a detector capacitance of 5 pF. Complete evaluation of the circuit is presented using electronic pulses and pixel detectors

  3. A compact 7-cell Si-drift detector module for high-count rate X-ray spectroscopy.

    Science.gov (United States)

    Hansen, K; Reckleben, C; Diehl, I; Klär, H

    2008-05-01

    A new Si-drift detector module for fast X-ray spectroscopy experiments was developed and realized. The Peltier-cooled module comprises a sensor with 7 × 7-mm 2 active area, an integrated circuit for amplification, shaping and detection, storage, and derandomized readout of signal pulses in parallel, and amplifiers for line driving. The compactness and hexagonal shape of the module with a wrench size of 16mm allow very short distances to the specimen and multi-module arrangements. The power dissipation is 186mW. At a shaper peaking time of 190 ns and an integration time of 450 ns an electronic rms noise of ~11 electrons was achieved. When operated at 7 °C, FWHM line widths around 260 and 460 eV (Cu-K α ) were obtained at low rates and at sum-count rates of 1.7 MHz, respectively. The peak shift is below 1% for a broad range of count rates. At 1.7-MHz sum-count rate the throughput loss amounts to 30%.

  4. Lung counting: Comparison of a four detector array that has either metal or carbon fiber end caps, and the effect on array performance characteristics

    International Nuclear Information System (INIS)

    Sabbir Ahmed, Asm; Kramer, Gary H.

    2011-01-01

    This study described the performance of an array of HPGe detectors, made by ORTEC. In the existing system, a metal end cap was used in the detector construction. In general, the natural metal contains some radioactive materials, create high background noises and signals during in vivo counting. ORTEC proposed a novel carbon fiber to be used in end cap, without any radio active content. This paper described the methodology of developing a model of the given HPGe array-detectors, comparing the detection efficiency and cross talk among the detectors using two end cap materials: either metal or carbon fiber and to provide a recommendation about the end cap material. The detector's counting efficiency were studied using point and plane sources. The cross talk among the array detectors were studied using a homogeneous attenuating medium made of tissue equivalent material. The cross talk was significant when single or multiple point sources (simulated to heterogeneous hot spots) were embedded inside the attenuating medium. With carbon fiber, the cross talk increased about 100% for photon energy at about 100 keV. For a uniform distribution of radioactive material, the cross talk increased about 5-10% when the end cap was made of carbon instead of steel. Metal end cap was recommended for the array of HPGe detectors.

  5. A scintillation detector signal processing technique with active pileup prevention for extending scintillation count rates

    International Nuclear Information System (INIS)

    Wong, W.H.; Li, H.

    1998-01-01

    A new method for processing signals from scintillation detectors is proposed for very high count-rate situations where multiple-event pileups are the norm. This method is designed to sort out and recover every impinging event from multiple-event pileups while maximizing the collection of scintillation signal for every event to achieve optimal accuracy in determining the energy of the event. For every detected event, this method cancels the remnant signals from previous events, and excludes the pileup of signals from following events. With this technique, pileup events can be recovered and the energy of every recovered event can be optimally measured despite multiple pileups. A prototype circuit demonstrated that the maximum count rates have been increased by more than 10 times, comparing to the standard pulse-shaping method, while the energy resolution is as good as that of the pulse shaping (or the fixed integration) method at normal count rates. At 2 x 10 6 events/sec for NaI(Tl), the true counts acquired are 3 times more than the delay-line clipping method (commonly used in fast processing designs) due to events recovered from pileups. Pulse-height spectra up to 3.5 x 10 6 events/sec have been studied

  6. Characterization of the imaging performance of the simultaneously counting and integrating X-ray detector CIX

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Johannes

    2010-01-15

    The CIX detector is a direct converting hybrid pixel detector designed for medical X-ray imaging applications. Its de ning feature is the simultaneous operation of a photon counter as well as an integrator in every pixel cell. This novel approach o ers a dynamic range of more than five orders of magnitude, as well as the ability to directly obtain the average photon energy from the measured data. Several CIX 0.2 ASICs have been successfully connected to CdTe, CdZnTe and Si sensors. These detector modules were tested with respect to the imaging performance of the simultaneously counting and integrating concept under X-ray irradiation. Apart from a characterization of the intrinsic benefits of the CIX concept, the sensor performance was also investigated. Here, the two parallel signal processing concepts offer valuable insights into material related effects like polarization and temporal response. The impact of interpixel coupling effects like charge-sharing, Compton scattering and X-ray fluorescence was evaluated through simulations and measurements. (orig.)

  7. Characterization of the imaging performance of the simultaneously counting and integrating X-ray detector CIX

    International Nuclear Information System (INIS)

    Fink, Johannes

    2010-01-01

    The CIX detector is a direct converting hybrid pixel detector designed for medical X-ray imaging applications. Its de ning feature is the simultaneous operation of a photon counter as well as an integrator in every pixel cell. This novel approach o ers a dynamic range of more than five orders of magnitude, as well as the ability to directly obtain the average photon energy from the measured data. Several CIX 0.2 ASICs have been successfully connected to CdTe, CdZnTe and Si sensors. These detector modules were tested with respect to the imaging performance of the simultaneously counting and integrating concept under X-ray irradiation. Apart from a characterization of the intrinsic benefits of the CIX concept, the sensor performance was also investigated. Here, the two parallel signal processing concepts offer valuable insights into material related effects like polarization and temporal response. The impact of interpixel coupling effects like charge-sharing, Compton scattering and X-ray fluorescence was evaluated through simulations and measurements. (orig.)

  8. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    Science.gov (United States)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  9. Auto-counting of high density overlapping tracks and neutron spectrum measurement using CR-39 detectors and in-house image analysis program

    International Nuclear Information System (INIS)

    Paul, Sabyasachi; Tripathy, S.P.; Sahoo, G.S.; Joshi, D.S.; Bandyopadhyay, T.

    2014-01-01

    An effort is made in this work to overcome the difficulty of counting highly dense and overlapping tracks in solid polymeric track detectors (SPTD) such as CR-39. A program is developed to automatically count the track density which is found to be faster and more precise compared to other commonly used image analysing software. The results obtained by the present methodology are compared with those obtained using other software. (author)

  10. Count-doubling time safety circuit

    International Nuclear Information System (INIS)

    Keefe, D.J.; McDowell, W.P.; Rusch, G.K.

    1981-01-01

    There is provided a nuclear reactor count-factor-increase time monitoring circuit which includes a pulse-type neutron detector, and means for counting the number of detected pulses during specific time periods. Counts are compared and the comparison is utilized to develop a reactor scram signal, if necessary

  11. Count-doubling time safety circuit

    Science.gov (United States)

    Rusch, Gordon K.; Keefe, Donald J.; McDowell, William P.

    1981-01-01

    There is provided a nuclear reactor count-factor-increase time monitoring circuit which includes a pulse-type neutron detector, and means for counting the number of detected pulses during specific time periods. Counts are compared and the comparison is utilized to develop a reactor scram signal, if necessary.

  12. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode and/or with gas amplification

    CERN Document Server

    Charpak, Georges; Breuil, P; Peskov, Vladimir

    2008-01-01

    Ionization chambers working in ambient air in current detection mode are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and cetera. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification. . To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of 1. The second type alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 10E4). A detailed comparison between these two detectors is given as well as comparison with the commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible ap...

  13. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.

    Science.gov (United States)

    Cho, Hyo-Min; Ding, Huanjun; Barber, William C; Iwanczyk, Jan S; Molloi, Sabee

    2015-07-01

    To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7-8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105-215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6-8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection accuracy with an average AUC greater

  14. Characteristic Performance Evaluation of a new SAGe Well Detector for Small and Large Sample Geometries

    International Nuclear Information System (INIS)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Jaederstroem, H.; Mueller, W.F.; Yocum, K.M.; Carmichael, K.

    2015-01-01

    Environmental scientific research requires a detector that has sensitivity low enough to reveal the presence of any contaminant in the sample at a reasonable counting time. Canberra developed the germanium detector geometry called Small Anode Germanium (SAGe) Well detector, which is now available commercially. The SAGe Well detector is a new type of low capacitance germanium well detector manufactured using small anode technology capable of advancing many environmental scientific research applications. The performance of this detector has been evaluated for a range of sample sizes and geometries counted inside the well, and on the end cap of the detector. The detector has energy resolution performance similar to semi-planar detectors, and offers significant improvement over the existing coaxial and Well detectors. Energy resolution performance of 750 eV Full Width at Half Maximum (FWHM) at 122 keV γ-ray energy and resolution of 2.0 - 2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed for detector volumes up to 425 cm 3 . The SAGe Well detector offers an optional 28 mm well diameter with the same energy resolution as the standard 16 mm well. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. The detector is compatible with electric coolers without any sacrifice in performance and supports the Canberra Mathematical efficiency calibration method (In situ Object Calibration Software or ISOCS, and Laboratory Source-less Calibration Software or LABSOCS). In addition, the SAGe Well detector supports true coincidence summing available in the ISOCS/LABSOCS framework. The improved resolution performance greatly enhances detection sensitivity of this new detector for a range of sample sizes and geometries counted inside the well. This results in lower minimum detectable

  15. Characteristic Performance Evaluation of a new SAGe Well Detector for Small and Large Sample Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Jaederstroem, H.; Mueller, W.F.; Yocum, K.M.; Carmichael, K. [Canberra Industries Inc., 800 Research Parkway, Meriden, CT 06450 (United States)

    2015-07-01

    Environmental scientific research requires a detector that has sensitivity low enough to reveal the presence of any contaminant in the sample at a reasonable counting time. Canberra developed the germanium detector geometry called Small Anode Germanium (SAGe) Well detector, which is now available commercially. The SAGe Well detector is a new type of low capacitance germanium well detector manufactured using small anode technology capable of advancing many environmental scientific research applications. The performance of this detector has been evaluated for a range of sample sizes and geometries counted inside the well, and on the end cap of the detector. The detector has energy resolution performance similar to semi-planar detectors, and offers significant improvement over the existing coaxial and Well detectors. Energy resolution performance of 750 eV Full Width at Half Maximum (FWHM) at 122 keV γ-ray energy and resolution of 2.0 - 2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed for detector volumes up to 425 cm{sup 3}. The SAGe Well detector offers an optional 28 mm well diameter with the same energy resolution as the standard 16 mm well. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. The detector is compatible with electric coolers without any sacrifice in performance and supports the Canberra Mathematical efficiency calibration method (In situ Object Calibration Software or ISOCS, and Laboratory Source-less Calibration Software or LABSOCS). In addition, the SAGe Well detector supports true coincidence summing available in the ISOCS/LABSOCS framework. The improved resolution performance greatly enhances detection sensitivity of this new detector for a range of sample sizes and geometries counted inside the well. This results in lower minimum detectable

  16. Highway travel time information system based on cumulative count curves and new tracking technologies

    Energy Technology Data Exchange (ETDEWEB)

    Soriguera Marti, F.; Martinez-Diaz, M.; Perez Perez, I.

    2016-07-01

    Travel time is probably the most important indicator of the level of service of a highway, and it is also the most appreciated information for its users. Administrations and private companies make increasing efforts to improve its real time estimation. The appearance of new technologies makes the precise measurement of travel times easier than never before. However, direct measurements of travel time are, by nature, outdated in real time, and lack of the desired forecasting capabilities. This paper introduces a new methodology to improve the real time estimation of travel times by using the equipment usually present in most highways, i.e., loop detectors, in combination with Automatic Vehicle Identification or Tracking Technologies. One of the most important features of the method is the usage of cumulative counts at detectors as an input, avoiding the drawbacks of common spot-speed methodologies. Cumulative count curves have great potential for freeway travel time information systems, as they provide spatial measurements and thus allow the calculation of instantaneous travel times. In addition, they exhibit predictive capabilities. Nevertheless, they have not been used extensively mainly because of the error introduced by the accumulation of the detector drift. The proposed methodology solves this problem by correcting the deviations using direct travel time measurements. The method results highly beneficial for its accuracy as well as for its low implementation cost. (Author)

  17. A high dynamic range pulse counting detection system for mass spectrometry.

    Science.gov (United States)

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector

    Science.gov (United States)

    Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.

    2016-10-01

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.

  19. Results from prototypes of environmental and health alarm devices based on gaseous detectors operating in air in counting mode

    CERN Document Server

    Martinengo, P; Peskov, V; Benaben, P; Charpak, G; Breuil, P

    2011-01-01

    We have developed and successfully tested two prototypes of detectors of dangerous gases based on wire-type counters operating in air in avalanche mode: one is for radon (Rn) detection whereas the other one is for the detection of gases with an ionization potential less than the air components. Due to the operation in pulse counting mode these prototypes have sensitivities comparable to (in the case of the Rn detector) or much higher than (in the case of the detector for low ionization gases) the best commercial devices currently available on the market. We believe that due to their high sensitivity, simplicity and low cost such new detectors will find massive applications. One of them, discussed in this paper, could be the on-line monitoring of Rn for the prediction of earthquakes. (C) 2010 Elsevier B.V. All rights reserved.

  20. Characterization of imaging pixel detectors of Si and CdTe read out with the counting X-ray chip MPEC 2.3

    International Nuclear Information System (INIS)

    Loecker, M.

    2007-04-01

    Single photon counting detectors with Si- and CdTe-sensors have been constructed and characterized. As readout chip the MPEC 2.3 is used which consists of 32 x 32 pixels with 200 x 200 μm 2 pixel size and which has a high count rate cabability (1 MHz per pixel) as well as a low noise performance (55 e - ). Measurements and simulations of the detector homogeneity are presented. It could be shown that the theoretical maximum of the homogeneity is reached (quantum limit). By means of the double threshold of the MPEC chip the image contrast can be enhanced which is demonstrated by measurement and simulation. Also, multi-chip-modules consisting of 4 MPEC chips and a single Si- or CdTe-sensor have been constructed and successfully operated. With these modules modulation-transfer-function measurements have been done showing a good spatial resolution of the detectors. In addition, multi-chip-modules according to the Sparse-CMOS concept have been built and tests characterizing the interconnection technologies have been performed

  1. Multiple Gamma-Ray Detection Capability of a CeBr3 Detector for Gamma Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2017-01-01

    Full Text Available The newly developed cerium tribromide (CeBr3 detector has reduced intrinsic gamma-ray activity with gamma energy restricted to 1400–2200 keV energy range. This narrower region of background gamma rays allows the CeBr3 detector to detect more than one gamma ray to analyze the gamma-ray spectrum. Use of multiple gamma-ray intensities in elemental analysis instead of a single one improves the accuracy of the estimated results. Multigamma-ray detection capability of a cylindrical 75 mm × 75 mm (diameter × height CeBr3 detector has been tested by analyzing the chlorine concentration in water samples using eight chlorine prompt gamma rays over 517 to 8578 keV energies utilizing a D-D portable neutron generator-based PGNAA setup and measuring the corresponding minimum detection limit (MDC of chlorine. The measured MDC of chlorine for gamma rays with 517–8578 keV energies varies from 0.07 ± 0.02 wt% to 0.80 ± 0.24. The best value of MDC was measured to be 0.07 ± 0.02 wt% for 788 keV gamma rays. The experimental results are in good agreement with Monte Carlo calculations. The study has shown excellent detection capabilities of the CeBr3 detector for eight prompt gamma rays over 517–8578 keV energy range without significant background interference.

  2. MCNP-REN: a Monte Carlo tool for neutron detector design

    International Nuclear Information System (INIS)

    Abhold, M.E.; Baker, M.C.

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel were taken with the Underwater Coincidence Counter, and measurements of highly enriched uranium reactor fuel were taken with the active neutron interrogation Research Reactor Fuel Counter and compared to calculation. Simulations completed for other detector design applications are described. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions

  3. Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency

    Science.gov (United States)

    Korzh, B.; Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H.

    2014-02-01

    We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of -110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.

  4. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline........ The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration...

  5. Performance of coincidence-based PSD on LiF/ZnS Detectors for Multiplicity Counting

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Sean M.; Stave, Sean C.; Lintereur, Azaree; Siciliano, Edward R.; Cowles, Christian C.; Kouzes, Richard T.; Behling, Richard S.

    2016-10-06

    Abstract: Mass accountancy measurement is a nuclear nonproliferation application which utilizes coincidence and multiplicity counters to verify special nuclear material declarations. With a well-designed and efficient detector system, several relevant parameters of the material can be verified simultaneously. 6LiF/ZnS scintillating sheets may be used for this purpose due to a combination of high efficiency and short die-away times in systems designed with this material, but involve choices of detector geometry and exact material composition (e.g., the addition of Ni-quenching in the material) that must be optimized for the application. Multiplicity counting for verification of declared nuclear fuel mass involves neutron detection in conditions where several neutrons arrive in a short time window, with confounding gamma rays. This paper considers coincidence-based Pulse-Shape Discrimination (PSD) techniques developed to work under conditions of high pileup, and the performance of these algorithms with different detection materials. Simulated and real data from modern LiF/ZnS scintillator systems are evaluated with these techniques and the relationship between the performance under pileup and material characteristics (e.g., neutron peak width and total light collection efficiency) are determined, to allow for an optimal choice of detector and material.

  6. Scintillation counting: an extrapolation into the future

    International Nuclear Information System (INIS)

    Ross, H.H.

    1983-01-01

    Progress in scintillation counting is intimately related to advances in a variety of other disciplines such as photochemistry, photophysics, and instrumentation. And while there is steady progress in the understanding of luminescent phenomena, there is a virtual explosion in the application of semiconductor technology to detectors, counting systems, and data processing. The exponential growth of this technology has had, and will continue to have, a profound effect on the art of scintillation spectroscopy. This paper will review key events in technology that have had an impact on the development of scintillation science (solid and liquid) and will attempt to extrapolate future directions based on existing and projected capability in associated fields. Along the way there have been occasional pitfalls and several false starts; these too will be discussed as a reminder that if you want the future to be different than the past, study the past

  7. A 13-element Ge detector for fluorescence EXAFS

    International Nuclear Information System (INIS)

    Cramer, S.P.; Tench, O.; Yocum, M.; George, G.N.

    1988-01-01

    At low concentrations, recording X-ray absorption spectra in fluorescence excitation mode is more sensitive than transmission mode. For dilute samples, the fluorescence signal is often obscured by scattered X-rays, and matrix and filter fluorescence. To discriminate against this background, while maintaining a large angular acceptance and high count rate capability, we have constructed a new detection system based on an array of intrinsic Ge detectors. The device uses 13 individuall 11 mm diameter Ge detectors, clustered in a 1:3:5:3:1 pattern on a common cryostat, combined with Soller slits and filters to reduce the background signals. Pulsed optical feedback preamplifiers are followed by Gaussian-shaping amplifiers having fast discriminators to register the incoming count rate (ICR). Correction for dead time using the ICR signal allowed operation in the vicinity of 75 kHz per channel, with a 1 μs shaping time at 6 keV. For lower count rate applications, an average resolution of 160 eV at 5.9 keV was obtained with 8 μs shaping. Recent experience with this detector at the Stanford Synchrotron Radiation Laboratory is presented. The performance is illustrated using spectra obtained from phosphorus compounds and a thin iridium foil. The performance of this device is compared with previous fluorescence detection schemes, such as those using filter/slit combinations or barrel monochromators. (orig.)

  8. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    International Nuclear Information System (INIS)

    Jambi, L.K.; Lees, J.E.; Bugby, S.L.; Alqahtani, M.S.; Tipper, S.; Perkins, A.C.

    2015-01-01

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported

  9. New design of a quasi-monolithic detector module with DOI capability for small animal pet

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Lee, Seung-Jae; Baek, Cheol-Ha; Choi, Yong

    2008-01-01

    We report a new design of a detector module with depth of interaction (DOI) based on a quasi-monolithic LSO crystal, a multi-channel sensor, and maximum-likelihood position-estimation (MLPE) algorithm. Light transport and detection were modeled in a quasi-monolithic crystal using DETECT2000 code, with lookup tables (LUTs) built by simulation. Events were well separated by applying the MLPE method within 2.0 mm spatial resolution in both trans-axial and DOI directions. These results demonstrate that the proposed detector provides dependable positioning capability for small animal positron emission tomography (PET)

  10. CERN_DxCTA counting mode chip

    CERN Document Server

    Moraes, D; Nygård, E

    2008-01-01

    This ASIC is a counting mode front-end electronic optimized for the readout of CdZnTe/CdTe and silicon sensors, for possible use in applications where the flux of ionizing radiation is high. The chip is implemented in 0.25 μm CMOS technology. The circuit comprises 128 channels equipped with a transimpedance amplifier followed by a gain shaper stage with 21 ns peaking time, two discriminators and two 18-bit counters. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at counting rates of up to 5 M counts/second. The amplifier shows a linear sensitivity of 118 mV/fC and an equivalent noise charge of about 711 e−, for a detector capacitance of 5 pF. Complete evaluation of the circuit is presented using electronic pulses and pixel detectors.

  11. UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Sottile, G.; Russo, F.; Agnetta, G. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Belluso, M.; Billotta, S. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Biondo, B. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Bonanno, G. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Catalano, O.; Giarrusso, S. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Grillo, A. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Impiombato, D.; La Rosa, G.; Maccarone, M.C.; Mangano, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Marano, D. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Mineo, T.; Segreto, A.; Strazzeri, E. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Timpanaro, M.C. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy)

    2013-06-15

    UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320–900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.

  12. X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.

    1978-01-01

    Two-dimensional X-ray diffraction patterns may be recorded quantitatively by means of X-ray-to-electron converters which are scanned in a television-type raster scan. Detectors of this type are capable of operating over the whole range of counting rates from very low to higher than those with which other types of converters can deal. The component parts of an X-ray television detector are examined and the limits to the precision of the measurements are analysed. (Auth.)

  13. The HOTWAXS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Derbyshire, G.E. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diakun, G. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Duxbury, D.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: d.m.duxbury@rl.ac.uk; Fairclough, J.P.A. [Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF (United Kingdom); Harvey, I.; Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Lipp, J.D.; Marsh, A.S.; Salisbury, J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sankar, G. [Royal Institution of GB, 21 Albemarle Street, London W1S 4BS (United Kingdom); Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Terrill, N.J. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2007-10-11

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  14. The HOTWAXS detector

    International Nuclear Information System (INIS)

    Bateman, J.E.; Derbyshire, G.E.; Diakun, G.; Duxbury, D.M.; Fairclough, J.P.A.; Harvey, I.; Helsby, W.I.; Lipp, J.D.; Marsh, A.S.; Salisbury, J.; Sankar, G.; Spill, E.J.; Stephenson, R.; Terrill, N.J.

    2007-01-01

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source

  15. Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Korzh, B., E-mail: Boris.Korzh@unige.ch; Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H. [Group of Applied Physics, University of Geneva, Chemin de Pinchat 22, CH-1211 Geneva 4 (Switzerland)

    2014-02-24

    We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of −110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.

  16. Development of Fast High-Resolution Muon Drift-Tube Detectors for High Counting Rates

    CERN Document Server

    INSPIRE-00287945; Dubbert, J.; Horvat, S.; Kortner, O.; Kroha, H.; Legger, F.; Richter, R.; Adomeit, S.; Biebel, O.; Engl, A.; Hertenberger, R.; Rauscher, F.; Zibell, A.

    2011-01-01

    Pressurized drift-tube chambers are e?cient detectors for high-precision tracking over large areas. The Monitored Drift-Tube (MDT) chambers of the muon spectrometer of the ATLAS detector at the Large Hadron Collider (LHC) reach a spatial resolution of 35 micons and almost 100% tracking e?ciency with 6 layers of 30 mm diameter drift tubes operated with Ar:CO2 (93:7) gas mixture at 3 bar and a gas gain of 20000. The ATLAS MDT chambers are designed to cope with background counting rates due to neutrons and gamma-rays of up to about 300 kHz per tube which will be exceeded for LHC luminosities larger than the design value of 10-34 per square cm and second. Decreasing the drift-tube diameter to 15 mm while keeping the other parameters, including the gas gain, unchanged reduces the maximum drift time from about 700 ns to 200 ns and the drift-tube occupancy by a factor of 7. New drift-tube chambers for the endcap regions of the ATLAS muon spectrometer have been designed. A prototype chamber consisting of 12 times 8 l...

  17. Spectral response of multi-element silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K. [Univ. of California, Berkeley, CA (United States)

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  18. Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources.

    Science.gov (United States)

    Klumpp, John; Brandl, Alexander

    2015-03-01

    A particle counting and detection system is proposed that searches for elevated count rates in multiple energy regions simultaneously. The system analyzes time-interval data (e.g., time between counts), as this was shown to be a more sensitive technique for detecting low count rate sources compared to analyzing counts per unit interval (Luo et al. 2013). Two distinct versions of the detection system are developed. The first is intended for situations in which the sample is fixed and can be measured for an unlimited amount of time. The second version is intended to detect sources that are physically moving relative to the detector, such as a truck moving past a fixed roadside detector or a waste storage facility under an airplane. In both cases, the detection system is expected to be active indefinitely; i.e., it is an online detection system. Both versions of the multi-energy detection systems are compared to their respective gross count rate detection systems in terms of Type I and Type II error rates and sensitivity.

  19. Experimental investigation of mass efficiency curve for alpha radioactivity counting using a gas-proportional detector

    International Nuclear Information System (INIS)

    Semkow, T.M.; Bari, A.; Parekh, P.P.; Haines, D.K.; Gao, H.; Bolden, A.N.; Dahms, K.S.; Scarpitta, S.C.; Thern, R.E.; Velazquez, S.

    2004-01-01

    Gross α counting of evaporated water residues offers a simple method for screening α radioactivity in water for both public health and emergency purposes. The evaporation process for water has been improved by using a combination of roughening of the surface of counting planchettes, two-stage evaporation, and temperature-controlled block heating. The efficiency of the gas-proportional detector for α-particle detection in water residues was studied as a function of sample mass-thickness in the range between 0.1 and 13 mg cm -2 . The effect of α energy on the efficiency, as well as moisture absorption on the samples, were studied using 230 Th, 238 U, 239 Pu, 241 Am, and 244 Cm radionuclides. Also, α-to-β crosstalk was investigated as a function of sample mass for 230 Th, 239 Pu, 210 Po, 241 Am, and 244 Cm. The improved method can also be applied for gross α detection in biological fluids

  20. Radiation intensity counting system

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1982-01-01

    A method is described of excluding the natural dead time of the radiation detector (or eg Geiger-Mueller counter) in a ratemeter counting circuit, thus eliminating the need for dead time corrections. Using a pulse generator an artificial dead time is introduced which is longer than the natural dead time of the detector. (U.K.)

  1. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    Science.gov (United States)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina substrate. The charge cloud is matched to the anode period so that it is collected on several neighboring fingers to ensure an accurate event charge centroid can be determined. Each finger of the anode is connected to a low noise charge sensitive amplifier and followed by subsequent A/D conversion of individual strip charge values and a hardware centroid determination of better than 1/100 of a strip are possible. Recently we have commissioned a full 32 x 32 mm XS open face laboratory detector and demonstrated excellent resolution (Los Alamos National Laboratory, NASA and NSF we are developing high rate (>107 Hz) XS encoding electronics that will encode temporally simultaneous

  2. Single-photon detector operating under extremely high background photon flux conditions

    International Nuclear Information System (INIS)

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  3. Multiple-Event, Single-Photon Counting Imaging Sensor

    Science.gov (United States)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  4. Development of high sensitivity radon detectors

    CERN Document Server

    Takeuchi, Y; Kajita, T; Tasaka, S; Hori, H; Nemoto, M; Okazawa, H

    1999-01-01

    High sensitivity detectors for radon in air and in water have been developed. We use electrostatic collection and a PIN photodiode for these detectors. Calibration systems have been also constructed to obtain collection factors. As a result of the calibration study, the absolute humidity dependence of the radon detector for air is clearly observed in the region less than about 1.6 g/m sup 3. The calibration factors of the radon detector for air are 2.2+-0.2 (counts/day)/(mBq/m sup 3) at 0.08 g/m sup 3 and 0.86+-0.06 (counts/day)/(mBq/m sup 3) at 11 g/m sup 3. The calibration factor of the radon detector for water is 3.6+-0.5 (counts/day)/(mBq/m sup 3). The background level of the radon detector for air is 2.4+-1.3 counts/day. As a result, one standard deviation excess of the signal above the background of the radon detector for air should be possible for 1.4 mBq/m sup 3 in a one-day measurement at 0.08 g/m sup 3.

  5. SiPM as photon counter for Cherenkov detectors

    International Nuclear Information System (INIS)

    Roy, B.J.; Orth, H.; Schwarz, C.; Wilms, A.; Peters, K.

    2009-01-01

    Silicon photomultipliers (SiPMs) are very new type of photon counting devices that show great promise to be used as detection device in combination with scintillators/ Cherenkov radiators. SiPM is essentially an avalanche photo-diode operated in limited Geiger mode. They have been considered as potential readout devices for DIRC counter of the PANDA detector which is one of the large experiment at FAIR- the new international facility to be built at GSI, Darmstadt. In addition, the potential use of SiPM includes medical diagnosis, fluorescence measurement and high energy physics experiments. The SiPM module is a photon counting device capable of low light level detection. It is essentially an opto-semiconductor device with excellent photon counting capability and possesses great advantages over the conventional PMTs because of low voltage operation and insensitivity to magnetic fields. In many of the high energy physics experiments, the photon sensors are required to operate in high magnetic fields precluding the use of conventional PMTs. This problem can be over come with the use of SiPMs. With this motivation in mind, we have developed a SiPM test facility and have tested several commercially available SiPM for their performance study and comparison with other photon counting devices

  6. Assessment of applicability of portable HPGe detector with in situ object counting system based on performance evaluation of thyroid radiobioassays

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Seok; Kwon, Tae Eun; Pak, Min Jung; Park, Se Young; Ha, Wi Ho; Jin, Young Woo [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2017-06-15

    Different cases exist in the measurement of thyroid radiobioassays owing to the individual characteristics of the subjects, especially the potential variation in the counting efficiency. An In situ Object Counting System (ISOCS) was developed to perform an efficiency calibration based on the Monte Carlo calculation, as an alternative to conventional calibration methods. The purpose of this study is to evaluate the applicability of ISOCS to thyroid radiobioassays by comparison with a conventional thyroid monitoring system. The efficiency calibration of a portable high-purity germanium (HPGe) detector was performed using ISOCS software. In contrast, the conventional efficiency calibration, which needed a radioactive material, was applied to a scintillator-based thyroid monitor. Four radioiodine samples that contained 125I and 131I in both aqueous solution and gel forms were measured to evaluate radioactivity in the thyroid. ANSI/HPS N13.30 performance criteria, which included the relative bias, relative precision, and root-mean-squared error, were applied to evaluate the performance of the measurement system. The portable HPGe detector could measure both radioiodines with ISOCS but the thyroid monitor could not measure 125I because of the limited energy resolution of the NaI(Tl) scintillator. The 131I results from both detectors agreed to within 5% with the certified results. Moreover, the 125I results from the portable HPGe detector agreed to within 10% with the certified results. All measurement results complied with the ANSI/HPS N13.30 performance criteria. The results of the intercomparison program indicated the feasibility of applying ISOCS software to direct thyroid radiobioassays. The portable HPGe detector with ISOCS software can provide the convenience of efficiency calibration and higher energy resolution for identifying photopeaks, compared with a conventional thyroid monitor with a NaI(Tl) scintillator. The application of ISOCS software in a radiation

  7. Ultra-fast silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H. F.-W., E-mail: hartmut@scipp.ucsc.edu [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Petersen, B.; Seiden, A.; Zatserklyaniy, A. [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Cartiglia, N.; Marchetto, F. [INFN Torino, Torino (Italy); Bruzzi, M.; Mori, R.; Scaringella, M.; Vinattieri, A. [University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, Firenze (Italy)

    2013-12-01

    We propose to develop a fast, thin silicon sensor with gain capable to concurrently measure with high precision the space (∼10 μm) and time (∼10 ps) coordinates of a particle. This will open up new application of silicon detector systems in many fields. Our analysis of detector properties indicates that it is possible to improve the timing characteristics of silicon-based tracking sensors, which already have sufficient position resolution, to achieve four-dimensional high-precision measurements. The basic sensor characteristics and the expected performance are listed, the wide field of applications are mentioned and the required R and D topics are discussed. -- Highlights: •We are proposing thin pixel silicon sensors with 10's of picoseconds time resolution. •Fast charge collection is coupled with internal charge multiplication. •The truly 4-D sensors will revolutionize imaging and particle counting in many applications.

  8. Digital algorithms for parallel pipelined single-detector homodyne fringe counting in laser interferometry

    Science.gov (United States)

    Rerucha, Simon; Sarbort, Martin; Hola, Miroslava; Cizek, Martin; Hucl, Vaclav; Cip, Ondrej; Lazar, Josef

    2016-12-01

    The homodyne detection with only a single detector represents a promising approach in the interferometric application which enables a significant reduction of the optical system complexity while preserving the fundamental resolution and dynamic range of the single frequency laser interferometers. We present the design, implementation and analysis of algorithmic methods for computational processing of the single-detector interference signal based on parallel pipelined processing suitable for real time implementation on a programmable hardware platform (e.g. the FPGA - Field Programmable Gate Arrays or the SoC - System on Chip). The algorithmic methods incorporate (a) the single detector signal (sine) scaling, filtering, demodulations and mixing necessary for the second (cosine) quadrature signal reconstruction followed by a conic section projection in Cartesian plane as well as (a) the phase unwrapping together with the goniometric and linear transformations needed for the scale linearization and periodic error correction. The digital computing scheme was designed for bandwidths up to tens of megahertz which would allow to measure the displacements at the velocities around half metre per second. The algorithmic methods were tested in real-time operation with a PC-based reference implementation that employed the advantage pipelined processing by balancing the computational load among multiple processor cores. The results indicate that the algorithmic methods are suitable for a wide range of applications [3] and that they are bringing the fringe counting interferometry closer to the industrial applications due to their optical setup simplicity and robustness, computational stability, scalability and also a cost-effectiveness.

  9. Design criteria for pulse transformers used in neutron detector pulse counting channels

    International Nuclear Information System (INIS)

    Powler, E.P.

    1963-10-01

    The need for long cables between the detector and head amplifier in neutron pulse counting channels has led to the development of systems in which a transformer is used to 'match' the high impedance of a fission or proportional counter to the characteristic impedance of the cable. A further transformer can be used to match the cable to the input of a low noise pulse amplifier if this has a high impedance. This report is intended to give the designer sufficient information to optimise a system and predict the performance in terms of signal to noise ratio, resolving time and gain. Related problems are covered and include the use of balanced twin cables, the requirements of temperatures up to 500 deg. C and the need for high interference rejection. Two systems are described in some detail to emphasise the principles of design. (author)

  10. A high count rate position decoding and energy measuring method for nuclear cameras using Anger logic detectors

    International Nuclear Information System (INIS)

    Wong, W.H.; Li, H.; Uribe, J.

    1998-01-01

    A new method for processing signals from Anger position-sensitive detectors used in gamma cameras and PET is proposed for very high count-rate imaging where multiple-event pileups are the norm. This method is designed to sort out and recover every impinging event from multiple-event pileups while maximizing the collection of scintillation signal for every event to achieve optimal accuracy in the measurement of energy and position. For every detected event, this method cancels the remnant signals from previous events, and excludes the pileup of signals from following events. The remnant subtraction is exact even for multiple pileup events. A prototype circuit for energy recovery demonstrated that the maximum count rates can be increased by more than 10 times comparing to the pulse-shaping method, and the energy resolution is as good as pulse shaping (or fixed integration) at low count rates. At 2 x 10 6 events/sec on NaI(Tl), the true counts acquired with this method is 3.3 times more than the delay-line clipping method (256 ns clipping) due to events recovered from pileups. Pulse-height spectra up to 3.5 x 10 6 events/sec have been studied. Monte Carlo simulation studies have been performed for image-quality comparisons between different processing methods

  11. A gas microstrip wide angle X-ray detector for application in synchrotron radiation experiments

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Lipp, J; Mir, J A; Simmons, J E; Spill, E J; Stephenson, R; Dobson, B R; Farrow, R C; Helsby, W I; Mutikainen, R; Suni, I

    2002-01-01

    The Gas Microstrip Detector has counting rate capabilities several orders of magnitude higher than conventional wire proportional counters while providing the same (or better) energy resolution for X-rays. In addition the geometric flexibility provided by the lithographic process combined with the self-supporting properties of the substrate offers many exciting possibilities for X-ray detectors, particularly for the demanding experiments carried out on Synchrotron Radiation Sources. Using experience obtained in designing detectors for Particle Physics we have developed a detector for Wide Angle X-ray Scattering studies. The detector has a fan geometry which makes possible a gas detector with high detection efficiency, sub-millimetre spatial resolution and good energy resolution over a wide range of X-ray energy. The detector is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  12. Delta count-rate monitoring system

    International Nuclear Information System (INIS)

    Van Etten, D.; Olsen, W.A.

    1985-01-01

    A need for a more effective way to rapidly search for gamma-ray contamination over large areas led to the design and construction of a very sensitive gamma detection system. The delta count-rate monitoring system was installed in a four-wheel-drive van instrumented for environmental surveillance and accident response. The system consists of four main sections: (1) two scintillation detectors, (2) high-voltage power supply amplifier and single-channel analyzer, (3) delta count-rate monitor, and (4) count-rate meter and recorder. The van's 6.5-kW generator powers the standard nuclear instrument modular design system. The two detectors are mounted in the rear corners of the van and can be run singly or jointly. A solid-state bar-graph count-rate meter mounted on the dashboard can be read easily by both the driver and passenger. A solid-state strip chart recorder shows trends and provides a permanent record of the data. An audible alarm is sounded at the delta monitor and at the dashboard count-rate meter if a detected radiation level exceeds the set background level by a predetermined amount

  13. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  14. A manual low background alpha beta counting system

    Energy Technology Data Exchange (ETDEWEB)

    Levison, S; German, U; Peled, O; Turgeman, S; Vangrovitz, U; Tirosh, D; Piestum, S; Assido, H [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    An Alpha and Beta counting system consisting of a micro controller-based electronic unit and detectors assembly was developed. The radiation detection unit consists of two proportional detectors (a main detector and a cosmic-ray guard detector) which can be easily disassembled for decontamination or repair. The detectors are mounted in a manual operating sample changer shielded by 5 cm of lead. Simplicity of maintenance and functional operation were taken into consideration in the design. The electronic unit supplies the high voltage and enables the operational functions including controls anti alarms. Calculations of net cpm of Alpha and Beta counting are displayed and can be printed. RS-232 communication option enables connection to a computer and operation of more sophisticated programs for calculations and data storage in the future (authors).

  15. A manual low background alpha beta counting system

    International Nuclear Information System (INIS)

    Levison, S.; German, U.; Peled, O.; Turgeman, S.; Vangrovitz, U.; Tirosh, D.; Piestum, S.; Assido, H.

    1996-01-01

    An Alpha and Beta counting system consisting of a micro controller-based electronic unit and detectors assembly was developed. The radiation detection unit consists of two proportional detectors (a main detector and a cosmic-ray guard detector) which can be easily disassembled for decontamination or repair. The detectors are mounted in a manual operating sample changer shielded by 5 cm of lead. Simplicity of maintenance and functional operation were taken into consideration in the design. The electronic unit supplies the high voltage and enables the operational functions including controls anti alarms. Calculations of net cpm of Alpha and Beta counting are displayed and can be printed. RS-232 communication option enables connection to a computer and operation of more sophisticated programs for calculations and data storage in the future (authors)

  16. Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS

    Science.gov (United States)

    Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.

    2017-04-01

    The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.

  17. Semi-automatic bubble counting system for superheated droplet detectors

    International Nuclear Information System (INIS)

    Reina, Luiz C.; Bellido, Luis F.; Ramos, Paulo R.; Silva, Ademir X. da; Facure, Alessandro; Dantas, Jose E.R.

    2009-01-01

    Neutron dose rate measurements are normally performed by means of PADC, CR-39 and TLD detectors. Although, none of these devices can give instant reading of the neutron dose, recently new kind of detectors are being developed, based on the formation of tiny drops in a superheated liquid suspended in a polymer or gel solution, called superheated droplet detector (SDD) or also as bubble detectors (BD), with no response for gamma radiation. This work describes the experimental setup and the developed procedures for acquiring and processing digital images obtained with bubble detector spectrometer (BDS), developed by Bubble Technology Industries, for personal neutron dosimeter and/or neutron energy fluence measurements in nuclear facilities. The results of the neutron measurements obtained during the F-18 production, at the RDS-111 cyclotron, are presented. These neutron measurements were the first ones with this type of BDS detectors in a particle accelerator facility in Brazil and it was very important to estimate neutron dose rate received by occupationally exposed individuals. (author)

  18. Quantitative Compton suppression spectrometry at elevated counting rates

    International Nuclear Information System (INIS)

    Westphal, G.P.; Joestl, K.; Schroeder, P.; Lauster, R.; Hausch, E.

    1999-01-01

    For quantitative Compton suppression spectrometry the decrease of coincidence efficiency with counting rate should be made negligible to avoid a virtual increase of relative peak areas of coincident isomeric transitions with counting rate. To that aim, a separate amplifier and discriminator has been used for each of the eight segments of the active shield of a new well-type Compton suppression spectrometer, together with an optimized, minimum dead-time design of the anticoincidence logic circuitry. Chance coincidence losses in the Compton suppression spectrometer are corrected instrumentally by comparing the chance coincidence rate to the counting rate of the germanium detector in a pulse-counting Busy circuit (G.P. Westphal, J. Rad. Chem. 179 (1994) 55) which is combined with the spectrometer's LFC counting loss correction system. The normally not observable chance coincidence rate is reconstructed from the rates of germanium detector and scintillation detector in an auxiliary coincidence unit, after the destruction of true coincidence by delaying one of the coincidence partners. Quantitative system response has been tested in two-source measurements with a fixed reference source of 60 Co of 14 kc/s, and various samples of 137 Cs, up to aggregate counting rates of 180 kc/s for the well-type detector, and more than 1400 kc/s for the BGO shield. In these measurements, the net peak areas of the 1173.3 keV line of 60 Co remained constant at typical values of 37 000 with and 95 000 without Compton suppression, with maximum deviations from the average of less than 1.5%

  19. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    Science.gov (United States)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  20. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  1. Semiconductor detectors in the low countries

    International Nuclear Information System (INIS)

    Heijne, Erik H.M.

    2003-01-01

    Several milestones in the development of semiconductor radiation imaging detectors are attributed to scientists from the Low Countries, the Netherlands and Belgium, and a few historical details will be highlighted. The very first usable semiconductor nuclear detector was made in Utrecht, around 1943, in the form of an AgCl crystal. The earliest large-scale application of monolithic, double-sided silicon strip detectors was in the BOL experiment around 1968 at IKO, now NIKHEF, in Amsterdam. The technology developed and patented by Philips and IKO was adapted by the author and coworkers in 1980 to produce the first silicon microstrip detector used for the reconstruction of events in a CERN fixed target experiment. An avalanche of developments then led to worldwide use of silicon microstrip detectors in elementary particle physics, motivated by the capability to reconstruct particles with lifetime ∼10 -12 s, which decay on sub-millimeter scale. The intensive activity in silicon detector R and D culminated in 1991 in the construction of fine-grained 2D monolithic and hybrid pixel detectors that incorporate sophisticated electronic functions in each microscopic detection element, with typical dimensions of 25-100 μm. Besides being a powerful high intensity tracker for particle physics, this device can also be designed as a new X-ray imager, which allows selective counting of individual photons in each pixel at MHz frequency

  2. Chip-interleaved optical code division multiple access relying on a photon-counting iterative successive interference canceller for free-space optical channels.

    Science.gov (United States)

    Zhou, Xiaolin; Zheng, Xiaowei; Zhang, Rong; Hanzo, Lajos

    2013-07-01

    In this paper, we design a novel Poisson photon-counting based iterative successive interference cancellation (SIC) scheme for transmission over free-space optical (FSO) channels in the presence of both multiple access interference (MAI) as well as Gamma-Gamma atmospheric turbulence fading, shot-noise and background light. Our simulation results demonstrate that the proposed scheme exhibits a strong MAI suppression capability. Importantly, an order of magnitude of BER improvements may be achieved compared to the conventional chip-level optical code-division multiple-access (OCDMA) photon-counting detector.

  3. Performance of the micromegas detector in the CAST experiment

    International Nuclear Information System (INIS)

    Aune, S.; Dafni, T.; Fanourakis, G.; Ferrer Ribas, E.; Geralis, T.; Giganon, A.; Giomataris, Y.; Irastorza, I.G.; Kousouris, K.; Zachariadou, K.

    2007-01-01

    The gaseous micromegas detector designed for the CERN Axion search experiment CAST, operated smoothly during Phase-I, which included the 2003 and 2004 running periods. It exhibited linear response in the energy range of interest (1-10 keV), good spatial sensitivity and energy resolution (15-19% FWHM at 5.9 keV) as well as remarkable stability. The detector's upgrade for the 2004 run, supported by the development of advanced offline analysis tools, improved the background rejection capability, leading to an average rate 5x10 -5 counts/s/cm 2 /keV with 94% cut efficiency. Also, the origin of the detected background was studied with a Monte-Carlo simulation, using the GEANT4 package

  4. High counting rate resistive-plate chamber

    International Nuclear Information System (INIS)

    Peskov, V.; Anderson, D.F.; Kwan, S.

    1993-05-01

    Parallel-plate avalanche chambers (PPAC) are widely used in physics experiments because they are fast ( 5 counts/mm 2 . A resistive-plate chamber (RPC) is similar to the PPAC in construction except that one or both of the electrodes are made from high resistivity (≥10 10 Ω·cm) materials. In practice RPCs are usually used in the spark mode. Resistive electrodes are charged by sparks, locally reducing the actual electric field in the gap. The size of the charged surface is about 10 mm 2 , leaving the rest of the detector unaffected. Therefore, the rate capability of such detectors in the spark mode is considerably higher than conventional spark counters. Among the different glasses tested the best results were obtained with electron type conductive glasses, which obey Ohm's law. Most of the work with such glasses was done with high pressure parallel-plate chambers (10 atm) for time-of-flight measurements. Resistive glasses have been expensive and produced only in small quantities. Now resistive glasses are commercially available, although they are still expensive in small scale production. From the positive experience of different groups working with the resistive glasses, it was decided to review the old idea to use this glass for the RPC. This work has investigated the possibility of using the RPC at 1 atm and in the avalanche mode. This has several advantages: simplicity of construction, high rate capability, low voltage operation, and the ability to work with non-flammable gases

  5. Performance of a YSO/LSO detector block for use in a PET/SPECT system

    International Nuclear Information System (INIS)

    Dahlbom, M.; MacDonald, L.R.; Eriksson, L.

    1996-01-01

    In recent years, there has been an increased interest in using conventional SPECT scintillation cameras for PET imaging, however, the count rate performance is a limiting factor. The modular block detectors used in modem PET systems do not have this limitation. In this work, the performance of a detector block design which would have high resolution and high count rate capabilities in both detection modes is studied. The high light output of LSO (∼5-6 times BGO) would allow the construction of a detector block that would have similar intrinsic resolution characteristics at 140 keV as a conventional high resolution BGO block detector at 511 keV (∼4 mm FWHM). However, the intrinsic radioactivity of LSO prevents the use of this scintillator in single photon counting mode. YSO is a scintillator with higher light output than LSO but worse absorption characteristics than LSO. YSO and LSO could be combined in a phoswich detector block, where YSO is placed in a front layer and is used for low energy (SPECT) imaging and LSO in a second layer is used for PET imaging. Events in the two detector materials can be separated by pulse shape discrimination, since the decay times of the light in YSO and LSO are different (70 and 40 ns, respectively). Although the intrinsic resolution of the block detector with discrete elements is worse than for a NaI camera, this would not be a limiting factor. Simulations of a 20 cm diameter hot spot phantom imaged at different collimator distances using a high resolution collimator and scintillation camera system was compared to a block detector camera. No appreciable difference in resolution was seen in the reconstructed images between the two camera systems, including the ideal situation of zero distance between collimator and phantom

  6. Prototype of IGZO-TFT preamplifier and analog counter for pixel detector

    International Nuclear Information System (INIS)

    Shimazoe, K.; Koyama, A.; Takahashi, H.; Shindoh, T.; Miyoshi, H.

    2017-01-01

    IGZO-TFT (Indium Galium Zinc Oxide-Thin Film Transistor) is a promising technology for controlling large display areas and large area sensors because of its very low leakage current in the off state and relatively low cost. IGZO has been used as a switching gate for a large area flat-panel detector. The photon counting capability for X-ray medical imaging has been investigated and expected for low-dose exposure and material determination. Here the design and fabrication of a charge sensitive preamplifier and analog counter using IGZO-TFT processes and its performance are reported for the first time to be used for radiation photon counting applications.

  7. Simulations of the x-ray imaging capabilities of the silicon drift detectors (SDD) for the LOFT wide-field monitor

    DEFF Research Database (Denmark)

    Evangelista, Y.; Campana, R.; Del Monte, E.

    2012-01-01

    Detector (LAD), carrying an unprecedented effective area of 10 m^2, is complemented by a coded-mask Wide Field Monitor, in charge of monitoring a large fraction of the sky potentially accessible to the LAD, to provide the history and context for the sources observed by LAD and to trigger its observations...... on their most interesting and extreme states. In this paper we present detailed simulations of the imaging capabilities of the Silicon Drift Detectors developed for the LOFT Wide Field Monitor detection plane. The simulations explore a large parameter space for both the detector design and the environmental...

  8. Measures to handle accidental contamination of persons with standard counting devices available in a department of nuclear medicine

    International Nuclear Information System (INIS)

    Aiginger, H.; Lauer, D.; Unfried, E.; Koenig, F.; Ogris, E.

    1998-01-01

    The assets and shortcomings of a well-type NaI detector and a Ge detector were examined using the Marinelli geometry, test tube geometry, and beaker geometry. Plots of the efficiency vs. energy (efficiency calibration), recorded time vs. true time (dead-time effects), and maximum activity vs. energy are reproduced. A high counting efficiency is typical of the scintillation detector in the well for the test tube geometry, particularly in the low energy range. For energies higher than 100 keV, the counting efficiency decreases because of the increasing penetration of the detector bulk by high-energy photons. For the germanium detector, the highest counting efficiency was achieved in the beaker geometry. A linear relationship exists between the calculated and measured counts at the beginning of the recorded curve for both systems. For the well-type detector the maximum detectable count rate was about 30 kcps, the linearity of the plot of the true count rate was guaranteed up to 10 kcps. Dead time correction was to be made at higher count rates. For the germanium detector the maximum detectable count rate was only about 8 kcps due to the longer dead time, the linear segment, however, was longer than for the scintillation detector. It is concluded that although the maximum detectable count rate of the germanium detector is lower, higher true activities can be detected with it owing to the lower detection efficiency. The well-type scintillation detector is advantageous for the test tube geometry. (P.A.)

  9. Germanium cryogenic detectors: Alpha surface events rejection capabilities

    International Nuclear Information System (INIS)

    Fiorucci, S.; Broniatowski, A.; Chardin, G.; Censier, B.; Lesquen, A. de; Deschamps, H.; Fesquet, M.; Jin, Y.

    2006-01-01

    Alpha surface events and multiple compton gamma interactions are the two major background components in Ge detectors for double-beta decay investigations. Two different methods have been studied to identify such type of events, using cryogenic Ge detectors developed primarily for dark matter search: (i) combined heat and ionization measurements, and (ii) pulse-shape analysis of the charge collection signals. Both methods show strong separation between electron recoil events and surface alphas. Cryogenic heat-ionization detectors therefore appear able to reject virtually all surface alpha interactions

  10. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification

    International Nuclear Information System (INIS)

    Charpak, G; Benaben, P; Breuil, P; Peskov, V

    2008-01-01

    Ionization chambers working in ambient air in current detection mode are attractive due to their simplicity and low cost and are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and so on. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification which potentially offers the highest possible sensitivity in applications like alpha particle detection or high energy X-ray photon or electron detection. To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of one (pulse ionization chamber). This detector was readout by a custom made wide -band charge sensitive amplifier able to deal with slow induced signals generated by slow motion of negative and positive ions. The multiwire detector was able to detect alpha particles with an efficiency close to 22%. The second type of an alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 10 4 ). This detector can also operate in a cascaded mode or being combined with other detectors, for example with MICROMEGAS. This detector was readout by a conventional charge -sensitive amplifier and was able to detect alpha particles with 100% efficiency. This detector could also detect X-ray photons or fast electrons. A detailed comparison between these two detectors is given as well as a comparison with commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible applications of these new detectors is alpha particle background monitors which, due to their low cost can find wide application not only in houses, but

  11. Operation voltage of the counting system of nuclear traces in solids

    International Nuclear Information System (INIS)

    Garcia, M.L.; Quirino, L.L.; Mireles, F.; Davila, J.I.; Pinedo, J.L.; Lugo, J.F.; Vadillo, V.E.

    2002-01-01

    The semi-automatic counting system based on electric spark and used for traces reading in solid state detectors is evaluated for obtaining its counting voltage and also the breaking voltage of material. In the treatment of the solid state detectors it is continued the NTD methodology for concluding with the individual counting of the films, whose graphics offer the existing relationship among the applied voltage and the traces number. From each film a counting and breaking voltages are obtained. Finally, an average voltage of all them is estimated. (Author)

  12. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs

  13. CERN{sub D}xCTA counting mode chip

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, D. [CERN, CH-1211 Geneva 23 (Switzerland)], E-mail: danielle.moraes@cern.ch; Kaplon, J. [CERN, CH-1211 Geneva 23 (Switzerland); Nygard, E. [Interon AS, Asker, Norway and DX-ray Inc., Northridge, CA (United States)

    2008-06-11

    This ASIC is a counting mode front-end electronic optimized for the readout of CdZnTe/CdTe and silicon sensors, for possible use in applications where the flux of ionizing radiation is high. The chip is implemented in 0.25 {mu}m CMOS technology. The circuit comprises 128 channels equipped with a transimpedance amplifier followed by a gain shaper stage with 21 ns peaking time, two discriminators and two 18-bit counters. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at counting rates of up to 5 M counts/second. The amplifier shows a linear sensitivity of 118 mV/fC and an equivalent noise charge of about 711 e{sup -}, for a detector capacitance of 5 pF. Complete evaluation of the circuit is presented using electronic pulses and pixel detectors.

  14. A first principle approach for encapsulated type composite detectors

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    A first principle approach is presented for modeling a composite detector consisting of several high-purity germanium detector modules. Without making assumptions, if we consider the full energy peak counts from single and multiple detector module interactions, and the decomposition of background counts to counts corresponding to the escaping γ-rays and counts for γ-rays which could be recovered in addback mode, it is observed that the addback mode of a composite detector could be described in terms of four probability amplitudes only. Expressions for peak-to-total and peak-to-background ratios are obtained. Considering details of the scattering and absorption processes in a composite detector, a formalism is introduced for understanding the probability amplitudes. Detailed investigation has been performed on the effect of shape and size of composite detectors on peak-to-total and peak-to-background ratios. In accordance with isoperimetric inequality for hexagonal shapes, we have discussed about the optimal design of detector layout for extremely large values of detector modules. Using experimental data on relative single crystal efficiency, addback factor and peak-to-total ratio at 1332 keV for cluster detector, the peak-to-total and peak-to-background ratios have been calculated for several composite detectors.

  15. Life Finder Detectors: An Overview of Detector Technologies for Detecting Life on Other Worlds

    Science.gov (United States)

    Rauscher, Bernard J.; Domagal-Goldman, Shawn; Greenhouse, Matthew A.; Hsieh, Wen-Ting; McElwain, Michael W.; Moseley, Samuel H.; Noroozian, Omid; Norton, Tim; Kutyrev, Alexander; Rinehart, Stephen; stock, Joseph

    2015-01-01

    Future large space telescopes will seek evidence for life on other worlds by searching for spectroscopic biosignatures. Atmospheric biosignature gases include oxygen, ozone, water vapor, and methane. Non-biological gases, including carbon monoxide and carbon dioxide, are important for discriminating false positives. All of these gases imprint spectroscopic features in the UV through mid-IR that are potentially detectable using future space based coronagraphs or star shades for starlight suppression.Direct spectroscopic biosignature detection requires sensors capable of robustly measuring photon arrival rates on the order of 10 per resolution element per hour. Photon counting is required for some wavefront sensing and control approaches to achieve the requisite high contrast ratios. We review life finder detector technologies that either exist today, or are under development, that have the potential to meet these challenging requirements. We specifically highlight areas where more work or development is needed.Life finder detectors will be invaluable for a wide variety of other major science programs. Because of its cross cutting nature; UV, optical, and infrared (UVOIR) detector development features prominently in the 2010 National Research Council Decadal Survey, 'New Worlds, New Horizons in Astronomy and Astrophysics', and the NASA Cosmic Origins Program Technology Roadmap.

  16. HEPS-BPIX, a single photon counting pixel detector with a high frame rate for the HEPS project

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei, E-mail: weiw@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Zhang, Jie; Ning, Zhe; Lu, Yunpeng; Fan, Lei; Li, Huaishen; Jiang, Xiaoshan; Lan, Allan K.; Ouyang, Qun; Wang, Zheng; Zhu, Kejun; Chen, Yuanbo [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Liu, Peng [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2016-11-01

    China's next generation light source, named the High Energy Photon Source (HEPS), is currently under construction. HEPS-BPIX (HEPS-Beijing PIXel) is a dedicated pixel readout chip that operates in single photon counting mode for X-ray applications in HEPS. Designed using CMOS 0.13 µm technology, the chip contains a matrix of 104×72 pixels. Each pixel measures 150 µm×150 µm and has a counting depth of 20 bits. A bump-bonded prototyping detector module with a 300-µm thick silicon sensor was tested in the beamline of Beijing Synchrotron Radiation Facility. A fast stream of X-ray images was demonstrated, and a frame rate of 1.2 kHz was proven, with a negligible dead time. The test results showed an equivalent noise charge of 115 e{sup −} rms after bump bonding and a threshold dispersion of 55 e{sup −} rms after calibration.

  17. High-Rate Performance of Muon Drift Tube Detectors

    CERN Document Server

    Schwegler, Philipp

    The Large Hadron Collider (LHC) at the European Centre for Particle Physics, CERN, collides protons with an unprecedentedly high centre-of-mass energy and luminosity. The collision products are recorded and analysed by four big experiments, one of which is the ATLAS detector. In parallel with the first LHC run from 2009 to 2012, which culminated in the discovery of the last missing particle of the Standard Model of particle physics, the Higgs boson, planning of upgrades of the LHC for higher instantaneous luminosities (HL-LHC) is already progressing. The high instantaneous luminosity of the LHC puts high demands on the detectors with respect to radiation hardness and rate capability which are further increased with the luminosity upgrade. In this thesis, the limitations of the Muon Drift Tube (MDT) chambers of the ATLAS Muon Spectrometer at the high background counting rates at the LHC and performance of new small diameter muon drift tube (sMDT) detectors at the even higher background rates at HL-LHC are stud...

  18. One dimensional detector for X-ray diffraction with superior energy resolution based on silicon strip detector technology

    International Nuclear Information System (INIS)

    Dąbrowski, W; Fiutowski, T; Wiącek, P; Fink, J; Krane, H-G

    2012-01-01

    1-D position sensitive X-ray detectors based on silicon strip detector technology have become standard instruments in X-ray diffraction and are available from several vendors. As these devices have been proven to be very useful and efficient further improvement of their performance is investigated. The silicon strip detectors in X-ray diffraction are primarily used as counting devices and the requirements concerning the spatial resolution, dynamic range and count rate capability are of primary importance. However, there are several experimental issues in which a good energy resolution is important. The energy resolution of silicon strip detectors is limited by the charge sharing effects in the sensor as well as by noise of the front-end electronics. The charge sharing effects in the sensor and various aspects of the electronics, including the baseline fluctuations, which affect the energy resolution, have been analyzed in detail and a new readout concept has been developed. A front-end ASIC with a novel scheme of baseline restoration and novel interstrip logic circuitry has been designed. The interstrip logic is used to reject the events resulting in significant charge sharing between neighboring strips. At the expense of rejecting small fraction of photons entering the detector one can obtain single strip energy spectra almost free of charge sharing effects. In the paper we present the design considerations and measured performance of the detector being developed. The electronic noise of the system at room temperature is typically of the order of 70 el rms for 17 mm long silicon strips and a peaking time of about 1 μs. The energy resolution of 600 eV FWHM has been achieved including the non-reducible charge sharing effects and the electronic noise. This energy resolution is sufficient to address a common problem in X-ray diffraction, i.e. electronic suppression of the fluorescence radiation from samples containing iron or cobalt while irradiated with 8.04 ke

  19. Position-Sensitive Organic Scintillation Detectors for Nuclear Material Accountancy

    International Nuclear Information System (INIS)

    Hausladen, P.; Newby, J.; Blackston, M.

    2015-01-01

    Recent years have seen renewed interest in fast organic scintillators with pulse shape properties that enable neutron-gamma discrimination, in part because of the present shortage of He3, but primarily because of the diagnostic value of timing and pulse height information available from such scintillators. Effort at Oak Ridge National Laboratory (ORNL) associated with fast organic scintillators has concentrated on development of position-sensitive fast-neutron detectors for imaging applications. Two aspects of this effort are of interest. First, the development has revisited the fundamental limitations on pulseshape measurement imposed by photon counting statistics, properties of the scintillator, and properties of photomultiplier amplification. This idealized limit can then be used to evaluate the performance of the detector combined with data acquisition and analysis such as free-running digitizers with embedded algorithms. Second, the development of position sensitive detectors has enabled a new generation of fast-neutron imaging instruments and techniques with sufficient resolution to give new capabilities relevant to safeguards. Toward this end, ORNL has built and demonstrated a number of passive and active fast-neutron imagers, including a proof-of-concept passive imager capable of resolving individual fuel pins in an assembly via their neutron emanations. This presentation will describe the performance and construction of position-sensing fast-neutron detectors and present results of imaging measurements. (author)

  20. Photon-counting image sensors

    CERN Document Server

    Teranishi, Nobukazu; Theuwissen, Albert; Stoppa, David; Charbon, Edoardo

    2017-01-01

    The field of photon-counting image sensors is advancing rapidly with the development of various solid-state image sensor technologies including single photon avalanche detectors (SPADs) and deep-sub-electron read noise CMOS image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and instrumentation for science and industry, as well as new consumer applications. Papers discussing various photon-counting image sensor technologies and selected new applications are presented in this all-invited Special Issue.

  1. A study of pile-up in integrated time-correlated single photon counting systems.

    Science.gov (United States)

    Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  2. Design and Performance of Soft Gamma-ray Detector for NeXT Mission

    Science.gov (United States)

    Tajima, H.; Kamae, T.; Madejski, G.; Takahashi, T.; Nakazawa, K.; Watanabe, S.; Mitani, T.; Tanaka, T.; Fukazawa, Y.; Kataoka, J.; Ikagawa, T.; Kokubun, M.; Makishima, K.; Terada, Y.; Nomachi, M.; Tashiro, M.

    The Soft Gamma-ray Detector (SGD) on board NeXT (Japanese future high energy astrophysics mission) is a Compton telescope with narrow field of view, which utilizes Compton kinematics to enhance its background rejection capabilities. It is realized as a hybrid semiconductor gamma-ray detector which consists of silicon and Cadmium Telluride (CdTe) detectors. It can detect photons in an energy band 0.05-1 MeV at a background level of 5×10-7 counts/s/cm2/keV; the silicon layers are required to improve the performance at a lower energy band (development of key technologies to realize the SGD; high quality CdTe, low noise front-end VLSI and bump bonding technology. Energy resolutions of 1.7 keV (FWHM) for CdTe pixel detectors and 1.1 keV for silicon strip detectors have been measured. We also present the validation of Monte Carlo simulation used to evaluate the performance of the SGD.

  3. Frontier detectors for frontier physics

    International Nuclear Information System (INIS)

    Cervelli, F.; Scribano, A.

    1984-01-01

    These proceedings contain the articles presented at the named meeting. These concern developments of radiation detectors and counting techniques in high energy physics. Especially considered are tracking detectors, calorimeters, time projection chambers, detectors for rare events, solid state detectors, particle identification, and optical readout systems. See hints under the relevant topics. (HSI)

  4. Black and grey neutron detectors

    International Nuclear Information System (INIS)

    Gabbard, F.

    1977-01-01

    Recent progress in the development and use of ''black'' and ''grey'' detectors is reviewed. Such detectors are widely used for counting neutrons in (p,n) and (α,n) experiments and in neutron cross section measurements. Accuracy of each detector is stressed. 19 figures

  5. A 36-pixel superconducting tunnel junction soft X-ray detector for environmental science applications

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Drury, Owen B.; Cramer, Stephen P.; Green, Peter G.

    2006-01-01

    We are operating a superconducting tunnel junction detector for high-resolution soft X-ray spectroscopy at the Advanced Biological and Environmental X-ray Facility at the Advanced Light Source synchrotron. We have recently upgraded the instrument from 9 to 36 pixels for increased sensitivity. We have also acquired a new digital signal readout to increase the total count rate capabilities to ∼10 6 counts/s while maintaining a high peak-to-background ratio. We report on the performance of the spectrometer, and discuss speciation measurements of chromium in welding aerosols as a typical application of the instrument in environmental science

  6. A 36-pixel superconducting tunnel junction soft X-ray detector for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephan [Lawrence Livermore National Laboratory, Advanced Detector Group, 7000 East Avenue, L-270, Livermore, CA 94550 (United States) and Lawrence Berkeley National Laboratory, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, Berkeley, CA 94720 (United States)]. E-mail: friedrich1@llnl.gov; Drury, Owen B. [Lawrence Livermore National Laboratory, Advanced Detector Group, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Cramer, Stephen P. [Lawrence Berkeley National Laboratory, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Green, Peter G. [University of California Davis, Department of Civil and Environmental Engineering, 1 Shields Avenue, Davis, CA 95616 (United States)

    2006-04-15

    We are operating a superconducting tunnel junction detector for high-resolution soft X-ray spectroscopy at the Advanced Biological and Environmental X-ray Facility at the Advanced Light Source synchrotron. We have recently upgraded the instrument from 9 to 36 pixels for increased sensitivity. We have also acquired a new digital signal readout to increase the total count rate capabilities to {approx}10{sup 6} counts/s while maintaining a high peak-to-background ratio. We report on the performance of the spectrometer, and discuss speciation measurements of chromium in welding aerosols as a typical application of the instrument in environmental science.

  7. Radioactive flow detectors: liquid or solid scintillators

    International Nuclear Information System (INIS)

    Reich, A.R.

    1983-01-01

    During the past five years, two schools of thought have emerged producing two different types of radio-HPLC detectors. Based on the naphthalene-in-the-vial principle, manufacturers have developed heterogeneous scintillation detectors. In these detectors the anthracene or naphthalene crystals are replaced by other scintillators. In order to avoid dead space and turbulence, a narrow diameter tube is used, either straight, or more popularly formed into a coil or a 'U' as the cell. To optimize light transmission to the photomultiplier tubes, mirrors are used. Due to limiting factors in this technique the counting efficiency for tritium is below the 10 percent level. The other school of radio-HPLC detectors based their design on classical liquid scintillation counting technology. In a homogeneous detector, the effluent from the HPLC system is mixed with a suitable liquid scintillator before entering the counting cell. The cell design is typically a flat glass or Teflon coil tightly sandwiched between two photomultiplier tubes, making good optical contact without the use of mirrors. Depending on the chromatographic effluent, 3 H efficiencies between 25 to 50 percent, and 14 C counting efficiencies up to 85 percent can be achieved

  8. Binomial distribution of Poisson statistics and tracks overlapping probability to estimate total tracks count with low uncertainty

    International Nuclear Information System (INIS)

    Khayat, Omid; Afarideh, Hossein; Mohammadnia, Meisam

    2015-01-01

    In the solid state nuclear track detectors of chemically etched type, nuclear tracks with center-to-center neighborhood of distance shorter than two times the radius of tracks will emerge as overlapping tracks. Track overlapping in this type of detectors causes tracks count losses and it becomes rather severe in high track densities. Therefore, tracks counting in this condition should include a correction factor for count losses of different tracks overlapping orders since a number of overlapping tracks may be counted as one track. Another aspect of the problem is the cases where imaging the whole area of the detector and counting all tracks are not possible. In these conditions a statistical generalization method is desired to be applicable in counting a segmented area of the detector and the results can be generalized to the whole surface of the detector. Also there is a challenge in counting the tracks in densely overlapped tracks because not sufficient geometrical or contextual information are available. It this paper we present a statistical counting method which gives the user a relation between the tracks overlapping probabilities on a segmented area of the detector surface and the total number of tracks. To apply the proposed method one can estimate the total number of tracks on a solid state detector of arbitrary shape and dimensions by approximating the tracks averaged area, whole detector surface area and some orders of tracks overlapping probabilities. It will be shown that this method is applicable in high and ultra high density tracks images and the count loss error can be enervated using a statistical generalization approach. - Highlights: • A correction factor for count losses of different tracks overlapping orders. • For the cases imaging the whole area of the detector is not possible. • Presenting a statistical generalization method for segmented areas. • Giving a relation between the tracks overlapping probabilities and the total tracks

  9. Automatic vehicle counting system for traffic monitoring

    Science.gov (United States)

    Crouzil, Alain; Khoudour, Louahdi; Valiere, Paul; Truong Cong, Dung Nghy

    2016-09-01

    The article is dedicated to the presentation of a vision-based system for road vehicle counting and classification. The system is able to achieve counting with a very good accuracy even in difficult scenarios linked to occlusions and/or presence of shadows. The principle of the system is to use already installed cameras in road networks without any additional calibration procedure. We propose a robust segmentation algorithm that detects foreground pixels corresponding to moving vehicles. First, the approach models each pixel of the background with an adaptive Gaussian distribution. This model is coupled with a motion detection procedure, which allows correctly location of moving vehicles in space and time. The nature of trials carried out, including peak periods and various vehicle types, leads to an increase of occlusions between cars and between cars and trucks. A specific method for severe occlusion detection, based on the notion of solidity, has been carried out and tested. Furthermore, the method developed in this work is capable of managing shadows with high resolution. The related algorithm has been tested and compared to a classical method. Experimental results based on four large datasets show that our method can count and classify vehicles in real time with a high level of performance (>98%) under different environmental situations, thus performing better than the conventional inductive loop detectors.

  10. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors

    Science.gov (United States)

    Watanabe, Mitsuo; Saito, Akinori; Isobe, Takashi; Ote, Kibo; Yamada, Ryoko; Moriya, Takahiro; Omura, Tomohide

    2017-09-01

    list-mode dynamic RAMLA (LM-DRAMA). The system sensitivity was 21.4 cps kBq-1 as measured using an 18F line source aligned with the center of the transaxial FOV. High count rate capability was evaluated using a cylindrical phantom (20 cm diameter  ×  70 cm length), resulting in 249 kcps in true and 27.9 kcps at 11.9 kBq ml-1 at the peak count in a noise equivalent count rate (NECR_2R). Single-event data acquisition and on-the-fly software coincidence detection performed well, exceeding 25 Mcps and 2.3 Mcps for single and coincidence count rates, respectively. Using phantom studies, we also demonstrated its imaging capabilities by means of a 3D Hoffman brain phantom and an ultra-micro hot-spot phantom. The images obtained were of acceptable quality for high-resolution determination. As clinical and pre-clinical studies, we imaged brains of a human and of small animals.

  11. P-type silicon drift detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Krieger, B.; Krofcheck, D.; O'Donnell, R.; Odyniec, G.; Partlan, M.D.; Wang, N.W.

    1995-06-01

    Preliminary results on 16 CM 2 , position-sensitive silicon drift detectors, fabricated for the first time on p-type silicon substrates, are presented. The detectors were designed, fabricated, and tested recently at LBL and show interesting properties which make them attractive for use in future physics experiments. A pulse count rate of approximately 8 x l0 6 s -1 is demonstrated by the p-type silicon drift detectors. This count rate estimate is derived by measuring simultaneous tracks produced by a laser and photolithographic mask collimator that generates double tracks separated by 50 μm to 1200 μm. A new method of using ion-implanted polysilicon to produce precise valued bias resistors on the silicon drift detectors is also discussed

  12. Specific characteristics of radon passive/open model detectors compared to passive/close and charcoal devices

    International Nuclear Information System (INIS)

    Andru, J.

    1990-01-01

    All passive/open detectors, also called Unfiltered alpha Track Detectors (UTDs), are built around KODAK LR115 film, only material sensitive to all ambient alpha particles and capable to work in open mode. The principle of open detectors is not new. They are largely used worldwide, often by scientists (in France, Italy, Japan, Norway, Sweden etc.). However, their particular functioning needs some explanation and some reminders. This paper is more aimed to discuss generalities than details of calculation. The estimation of the Potential Alpha Energy (PAE) concentration is about 4 times better than that from other passive detectors and it includes thoron progeny. The film is more sensitive to ambient decay products than it is to Radon as track count is higher for alpha's of greater initial energy

  13. TU-G-207-01: CT Imaging Using Energy-Sensitive Photon-Counting Detectors

    International Nuclear Information System (INIS)

    Taguchi, K.

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  14. Resonance ionization spectroscopy: Counting noble gas atoms

    International Nuclear Information System (INIS)

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-01-01

    The purpose of this paper is to describe new work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions). When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. We show that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective. (orig./FKS)

  15. Raman characterization of high temperature materials using an imaging detector

    International Nuclear Information System (INIS)

    Rosenblatt, G.M.; Veirs, D.K.

    1989-03-01

    The characterization of materials by Raman spectroscopy has been advanced by recent technological developments in light detectors. Imaging photomultiplier-tube detectors are now available that impart position information in two dimensions while retaining photon-counting sensitivity, effectively greatly reducing noise. The combination of sensitivity and reduced noise allows smaller amounts of material to be analyzed. The ability to observe small amount of material when coupled with position information makes possible Raman characterization in which many spatial elements are analyzed simultaneously. Raman spectroscopy making use of these capabilities has been used, for instance, to analyze the phases present in carbon films and fibers and to map phase-transformed zones accompanying crack propagation in toughened zirconia ceramics. 16 refs., 6 figs., 2 tabs

  16. Performance of a Small Anode Germanium Well detector

    International Nuclear Information System (INIS)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-01-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types

  17. Performance of a Small Anode Germanium Well detector

    Energy Technology Data Exchange (ETDEWEB)

    Adekola, A.S., E-mail: aderemi.adekola@canberra.com; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-06-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types.

  18. Effective dark count rate reduction by modified SPAD gating circuit

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, Ivan; Blazej, Josef, E-mail: blazej@fjfi.cvut.cz; Kodet, Jan

    2015-07-01

    For our main application of single photon counting avalanche detectors in focus – laser ranging of space objects and laser time transfer – the ultimate requirements are relatively large and homogeneous active area having a diameter of 100 to 200 µm and a sub-picosecond stability of timing. The detector dark count rate and after-pulsing probability are parameters of relatively lower, but not negligible importance. In presented paper we will focused on them. We have developed a new active quenching and gating scheme which can reduce afterpulsing effect and hence also effective dark count rate at lower temperature. In satellite laser ranging system the effective dark count rate was reduced more than 35 times. This improvement will contribute in increasing the data yield and hence to increase precision and productivity. - Highlights: • Signal and quenching path in a control circuit stayed unaffected by gating. • The detector package optimized for laser time transfer systems is considered. • After-pulsing effect is reduced by a modification of the use of gate signal. • The dark count rate is reduced for gate rates of the order of units of kHz.

  19. Beryllium neutron activation detector for pulsed DD fusion sources

    International Nuclear Information System (INIS)

    Talebitaher, A.; Springham, S.V.; Rawat, R.S.; Lee, P.

    2011-01-01

    A compact fast neutron detector based on beryllium activation has been developed to perform accurate neutron fluence measurements on pulsed DD fusion sources. It is especially well suited to moderate repetition-rate ( 9 Be(n,α) 6 He cross-section, energy calibration of the proportional counters, and numerical simulations of neutron interactions and beta-particle paths using MCNP5. The response function R(E n ) is determined over the neutron energy range 2-4 MeV. The count rate capability of the detector has been studied and the corrections required for high neutron fluence measurements are discussed. For pulsed DD neutron fluencies >3×10 4 cm -2 , the statistical uncertainty in the fluence measurement is better than 1%. A small plasma focus device has been employed as a pulsed neutron source to test two of these new detectors, and their responses are found to be practically identical. Also the level of interfering activation is found to be sufficiently low as to be negligible.

  20. A Monte Carlo Model for Neutron Coincidence Counting with Fast Organic Liquid Scintillation Detectors

    International Nuclear Information System (INIS)

    Gamage, Kelum A.A.; Joyce, Malcolm J.; Cave, Frank D.

    2013-06-01

    Neutron coincidence counting is an established, nondestructive method for the qualitative and quantitative analysis of nuclear materials. Several even-numbered nuclei of the actinide isotopes, and especially even-numbered plutonium isotopes, undergo spontaneous fission, resulting in the emission of neutrons which are correlated in time. The characteristics of this i.e. the multiplicity can be used to identify each isotope in question. Similarly, the corresponding characteristics of isotopes that are susceptible to stimulated fission are somewhat isotope-related, and also dependent on the energy of the incident neutron that stimulates the fission event, and this can hence be used to identify and quantify isotopes also. Most of the neutron coincidence counters currently used are based on 3 He gas tubes. In the 3 He-filled gas proportional-counter, the (n, p) reaction is largely responsible for the detection of slow neutrons and hence neutrons have to be slowed down to thermal energies. As a result, moderator and shielding materials are essential components of many systems designed to assess quantities of fissile materials. The use of a moderator, however, extends the die-away time of the detector necessitating a larger coincidence window and, further, 3 He is now in short supply and expensive. In this paper, a simulation based on the Monte Carlo method is described which has been performed using MCNPX 2.6.0, to model the geometry of a sector-shaped liquid scintillation detector in response to coincident neutron events. The detection of neutrons from a mixed-oxide (MOX) fuel pellet using an organic liquid scintillator has been simulated for different thicknesses of scintillators. In this new neutron detector, a layer of lead has been used to reduce the gamma-ray fluence reaching the scintillator. The effect of lead for neutron detection has also been estimated by considering different thicknesses of lead layers. (authors)

  1. Multiple detectors “Influence Method”

    International Nuclear Information System (INIS)

    Rios, I.J.; Mayer, R.E.

    2016-01-01

    The “Influence Method” is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015a). Its detailed mathematical description was recently published (Rios and Mayer, 2015b) and its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016). With the objective of further reducing the measurement uncertainties, in this article we extend the method for the case of multiple detectors placed one behind the other. The new estimators for the number of particles and the detection efficiency are herein derived. - Highlights: • “Multiple Detector Influence Method” developed for uncertainty reduction. • Absolute particle counting in absence of known detector efficiency. • Detector set efficiency determination.

  2. Random summing in a multi-detector counting system measuring mixtures of radionuclides of short and long half-lives

    International Nuclear Information System (INIS)

    Oxby, C.B.; Oldroyd, B.; Graham, S.G.

    1979-01-01

    A method is described for correcting a radiation spectrum for the distortion caused by random summing when a multidetector array is used to acquire events from a mixture of radionuclides whose half-lives may be long or short compared with the counting period. With our own counting system it was found that both the resolving time, and the fractions of the energy of a second signal which may be added to that of the immediately previous signal, i.e., the resolving time function, are dependent upon the energies of these two signals. The method requires knowledge of the losses which occur in a multidetector system e.g., live-time error and blocking losses, the variation of the resolving time function with signal energies, a standard spectrum of each radionuclide of the mixture and the fractions of them which constitute the mixture spectrum, the decay constant of each radionuclide, and the fraction of the total events recorded by the system being received by each detector. (orig.)

  3. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Becker, Wolfgang; Smietana, Stefan [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Milnes, James; Conneely, Thomas [Photek Ltd., 26 Castleham Rd, Saint Leonards-on-Sea TN38 9NS (United Kingdom); Jagutzki, Ottmar [Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)

    2016-08-15

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  4. High-rate performance of muon drift tube detectors

    International Nuclear Information System (INIS)

    Schwegler, Philipp

    2014-01-01

    The Large Hadron Collider (LHC) at the European Centre for Particle Physics, CERN, collides protons with an unprecedentedly high centre-of-mass energy and luminosity. The collision products are recorded and analysed by four big experiments, one of which is the ATLAS detector. In parallel with the first LHC run from 2009 to 2012, which culminated in the discovery of the last missing particle of the Standard Model of particle physics, the Higgs boson, planning of upgrades of the LHC for higher instantaneous luminosities (HL-LHC) is already progressing. The high instantaneous luminosity of the LHC puts high demands on the detectors with respect to radiation hardness and rate capability which are further increased with the luminosity upgrade. In this thesis, the limitations of the Muon Drift Tube (MDT) chambers of the ATLAS Muon Spectrometer at the high background counting rates at the LHC and performance of new small diameter muon drift tube (sMDT) detectors at the even higher background rates at HL-LHC are studied. The resolution and efficiency of sMDT chambers at high γ-ray and proton irradiation rates well beyond the ones expected at HL-LHC have been measured and the irradiation effects understood using detailed simulations. The sMDT chambers offer an about an order of magnitude better rate capability and are an ideal replacement for the MDT chambers because of compatibility of services and read-out. The limitations of the sMDT chambers are now in the read-out electronics, taken from the MDT chambers, to which improvements for even higher rate capability are proposed.

  5. Automatic spark counting of alpha-tracks in plastic foils

    International Nuclear Information System (INIS)

    Somogyi, G.; Medveczky, L.; Hunyadi, I.; Nyako, B.

    1976-01-01

    The possibility of alpha-track counting by jumping spark counter in cellulose acetate and polycarbonate nuclear track detectors was studied. A theoretical treatment is presented which predicts the optimum residual thickness of the etched foils in which completely through-etched tracks (i.e. holes) can be obtained for alpha-particles of various energies and angles of incidence. In agreement with the theoretical prediction it is shown that a successful spark counting of alpha-tracks can be performed even in polycarbonate foils. Some counting characteristics, such as counting efficiency vs particle energy at various etched foil thicknesses, surface spark density produced by electric breakdowns in unexposed foils vs foil thickness, etc. have been determined. Special attention was given to the spark counting of alpha-tracks entering thin detectors at right angle. The applicability of the spark counting technique is demonstrated in angular distribution measurements of the 27 Al(p,α 0 ) 24 Mg nuclear reaction at Ep = 1899 keV resonance energy. For this study 15 μm thick Makrofol-G foils and a jumping spark counter of improved construction were used. (orig.) [de

  6. Alpha-particle autoradiography by solid state track detectors to spatial distribution of radioactivity in alpha-counting source

    International Nuclear Information System (INIS)

    Ishigure, Nobuhito; Nakano, Takashi; Enomoto, Hiroko; Koizumi, Akira; Miyamoto, Katsuhiro

    1989-01-01

    A technique of autoradiography using solid state track detectors is described by which spatial distribution of radioactivity in an alpha-counting source can easily be visualized. As solid state track detectors, polymer of allyl diglycol carbonate was used. The advantage of the present technique was proved that alpha-emitters can be handled in the light place alone through the whole course of autoradiography, otherwise in the conventional autoradiography the alpha-emitters, which requires special carefulness from the point of radiation protection, must be handled in the dark place with difficulty. This technique was applied to rough examination of self-absorption of the plutonium source prepared by the following different methods; the source (A) was prepared by drying at room temperature, (B) by drying under an infrared lamp, (C) by drying in ammonia atmosphere after redissolving by the addition of a drop of distilled water which followed complete evaporation under an infrared lamp and (D) by drying under an infrared lamp after adding a drop of diluted neutral detergent. The difference in the spatial distributions of radioactivity could clearly be observed on the autoradiographs. For example, the source (C) showed the most diffuse distribution, which suggested that the self-absorption of this source was the smallest. The present autoradiographic observation was in accordance with the result of the alpha-spectrometry with a silicon surface-barrier detector. (author)

  7. Simultaneous resolution of spectral and temporal properties of UV and visible fluorescence using single-photon counting with a position-sensitive detector

    International Nuclear Information System (INIS)

    Kelly, L.A.; Trunk, J.G.; Polewski, K.; Sutherland, J.C.

    1995-01-01

    A new fluorescence spectrometer has been assembled at the U9B beamline of the National Synchrotron Light Source to allow simultaneous multiwavelength and time-resolved fluorescence detection, as well as spatial imaging of the sample fluorescence. The spectrometer employs monochromatized, tunable UV and visible excitation light from a synchrotron bending magnet and an imaging spectrograph equipped with a single-photon sensitive emission detector. The detector is comprised of microchannel plates in series, with a resistive anode for encoding the position of the photon-derived current. The centroid position of the photon-induced electron cascade is derived in a position analyzer from the four signals measured at the corners of the resistive anode. Spectral information is obtained by dispersing the fluorescence spectrum across one dimension of the detector photocathode. Timing information is obtained by monitoring the voltage divider circuit at the last MCP detector. The signal from the MCP is used as a ''start'' signal to perform a time-correlated single photon counting experiment. The analog signal representing the position, and hence wavelength, is digitized concomitantly with the start/stop time difference and stored in the two-dimensional histogramming memory of a multiparameter analyzer

  8. Large area, low capacitance Si(Li) detectors for high rate x-ray applications

    International Nuclear Information System (INIS)

    Rossington, C.S.; Fine, P.M.; Madden, N.W.

    1992-10-01

    Large area, single-element Si(Li) detectors have been fabricated using a novel geometry which yields detectors with reduced capacitance and hence reduced noise at short amplifier pulse-processing times. A typical device employing the new geometry with a thickness of 6 mm and an active area of 175 mm 2 has a capacitance of only 0.5 pf, compared to 2.9 pf for a conventional planar device with equivalent dimensions. These new low capacitance detectors, used in conjunction with low capacitance field effect transistors, will result in x-ray spectrometers capable of operating at very high count rates while still maintaining excellent energy resolution. The spectral response of the low capacitance detectors to a wide range of x-ray energies at 80 K is comparable to typical state-of-the-art conventional Si(Li) devices. In addition to their low capacitance, the new devices offer other advantages over conventional detectors. Detector fabrication procedures, I-V and C-V characteristics, noise performance, and spectral response to 2-60 keV x-rays are described

  9. Recent progress with digital coincidence counting

    International Nuclear Information System (INIS)

    Butcher, K.S.A.; Watt, G.C.; Alexiev, D.

    1999-01-01

    Digital Coincidence Counting (DCC) is a new technique, based on the older method of analogue coincidence counting. It has been developed by ANSTO as a faster more reliable means of determining the activity of ionising radiation samples. The technique employs a dual channel analogue to digital converter acquisition system for collecting pulse information from a 4Π beta detector and a NaI(Tl) gamma detector. The digitised pulse information is stored on a high speed hard disk and timing information for both channels is also stored. The data may subsequently be recalled and analysed using software based algorithms. The system is operational and results are now being routinely collected and analysed. Some of the early work is presented for Co-60, Na-22 and Sm-153

  10. Characterization of a spectroscopic detector for application in x-ray computed tomography

    Science.gov (United States)

    Dooraghi, Alex A.; Fix, Brian J.; Smith, Jerel A.; Brown, William D.; Azevedo, Stephen G.; Martz, Harry E.

    2017-09-01

    Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-location and FWHM measurements are +/- 0.4 and +/- 0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 +/- 5 ns. This is consistent with the manufacturer's quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9 % (typical) and 12 % (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of 20 mm shows an underestimation of attenuation by about 10 % at 60 keV. This error is due to partial energy deposition from higher energy (>60 keV) photons into a lower-energy ( 60 keV) bin, reducing the apparent attenuation. A radiograph of a polytetrafluoroethylene (PTFE) cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is

  11. Characterization of a spectroscopic detector for application in x-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fix, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, W. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Azevedo, S. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-location and FWHM measurements are ±0.4 and ±0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 ± 5 ns. This is consistent with the manufacturer’s quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9% (typical) and 12% (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of about 20 mm shows an underestimation of attenuation by about 10% at 60 keV. This error is due to partial energy deposition from higher-energy (> 60 keV) photons into a lower-energy (~60 keV) bin, reducing the apparent attenuation. A radiograph of a PTFE cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is reconstructed using Abel inversion

  12. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  13. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  14. On-line statistical processing of radiation detector pulse trains with time-varying count rates

    International Nuclear Information System (INIS)

    Apostolopoulos, G.

    2008-01-01

    Statistical analysis is of primary importance for the correct interpretation of nuclear measurements, due to the inherent random nature of radioactive decay processes. This paper discusses the application of statistical signal processing techniques to the random pulse trains generated by radiation detectors. The aims of the presented algorithms are: (i) continuous, on-line estimation of the underlying time-varying count rate θ(t) and its first-order derivative dθ/dt; (ii) detection of abrupt changes in both of these quantities and estimation of their new value after the change point. Maximum-likelihood techniques, based on the Poisson probability distribution, are employed for the on-line estimation of θ and dθ/dt. Detection of abrupt changes is achieved on the basis of the generalized likelihood ratio statistical test. The properties of the proposed algorithms are evaluated by extensive simulations and possible applications for on-line radiation monitoring are discussed

  15. Development of superconducting tunnel junction as photon counting detector in astronomy

    International Nuclear Information System (INIS)

    Jorel, C.

    2004-12-01

    A. Finally, we have demonstrated the photon counting capability of these devices at the border of visible and near-infrared (0.78 micron) wavelengths. (author)

  16. Smart dosimetry by pattern recognition using a single photon counting detector system in time over threshold mode

    International Nuclear Information System (INIS)

    Reza, S; Wong, W S; Fröjdh, E; Norlin, B; Fröjdh, C; Thungström, G; Thim, J

    2012-01-01

    The function of a dosimeter is to determine the absorbed dose of radiation, for those cases in which, generally, the particular type of radiation is already known. Lately, a number of applications have emerged in which all kinds of radiation are absorbed and are sorted by pattern recognition, such as the Medipix2 application in [1]. This form of smart dosimetry enables measurements where not only the total dosage is measured, but also the contributions of different types of radiation impacting upon the detector surface. Furthermore, the use of a photon counting system, where the energy deposition can be measured in each individual pixel, ensures measurements with a high degree of accuracy in relation to the pattern recognition. In this article a Timepix [2] detector system has been used in the creation of a smart dosimeter for Alpha, Beta and Gamma radiation. When a radioactive particle hits the detector surface it generates charge clusters and those impacting upon the detector surface are read out and image processing algorithms are then used to classify each charge cluster. The individual clusters are calculated and as a result, the dosage for each type of radiation is given. In some cases, several particles can impact in roughly the same place, forming overlapping clusters. In order to handle this problem, a cluster separation method has been added to the pattern recognition algorithm. When the clusters have been separated, they are classified by shape and sorted into the correct type of radiation. The algorithms and methods used in this dosimeter have been developed so as to be simple and computationally effective, in order to enable implementation on a portable device.

  17. A statistical analysis of count normalization methods used in positron-emission tomography

    International Nuclear Information System (INIS)

    Holmes, T.J.; Ficke, D.C.; Snyder, D.L.

    1984-01-01

    As part of the Positron-Emission Tomography (PET) reconstruction process, annihilation counts are normalized for photon absorption, detector efficiency and detector-pair duty-cycle. Several normalization methods of time-of-flight and conventional systems are analyzed mathematically for count bias and variance. The results of the study have some implications on hardware and software complexity and on image noise and distortion

  18. Principles of correlation counting

    International Nuclear Information System (INIS)

    Mueller, J.W.

    1975-01-01

    A review is given of the various applications which have been made of correlation techniques in the field of nuclear physics, in particular for absolute counting. Whereas in most cases the usual coincidence method will be preferable for its simplicity, correlation counting may be the only possible approach in such cases where the two radiations of the cascade cannot be well separated or when there is a longliving intermediate state. The measurement of half-lives and of count rates of spurious pulses is also briefly discussed. The various experimental situations lead to different ways the correlation method is best applied (covariance technique with one or with two detectors, application of correlation functions, etc.). Formulae are given for some simple model cases, neglecting dead-time corrections

  19. Bunch mode specific rate corrections for PILATUS3 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Trueb, P., E-mail: peter.trueb@dectris.com [DECTRIS Ltd, 5400 Baden (Switzerland); Dejoie, C. [ETH Zurich, 8093 Zurich (Switzerland); Kobas, M. [DECTRIS Ltd, 5400 Baden (Switzerland); Pattison, P. [EPF Lausanne, 1015 Lausanne (Switzerland); Peake, D. J. [School of Physics, The University of Melbourne, Victoria 3010 (Australia); Radicci, V. [DECTRIS Ltd, 5400 Baden (Switzerland); Sobott, B. A. [School of Physics, The University of Melbourne, Victoria 3010 (Australia); Walko, D. A. [Argonne National Laboratory, Argonne, IL 60439 (United States); Broennimann, C. [DECTRIS Ltd, 5400 Baden (Switzerland)

    2015-04-09

    The count rate behaviour of PILATUS3 detectors has been characterized for seven bunch modes at four different synchrotrons. The instant retrigger technology of the PILATUS3 application-specific integrated circuit is found to reduce the dependency of the required rate correction on the synchrotron bunch mode. The improvement of using bunch mode specific rate corrections based on a Monte Carlo simulation is quantified. PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.

  20. Gas-discharge particle detector with ball-tipped anodes

    International Nuclear Information System (INIS)

    Travkin, V.I.; Khazins, D.M.

    1987-01-01

    A new gas-discharge particle detector, whose anode is a set of balls 2mm in diameter is investigated. The chamber is blowing down by the argon-methane-methylal gas mixture with the ratio 3:1:1. The detector operates in the self-quenching streamer mode, has high efficiency and a wide counting characteristic plateau. The maximum counting rate of particles at one ball is ∼ 2.5x10 4 s -1 . The ball-tipped anodes allow making reliable complex-shaped detectors. Two-coordinate detection of multiparticle events can be naturally organized in detectors like that

  1. Single ion counting with a MCP (microchannel plate) detector

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, Hiroko; Sasaki, Shinichi; Miyajima, Mitsuhiro [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Shibamura, Eido

    1996-07-01

    In this study, a single-ion-counting method using alpha-particle-impact ionization of Ar atoms is demonstrated and the preliminary {epsilon}{sub mcp} for Ar ions with incident energies of 3 to 4.7 keV is determined. The single-ion counting by the MCP is aimed to be performed under experimental conditions as follows: (1) A signal from the MCP is reasonably identified as incidence of single Ar-ion. (2) The counting rate of Ar ions is less than 1 s{sup -1}. (3) The incident Ar ions are not focused on a small part of an active area of the MCP, namely, {epsilon}{sub mcp} is determined with respect to the whole active area of the MCP. So far, any absolute detection efficiency has not been reported under these conditions. (J.P.N.)

  2. Multiplicity counting from fission chamber signals in the current mode

    Energy Technology Data Exchange (ETDEWEB)

    Pázsit, I. [Chalmers University of Technology, Department of Physics, Division of Subatomic and Plasma Physics, SE-412 96 Göteborg (Sweden); Pál, L. [Centre for Energy Research, Hungarian Academy of Sciences, 114, POB 49, H-1525 Budapest (Hungary); Nagy, L. [Chalmers University of Technology, Department of Physics, Division of Subatomic and Plasma Physics, SE-412 96 Göteborg (Sweden); Budapest University of Technology and Economics, Institute of Nuclear Techniques, H-1111 Budapest (Hungary)

    2016-12-11

    In nuclear safeguards, estimation of sample parameters using neutron-based non-destructive assay methods is traditionally based on multiplicity counting with thermal neutron detectors in the pulse mode. These methods in general require multi-channel analysers and various dead time correction methods. This paper proposes and elaborates on an alternative method, which is based on fast neutron measurements with fission chambers in the current mode. A theory of “multiplicity counting” with fission chambers is developed by incorporating Böhnel's concept of superfission [1] into a master equation formalism, developed recently by the present authors for the statistical theory of fission chamber signals [2,3]. Explicit expressions are derived for the first three central auto- and cross moments (cumulants) of the signals of up to three detectors. These constitute the generalisation of the traditional Campbell relationships for the case when the incoming events represent a compound Poisson distribution. Because now the expressions contain the factorial moments of the compound source, they contain the same information as the singles, doubles and triples rates of traditional multiplicity counting. The results show that in addition to the detector efficiency, the detector pulse shape also enters the formulas; hence, the method requires a more involved calibration than the traditional method of multiplicity counting. However, the method has some advantages by not needing dead time corrections, as well as having a simpler and more efficient data processing procedure, in particular for cross-correlations between different detectors, than the traditional multiplicity counting methods.

  3. Position-sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hendrix, J.

    1982-01-01

    An overview is given of the different types of position-sensitive X-ray detectors used in kinetic studies of biological molecule state changes using X-ray diffraction with synchrotron radiation as a probe. The detector requirements and principles of operation of proportional counters are outlined. Multiwire proportional chamber systems and their readout techniques are described. Other detectors discussed include a drift chamber type detector, microchannel plates, charge-couple devices and, for high count rates, an integrating TV-detector. (U.K.)

  4. Expected total counts for the Self-Interrogation Neutron Resonance Densitometry measurements of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rossa, Riccardo [Belgian nuclear research centre SCK.CEN (Belgium); Universite Libre de Bruxelles (Belgium); Borella, Alessandro; Van der Meer, Klaas [Belgian nuclear research centre SCK.CEN. Boeretang 200, 2400 Mol (Belgium); Labeau, Pierre-Etienne; Pauly, Nicolas [Universite Libre de Bruxelles. Av. F. D. Roosevelt 50, B1050 Brussels (Belgium)

    2015-07-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive neutron technique that aims at a direct quantification of {sup 239}Pu in spent fuel assemblies by measuring the attenuation of the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. The {sup 239}Pu mass is estimated by calculating the SINRD signature, that is the ratio between the neutron counts in the fast energy region and around the 0.3 eV resonance region. The SINRD measurement approach in this study consisted in introducing a small neutron detector in the central guide tube of a PWR 17x17 fuel assembly. In order to measure the neutron flux in the energy regions defined in the SINRD signature, different detector types were used. The response of a bare {sup 238}U fission chamber is considered for the determination of the fast neutron flux, while other thermal-epithermal detectors wrapped in neutron absorbers are envisaged to measure the neutron flux around the resonance region. This paper provides an estimation of the total neutron counts that can be achieved with the detector types proposed for the SINRD measurement. In the first section a set of detectors are evaluated in terms of total neutron counts and sensitivity to the {sup 239}Pu content, in order to identify the optimal measurement configuration for each detector type. Then a study is performed to increase the total neutron counts by increasing the detector size. The study shows that the highest total neutron counts are achieved by using either {sup 3}He or {sup 10}B proportional counters because of the high neutron efficiency of these detectors. However, the calculations indicate that the biggest contribution to the measurement uncertainty is due to the measurement of the fast neutron flux. Finally, similar sensitivity to the {sup 239}Pu content is obtained by using the different detector types for the measurement of the neutron flux close to the resonance region. Therefore, the total neutron counts

  5. Development of a Gamma-Ray Detector for Z-Selective Radiographic Imaging

    International Nuclear Information System (INIS)

    Brandis, Michal

    2013-11-01

    Dual-Discrete Energy Gamma-Radiography (DDEGR) is a method for Special Nuclear Materials (SNM) detection. DDEGR utilizes 15.11 and 4.43 MeV gamma-rays produced in the 11B(d,n)12C reaction, in contrast to the conventional use of continuous Bremsstrahlung radiation. The clean and well separated gamma-rays result in high contrast sensitivity, enabling detection of small quantities of SNM. The most important aspects of a DDEGR system were discussed, simulated, measured and demonstrated. An experimental measurement of gamma-ray yields from the 11B(d,n)12C reaction showed that the yields from deuterons with 3{12 MeV energy are 2{201010 N/sr/mC 4.4 MeV gamma- rays and 2{5109 N/sr/mC 15.1 MeV gamma-rays. The measured neutron yields show that the neutron energies extend to 15-23 MeV for the same deuteron energy range. A simplied inspection system was simulated with GEANT4, showing that the ect of scattering on the signal measured in the detector is acceptable. Considering the reaction gamma yields, 1.8 mA deuteron current is required for separation of high-Z materials from medium- and low-Z materials and a 4.5 mA current is required for the additional capability of separating benign high-Z materials from SNM. The main part of the work was development of a detector suitable for a DDEGR system | Time Resolved Event Counting Optical Radiation (TRECOR) detector. TRECOR detector is a novel spectroscopic imaging detector for gamma-rays within the MeV energy range that uses an event counting image intensier with gamma-rays for the rst time. Neutrons that accompany the gamma radiation enable to implement, in parallel, Fast Neutron Resonance Radiography (FNRR), a method for explosives detection. A second generation detector, TRECOR-II, is capable of detecting gamma-rays and neutrons in parallel, separating them to create particle-specic images and energy-specic images for each particle, thus enabling simultaneous implementation of the two detection methods. A full DDEGR laboratory

  6. Activity measurements of radioactive solutions by liquid scintillation counting and pressurized ionization chambers and Monte Carlo simulations of source-detector systems for metrology

    International Nuclear Information System (INIS)

    Amiot, Marie-Noelle

    2013-01-01

    The research works 'Activity measurements of radioactive solutions by liquid scintillation and pressurized ionization chambers and Monte Carlo simulations of source-detector systems' was presented for the graduation: 'Habilitation a diriger des recherches'. The common thread of both themes liquid scintillation counting and pressurized ionization chambers lies in the improvement of the techniques of radionuclide activity measurement. Metrology of ionization radiation intervenes in numerous domains, in the research, in the industry including the environment and the health, which are subjects of constant concern for the world population these last years. In this big variety of applications answers a large number of radionuclides of diverse disintegration scheme and under varied physical forms. The presented works realized within the National Laboratory Henri Becquerel have for objective to assure detector calibration traceability and to improve the methods of activity measurements within the framework of research projects and development. The improvement of the primary and secondary activity measurement methods consists in perfecting the accuracy of the measurements in particular by a better knowledge of the parameters influencing the detector yield. The works of development dealing with liquid scintillation counting concern mainly the study of the response of liquid scintillators to low energy electrons as well as their linear absorption coefficients using synchrotron radiation. The research works on pressurized ionization chambers consist of the study of their response to photons and electrons by experimental measurements compared to the simulation of the source-detector system using Monte Carlo codes. Besides, the design of a new type of ionization chamber with variable pressure is presented. This new project was developed to guarantee the precision of the amount of activity injected into the patient within the framework of diagnosis examination

  7. Development of continuous detectors for a high resolution animal PET system

    International Nuclear Information System (INIS)

    Siegel, S.; Cherry, S.R.; Ricci, A.R.; Shao, Y.; Phelps, M.E.

    1995-01-01

    The authors propose a design for a high resolution, gamma-camera style detector that is suitable for use in a positron emission tomograph dedicated to small animal research. Through Monte Carlo simulation the authors modeled the performance of a detector composed of one 76.2 x 76.2 x 8 mm thick LSO crystal coupled to a 3 in. square position sensitive photomultiplier tube (PS-PMT). The authors investigated the effect of optical coupling compounds, surface treatment and dept of interaction on the quantity (efficiency) and distribution (spread) of scintillation photons reaching the photocathode. They also investigated linearization of the position response. The authors propose a PET system consisting of fourteen of these detectors in 2 rings, yielding a 16 cm diameter by 15 cm long tomograph. It would operate in 3-D mode subtending a 68% solid angle to the center. The expected spatial resolution is (≤2 mm), with a system efficiency of ∼ 10% at the center (200 keV lower threshold) and a singles count rate capability of approximately 10 6 cps per detector

  8. 3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle detection

    Science.gov (United States)

    Vignetti, M. M.; Calmon, F.; Pittet, P.; Pares, G.; Cellier, R.; Quiquerez, L.; Chaves de Albuquerque, T.; Bechetoille, E.; Testa, E.; Lopez, J.-P.; Dauvergne, D.; Savoy-Navarro, A.

    2018-02-01

    Single-Photon Avalanche Diodes (SPADs) are p-n junctions operated in Geiger Mode by applying a reverse bias above the breakdown voltage. SPADs have the advantage of featuring single photon sensitivity with timing resolution in the picoseconds range. Nevertheless, their relatively high Dark Count Rate (DCR) is a major issue for charged particle detection, especially when it is much higher than the incoming particle rate. To tackle this issue, we have developed a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD). This novel device implements two vertically aligned SPADs featuring on-chip electronics for the detection of coincident avalanche events occurring on both SPADs. Such a coincidence detection mode allows an efficient discrimination of events related to an incoming charged particle (producing a quasi-simultaneous activation of both SPADs) from dark counts occurring independently on each SPAD. A 3D-SiCAD detector prototype has been fabricated in CMOS technology adopting a 3D flip-chip integration technique, and the main results of its characterization are reported in this work. The particle detection efficiency and noise rejection capability for this novel device have been evaluated by means of a β- strontium-90 radioactive source. Moreover the impact of the main operating parameters (i.e. the hold-off time, the coincidence window duration, the SPAD excess bias voltage) over the particle detection efficiency has been studied. Measurements have been performed with different β- particles rates and show that a 3D-SiCAD device outperforms single SPAD detectors: the former is indeed capable to detect particle rates much lower than the individual DCR observed in a single SPAD-based detectors (i.e. 2 to 3 orders of magnitudes lower).

  9. TE INCLUSIONS AND THEIR RELATIONSHIP TO THE PERFORMANCE OF CDZNTE DETECTORS.

    Energy Technology Data Exchange (ETDEWEB)

    CARINI, G.A.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; CUI, Y.; JACKSON, H.; BURGER, A.; KOHMAN, K.T.; LI, L.; JAMES, R.B.

    2006-08-13

    Te-rich secondary phases existing in CdZnTe (CZT) single crystals degrade the spectroscopic performance of these detectors. An unpredictable number of charges are trapped, corresponding to the abundance of these microscopic defects, thereby leading to fluctuations in the total collected charge and strongly affecting the uniformity of charge-collection efficiency. These effects, observed in thin planar detectors, also were found to be the dominant cause of the low performance of thick detectors, wherein the fluctuations accumulate along the charge's drift path. Reducing the size of Te inclusions from a virtual diameter of 10-20 {micro}m down to less than 5 {micro}m already allowed us to produce Frisch-ring detectors with a resolution as good as {approx}0.8% FWHM at 662 keV: Understanding and modeling the mechanisms involving Te-rich secondary phases and charge loss requires systematic studies on a spatial scale never before realized. Here, we describe a dedicated beam-line recently established at BNL's National Synchrotron Light Source for characterizing semiconductor detectors along with a IR system with counting capability that permits us to correlate the concentration of defects with the devices' performances.

  10. Mobility and powering of large detectors. Moving large detectors

    International Nuclear Information System (INIS)

    Thompson, J.

    1977-01-01

    The possibility is considered of moving large lepton detectors at ISABELLE for readying new experiments, detector modifications, and detector repair. A large annex (approximately 25 m x 25 m) would be built adjacent to the Lepton Hall separated from the Lepton Hall by a wall of concrete 11 m high x 12 m wide (for clearance of the detector) and approximately 3 m thick (for radiation shielding). A large pad would support the detector, the door, the cryogenic support system and the counting house. In removing the detector from the beam hall, one would push the pad into the annex, add a dummy beam pipe, bake out the beam pipe, and restack and position the wall on a small pad at the door. The beam could then operate again while experimenters could work on the large detector in the annex. A consideration and rough price estimate of various questions and proposed solutions are given

  11. A high resolution, high counting rate bidimensional, MWPC imaging detector for small angle X-ray diffraction studies

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Sawyer, E.C.; Stephenson, R.

    1981-07-01

    The performance is reported of a 200 mm x 200 mm X-ray imaging MWPC aimed at applications in small angle X-ray diffraction and scattering. With quantum energies of approximately 8 keV high spatial resolution (+- 0.5 mm x +- 0.14 mm) with a capability for data taking at >approximately 350 kHz is reported. The detection efficiency is approximately 75% and the detector operates as a sealed unit with a long lifetime. (author)

  12. Gas position sensitive x-ray detectors

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1994-12-01

    The construction of gas x-ray detectors used to count and localize x-ray photons in one and two dimensions is reported. The principles of operation of the detectors are described, as well as the electronic modules comprised in the data acquisition system. Results obtained with detectors built at CBPF are shown, illustrating the performance of the Linear Position Sensitive Detectors. (author). 6 refs, 14 figs

  13. Detection and counting systems

    International Nuclear Information System (INIS)

    Abreu, M.A.N. de

    1976-01-01

    Detection devices based on gaseous ionization are analysed, such as: electroscopes ionization chambers, proportional counters and Geiger-Mueller counters. Scintillation methods are also commented. A revision of the basic concepts in electronics is done and the main equipment for counting is detailed. In the study of gama spectrometry, scintillation and semiconductor detectors are analysed [pt

  14. Utilization of virtual reality for reading the superheated emulsion detector

    International Nuclear Information System (INIS)

    Santos Sobrinho, Jose C.; Santo, Andre C.E.; Pereira, Claudio M.N.A.; Mol, Antonio C.A.

    2013-01-01

    This paper presents a method based on Virtual Reality for reading the Superheated Emulsion Detector (Bubble Detector). The proposed method is an alternative to: automatic counters offered by the manufacturers of detectors, since they have a relatively high cost (acquisition, maintenance and periodic calibration), and visual counting of detectors, since it only has an advantage when there are a small number of bubbles. The method starts with the collection of detector's digital images in order to obtain a sequence of images to create an animation that is displayed with the help of Virtual Reality. To this end, it is modeled, using OpenGL graphics library, a virtual environment for visualizing and manipulating virtual detector. It is made, then a calibration of this virtual environment thus ensuring the correspondence of the model with reality. The reading of the detector (bubbles count) is made visually by the user with the assistance of stereo vision and a 3D cursor to navigation, marking and counting the bubbles. The user views a further auxiliary display that shows the three-dimensional cursor position, the labeled amount of bubbles and the measured dose. After testing, the following results were achieved: better precision in counting the bubbles compared with the 10% reported by the manufacturer of the automatic reader; achieving a low cost tool that requires no calibration constant in the process of maintenance and/or lifetime; minimizing the problem of manual counting for large number of bubbles and ease of use, because can be operated by a common user. (author)

  15. Utilization of virtual reality for reading the superheated emulsion detector

    Energy Technology Data Exchange (ETDEWEB)

    Santos Sobrinho, Jose C.; Santo, Andre C.E.; Pereira, Claudio M.N.A.; Mol, Antonio C.A., E-mail: volksparati@hotmail.com, E-mail: cotelli.andre@gmail.com, E-mail: cmnap@ien.gov.br, E-mail: mol@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This paper presents a method based on Virtual Reality for reading the Superheated Emulsion Detector (Bubble Detector). The proposed method is an alternative to: automatic counters offered by the manufacturers of detectors, since they have a relatively high cost (acquisition, maintenance and periodic calibration), and visual counting of detectors, since it only has an advantage when there are a small number of bubbles. The method starts with the collection of detector's digital images in order to obtain a sequence of images to create an animation that is displayed with the help of Virtual Reality. To this end, it is modeled, using OpenGL graphics library, a virtual environment for visualizing and manipulating virtual detector. It is made, then a calibration of this virtual environment thus ensuring the correspondence of the model with reality. The reading of the detector (bubbles count) is made visually by the user with the assistance of stereo vision and a 3D cursor to navigation, marking and counting the bubbles. The user views a further auxiliary display that shows the three-dimensional cursor position, the labeled amount of bubbles and the measured dose. After testing, the following results were achieved: better precision in counting the bubbles compared with the 10% reported by the manufacturer of the automatic reader; achieving a low cost tool that requires no calibration constant in the process of maintenance and/or lifetime; minimizing the problem of manual counting for large number of bubbles and ease of use, because can be operated by a common user. (author)

  16. Investigation of ultra low-dose scans in the context of quantum-counting clinical CT

    Science.gov (United States)

    Weidinger, T.; Buzug, T. M.; Flohr, T.; Fung, G. S. K.; Kappler, S.; Stierstorfer, K.; Tsui, B. M. W.

    2012-03-01

    In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.

  17. Environmental radon with RAD7 detector; Radon ambiental con detector RAD7

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A.; Balcazar, M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Fernandez G, I. M.; Capote F, E., E-mail: arturo.lopez@inin.gob.mx [Centro de Proteccion e Higiene de las Radiaciones, Carretera La Victoria II Km 2.5 e/ Monumental y Final, Guanabacoa, La Habana (Cuba)

    2016-09-15

    Experimental results of the radon detection with the equipment RAD7 are presented. The use of a solid state detector placed in a semi-spherical chamber with an electric field allows a high sensitivity of 0.4 cpm/P Ci/l. Radon detection is achieved by the spectroscopy of its decay products. In accordance with a table of errors for various ranges of counts and radon concentrations, reported by the manufacturer, an equation was obtained that allows establishing operation criteria of the equipment. For radon detection at ambient concentrations as low as 30 Bq m{sup -3}, is shown that short counts of 10 minutes are good enough to make decisions on radiation protection matter. In places where concentrations are close to 200 Bq m{sup -3}, counting intervals of the order of 0.5 hours will have an acceptable counting error of the order of 20%. The determination of radon in soil was, according to the expected, on the order of 10 kBq m{sup -3}, and was found that even with the recommended counting times of 5 minutes, there is a risk of increased humidity inside the detector above 20% Rh, with associated reduction of detection efficiency, if the desiccant is not used properly. The equipment was subjected to a radon exposure in air of 13, 373 Bq m{sup -3} ± 3.7%, contained within a controlled chamber, with a variation in temperature of (19-21) degrees Celsius and in the relative humidity of (5-7) %, the good stability of the chamber allows to propose calibration processes of these equipment s by assessing the concentration by means of a Ge (Hp) detector. (Author)

  18. A mower detector to judge soil sorting

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Johnson, N.R.

    1995-01-01

    Thermo Nuclear Services (TNS) has developed a mower detector as an inexpensive and fast means for deciding potential value of soil sorting for cleanup. It is a shielded detector box on wheels pushed over the ground (as a person mows grass) at 30 ft/min with gamma-ray counts recorded every 0.25 sec. It mirror images detection by the TNS transportable sorter system which conveys soil at 30 ft/min and toggles a gate to send soil on separate paths based on counts. The mower detector shows if contamination is variable and suitable for sorting, and by unique calibration sources, it indicates detection sensitivity. The mower detector has been used to characterize some soil at Department of Energy sites in New Jersey and South Carolina

  19. A mower detector to judge soil sorting

    Energy Technology Data Exchange (ETDEWEB)

    Bramlitt, E.T.; Johnson, N.R. [Thermo Nuclear Services, Inc., Albuquerque, NM (United States)

    1995-12-31

    Thermo Nuclear Services (TNS) has developed a mower detector as an inexpensive and fast means for deciding potential value of soil sorting for cleanup. It is a shielded detector box on wheels pushed over the ground (as a person mows grass) at 30 ft/min with gamma-ray counts recorded every 0.25 sec. It mirror images detection by the TNS transportable sorter system which conveys soil at 30 ft/min and toggles a gate to send soil on separate paths based on counts. The mower detector shows if contamination is variable and suitable for sorting, and by unique calibration sources, it indicates detection sensitivity. The mower detector has been used to characterize some soil at Department of Energy sites in New Jersey and South Carolina.

  20. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  1. Counting efficiency of the lung monitor for sup 2 sup 4 sup 1 Am

    CERN Document Server

    Kinase, S; Sekiguchi, M

    2003-01-01

    The counting efficiencies of two lung monitor systems, phoswich detector system and germanium detector system, were measured for lungs and liver loaded with sup 2 sup 4 sup 1 Am in the Japan Atomic Energy Research Institute (JAERI) phantom. It was found that the germanium detector system for sup 2 sup 4 sup 1 Am loaded lungs counting gives the full-energy peak predominated by the absorption of the gamma-ray photon in a single photoelectric interaction and is less sensitive to sup 2 sup 4 sup 1 Am loaded liver. The sup 2 sup 4 sup 1 Am loaded lung activities could be reasonably estimated using germanium detector system rather than phoswich detector system.

  2. Accuracy and precision of loss-free counting in γ-ray spectrometry

    International Nuclear Information System (INIS)

    Pomme, S.; Alzetta, J-P.; Uyttenhove, J.; Denecke, B.; Arana, G.; Robouch, P.

    1999-01-01

    The performance of a 'Loss-Free Counting' (LFC) method for pulse loss compensation is tested on two HPGe detectors; one with classical RC feedback preamplifier and another with Transistor Reset Preamplifier (TRP). Results are excellent on both, though extra fine-tuning precautions are required for the latter. Pulse loss by pileup is at the origin of an increased count variance in LFC spectra. A new formula for LFC uncertainty is presented and its validity demonstrated for a HPGe detector set-up

  3. HST/WFC3: new capabilities, improved IR detector calibrations, and long-term performance stability

    Science.gov (United States)

    MacKenty, John W.; Baggett, Sylvia M.; Brammer, Gabriel; Hilbert, Bryan; Long, Knox S.; McCullough, Peter; Riess, Adam G.

    2014-08-01

    Wide Field Camera 3 (WFC3) is the most used instrument on board the Hubble Space Telescope. Providing a broad range of high quality imaging capabilities from 200 to 1700mn using Silicon CCD and HgCdTe IR detectors, WFC3 is fulfilling both our expectations and its formal requirements. With the re-establishment of the observatory level "spatial scan" capability, we have extended the scientific potential ofWFC3 in multiple directions. These controlled scans, often in combination with low resolution slit-less spectroscopy, enable extremely high precision differential photometric measurements of transiting exo-planets and direct measurement of sources considerably brighter than originally anticipated. In addition, long scans permit the measurement of the separation of star images to accuracies approaching 25 micro-arc seconds (a factor of 10 better than prior FGS or imaging measurements) enables direct parallax observations out to 4 kilo-parsecs. In addition, we have employed this spatial scan capability to both assess and improve the mid­ spatial frequency flat field calibrations. WFC3 uses a Teledyne HgCdTe 1014xl014 pixel Hawaii-lR infrared detector array developed for this mission. One aspect of this detector with implications for many types of science observations is the localized trapping of charge. This manifests itself as both image persistence lasting several hours and as an apparent response variation with photon arrival rate over a large dynamic range. Beyond a generally adopted observing strategy of obtaining multiple observations with small spatial offsets, we have developed a multi-parameter model that accounts for source flux, accumulated signal level, and decay time to predict image persistence at the pixel level. Using a running window through the entirety of the acquired data, we now provide observers with predictions for each individual exposure within several days of its acquisition. Ongoing characterization of the sources on infrared background and

  4. Spark counting technique with an aluminium oxide film

    International Nuclear Information System (INIS)

    Kawai, H.; Koga, T.; Morishima, H.; Niwa, T.; Nishiwaki, Y.

    1980-01-01

    Automatic spark counting of etch-pits on a polycarbonate film produced by nuclear fission fragments is now used for neutron monitoring in several countries. A method was developed using an aluminium oxide film instead of a polycarbonate as the neutron detector. Aluminium oxide films were prepared as follows: A cleaned aluminium plate as an anode and a nickel plate as a cathode were immersed in dilute sulfuric acid solution and electric current flowed between the electrodes at 12degC for 10-30 minutes. Electric current density was about 10 mA/cm 2 . The aluminium plate was then kept in boiling water for 10-30 minutes for sealing. The thickness of the aluminium oxide layer formed was about 1μm. The aluminium plate attached to a plate of suitable fissionable material, such as uranium or thorium, was irradiated with neutrons and set in a usual spark counter for fission track counting. One electrode was the aluminium plate and the other was an aluminized polyester sheet. Sparked pulses were counted with a usual scaler. The advantage of using spark counting with an aluminium oxide film for neutron monitoring is rapid measurement of neutron exposure, since chemical etching which is indispensable for spark counting with a polycarbonate detector film, is not needed. (H.K.)

  5. 18k Channels single photon counting readout circuit for hybrid pixel detector

    International Nuclear Information System (INIS)

    Maj, P.; Grybos, P.; Szczygiel, R.; Zoladz, M.; Sakumura, T.; Tsuji, Y.

    2013-01-01

    We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm×20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96×192 pixels with 100 μm×100 μm pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 μW/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 μV/e − and the equivalent noise charge is 168 e − rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.

  6. 18k Channels single photon counting readout circuit for hybrid pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Maj, P., E-mail: piotr.maj@agh.edu.pl [AGH University of Science and Technology, Department of Measurements and Electronics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Grybos, P.; Szczygiel, R.; Zoladz, M. [AGH University of Science and Technology, Department of Measurements and Electronics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Sakumura, T.; Tsuji, Y. [X-ray Analysis Division, Rigaku Corporation, Matsubara, Akishima, Tokyo 196-8666 (Japan)

    2013-01-01

    We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm Multiplication-Sign 20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96 Multiplication-Sign 192 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 {mu}W/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 {mu}V/e{sup -} and the equivalent noise charge is 168 e{sup -} rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.

  7. Statistical decision making with a dual-detector probe

    International Nuclear Information System (INIS)

    Hickernell, T.S.

    1988-01-01

    Conventional imaging techniques for cancer detection have difficulty finding small, deep tumors. Single-detector radiation probes have been developed to search for deep lesions in a patient who has been given a tumor-seeking radiopharmaceutical. These probes perform poorly, however, when the background activity in the patient varies greatly from site to site. We have developed a surgical dual-detector probe that solves the problem of background activity variation, by simultaneously monitoring counts from a region of interest and counts from adjacent normal tissue. A comparison of counts from the detectors can reveal the class of tissue, tumor or normal, in the region of interest. In this study, we apply methods from statistical decision theory and derive a suitable comparison of counts to help us decide whether a tumor is present in the region of interest. We use the Hotelling trace criterion with a few assumptions to find a linear discriminant function, which can be reduced to a normalized subtraction of the counts for large background count-rate variations. Using a spatial response map of the dual probe, a computer torso phantom, and estimates of activity distribution, we simulate a surgical staging procedure to test the dual probe and the discriminant functions

  8. ULY JUP GRB SOLAR X-RAY/COSMIC GAMMA-RAY RAW COUNT RATE

    Data.gov (United States)

    National Aeronautics and Space Administration — The archived data consist of count rates from the sum of two hemispherical detectors covering 4 pi steradians and operating continuously. The detectors are 3 mm...

  9. A multiwire proportional counter for very high counting rates

    International Nuclear Information System (INIS)

    Barbosa, A.F.; Guedes, G.P.; Tamura, E.; Pepe, I.M.; Oliveira, N.B.

    1997-12-01

    Preliminary measurements in a proportional counter with two independently counting wires showed that counting rates up to 10 6 counts/s per wire can be reached without critical loss in the true versus measured linearity relation. Results obtained with a detector containing 30 active wires (2 mm pitch) are presented. To each wire is associated a fast pre-amplifier and a discriminator channel. Global counting rates in excess to 10 7 events/s are reported. Data acquisition systems are described for 1D (real time) and 2D (off-line) position sensitive detection systems. (author)

  10. Design Study of an Incinerator Ash Conveyor Counting System - 13323

    International Nuclear Information System (INIS)

    Jaederstroem, Henrik; Bronson, Frazier

    2013-01-01

    A design study has been performed for a system that should measure the Cs-137 activity in ash from an incinerator. Radioactive ash, expected to consist of both Cs-134 and Cs-137, will be transported on a conveyor belt at 0.1 m/s. The objective of the counting system is to determine the Cs-137 activity and direct the ash to the correct stream after a diverter. The decision levels are ranging from 8000 to 400000 Bq/kg and the decision error should be as low as possible. The decision error depends on the total measurement uncertainty which depends on the counting statistics and the uncertainty in the efficiency of the geometry. For the low activity decision it is necessary to know the efficiency to be able to determine if the signal from the Cs-137 is above the minimum detectable activity and that it generates enough counts to reach the desired precision. For the higher activity decision the uncertainty of the efficiency needs to be understood to minimize decision errors. The total efficiency of the detector is needed to be able to determine if the detector will be able operate at the count rate at the highest expected activity. The design study that is presented in this paper describes how the objectives of the monitoring systems were obtained, the choice of detector was made and how ISOCS (In Situ Object Counting System) mathematical modeling was used to calculate the efficiency. The ISOCS uncertainty estimator (IUE) was used to determine which parameters of the ash was important to know accurately in order to minimize the uncertainty of the efficiency. The examined parameters include the height of the ash on the conveyor belt, the matrix composition and density and relative efficiency of the detector. (authors)

  11. Design Study of an Incinerator Ash Conveyor Counting System - 13323

    Energy Technology Data Exchange (ETDEWEB)

    Jaederstroem, Henrik; Bronson, Frazier [Canberra Industries Inc., 800 Research Parkway Meriden CT 06450 (United States)

    2013-07-01

    A design study has been performed for a system that should measure the Cs-137 activity in ash from an incinerator. Radioactive ash, expected to consist of both Cs-134 and Cs-137, will be transported on a conveyor belt at 0.1 m/s. The objective of the counting system is to determine the Cs-137 activity and direct the ash to the correct stream after a diverter. The decision levels are ranging from 8000 to 400000 Bq/kg and the decision error should be as low as possible. The decision error depends on the total measurement uncertainty which depends on the counting statistics and the uncertainty in the efficiency of the geometry. For the low activity decision it is necessary to know the efficiency to be able to determine if the signal from the Cs-137 is above the minimum detectable activity and that it generates enough counts to reach the desired precision. For the higher activity decision the uncertainty of the efficiency needs to be understood to minimize decision errors. The total efficiency of the detector is needed to be able to determine if the detector will be able operate at the count rate at the highest expected activity. The design study that is presented in this paper describes how the objectives of the monitoring systems were obtained, the choice of detector was made and how ISOCS (In Situ Object Counting System) mathematical modeling was used to calculate the efficiency. The ISOCS uncertainty estimator (IUE) was used to determine which parameters of the ash was important to know accurately in order to minimize the uncertainty of the efficiency. The examined parameters include the height of the ash on the conveyor belt, the matrix composition and density and relative efficiency of the detector. (authors)

  12. Simulation results for PLATO: a prototype hybrid X-ray photon counting detector with a low energy threshold for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Habib, A.; Menouni, M.; Pangaud, P.; Morel, C.; Fenzi, C.; Colledani, G.; Moureau, G.; Escarguel, A.

    2017-01-01

    PLATO is a prototype hybrid X-ray photon counting detector that has been designed to meet the specifications for plasma diagnostics for the WEST tokamak platform (Tungsten (W) Environment in Steady-state Tokamak) in southern France, with potential perspectives for ITER. PLATO represents a customized solution that fulfills high sensitivity, low dispersion and high photon counting rate. The PLATO prototype matrix is composed of 16 × 18 pixels with a 70 μm pixel pitch. New techniques have been used in analog sensitive blocks to minimize noise coupling through supply rails and substrate, and to suppress threshold dispersion across the matrix. The PLATO ASIC is designed in CMOS 0.13 μm technology and was submitted for a fabrication run in June 2016. The chip is designed to be bump-bonded to a silicon sensor. This paper presents pixel architecture as well as simulation results while highlighting novel solutions.

  13. Expected count rate for the Self- Interrogation Neutron Resonance Densitometry measurements of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rossa, Riccardo [SCK.CEN, Belgian Nuclear Research Centre, Boeretang, 200 - B2400 Mol (Belgium); Universite libre de Bruxelles, Ecole polytechnique de Bruxelles - Service de Metrologie Nucleaire, CP 165/84, Avenue F.D. Roosevelt, 50 - B1050 Brussels (Belgium); Borella, Alessandro; Van der Meer, Klaas [SCK.CEN, Belgian Nuclear Research Centre, Boeretang, 200 - B2400 Mol (Belgium); Labeau, Pierre-Etienne; Pauly, Nicolas [Universite libre de Bruxelles, Ecole polytechnique de Bruxelles - Service de Metrologie Nucleaire, CP 165/84, Avenue F.D. Roosevelt, 50 - B1050 Brussels (Belgium)

    2015-07-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive neutron technique that aims at a direct quantification of {sup 239}Pu in the fuel assemblies by measuring the attenuation of the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. The {sup 239}Pu mass is estimated by calculating the SINRD signature, that is the ratio between the neutron flux integrated over the fast energy region and around the 0.3 eV resonance region. The SINRD measurement approach considered in this study consists in introducing a small neutron detector in the central guide tube of a PWR 17x17 fuel assembly. In order to measure the neutron flux in the energy regions defined in the SINRD signature, different detector types are used. The response of a bare {sup 238}U fission chamber is considered for the determination of the fast neutron flux, while other thermal-epithermal detectors wrapped in neutron absorbers are envisaged to measure the neutron flux around the resonance region. This paper provides an estimation of the count rate that can be achieved with the detector types proposed for the SINRD measurement. In the first section a set of detectors are evaluated in terms of count rate and sensitivity to the {sup 239}Pu content, in order to identify the optimal measurement configuration for each detector type. Then a study is performed to increase the count rate by increasing the detector size. The study shows that the highest count rate is achieved by using either {sup 3}He or {sup 10}B proportional counters because of the high neutron efficiency of these detectors. However, the calculations indicate that the biggest contribution to the measurement uncertainty is due to the measurement of the fast neutron flux. Finally, similar sensitivity to the {sup 239}Pu content is obtained by using the different detector types for the measurement of the neutron flux close to the resonance region. Therefore, the count rate associated to each detector type

  14. On unfolding counting-rate spectra of recoil-proton neutron detectors

    International Nuclear Information System (INIS)

    Yeivin, Yehuda

    1983-01-01

    This note proposes a possible scheme for unfolding recoil-proton neutron detector data, in which at first the undistorted proton source spectrum is derived. The main argument in favour of this scheme is that, compared with the conventional scheme, it necessitates somewhat weaker assumptions with respect to the unknown spectrum above the detector's upper energy cutoff, and would therefore be more reliable. We also demonstrate a simple, elementary proof of the wall effect correction for spherical detectors, and, in order to gain insight of the potential merits of the proposed unfolding scheme, illustrate our main argument by considering a hypothetic linear range-energy relation, in which case complete unfolding becomes possible with no assumptions at all on the proton spectrum above the cutoff energy. (author)

  15. Electronic alarm device for radioactivity detector associated with a direct current amplifier or with a integration-based counting assembly

    International Nuclear Information System (INIS)

    Desmaretz, Marc; Ferlicot, Rene

    1964-04-01

    The authors report the study of a device aimed at triggering sound and light alarms when a radiation detector associated with a direct current amplifier or with a counting assembly detects a radiation intensity greater than one or two previously defined thresholds. This device can be used at any time for a detection assembly which is not continuously monitored. It has been designed to be adapted to the CEA standard electronics currently used in installations and on which the alarm function had not been initially foreseen. The assembly comprises an additional safety device for the control of any untimely shutdown of the detection chain [fr

  16. Pulse-duration discrimination for increasing counting characteristic plateau and for improving counting rate stability of a scintillation counter

    International Nuclear Information System (INIS)

    Kuz'min, M.G.

    1977-01-01

    For greater stability of scintillation counters operation, discussed is the possibility for increasing the plateau and reducing its slope. Presented is the circuit for discrimination of the signal pulses from input pulses of a photomultiplier. The counting characteristics have been measured with the scintillation detectors being irradiated by different gamma sources ( 60 Co, 137 Cs, 241 Am) and without the source when the scintillation detector is shielded by a tungsten cylinder with a wall thickness of 23 mm. The comparison has revealed that discrimination in duration increase the plateau and reduces its slope. Proceeding from comparison of the noise characteristics, the relationship is found between the noise pulse number and gamma radiation energy. For better stability of the counting rate it is suggested to introduce into the scintillation counter the circuit for duration discrimination of the output pulses of a photomultiplier

  17. Efficiency and rate capability studies of the time-of-flight detector for isochronous mass measurements of stored short-lived nuclei with the FRS-ESR facility

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminchuk-Feuerstein, Natalia; Fabian, Benjamin [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Diwisch, Marcel [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); Plaß, Wolfgang R., E-mail: Wolfgang.R.Plass@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Geissel, Hans; Ayet San Andrés, Samuel; Dickel, Timo; Knöbel, Ronja; Scheidenberger, Christoph [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Sun, Baohua [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); Weick, Helmut [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany)

    2016-06-11

    A time-of-flight (TOF) detector is used for Isochronous Mass Spectrometry (IMS) with the projectile fragment separator FRS and the heavy-ion storage ring ESR. Exotic nuclei are spatially separated in flight with the FRS at about 70% of the speed of light and are injected into the ESR. The revolution times of the stored ions circulating in the ESR are measured with a thin transmission foil detector. When the ions penetrate the thin detector foil, secondary electrons (SEs) are emitted from the surface and provide the timing information in combination with microchannel plate (MCP) detectors. The isochronous transport of the SEs is performed by perpendicular superimposed electric and magnetic fields. The detection efficiency and the rate capability of the TOF detector have been studied in simulations and experiments. As a result the performance of the TOF detector has been improved substantially: (i) The SE collection efficiency was doubled by use of an optimized set of electric and magnetic field values; now SEs from almost the full area of the foil are transmitted to the MCP detectors. (ii) The rate capability of the TOF detector was improved by a factor of four by the use of MCPs with 5 μm pore size. (iii) With these MCPs and a carbon foil with a reduced thickness of 10 μg/cm{sup 2} the number of recorded revolutions in the ESR has been increased by nearly a factor of 10. The number of recorded revolutions determine the precision of the IMS experiments. Heavy-ion measurements were performed with neon ions at 322 MeV/u and uranium fission fragments at about 370 MeV/u. In addition, measurements with an alpha source were performed in the laboratory with a duplicate of the TOF detector.

  18. Efficiency and rate capability studies of the time-of-flight detector for isochronous mass measurements of stored short-lived nuclei with the FRS-ESR facility

    International Nuclear Information System (INIS)

    Kuzminchuk-Feuerstein, Natalia; Fabian, Benjamin; Diwisch, Marcel; Plaß, Wolfgang R.; Geissel, Hans; Ayet San Andrés, Samuel; Dickel, Timo; Knöbel, Ronja; Scheidenberger, Christoph; Sun, Baohua; Weick, Helmut

    2016-01-01

    A time-of-flight (TOF) detector is used for Isochronous Mass Spectrometry (IMS) with the projectile fragment separator FRS and the heavy-ion storage ring ESR. Exotic nuclei are spatially separated in flight with the FRS at about 70% of the speed of light and are injected into the ESR. The revolution times of the stored ions circulating in the ESR are measured with a thin transmission foil detector. When the ions penetrate the thin detector foil, secondary electrons (SEs) are emitted from the surface and provide the timing information in combination with microchannel plate (MCP) detectors. The isochronous transport of the SEs is performed by perpendicular superimposed electric and magnetic fields. The detection efficiency and the rate capability of the TOF detector have been studied in simulations and experiments. As a result the performance of the TOF detector has been improved substantially: (i) The SE collection efficiency was doubled by use of an optimized set of electric and magnetic field values; now SEs from almost the full area of the foil are transmitted to the MCP detectors. (ii) The rate capability of the TOF detector was improved by a factor of four by the use of MCPs with 5 μm pore size. (iii) With these MCPs and a carbon foil with a reduced thickness of 10 μg/cm 2 the number of recorded revolutions in the ESR has been increased by nearly a factor of 10. The number of recorded revolutions determine the precision of the IMS experiments. Heavy-ion measurements were performed with neon ions at 322 MeV/u and uranium fission fragments at about 370 MeV/u. In addition, measurements with an alpha source were performed in the laboratory with a duplicate of the TOF detector.

  19. Reference detectors for low flux optical radiation measurements

    International Nuclear Information System (INIS)

    Bellouati-Ghazi, Amal

    2003-01-01

    The parametric down conversion of photons generated in a non-linear crystal gives rise to two correlated photons. Associated to a System of counting of coincidences, this phenomenon makes possible the quantum efficiency measurements of detectors working on photon counting levels, without using neither sources nor detectors of references. This new method was developed at BNMINM with the aim to realize new standards detectors in the field of weak flows. It allows the determination of quantum efficiency with a relative uncertainty of 1,1%. A comparison with the IENGF (Italy) bearing on the quantum determination of efficiency of one of BNM-FNM detectors made possible to confront the exactitude of the measuring equipment. This detector was also made the object of a comparison with the French reference of radiometry, the cryogenic radiometer, the results were in agreement with uncertainties of measurements. (author) [fr

  20. FY16 ISCP Nuclear Counting Facility Hardware Expansion Summary

    Energy Technology Data Exchange (ETDEWEB)

    Church, Jennifer A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kashgarian, Michaele [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wooddy, Todd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haslett, Bob [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Torretto, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-15

    Hardware expansion and detector calibrations were the focus of FY 16 ISCP efforts in the Nuclear Counting Facility. Work focused on four main objectives: 1) Installation, calibration, and validation of 4 additional HPGe gamma spectrometry systems; including two Low Energy Photon Spectrometers (LEPS). 2) Re-Calibration and validation of 3 previously installed gamma-ray detectors, 3) Integration of the new systems into the NCF IT infrastructure, and 4) QA/QC and maintenance of current detector systems.

  1. FY16 ISCP Nuclear Counting Facility Hardware Expansion Summary

    International Nuclear Information System (INIS)

    Church, Jennifer A.; Kashgarian, Michaele; Wooddy, Todd; Haslett, Bob; Torretto, Phil

    2016-01-01

    Hardware expansion and detector calibrations were the focus of FY 16 ISCP efforts in the Nuclear Counting Facility. Work focused on four main objectives: 1) Installation, calibration, and validation of 4 additional HPGe gamma spectrometry systems; including two Low Energy Photon Spectrometers (LEPS). 2) Re-Calibration and validation of 3 previously installed gamma-ray detectors, 3) Integration of the new systems into the NCF IT infrastructure, and 4) QA/QC and maintenance of current detector systems.

  2. Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Klumpp, John [Colorado State University, Department of Environmental and Radiological Health Sciences, Molecular and Radiological Biosciences Building, Colorado State University, Fort Collins, Colorado, 80523 (United States)

    2013-07-01

    We propose a radiation detection system which generates its own discrete sampling distribution based on past measurements of background. The advantage to this approach is that it can take into account variations in background with respect to time, location, energy spectra, detector-specific characteristics (i.e. different efficiencies at different count rates and energies), etc. This would therefore be a 'machine learning' approach, in which the algorithm updates and improves its characterization of background over time. The system would have a 'learning mode,' in which it measures and analyzes background count rates, and a 'detection mode,' in which it compares measurements from an unknown source against its unique background distribution. By characterizing and accounting for variations in the background, general purpose radiation detectors can be improved with little or no increase in cost. The statistical and computational techniques to perform this kind of analysis have already been developed. The necessary signal analysis can be accomplished using existing Bayesian algorithms which account for multiple channels, multiple detectors, and multiple time intervals. Furthermore, Bayesian machine-learning techniques have already been developed which, with trivial modifications, can generate appropriate decision thresholds based on the comparison of new measurements against a nonparametric sampling distribution. (authors)

  3. Method and apparatus for logging a borehole employing dual radiation detectors

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1986-01-01

    An apparatus is described for logging a characteristic of a borehole in an earth formation employing nuclear count rate data selectively compensated for non-standard borehole conditions, comprising: a sonde, movable in a borehole, having: a radiation source for emitting radiation into earth formations adjacent the wellbore; first detector, spaced longitudinally from the radiation source, for detecting radiation scattered back to the detector and generating a first signal representative of a first count rate value, C/sub SS/; and second detector spaced a different longitudinal distance from the radiation source, for detecting radiation scattered back to the detector and generating a second signal representative of a count rate value, C/sub LS/; memory means for storing a predetermined threshold value, first predetermined relationships between the borehole characteristic and count rate values C/sub LS/, C/sub SS/; and second predetermined relationships between the borehole characteristic and ratios of C/sub LS/ to C/sub SS/; electronic means for producing a signal related in value to the borehole characteristic, which electronic means compares at least one of the first and second count rate value signals with the predetermined threshold value; means for recording the signal generated by the electronic means

  4. Evaluation of B10Plus+* proportional detectors for neutron coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Beddingfield, David H.; Yoon, Seokryung [International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, (Austria)

    2015-07-01

    GE-Reuter-Stokes (GERS) has developed a new line of neutron proportional counters, the B10Plus+* proportional counter. The detector design is intended to serve as a cost-effective alternative to traditional {sup 3}He proportional counters in a variety of applications. The detector is a hybrid design 10B-lined tube optimized with the addition of a small quantity of 3He gas to improve the detector performance and efficiency. As a demonstration of the B10Plus+* detector, GERS has constructed a Uranium Neutron Collar (UNCL) system consisting of B-10Plus+* proportional counters. GERS has designed and built a demonstration UNCL system intended to match the performance of a Type-I UNCL design in Pressurized Water Reactor (PWR) geometry operating in thermal mode. GERS offered their system on loan to the International Atomic Energy Agency (IAEA) Safeguards Division of Technical and Scientific Services for an assessment of the detector technology and the demonstration system. We have characterized the demonstration UNCL system and compared its performance with a traditional Type-I UNCL design in regular use by the IAEA. This paper summarizes our findings and observations during the characterization and testing activity. (authors)

  5. Single ion implantation for single donor devices using Geiger mode detectors

    International Nuclear Information System (INIS)

    Bielejec, E; Seamons, J A; Carroll, M S

    2010-01-01

    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 μm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ∼600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of -1 and 10 -4 for operation temperatures of ∼300 K and ∼77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 10 -4 at an average ion number per gated window of 0.015.

  6. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Science.gov (United States)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  7. A multiwire proportional counter for very high counting rates

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, A F; Guedes, G P [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Tamura, E [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Pepe, I M; Oliveira, N B [Bahia Univ., Salvador, BA (Brazil). Inst. de Fisica

    1997-12-01

    Preliminary measurements in a proportional counter with two independently counting wires showed that counting rates up to 10{sup 6} counts/s per wire can be reached without critical loss in the true versus measured linearity relation. Results obtained with a detector containing 30 active wires (2 mm pitch) are presented. To each wire is associated a fast pre-amplifier and a discriminator channel. Global counting rates in excess to 10{sup 7} events/s are reported. Data acquisition systems are described for 1D (real time) and 2D (off-line) position sensitive detection systems. (author) 13 refs., 6 figs.

  8. Group Capability Model

    Science.gov (United States)

    Olejarski, Michael; Appleton, Amy; Deltorchio, Stephen

    2009-01-01

    The Group Capability Model (GCM) is a software tool that allows an organization, from first line management to senior executive, to monitor and track the health (capability) of various groups in performing their contractual obligations. GCM calculates a Group Capability Index (GCI) by comparing actual head counts, certifications, and/or skills within a group. The model can also be used to simulate the effects of employee usage, training, and attrition on the GCI. A universal tool and common method was required due to the high risk of losing skills necessary to complete the Space Shuttle Program and meet the needs of the Constellation Program. During this transition from one space vehicle to another, the uncertainty among the critical skilled workforce is high and attrition has the potential to be unmanageable. GCM allows managers to establish requirements for their group in the form of head counts, certification requirements, or skills requirements. GCM then calculates a Group Capability Index (GCI), where a score of 1 indicates that the group is at the appropriate level; anything less than 1 indicates a potential for improvement. This shows the health of a group, both currently and over time. GCM accepts as input head count, certification needs, critical needs, competency needs, and competency critical needs. In addition, team members are categorized by years of experience, percentage of contribution, ex-members and their skills, availability, function, and in-work requirements. Outputs are several reports, including actual vs. required head count, actual vs. required certificates, CGI change over time (by month), and more. The program stores historical data for summary and historical reporting, which is done via an Excel spreadsheet that is color-coded to show health statistics at a glance. GCM has provided the Shuttle Ground Processing team with a quantifiable, repeatable approach to assessing and managing the skills in their organization. They now have a common

  9. Search for the solar pp-neutrinos with an upgrade of CTF detector

    International Nuclear Information System (INIS)

    Smirnov, O.Yu.; Zajmidoroga, O.A.; Derbin, A.V.

    2001-01-01

    A possibility to use ultrapure liquid organic scintillator as a low energy solar neutrino detector is discussed. The detector with an active volume of 10 tons and 4π coverage will count 1.8 pp-neutrinos and 5.4 7 Be neutrinos per day with an energy threshold of 170 keV for the recoil electrons. The evaluation of the detector sensitivity and backgrounds is based on the results obtained by the Borexino collaboration with the Counting Test Facility (CTF). The detector can be build at the Italian Gran Sasso underground laboratory as an upgrade of the CTF detector using already developed technologies

  10. Gross beta determination in drinking water using scintillating fiber array detector.

    Science.gov (United States)

    Lv, Wen-Hui; Yi, Hong-Chang; Liu, Tong-Qing; Zeng, Zhi; Li, Jun-Li; Zhang, Hui; Ma, Hao

    2018-04-04

    A scintillating fiber array detector for measuring gross beta counting is developed to monitor the real-time radioactivity in drinking water. The detector, placed in a stainless-steel tank, consists of 1096 scintillating fibers, both sides of which are connected to a photomultiplier tube. The detector parameters, including working voltage, background counting rate and stability, are tested, and the detection efficiency is calibrated using standard potassium chloride solution. Water samples are measured with the detector and the results are compared with those by evaporation method. The results show consistency with those by evaporation method. The background counting rate of the detector is 38.131 ± 0.005 cps, and the detection efficiency for β particles is 0.37 ± 0.01 cps/(Bq/l). The MDAC of this system can be less than 1.0 Bq/l for β particles in 120 min without pre-concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Evaluation of K x-ray escape and crosstalk in CdTe detectors and multi-channel detectors

    International Nuclear Information System (INIS)

    Ohtsuchi, Tetsuro; Ohmori, Koichi; Tsutsui, Hiroshi; Baba, Sueki

    1995-01-01

    The simple structure of CdTe semiconductor detectors facilitates their downsizing, and their possible application to radiographic sensors has been studied. The escape of K X-rays from these detectors increases with reduction of their dimensions and affects the measurements of X- and gamma-ray spectra. K X-rays also produce crosstalk in multi-channel detectors with adjacent channels. Therefore, K X-rays which escape from the detector elements degrade both the precision of energy spectra and spatial resolution. The ratios of escape peak integrated counts to total photon counts for various sizes of CdTe single detectors were calculated for gamma rays using the Monte Carlo method. Also, escape and crosstalk ratios were simulated for the CdTe multi-channel detectors. The theoretical results were tested experimentally for 59.54-keV gamma rays from a 241 Am radioactive source. Results showed that escape ratios for single detectors were strongly dependent on element size and thickness. The escape and crosstalk ratios increased with closer channel pitch. The calculated results showed a good agreement with the experimental data. The calculations made it clear that K X-rays which escaped to neighboring channels induced crosstalk more frequently at smaller channel pitch in multichannel detectors. A radiation shielding grid which blocked incident photons between the boundary channels was also tested by experiment and by calculation. It was effective in reducing the probability of escape and crosstalk

  12. A new microcalorimeter concept for photon counting X-ray spectroscopy

    International Nuclear Information System (INIS)

    Silver, E.H.; Labov, S.E.

    1989-01-01

    We present an innovative approach for performing photon counting X-ray spectroscopy with cryogenic microcalorimeters. The detector concept takes advantage of the temperature dependence of the dielectric constant in ferroelectric materials. A dielectric calorimeter has many potential advantages over traditional resistive devices, particularly in the reduction of Johnson noise. This makes the energy resolution for photon counting spectroscopy limited only to the noise produced by the intrinsic temperature fluctuations of the device. The detector concept is presented and its predicted performance is compared with resistive calorimeters. Calculations have shown that practical instruments operating with an energy resolution less than 20 eV may be possible at 300 mK. (orig.)

  13. The NSLS 100 element solid state array detector

    International Nuclear Information System (INIS)

    Furenlid, L.R.; Beren, J.; Kraner, H.W.; Rogers, L.C.; Stephani, D.; Beuttenmuller, R.H.; Cramer, S.P.

    1992-01-01

    X-ray absorption studies of dilute samples require fluorescence detection techniques. Since signal-to-noise ratios are governed by the ratio of fluorescent to scattered photons counted by a detector, solid state detectors which can discriminate between fluorescence and scattered photons have become the instruments of choice for trace element measurements. Commercially available 13 element Ge array detectors permitting total count rates < 500 000 counts per second are now in routine use. Since X-ray absorption beamlines at high brightness synchrotron sources can already illuminate most dilute samples with enough flux to saturate the current generation of solid state detectors, the development of next-generation instruments with significantly higher total count rates is essential. We present the design and current status of the 100 elements Si array detector being developed in a collaboration between the NSLS and the Instrumentation Division at Brookhaven National Laboratory. The detecting array consists of a 10 x 10 matrix of 4 mm x 4 mm elements laid out on a single piece of ultrahigh purity silicon mounted at the front end of a liquid nitrogen dewar assembly. A matrix of charge sensitive integrating preamplifiers feed signals to an array of shaping amplifiers, single channel analyzers, and scalers. An electronic switch, delay amplifier, linear gate, digital scope, peak sensing A/D converter, and histogramming memory module provide for complete diagnostics and channel calibration. The entrie instrument is controlled by a LabView 2 application on a MacII ci; the software also provides full control over beamline hardware and performs the data collection. (orig.)

  14. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  15. More accurate thermal neutron coincidence counting technique

    International Nuclear Information System (INIS)

    Baron, N.

    1978-01-01

    Using passive thermal neutron coincidence counting techniques, the accuracy of nondestructive assays of fertile material can be improved significantly using a two-ring detector. It was shown how the use of a function of the coincidence count rate ring-ratio can provide a detector response rate that is independent of variations in neutron detection efficiency caused by varying sample moderation. Furthermore, the correction for multiplication caused by SF- and (α,n)-neutrons is shown to be separable into the product of a function of the effective mass of 240 Pu (plutonium correction) and a function of the (α,n) reaction probability (matrix correction). The matrix correction is described by a function of the singles count rate ring-ratio. This correction factor is empirically observed to be identical for any combination of PuO 2 powder and matrix materials SiO 2 and MgO because of the similar relation of the (α,n)-Q value and (α,n)-reaction cross section among these matrix nuclei. However the matrix correction expression is expected to be different for matrix materials such as Na, Al, and/or Li. Nevertheless, it should be recognized that for comparison measurements among samples of similar matrix content, it is expected that some function of the singles count rate ring-ratio can be defined to account for variations in the matrix correction due to differences in the intimacy of mixture among the samples. Furthermore the magnitude of this singles count rate ring-ratio serves to identify the contaminant generating the (α,n)-neutrons. Such information is useful in process control

  16. Simulating detectors dead time

    International Nuclear Information System (INIS)

    Rustom, Ibrahim Farog Ibrahim

    2015-06-01

    Nuclear detectors are used in all aspects of nuclear measurements. All nuclear detectors are characterized by their dead time i.e. the time needed by a detector to recover from a previous incident. A detector dead time influences measurements taken by a detector and specially when measuring high decay rate (>) where is the detector dead time. Two models are usually used to correct for the dead time effect: the paralayzable and the non-paralayzable models. In the current work we use Monte Carlo simulation techniques to simulate radioactivity and the effect of dead time and the count rate of a detector with a dead time =5x10 - 5s assuming the non-paralayzable model. The simulation indicates that assuming a non -paralayzable model could be used to correct for decay rate measured by a detector. The reliability of the non-paralayzable model to correct the measured decay rate could be gauged using the Monte Carlo simulation. (Author)

  17. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    Science.gov (United States)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a

  18. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  19. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sanjoy [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Wolff, Ronald [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Detwiler, Ryan [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Maurer, Richard [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Mitchell, Stephen [National Security Technologies, LLC, Las Vegas, NV (United States); Guss, Paul [Remote Sensing Lab. - Nellis, Las Vegas, NV (United States); Lacy, Jeffrey L. [Proportional Technologies, Inc., Houston, TX (United States); Sun, Liang [Proportional Technologies, Inc., Houston, TX (United States); Athanasiades, Athanasios [Proportional Technologies, Inc., Houston, TX (United States)

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and

  20. Low gamma counting for measuring NORM/TENORM with a radon reducing system

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    2000-01-01

    A detection system for counting low levels of gamma radiation was developed by upgrading an existing whole body counter. The main shielding is a rectangular chamber made of 18 metric tons of steel fabricated before the World War II. The ceiling and floor are 0.20 m in thickness, and the walls 0.10 m. The internal walls, the ceiling and the floor of the chamber are covered with copper sheets 1.0 mm in thickness. The new detection system consists of a stainless steel hollow cylinder with variable circular apertures in the cylindrical wall and in the base, to allow NaI(Tl) and/or HPGe detectors in its interior. This counting system is mounted inside the larger shielding chamber, which in turn is located in a subsurface air conditioned room. The air exchange rate between the subsurface room and the exterior is kept to a minimum, to avoid large amounts of radon from outdoors to enter the subsurface room. The floor, the walls, and the ceiling of this subsurface room were painted with materials impermeable to radon gas. The access to the subsurface room is made from a larger entrance room through a tunnel plus a glass ante-room to decrease still further the air- exchange rate. The stainless steel hollow cylinder houses the sample to be measured and the detector. This cylinder can be filled with hyper pure nitrogen gas at a slighter positive pressure before counting a sample to prevent radon to enter the volume surrounding the detector. The low radon concentration near the detector minimizes the contribution of the 214 Bi photopeaks to the gamma spectra. The samples can be placed inside the cylinder in a variety of configurations. Spectra of selected gamma emitters were obtained with samples and detectors in several configurations. Gamma spectra were obtained for each of those configurations to illustrate the reduction the counting background. The reduction of gamma radiation background near the detector allows one to count naturally occurring radioactive materials (NORM

  1. Method and apparstus for determining random coincidence count rate in a scintillation counter utilizing the coincidence technique

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1980-01-01

    A method and apparatus for the reliable determination of a random coincidence count attributable to chance coincidences of single-photon events which are each detected in only a single detector of a scintillation counter utilizing two detectors in a coincidence counting technique are described. A firstdelay device is employed to delay output pulses from one detector, and then the delayed signal is compared with the undelayed signal from the other detector in a coincidence circuit, to obtain an approximate random coincidence count. The output of the coincidence circuit is applied to an anti-coincidence circuit, where it is corrected by elimination of pulses coincident with, and attributable to, conventionally detected real coincidences, and by elimination of pulses coincident with, and attributable to, real coincidences that have been delayed by a second delay device having the same time parameter as the first. 8 claims

  2. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong, E-mail: gscho@kaist.ac.kr

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 µm{sup 2} was fabricated by using a 6-metal 1-poly 0.18 µm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  3. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  4. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events

    International Nuclear Information System (INIS)

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Gagnon, Daniel; Wang, Wenli; Winkler, Mark

    2015-01-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the ‘ring’ artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset. (paper)

  5. Loss-Free Counting with Digital Signal Processors

    International Nuclear Information System (INIS)

    Markku Koskelo; Dave Hall; Martin Moslinger

    2000-01-01

    Loss-free-counting (LFC) techniques have frequently been used with traditional analog pulse processing systems to compensate for the time or pulses lost when a spectroscopy system is unavailable (busy) for processing an accepted pulse. With the availability of second-generation digital signal processing (DSP) electronics that offer a significantly improved performance for both high and low count rate applications, the LFC technique has been revisited. Specific attention was given to the high and ultra-high count rate behavior, using high-purity germanium (HPGe) detectors with both transistor reset preamplifiers (TRP) and conventional RC preamplifiers. The experiments conducted for this work show that the known LFC techniques further benefit when combined with modern DSP pulse shaping

  6. A gas microstrip X-ray detector for soft energy fluorescence EXAFS

    CERN Document Server

    Smith, A D; Derbyshire, G E; Duxbury, D M; Lipp, J; Spill, E J; Stephenson, R

    2001-01-01

    Gas microstrip detectors have been previously developed by the particle physics community, where their robustness, compactness and high counting speed have been recognised. These features are particularly attractive to synchrotron radiation use. In this paper, we describe a gas microstrip detector employing multi-element readout and specifically developed for high count rate fluorescence EXAFS at soft X-ray energies below 4 keV.

  7. Characterization of photon-counting multislit breast tomosynthesis.

    Science.gov (United States)

    Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik

    2018-02-01

    It has been shown that breast tomosynthesis may improve sensitivity and specificity compared to two-dimensional mammography, resulting in increased detection-rate of cancers or lowered call-back rates. The purpose of this study is to characterize a spectral photon-counting multislit breast tomosynthesis system that is able to do single-scan spectral imaging with multiple collimated x-ray beams. The system differs in many aspects compared to conventional tomosynthesis using energy-integrating flat-panel detectors. The investigated system was a prototype consisting of a dual-threshold photon-counting detector with 21 collimated line detectors scanning across the compressed breast. A review of the system is done in terms of detector, acquisition geometry, and reconstruction methods. Three reconstruction methods were used, simple back-projection, filtered back-projection and an iterative algebraic reconstruction technique. The image quality was evaluated by measuring the modulation transfer-function (MTF), normalized noise-power spectrum, detective quantum-efficiency (DQE), and artifact spread-function (ASF) on reconstructed spectral tomosynthesis images for a total-energy bin (defined by a low-energy threshold calibrated to remove electronic noise) and for a high-energy bin (with a threshold calibrated to split the spectrum in roughly equal parts). Acquisition was performed using a 29 kVp W/Al x-ray spectrum at a 0.24 mGy exposure. The difference in MTF between the two energy bins was negligible, that is, there was no energy dependence on resolution. The MTF dropped to 50% at 1.5 lp/mm to 2.3 lp/mm in the scan direction and 2.4 lp/mm to 3.3 lp/mm in the slit direction, depending on the reconstruction method. The full width at half maximum of the ASF was found to range from 13.8 mm to 18.0 mm for the different reconstruction methods. The zero-frequency DQE of the system was found to be 0.72. The fraction of counts in the high-energy bin was measured to be 59% of the

  8. Hight resolution Si(Li) X ray detector

    International Nuclear Information System (INIS)

    Yuan Xianglin; Huang Naizhang; Lin Maocai; Li Zhiyong

    1985-01-01

    This paper describes the fabrication technology of GL1221 type Si(Li) X ray detector core and the pulse light feedback colded preamplifier fitted on the detector. The energy resolution of the detector system is 165 eV (At 5.89 KeV Mn-K α X ray); the counting rate is 1020 cps, and the electronics noise is 104 eV. The performace of the detector keeps up with the business level of a foreign product of the same kind

  9. Development of Ultra-Fast Silicon Detectors for 4D tracking

    Science.gov (United States)

    Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.

    2017-12-01

    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.

  10. Photon counting arrays for AO wavefront sensors

    CERN Document Server

    Vallerga, J; McPhate, J; Mikulec, Bettina; Clark, Allan G; Siegmund, O; CERN. Geneva

    2005-01-01

    Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at flu...

  11. Signal and noise analysis in TRION-Time-Resolved Integrative Optical Fast Neutron detector

    International Nuclear Information System (INIS)

    Vartsky, D; Feldman, G; Mor, I; Goldberg, M B; Bar, D; Dangendorf, V

    2009-01-01

    TRION is a sub-mm spatial resolution fast neutron imaging detector, which employs an integrative optical time-of-flight technique. The detector was developed for fast neutron resonance radiography, a method capable of detecting a broad range of conventional and improvised explosives. In this study we have analyzed in detail, using Monte-Carlo calculations and experimentally determined parameters, all the processes that influence the signal and noise in the TRION detector. In contrast to event-counting detectors where the signal-to-noise ratio is dependent only on the number of detected events (quantum noise), in an energy-integrating detector additional factors, such as the fluctuations in imparted energy, number of photoelectrons, system gain and other factors will contribute to the noise. The excess noise factor (over the quantum noise) due to these processes was 4.3, 2.7, 2.1, 1.9 and 1.9 for incident neutron energies of 2, 4, 7.5, 10 and 14 MeV, respectively. It is shown that, even under ideal light collection conditions, a fast neutron detection system operating in an integrative mode cannot be quantum-noise-limited due to the relatively large variance in the imparted proton energy and the resulting scintillation light distributions.

  12. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  13. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    International Nuclear Information System (INIS)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-01-01

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  14. Development of large area silicon semiconductor detectors for use in the current mode

    CERN Document Server

    Ouyang Xia Opin; Li Zhen Fu; Zhang Guo Guang; Zhang Qi; Zhang Xia; Song Xian Cai; Jia Huan Yi; Lei Jian Hua; Sun Yuan Cheng

    2002-01-01

    Large area silicon semiconductor detectors for use in the current mode, with their dimensions of phi 40, phi 50 and phi 60 mm, their depletion thickness of 200-300 mu m, have been developed. Their performance measurements have been made, which indicate that the developed detectors can satisfactorily meet the needs in expectation. Compared with the detectors commercially available on the market, authors' large PIN detectors can serve both as reliable and efficient high-resolution devices for nuclear counting experiments, as well as monitors of high-intensity radiation fields in the current mode under a bias of 100-1000 V, while the detectors commercially available are only for the counting use

  15. High-Resolution Detector For X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  16. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  17. Environmental radon with RAD7 detector

    International Nuclear Information System (INIS)

    Lopez M, A.; Balcazar, M.; Fernandez G, I. M.; Capote F, E.

    2016-09-01

    Experimental results of the radon detection with the equipment RAD7 are presented. The use of a solid state detector placed in a semi-spherical chamber with an electric field allows a high sensitivity of 0.4 cpm/P Ci/l. Radon detection is achieved by the spectroscopy of its decay products. In accordance with a table of errors for various ranges of counts and radon concentrations, reported by the manufacturer, an equation was obtained that allows establishing operation criteria of the equipment. For radon detection at ambient concentrations as low as 30 Bq m -3 , is shown that short counts of 10 minutes are good enough to make decisions on radiation protection matter. In places where concentrations are close to 200 Bq m -3 , counting intervals of the order of 0.5 hours will have an acceptable counting error of the order of 20%. The determination of radon in soil was, according to the expected, on the order of 10 kBq m -3 , and was found that even with the recommended counting times of 5 minutes, there is a risk of increased humidity inside the detector above 20% Rh, with associated reduction of detection efficiency, if the desiccant is not used properly. The equipment was subjected to a radon exposure in air of 13, 373 Bq m -3 ± 3.7%, contained within a controlled chamber, with a variation in temperature of (19-21) degrees Celsius and in the relative humidity of (5-7) %, the good stability of the chamber allows to propose calibration processes of these equipment s by assessing the concentration by means of a Ge (Hp) detector. (Author)

  18. An integral whole circuit of amplifying and discriminating suited to high counting rate

    International Nuclear Information System (INIS)

    Dong Chengfu; Su Hong; Wu Ming; Li Xiaogang; Peng Yu; Qian Yi; Liu Yicai; Xu Sijiu; Ma Xiaoli

    2007-01-01

    A hybrid circuit consists of charge sensitive preamplifier, main amplifier, discriminator and shaping circuit was described. This instrument has characteristics of low power consumption, small volume, high sensitivity, potable and so on, and is convenient for use in field. The output pulse of this instrument may directly consist with CMOS or TTL logic level. This instrument was mainly used for count measurement, for example, for high sensitive 3 He neutron detector, meanwhile also may used for other heavy ion detectors, the highest counting rate can reach 10 6 /s. (authors)

  19. Front-end counting mode electronics for CdZnTe sensor readout

    CERN Document Server

    Moraes, Danielle; Kaplon, Jan

    2004-01-01

    The development of a front-end circuit optimized for CdZnTe detector readout, implemented in 0.25 mu m CMOS technology, is reported. The ASIC comprises 17 channels of a charge sensitive amplifier with an active feedback, followed by a gain-shaper stage and a discriminator with a 5 bit fine-tune DAC. The signal from the discriminator is sensed by a 25 ns mono-stable circuit and an 18-bit static ripple- counter. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at a maximum counting rate of 2 million counts/second. The amplifier shows a linear sensitivity of 24 mV/fC with 50 ns peaking time and an equivalent noise charge of about 650 e/sup -/, for a detector capacitance of 10 pF. When connected to a 3*3*7 mm/sup 3/ CdZnTe detector the amplifier gain is about 8 mV/keV with a noise around 3.6 keV.

  20. Study of the behavior of automatic track detectors for radon determination

    International Nuclear Information System (INIS)

    Moreno C, A.

    1997-01-01

    Both the alpha decay and the alpha and beta emitting radon daughters, may affect the living cells. In this thesis, experiments have been performed to study the response of environmental radon using different alpha particle detectors. A study was performed both in the laboratory and in the field of two kinds of detectors: a) Passive solid state nuclear track detectors, LR 115 type II, capable to integrate the alpha particles in a given period of time and, b) an automatic active detector, Clipperton, that continuously accumulate the alpha counting from radon decay. LR-115 track detectors were exposed in the laboratory to alpha particles from a radioactive source and a controlled radon atmosphere. The detectors were also exposed to electrons from an electron accelerator. The number of alpha tracks in the detectors were evaluated with two kinds of spark counters. The response of the track detectors as a function of the number of alpha tracks showed a reproducibility of 92%, and the effect of electron doses showed that the bulk etching velocity varied as a function of the electron dose. Additionally some changes were introduced in an SSNTD exchanger, exposed to the radon chamber in order to reduce the background in the non exposed positions. A conversion factor of 0.016 tracks/cm 2 . 10h per Bq/m 3 was obtained. The response of the two spark counters was similar. Field soil radon determinations were performed with track detectors during 11 months and with the active detector during 5 months with exposures each month and each hour respectively. When calculated for the same time periods exposure the response of both systems was similar. However differences were quite striking in the patterns of short and long term exposure periods since short term fluctuations are explicitly shown with the active detector while integrated within the passive one. (Author)

  1. Comparison of MCNP6 and experimental results for neutron counts, Rossi-α, and Feynman-α distributions

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2013-01-01

    MCNP6, the general-purpose Monte Carlo N-Particle code, has the capability to perform time-dependent calculations by tracking the time interval between successive events of the neutron random walk. In fixed-source calculations for a subcritical assembly, the zero time value is assigned at the moment the neutron is emitted by the external neutron source. The PTRAC and F8 cards of MCNP allow to tally the time when a neutron is captured by 3 He(n, p) reactions in the neutron detector. From this information, it is possible to build three different time distributions: neutron counts, Rossi-α, and Feynman-α. The neutron counts time distribution represents the number of neutrons captured as a function of time. The Rossi-a distribution represents the number of neutron pairs captured as a function of the time interval between two capture events. The Feynman-a distribution represents the variance-to-mean ratio, minus one, of the neutron counts array as a function of a fixed time interval. The MCNP6 results for these three time distributions have been compared with the experimental data of the YALINA Thermal facility and have been found to be in quite good agreement. (authors)

  2. Modular pixelated detector system with the spectroscopic capability and fast parallel read-out

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Holík, M.; Jakůbek, J.; Jakůbek, M.; Kraus, V.; Krejčí, F.; Soukup, P.; Tureček, D.; Vacík, Jiří; Žemlička, J.

    2014-01-01

    Roč. 9, June (2014), C06006 ISSN 1748-0221. [International workshop on radiation imaging detectors /15./. Paris, 23.06.2013-27.06.2013] R&D Projects: GA MŠk(CZ) LO1219; GA TA ČR(CZ) TA01010237 Institutional support: RVO:68378297 ; RVO:61389005 Keywords : particle tracking detectors * X-ray detectors * modular electronics * neutron detectors * solid-state detectors Subject RIV: JN - Civil Engineering; BM - Solid Matter Physics ; Magnetism (UJF-V) Impact factor: 1.399, year: 2014 http://iopscience.iop.org/1748-0221/9/06/C06006

  3. Status of the digital pixel array detector for protein crystallography

    CERN Document Server

    Datte, P; Beuville, E; Endres, N; Druillole, F; Luo, L; Millaud, J E; Xuong, N H

    1999-01-01

    A two-dimensional photon counting digital pixel array detector is being designed for static and time resolved protein crystallography. The room temperature detector will significantly enhance monochromatic and polychromatic protein crystallographic through-put data rates by more than three orders of magnitude. The detector has an almost infinite photon counting dynamic range and exhibits superior spatial resolution when compared to present crystallographic phosphor imaging plates or phosphor coupled CCD detectors. The detector is a high resistivity N-type Si with a pixel pitch of 150x150 mu m, and a thickness of 300 mu m, and is bump bonded to an application specific integrated circuit. The event driven readout of the detector is based on the column architecture and allows an independent pixel hit rate above 1 million photons/s/pixel. The device provides energy discrimination and sparse data readout which yields minimal dead-time. This type of architecture allows a continuous (frameless) data acquisition, a f...

  4. Initial results from a prototype whole-body photon-counting computed tomography system.

    Science.gov (United States)

    Yu, Z; Leng, S; Jorgensen, S M; Li, Z; Gutjahr, R; Chen, B; Duan, X; Halaweish, A F; Yu, L; Ritman, E L; McCollough, C H

    X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×10 11 photons per cm 2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo .

  5. Automatic measurement for solid state track detectors

    International Nuclear Information System (INIS)

    Ogura, Koichi

    1982-01-01

    Since in solid state track detectors, their tracks are measured with a microscope, observers are forced to do hard works that consume time and labour. This causes to obtain poor statistic accuracy or to produce personal error. Therefore, many researches have been done to aim at simplifying and automating track measurement. There are two categories in automating the measurement: simple counting of the number of tracks and the requirements to know geometrical elements such as the size of tracks or their coordinates as well as the number of tracks. The former is called automatic counting and the latter automatic analysis. The method to generally evaluate the number of tracks in automatic counting is the estimation of the total number of tracks in the total detector area or in a field of view of a microscope. It is suitable for counting when the track density is higher. The method to count tracks one by one includes the spark counting and the scanning microdensitometer. Automatic analysis includes video image analysis in which the high quality images obtained with a high resolution video camera are processed with a micro-computer, and the tracks are automatically recognized and measured by feature extraction. This method is described in detail. In many kinds of automatic measurements reported so far, frequently used ones are ''spark counting'' and ''video image analysis''. (Wakatsuki, Y.)

  6. A time - zero detector based on thin film plastic scintillator

    International Nuclear Information System (INIS)

    Petrovici, M.; Simion, V.; Pagano, A.; Urso, S.; Geraci, E.

    1998-01-01

    Thin film scintillator used as a fast time-zero detector exhibits some advantages: fast response, small energy loss of transmitted particles, insensitivity to radiation damage, high efficiency and high counting rate capability. In order to increase the efficiency of the light collection, the scintillating plastic foil is housed in a reflecting body having an ellipsoidal geometry. A concave ellipsoidal mirror has the property that the geometrical foci are optically conjugate points and consequently, all optical path lengths from one focus to the other via a single reflection are equal. With the thin scintillator foil situated at one focal point and the PM's photocathode at the other one, an excellent light collection can be obtained. The principle of detector and the main components are presented. For our purposes we constructed the detector in two variants: glass mirror and polished aluminium mirror. The semi-axes of the ellipsoidal profile are: a 49.8 mm, b = 34.2 mm for the glass mirror and a = 35 mm, b = 26.5 mm for the aluminium mirror, respectively. The diameter of the beam access hole on the both mirrors is 12 mm. The detectors are foreseen to be used at 4π detecting system CHIMERA for experiments with heavy ion beams at intermediate energies delivered by Superconducting Cyclotron from LNS - Catania. Presently, the performance of these detectors are tested using alpha radioactive sources and in-beam measurements. (authors)

  7. Study on advancement of in vivo counting using mathematical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kinase, Sakae [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-05-01

    To obtain an assessment of the committed effective dose, individual monitoring for the estimation of intakes of radionuclides is required. For individual monitoring of exposure to intakes of radionuclides, direct measurement of radionuclides in the body - in vivo counting- is very useful. To advance in a precision in vivo counting which fulfills the requirements of ICRP 1990 recommendations, some problems, such as the investigation of uncertainties in estimates of body burdens by in vivo counting, and the selection of the way to improve the precision, have been studied. In the present study, a calibration technique for in vivo counting application using Monte Carlo simulation was developed. The advantage of the technique is that counting efficiency can be obtained for various shapes and sizes that are very difficult to change for phantoms. To validate the calibration technique, the response functions and counting efficiencies of a whole-body counter installed in JAERI were evaluated using the simulation and measurements. Consequently, the calculations are in good agreement with the measurements. The method for the determination of counting efficiency curves as a function of energy was developed using the present technique and a physiques correction equation was derived from the relationship between parameters of correction factor and counting efficiencies of the JAERI whole-body counter. The uncertainties in body burdens of {sup 137}Cs estimated with the JAERI whole-body counter were also investigated using the Monte Carlo simulation and measurements. It was found that the uncertainties of body burdens estimated with the whole-body counter are strongly dependent on various sources of uncertainty such as radioactivity distribution within the body and counting statistics. Furthermore, the evaluation method of the peak efficiencies of a Ge semi-conductor detector was developed by Monte Carlo simulation for optimum arrangement of Ge semi-conductor detectors for

  8. Test of radiation hardness of pcCVD detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schlemme, Steffen [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Enders, Joachim [Technische Universitaet Darmstadt (Germany); Figuera, P.; Salamone, S. [LNS-INFN Catania (Italy); Fruehauf, J.; Kis, Mladen; Kratz, A.; Kurz, N.; Loechner, S.; Nociforo, Chiara; Schirru, Fabio; Szczepanczyk, B.; Traeger, M.; Visinka, R. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Musumarra, A. [LNS-INFN Catania (Italy); University of Catania (Italy)

    2016-07-01

    The new in-flight separator Super-FRS is under construction at the Facility for Antiproton and Ion Research (FAIR, Darmstadt). Ion rates up to 3 x 10{sup 11} {sup 238}U/spill demand an adaption of detectors to a high radiation environment. A test experiment to investigate the radiation hardness of polycrystalline diamond detectors (pcCVD) was performed at the LNS-INFN in Catania using a {sup 12}C beam at 62 MeV/u and intensities of up to 1.5 pnA. The setup consisted of pcCVD strip detectors to measure the beam profile, a single crystal diamond detector to calibrate the ionisation chamber working in current mode as a beam intensity monitor and a pcCVD sample to be irradiated. The IC used was designed for FAIR and showed a stable counting rate allowing us to calibrate and perform beam intensity measurements with it. The total measured counts on the sample were 8.25 x 10{sup 11} counts/mm{sup 2} over a period of 60 hours. Digital waveforms of the pcCVD signals were taken with an oscilloscope and analysed. The results showed no change of the pcCVD signal properties during the entire irradiation.

  9. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    Science.gov (United States)

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  10. Cadmium-emitter self-powered thermal neutron detector performance characterization & reactor power tracking capability experiments performed in ZED-2

    Energy Technology Data Exchange (ETDEWEB)

    LaFontaine, M.W., E-mail: physics@execulink.com [LaFontaine Consulting, Kitchener, Ontario (Canada); Zeller, M.B. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Nielsen, K. [Royal Military College of Canada, SLOWPOKE-2 Reactor, Kingston, Ontario (Canada)

    2014-07-01

    Cadmium-emitter self-powered thermal neutron flux detectors (SPDs), are typically used for flux monitoring and control applications in low temperature, test reactors such as the SLOWPOKE-2. A collaborative program between Atomic Energy of Canada, academia (Royal Military College of Canada (RMCC)) and industry (LaFontaine Consulting) was initiated to characterize the incore performance of a typical Cd-emitter SPD; and to obtain a definitive measure of the capability of the detector to track changes in reactor power in real time. Prior to starting the experiment proper, Chalk River Laboratories' ZED-2 was operated at low power (5 watts nominal) to verify the predicted moderator critical height. Test measurements were then performed with the vertical center of the SPD emitter positioned at the vertical mid-plane of the ZED-2 reactor core. Measurements were taken with the SPD located at lattice position L0 (near center), and repeated at lattice position P0 (in D{sub 2}O reflector). An ionization chamber (part of the ZED-2 control instrumentation) monitored reactor power at a position located on the south side of the outside wall of the reactor's calandria. These experiments facilitated measurement of the absolute thermal neutron sensitivity of the subject Cd-emitter SPD, and validated the power tracking capability of said SPD. Procedural details of the experiments, data, calculations and associated graphs, are presented and discussed. (author)

  11. Monte Carlo simulation of determining porosity by using dual gamma detectors

    International Nuclear Information System (INIS)

    Zhang Feng; Liu Juntao; Yu Huawei; Yuan Chao; Jia Yan

    2013-01-01

    Current formation elements spectroscopy logging technology utilize 241 Am-Be neutron source and single BGO detector to determine elements contents. It plays an important role in mineral analysis and lithology identification of unconventional oil and gas exploration, but information measured is relatively ld. Measured system based on 241 Am-Be neutron and dual detectors can be developed to realize the measurement of elements content as well as determine neutron gamma porosity by using ratio of gamma count between near and far detectors. Calculation model is built by Monte Carlo method to study neutron gamma porosity logging response with different spacing and shields. And it is concluded that measuring neutron gamma have high counts and good statistical property contrasted with measuring thermal neutron, but the sensitivity of porosity decrease. Sensitivity of porosity will increase as the spacing of dual detector increases. Spacing of far and near detectors should be around 62 cm and 35 cm respectively. Gamma counts decrease and neutron gamma porosity sensitivity increase when shield is fixed between neutron and detector. The length of main shield should be greater than 10 cm and associated shielding is about 5 cm. By Monte Carlo Simulation study, the result provides technical support for determining porosity in formation elements spectroscopy logging using 241 Am-Be neutron and gamma detectors. (authors)

  12. Development of high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Menlove, H.O.

    1993-01-01

    The authors have designed a novel neutron detector system using conventional 3 He detector tubes and composites of polyethylene and graphite. At this time the design consists entirely of MCNP simulations of different detector configurations and materials. These detectors are applicable to low-level passive and active neutron assay systems such as the passive add-a-source and the 252 Cf shuffler. Monte Carlo simulations of these neutron detector designs achieved efficiencies of over 35% for assay chambers that can accommodate 55-gal. drums. Only slight increases in the number of detector tubes and helium pressure are required. The detectors also have reduced die-away times. Potential applications are coincident and multiplicity neutron counting for waste disposal and safeguards. The authors will present the general design philosophy, underlying physics, calculation mechanics, and results

  13. Real-time computational photon-counting LiDAR

    Science.gov (United States)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  14. Application of the multisphere technique. Calibration and use of a modified Multiple Probe Detector

    International Nuclear Information System (INIS)

    Lalande, R.

    1966-11-01

    The study concerns the search for a portable, compact device with a great autonomy of operation, able to carry out precise measurements of fast neutrons in exclusion zones. A DSM-type multi-probe detector, which is self-contained and fully transistorized, have been studied; it includes a storage battery with a 30 hour autonomy and a buffering capability, a pulse amplifier, an integrator (sensitivity 4 c / s - 200 c / s - 2000 c / s), a totalizer to carry out counting on 5 mm, and a SNR fast neutron probe equipped with its preamplifier. Slightly modified, this device perfectly fulfills the operating conditions. Designed to precisely define the relationship between the flow and the dose intensity, it allows to calibrate any type of fast neutrons detector (e.g. BF 3 or unmodified DSM) that will respond correctly and will provide routine monitoring at a facility

  15. The Road to the Common PET/CT Detector

    Science.gov (United States)

    Nassalski, Antoni; Moszynski, Marek; Szczesniak, Tomasz; Wolski, Dariusz; Batsch, Tadeusz

    2007-10-01

    Growing interest in the development of dual modality positron emission/X-rays tomography (PET/CT) systems prompts researchers to face a new challenge: to acquire both the anatomical and functional information in the same measurement, simultaneously using the same detection system and electronics. The aim of this work was to study a detector consisting of LaBr3, LSO or LYSO pixel crystals coupled to an avalanche photodiode (APD). The measurements covered tests of the detectors in PET and CT modes, respectively. The measurements included the determination of light output, energy resolution, the non-proportionality of the light yield and the time resolution for 511 keV annihilation quanta; analysis also included characterizing the PET detector, and determining the dependence of counting rate versus mean current of the APD in the X-ray detection. In the present experiment, the use of counting and current modes in the CT detection increases the dynamic range of the measured dose of X-rays by a factor of 20, compared to the counting mode alone.

  16. Characterization studies of Silicon Photomultipliers and crystals matrices for a novel time of flight PET detector

    CERN Document Server

    Auffray, Etiennette; Cortinovis, Daniele; Doroud, Katayoun; Garutti, Erika; Lecoq, Paul; Liu, Zheng; Martinez, Rosana; Paganoni, Marco; Pizzichemi, Marco; Silenzi, Alessandro; Xu, Chen; Zvolský, Milan

    2015-01-01

    This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to integrate Time-Of-Flight PET with ultrasound endoscopy in a novel multimodal device, capable to support the development of new biomarkers for prostate and pancreatic tumors. The detector consists in two parts: a PET head mounted on an ultrasound probe and an external PET plate. The challenging goal of 1 mm spatial resolution for the PET image requires a detector with small crystal size, and therefore high channel density: 4096 LYSO crystals individually readout by Silicon Photomultipliers (SiPM) make up the external plate. The quality and properties of these components must be assessed before the assembly. The dark count rate, gain, breakdown voltage and correlated noise of the SiPMs are measured, while the LYSO crystals are evaluated in terms of light yield and en...

  17. Low gamma counting for measuring NORM/TENORM with a radon reducing system

    Science.gov (United States)

    Paschoa, Anselmo S.

    2001-06-01

    A detection system for counting low levels of gamma radiation was built by upgrading an existing rectangular chamber made of 18 metric tonne of steel fabricated before World War II. The internal walls, the ceiling, and the floor of the chamber are covered with copper sheets. The new detection system consists of a stainless steel hollow cylinder with variable circular apertures in the cylindrical wall and in the base, to allow introduction of a NaI (Tl) crystal, or alternatively, a HPGe detector in its interior. This counting system is mounted inside the larger chamber, which in turn is located in a subsurface air-conditioned room. The access to the subsurface room is made from a larger entrance room through a tunnel plus a glass anteroom to decrease the air-exchange rate. Both sample and detector are housed inside the stainless steel cylinder. This cylinder is filled with hyper pure nitrogen gas, before counting a sample, to prevent radon coming into contact with the detector surface. As a consequence, the contribution of the 214Bi photopeaks to the background gamma spectra is minimized. The reduction of the gamma radiation background near the detector facilitates measurement of naturally occurring radioactive materials (NORM), and/or technologically enhanced NORM (TENORM), which are usually at concentration levels only slightly higher than those typically found in the natural radioactive background.

  18. Low gamma counting for measuring NORM/TENORM with a radon reducing system

    International Nuclear Information System (INIS)

    Paschoa, Anselmo S.

    2001-01-01

    A detection system for counting low levels of gamma radiation was built by upgrading an existing rectangular chamber made of 18 metric tonne of steel fabricated before World War II. The internal walls, the ceiling, and the floor of the chamber are covered with copper sheets. The new detection system consists of a stainless steel hollow cylinder with variable circular apertures in the cylindrical wall and in the base, to allow introduction of a NaI (Tl) crystal, or alternatively, a HPGe detector in its interior. This counting system is mounted inside the larger chamber, which in turn is located in a subsurface air-conditioned room. The access to the subsurface room is made from a larger entrance room through a tunnel plus a glass anteroom to decrease the air-exchange rate. Both sample and detector are housed inside the stainless steel cylinder. This cylinder is filled with hyper pure nitrogen gas, before counting a sample, to prevent radon coming into contact with the detector surface. As a consequence, the contribution of the 214 Bi photopeaks to the background gamma spectra is minimized. The reduction of the gamma radiation background near the detector facilitates measurement of naturally occurring radioactive materials (NORM), and/or technologically enhanced NORM (TENORM), which are usually at concentration levels only slightly higher than those typically found in the natural radioactive background. (author)

  19. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  20. A superconducting tunneling junction (STJ) detector for soft X-ray absorption spectroscopy at 50 mK

    International Nuclear Information System (INIS)

    Baev, Ivan; Ruescher, Jan-Hendrik; Martins, Michael; Viefhaus, Jens; Wurth, Wilfried

    2016-01-01

    Soft X-ray absorption spectroscopy (XAS) is an important technique at synchrotrons nowadays that allows to investigate electronic and magnetic properties in an element specific way. The investigation of non-conductive, soft organic or buried materials can't be carried out in total electron yield. In these cases an efficient fluorescence detector is needed to perform XAS measurements in partial fluorescence yield (PFY). The STJ detector is capable of count rates as high as 10 kcps per 100 μm"2 pixel size with an energy resolution of approximately 50 eV for 1.5 keV photons. The STJ is furthermore integrated into a 50 mK cryostat for XAS measurements at the P04 beamline at Petra III, DESY. We will present first measurements on a model system.

  1. Avalanche photodiodes for ISABELLE detectors

    International Nuclear Information System (INIS)

    Strand, R.C.

    1979-01-01

    At ISABELLE some requirements for detecting bursts of photons are not met by standard photomultiplier tubes. The characteristics of immunity to magnetic fields, small size (few mm), low power consumption (approx. 100 mW), insensitivity to optical overloads, and wide dynamic range (approx. 60 dB) are achieved with difficulty, if at all, with PMTs. These are characteristics of the solid state avalanche photodiode (APD), the preferred detector for light-wave communications. Successful field tests with APD detectors stimulated the design of standard optical-fiber communication systems to replace wire carriers by the early 1980's. In other characteristics, i.e., counting rate, pulse-height resolution, effective quantum efficiency, detection efficiency, and reliability, bare APDs are equivalent to standard PMTs. APDs with currently available amplifiers cannot resolve single photoelectrons but they could provide reasonable detection efficiencies and pulse-height resolution for packets of approx. > 100 photons. Commercially available APDs can cost up to 100 times as much as PMTs per active area, but they are potentially much cheaper. Six topics are discussed: (1) detectors for light-wave communication and detectors for particles, (2) avalanche photodiodes, (3) commercially available APDs, (4) dynamic response of PMTs and bare APDs, (5) photon counting with cold APDs, and (6) conclusions and recommendations

  2. Method of and system for determining a spectrum of radiation characteristics with full counting-loss compensation

    International Nuclear Information System (INIS)

    Westphal, G.P.

    1984-01-01

    Real-time correction of counting losses in the operation of a pulse-height analyzer, connected to the output of a radiation detector, is accomplished by establishing a gating interval at a time when the analyzer is available after processing the last detector pulse, this interval beginning at an instant delayed beyond the trailing edge of that last pulse by at least a predetermined rise time and ending with the leading edge of the next detector pulse. Test pulses generated during this gating interval are counted and their number is used to determine a probability ratio whose reciprocal constitutes a weighting factor; the digitized amplitude of each detector pulse addresses a corresponding memory cell whose contents are thereupon increased by the current weighting factor

  3. MO-FG-CAMPUS-IeP1-02: Dose Reduction in Contrast-Enhanced Digital Mammography Using a Photon-Counting Detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Kang, S; Eom, J [Konyang University, Daejeon (Korea, Republic of)

    2016-06-15

    Purpose: Photon-counting detectors (PCDs) allow multi-energy X-ray imaging without additional exposures and spectral overlap. This capability results in the improvement of accuracy of material decomposition for dual-energy X-ray imaging and the reduction of radiation dose. In this study, the PCD-based contrast-enhanced dual-energy mammography (CEDM) was compared with the conventional CDEM in terms of radiation dose, image quality and accuracy of material decomposition. Methods: A dual-energy model was designed by using Beer-Lambert’s law and rational inverse fitting function for decomposing materials from a polychromatic X-ray source. A cadmium zinc telluride (CZT)-based PCD, which has five energy thresholds, and iodine solutions included in a 3D half-cylindrical phantom, which composed of 50% glandular and 50% adipose tissues, were simulated by using a Monte Carlo simulation tool. The low- and high-energy images were obtained in accordance with the clinical exposure conditions for the conventional CDEM. Energy bins of 20–33 and 34–50 keV were defined from X-ray energy spectra simulated at 50 kVp with different dose levels for implementing the PCD-based CDEM. The dual-energy mammographic techniques were compared by means of absorbed dose, noise property and normalized root-mean-square error (NRMSE). Results: Comparing to the conventional CEDM, the iodine solutions were clearly decomposed for the PCD-based CEDM. Although the radiation dose for the PCD-based CDEM was lower than that for the conventional CEDM, the PCD-based CDEM improved the noise property and accuracy of decomposition images. Conclusion: This study demonstrates that the PCD-based CDEM allows the quantitative material decomposition, and reduces radiation dose in comparison with the conventional CDEM. Therefore, the PCD-based CDEM is able to provide useful information for detecting breast tumor and enhancing diagnostic accuracy in mammography.

  4. Dead time of different neutron detectors associated with a pulsed electronics with current collection

    International Nuclear Information System (INIS)

    Bacconnet, Eugene; Duchene, Jean; Duquesne, Henry; Schmitt, Andre

    1968-01-01

    After having outlined that the development of fast neutron reactor physics, notably kinetics, requires highly efficient neutron detectors and pulse measurement chains able to cope with high counting rates, the authors report the measurement of dead time of various neutron detectors which are used in the experimental study of fast neutron reactors. They present the SAITB 1 electronic measurement set, its components, its general characteristics, the protected connection between the detector and the electronics. They present and report the experiment: generalities about detector location and measurements, studied detectors (fission chambers, boron counters), and report the exploitation of the obtained results (principle, data, high-threshold counting gain) [fr

  5. Silicon Quantum Dots with Counted Antimony Donor Implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Meenakshi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Pacheco, Jose L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Perry, Daniel Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Garratt, E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Ten Eyck, Gregory A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Wendt, Joel R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Manginell, Ronald P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Luhman, Dwight [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Bielejec, Edward S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Lilly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  6. Superconducting nanowire single-photon detectors (SNSPDs) on SOI for near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Trojan, Philipp; Il' in, Konstantin; Henrich, Dagmar; Hofherr, Matthias; Doerner, Steffen; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie (KIT) (Germany); Semenov, Alexey [Institut fuer Planetenforschung, DLR, Berlin-Adlershof (Germany); Huebers, Heinz-Wilhelm [Institut fuer Planetenforschung, DLR, Berlin-Adlershof (Germany); Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin (Germany)

    2013-07-01

    Superconducting nanowire single-photon detectors are promising devices for photon detectors with high count rates, low dark count rates and low dead times. At wavelengths beyond the visible range, the detection efficiency of today's SNSPDs drops significantly. Moreover, the low absorption in ultra-thin detector films is a limiting factor over the entire spectral range. Solving this problem requires approaches for an enhancement of the absorption range in feeding the light to the detector element. A possibility to obtain a better absorption is the use of multilayer substrate materials for photonic waveguide structures. We present results on development of superconducting nanowire single-photon detectors made from niobium nitride on silicon-on-insulator (SOI) multilayer substrates. Optical and superconducting properties of SNSPDs on SOI will be discussed and compared with the characteristics of detectors on common substrates.

  7. Counting statistics and loss corrections for the APS

    International Nuclear Information System (INIS)

    Lee, W.K.; Mills, D.M.

    1992-01-01

    It has been suggested that for timing experiments, it might be advantageous to arrange the bunches in the storage ring in an asymmetrical mode. In this paper, we determine the counting losses from pulsed x-ray sources from basic probabilistic arguments and from Poisson statistics. In particular the impact on single photon counting losses of a variety of possible filling modes for the Advanced Photon Source (APS) is examined. For bunches of equal current, a loss of 10% occurs whenever the count rate exceeds 21% of the bunch repetition rate. This changes slightly when bunches containing unequal numbers of particles are considered. The results are applied to several common detector/electronics systems

  8. Counting statistics and loss corrections for the APS

    International Nuclear Information System (INIS)

    Lee, W.K.; Mills, D.M.

    1992-01-01

    It has been suggested that for timing experiments, it might be advantageous to arrange the bunches in the storage ring in an asymmetrical mode. In this paper, we determine the counting losses from pulsed x-ray sources from basic probabilistic arguments and from Poisson statistics. In particular the impact on single-photon counting losses of a variety of possible filling modes for the Advanced Photon Source (APS) is examined. For bunches of equal current, a loss of 10% occurs whenever the count rate exceeds 21% of the bunch repetition rate. This changes slightly when bunches containing unequal numbers of particles are considered. The results are applied to several common detector/electronics systems

  9. On the basic mechanism of Pixelized Photon Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Otono, H. [Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)], E-mail: otono@icepp.s.u-tokyo.ac.jp; Oide, H. [Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamashita, S. [International Center for Elementary Particle Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yoshioka, T. [Neutron Science Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2009-10-21

    A Pixelized Photon Detector (PPD) is a generic name for the semiconductor devices operated in the Geiger-mode, such as Silicon PhotoMultiplier and Multi-Pixel Photon Counter, which has high photon counting capability. While the internal mechanisms of the PPD have been intensively studied in recent years, the existing models do not include the avalanche process. We have simulated the multiplication and quenching of the avalanche process and have succeeded in reproducing the output waveform of the PPD. Furthermore our model predicts the existence of dead-time in the PPD which has never been numerically predicted. For searching the dead-time, we also have developed waveform analysis method using deconvolution which has the potential to distinguish neighboring pulses precisely. In this paper, we discuss our improved model and waveform analysis method.

  10. Count-rate analysis from clinical scans in PET with LSO detectors

    International Nuclear Information System (INIS)

    Bonutti, F.; Cattaruzzi, E.; Cragnolini, E.; Floreani, M.; Foti, C.; Malisan, M. R.; Moretti, E.; Geatti, O.; Padovani, R.

    2008-01-01

    The purpose of optimising the acquisition parameters in positron emission tomography is to improve the quality of the diagnostic images. Optimisation can be done by maximising the noise equivalent count rate (NECR) that in turn depends on the coincidence rate. For each bed position the scanner records coincidences and singles rates. For each patient, the true, random and scattered coincidences as functions of the single count rate(s) are determined by fitting the NEMA (National Electrical Manufacturers Association) 70 cm phantom count rate curves to measured clinical points. This enables analytical calculation of the personalised PNECR [pseudo NECR(s)] curve, linked to the NECR curve. For central bed positions, missing activity of ∼70% is estimated to get maximum PNECR (PNECR max ), but the improvement in terms of signal-to-noise ratio would be ∼15%. The correlation between patient weight and PNECR max is also estimated to determine the optimal scan duration of a single bed position as a function of patient weight at the same PNEC. Normalising the counts at PNECR max for the 70 kg patient, the bed duration for a 90 kg patient should be 230 s, which is ∼30% longer. Although the analysis indicates that the fast scanner electronics allow using higher administered activities, this would involve poor improvement in terms of NECR. Instead, attending to higher bed duration for heavier patients may be more useful. (authors)

  11. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  12. Elevator mechanism and method for scintillation detectors

    International Nuclear Information System (INIS)

    Frank, E.

    1975-01-01

    An elevator mechanism and method for raising and lowering radioactive samples through a shielded vertical counting chamber in a benchtop scintillation detector is described. The elevator mechanism adds little or nothing to the height of the detector by using an elongated flexible member such as a metal tape secured to the bottom of the elevator platform and extending downwardly through the counting chamber and its bottom shielding, where the tape is bent laterally for connection to a drive means. In the particular embodiment illustrated, the tape is bent laterally below the bottom shielding for the counting chamber, and then upwardly along or through one side of the shielding to a reel at the top of the shielding. The tape is wound onto the reel, and the reel is driven by a reversible motor which winds and unwinds the tape on the reel to raise and lower the elevator platform

  13. Pixel-Cluster Counting Luminosity Measurement in ATLAS

    CERN Document Server

    McCormack, William Patrick; The ATLAS collaboration

    2016-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measurements of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster-counting method are ...

  14. Pixel-Cluster Counting Luminosity Measurement In ATLAS

    CERN Document Server

    AUTHOR|(SzGeCERN)782710; The ATLAS collaboration

    2017-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measure- ments of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster- counting method a...

  15. Advanced digital counting rate meter for gamma ray logging

    International Nuclear Information System (INIS)

    Kannan, S.; Meenakshi Sundari, A.; Rai, A.K.

    2013-01-01

    A compact, hand held controller based Advanced Digital Count Rate Meter (ADCRM) as a replacement of bulky Count Rate (analog) Meters (SBL-2A) was designed, developed and fabricated to carry out Gamma-Ray borehole logging with Geiger Muller (GM) tubes and Scintillation (SC) detectors. In the hardware the functionality of analog meter simulation, digital counting of gamma events and auto reference adjustment to use different length of armour cable winches were implemented. The in-built software evaluates grade in ppm and at the end of logging, the reports are prepared automatically. ADCRM was developed in-house to assist the uranium mineral exploration in AMD. (author)

  16. Standardization of I-125 solution by extrapolation of an efficiency wave obtained by coincidence X-(X-γ) counting method

    International Nuclear Information System (INIS)

    Iwahara, A.

    1989-01-01

    The activity concentration of 125 I was determined by X-(X-α) coincidence counting method and efficiency extrapolation curve. The measurement system consists of 2 thin NaI(T1) scintillation detectors which are horizontally movable on a track. The efficiency curve is obtained by symmetricaly changing the distance between the source and the detectors and the activity is determined by applying a linear efficiency extrapolation curve. All sum-coincidence events are included between 10 and 100 KeV window counting and the main source of uncertainty is coming from poor counting statistic around zero efficiency. The consistence of results with other methods shows that this technique can be applied to photon cascade emitters and are not discriminating by the detectors. It has been also determined the 35,5 KeV gamma-ray emission probability of 125 I by using a Gamma-X type high purity germanium detector. (author) [pt

  17. High-performance integrated pick-up circuit for SPAD arrays in time-correlated single photon counting

    Science.gov (United States)

    Acconcia, Giulia; Cominelli, Alessandro; Peronio, Pietro; Rech, Ivan; Ghioni, Massimo

    2017-05-01

    The analysis of optical signals by means of Single Photon Avalanche Diodes (SPADs) has been subject to a widespread interest in recent years. The development of multichannel high-performance Time Correlated Single Photon Counting (TCSPC) acquisition systems has undergone a fast trend. Concerning the detector performance, best in class results have been obtained resorting to custom technologies leading also to a strong dependence of the detector timing jitter from the threshold used to determine the onset of the photogenerated current flow. In this scenario, the avalanche current pick-up circuit plays a key role in determining the timing performance of the TCSPC acquisition system, especially with a large array of SPAD detectors because of electrical crosstalk issues. We developed a new current pick-up circuit based on a transimpedance amplifier structure able to extract the timing information from a 50-μm-diameter custom technology SPAD with a state-of-art timing jitter as low as 32ps and suitable to be exploited with SPAD arrays. In this paper we discuss the key features of this structure and we present a new version of the pick-up circuit that also provides quenching capabilities in order to minimize the number of interconnections required, an aspect that becomes more and more crucial in densely integrated systems.

  18. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  19. The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a scientific assessment of the observational capabilities in the hard X-ray band

    Science.gov (United States)

    D'Andrea, M.; Lotti, S.; Macculi, C.; Piro, L.; Argan, A.; Gatti, F.

    2017-12-01

    ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2-12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.

  20. Photon-counting 1.0 GHz-phase-modulation fluorometer

    International Nuclear Information System (INIS)

    Mizuno, T.; Nakao, S.; Mizutani, Y.; Iwata, T.

    2015-01-01

    We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method

  1. Photon-counting 1.0 GHz-phase-modulation fluorometer

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T.; Nakao, S.; Mizutani, Y.; Iwata, T., E-mail: iwata@tokushima-u.ac.jp [Division of Energy System, Institute of Technology and Science, Tokushima University, 2-1 Minami-Jyosanjima, Tokushima 770-8506 (Japan)

    2015-04-15

    We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method.

  2. The CosmicWatch Desktop Muon Detector: a self-contained, pocket sized particle detector

    Science.gov (United States)

    Axani, S. N.; Frankiewicz, K.; Conrad, J. M.

    2018-03-01

    The CosmicWatch Desktop Muon Detector is a self-contained, hand-held cosmic ray muon detector that is valuable for astro/particle physics research applications and outreach. The material cost of each detector is under 100 and it takes a novice student approximately four hours to build their first detector. The detectors are powered via a USB connection and the data can either be recorded directly to a computer or to a microSD card. Arduino- and Python-based software is provided to operate the detector and an online application to plot the data in real-time. In this paper, we describe the various design features, evaluate the performance, and illustrate the detectors capabilities by providing several example measurements.

  3. Calculation of the counting efficiency for extended sources

    International Nuclear Information System (INIS)

    Korun, M.; Vidmar, T.

    2002-01-01

    A computer program for calculation of efficiency calibration curves for extended samples counted on gamma- and X ray spectrometers is described. The program calculates efficiency calibration curves for homogeneous cylindrical samples placed coaxially with the symmetry axis of the detector. The method of calculation is based on integration over the sample volume of the efficiencies for point sources measured in free space on an equidistant grid of points. The attenuation of photons within the sample is taken into account using the self-attenuation function calculated with a two-dimensional detector model. (author)

  4. Development of gallium arsenide gamma spectrometric detector

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kuru, I.

    1975-03-01

    measuring gamma-ray spectrum with GaAs detector. However, gamma-ray counting efficiency of the detector was not enough to built portable type instrument of gamma-ray spectrometer used for routine works of nuclear safeguards. In order to improve gamma-ray counting efficiency of the detector, double-epitaxial-layer detector has been studied. The preliminary results showed that the improvement of the detector gamma-ray counting efficiency was possible by using double-epitaxial-layer structure. It was also clarified that the good quality GaAs crystal was a key to obtaining a low noise, good charge collection detector

  5. High-sensitivity fast neutron detector KNK-2-7M

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M. [Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics (Russian Federation); Chuklyaev, S. V. [Research Institute of Materials Technology (Russian Federation)

    2015-12-15

    The construction of the fast neutron detector KNK-2-7M is briefly described. The results of the study of the detector in the pulse-counting mode are given for the fissions of {sup 237}Np nuclei in the radiator of the neutron-sensitive section and in the current mode with the separation of sectional currents of functional sections. The possibilities of determining the effective number of {sup 237}Np nuclei in the radiator of the neutronsensitive section are considered. The diagnostic possibilities of the detector in the counting mode are shown by example of the analysis of the reference data from the neutron-field characteristics in the working hall of the BR-K1 reactor. The diagnostic possibilities of the detector in the current operating mode are shown by example of the results of measuring the {sup 237}Np-fission intensity in the BR-K1 reactor power start-ups implemented in the mode of fission-pulse generation on delayed neutrons at the detector arrangement inside the reactor core cavity under conditions of a wide variation of the reactor radiation field.

  6. Radon detectors for continuous environmental monitoring applications

    International Nuclear Information System (INIS)

    Sisoutham, O.; Werczynski, S.; Chambers, S.; Zahorowski, W.

    2003-01-01

    The two-filter method is presently the best technique available for real-time low-level counting of atmospheric 222 Rn. The Australian Nuclear Science and Technology Organisation has developed and deployed a range of dual flow loop, two-filter radon detectors around the world for various applications. The detectors have a response time of 45 minutes, and can be custom built for specific purposes. The largest detectors have a lower limit of detection of ∼10 mBq m -3

  7. Measurement of Radon concentration in groundwater by technique of nuclear track detector

    International Nuclear Information System (INIS)

    Trinh Van Giap; Nguyen Manh Hung; Dang Duc Nhan

    2000-01-01

    A method for measuring radon concentration in groundwater using nuclear track detector LR-115 stripping is reported. The radon-monitoring device in groundwater is a small box with two pieces of nuclear track detector and all these materials is placed in a plastic bag made by polyethylene. It is very suitable to measure radon concentration in groundwater well in long term. Alpha tracks produced by radon and it daughter on nuclear track detector is counted automatically by spark counting method. The paper also presents some results of radon concentration in some groundwater well and mineral water sources. (author)

  8. Use of a neutrino detector for muon identification by the CYGNUS air-shower array

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.C.; DeLay, R.S.; Lu, X.Q.; Yodh, G.B. (Univ. of California, Irvine (United States)); Burman, R.L.; Cady, D.R.; Lloyd-Evans, J.; Nagle, D.E.; Sandberg, V.D.; Sena, A.J. (Los Alamos National Lab., NM (United States)); Chang, C.Y.; Dingus, B.L.; Gupta, S.; Goodman, J.A.; Haines, T.J.; Krakauer, D.A.; Talaga, R.L. (Univ. of Maryland, College Park (United States)); Ellsworth, R.W. (George Mason Univ., Fairfax, VA (United States)); Potter, M.E.; Thompson, T.N. (Univ. of California, Irvine (United States) Los Alamos National Lab., NM (United States))

    1992-01-01

    The muon content of extensive air showers observed by the CYGNUS experiment are measured by a well-shielded apparatus originally used for accelerator neutrino detection. Primary identification and counting of muons relies on a 44 m{sup 2} array of multiwire proportional counters that has operated continously since the experiment's inception to the present time. During the experiment's first 20 months, the central detector, consisting of flash-tube chambers, was used for high-resolution reconstruction of muon trajectories for a limited subsample of air showers. The ability to distinguish individual muons in the tracking device enabled verification and calibration of the muon counting by the proportional-counter system. The tracking capability was also used to verify the systematic pointing accuracy of the extensive air-shower arrival direction, as determined, as determined by the CYGNUS array, to better than 0.5{sup 0}. (orig.).

  9. VESUVIO. A project to provide enhanced neutron scattering capabilities at the highest energy transfers

    International Nuclear Information System (INIS)

    Tomkinson, J.; Bowden, Z.A.; Mayers, J.; Norris, J.; Rhodes, N.J.; Colognesi, D.; Fielding, A.L.; Praitano, M.

    1999-01-01

    Complete text of publication follows. The VESUVIO project is financed within the TMR-Access to Large Scale Facility (RTD project) of the European Community. It will provide unique prototype instrumentation at the ISIS neutron source which will build on the success and experience of the eVS spectrometer in measuring single particle dynamics of a wide range of condensed matter systems. The instrumentation is designed for high momentum (20A -1 -1 ) and energy (ℎω>1eV) transfer inelastic neutron scattering studies of microscopic dynamical properties such as, single particle kinetic energies and momentum distributions. Specific objectives are: a) to optimize and construct a high efficiency, high area detector, 6 Li doped scintillator glasses are being tested; b) to construct a sample tank capable of operating with either a cold, or room temperature, filter analyzers; c) to develop new electronics and data acquisition to handle the high count-rates which will be generated in the azimuthal detectors. Some examples of applications performed during the first year of the project will be presented. (author)

  10. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    International Nuclear Information System (INIS)

    Miller, William H.; Manuel Diaz de Leon

    2003-01-01

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed

  11. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    William H. Miller; Manuel Diaz de Leon

    2003-04-15

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed.

  12. 2 π gaseous flux proportional detector

    International Nuclear Information System (INIS)

    Guevara, E.A.; Costello, E.D.; Di Carlo, R.O.

    1986-01-01

    A counting system has been developed in order to measure carbon-14 samples obtained in the course of a study of a plasmapheresis treatment for diabetic children. The system is based on the use of a 2π gaseous flux proportional detector especially designed for the stated purpose. The detector is described and experiment results are given, determining the characteristic parameters which set up the working conditions. (Author) [es

  13. Split detector

    International Nuclear Information System (INIS)

    Cederstrand, C.N.; Chism, H.R.

    1982-01-01

    A gas analyzer is disclosed which provides a dual channel capability for the simultaneous determination of the presence and concentration of two gases in a stream of sample gas and which has a single infrared source, a single sample cell, two infrared bandpass filters, and two infrared detectors. A separator between the filters and detectors prevents interchange of radiation between the filters. The separator is positioned by fitting it in a slot

  14. The Micromegas detector of the CAST experiment

    International Nuclear Information System (INIS)

    Abbon, P; Andriamonje, S; Aune, S; Dafni, T; Davenport, M; Delagnes, E; Oliveira, R de; Fanourakis, G; Ribas, E Ferrer; Franz, J; Geralis, T; Giganon, A; Gros, M; Giomataris, Y; Irastorza, I G; Kousouris, K; Morales, J; Papaevangelou, T; Ruz, J; Zachariadou, K; Zioutas, K

    2007-01-01

    A low-background Micromegas detector has been operating in the CAST experiment at CERN for the search for solar axions during the first phase of the experiment (2002-2004). The detector, made out of low radioactivity materials, operated efficiently and achieved a very high level of background rejection (5 x 10 -5 counts keV -1 cm -2 s -1 ) without shielding

  15. 3D track reconstruction capability of a silicon hybrid active pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri [Czech Technical University in Prague, Institute of Experimental and Applied Physics, Praha (Czech Republic); Burian, Petr; Broulim, Pavel [Czech Technical University in Prague, Institute of Experimental and Applied Physics, Praha (Czech Republic); University of West Bohemia, Faculty of Electrical Engineering, Pilsen (Czech Republic); Jakubek, Jan [Advacam s.r.o., Praha (Czech Republic)

    2017-06-15

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 x 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for ''4D'' particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation (x,y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm. (orig.)

  16. 3D track reconstruction capability of a silicon hybrid active pixel detector

    Science.gov (United States)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan

    2017-06-01

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.

  17. Spectral CT of the extremities with a silicon strip photon counting detector

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.

  18. Comparison of MCNP6 and experimental results for neutron counts, Rossi-{alpha}, and Feynman-{alpha} distributions

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C. [Joint Institute for Power and Nuclear Research-Sosny, 99 Academician A.K. Krasin Str., Minsk 220109 (Belarus)

    2013-07-01

    MCNP6, the general-purpose Monte Carlo N-Particle code, has the capability to perform time-dependent calculations by tracking the time interval between successive events of the neutron random walk. In fixed-source calculations for a subcritical assembly, the zero time value is assigned at the moment the neutron is emitted by the external neutron source. The PTRAC and F8 cards of MCNP allow to tally the time when a neutron is captured by {sup 3}He(n, p) reactions in the neutron detector. From this information, it is possible to build three different time distributions: neutron counts, Rossi-{alpha}, and Feynman-{alpha}. The neutron counts time distribution represents the number of neutrons captured as a function of time. The Rossi-a distribution represents the number of neutron pairs captured as a function of the time interval between two capture events. The Feynman-a distribution represents the variance-to-mean ratio, minus one, of the neutron counts array as a function of a fixed time interval. The MCNP6 results for these three time distributions have been compared with the experimental data of the YALINA Thermal facility and have been found to be in quite good agreement. (authors)

  19. Signal processors for position-sensitive detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Ken-ichi [Hosei Univ., Koganei, Tokyo (Japan). Coll. of Engineering

    1996-07-01

    Position-sensitive detectors (PSD) are widely used in following various fields: condensed matter studies, material engineering, medical radiology particle physics, astrophysics and industrial applications. X-ray diffraction analysis is one of the field where PSDs are the most important instruments. In this field, many types of PSAs are employed: position-sensitive proportional counters (PSPC), multi-wire proportional chambers (MWPC), imaging plates, image intensifiers combined CCD cameras and semiconductor array devices. Two readout systems used for PSDs, where one is a charge-division type with high stability and the other is an encoder with multiple delay, line readout circuits useful for fast counting, were reported in this paper. The multiple delay line encoding system can be applicable to high counting rate 1D and 2D gas proportional detectors. (G.K.)

  20. Developments in gamma-ray spectrometry: systems, software, and methods-II. 3. Low-Energy Gamma-Ray Spectrometry Using a Compton-Suppressed Telescope Detector

    International Nuclear Information System (INIS)

    Sigg, R.A.; DiPrete, D.P.

    2001-01-01

    the new detector system has an ambient background count rate in the 30- to 600-keV region that is only 1/20 that of an earlier large area, low-energy photon spectrometer. For low-activity samples, whose counting backgrounds are dominated by natural background, minimum detectable activities are improved by a factor of ∼4. This improvement is attributable to a combination of factors including fabrication from low-background materials, cryostat geometry, passive and active shielding, and a lower ambient background location. Measurements using the newer system with and without gating reveal that most of this background reduction can be credited to active vetoing provided by guard detectors. Further improvements are anticipated as a nitrogen purge capability (to exclude radon from the shield) is implemented. An earlier paper (Ref. 2) described radiochemical separations and counting for 129 I, a long-lived fission product of interest at SRS because of the site's processing of spent nuclear fuels. While such radiochemical separations are necessary for many low-level analyses of 129 I, some low-density samples contain sufficient activity to allow 129 I analysis without chemistry if Compton-scattered interferences from other radionuclides are removed electronically. Tests on such a sample show that the sodium iodide and rear germanium anti-coincident guard detectors suppress the Compton continuum in the region near 129 I's 39-keV peak by a factor of ∼4. Interfering activities in the sample included 60 Co, 152 Eu, 154 Eu, and 241 Am. The Compton-suppression ratio is a function of gamma-ray energy; it improves as gamma ray energy increases until the best suppression (a factor of ∼10 for the sample discussed) is achieved at ∼1 MeV. (authors)

  1. Development of a combination detector system for simultaneous measurement of Alpha and Beta/Gamma radioactivity

    International Nuclear Information System (INIS)

    Thakur, Vaishali M.; Ashokkumar, P.; Rekha, A.K.; Jain, Amit; Rath, D.P.; Chaudhury, Probal; Chaudhari, L.M.

    2018-01-01

    Analysis of various samples for α and β/γ radioactivity is carried out in radiological laboratories. Using independent α and β/γ counting systems such measurements are done separately for same sample. In order to address the requirement of simultaneous measurement of α and β/γ activity content of radioactive samples, a counting system using combination of two detectors has been developed. Activity deposited on a 2 mm deep 30 mm diameter aluminum planchette was counted under the detector combination consisting of a ZnS(Ag) and plastic scintillator for α and β/γ respectively. The design and fabrication of the combination detector, development of electronics associated with the system, its characterization and application are presented here

  2. Material screening with HPGe counting station for PandaX experiment

    International Nuclear Information System (INIS)

    Wang, X.; Chen, X.; Fu, C.; Ji, X.; Liu, X.; Xie, P.; Zhang, T.; Mao, Y.; Wang, S.; Wang, H.

    2016-01-01

    A gamma counting station based on high-purity germanium (HPGe) detector was set up for the material screening of the PandaX dark matter experiments in the China Jinping Underground Laboratory. Low background gamma rate of 2.6 counts/min within the energy range of 20 to 2700 keV is achieved due to the well-designed passive shield. The sentivities of the HPGe detetector reach mBq/kg level for isotopes like K, U, Th, and even better for Co and Cs, resulted from the low-background rate and the high relative detection efficiency of 175%. The structure and performance of the counting station are described in this article. Detailed counting results for the radioactivity in materials used by the PandaX dark-matter experiment are presented. The upgrading plan of the counting station is also discussed.

  3. PILATUS: a two-dimensional X-ray detector for macromolecular crystallography

    CERN Document Server

    Eikenberry, E F; Huelsen, G; Toyokawa, H; Horisberger, R P; Schmitt, B; Schulze-Briese, C; Tomizaki, T

    2003-01-01

    A large quantum-limited area X-ray detector for protein crystallography is under development at the Swiss Light Source. The final detector will be 2kx2k pixels covering 40x40 cm sup 2. A three-module prototype with 1120x157 pixels covering an active area of 24.3x3.4 cm sup 2 has been tested. X-rays above 6 keV with peak count rates exceeding 5x10 sup 5 X-ray/pixel/s could be detected in single photon counting mode. Statistics of module production and results of threshold trimming are presented. To demonstrate the potential of this new detector, protein crystal data were collected at beamline 6S of the SLS.

  4. Dependence of a whole body counting efficiency on body size and composition

    International Nuclear Information System (INIS)

    Venturini, Luzia; Campos, Vicente P.; Berti, Eduardo A.R.

    2001-01-01

    An approach is described to evaluate the counting efficiency dependence, on the geometry measurement and on the material density, for whole body measurement. The counting efficiency is evaluated using Monte Carlo Method to simulate the history of the photons, from its emission to its total absorption or escape from the detector. Theoretical calculations of the counting efficiency are presented for two phantoms of the BOMAB family. The phantoms are considered to be filled with water and with a material constituted as described by Snyder et al. (author)

  5. Dependence of a whole body counting efficiency on body size and composition

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Luzia; Campos, Vicente P.; Berti, Eduardo A.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2001-07-01

    An approach is described to evaluate the counting efficiency dependence, on the geometry measurement and on the material density, for whole body measurement. The counting efficiency is evaluated using Monte Carlo Method to simulate the history of the photons, from its emission to its total absorption or escape from the detector. Theoretical calculations of the counting efficiency are presented for two phantoms of the BOMAB family. The phantoms are considered to be filled with water and with a material constituted as described by Snyder et al. (author)

  6. Real-time imaging systems for superconducting nanowire single-photon detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hofherr, Matthias

    2014-07-01

    Superconducting nanowire singe-photon detectors (SNSPD) are promising detectors in the field of applications, where single-photon resolution is required like in quantum optics, spectroscopy or astronomy. These cryogenic detectors gain from a broad spectrum in the optical and infrared range and deliver low dark counts and low jitter. This work provides a piece of deeper physical understanding of detector functionality in combination with highly engineered readout development. A detailed analysis focuses on the intrinsic detection mechanism of SNSPDs related to the detection in the infrared regime and the evolution of dark counts. With this fundamental knowledge, the next step is the development of a multi-pixel readout at cryogenic conditions. It is demonstrated, how two auspicious multi-pixel readout concepts can be realized, which enables statistical framing like in imaging applications using RSFQ electronics with fast framing rates and the readout of a detector array with continuous real-time single-photon resolution.

  7. A large-area, position-sensitive neutron detector with neutron/γ-ray discrimination capabilities

    International Nuclear Information System (INIS)

    Zecher, P.D.; Galonsky, A.; Kruse, J.J.; Gaff, S.J.; Ottarson, J.; Wang, J.; Seres, Z.; Ieki, K.; Iwata, Y.; Schelin, H.

    1997-01-01

    To further study neutron-rich halo nuclei, we have constructed a neutron detector array. The array consists of two separate banks of detectors, each of area 2 x 2 m 2 and containing 250 l of liquid scintillator. Each bank is position-sensitive to better than 10 cm. For neutron time-of-flight measurements, the time resolution of the detector has been demonstrated to be about 1 ns. By using the scintillator NE-213, we are able to distinguish between neutron and γ-ray signals above 1 MeV electron equivalent energy. Although the detector array was constructed for a particular experiment it has also been used in a number of other experiments. (orig.)

  8. Capabilities of silicon Shottki barriers and planar detectors in low-energy proton spectometry

    Energy Technology Data Exchange (ETDEWEB)

    Verbitskaya, E M; Eremin, V K; Malyarenko, A M; Sakharov, V I; Serenkov, I T; Strokan, N B; Sukhanov, V L

    1987-05-12

    Dependence of the resolution of surface barrier and planar diffusion silicon detectors on proton energy is investigated. The experiment was conducted at the device, representing the double mass spectrometer with the maximal energy of single-charged ions up to 200 keV. Two advantages of using planar diffusion detectors for light low-energy ion spectrometry is established: high energy resolution and independence of signal amplitude of bias voltage. Background noise represents the main factor dictaiting resolution, but fluctuations of losses in input window are sufficient as well. It was concluded that planar detector application for spectrometry of protons with energy of less than 200 keV would improve the resolution up to 2.2 keV without detector cooling.

  9. A high resolution animal PET scanner using compact PS-PMT detectors

    International Nuclear Information System (INIS)

    Watanabe, M.; Okada, H.; Shimizu, K.; Omura, T.

    1996-01-01

    A new high resolution PET scanner dedicated to animal studies has been designed, built and tested. The system utilizes 240 block detectors, each of which consists of a new compact position-sensitive photomultiplier tube (PS-PMT) and an 8 x 4 BGO array. A total number of 7,680 crystals (480 per ring) are positioned to form a 508 mm diameter of 16 detector rings with 7.2 mm pitch and 114 mm axial field of view (FOV). The system is designed to perform activation studies using a monkey in a sitting position. The data can be acquired in either 2D or 3D mode, where the slice collimators are retracted in 3D mode. The transaxial resolution is 2.6 mm FWHM at the center of the FOV, and the average axial resolution on the axis of the ring is 3.3 mm FWHM in the direct slice and 3.2 mm FWHM in the cross slice. The scatter fraction, sensitivity and count rate performance were evaluated for a 10 cm diameter cylindrical phantom. The total system sensitivity is 2.3 kcps/kBq/ml in 2D mode and 22.8 kcps/kBq/ml in 3D mode. The noise equivalent count rate with 3D mode is equivalent to that with 2D mode at five times higher radioactivity level. The applicable imaging capabilities of the scanner was demonstrated by animal studies with a monkey

  10. 18th International Workshop on Radiation Imaging Detectors

    CERN Document Server

    2016-01-01

    The International Workshops on Radiation Imaging Detectors are held yearly and provide an international forum for discussing current research and developments in the area of position sensitive detectors for radiation imaging, including semiconductor detectors, gas and scintillator-based detectors. Topics include processing and characterization of detector materials, hybridization and interconnect technologies, design of counting or integrating electronics, readout and data acquisition systems, and applications in various scientific and industrial fields. The workshop will have plenary sessions with invited and contributed papers presented orally and in poster sessions. The invited talks will be chosen to review recent advances in different areas covered in the workshop.

  11. Estimation of atomic interaction parameters by photon counting

    DEFF Research Database (Denmark)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2014-01-01

    Detection of radiation signals is at the heart of precision metrology and sensing. In this article we show how the fluctuations in photon counting signals can be exploited to optimally extract information about the physical parameters that govern the dynamics of the emitter. For a simple two......-level emitter subject to photon counting, we show that the Fisher information and the Cram\\'er- Rao sensitivity bound based on the full detection record can be evaluated from the waiting time distribution in the fluorescence signal which can, in turn, be calculated for both perfect and imperfect detectors...

  12. Improving Neutron Measurement Capabilities; Expanding the Limits of Correlated Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dougan, Arden [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-11-05

    A number of technical and practical limitations exist within the neutron correlated counting techniques used in safeguards, especially within the algorithms that are used to process and analyze the detected neutron signals. A multi-laboratory effort is underway to develop new and improved analysis and data processing algorithms based on fundamental physics principles to extract additional or more accurate information about nuclear material bearing items.

  13. Summary of activity. Topic I: detectors and experiments. [High-energy detectors for use at ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J; Ozaki, S

    1978-01-01

    Results of a workshop studying detectors for Isabelle experimental halls are described. The detectors must be very reliable. Spatial resolution of the tracking detectors must be high to provide accurate measurements of angle and momentum, retain a short resolving time, and show excellent multiparticle handling capability. Included in the study were hodoscopes, drift chambers, proportional chambers, time projection chambers, Cherenkov counters, electromagnetic shower detectors, and hadron calorimeters. Data handling methods were also included in the studies. (FS)

  14. Photon counting with small pore microchannel plates

    International Nuclear Information System (INIS)

    Martindale, A.; Lapington, J.S.; Fraser, G.W.

    2007-01-01

    We describe the operation of microchannel plates (MCPs) with 3.2μm diameter channels as photon counting detectors of soft X-rays. Gain and temporal resolution measurements are compared with theoretical scaling laws for channel diameter. A minimum pulse width of 264ps is observed for a two stage multiplier at a total bias voltage of ∼1930V

  15. POSSuMUS: a position sensitive scintillating muon SiPM detector

    CERN Document Server

    Ruschke, Alexander

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle’s position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm2 to few m2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module ...

  16. In Situ Object Counting System (ISOCS) Technique: Cost-Effective Tool for NDA Verification in IAEA Safeguards

    International Nuclear Information System (INIS)

    Braverman, E.; Lebrun, A.; Nizhnik, V.; Rorif, F.

    2010-01-01

    Uranium materials measurements using the ISOCS technique play an increasing role in IAEA verification activities. This methodology provides high uranium/plutonium sensitivity and a low detection limit together with the capability to measure items with different shapes and sizes. In addition, the numerical absolute efficiency calibration of a germanium detector which is used by the technique does not require any calibration standards or reference materials. ISOCS modelling software allows performing absolute efficiency calibration for items of arbitrary container shape and wall material, matrix chemical composition, material fill-height, uranium or plutonium weight fraction inside the matrix and even nuclear material/matrix non-homogeneous distribution. Furthermore, in a number of cases, some key parameters such as matrix density and U/Pu weight fraction can be determined along with analysis of nuclear material mass and isotopic composition. These capabilities provide a verification solution suitable for a majority of cases where quantitative and isotopic analysis should be performed. Today, the basic tool for uranium and plutonium mass measurement used in Safeguards verification activities is the neutron counting technique which employs neutron coincidence and multiplicity counters. In respect to the neutron counting technique, ISOCS calibrated detectors have relatively low cost. Taking into account its advantages, this methodology becomes a cost-effective solution for nuclear material NDA verification. At present, the Agency uses ISOCS for quantitative analysis in a wide range of applications: - Uranium scrap materials; - Uranium contaminated solid wastes; - Uranium fuel elements; - Some specific verification cases like measurement of Pu-Be neutron sources, quantification of fission products in solid wastes etc. For uranium hold-up measurements, ISOCS the only available methodology for quantitative and isotopic composition analysis of nuclear materials deposited

  17. Characterization of imaging pixel detectors of Si and CdTe read out with the counting X-ray chip MPEC 2.3; Charakterisierung von bildgebenden Pixeldetektoren aus Si und CdTe ausgelesen mit dem zaehlenden Roentgenchip MPEC 2.3

    Energy Technology Data Exchange (ETDEWEB)

    Loecker, M.

    2007-04-15

    Single photon counting detectors with Si- and CdTe-sensors have been constructed and characterized. As readout chip the MPEC 2.3 is used which consists of 32 x 32 pixels with 200 x 200 {mu}m{sup 2} pixel size and which has a high count rate cabability (1 MHz per pixel) as well as a low noise performance (55 e{sup -}). Measurements and simulations of the detector homogeneity are presented. It could be shown that the theoretical maximum of the homogeneity is reached (quantum limit). By means of the double threshold of the MPEC chip the image contrast can be enhanced which is demonstrated by measurement and simulation. Also, multi-chip-modules consisting of 4 MPEC chips and a single Si- or CdTe-sensor have been constructed and successfully operated. With these modules modulation-transfer-function measurements have been done showing a good spatial resolution of the detectors. In addition, multi-chip-modules according to the Sparse-CMOS concept have been built and tests characterizing the interconnection technologies have been performed.

  18. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    Science.gov (United States)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  19. Use of a silicon surface-barrier detector for measurement of high-energy end loss electrons in a tandem mirror

    International Nuclear Information System (INIS)

    Saito, T.; Kiwamoto, Y.; Honda, T.; Kasugai, A.; Kurihara, K.; Miyoshi, S.

    1991-01-01

    An apparatus for the measurement of high-energy electrons (10--500 keV) with a silicon surface-barrier detector is described. The apparatus has special features. In particular, a fast CAMAC transient digitizer is used to directly record the wave form of a pulse train from the detector and then pulse heights are analyzed with a computer instead of on a conventional pulse height analyzer. With this method the system is capable of detecting electrons with a count rate as high as ∼300--400 kilocounts/s without serious deterioration of performance. Moreover, piled up signals are reliably eliminated from analysis. The system has been applied to measure electron-cyclotron-resonance-heating-induced end loss electrons in the GAMMA 10 tandem mirror and has yielded information relating to electron heating and diffusion in velocity space

  20. High Channel Count Time-to-Digital Converter and Lasercom Processor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — High-channel-count, high-precision, and high-throughput time-to-digital converters (TDC) are needed to support detector arrays used in deep-space optical...

  1. Slow scan sit detector for x-ray diffraction studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Milch, J.R.

    1978-01-01

    A TV-type x-ray detector using a SIT vidicon has been used for biological diffraction studies at the EMBL outstation at DESY, Hamburg, Germany. The detector converts the two-dimensional diffraction pattern to a charge pattern on the vidicon target, which is read out in the slow-scan mode. This detector has high DOE, no count-rate limit, and is simple and inexpensive to construct. Radiation from the storage ring DORIS was used to study the structure of live muscle at various phases of contraction. Typically the count-rate on the detector was 10 6 x-rays/sec and a total exposure of a few seconds was needed to record the weak diffraction from muscle. This compares with usual exposure times of several hours using a rotating anode generator and film

  2. Development of a high-speed single-photon pixellated detector for visible wavelengths

    CERN Document Server

    Mac Raighne, Aaron; Mathot, Serge; McPhate, Jason; Vallerga, John; Jarron, Pierre; Brownlee, Colin; O’Shea, Val

    2009-01-01

    We present the development of a high-speed, single-photon counting, Hybrid Photo Detector (HPD). The HPD consists of a vacuum tube, containing the detector assembly, sealed with a transparent optical input window. Photons incident on the photocathode eject a photoelectron into a large electric field, which accelerates the incident electron onto a silicon detector. The silicon detector is bump bonded to a Medipix readout chip. This set-up allows for the detection and readout of low incident photon intensities at rates that are otherwise unattainable with current camera technology. Reported is the fabrication of the camera that brings together a range of sophisticated design and fabrication techniques and the expected theoretical imaging performance. Applications to cellular and molecular microscopy are also described in which single-photon-counting abilities at high frame rates are crucial

  3. Progress in multi-element silicon detectors for synchrotron XRF applications

    International Nuclear Information System (INIS)

    Ludewigt, B.; Rossington, C.; Kipnis, I.; Krieger, B.

    1995-10-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon and high purity germanium detectors for high count rate, low noise synchrotron x-ray fluorescence applications. We have been developing these types of detectors specifically for low noise synchrotron applications, such as extended x-ray absorption fine structure spectroscopy, microprobe x-ray fluorescence and total reflection x-ray fluorescence. The current version of the 192-element detector and integrated circuit preamplifier, cooled to -25 degrees C with a single-stage thermoelectric cooler, achieves an energy resolution of <200 eV full width of half maximum (FWHM) per channel (at 5.9 keV, 2 μs peaking time), and each detector element is designed to handle ∼20 kHz count rate. The detector system will soon be completed to 64 channels using new application specific integrated circuit (ASIC) amplifier chips, new CAMAC (Computer Automated Measurement and Control standard) analog-to-digital converters recently developed at Lawrence Berkeley National Laboratory (LBNL), CAMAC histogramming modules, and Macintosh-based data acquisition software. We report on the characteristics of this detector system, and the work in progress towards the next generation system

  4. System architecture of Detector Control and safety for the ATLAS Inner Detector Upgrade

    International Nuclear Information System (INIS)

    Ferrere, D.; Kersten, S.

    2011-01-01

    In the current ATLAS Upgrade plan a new Inner Detector (ID) based upon silicon sensor technology is being considered. The operational monitoring and control of the ID will be very demanding. The Detector Control System (DCS) is a common tool that is essential for the operational safety of a system. Even at this early stage the DCS system architecture has to be defined such that it is well integrated and optimized for its later implementation and use. For example the DCS diagnostics for the front-end (FE) chips is a serious option being considered that needs an early requirement and specification definition. In addition one of the main constraints is the service reuse between the service patch panels of the ATLAS ID and the counting room that limits the number of electrical lines to be reused. Conceptual differences in terms of readout architecture and layout have been identified between the strip and the pixel detector that lead to two distinct architectures. Nevertheless, the limitation of available electrical lines going to the counting room as well as the low material budget requirements inside the ID volume are two major constraints that lead the ID to consider an on-detector radiation hard integrated circuitry for the slow control. At this stage of the project, the definitions of the logical actions and protocol for the ADCs of such a chip are still being specified. In addition the experience gained from the current ID will be essential for the guidance of tuning the future DCS architecture in the coming years.

  5. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  6. Material decomposition and virtual non-contrast imaging in photon counting computed tomography: an animal study

    Science.gov (United States)

    Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2016-03-01

    The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.

  7. Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications

    International Nuclear Information System (INIS)

    Sobott, B. A.; Broennimann, Ch.; Schmitt, B.; Trueb, P.; Schneebeli, M.; Lee, V.; Peake, D. J.; Elbracht-Leong, S.; Schubert, A.; Kirby, N.; Boland, M. J.; Chantler, C. T.; Barnea, Z.; Rassool, R. P.

    2013-01-01

    Detector response functionals are found to have useful but also limited application to synchrotron studies where bunched fills are becoming common. By matching the detector response function to the source temporal structure, substantial improvements in efficiency, count rate and linearity are possible. The performance of a single-photon-counting hybrid pixel detector has been investigated at the Australian Synchrotron. Results are compared with the body of accepted analytical models previously validated with other detectors. Detector functionals are valuable for empirical calibration. It is shown that the matching of the detector dead-time with the temporal synchrotron source structure leads to substantial improvements in count rate and linearity of response. Standard implementations are linear up to ∼0.36 MHz pixel −1 ; the optimized linearity in this configuration has an extended range up to ∼0.71 MHz pixel −1 ; these are further correctable with a transfer function to ∼1.77 MHz pixel −1 . This new approach has wide application both in high-accuracy fundamental experiments and in standard crystallographic X-ray fluorescence and other X-ray measurements. The explicit use of data variance (rather than N 1/2 noise) and direct measures of goodness-of-fit (χ r 2 ) are introduced, raising issues not encountered in previous literature for any detector, and suggesting that these inadequacies of models may apply to most detector types. Specifically, parametrization of models with non-physical values can lead to remarkable agreement for a range of count-rate, pulse-frequency and temporal structure. However, especially when the dead-time is near resonant with the temporal structure, limitations of these classical models become apparent. Further, a lack of agreement at extreme count rates was evident

  8. Counted Sb donors in Si quantum dots

    Science.gov (United States)

    Singh, Meenakshi; Pacheco, Jose; Bielejec, Edward; Perry, Daniel; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2015-03-01

    Deterministic control over the location and number of donors is critical for donor spin qubits in semiconductor based quantum computing. We have developed techniques using a focused ion beam and a diode detector integrated next to a silicon MOS single electron transistor to gain such control. With the diode detector operating in linear mode, the numbers of ions implanted have been counted and single ion implants have been detected. Poisson statistics in the number of ions implanted have been observed. Transport measurements performed on samples with counted number of implants have been performed and regular coulomb blockade and charge offsets observed. The capacitances to various gates are found to be in agreement with QCAD simulations for an electrostatically defined dot. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  9. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    CERN Document Server

    Vallerga, John; Tremsina, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan G; CERN. Geneva

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 256 x 256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest.

  10. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    International Nuclear Information System (INIS)

    Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ('Medipix2') with individual pixels that amplify, discriminate and count input events. The detector has 256x256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7x7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest

  11. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    Science.gov (United States)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  12. A coincidence-type ion-electron converter detector for low-energy protons

    International Nuclear Information System (INIS)

    Benka, O.; Weinzierl, P.; Dobrozemsky, R.; Stratowa, C.

    1981-04-01

    A coincidence type ion-electron converter detector has been developed and used - together with an electrostatic energy-analyser - for precision measurements of the energy distribution of recoil protons from free-neutron decay. The most important aspect of the development was, besides keeping the background below 0,2 counts/sec in the presence of a certain radiation background, to achieve a high and energy-independent counting probability for protons with energies between 100 and 1000 eV. With an acceleration voltage of about 25 kV and Al-foils (20 to 35 ug/cmsup2) as converter, we obtained counting efficiences of 70 to 85 percent. The design and performance of the detector system, employing six foils with different sensitive areas, are described and discussed in detail. (author)

  13. Calibration of the Accuscan II In Vivo System for I-131 Thyroid Counting

    Energy Technology Data Exchange (ETDEWEB)

    Orval R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-131 thyroid counting. The source used for the calibration was an Analytics mixed gamma source 82834-121 distributed in an epoxy matrix in a Wheaton Liquid Scintillation Vial with energies from 88.0 keV to 1836.1 keV. The center of the detectors was position 64-feet from the vault floor. This position places the approximate center line of the detectors at the center line of the source in the thyroid tube. The calibration was performed using an RMC II phantom (Appendix J). Validation testing was performed using a Ba-133 source and an ANSI N44.3 Phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibrations including verification counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-131 and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  14. A flowrate measurement method by counting of radioactive particles suspended in a liquid

    International Nuclear Information System (INIS)

    Daniel, G.

    1983-04-01

    By external counting of fine #betta# emitting radioactive particles suspended in a liquid, the flowrate in a system of pipes can be measured. The study comprises three phases: 1. - The hydraulic validity of the method is demonstrated in laminar as well as in turbulent flow under certain conditions of particles size and density and of liquid viscosity. 2. - Radioactive labelling of microspheres of serumalbumin or ion exchange resins with indium 113m delivered by a generator Tin 113 → Indium 113m. 3. - Counting with a scintillation detector: a method of threshold overstepping is experimented with a mechanical or electronic simulator; the statistical study of particle superposition under the detector enables a correction for the resulting counting losses to be proposed. The method provides absolute measurements, but is particularly suitable to measure relative flowrates in a hydraulic network. It can be continuous and does not perturb the flow and the network. The accuracy of the method is analysed in details [fr

  15. Study of die-away time for a slab type passive neutron detector system

    International Nuclear Information System (INIS)

    Muralidhar, S.; Gubbi, G.K.; Dange, S.P.; Ali, M.Y.; Tomar, B.S.; Basu, T.K.; Anand, R.P.

    2003-01-01

    Full text: A slab type passive neutron detector coincidence counting system has been fabricated to estimate the plutonium content in nuclear materials. The present work focuses on the measurement of the die-away time of the system. The results obtained by carrying out neutron counting experiments, using the slab detector and a PC-based data acquisition system, are compared to the die-away time estimated by using Monte Carlo N-particle Transport (MCNP) code for the detector configuration. These results are presented along with the parameters and method for measuring the die-away time both experimentally and theoretically. Results of this validity check are in good agreement

  16. Colour quenching corrections on the measurement of 90Sr through Cerenkov counting

    International Nuclear Information System (INIS)

    Mosqueda, F.; Villa, M.; Vaca, F.; Bolivar, J.P.

    2007-01-01

    The determination of 90 Sr through the Cerenkov radiation emitted by its descendant 90 Y is a well-known method and firmly established in literature. Nevertheless, in order to obtain an accurate result based on a Cerenkov measurement, the experimental work must be extremely rigorous because the efficiency of Cerenkov counting is especially sensitive to the presence of colour. Any traces of colour in the sample produce a decrease in the number of photons detected in the photomultipliers and, therefore, this might cause a diminution in Cerenkov counting efficiency. It is essential not only to detect the effect of colour quenching in the sample but also to correct the decrease in counting efficiency. For this reason, colour quenching correction curves versus counting efficiency are usually done when measuring through Cerenkov counting. One of the most widely used techniques to evaluate colour quenching in these measurements is the channel ratio method, which consists of the measurement of the shift of the spectrum measuring the ratio of counts in two different windows. The selection of the windows for the application of the corrections might have an influence on the quality of the fitting parameters of the correction curves efficiency versus colour quenching degree and hence on the final 90 Sr result. This work is focused on the calculation of the counting efficiency decrease using the channel ratio method and on obtaining the best fitting correction curve. For this purpose, empirical curves obtained through artificial quenchers have been studied and the results have been tested in real samples. Additionally, given that the Packard Tri-Carb 3170 TR/SL liquid scintillation counter is a novel detector for use in Cerenkov counting, the previous calibration of the Tri-Carb 3170 TR/SL detector, necessary for the measurement of 90 Sr, is included

  17. Corrections of the whole body counting for various measurement geometries

    International Nuclear Information System (INIS)

    Fueloep, M.; Ragan, P.; Lahham, A.

    1996-01-01

    A simple method was suggested for making corrections during the calibration of HPGe detectors employed for the whole-body counting of humans ranging from infants to adults. The results obtained by calculations were verified by using phantoms. (P.A.). 1 tab., 5 figs., 3 refs

  18. Smart pile-up consideration for evaluation of high count rate EDS spectra

    International Nuclear Information System (INIS)

    Eggert, F; Anderhalt, R; Nicolosi, J; Elam, T

    2012-01-01

    This work describes a new pile-up consideration for the very high count rate spectra which are possible to acquire with silicon drift detector (SDD) technology. Pile-up effects are the major and still remaining challenge with the use of SDD for EDS in scanning electron microscopes (SEM) with ultra thin windows for soft X-ray detection. The ability to increase the count rates up to a factor of 100 compared with conventional Si(Li) detectors, comes with the problem that the pile-up recognition (pile-up rejection) in pulse processors is not able to improve by the same order of magnitude, just only with a factor of about 3. Therefore, it is common that spectra will show significant pile-up effects if count rates of more than 10000 counts per second (10 kcps) are used. These false counts affect both automatic qualitative analysis and quantitative evaluation of the spectra. The new idea is to use additional inputs for pile-up calculation to shift the applicability towards very high count rates of up to 200 kcps and more, which can be easily acquired with the SDD. The additional input is the 'known' (estimated) background distribution, calculated iteratively during all automated qualitative or quantitative evaluations. This additional knowledge gives the opportunity for self adjustment of the pile-up calculation parameters and avoids over-corrections which challenge the evaluation as well as the pile-up artefacts themselves. With the proposed method the pile-up correction is no longer a 'correction' but an integral part of all spectra evaluation steps. Examples for the application are given with evaluation of very high count rate spectra.

  19. X-ray detectors for structure investigations constructed at JINR

    Energy Technology Data Exchange (ETDEWEB)

    Chernenko, S P [LHE Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Cheremukhina, G A [LHE Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Fateev, O V [LHE Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Smykov, L P [LHE Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Vasiliev, S E [LHE Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Zanevsky, Yu V [LHE Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Kheiker, D M [Institute of Crystallography, Leninsky prosp. 59, 117333 Moscow (Russian Federation); Popov, A N [Institute of Crystallography, Leninsky prosp. 59, 117333 Moscow (Russian Federation)

    1994-09-01

    The performance characteristics of a few high resolution position-sensitive detectors constructed at JINR are presented. The detectors supplied with original software operate with an IBM PC/AT. One of these devices has been succesfully applied for protein molecule structure investigations and the other for studies of the structure-forming process during combustion. The preliminary parameters of the high count rate MWPC with parallel electronics and the testing results of the microstrip detector are given. ((orig.))

  20. Advanced radiation detector development: Advanced semiconductor detector development: Development of a oom-temperature, gamma ray detector using gallium arsenide to develop an electrode detector

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1995-11-01

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. Our general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, we have worked primarily in the development of semiconductor spectrometers with open-quotes single carrierclose quotes response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. We have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in our laboratory in the Phoenix Building on the North Campus. In addition to our laboratory based activities, Professor Knoll has also been a participant in several Department of Energy review activities held in the Forrestal Building and at the Germantown site. The most recent of these has been service on a DOE review panel chaired by Dr. Hap Lamonds that is reviewing the detector development programs supported through the Office of Arms Control and International Security

  1. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  2. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    Energy Technology Data Exchange (ETDEWEB)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  3. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  4. Portable triple silicon detector telescope spectrometer for skin dosimetry

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Larsen, H.E.; Christensen, P.

    1999-01-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 mu m/150 mu m/7000 mu m covered by a 2 mu m thick titanium window. Rejection of photon contributions from mixed beta/photon exposures...... is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact...... detectors. The LabVIEW(TM) software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer...

  5. Test results of a new detector system for gamma ray isotopic measurements

    International Nuclear Information System (INIS)

    Malcom, J.E.; Bonner, C.A.; Hurd, J.R.; Fleissner,

    1993-01-01

    A new type of gamma-ray detector system for isotopic measurements has been developed. This new system, a ''Duo detector'' array, consists of two intrinsic germanium detectors, a planar followed by a coaxial mounted on the same axis within a single cryostat assembly. This configuration allows the isotopic analysis system to take advantage of spectral data results that are collected simultaneously from different gamma-ray energy regimes. Princeton Gamma Tech (PGT) produced several prototypes of this Duo detector array which were then tested by Rocky Flats personnel until the design was optimized. An application for this detector design is in automated, roboticized NDA systems such as those being developed at the Los Alamos TA-55 Plutonium Facility. The Duo detector design reduces the space necessary for the isotopic instrument by a factor of two (only one liquid nitrogen dewar is needed), and also reduces the complexity of the mechanical systems and controlling software. Data will be presented on measurements of nuclear material with a Duo detector for a wide variety of matrices. Results indicate that the maximum count rate can be increased up to 100,000 counts per second yet maintaining excellent resolution and energy rate product

  6. Fractional counts-the simulation of low probability events

    International Nuclear Information System (INIS)

    Coldwell, R.L.; Lasche, G.P.; Jadczyk, A.

    2001-01-01

    The code RobSim has been added to RobWin.1 It simulates spectra resulting from gamma rays striking an array of detectors made up of different components. These are frequently used to set coincidence and anti-coincidence windows that decide if individual events are part of the signal. The first problem addressed is the construction of the detector. Then owing to the statistical nature of the responses of these elements there is a random nature in the response that can be taken into account by including fractional counts in the output spectrum. This somewhat complicates the error analysis, as Poisson statistics are no longer applicable

  7. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    Science.gov (United States)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  8. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Riedel, R.A.; Cooper, R.G.; Funk, L.L.; Clonts, L.G.

    2012-01-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  9. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, R.A., E-mail: riedelra@ornl.gov [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States); Cooper, R.G.; Funk, L.L.; Clonts, L.G. [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States)

    2012-02-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  10. A 500-MHz x-ray counting system with a silicon avalanche photodiode

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2009-01-01

    In the present measurements using a Si-APD X-ray detector and a 500-MHz counting system, the maximum output rate of 3.3x10 8 s -1 was achieved for 8-keV X-rays in beamline BL-14A of the Photon Factory. A small Si-APD of 4-pF electric capacity was used as the detector device in order to output a pulse of a width shorter than 2 ns on the baseline. For processing the fast pulses, the discriminator and the scaler having a throughput of >500 MHz, were prepared. Since the acceleration frequency at the PF ring was 500.1 MHz and the empty-bunch spacing was 12/312 bunches per circumference, the expected maximum rate was 4.8x10 8s-1 according to the counting model for a pulsed photon source. The reason why the present system did not reach the expected value was the baseline shift at the amplifier outputs. The rise of +0.2 V was observed at a discriminator output of 3.3x10 8 s -1 , while the pulse height was lower than 0.2 V. The baseline shift was caused by an AC coupling circuit in the amplifier. If a DC coupling circuit can be used for the amplifier, instead of the AC coupling circuit, or an active adjustment to compensate the baseline shift is installed, the counting system will show an ideal response. Although the present system including NIM modules was not so compact, we would like to develop a new fast-counting circuit for a Si-APD array detector of more than 100 channels of small pixels, in near future. (author)

  11. Dual concentric crystal low energy photon detector

    Science.gov (United States)

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  12. Superconducting nanowire single-photon detectors: physics and applications

    International Nuclear Information System (INIS)

    Natarajan, Chandra M; Tanner, Michael G; Hadfield, Robert H

    2012-01-01

    Single-photon detectors based on superconducting nanowires (SSPDs or SNSPDs) have rapidly emerged as a highly promising photon-counting technology for infrared wavelengths. These devices offer high efficiency, low dark counts and excellent timing resolution. In this review, we consider the basic SNSPD operating principle and models of device behaviour. We give an overview of the evolution of SNSPD device design and the improvements in performance which have been achieved. We also evaluate device limitations and noise mechanisms. We survey practical refrigeration technologies and optical coupling schemes for SNSPDs. Finally we summarize promising application areas, ranging from quantum cryptography to remote sensing. Our goal is to capture a detailed snapshot of an emerging superconducting detector technology on the threshold of maturity. (topical review)

  13. Study of a nTHGEM-based thermal neutron detector

    Science.gov (United States)

    Li, Ke; Zhou, Jian-Rong; Wang, Xiao-Dong; Xiong, Tao; Zhang, Ying; Xie, Yu-Guang; Zhou, Liang; Xu, Hong; Yang, Gui-An; Wang, Yan-Feng; Wang, Yan; Wu, Jin-Jie; Sun, Zhi-Jia; Hu, Bi-Tao

    2016-07-01

    With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in 3He gas supply, research on new types of neutron detector as an alternative to 3He is a research hotspot in the field of particle detection. GEM (Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic nTHGEM (neutron THick GEM) for neutron detection. The performance of the nTHGEM working in different Ar/CO2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single nTHGEM has been tested for 2-D imaging using a 252Cf neutron source. The key parameters of the performance of the nTHGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector. Supported by National Natural Science Foundation of China (11127508, 11175199, 11205253, 11405191), Key Laboratory of Neutron Physics, CAEP (2013DB06, 2013BB04) and CAS (YZ201512)

  14. A pulse stacking method of particle counting applied to position sensitive detection

    International Nuclear Information System (INIS)

    Basilier, E.

    1976-03-01

    A position sensitive particle counting system is described. A cyclic readout imaging device serves as an intermediate information buffer. Pulses are allowed to stack in the imager at very high counting rates. Imager noise is completely discriminated to provide very wide dynamic range. The system has been applied to a detector using cascaded microchannel plates. Pulse height spread produced by the plates causes some loss of information. The loss is comparable to the input loss of the plates. The improvement in maximum counting rate is several hundred times over previous systems that do not permit pulse stacking. (Auth.)

  15. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    Science.gov (United States)

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  16. Standardization of Ga-68 by coincidence measurements, liquid scintillation counting and 4πγ counting.

    Science.gov (United States)

    Roteta, Miguel; Peyres, Virginia; Rodríguez Barquero, Leonor; García-Toraño, Eduardo; Arenillas, Pablo; Balpardo, Christian; Rodrígues, Darío; Llovera, Roberto

    2012-09-01

    The radionuclide (68)Ga is one of the few positron emitters that can be prepared in-house without the use of a cyclotron. It disintegrates to the ground state of (68)Zn partially by positron emission (89.1%) with a maximum energy of 1899.1 keV, and partially by electron capture (10.9%). This nuclide has been standardized in the frame of a cooperation project between the Radionuclide Metrology laboratories from CIEMAT (Spain) and CNEA (Argentina). Measurements involved several techniques: 4πβ-γ coincidences, integral gamma counting and Liquid Scintillation Counting using the triple to double coincidence ratio and the CIEMAT/NIST methods. Given the short half-life of the radionuclide assayed, a direct comparison between results from both laboratories was excluded and a comparison of experimental efficiencies of similar NaI detectors was used instead. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The Goddard Integral Field Spectrograph at Apache Point Observatory: Current Status and Progress Towards Photon Counting

    Science.gov (United States)

    McElwain, Michael W.; Grady, Carol A.; Bally, John; Brinkmann, Jonathan V.; Bubeck, James; Gong, Qian; Hilton, George M.; Ketzeback, William F.; Lindler, Don; Llop Sayson, Jorge; Malatesta, Michael A.; Norton, Timothy; Rauscher, Bernard J.; Rothe, Johannes; Straka, Lorrie; Wilkins, Ashlee N.; Wisniewski, John P.; Woodgate, Bruce E.; York, Donald G.

    2015-01-01

    We present the current status and progress towards photon counting with the Goddard Integral Field Spectrograph (GIFS), a new instrument at the Apache Point Observatory's ARC 3.5m telescope. GIFS is a visible light imager and integral field spectrograph operating from 400-1000 nm over a 2.8' x 2.8' and 14' x 14' field of view, respectively. As an IFS, GIFS obtains over 1000 spectra simultaneously and its data reduction pipeline reconstructs them into an image cube that has 32 x 32 spatial elements and more than 200 spectral channels. The IFS mode can be applied to a wide variety of science programs including exoplanet transit spectroscopy, protostellar jets, the galactic interstellar medium probed by background quasars, Lyman-alpha emission line objects, and spectral imaging of galactic winds. An electron-multiplying CCD (EMCCD) detector enables photon counting in the high spectral resolution mode to be demonstrated at the ARC 3.5m in early 2015. The EMCCD work builds upon successful operational and characterization tests that have been conducted in the IFS laboratory at NASA Goddard. GIFS sets out to demonstrate an IFS photon-counting capability on-sky in preparation for future exoplanet direct imaging missions such as the AFTA-Coronagraph, Exo-C, and ATLAST mission concepts. This work is supported by the NASA APRA program under RTOP 10-APRA10-0103.

  18. Gamma-ray pulse height spectrum analysis on systems with multiple Ge detectors using spectrum summing

    Energy Technology Data Exchange (ETDEWEB)

    Killian, E.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    A technique has been developed at the Idaho National Engineering Laboratory to sum high resolution gamma-ray pulse spectra from systems with multiple Ge detectors. Lockheed Martin Idaho Technologies Company operates a multi-detector spectrometer configuration at the Stored Waste Examination Pilot Plant facility which is used to characterize the radionuclide contents in waste drums destined for shipment to Waste Isolation Pilot Plant. This summing technique was developed to increase the sensitivity of the system, reduce the count times required to properly quantify the radio-nuclides and provide a more consistent methodology for combining data collected from multiple detectors. In spectrometer systems with multiple detectors looking at non homogeneous waste forms it is often difficult to combine individual spectrum analysis results from each detector to obtain a meaningful result for the total waste container. This is particularly true when the counting statistics in each individual spectrum are poor. The spectrum summing technique adds the spectra collected by each detector into a single spectrum which has better counting statistics than each individual spectrum. A normal spectral analysis program can then be used to analyze the sum spectrum to obtain radio-nuclide values which have smaller errors and do not have to be further manipulated to obtain results for the total waste container. 2 refs., 2 figs.

  19. Soft X ray spectrometry at high count rates

    International Nuclear Information System (INIS)

    Blanc, P.; Brouquet, P.; Uhre, N.

    1978-06-01

    Two modifications of the classical method of X-ray spectrometry by a semi-conductor diode permit a count rate of 10 5 c/s with an energy resolution of 350 eV. With a specially constructed pulse height analyzer, this detector can measure four spectra of 5 ms each, in the range of 1-30 keV, during a plasma shot

  20. Preliminary characterization of a single photon counting detection system for CT application

    International Nuclear Information System (INIS)

    Belcari, N.; Bisogni, M.G.; Carpentieri, C.; Del Guerra, A.; Delogu, P.; Panetta, D.; Quattrocchi, M.; Rosso, V.; Stefanini, A.

    2007-01-01

    The aim of this work is to evaluate the capability of a single photon counting acquisition system based on the Medipix2 read-out chip for Computed Tomography (CT) applications in Small Animal Imaging. We used a micro-focus X-ray source with a W anode. The detection system is based on the Medipix2 read-out chip, bump-bonded to a 1 mm thick silicon pixel detector. The read-out chip geometry is a matrix of 256x256 cells, 55 μmx55 μm each. This system in planar radiography shows a good detection efficiency (about 70%) at the anode voltage of 30 kV and a good spatial resolution (MTF=10% at 16.8 lp/mm). Starting from these planar performances we have characterized the system for the tomography applications with phantoms. We will present the results obtained as a function of magnification with two different background medium compositions. The effect of the reconstruction algorithm on image quality will be also discussed