WorldWideScience

Sample records for detecting acylated homoserine

  1. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography

    Science.gov (United States)

    Shaw, Paul D.; Ping, Gao; Daly, Sean L.; Cha, Chung; Cronan, John E.; Rinehart, Kenneth L.; Farrand, Stephen K.

    1997-01-01

    Many Gram-negative bacteria regulate gene expression in response to their population size by sensing the level of acyl-homoserine lactone signal molecules which they produce and liberate to the environment. We have developed an assay for these signals that couples separation by thin-layer chromatography with detection using Agrobacterium tumefaciens harboring lacZ fused to a gene that is regulated by autoinduction. With the exception of N-butanoyl-l-homoserine lactone, the reporter detected acyl-homoserine lactones with 3-oxo-, 3-hydroxy-, and 3-unsubstituted side chains of all lengths tested. The intensity of the response was proportional to the amount of the signal molecule chromatographed. Each of the 3-oxo- and the 3-unsubstituted derivatives migrated with a unique mobility. Using the assay, we showed that some bacteria produce as many as five detectable signal molecules. Structures could be assigned tentatively on the basis of mobility and spot shape. The dominant species produced by Pseudomonas syringae pv. tabaci chromatographed with the properties of N-(3-oxohexanoyl)-l-homoserine lactone, a structure that was confirmed by mass spectrometry. An isolate of Pseudomonas fluorescens produced five detectable species, three of which had novel chromatographic properties. These were identified as the 3-hydroxy- forms of N-hexanoyl-, N-octanoyl-, and N-decanoyl-l-homoserine lactone. The assay can be used to screen cultures of bacteria for acyl-homoserine lactones, for quantifying the amounts of these molecules produced, and as an analytical and preparative aid in determining the structures of these signal molecules. PMID:9177164

  2. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Heydorn, Arne; Hentzer, Morten

    2001-01-01

    In order to perform single-cell analysis and online studies of N-acyl homoserine lactone (AHL)-mediated communication among bacteria, components of the Vibrio fischeri quorum sensor encoded by luxR-P-luxI have been fused to modified versions of gfpmut3* genes encoding unstable green fluorescent...... proteins. Bacterial strains harboring this green fluorescent sensor detected a broad spectrum of AHL molecules and were capable of sensing the presence of 5 nM N-3-oxohexanoyl-L-homoserine lactone in the surroundings. In combination with epifluorescent microscopy, the sensitivity of the sensor enabled AHL...

  3. Quorum sensing signal molecules (acylated homoserine lactones) in Gram-negative fish pathogenic bacteria

    DEFF Research Database (Denmark)

    Bruhn, Jesper Bartholin; Dalsgaard, Inger; Nielsen, K.F.

    2005-01-01

    The aim of the present study was to investigate the production of quorum sensing signals (specifically acylated homoserine lactones, AHLs) among a selection of strains of Gram-negative fish bacterial pathogens. These signals are involved in the regulation of virulence factors in some human...... salmonicida and Vibrio splendidus were also positive. Aeromonas species produced N-butanoyl homoserine lactone (BHL) and N-hexanoyl homoserine lactone (HHL) and 1 additional product, whereas N-3-oxo-hexanoyl homoserine lactone (OHHL) and HHL were detected in Vibrio salmonicida. N-3-oxo-octanoyl homoserine...... lactone (OOHL) and N-3-octanoyl homoserine lactone (OHL) were detected in Y. ruckeii. AHLs were not detected from strains of Photobacterium damselae, Flavobacterium psychrophilum or Moritella viscosa. AHLs were extracted from fish infected with Y. ruckeri but not from fish infected with A. salmonicida...

  4. Profiling of acylated homoserine lactones of Vibrio anguillarum in vitro and in vivo: influence of growth conditions and serotype

    DEFF Research Database (Denmark)

    Buchholtz, Chrstiane; Nielsen, Kristian Fog; L. Milton, Debra

    2006-01-01

    Vibrio anguillarum produces several interlinked acylated homoserine lactone (AHL) signal molecules which may Vibrio anguillarum produces several interlinked acylated homoserine lactone (AHL) signal molecules which may influence expression of its virulence factors such as exoprotease production...... concentration) has little influence on the AHL-profile. Most strains produced N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL) and N-(3-hydroxy-hexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL) as the dominant molecules. Also, two spots with AHL activity appeared on TLC plates, which could...... not be identified as AHL structures. Trace amounts of N-(3-hydroxy-octanoyl)-l-homoserine lactone, N-(3-hydroxy-decanoyl)-l-homoserine lactone and N-(3-hydroxy-dodecanoyl)-l-homoserine lactone (3-hydroxy-C8-HSL, 3-hydroxy-C10-HSL and 3-oxo-C12-HSL, respectively) were also detected by HPLC-HRMS analysis from...

  5. Profiling acylated homoserine lactones in Yersinia ruckeri and influence of exogenous acyl homoserine lactones and known quorum-sensing inhibitors on protease production

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Nielsen, Kristian Fog; Dalsgaard, Inger

    2007-01-01

    produced at least eight different acylated homoserine lactones (AHLs) with N-(3-oxooctanoyl)-l-homoserine lactone (3-oxo-C8-HSL) being the dominant molecule. Also, some uncommon AHL, N-(3-oxoheptanoyl)-l-homoserine lactone (3-oxo-C7-HSL) and N-(3-oxononanoyl)-l-homoserine lactone (3-oxo-C9-HSL), were...

  6. [Activation of the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones in the presence of nitrofurans and NO generators].

    Science.gov (United States)

    Zaĭtseva, Iu V; Granik, V G; Belik, A S; Koksharova, O A; Khmel', I A

    2010-01-01

    Nitrofurans (nitrofurazone, nitrofurantoin, furazidin, nifuroxazide), and nitric oxide generators (sodium nitroprusside and isosorbide mononitrate) in subinhibitory concentrations were shown to significantly increase the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones, signaling molecules of Quorum Sensing (QS) regulatory systems. The highest activation of bioluminescence (up to 250-400 fold) was observed in the presence of nitrofurazone on E. coli DH5alpha biosensors containing lux-reporter plasmids pSB401 or pSB536. However, this activation was not specifically associated with the functioning of QS systems. We suggest that the effect observed results from a direct action of nitrofurans and NO donors on the process of bioluminescence. The data indicate the necessity of using the biosensors that make it possible to detect specific effects of substances tested on QS regulation.

  7. Imaging N-acyl homoserine lactone quorum sensing in vivo

    DEFF Research Database (Denmark)

    Christensen, Louise Dahl; van Gennip, Maria; Jakobsen, Tim Holm

    2011-01-01

    In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged...

  8. Imaging N-acyl homoserine lactone quorum sensing in vivo

    DEFF Research Database (Denmark)

    Hultqvist, Louise Dahl; Alhede, Maria; Jakobsen, Tim Holm

    2018-01-01

    In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged...

  9. Production of acylated homoserine lactones by psychrotrophic members of the Enterobacteriaceae isolated from foods

    DEFF Research Database (Denmark)

    Gram, Lone; Christensen, A.B.; Flodgaard, Lars

    1999-01-01

    Bacteria are able to communicate and gene regulation can be mediated through the production of acylated homoserine lactone (AHL) signal molecules. These signals play important roles in several pathogenic and symbiotic bacteria. The following study was undertaken to investigate whether AHLs...... indicated that N-3-oxohexanoyl homoserine lactone was the major AHL of several of the strains isolated from cold-smoked salmon and meat. AHL-positive strains cultured at 5 degrees C in medium supplemented with 4% NaCl produced detectable amounts of AHL(s) at cell densities of 10(6) CFU/ml. AHLs were...

  10. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    Science.gov (United States)

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  11. N-acyl-homoserine lactone-mediated quorum-sensing in Azospirillum: an exception rather than a rule.

    Science.gov (United States)

    Vial, Ludovic; Cuny, Caroline; Gluchoff-Fiasson, Katia; Comte, Gilles; Oger, Phil M; Faure, Denis; Dessaux, Yves; Bally, René; Wisniewski-Dyé, Florence

    2006-11-01

    Forty Azospirillum strains were tested for their ability to synthesize N-acyl-homoserine lactones (AHLs). AHL production was detected for four strains belonging to the lipoferum species and isolated from a rice rhizosphere. AHL molecules were structurally identified for two strains: Azospirillum lipoferum TVV3 produces 3O,C(8)-HSL (N-3-oxo-octanoyl-homoserine-lactone), C(8)-HSL (N-3-octanoyl-homoserine-lactone), 3O,C(10)-HSL (N-3-oxo-decanoyl-homoserine-lactone), 3OH,C(10)-HSL (N-3-hydroxy-decanoyl-homoserine-lactone) and C(10)-HSL (N-3-decanoyl-homoserine-lactone), whereas A. lipoferum B518 produced 3O,C(6)-HSL (N-3-oxo-hexanoyl-homoserine-lactone), C(6)-HSL (N-3-hexanoyl-homoserine-lactone), 3O,C(8)-HSL, 3OH,C(8)-HSL and C(8)-HSL. Genes involved in AHL production were characterized for A. lipoferum TVV3 by generating a genomic library and complementing an AHL-deficient strain with sensor capabilities. Those genes, designated alpI and alpR, were found to belong to the luxI and luxR families, respectively. When cloned in a suitable heterologous host, alpI and alpR could direct the synthesis of the five cognate AHLs present in A. lipoferum TVV3. These two adjacent genes were found to be located on a 85 kb plasmid. Southern hybridization experiments with probes alpI/R indicated that genes involved in AHL production in the three other AHL-producing strains were not closely related to alpI and alpR. This study demonstrates that AHL-based quorum-sensing is not widespread among the genus Azospirillum and could be found only in some A. lipoferum strains.

  12. Triazole-containing N-acyl homoserine lactones targeting the quorum sensing system in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Hansen, Mette Reimert; Jakobsen, Tim H.; Bang, Claus Gunnar

    2015-01-01

    the pathogenesis and antibiotic tolerance of a bacterial biofilm. To identify the structural elements important for antagonistic or agonistic activity against the Pseudomonas aeruginosa LasR protein, we report the synthesis and screening of new triazole-containing mimics of natural N-acyl homoserine lactones....... A series of azide- and alkyne-containing homoserine lactone building blocks was used to prepare an expanded set of 123 homoserine lactone analogues through a combination of solution- and solid-phase synthesis methods. The resulting compounds were subjected to cell-based quorum sensing screening assays...

  13. A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish.

    Science.gov (United States)

    Jiang, Donglei; Liu, Yan; Jiang, Hui; Rao, Shengqi; Fang, Wu; Wu, Mangang; Yuan, Limin; Fang, Weiming

    2018-04-15

    A novel screen-printed cell-based electrochemical sensor was developed to assess bacterial quorum signaling molecules, N-acylhomoserine lactones (AHLs). Screen-printed carbon electrode (SPCE), which possesses excellent properties such as low-cost, disposable and energy-efficient, was modified with multi-walled carbon nanotubes (MWNTs) to improve electrochemical signals and enhance the sensitivity. Rat basophilic leukemia (RBL-2H3) mast cells encapsulated in alginate/graphene oxide (NaAgl/GO) hydrogel were immobilized on the MWNTs/SPCE to serve as recognition element. Electrochemical impedance spectroscopy (EIS) was employed to record the cell impedance signal as-influenced by Pseudomonas aeruginosa quorum-sensing molecule, N-3-oxododecanoyl homoserine lactone (3OC 12 -HSL). Experimental results show that 3OC 12 -HSL caused a significant decrease in cell viability in a dose dependent manner. The EIS value decreased with concentrations of 3OC 12 -HSL in the range of 0.1-1μM, and the detection limit for 3OC 12 -HSL was calculated to be 0.094μM. These results were confirmed via cell viability, SEM, TEM analysis. Next, the sensor was successfully applied to monitoring the production of AHLs by spoilage bacteria in three different freshwater fish juice samples which efficiently proved the practicability of this cell based method. Therefore, the proposed cell sensor may serve as an innovative and effective approach to the measurement of quorum signaling molecule and thus provides a new avenue for real-time monitoring the spoilage bacteria in freshwater fish production. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    DEFF Research Database (Denmark)

    Rasmussen, Bastian Barker; Nielsen, Kristian Fog; Machado, Henrique

    2014-01-01

    Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the en......Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae...... violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were...

  15. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    Directory of Open Access Journals (Sweden)

    Bastian Barker Rasmussen

    2014-11-01

    Full Text Available Bacterial quorum sensing (QS and the corresponding signals, acyl homoserine lactones (AHLs, were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl (OH-C6 and N-(3-hydroxy-decanoyl (OH-C10 homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7 HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria.

  16. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1

    NARCIS (Netherlands)

    Sio, CF; Otten, LG; Cool, RH; Diggle, SP; Braun, PG; Daykin, M; Camara, M; Williams, P; Quax, WJ; Bos, R

    The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase

  17. Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules

    Directory of Open Access Journals (Sweden)

    Nina Yusrina Muhamad Yunos

    2014-06-01

    Full Text Available Quorum sensing (QS is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs. We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-l-homoserine lactone (C8-HSL and N-decanoyl-l-homoserine lactone (C10-HSL. To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07.

  18. Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].

    Directory of Open Access Journals (Sweden)

    Christopher N LaRock

    Full Text Available The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature.

  19. Presence of acylated homoserine lactones (AHLs) and AHL-producing bacteria in meat and potential role of AHL in spoilage of meat

    DEFF Research Database (Denmark)

    Bruhn, Jesper Bartholin; Christensen, Allan Beck; Flodgaard, Lars

    2004-01-01

    Quorum-sensing (QS) signals (N-acyl homoserine lactones [AHLs]) were extracted and detected from five commercially produced vacuum-packed meat samples. Ninety-six AHL-producing bacteria were isolated, and 92 were identified as Enterobacteriaceae. Hafnia alvei was the most commonly identified AHL......-producing bacterium. Thin-layer chromatographic profiles of supernatants from six H. alvei isolates and of extracts from spoiling meat revealed that the major AHL species had an R-f value and shape similar to N-3-oxo-hexanoyl homoserine lactone (OHHL). Liquid chromatography-mass spectrometry (MS) (high-resolution MS...

  20. Production of acyl-homoserine lactone quorum-sensing signals is widespread in gram-negative Methylobacterium.

    Science.gov (United States)

    Poonguzhali, Selvaraj; Madhaiyan, Munusamy; Sa, Tongmin

    2007-02-01

    Members of Methylobacterium, referred as pink-pigmented facultative methylotrophic bacteria, are frequently associated with terrestrial and aquatic plants, tending to form aggregates on the phyllosphere. We report here that the production of autoinducer molecules involved in the cell-to-cell signaling process, which is known as quorum sensing, is common among Methylobacterium species. Several strains of Methylobacterium were tested for their ability to produce N-acyl-homoserine lactone (AHL) signal molecules using different indicators. Most strains of Methylobacterium tested could elicit a positive response in Agrobacterium tumefaciens harboring lacZ fused to a gene that is regulated by autoinduction. The synthesis of these compounds was cell-density dependent, and the maximal activity was reached during the late exponential to stationary phases. The bacterial extracts were separated by thin-layer chromatography and bioassayed with A. tumefaciens NT1 (traR, tra::lacZ749). They revealed the production of various patterns of the signal molecules, which are strain dependent. At least two signal molecules could be detected in most of the strains tested, and comparison of their relative mobilities suggested that they are homologs of N-octanoyl-DL-homoserine lactone (C8-HSL) and N-decanoyl-DL-homoserine lactone (C10-HSL).

  1. Synthesis of new 3-and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers

    DEFF Research Database (Denmark)

    Olsen, Jacob Alsbæk; Severinsen, Rune Eg; Rasmussen, Thomas Bovbjerg

    2002-01-01

    The quorum sensing mechanism in Gram-negative bacteria uses small intercellular signal molecules, N-acyl-homoserine lactones (AHLs), to control transcription of specific genes in relation to population density. In this communication, we describe the parallel synthesis of new AHL analogues, in which...... substituents have been introduced into the 3- and 4-positions of the lactone ring. These analogues have been screened for their ability to activate and inhibit a Vibrio fischeri LuxI/LuxR-derived quorum sensing reporter system....

  2. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators

    DEFF Research Database (Denmark)

    Stacy, Danielle M.; Le Quement, Sebastian T.; Hansen, Casper L.

    2013-01-01

    triazole-containing analogs of natural N-acyl l-homoserine lactone (AHL) signals as non-native QS agonists and antagonists in Gram-negative bacteria. We synthesized 72 triazole derivatives of five broad structure types in high yields and purities using efficient Cu(i)-catalyzed azide–alkyne couplings...

  3. Production of N-acyl-L-homoserine lactones by P. aeruginosa isolates from chronic lung infections associated with cystic fibrosis

    DEFF Research Database (Denmark)

    Geisenberger, O; Givskov, M; Riedel, K

    2000-01-01

    The N-acyl-L-homoserine lactones (AHLs) produced by sequential Pseudomonas aeruginosa isolates from chronically infected patients with cystic fibrosis were analyzed by thin-layer chromatography. It is demonstrated that both the amounts and the types of molecules synthesized by isolates from...

  4. N-acyl-homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant

    Czech Academy of Sciences Publication Activity Database

    Sieper, T.; Forczek, Sándor; Matucha, Miroslav; Kraemer, P.; Hartmann, A.; Schroeder, P.

    2014-01-01

    Roč. 201, č. 2 (2014), s. 545-555 ISSN 1469-8137 Institutional support: RVO:61389030 Keywords : barley (Hordeum vulgare) * monoclonal antibodies * N-acyl-homoserine lactones (HSLs) Subject RIV: EF - Botanics Impact factor: 6.545, year: 2013

  5. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Surang Chankhamhaengdecha

    2013-01-01

    Full Text Available Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL quorum sensing (QS system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9% and 68 (51.5% of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30±3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  6. Production of acylated homoserine lactones by different serotypes of Vibrio anguillarum both in culture and during infection of rainbow trout

    DEFF Research Database (Denmark)

    Buch, C.; Sigh, J.; Nielsen, J.

    2003-01-01

    Onehundred and forty-eight out of onehundred and fifty strains of Vibrio anguillarum isolated from vibriosis in Danish marine aquaculture produced bacterial communication signals, acylated homoserine lactones, eliciting a response in the Agrobacterium tumefaciens (pZLR4) monitoring system. One...... strain, a serotype O4, induced a strong response in the Chromobacterium violaceum (CV026) monitoring system. Profiles of AHLs determined by TLC separation revealed the presence of at least four AHLs and a compound similar to N-3-oxo-decanoyl homoserine lactone (3-oxo-C10-HSL) was present in all strains...

  7. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability

    Science.gov (United States)

    Ho, Jessica S.; Geske, Grant D.; Blackwell, Helen E.; Ruby, Edward G.

    2014-01-01

    SUMMARY Quorum sensing, a group behavior coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type acyl homoserine-lactone (AHL) quorum sensing is common in Gram-negative proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signaling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogs can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established. PMID:24191970

  8. Detection of the quorum sensing signal molecule N-Dodecanoyl-DL-homoserine lactone below 1 nanomolarconcentrations using surface enhanced Raman spectroscopy

    DEFF Research Database (Denmark)

    Claussen, Anetta; Abdali, Salim; Berg, Rolf W.

    2013-01-01

    suitable tool for in situ measurements of low Acyl-Homoserine Lactone (AHL) concentrations in biofilms containing QS bacteria. Signal molecules communicate information about their environment and coordinate certain physiological activities in QS systems that exist in many bacteria. SERS enables detection...

  9. Diverse profiles of N-acyl-homoserine lactone molecules found in cnidarians.

    Science.gov (United States)

    Ransome, Emma; Munn, Colin B; Halliday, Nigel; Cámara, Miguel; Tait, Karen

    2014-02-01

    Many marine habitats, such as the surface and tissues of marine invertebrates, including corals, harbour diverse populations of microorganisms, which are thought to play a role in the health of their hosts and influence mutualistic and competitive interactions. Investigating the presence and stability of quorum sensing (QS) in these ecosystems may shed light on the roles and control of these bacterial communities. Samples of 13 cnidarian species were screened for the presence and diversity of N-acyl-homoserine lactones (AHLs; a prevalent type of QS molecule) using thin-layer chromatography and an Agrobacterium tumefaciens NTL4 biosensor. Ten of 13 were found to harbour species-specific, conserved AHL profiles. AHLs were confirmed in Anemonia viridis using liquid chromatography tandem mass spectrometry. To assess temporal role and stability, AHLs were investigated in A. viridis from intertidal pools over 16 h. Patterns of AHLs showed conserved profiles except for two mid-chain length AHLs, which increased significantly over the day, peaking at 20:00, but had no correlation with pool chemistry. Denaturing gel electrophoresis of RT-PCR-amplified bacterial 16S rRNA showed the presence of an active bacterial community that changed in composition alongside AHL profiles and contained a number of bands that affiliate with known AHL-producing bacteria. Investigations into the quorum sensing-controlled, species-specific roles of these bacterial communities and how these regulatory circuits are influenced by the coral host and members of the bacterial community are imperative to expand our knowledge of these interactions with respect to the maintenance of coral health. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket

    NARCIS (Netherlands)

    Bokhove, Marcel; Jimenez, Pol Nadal; Quax, Wim J.; Dijkstra, Bauke W.

    2010-01-01

    In many Gram-negative pathogens, their virulent behavior is regulated by quorum sensing, in which diffusible signals such as N-acyl homoserine lactones (AHLs) act as chemical messaging compounds. Enzymatic degradation of these diffusible signals by, e. g., lactonases or amidohydrolases abolishes AHL

  11. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions.

    Science.gov (United States)

    Nieto Penalver, Carlos G; Morin, Danièle; Cantet, Franck; Saurel, Olivier; Milon, Alain; Vorholt, Julia A

    2006-01-23

    Acyl-homoserine lactones (acyl-HSLs) have emerged as important regulatory molecules for many gram-negative bacteria. We have found that Methylobacterium extorquens AM1, a member of the pink-pigmented facultative methylotrophs commonly present on plant surfaces, produces several acyl-HSLs depending upon the carbon source. A novel HSL was discovered with a double unsaturated carbon chain (N-(tetradecenoyl)) (C14:2) and characterized by MS and proton NMR. This long-chain acyl-HSL is synthesized by MlaI that also directs synthesis of C14:1-HSL. The Alphaproteobacterium also produces N-hexanoyl-HSL (C6-HSL) and N-octanoyl-HSL (C8-HSL) via MsaI.

  12. Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer.

    Science.gov (United States)

    Siddiqui, Muhammad Faisal; Sakinah, Mimi; Singh, Lakhveer; Zularisam, A W

    2012-10-31

    Exploring novel biological anti-quorum sensing (QS) agents to control membrane biofouling is of great worth in order to allow sustainable performance of membrane bioreactors (MBRs) for wastewater treatment. In recent studies, QS inhibitors have provided evidence of alternative route to control membrane biofouling. This study investigated the role of Piper betle extract (PBE) as an anti-QS agent to mitigate membrane biofouling. Results demonstrated the occurrence of the N-acyl-homoserine-lactone (AHL) autoinducers (AIs), correlate QS activity and membrane biofouling mitigation. The AIs production in bioreactor was confirmed using an indicator strain Agrobacterium tumefaciens (NTL4) harboring plasmid pZLR4. Moreover, three different AHLs were found in biocake using thin layer chromatographic analysis. An increase in extracellular polymeric substances (EPS) and transmembrane pressure (TMP) was observed with AHL activity of the biocake during continuous MBR operation, which shows that membrane biofouling was in close relationship with QS activity. PBE was verified to mitigate membrane biofouling via inhibiting AIs production. SEM analysis further confirmed the effect of PBE on EPS and biofilm formation. These results exhibited that PBE could be a novel agent to target AIs for mitigation of membrane biofouling. Further work can be carried out to purify the active compound of Piper betle extract to target the QS to mitigate membrane biofouling. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165.

    Science.gov (United States)

    Saroj, Sunil D; Holmer, Linda; Berengueras, Júlia M; Jonsson, Ann-Beth

    2017-03-17

    Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence.

  14. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group.

    Science.gov (United States)

    Schikora, Adam; Schenk, Sebastian T; Hartmann, Anton

    2016-04-01

    Bacterial quorum sensing (QS) mechanisms play a crucial role in the proper performance and ecological fitness of bacterial populations. Many key physiological processes are regulated in a QS-dependent manner by auto-inducers, like the N-acyl homoserine lactones (AHLs) in numerous Gram-negative bacteria. In addition, also the interaction between bacteria and eukaryotic hosts can be regulated by AHLs. Those mechanisms gained much attention, because of the positive effects of different AHL molecules on plants. This positive impact ranges from growth promotion to induced resistance and is quite contrasting to the rather negative effects observed in the interactions between bacterial AHL molecules and animals. Only very recently, we began to understand the molecular mechanisms underpinning plant responses to AHL molecules. In this review, we gathered the latest information in this research field. The first part gives an overview of the bacterial aspects of quorum sensing. Later we focus on the impact of AHLs on plant growth and AHL-priming, as one of the most understood phenomena in respect to the inter-kingdom interactions based on AHL-quorum sensing molecules. Finally, we discuss the potential benefits of the understanding of bacteria-plant interaction for the future agricultural applications.

  15. Investigation of N-acyl homoserine lactone (AHL) molecule production in Gram-negative bacteria isolated from cooling tower water and biofilm samples.

    Science.gov (United States)

    Haslan, Ezgi; Kimiran-Erdem, Ayten

    2013-09-01

    In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria.

  16. Deuterium-labelled N-acyl-l-homoserine lactones (AHLs) - inter-kingdom signalling molecules - synthesis, structural studies, and interactions with model lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Jakubczyk, Dorota [Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Barth, Christoph; Anastassacos, Frances; Koelsch, Patrick; Schepers, Ute [Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Kubas, Adam; Fink, Karin [Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Brenner-Weiss, Gerald [Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Braese, Stefan [Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2012-04-15

    N-Acyl-l-homoserine lactones (AHLs) are synthesized by Gram-negative bacteria. These quorum-sensing molecules play an important role in the context of bacterial infection and biofilm formation. They also allow communication between microorganisms and eukaryotic cells (inter-kingdom signalling). However, very little is known about the entire mechanism of those interactions. Precise structural studies are required to analyse the different AHL isomers as only one form is biologically most active. Theoretical studies combined with experimental infrared and Raman spectroscopic data are therefore undertaken to characterise the obtained compounds. To mimic interactions between AHL and cell membranes, we studied the insertion of AHL in supported lipid bilayers, using vibrational sum-frequency-generation spectroscopy. Deuterium-labelled AHLs were thus synthesized. Starting from readily available deuterated fatty acids, a two-step procedure towards deuterated N-acyl-l-homoserine lactones with varying chain lengths is described. This included the acylation of Meldrum's acid followed by amidation. Additionally, the detailed analytical evaluation of the products is presented herein. (orig.)

  17. Deuterium-labelled N-acyl-l-homoserine lactones (AHLs) - inter-kingdom signalling molecules - synthesis, structural studies, and interactions with model lipid membranes

    International Nuclear Information System (INIS)

    Jakubczyk, Dorota; Barth, Christoph; Anastassacos, Frances; Koelsch, Patrick; Schepers, Ute; Kubas, Adam; Fink, Karin; Brenner-Weiss, Gerald; Braese, Stefan

    2012-01-01

    N-Acyl-l-homoserine lactones (AHLs) are synthesized by Gram-negative bacteria. These quorum-sensing molecules play an important role in the context of bacterial infection and biofilm formation. They also allow communication between microorganisms and eukaryotic cells (inter-kingdom signalling). However, very little is known about the entire mechanism of those interactions. Precise structural studies are required to analyse the different AHL isomers as only one form is biologically most active. Theoretical studies combined with experimental infrared and Raman spectroscopic data are therefore undertaken to characterise the obtained compounds. To mimic interactions between AHL and cell membranes, we studied the insertion of AHL in supported lipid bilayers, using vibrational sum-frequency-generation spectroscopy. Deuterium-labelled AHLs were thus synthesized. Starting from readily available deuterated fatty acids, a two-step procedure towards deuterated N-acyl-l-homoserine lactones with varying chain lengths is described. This included the acylation of Meldrum's acid followed by amidation. Additionally, the detailed analytical evaluation of the products is presented herein. (orig.)

  18. [The Effect of Introduction of the Heterologous Gene Encoding the N-acyl-homoserine Lactonase (aiiA) on the Properties of Burkholderia cenocepacia 370].

    Science.gov (United States)

    Plyuta, V A; Lipasova, V A; Koksharova, O A; Veselova, M A; Kuznetsov, A E; Khmel, I A

    2015-08-01

    To study the role of Quorum Sensing (QS) regulation in the control of the cellular processes of Burkholderia cenocepacia 370, plasmid pME6863 was transferred into its cells. The plasmid contains a heterologous gene encoding for AiiA N-acyl-homoserine lactonase, which degrades the signaling molecules of the QS system of N-acyl-homoserine lactones (AHL). An absence or reduction of AHL in the culture was revealed with the biosensors Chromobacterium violaceum CV026 and Agrobacterium tumifaciens NT1/pZLR4, respectively. The presence of the aiiA gene, which was cloned from Bacillus sp. A24 in the cells of B. cenocepacia 370, resulted in a lack of hemolytic activity, which reduced the extracellular proteolytic activity and decreased the cells' ability to migration in swarms on the surface of the agar medium. The introduction of the aiiA gene did not affect lipase activity, fatty acids synthesis, HCN synthesis, or biofilm formation. Hydrogen peroxide was shown to stimulate biofilm formation by B. cenocepacia 370 in concentrations that inhibited or weakly suppressed bacterial growth. The introduction of the aiiA gene into the cells did not eliminate this effect but it did reduce it.

  19. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic

    DEFF Research Database (Denmark)

    Persson, T.; Rasmussen, Thomas Bovbjerg; Skindersoe, M.

    2005-01-01

    within the binding-site and structural motifs in molecular components isolated from garlic, 7 and 8, shown to be quorum-sensing inhibitors but not antibiotics. A potent quorum-sensing inhibitor N-(heptylsulfanylacetyl)-L-homoserine lactone (10c) was identified. Together with data collected for the other...

  20. N-acyl-L-homoserine lactone-mediated regulation of the Lip secretion system in Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Riedel, K.; Ohnesorg, T.; Krogfelt, K.A.

    2001-01-01

    The analysis of Serratia liquefaciens MG1 'luxAB insertion mutants that are responsive to N-butanoyl-L-homoserine lactone revealed that expression of lipB is controlled by the swr quorum-sensing system. LipB is part of the Lip exporter, a type I secretion system, which is responsible for the secr......The analysis of Serratia liquefaciens MG1 'luxAB insertion mutants that are responsive to N-butanoyl-L-homoserine lactone revealed that expression of lipB is controlled by the swr quorum-sensing system. LipB is part of the Lip exporter, a type I secretion system, which is responsible...

  1. The Effect of Conformational Variability of Phosphotriesterase upon N-acyl-L-homoserine Lactone and Paraoxon Binding: Insights from Molecular Dynamics Studies

    Directory of Open Access Journals (Sweden)

    Dongling Zhan

    2013-12-01

    Full Text Available The organophosphorous hydrolase (PTE from Brevundimonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. Although the natural substrate for PTE is unknown, its loop remodeling (loop 7-2/H254R led to the emergence of a homoserine lactonase (HSL activity that is undetectable in PTE (kcat/km values of up to 2 × 104, with only a minor decrease in PTE paraoxonase activity. In this study, homology modeling and molecular dynamics simulations have been undertaken seeking to explain the reason for the substrate specificity for the wild-type and the loop 7-2/H254R variant. The cavity volume estimated results showed that the active pocket of the variant was almost two fold larger than that of the wild-type (WT enzyme. pKa calculations for the enzyme (the WT and the variant showed a significant pKa shift from WT standard values (ΔpKa = 3.5 units for the His254residue (in the Arg254 variant. Molecular dynamics simulations indicated that the displacement of loops 6 and 7 over the active site in loop 7-2/H254R variant is useful for N-acyl-L-homoserine lactone (C4-HSL with a large aliphatic chain to site in the channels easily. Thence the expanding of the active pocket is beneficial to C4-HSL binding and has a little effect on paraoxon binding. Our results provide a new theoretical contribution of loop remodeling to the rapid divergence of new enzyme functions.

  2. Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora.

    Science.gov (United States)

    Mäe, A; Montesano, M; Koiv, V; Palva, E T

    2001-09-01

    Bacterial pheromones, mainly different homoserine lactones, are central to a number of bacterial signaling processes, including those involved in plant pathogenicity. We previously demonstrated that N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft-rot phytopathogen Erwinia carotovora. In this pathogen, OHL controls the coordinate activation of genes encoding the main virulence determinants, extracellular plant cell wall degrading enzymes (PCWDEs), in a cell density-dependent manner. We suggest that E. carotovora employ quorum sensing to avoid the premature production of PCWDEs and subsequent activation of plant defense responses. To test whether modulating this sensory system would affect the outcome of a plant-pathogen interaction, we generated transgenic tobacco, producing OHL. This was accomplished by ectopic expression in tobacco of the E. carotovora gene expI, which is responsible for OHL biosynthesis. We show that expI-positive transgenic tobacco lines produced the active pheromone and partially complemented the avirulent phenotype of expI mutants. The OHL-producing tobacco lines exhibited enhanced resistance to infection by wild-type E. carotovora. The results were confirmed by exogenous addition of OHL to wild-type plants, which also resulted in increased resistance to E. carotovora.

  3. Identification, cloning and lactonase activity of recombinant protein of N-acyl homoserine lactonase (AiiA from Bacillus thuringiensis 147-115-16 strain.

    Directory of Open Access Journals (Sweden)

    Alvaro Mauricio Florez Escobar

    2014-01-01

    Short title: N-acyl homoserine lactonase (AiiA from Bacillus thuringiensis  Abstract: The quorum-quenching N-acyl homoserine lactonases are a family of bacterial metalloenzymes that participate in degradation of N-acyl homoserine lactones (AHLs, disrupting the quorum sensing system of gram negative bacterial species. From a collection of Bacillus thuringiensis strains isolated in Colombia from plants and exhibiting toxic activity against lepidopteran insects, 310 bacterial isolates were tested to determine lactonase activity by using biosensor systems in presence of synthetic N-hexanoyl-L-homoserine lactone (C6-HSL and N-octanoyl-L-homoserine lactone (C8-HSL. From them, 251 strains showed degrading activity to both C6-HSL and C8-HSL, 57% exhibited degrading activity to C6-HSL and 43% to C8-HSL. One B. thuringiensis strain, denoted as 147-115-16, that exhibit high degrading activity to C6-HSL and C8-HSL, was able to attenuate soft rot symptoms in infected potato slices with Pectobacterium carotovorum. This strain contains an homologous of the aiiA gene that was cloned, sequenced and expressed in Esherichia coli DE3. The recombinant protein AiiA147-11516 displays activity to C6-HSL, C8-HSL, N-(β-ketocaproyl (3-O-C6-HSL and N-3-oxo-dodecanoyl (3-O-C12-HSL. The recombinant strain in the presence of P. caratovorum cultures was able to attenuate the infection, suggesting that it interferes either with the accumulation or with the response to the AHLs signals. Acording to this data and based on previous report from recombinant AiiA147-11516, this enzyme exhibits activity to a wide range of catalytic substrates suggesting its industrial application in the disease control programs through plants transformation. Key words: lactones, Quorum sensing, Quorum quenching, Lactonases, Pectobacterium caratovorum Resumen: Las N-acíl homoserina lactonasas son una familia de metaloenzimas bacterianas que participan en la degradación de N-acil homoserina lactonas (AHLs

  4. The possible role of bacterial signal molecules N-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.)

    International Nuclear Information System (INIS)

    Yang, Cuiyun; Fang, Shengtao; Chen, Dehui; Wang, Jianhua; Liu, Fanghua; Xia, Chuanhai

    2016-01-01

    Bacterial quorum sensing signal molecules N-acyl homoserine lactones (AHLs) (C10-HSL, 3-OXO-C10-HSL and 3-OH-C10-HSL) as possible chemical cues were employed to investigate the role in the formation of fouling diatom-biofilm (Cylindrotheca sp.). Results showed that AHLs promoted Chlorophyll a (Chl.a) and extracellular polymeric substance (EPS) contents in the diatom-biofilm. In the presence of AHLs-inhibitor 3, 4-Dibromo-2(5)H-furanone, which was used to avoid the possible interference of AHLs from bacteria, AHLs also increased the Chl.a and EPS contents. Scanning electron microscope and confocal laser scanning microscope analysis further demonstrated that AHLs promoted the formation of the diatom-biofilm. Non-invasive micro-test technique showed that AHLs promoted Ca 2+ efflux in Cylindrotheca sp., which implied that Ca 2+ might be correlated with AHLs-induced positive effect on the formation of diatom-biofilm. This study provides direct evidences that AHLs play an important role in developing the diatom-biofilm and AHLs-inhibitors might be promising active agents in marine antifouling. - Highlights: •AHLs effectively increase Chl.a and EPS contents in diatom-biofilm. •SEM and CLSM further demonstrate that AHLs promote the formation of diatom-biofilm. •AHLs trigger algal cellular Ca 2+ efflux. •AHLs-inhibitors might be promising active agents in marine antifouling.

  5. N-acyl homoserine lactone-degrading microbial enrichment cultures isolated from Penaeus vannamei shrimp gut and their probiotic properties in Brachionus plicatilis cultures.

    Science.gov (United States)

    Tinh, Nguyen Thi Ngoc; Asanka Gunasekara, R A Y S; Boon, Nico; Dierckens, Kristof; Sorgeloos, Patrick; Bossier, Peter

    2007-10-01

    Three bacterial enrichment cultures (ECs) were isolated from the digestive tract of Pacific white shrimp Penaeus vannamei, by growing the shrimp microbial communities in a mixture of N-acyl homoserine lactone (AHL) molecules. The ECs, characterized by denaturing gradient gel electrophoresis analysis and subsequent rRNA sequencing, degraded AHL molecules in the degradation assays. Apparently, the resting cells of the ECs also degraded one of the three types of quorum-sensing signal molecules produced by Vibrio harveyi in vitro [i.e. harveyi autoinducer 1 (HAI-1)]. The most efficient AHL-degrading ECs, EC5, was tested in Brachionus experiments. EC5 degraded the V. harveyi HAI-1 autoinducer in vivo, neutralizing the negative effect of V. harveyi autoinducer 2 (AI-2) mutant, in which only the HAI-1- and CAI-1-mediated components of the quorum-sensing system are functional on the growth of Brachionus. This suggests that EC5 interferes with HAI-1-regulated metabolism in V. harveyi. These AHL-degrading ECs need to be tested in other aquatic systems for their probiotic properties, preferably in combination with specific AI-2-degrading bacteria.

  6. Metabolic alkene labeling and in vitro detection of histone acylation via the aqueous oxidative Heck reaction

    NARCIS (Netherlands)

    Ourailidou, Maria E; Dockerty, Paul; Witte, Martin; Poelarends, Gerrit J; Dekker, Frank J

    2015-01-01

    The detection of protein lysine acylations remains a challenge due to lack of specific antibodies for acylations with various chain lengths. This problem can be addressed by metabolic labeling techniques using carboxylates with reactive functionalities. Subsequent chemoselective reactions with a

  7. Identification and Quantification of N-Acyl Homoserine Lactones Involved in Bacterial Communication by Small-Scale Synthesis of Internal Standards and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    Science.gov (United States)

    Leipert, Jan; Treitz, Christian; Leippe, Matthias; Tholey, Andreas

    2017-12-01

    N-acyl homoserine lactones (AHL) are small signal molecules involved in the quorum sensing of many gram-negative bacteria, and play an important role in biofilm formation and pathogenesis. Present analytical methods for identification and quantification of AHL require time-consuming sample preparation steps and are hampered by the lack of appropriate standards. By aiming at a fast and straightforward method for AHL analytics, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Suitable MALDI matrices, including crystalline and ionic liquid matrices, were tested and the fragmentation of different AHL in collision-induced dissociation MS/MS was studied, providing information about characteristic marker fragments ions. Employing small-scale synthesis protocols, we established a versatile and cost-efficient procedure for fast generation of isotope-labeled AHL standards, which can be used without extensive purification and yielded accurate standard curves. Quantitative analysis was possible in the low pico-molar range, with lower limits of quantification reaching from 1 to 5 pmol for different AHL. The developed methodology was successfully applied in a quantitative MALDI MS analysis of low-volume culture supernatants of Pseudomonas aeruginosa. [Figure not available: see fulltext.

  8. The first report on Listeria monocytogenes producing siderophores and responds positively to N-acyl homoserine lactone (AHL) molecules by enhanced biofilm formation.

    Science.gov (United States)

    Naik, Milind Mohan; Bhangui, Purva; Bhat, Chinmay

    2017-12-01

    Listeria monocytogenes are Gram-positive well-known emerging food-borne pathogens causing listeriosis in humans. In the present study, we have isolated biofilm-forming Listeria sp. from utensils used by a local milk collection dairy society at Usgao Goa, which collects milk for Goa dairy. Through biochemical tests and 16S rRNA sequence analysis, the bacterium was confirmed to be L. monocytogenes and designated as strain BN3, having GenBank accession number MF095110. We report for the first time Gram-positive L. monocytogenes strain BN3 producing iron-chelating siderophores by chrome azurol S (CAS) agar test. Also, this is a first report which reveals that L. monocytogenes strain BN3 responds to N-hexanoyl-homoserine lactone molecule (C 6 -HSL) by gradual increase in their biofilm-forming potential with a gradual increase in AHL (C 6 -HSL) concentration (250, 500 nM-1 μM) as compared to control revealed by crystal violet assay (CV) in microtiter plate. These results were further confirmed by scanning electron microscopy (SEM). A significant decrease in biofilm formation was observed when L. monocytogenes strain BN3 was treated with 10 µg/ml (R)-2-(2-hydroxynaphthalen-1-yl)thiazolidine-4-carboxylic acid, but when 250 and 500 nM AHL molecules were added, biofilm formation in strain BN3 was found to be enhanced as compared to control even in the presence of antibacterial compound, (R)-2-(2-hydroxynaphthalen-1-yl)thiazolidine-4-carboxylic acid. These results revealed that AHL molecules nullify the effect of antimicrobial compound and promote biofilm formation in L. monocytogenes strain BN3.

  9. Vibrational spectra of N-butyryl-homoserine lactone

    DEFF Research Database (Denmark)

    Bak, J.

    A special class of organic compounds, N-acyl homoserine lactones (HSL), is synthesized in bacteria and takes part in the intercellular signaling designated quorum sensing. The outcome of the intercellular signaling is responsible for many of the interesting properties which characterize colony...... for a substantial part of morbidity and mortality in many medical specialties. Lactones are also interesting compounds from a spectroscopic point of view. The spectroscopic information about these compounds in the literature is very sparse. In this study we present the Mid-infrared spectra of homoserine lactones...

  10. Eukaryotic interference with homoserine lactone mediated procaryotic signalling

    DEFF Research Database (Denmark)

    Givskov, Michael Christian; de Nys, Rocky; Gram, Lone

    1996-01-01

    Acylated homoserine lactones (AHLs) plays a widespread role in intercellular communication among bacteria. The Australian macroalga Delisea pulchra produces secondary metabolites which have structural similarities to AHL molecules. We report here that these metabolites inhibited AHL-controlled pr......-controlled processes in prokaryotes. Our results suggest that the interaction between higher organisms and their surface-associated bacteria may be mediated by interference with bacterial regulatory systems....

  11. Interkingdom signaling: The role of homoserine lactones in early responses and resistance in barley (Hordeum vulgare L.)

    OpenAIRE

    Rankl, Simone

    2017-01-01

    N-Acyl-D/L-homoserine lactones (AHLs) are produced as microbial signaling compounds during bacterial intra- and inter-specific communication in the rhizosphere. Thus, plants are naturally exposed to these compounds and respond with tissue-specific reactions. In the present study the impact of AHLs on the monocot barley (Hordeum vulgare L.) was investigated. The treatment with C8- and C12- homoserine lactones (HSL) resulted in root and shoot biomass gain as well as in the formation of lat...

  12. The Pseudomonas aeruginosa autoinducer dodecanoyl-homoserine lactone inhibits the putrescine synthesis in human cells

    DEFF Research Database (Denmark)

    Kristiansen, S.; Bjarnsholt, Thomas; Adeltoft, D.

    2008-01-01

    Pseudomonas aeruginosa uses acyl-homoserine lactones to coordinate gene transcription in a process called quorum sensing (QS). The QS molecules C-4-HSL and C-12-oxo-HSL are synthesized from the universal precursor S-adenosyl methionine, which is also a precursor of polyamines in human cells...

  13. Tandem Mass Spectrometry Detection of Quorum Sensing Activity in Multidrug Resistant Clinical Isolate Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2014-01-01

    Full Text Available Many Proteobacteria communicate via production followed by response of quorum sensing molecules, namely, N-acyl homoserine lactones (AHLs. These molecules consist of a lactone moiety with N-acyl side chain with various chain lengths and degrees of saturation at C-3 position. AHL-dependent QS is often associated with regulation of diverse bacterial phenotypes including the expression of virulence factors. With the use of biosensor and high resolution liquid chromatography tandem mass spectrometry, the AHL production of clinical isolate A. baumannii 4KT was studied. Production of short chain AHL, namely, N-hexanoyl-homoserine lactone (C6-HSL and N-octanoyl-homoserine lactone (C8-HSL, was detected.

  14. Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL- production kinetics

    DEFF Research Database (Denmark)

    Ravn, L.; Christensen, Allan Beck; Molin, Søren

    2001-01-01

    and enabled an assessment of the kinetics of AHL- production of 3 strains (Serratia proteamaculans strain B5a, Erwinia carotovora ATCC 39048 and V. fischeri strain MJ-1). As expected, the production of AHL (OHHL) and luminescence in Vibrio fischeri strain MJ-1 increased faster than growth indicating up...

  15. Nonbioluminescent strains of Photobacterium phosphoreum produce the cell-to-cell communication signal N-(3-Hydroxyoctanoyl)homoserine lactone

    DEFF Research Database (Denmark)

    Flodgaard, Lars; Dalgaard, Paw; Andersen, Jens Bo

    2005-01-01

    Bioluminescence is a common phenotype in marine bacteria, such As Vibrio and Photobacterium species, and can be quorum regulated by N-acylated homoserine lactones (AHLs). We extracted a molecule that induced a bacterial AHL monitor (Agrobacterium tumefaciens NT1 [pZLR4]) from packed cod fillets......) and shape to N-(3-hydroxyoctanoyl)homoserine lactone, and the presence of this molecule in culture supernatants from a nonbioluminescent strain of P. phosphoreum was confirmed by high-performance liquid chromatography-positive electrospray high-resolution mass spectrometry. Bioluminescence (in a non...

  16. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl ...

    Indian Academy of Sciences (India)

    Antipathogenic therapy is an outcome of the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer-dependent virulent gene expression in bacterial pathogens. -acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa ...

  17. Effects of two mutations detected in medium chain acyl-CoA dehydrogenase (MCAD)-deficient patients on folding, oligomer assembly, and stability of MCAD enzyme

    DEFF Research Database (Denmark)

    Bross, P; Jespersen, C; Jensen, T G

    1995-01-01

    We have used expression of human medium chain acyl-CoA dehydrogenase (MCAD) in Escherichia coli as a model system for dissecting the molecular effects of two mutations detected in patients with MCAD deficiency. We demonstrate that the R28C mutation predominantly affects polypeptide folding...

  18. A turn-on fluorescent rhodamine-acyl hydrazide for selective detection of Cu"2"+ ions

    International Nuclear Information System (INIS)

    Yoon, Jung Won; Jeong, Hyuk; Lee, Min Hee

    2017-01-01

    We present a rhodamine-based probe that can detect Cu"2"+ ions via Cu"2"+-promoted hydrolysis in aqueous solutions. In solution, the probe is non-fluorescent and colorless, but gives a strong fluorescence at 586 nm and shows a color change to pink on the addition of Cu"2"+ ions. We demonstrate that the rhodamine-based probe undergoes Cu"2"+-promoted hydrolysis with a moderate reaction time (within 3 min) and provides a fluorescence off–on change, even in the presence of other competitive metal ions. The rhodamine-based probe shows a linear correlation between increasing fluorescence at 586 nm and the Cu"2"+ concentration, and can detect Cu"2"+ at nanomolar levels (10 nM) in CH_3CN:H_2O (v/v, 90:10)

  19. Selectivity and Efficiency of Conductive Molecularly Imprinted Polymer (c-MIP Based on 5-Phenyl-Dipyrromethane and 5-Phenol-Dipyrromethane for Quorum Sensing Precursors Detection

    Directory of Open Access Journals (Sweden)

    Sabina Susmel

    2017-02-01

    Full Text Available Functional polymers that selectively recognize target compounds are developed by imprinting polymerization. In the present paper, two different dipyrromethanes, 5-phenol-dipyrromethane (5-pOH-DP and 5-phenyl-dipyrromethane (5-ph-DP, are synthetized and investigated to develop conductive molecularly imprinted polymer (cMIP sensors. As target molecules, two homoserine lactone derivatives were templated by an electrochemically driven polymerization process. Acyl-homoserine lactones (AHLs, also called homoserine lactones (HS, are a class of signaling molecules involved in bacterial quorum sensing (QS, which is a strategy of coordination among bacteria mediated by population density. The preparation of cMIP from 5-pOH-DP and 5-ph-DP in the presence of acetyl-homoserine lactone (Acetyl-HS or carboxybenzyl-homoserine lactone (Cbz-HS was performed by cyclic voltammetry (CV. The cMIP selectivity and sensitivity were assessed by microgravimetry (QCM. Both series of measurements were performed with the aid of an Electrochemical Quartz Crystal Microbalance (EQCM/QCM. The experimental evidences are discussed with respect to NMR measurements that were conducted to gain insight into the interactions established between monomers and templates. The NMR data interpretation offers preliminary information about the most probable positions involved in interaction development for both molecules and highlights the role of the hydration shell. The QCM-cMIP sensor was able to detect the analyte in the linear range from 10−8 mol·L−1 to 10−6 mol·L−1 and a limit of detection (LOD of 22.3 ng (3σ of the blank signal were evaluated. QCM rebinding tests demonstrated that cMIP selectivity was driven by the pendant group of dipyrromethane, which was also confirmed by the NMR data.

  20. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals.

    Science.gov (United States)

    Tizzano, Marco; Gulbransen, Brian D; Vandenbeuch, Aurelie; Clapp, Tod R; Herman, Jake P; Sibhatu, Hiruy M; Churchill, Mair E A; Silver, Wayne L; Kinnamon, Sue C; Finger, Thomas E

    2010-02-16

    The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.

  1. Detection, Characterization, and Biological Effect of Quorum-Sensing Signaling Molecules in Peanut-Nodulating Bradyrhizobia

    Directory of Open Access Journals (Sweden)

    Walter Giordano

    2012-03-01

    Full Text Available Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4 and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of β-galactosidase activity levels (AHL-like inducer activity in NTL4 (pZLR4. Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS. For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-DL-homoserine lactone (C6, N-(3-oxodecanoyl-L-homoserine lactone (3OC10, N-(3-oxododecanoyl-L-homoserine lactone (3OC12, and N-(3-oxotetradecanoyl-L-homoserine lactone (3OC14. Biological roles of 3OC10, 3OC12, and 3OC14 AHLs

  2. Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection

    Directory of Open Access Journals (Sweden)

    Qing-Qing Dai

    2016-08-01

    Full Text Available Acylated xylan-based magnetic Fe3O4 nanocomposite hydrogels (ACX-MNP-gels were prepared by fabricating Fe3O4 nanoctahedra in situ within a hydrogel matrix which was synthesized by the copolymerization of acylated xylan (ACX with acrylamide and N-isopropylacrylamide under ultraviolet irradiation. The size of the Fe3O4 fabricated within the hydrogel matrix could be adjusted through controlling the crosslinking concentrations (C. The magnetic hydrogels showed desirable magnetic and mechanical properties, which were confirmed by XRD, Raman spectroscopy, physical property measurement system, SEM, TGA, and compression test. Moreover, the catalytic performance of the magnetic hydrogels was explored. The magnetic hydrogels (C = 7.5 wt % presented excellent catalytic activity and provided a sensitive response to H2O2 detection even at a concentration level of 5 × 10−6 mol·L−1. This approach to preparing magnetic hydrogels loaded with Fe3O4 nanoparticles endows xylan-based hydrogels with new promising applications in biotechnology and environmental chemistry.

  3. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    ) , which promotes intestinal growth and is used to treat bowel disorders such as inflammatory bowel diseases and short bowel syndrome, and the 32 amino acid salmon calcitonin (sCT), which lowers blood calcium and is employed in the treatment of post-menopausal osteoporosis and hypercalcemia. The two...... peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... remained optimal overall. The results indicate that rational acylation of GLP-2 can increase its in vitro intestinal absorption, alone or in combination with permeation enhancers, and are consistent with the initial project hypothesis. For sCT, an unpredicted effect of acylation largely superseded...

  4. Imidazolines as Non-Classical Bioisosteres of N-Acyl homoserine lactones and Quorum Sensing Inhibitors

    Directory of Open Access Journals (Sweden)

    Mabel Montenegro-Sustaita

    2012-01-01

    Full Text Available A series of selected 2-substituted imidazolines were synthesized in moderate to excellent yields by a modification of protocols reported in the literature. They were evaluated as potential non-classical bioisosteres of AHL with the aim of counteracting bacterial pathogenicity. Imidazolines 18a, 18e and 18f at various concentrations reduced the violacein production by Chromobacterium violaceum, suggesting an anti-quorum sensing profile against Gram-negative bacteria. Imidazoline 18b did not affect the production of violacein, but had a bacteriostatic effect at 100 µM and a bactericidal effect at 1 mM. Imidazoline 18a bearing a hexyl phenoxy moiety was the most active compound of the series, rendering a 72% inhibitory effect of quorum sensing at 100 µM. Imidazoline 18f bearing a phenyl nonamide substituent presented an inhibitory effect on quorum sensing at a very low concentration (1 nM, with a reduction percentage of 28%. This compound showed an irregular performance, decreasing inhibition at concentrations higher than 10 µM, until reaching 100 µM, at which concentration it increased the inhibitory effect with a 49% reduction percentage. When evaluated on Serratia marcescens, compound 18f inhibited the production of prodigiosin by 40% at 100 μM.

  5. Regulation of Long-Chain N-Acyl-Homoserine Lactones in Agrobacterium vitis

    OpenAIRE

    Hao, Guixia; Burr, Thomas J.

    2006-01-01

    Homologs of quorum-sensing luxR and luxI regulatory genes, avsR and avsI, were identified in Agrobacterium vitis strain F2/5. Compared to other LuxI proteins from related species, the deduced AvsI shows the greatest identity to SinI (71%) from Sinorhizobium meliloti Rm1021. AvsR possesses characteristic autoinducer binding and helix-turn-helix DNA binding domains and shares a high level of identity with SinR (38%) from Rm1021. Site-directed mutagenesis of avsR and avsI was performed, and both...

  6. Crystal structure of homoserine O-acetyltransferase from Leptospira interrogans

    International Nuclear Information System (INIS)

    Wang Mingzhu; Liu Lin; Wang Yanli; Wei Zhiyi; Zhang Ping; Li Yikun; Jiang Xiaohua; Xu Hang; Gong Weimin

    2007-01-01

    Homoserine O-acetyltransferase (HTA, EC 2.3.1.31) initiates methionine biosynthesis pathway by catalyzing the transfer of acetyl group from acetyl-CoA to homoserine. This study reports the crystal structure of HTA from Leptospira interrogans determined at 2.2 A resolution using selenomethionyl single-wavelength anomalous diffraction method. HTA is modular and consists of two structurally distinct domains-a core α/β domain containing the catalytic site and a helical bundle called the lid domain. Overall, the structure fold belongs to α/β hydrolase superfamily with the characteristic 'catalytic triad' residues in the active site. Detailed structure analysis showed that the catalytic histidine and serine are both present in two conformations, which may be involved in the catalytic mechanism for acetyl transfer

  7. A turn-on fluorescent rhodamine-acyl hydrazide for selective detection of Cu{sup 2+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung Won; Jeong, Hyuk; Lee, Min Hee [Dept. of Chemistry, Sookmyung Women' s University, Seoul (Korea, Republic of)

    2017-03-15

    We present a rhodamine-based probe that can detect Cu{sup 2+} ions via Cu{sup 2+}-promoted hydrolysis in aqueous solutions. In solution, the probe is non-fluorescent and colorless, but gives a strong fluorescence at 586 nm and shows a color change to pink on the addition of Cu{sup 2+} ions. We demonstrate that the rhodamine-based probe undergoes Cu{sup 2+}-promoted hydrolysis with a moderate reaction time (within 3 min) and provides a fluorescence off–on change, even in the presence of other competitive metal ions. The rhodamine-based probe shows a linear correlation between increasing fluorescence at 586 nm and the Cu{sup 2+} concentration, and can detect Cu{sup 2+} at nanomolar levels (10 nM) in CH{sub 3}CN:H{sub 2}O (v/v, 90:10)

  8. Systemic responses of barley to the 3-hydroxy-decanoyl-homoserine lactone producing plant beneficial endophyte Acidovorax radicis N35

    Directory of Open Access Journals (Sweden)

    Shengcai Han

    2016-12-01

    Full Text Available Quorum sensing auto-inducers of the N-acyl homoserine lactone (AHL type produced by Gram-negative bacteria have different effects on plants including stimulation on root growth and/or priming or acquirement of systemic resistance in plants. In this communication the influence of AHL production of the plant growth promoting endophytic rhizosphere bacterium Acidovorax radicis N35 on barley seedlings was investigated. A. radicis N35 produces 3-hydroxy-C10-homoserine lactone (3-OH-C10-HSL as the major AHL compound. To study the influence of this QS autoinducer on the interaction with barley, the araI-biosynthesis gene was deleted. The comparison of inoculation effects of the A. radicis N35 wild type and the araI mutant resulted in remarkable differences. While the N35 wild type colonized plant roots effectively in microcolonies, the araI mutant occurred at the root surface as single cells. Furthermore, in a mixed inoculum the wild type was much more prevalent in colonization than the araI mutant documenting that the araI mutation affected root colonization. Nevertheless, a significant plant growth promoting effect could be shown after inoculation of barley with the wild type and the araI mutant in soil after two months cultivation. While A. radicis N35 wild type showed only a very weak induction of early defense responses in plant RNA expression analysis, the araI mutant caused increased expression of flavonoid biosynthesis genes. This was corroborated by the accumulation of several flavonoid compounds such as saponarin and lutonarin in leaves of root inoculated barley seedlings. Thus, although the exact role of the flavonoids in this plant response is not clear yet, it can be concluded, that the synthesis of AHLs by A. radicis has implications on the perception by the host plant barley and thereby contributes to the establishment and function of the bacteria-plant interaction.

  9. Rapid Identification of unstable acyl glucoside flavonoids of Oxytropis racemosa Turcz by high-performance liquid chromatography-diode array detection-electrospray ionisation/multi-stage mass spectrometry.

    Science.gov (United States)

    Song, Shuang; Zheng, Xiu-Ping; Liu, Wei-Dong; Du, Rui-Fang; Feng, Zi-Ming; Zhang, Pei-Cheng; Bi, Li-Fu

    2013-02-01

    Oxytropis racemosa Turcz is an important minority medicine that is used mainly to improve children's indigestion, especially in inner Mongolia and Tibet. Previous studies indicated that the characteristic constituents of this plant are acylated flavonoids. Rapidly identify the characteristic chemical constituents of O. racemosa by high-performance liquid chromatography-diode array detection-electrospray ionisation/multi-stage mass spectrometry (HPLC-DAD-ESI/MS(n) ) and suggest a useful method to control the quality of this medicinal plant. In the HPLC fingerprint, 32 flavonoids were tentatively identified by a detailed analysis of their mass spectra, UV spectra and retention times. Furthermore, 13 flavonoids were confirmed by comparison with previously isolated compounds obtained from O. racemosa. In total, 32 flavonoids, including 13 flavonoids with 3-hydroxy-3-methylglutaric acid (HMG) moieties and four flavonoids with 3-malonyl moieties, were identified in the extract of O. racemosa. Among the compounds identified, 10 were characterised as new compounds for their particular acylated sugar moieties. The method described is effective for obtaining a comprehensive phytochemical profile of plants containing unstable acylated flavonoids. The method is also useful for constructing the chromatographic fingerprint of the minority medicine -O. racemosa Turcz for quality control. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Acyl-Lipid Metabolism

    Science.gov (United States)

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  11. O-Succinyl-L-homoserine-based C4-chemical production: succinic acid, homoserine lactone, γ-butyrolactone, γ-butyrolactone derivatives, and 1,4-butanediol.

    Science.gov (United States)

    Hong, Kuk-Ki; Kim, Jeong Hyun; Yoon, Jong Hyun; Park, Hye-Min; Choi, Su Jin; Song, Gyu Hyeon; Lee, Jea Chun; Yang, Young-Lyeol; Shin, Hyun Kwan; Kim, Ju Nam; Cho, Kyung Ho; Lee, Jung Ho

    2014-10-01

    There has been a significant global interest to produce bulk chemicals from renewable resources using engineered microorganisms. Large research programs have been launched by academia and industry towards this goal. Particularly, C4 chemicals such as succinic acid (SA) and 1,4-butanediol have been leading the path towards the commercialization of biobased technology with the effort of replacing chemical production. Here we present O-Succinyl-L-homoserine (SH) as a new, potentially important platform biochemical and demonstrate its central role as an intermediate in the production of SA, homoserine lactone (HSL), γ-butyrolactone (GBL) and its derivatives, and 1,4-butanediol (BDO). This technology encompasses (1) the genetic manipulation of Escherichia coli to produce SH with high productivity, (2) hydrolysis into SA and homoserine (HS) or homoserine lactone hydrochloride, and (3) chemical conversion of either HS or homoserine lactone HCL (HSL·HCl) into drop-in chemicals in polymer industry. This production strategy with environmental benefits is discussed in the perspective of targeting of fermented product and a process direction compared to petroleum-based chemical conversion, which may reduce the overall manufacturing cost.

  12. A soluble fatty acyl-acyl carrier protein synthetase from the bioluminescent bacterium Vibrio harveyi.

    Science.gov (United States)

    Byers, D M; Holmes, C G

    1990-01-01

    An enzyme catalyzing the ligation of long chain fatty acids to bacterial acyl carrier protein (ACP) has been detected and partially characterized in cell extracts of the bioluminescent bacterium Vibrio harveyi. Acyl-ACP synthetase activity (optimal pH 7.5-8.0) required millimolar concentrations of ATP and Mg2+ and was slightly activated by Ca2+, but was inhibited at high ionic strength and by Triton X-100. ACP from either Escherichia coli (apparent Km = 20 microM) or V. harveyi was used as a substrate. Of the [14C]fatty acids tested as substrates (8-18 carbons), a preference for fatty acids less than or equal to 14 carbons in length was observed. Vibrio harveyi acyl-ACP synthetase appears to be a soluble hydrophilic enzyme on the basis of subcellular fractionation and Triton X-114 phase partition assay. The enzyme was not coinduced with luciferase activity or light emission in vivo during the late exponential growth phase in liquid culture. Acyl-ACP synthetase activity was also detected in extracts from the luminescent bacterium Vibrio fischeri, but not Photobacterium phosphoreum. The cytosolic nature and enzymatic properties of V. harveyi acyl-ACP synthetase indicate that it may have a different physiological role than the membrane-bound activity of E. coli, which has been implicated in phosphatidylethanolamine turnover. Acyl-ACP synthetase activity in V. harveyi could be involved in the intracellular activation and elongation of exogenous fatty acids that occurs in this species or in the reactivation of free myristic acid generated by luciferase.

  13. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal

    International Nuclear Information System (INIS)

    Miao, Chunjuan; Liu, Fang; Zhao, Qian; Jia, Zhenhua; Song, Shuishan

    2012-01-01

    Highlights: ► 3OC8-HSL can change the expression of diverse proteins in Arabidopsis. ► 3OC8-HSL responsive proteins were identified using MALDI-TOF-MS. ► Plant could have an extensive range of functional responses to bacterial AHL. -- Abstract: N-acyl-homoserine lactones (AHLs) are a class of bacterial quorum-sensing (QS) signals that are commonly used by Gram-negative bacteria for cell-to-cell communication. Recently, it has become evident that AHLs can regulate plant root growth and trigger plant defense responses; however, little is known about the plant response mechanisms to bacterial QS signals. In this study, we used a proteomic approach to investigate the responses of Arabidopsis thaliana seedlings to N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL), a bacterial QS signal. The results revealed that the abundance of 53 protein spots was significantly altered; two thirds of these proteins were found to be up-regulated after 3OC8-HSL treatment. Thirty-four proteins were identified using MALDI-TOF-MS. These 3OC8-HSL-responsive proteins, in addition to one protein of unknown function, are implicated in a variety of physiological processes, including metabolism of carbohydrate and energy, protein biosynthesis and quality control systems, defense response and signal transduction and cytoskeleton remodeling. Our bioinformatic analysis indicated that the chloroplasts are the intracellular organelles most influenced by the exposure to 3OC8-HSL. Our data indicate that plants have an extensive range of functional responses to bacterial AHLs that may play important roles in the interaction between plants and bacteria.

  14. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chunjuan, E-mail: chunjuanjay@163.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Liu, Fang, E-mail: liufang830818@126.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Zhao, Qian, E-mail: zhqbluesea@163.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Jia, Zhenhua, E-mail: zhenhuaj@hotmail.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Song, Shuishan, E-mail: shuishans@hotmail.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer 3OC8-HSL can change the expression of diverse proteins in Arabidopsis. Black-Right-Pointing-Pointer 3OC8-HSL responsive proteins were identified using MALDI-TOF-MS. Black-Right-Pointing-Pointer Plant could have an extensive range of functional responses to bacterial AHL. -- Abstract: N-acyl-homoserine lactones (AHLs) are a class of bacterial quorum-sensing (QS) signals that are commonly used by Gram-negative bacteria for cell-to-cell communication. Recently, it has become evident that AHLs can regulate plant root growth and trigger plant defense responses; however, little is known about the plant response mechanisms to bacterial QS signals. In this study, we used a proteomic approach to investigate the responses of Arabidopsis thaliana seedlings to N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL), a bacterial QS signal. The results revealed that the abundance of 53 protein spots was significantly altered; two thirds of these proteins were found to be up-regulated after 3OC8-HSL treatment. Thirty-four proteins were identified using MALDI-TOF-MS. These 3OC8-HSL-responsive proteins, in addition to one protein of unknown function, are implicated in a variety of physiological processes, including metabolism of carbohydrate and energy, protein biosynthesis and quality control systems, defense response and signal transduction and cytoskeleton remodeling. Our bioinformatic analysis indicated that the chloroplasts are the intracellular organelles most influenced by the exposure to 3OC8-HSL. Our data indicate that plants have an extensive range of functional responses to bacterial AHLs that may play important roles in the interaction between plants and bacteria.

  15. Solid‐Phase Synthesis and Biological Evaluation of N‐Dipeptido L‐Homoserine Lactones as Quorum Sensing Activators

    DEFF Research Database (Denmark)

    Hansen, Mette Reimert; Le Quement, Sebastian Thordal; Jakobsen, Tim Holm

    2014-01-01

    homoserine lactones. With the goal of identifying non‐native compounds capable of modulating bacterial QS, a virtual library of N‐dipeptido L‐homoserine lactones was screened in silico with two different crystal structures of LasR. The 30 most promising hits were synthesized on HMBA‐functionalized PEGA resin...

  16. Muoniated acyl and thioacyl radicals

    International Nuclear Information System (INIS)

    McKenzie, Iain; Brodovitch, Jean-Claude; Ghandi, Khashayar; Percival, Paul W.

    2006-01-01

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and 14 N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and 14 N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy

  17. Muoniated acyl and thioacyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Iain [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Brodovitch, Jean-Claude [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Ghandi, Khashayar [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Percival, Paul W. [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada)]. E-mail: percival@sfu.ca

    2006-03-31

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and {sup 14}N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and {sup 14}N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy.

  18. Homoserine Lactone as a Structural Key Element for the Synthesis of Multifunctional Polymers

    Directory of Open Access Journals (Sweden)

    Fabian Marquardt

    2017-04-01

    Full Text Available The use of bio-based building blocks for polymer synthesis represents a milestone on the way to “green” materials. In this work, two synthetic strategies for the preparation of multifunctional polymers are presented in which the key element is the functionality of homoserine lactone. First, the synthesis of a bis cyclic coupler based on a thiolactone and homoserine lactone is displayed. This coupler was evaluated regarding its regioselectivity upon reaction with amines and used in the preparation of multifunctional polymeric building blocks by reaction with diamines. Furthermore, a linear polyglycidol was functionalized with homoserine lactone. The resulting polyethers with lactone groups in the side chain were converted to cationic polymers by reaction with 3-(dimethylamino-1-propylamine followed by quaternization with methyl iodide.

  19. Identification of unusual phospholipid fatty acyl compositions of Acanthamoeba castellanii.

    Directory of Open Access Journals (Sweden)

    Marta Palusinska-Szysz

    Full Text Available Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL. The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0, octadecenoyl (18∶1 Δ9 and hexadecanoyl (16∶0. However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE, phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24 and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of

  20. Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins.

    Science.gov (United States)

    Harrer, Henning; Laviad, Elad L; Humpf, Hans Ulrich; Futerman, Anthony H

    2013-03-01

    Fumonisins are mycotoxins produced by Fusarium species. The predominant derivative, fumonisin B1 (FB1), occurs in food and feed and is of health concern due to its hepatotoxic and carcinogenic effects. However, the role of FB1 metabolites on the mechanism of the toxicity, the inhibition of the ceramide synthesis, is unknown. The aim of this study was to identify new fumonisin metabolites and to evaluate their cytotoxic potential. MS, molecular biology, and in vitro enzyme assays were used to investigate fumonisin metabolism in mammalian cells overexpressing human ceramide synthase (CerS) genes. N-acyl-FB1 derivatives were detected as new metabolites in cultured cells at levels of up to 10 pmol/mg of protein. The N-acylation of FB1 and hydrolyzed FB1 was analyzed in several cell lines, including cells overexpressing CerS. The acyl-chain length of the N-acyl fumonisins depends on the CerS isoform acylating them. The N-acyl fumonisins are more cytotoxic than the parent fumonisin B1. The identification of N-acyl fumonisins with various acyl chain lengths together with the observed cytotoxicity of these compounds is a new aspect of fumonisin-related toxicity. Therefore, these new metabolites might play an important role in the mode of action of fumonisins. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Crystal Structure of Homoserine Transacetylase from Haemophilus Influenzae Reveals a New Family of alpha/beta-Hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Mirza,I.; Nazi, I.; Korczynska, M.; Wright, G.; Berghuis, A.

    2005-01-01

    Homoserine transacetylase catalyzes one of the required steps in the biosynthesis of methionine in fungi and several bacteria. We have determined the crystal structure of homoserine transacetylase from Haemophilus influenzae to a resolution of 1.65 A. The structure identifies this enzyme to be a member of the alpha/beta-hydrolase structural superfamily. The active site of the enzyme is located near the end of a deep tunnel formed by the juxtaposition of two domains and incorporates a catalytic triad involving Ser143, His337, and Asp304. A structural basis is given for the observed double displacement kinetic mechanism of homoserine transacetylase. Furthermore, the properties of the tunnel provide a rationale for how homoserine transacetylase catalyzes a transferase reaction vs. hydrolysis, despite extensive similarity in active site architecture to hydrolytic enzymes.

  2. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and Sulfated Glycan Chain

    OpenAIRE

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-01-01

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is...

  3. Cellular effects of bacterial N-3-Oxo-dodecanoyl-L-Homoserine lactone on the sponge Suberites domuncula (Olivi, 1792): insights into an intimate inter-kingdom dialogue.

    Science.gov (United States)

    Gardères, Johan; Henry, Joël; Bernay, Benoit; Ritter, Andrès; Zatylny-Gaudin, Céline; Wiens, Matthias; Müller, Werner E G; Le Pennec, Gaël

    2014-01-01

    Sponges and bacteria have lived together in complex consortia for 700 million years. As filter feeders, sponges prey on bacteria. Nevertheless, some bacteria are associated with sponges in symbiotic relationships. To enable this association, sponges and bacteria are likely to have developed molecular communication systems. These may include molecules such as N-acyl-L-homoserine lactones, produced by Gram-negative bacteria also within sponges. In this study, we examined the role of N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL) on the expression of immune and apoptotic genes of the host sponge Suberites domuncula. This molecule seemed to inhibit the sponge innate immune system through a decrease of the expression of genes coding for proteins sensing the bacterial membrane: a Toll-Like Receptor and a Toll-like Receptor Associated Factor 6 and for an anti-bacterial perforin-like molecule. The expression of the pro-apoptotic caspase-like 3/7 gene decreased as well, whereas the level of mRNA of anti-apoptotic genes Bcl-2 Homolog Proteins did not change. Then, we demonstrated the differential expression of proteins in presence of this 3-oxo-C12-HSL using 3D sponge cell cultures. Proteins involved in the first steps of the endocytosis process were highlighted using the 2D electrophoresis protein separation and the MALDI-TOF/TOF protein characterization: α and β subunits of the lysosomal ATPase, a cognin, cofilins-related proteins and cytoskeleton proteins actin, α tubulin and α actinin. The genetic expression of some of these proteins was subsequently followed. We propose that the 3-oxo-C12-HSL may participate in the tolerance of the sponge apoptotic and immune systems towards the presence of bacteria. Besides, the sponge may sense the 3-oxo-C12-HSL as a molecular evidence of the bacterial presence and/or density in order to regulate the populations of symbiotic bacteria in the sponge. This study is the first report of a bacterial secreted molecule acting on

  4. Cellular effects of bacterial N-3-Oxo-dodecanoyl-L-Homoserine lactone on the sponge Suberites domuncula (Olivi, 1792: insights into an intimate inter-kingdom dialogue.

    Directory of Open Access Journals (Sweden)

    Johan Gardères

    Full Text Available Sponges and bacteria have lived together in complex consortia for 700 million years. As filter feeders, sponges prey on bacteria. Nevertheless, some bacteria are associated with sponges in symbiotic relationships. To enable this association, sponges and bacteria are likely to have developed molecular communication systems. These may include molecules such as N-acyl-L-homoserine lactones, produced by Gram-negative bacteria also within sponges. In this study, we examined the role of N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL on the expression of immune and apoptotic genes of the host sponge Suberites domuncula. This molecule seemed to inhibit the sponge innate immune system through a decrease of the expression of genes coding for proteins sensing the bacterial membrane: a Toll-Like Receptor and a Toll-like Receptor Associated Factor 6 and for an anti-bacterial perforin-like molecule. The expression of the pro-apoptotic caspase-like 3/7 gene decreased as well, whereas the level of mRNA of anti-apoptotic genes Bcl-2 Homolog Proteins did not change. Then, we demonstrated the differential expression of proteins in presence of this 3-oxo-C12-HSL using 3D sponge cell cultures. Proteins involved in the first steps of the endocytosis process were highlighted using the 2D electrophoresis protein separation and the MALDI-TOF/TOF protein characterization: α and β subunits of the lysosomal ATPase, a cognin, cofilins-related proteins and cytoskeleton proteins actin, α tubulin and α actinin. The genetic expression of some of these proteins was subsequently followed. We propose that the 3-oxo-C12-HSL may participate in the tolerance of the sponge apoptotic and immune systems towards the presence of bacteria. Besides, the sponge may sense the 3-oxo-C12-HSL as a molecular evidence of the bacterial presence and/or density in order to regulate the populations of symbiotic bacteria in the sponge. This study is the first report of a bacterial secreted

  5. Stearoyl-Acyl Carrier Protein and Unusual Acyl-Acyl Carrier Protein Desaturase Activities Are Differentially Influenced by Ferredoxin1

    Science.gov (United States)

    Schultz, David J.; Suh, Mi Chung; Ohlrogge, John B.

    2000-01-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Δ9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [14C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium × hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Δ9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction. PMID:11027717

  6. Stearoyl-acyl carrier protein and unusual acyl-acyl carrier protein desaturase activities are differentially influenced by ferredoxin.

    Science.gov (United States)

    Schultz, D J; Suh, M C; Ohlrogge, J B

    2000-10-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Delta9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [(14)C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium x hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Delta9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction.

  7. The Acylation State of Surface Lipoproteins of Mollicute Acholeplasma laidlawii*

    Science.gov (United States)

    Serebryakova, Marina V.; Demina, Irina A.; Galyamina, Maria A.; Kondratov, Ilya G.; Ladygina, Valentina G.; Govorun, Vadim M.

    2011-01-01

    Acylation of the N-terminal Cys residue is an essential, ubiquitous, and uniquely bacterial posttranslational modification that allows anchoring of proteins to the lipid membrane. In Gram-negative bacteria, acylation proceeds through three sequential steps requiring lipoprotein diacylglyceryltransferase, lipoprotein signal peptidase, and finally lipoprotein N-acyltransferase. The apparent lack of genes coding for recognizable homologs of lipoprotein N-acyltransferase in Gram-positive bacteria and Mollicutes suggests that the final step of the protein acylation process may be absent in these organisms. In this work, we monitored the acylation state of eight major lipoproteins of the mollicute Acholeplasma laidlawii using a combination of standard two-dimensional gel electrophoresis protein separation, blotting to nitrocellulose membranes, and MALDI-MS identification of modified N-terminal tryptic peptides. We show that for each A. laidlawii lipoprotein studied a third fatty acid in an amide linkage on the N-terminal Cys residue is present, whereas diacylated species were not detected. The result thus proves that A. laidlawii encodes a lipoprotein N-acyltransferase activity. We hypothesize that N-acyltransferases encoded by genes non-homologous to N-acyltransferases of Gram-negative bacteria are also present in other mollicutes and Gram-positive bacteria. PMID:21540185

  8. Biosynthesis of plasmalogens by the microsomal fraction of Fischer R-3259 sarcoma. Influence of specific 2-acyl chains on the desaturation of 1-alkyl-2-acyl-sn-gycero-3-phosphoethanolamine

    Energy Technology Data Exchange (ETDEWEB)

    Wykle, R.L.; Schremmer, J.M.

    1979-08-07

    In the Fischer R-3259 sarcoma, ethanolamine plasmalogens are synthesized from 1-akyl-2-acyl-sn-glycero-3-phosphoethanolamine by a microsomal desaturase that inserts a ..delta../sup 1/ double bond in the alkyl chain. In the present study, a series of 1-(1-/sup 14/C)hexadecyl-2-acyl-GPE substrates containing specific acyl groups ranging from C/sub 2/ /sub 0/ to C/sub 20/ /sub 4/ at the 2 position were prepared and tested as substrates for the microsomal ..delta../sup 1/-alkyl desaturase. The microsomal preparations contained an acyl hydrolase that removed the C/sub 2/ /sub 0/, C/sub 4/ /sub 0/, and C/sub 7/ /sub 0/ acyl groups from the 2 position. By inhibiting the hydrolase with diisopropyl fluorophosphate, it was possible to test conversion of the unaltered substrates to plasmalogens. The alkyl desaturase exhibited little discrimination among the specific acyl derivatives tested. The highest rate of desaturation was obtained with 1-(1-/sup 14/C)-hexadecyl-2-acyl-GPE synthesized in situ in the microsomes via acylation of 1-(1-/sup 14/C)hexadecyl-GPE; this rate was threefold that observed with exogenously acylated substrates. The 1-(1-/sup 14/C)hexadecyl-2-acyl-GPE synthesized in situ contained highly unsaturated acyl groups; no selectivity of the desaturase for specific acyl chains was detected when the different molecular species of 1-(1-/sup 14/C)alkyl-2-acyl-GPE and 1-(1-/sup 14/C)alk-1'-eyl-2-acyl-GPE were compared. The short-chain substrates, being moe hydrophilic, mimicked the chromatographic behavior of 1-alkyl-GPE, yet they did not resemble the lyso compound in its higher conversion to plasmalogens. Thus, despite their similar R/sub f/ values, the packing of the short-chain acyl homologues in the membrane may be quite different from that of the lyso compound. Binding of 1-hexadecyl-2-acyl-GPE and 1-hexadecyl-GPE to microsomal membranes was similar.

  9. Acyl-CoA metabolism and partitioning

    DEFF Research Database (Denmark)

    Grevengoed, Trisha J; Klett, Eric L; Coleman, Rosalind A

    2014-01-01

    Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue...

  10. Acylated flavone glycosides from Veronica

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Jensen, Søren Rosendal

    2003-01-01

    A survey of the flavonoid glycosides of selected taxa in the genus Veronica yielded two new acylated 5,6,7,3',4'-pentahydroxyflavone (6-hydroxyluteolin) glycosides and two rare allose-containing acylated 5,7,8,4'-tetrahydroxyflavone (isoscutellarein) glycosides. The new compounds were isolated from...

  11. Acyl transfer from membrane lipids to peptides is a generic process.

    Science.gov (United States)

    Dods, Robert H; Bechinger, Burkhard; Mosely, Jackie A; Sanderson, John M

    2013-11-15

    The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography-mass spectrometry analysis of peptide-lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins. © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and a Sulfated Glycan Chain.

    Science.gov (United States)

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-12-02

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.

  13. Friedel-Crafts Acylation with Amides

    Science.gov (United States)

    Raja, Erum K.; DeSchepper, Daniel J.; Nilsson Lill, Sten O.; Klumpp, Douglas A.

    2012-01-01

    Friedel-Crafts acylation has been known since the 1870s and it is an important organic synthetic reaction leading to aromatic ketone products. Friedel-Crafts acylation is usually done with carboxylic acid chlorides or anhydrides while amides are generally not useful substrates in these reactions. Despite being the least reactive carboxylic acid derivative, we have found a series of amides capable of providing aromatic ketones in good yields (55–96%, 17 examples). We propose a mechanism involving diminished C-N resonance through superelectrophilic activation and subsequent cleavage to acyl cations. PMID:22690740

  14. Candida albicans Hom6 is a homoserine dehydrogenase involved in protein synthesis and cell adhesion

    Directory of Open Access Journals (Sweden)

    Pei-Wen Tsai

    2017-12-01

    Full Text Available Background/Purpose: Candida albicans is a common fungal pathogen in humans. In healthy individuals, C. albicans represents a harmless commensal organism, but infections can be life threatening in immunocompromised patients. The complete genome sequence of C. albicans is extremely useful for identifying genes that may be potential drug targets and important for pathogenic virulence. However, there are still many uncharacterized genes in the Candida genome database. In this study, we investigated C. albicans Hom6, the functions of which remain undetermined experimentally. Methods: HOM6-deleted and HOM6-reintegrated mutant strains were constructed. The mutant strains were compared with wild-type in their growth in various media and enzyme activity. Effects of HOM6 deletion on translation were further investigated by cell susceptibility to hygromycin B or cycloheximide, as well as by polysome profiling, and cell adhesion to polystyrene was also determined. Results: C. albicans Hom6 exhibits homoserine dehydrogenase activity and is involved in the biosynthesis of methionine and threonine. HOM6 deletion caused translational arrest in cells grown under amino acid starvation conditions. Additionally, Hom6 protein was found in both cytosolic and cell-wall fractions of cultured cells. Furthermore, HOM6 deletion reduced C. albicans cell adhesion to polystyrene, which is a common plastic used in many medical devices. Conclusion: Given that there is no Hom6 homologue in mammalian cells, our results provided an important foundation for future development of new antifungal drugs. Keywords: Candida albicans, cell adhesion, Hom6, homoserine dehydrogenase, protein synthesis

  15. Characterization of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme of human small intestine.

    Science.gov (United States)

    Hiramine, Yasushi; Tanabe, Toshizumi

    2011-06-01

    Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme plays a significant role in dietary triacylglycerol (TAG) absorption in the small intestine. However, the characteristics of human intestinal DGAT enzyme have not been examined in detail. The aim of our study was to characterize the human intestinal DGAT enzyme by examining acyl-CoA specificity, temperature dependency, and selectivity for 1,2-diacylglycerol (DAG) or 1,3-DAG. We detected DGAT activity of human intestinal microsome and found that the acyl-CoA specificity and temperature dependency of intestinal DGAT coincided with those of recombinant human DGAT1. To elucidate the selectivity of human intestinal DGAT to 1,2-DAG or 1,3-DAG, we conducted acyl-coenzyme A:monoacylglycerol acyltransferase assays using 1- or 2-monoacylglycerol (MAG) as substrates. When 2-MAG was used as acyl acceptor, both 1,2-DAG and TAG were generated; however, when 1-MAG was used, 1,3-DAG was predominantly observed and little TAG was detected. These findings suggest that human small intestinal DGAT, which is mainly encoded by DGAT1, utilizes 1,2-DAG as the substrate to form TAG. This study will contribute to understand the lipid absorption profile in the small intestine.

  16. Acylated flavonol tri- and tetraglycosides in the flavonoid metabolome of Cladrastis kentukea (Leguminosae).

    Science.gov (United States)

    Kite, Geoffrey C; Rowe, Emily R; Lewis, Gwilym P; Veitch, Nigel C

    2011-04-01

    The foliar metabolome of Cladrastis kentukea (Leguminosae) contains a complex mixture of flavonoids including acylated derivatives of the 3-O-rhamnosyl(1→2)[rhamnosyl(1→6)]-galactosides of kaempferol and quercetin and their 7-O-rhamnosides, together with an array of non-acylated kaempferol and quercetin di-, tri- and tetraglycosides. Thirteen of the acylated flavonoids, 12 of which had not been reported previously, were characterised by spectroscopic and chemical methods. Eight of these were the four isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) and their 7-O-α-l-rhamnopyranosides, and three were isomers of quercetin 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) - the remaining 4Z isomer was identified by LC-UV-MS analysis of a crude extract. The final two acylated flavonoids characterised by NMR were the 3E and 4E isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E-feruloyl-β-d-galactopyranoside)-7-O-α-l-rhamnopyranoside while the 3Z and 4Z isomers were again detected by LC-UV-MS. Using the observed fragmentation behaviour of the isolated compounds following a variety of MS experiments, a further 18 acylated flavonoids were given tentative structures by LC-MS analysis of a crude extract. Acylated flavonoids were absent from the flowers of C. kentukea, which contained an array of non-acylated kaempferol and quercetin glycosides. Immature fruits contained kaempferol 3-O-α-rhamnopyranosyl(1→2)[α-rhamnopyranosyl(1→6)]-β-galactopyranoside and its 7-O-α-rhamnopyranoside as the major flavonoids with acylated flavonoids, different from those in the leaves, only present as minor constituents. The presence of acylated flavonoids distinguishes the foliar flavonoid metabolome of C. kentukea from that of a closely related legume, Styphnolobium japonicum, which contains a similar

  17. A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.

    Directory of Open Access Journals (Sweden)

    Nicolas Gauthier

    Full Text Available Most conditions detected by expanded newborn screening result from deficiency of one of the enzymes that degrade acyl-coenzyme A (CoA esters in mitochondria. The role of acyl-CoAs in the pathophysiology of these disorders is poorly understood, in part because CoA esters are intracellular and samples are not generally available from human patients. We created a mouse model of one such condition, deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (HL, in liver (HLLKO mice. HL catalyses a reaction of ketone body synthesis and of leucine degradation. Chronic HL deficiency and acute crises each produced distinct abnormal liver acyl-CoA patterns, which would not be predictable from levels of urine organic acids and plasma acylcarnitines. In HLLKO hepatocytes, ketogenesis was undetectable. Carboxylation of [2-(14C] pyruvate diminished following incubation of HLLKO hepatocytes with the leucine metabolite 2-ketoisocaproate (KIC. HLLKO mice also had suppression of the normal hyperglycemic response to a systemic pyruvate load, a measure of gluconeogenesis. Hyperammonemia and hypoglycemia, cardinal features of many inborn errors of acyl-CoA metabolism, occurred spontaneously in some HLLKO mice and were inducible by administering KIC. KIC loading also increased levels of several leucine-related acyl-CoAs and reduced acetyl-CoA levels. Ultrastructurally, hepatocyte mitochondria of KIC-treated HLLKO mice show marked swelling. KIC-induced hyperammonemia improved following administration of carglumate (N-carbamyl-L-glutamic acid, which substitutes for the product of an acetyl-CoA-dependent reaction essential for urea cycle function, demonstrating an acyl-CoA-related mechanism for this complication.

  18. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analogue

    Directory of Open Access Journals (Sweden)

    Sigde Mamani

    2016-09-01

    Full Text Available While a functional quorum sensing system has been identified in the acidophilic chemolithoautotroph Acidithiobacillus ferrooxidans ATCC 23270T and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in At. ferrooxidansT, the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL analogue has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analogue, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy experiments. A faster adherence of At. ferrooxidansT cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signalling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the At. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that QS network represents at least 4.5 % (141 genes of the ATCC 23270T genome of which 42.5 % (60 genes are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of At. ferrooxidans to quorum sensing and on biofilm biogenesis, opening new biological/chemical alternatives for bioleaching development and managing acid Mine/Rock drainage environmental damages.

  19. Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants

    Czech Academy of Sciences Publication Activity Database

    Götz, C.; Fekete, A.; Gebefuegi, I.; Forczek, Sándor; Fuksová, Květoslava; Li, X.; Englmann, M.; Gryndler, Milan; Hartmann, A.; Matucha, Miroslav; Schmitt-Kopplin, P.

    2007-01-01

    Roč. 389, č. 5 (2007), s. 1447-1457 ISSN 1618-2642 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50200510 Keywords : UPLC * FTICR-MS * tritium autoradiography Subject RIV: EF - Botanics Impact factor: 2.867, year: 2007

  20. Influence of food preservation parameters and associated microbiota on production rate, profile and stability of acylated homoserine lactones from food-derived Enterobacteriaceae

    DEFF Research Database (Denmark)

    Flodgaard, Lars; Christensen, Allan Beck; Molin, Søren

    2003-01-01

    by Gram-negative bacteria participating in spoilage. As part of our investigation of the role of AHLs in food quality, we studied the AHL production in two Enterobacteriaceae isolated from cold-smoked salmon under growth conditions typical of those found in cold-smoked salmon. We tested the influence......H is approximately 6 and therefore only a low degree of pH-induced turnover is expected to occur in this product. Overall, our study demonstrates that food-derived Enterobacteriaceae produce AHLs of the same type and in the same magnitude when grown under food-relevant conditions as when grown in laboratory media...

  1. N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Lindum, Peter Wurtz; Anthoni, U; Christophersen, Carsten

    1998-01-01

    A nonswarming Serratia liquefaciens mutant deficient in serrawettin W2 production was constructed by transposon mutagenesis. Sequence homology indicated that insertion had occurred in gene swrA, which encodes a putative peptide synthetase. Expression of swrA is controlled by quorum sensing....

  2. The absence of the N-acyl-homoserine-lactone autoinducer synthase genes tral and ngrl increases the copy number of the symbiotic plasmid in Sinorhizobium fredii NGR234

    Science.gov (United States)

    Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be...

  3. Synthesis of N-Acylated Amino Acid Surfactant from L-Proline and Palmitoyl Chloride

    International Nuclear Information System (INIS)

    Meutia Fadhilah Hasibuan; Mohd Wahid Samsudin; Rahimi Mohd Yusop; Suria Ramli

    2015-01-01

    A biodegradable, less toxic and environmentally friendly N-acylated amino acid surfactant was prepared from the amino acid L-proline and palmitoyl chloride through acylation reaction using the Schotten-Baumann reaction condition. The reaction result was a white flake form and the percentage of the crude yield was 72 % with melting point in range of 52 - 58 degree Celsius. Functional group of amide which was detected using Fourier Transform Infrared method showed the presence of N-palmitoyl proline. The purity analysis using High Performance Liquid Chromatography and Thin Layer Chromatography showed the result was a mixture compound. (author)

  4. Binding events of (S )-N -(3-oxo-octanoyl)-homoserine lactone with agrobacterium tumefaciens mutant cells studied by saturation transfer difference NMR

    Energy Technology Data Exchange (ETDEWEB)

    Cabeca, Luis Fernando; Pomini, Armando Mateus; Cruz, Pedro Luiz R.; Marsaioli, Anita J. [University of Campinas (UNICAMP), SP (Brazil). Chemistry Inst.

    2011-07-01

    Quorum-sensing is a widely studied communication phenomenon in bacteria, which involves the production and detection of signaling substances in relation with cell density and colony behavior. Herein, the membrane binding interactions of the signal (S)-N-(3-oxo-octanoyl)-HSL with A. tumefaciens NTL4(pZLR4) cells were studied using saturation transfer difference NMR spectroscopy (STD-NMR). The substance epitope map was obtained showing that the hydrophobic acyl chain is the most important interacting site for the signal and the cell membrane. Results were interpreted upon comparisons with a simpler system, using liposomes as membrane models. Some insights on the use of b-cyclodextrin as acyl-HSL carrier were also provided. (author)

  5. Exploring the Leishmania Hydrophilic Acylated Surface Protein B (HASPB) Export Pathway by Live Cell Imaging Methods.

    Science.gov (United States)

    MacLean, Lorna; Price, Helen; O'Toole, Peter

    2016-01-01

    Leishmania major is a human-infective protozoan parasite transmitted by the bite of the female phlebotomine sand fly. The L. major hydrophilic acylated surface protein B (HASPB) is only expressed in infective parasite stages suggesting a role in parasite virulence. HASPB is a "nonclassically" secreted protein that lacks a conventional signal peptide, reaching the cell surface by an alternative route to the classical ER-Golgi pathway. Instead HASPB trafficking to and exposure on the parasite plasma membrane requires dual N-terminal acylation. Here, we use live cell imaging methods to further explore this pathway allowing visualization of key events in real time at the individual cell level. These methods include live cell imaging using fluorescent reporters to determine the subcellular localization of wild type and acylation site mutation HASPB18-GFP fusion proteins, fluorescence recovery after photobleaching (FRAP) to analyze the dynamics of HASPB in live cells, and live antibody staining to detect surface exposure of HASPB by confocal microscopy.

  6. 2-ethylhydracrylic aciduria in short/branched-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Korman, Stanley H; Andresen, Brage S; Zeharia, Avraham

    2005-01-01

    BACKGROUND: Isolated excretion of 2-methylbutyrylglycine (2-MBG) is the hallmark of short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD), a recently identified defect in the proximal pathway of L-isoleucine oxidation. SBCADD might be underdiagnosed because detection and recognition...

  7. Acylated flavonol glycosides from Larix needles

    NARCIS (Netherlands)

    Niemann, Gerard J.

    2006-01-01

    Kaempferol-3-p-coumarylglucoside (KCG) was isolated from ether fractions of acetone-extracted freeze-dried needles of all larch species investigated. In each case, KCG was found as one of the main flavonoids, whereas often a variety of closely related, acylated flavonoids was present in either

  8. Veronica: Acylated flavone glycosides as chemosystematic markers

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Kite, Geoffrey C.

    2005-01-01

    HPLC/DAD and LCeMS of an extract of Veronica spicata subgenus Pseudolysimachium, Plantaginaceae) revealed the presence of six 6-hydroxyluteolin glycosides acylated with phenolic acids, three of which are new compounds and which we called spicosides. A flavonoid survey of seven more species...

  9. Detection of quorum sensing molecules from Vibrio harveyi and use ...

    African Journals Online (AJOL)

    This paper explores the extraction and detection processes of quorum sensing molecules such as N-aceyl homoserine lactone compounds (AHL) from marine Vibrio harveyi. The spent culture of V. harveyi was solvent partitioned for AHL, rotary evaporated and re-suspended in 50% acetonitrile then detected with reporter ...

  10. Acylated ghrelin concentrations are markedly decreased during pregnancy in mothers with and without gestational diabetes: relationship with cholinesterase.

    Science.gov (United States)

    Tham, Elaine; Liu, Jianhua; Innis, Sheila; Thompson, David; Gaylinn, Bruce D; Bogarin, Roberto; Haim, Alon; Thorner, Michael O; Chanoine, Jean-Pierre

    2009-05-01

    Acylated (octanoylated) ghrelin stimulates food intake and growth hormone secretion and is deacylated into desacyl ghrelin by butyrylcholinesterase. Acylated and desacyl ghrelin both promote adipogenesis. Ghrelin concentrations decrease with hyperglycemia and hyperinsulinism. We hypothesized that 1) acylated ghrelin increases during pregnancy, contributing positively to energy balance, but is lower in women with gestational diabetes and 2) butyrylcholinesterase activity is inversely correlated with acylated ghrelin concentrations. In a first group of subjects, using two-site sandwich ghrelin assays that specifically detect full-length forms, we investigated women with and without gestational diabetes (n = 14/group) during pregnancy and after delivery. We examined whether changes in ghrelin during a test meal were correlated with changes in pituitary growth hormone [assessed through calculation of the area under the curve (AUC) during the test meal]. In postpartum subjects, the percent of total ghrelin that is acylated was four to five times higher than previously observed using single antibody assays. During pregnancy, acylated ghrelin concentrations (mean +/- SE) were lower compared with the postpartum period throughout the meal (AUC 1.2 +/- 0.2 vs. 10.2 +/- 1.9 ng.ml(-1).90 min(-1), P < 0.001). In the postpartum, acylated ghrelin and growth hormone were positively correlated (r = 0.50, P = 0.007). Desacyl (but not acylated) ghrelin was increased in subjects with gestational diabetes during and after pregnancy (AUC 15.4 +/- 1.9 vs. 8.6 +/- 1.2 ng.ml(-1).90 min(-1), P = 0.005). In a second group of subjects (n = 13), acylated ghrelin was similarly suppressed during pregnancy. Circulating octanoate concentrations (3.1 +/- 0.5 vs. 4.5 +/- 0.6 microg/ml, P = 0.029) and cholinesterase activity (705 +/- 33 vs. 1,013 +/- 56 U/ml, P < 0.001) were lower during pregnancy compared with the postpartum period. In conclusion, acylated ghrelin markedly decreases during pregnancy

  11. Fatty Acyl Chains of Mycobacterium marinum Lipooligosaccharides

    Science.gov (United States)

    Rombouts, Yoann; Alibaud, Laeticia; Carrère-Kremer, Séverine; Maes, Emmanuel; Tokarski, Caroline; Elass, Elisabeth; Kremer, Laurent; Guérardel, Yann

    2011-01-01

    We have recently established the fine structure of the glycan backbone of lipooligosaccharides (LOS-I to LOS-IV) isolated from Mycobacterium marinum, a close relative of Mycobacterium tuberculosis. These studies culminated with the description of an unusual terminal N-acylated monosaccharide that confers important biological functions to LOS-IV, such as macrophage activation, that may be relevant to granuloma formation. It was, however, also suggested that the lipid moiety was required for LOSs to exert their immunomodulatory activity. Herein, using highly purified LOSs from M. marinum, we have determined through a combination of mass spectrometric and NMR techniques, the structure and localization of the fatty acids composing the lipid moiety. The occurrence of two distinct polymethyl-branched fatty acids presenting specific localizations is consistent with the presence of two highly related polyketide synthases (Pks5 and Pks5.1) in M. marinum and presumably involved in the synthesis of these fatty acyl chains. In addition, a bioinformatic search permitted us to identify a set of enzymes potentially involved in the biosynthesis or transfer of these lipids to the LOS trehalose unit. These include MMAR_2343, a member of the Pap (polyketide-associated protein) family, that acylates trehalose-based glycolipids in M. marinum. The participation of MMAR_2343 to LOS assembly was demonstrated using a M. marinum mutant carrying a transposon insertion in the MMAR_2343 gene. Disruption of MMAR_2343 resulted in a severe LOS breakdown, indicating that MMAR_2343, hereafter designated PapA4, fulfills the requirements for LOS acylation and assembly. PMID:21803773

  12. Acylation Reactions over Zeolites and Mesoporous Catalysts

    Czech Academy of Sciences Publication Activity Database

    Voláková, Martina; Vitvarová, Dana; Čejka, Jiří

    2009-01-01

    Roč. 2, č. 6 (2009), s. 486-499 ISSN 1864-5631 R&D Projects: GA ČR GA104/07/0383; GA ČR GD203/08/H032; GA MPO FT-TA5/005 Institutional research plan: CEZ:AV0Z40400503 Keywords : acylation * ketones * mesoporous materials * shape-selectivity * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.767, year: 2009

  13. Influence of bacterial N-acyl-homoserinelactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean

    Directory of Open Access Journals (Sweden)

    Christine eGoetz-Roesch

    2015-04-01

    Full Text Available Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS. N-acyl-homoserine lactones (AHLs are the QS signalling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signalling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance towards radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters.We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL, N-octanoyl- (C8-HSL and N-decanoyl- homoserine lactone (C10-HSL on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L. as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase (DHAR in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase (SOD activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers towards AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different

  14. Interaction of gamma-glutamyltranspeptidase with clofibryl-S-acyl-glutathione in vitro and in vivo in rat.

    Science.gov (United States)

    Grillo, M P; Benet, L Z

    2001-08-01

    Clofibric acid (CA) is metabolized to chemically reactive acylating products that can transacylate glutathione to form clofibryl-S-acyl-glutathione (CA-SG) in vitro and in vivo. We investigated the first step in the degradation of CA-SG to the mercapturic acid conjugate, clofibryl-S-acyl-N-acetylcysteine (CA-SNAC), which is catalyzed by gamma-glutamyltranspeptidase (gamma-GT). After gamma-GT mediated cleavage of glutamate from CA-SG, the product clofibryl-S-acyl-cysteinylglycine (CA-S-CG) should undergo an intramolecular rearrangement reaction [Tate, S. S. (1975) FEBS Lett. 54, 319-322] to form clofibryl-N-acyl-cysteinylglycine (CA-N-CG). We performed in vitro studies incubating CA-SG with gamma-GT to determine the products formed, and in vivo studies examining the products excreted in urine after dosing rats with CA-SG or CA. Thus, CA-SG (0.1 mM) was incubated with gamma-GT (0.1 unit/mL) in buffer (pH 7.4, 25 degrees C) and analyzed for products formed by reversed-phase HPLC and electrospray mass spectrometry (ESI/MS). Results showed that CA-SG is degraded completely after 6 h of incubation leading to the formation of two products, CA-N-CG and its disulfide, with no detection of CA-S-CG thioester. After 36 h of incubation, only the disulfide remained in the incubation. Treatment of the disulfide with dithiothreitol led to the reappearance of CA-N-CG. ESI/LC/MS analysis of urine (16 h) extracts of CA-SG-dosed rats (200 mg/kg, iv) showed that CA-SG is degraded to CA-N-CG, CA-N-acyl-cysteine (CA-N-C) and their respective S-methylated products. The mercapturic acid conjugate (CA-SNAC) was found as a minor product. Analysis of urine extracts from CA-dosed rats (200 mg/kg, ip) resulted in the detection of clofibryl-N-acyl-cysteine (CA-N-C), but no evidence for the formation of CA-SNAC was obtained. These in vitro and in vivo experiments indicate that gamma-GT mediated degradation of clofibryl-S-acyl-glutathione leads primarily to the formation and excretion of clofibryl-N-acyl

  15. Analytische und Effektor-Studien von N-Acyl-Ethanolaminphosphaten

    OpenAIRE

    Ates, Ebru

    2011-01-01

    Bei N-Acyl-Ethanolaminphosphaten handelt es sich um eine bislang wenig untersuchte Klasse polarer Substanzen, deren Erforschung aufgrund ihrer strukturellen Analogie zu apolaren, physiologisch wirksamen N-Acyl-Ethanolaminen von Interesse ist. Zu bear-beiten waren analytische Fragestellungen, die auch synthetische Aufgaben beinhalteten, wie Methodenentwicklung und Versuche zur Erfassung von N-Acyl-Ethanolamin-phosphaten in ausgewählten Lebensmitteln sowie strukturelle Studien zur „Bioaktivität...

  16. Plasma levels of acylated ghrelin in patients with functional dyspepsia

    Science.gov (United States)

    Kim, Yeon Soo; Lee, Joon Seong; Lee, Tae Hee; Cho, Joo Young; Kim, Jin Oh; Kim, Wan Jung; Kim, Hyun Gun; Jeon, Seong Ran; Jeong, Hoe Su

    2012-01-01

    AIM: To investigate the relationship between plasma acylated ghrelin levels and the pathophysiology of functional dyspepsia. METHODS: Twenty-two female patients with functional dyspepsia and twelve healthy volunteers were recruited for the study. The functional dyspepsia patients were each diagnosed based on the Rome III criteria. Eligible patients completed a questionnaire concerning the severity of 10 symptoms. Plasma acylated ghrelin levels before and after a meal were determined in the study participants using a commercial human acylated enzyme immunoassay kit; electrogastrograms were performed for 50 min before and after a standardized 10-min meal containing 265 kcal. RESULTS: There were no significant differences in plasma acylated ghrelin levels between healthy volunteers and patients with functional dyspepsia. However, in patients with functional dyspepsia, there was a negative correlation between fasting plasma acylated ghrelin levels and the sum score of epigastric pain (r = -0.427, P = 0.047) and a positive correlation between the postprandial/fasting plasma acylated ghrelin ratio and the sum score of early satiety (r = 0.428, P =0.047). Additionally, there was a negative correlation between fasting acylated ghrelin plasma levels and fasting normogastria (%) (r = -0.522, P = 0.013). Interestingly, two functional dyspepsia patients showed paradoxically elevated plasma acylated ghrelin levels after the meal. CONCLUSION: Abnormal plasma acylated ghrelin levels before or after a meal may be related to several of the dyspeptic symptoms seen in patients with functional dyspepsia. PMID:22611317

  17. Localization of acyl ghrelin- and des-acyl ghrelin-immunoreactive cells in the rat stomach and their responses to intragastric pH.

    Science.gov (United States)

    Mizutani, Makoto; Atsuchi, Kaori; Asakawa, Akihiro; Matsuda, Norifumi; Fujimura, Masaki; Inui, Akio; Kato, Ikuo; Fujimiya, Mineko

    2009-11-01

    Acyl ghrelin has a 28-amino acid sequence with O-n-octanoyl acid modification at the serine 3 position, whereas des-acyl ghrelin has no octanoyl acid modification. Although these peptides exert different physiological functions, no previous studies have shown the different localization of acyl ghrelin and des-acyl ghrelin in the stomach. Here we have developed an antibody specific for des-acyl ghrelin that does not crossreact with acyl ghrelin. Both acyl ghrelin- and des-acyl ghrelin-immunoreactive cells were distributed in the oxyntic and antral mucosa of the rat stomach, with higher density in the antral mucosa than oxyntic mucosa. Immunofluorescence double staining showed that acyl ghrelin- and des-acyl ghrelin-positive reactions overlapped in closed-type round cells, whereas des-acyl ghrelin-positive reaction was found in open-type cells in which acyl ghrelin was negative. Acyl ghrelin-/des-acyl ghrelin-positive closed-type cells contain obestatin; on the other hand, des-acyl ghrelin-positive open-type cells contain somatostatin. We measured the release of acyl ghrelin and des-acyl ghrelin in vascularly perfused rat stomach by ELISA, and the effects of different intragastric pH levels on the release of each peptide were examined. The release of des-acyl ghrelin from the perfused stomach was greater at pH 2 than at pH 4; however, the release of acyl ghrelin was not affected by intragastric pH. The present study demonstrated the differential localization of acyl ghrelin and des-acyl ghrelin in the rat stomach and their different responses to the intragastric pH.

  18. Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed.

    Science.gov (United States)

    Cahoon, E B; Coughlan, S J; Shanklin, J

    1997-04-01

    A cDNA for a structurally variant acyl-acyl carrier protein (ACP) desaturase was isolated from milkweed (Asclepias syriaca) seed, a tissue enriched in palmitoleic (16:1delta9)* and cis-vaccenic (18:1delta11) acids. Extracts of Escherichia coli that express the milkweed cDNA catalyzed delta9 desaturation of acyl-ACP substrates, and the recombinant enzyme exhibited seven- to ten-fold greater specificity for palmitoyl (16:0)-ACP and 30-fold greater specificity for myristoyl (14:0)-ACP than did known delta9-stearoyl (18:0)-ACP desaturases. Like other variant acyl-ACP desaturases reported to date, the milkweed enzyme contains fewer amino acids near its N-terminus compared to previously characterized delta9-18:0-ACP desaturases. Based on the activity of an N-terminal deletion mutant of a delta9-18:0-ACP desaturase, this structural feature likely does not account for differences in substrate specificities.

  19. Regulation of very-long acyl chain ceramide synthesis by acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Ferreira, Natalia Santos; Engelsby, Hanne; Neess, Ditte

    2017-01-01

    and cardiovascular diseases, as well as neurological disorders. Here we show that acyl-coenzyme A-binding protein (ACBP) potently facilitates very-long acyl chain ceramide synthesis. ACBP increases the activity of ceramide synthase 2 (CerS2) by more than 2-fold and CerS3 activity by 7-fold. ACBP binds very......-long-chain acyl-CoA esters, which is required for its ability to stimulate CerS activity. We also show that high-speed liver cytosol from wild-type mice activates CerS3 activity, whereas cytosol from ACBP knock-out mice does not. Consistently, CerS2 and CerS3 activities are significantly reduced in the testes...... of ACBP(-/-) mice, concomitant with a significant reduction in long- and very-long-chain ceramide levels. Importantly, we show that ACBP interacts with CerS2 and CerS3. Our data uncover a novel mode of regulation of very-long acyl chain ceramide synthesis by ACBP, which we anticipate is of crucial...

  20. LOCATION OF ACYL GROUPS ON TWO PARTLY ACYLATED GLYCOLIPIDS FROM STRAINS OF USTILAGO (SMUT FUNGI),

    Science.gov (United States)

    erythritol from Ustilago sp. (probably U. nuda (Jens.) Rostr. = U. tritici (Pers.) Rostr.) PRL-627 were acetalated with methyl vinyl ether, deacylated...Partly acylated ustilagic acids 8 (from Ustilago maydis (DC) Corda (= U. zeae Unger) PRL-119), consisting of partially esterified beta-cellobiosyl

  1. Reprogramming Acyl Carrier Protein Interactions of an Acyl-CoA Promiscuous trans-Acyltransferase

    DEFF Research Database (Denmark)

    Ye, Zhixia; Musiol-Kroll, Ewa Maria; Weber, Tilmann

    2014-01-01

    Protein interactions between acyl carrier proteins (ACPs) and trans-acting acyltransferase domains (trans-ATs) are critical for regioselective extender unit installation by many polyketide synthases, yet little is known regarding the specificity of these interactions, particularly for trans-ATs w...

  2. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.

    2000-01-01

    N-acyl-ethanolamine phospholipids (NAPE) can be formed as a stress response during neuronal injury, and they are precursors for N-acyl- ethanolamines (NAE), some of which are endocannabinoids. The levels of NAPE accumulated during post-decapitative ischemia (6 h at 37°C) were studied in rat brains...... of various age (1, 6, 12, 19, 30, and ~70 days) by the use of P NMR spectroscopy of lipid extracts. This ability to accumulate NAPE was compared with the activity of N-acyltransferase and of NAPE-hydrolyzing phospholipase D (NAPE-PLD) in brain microsomes. These two enzymes are involved in the formation...... brains NAPE accumulation could not be detected (detection limit 0.09 %)]; and 2) this age pattern of accumulation can be explained by a combination of the decreased activity of N- acyltransferase and the increased activity of NAPE-PLD during development. These results point out that it would...

  3. An Efficient, Mild and Solvent-Free Synthesis of Benzene Ring Acylated Harmalines

    Directory of Open Access Journals (Sweden)

    Sabira Begum

    2009-12-01

    Full Text Available A facile synthesis of a series of benzene ring acylated analogues of harmaline has been achieved by Friedel-Crafts acylation under solvent-free conditions at room temperature using acyl halides/acid anhydrides and AlCl3. The reaction afforded 10- and 12-acyl analogues of harmaline in good yield, along with minor quantities of N-acyl-tryptamines and 8-acyl analogues of N-acyltryptamines.

  4. Exploring the Molecular Basis for Selective Binding of Homoserine Dehydrogenase from Mycobacterium leprae TN toward Inhibitors: A Virtual Screening Study

    Directory of Open Access Journals (Sweden)

    Dongling Zhan

    2014-01-01

    Full Text Available Homoserine dehydrogenase (HSD from Mycobacterium leprae TN is an antifungal target for antifungal properties including efficacy against the human pathogen. The 3D structure of HSD has been firmly established by homology modeling methods. Using the template, homoserine dehydrogenase from Thiobacillus denitrificans (PDB Id 3MTJ, a sequence identity of 40% was found and molecular dynamics simulation was used to optimize a reliable structure. The substrate and co-factor-binding regions in HSD were identified. In order to determine the important residues of the substrate (l-aspartate semialdehyde (l-ASA binding, the ASA was docked to the protein; Thr163, Asp198, and Glu192 may be important because they form a hydrogen bond with HSD through AutoDock 4.2 software. neuraminidaseAfter use of a virtual screening technique of HSD, the four top-scoring docking hits all seemed to cation–π ion pair with the key recognition residue Lys107, and Lys207. These ligands therefore seemed to be new chemotypes for HSD. Our results may be helpful for further experimental investigations.

  5. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  6. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin

    OpenAIRE

    Asakawa, A; Inui, A; Fujimiya, M; Sakamaki, R; Shinfuku, N; Ueta, Y; Meguid, M M; Kasuga, M

    2005-01-01

    Background/Aims: The gastric peptide ghrelin, an endogenous ligand for growth-hormone secretagogue receptor, has two major molecular forms: acylated ghrelin and desacyl ghrelin. Acylated ghrelin induces a positive energy balance, while desacyl ghrelin has been reported to be devoid of any endocrine activities. The authors examined the effects of desacyl ghrelin on energy balance.

  7. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    Science.gov (United States)

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  8. Oxidative activation of dihydropyridine amides to reactive acyl donors

    DEFF Research Database (Denmark)

    Funder, Erik Daa; Trads, Julie Brender; Gothelf, Kurt Vesterager

    2015-01-01

    Amides of 1,4-dihydropyridine (DHP) are activated by oxidation for acyl transfer to amines, alcohols and thiols. In the reduced form the DHP amide is stable towards reaction with amines at room temperature. However, upon oxidation with DDQ the acyl donor is activated via a proposed pyridinium...

  9. Erbium trifluoromethanesulfonate-catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hansen, Poul Erik; Nguyen, Hai Truong

    2015-01-01

    Erbium trifluoromethanesulfonate is found to be a good catalyst for the Friedel–Crafts acylation of arenes containing electron-donating substituents using aromatic carboxylic acids as the acylating agents under microwave irradiation. An effective, rapid and waste-free method allows the preparation...... of a wide range of aryl ketones in good yields and in short reaction times with minimum amounts of waste...

  10. Processing and fatty acid acylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Fujiyama, A.; Tamanoi, F.

    1986-01-01

    The authors demonstrate the pathway for the biosynthesis of RAS1 and RAS2 gene products of Saccharomyces cerevisiae leading to their localization in membranes. The primary translation products of these genes are detected in a soluble fraction. Shortly after synthesis, these precursor molecules are converted to forms that migrate slightly faster than the precursor forms on a NaDodSO 4 /polyacrylamide gel. These processed proteins are further modified by fatty acid acylation, which is detected by [ 3 H]palmitic acid labeling. The acylated derivatives are found exclusively in cell membranes, indicating the translocation of the RAS proteins from cytosol to membranes during maturation process. The attached fatty acids can be released by mild alkaline hydrolysis, suggesting that the linkage between the fatty acid and the protein is an ester bond. The site of the modification by fatty acid is presumably localized to the COOH-terminal portion of the RAS proteins. Fraction of the membranes by sucrose gradient demonstrates that a majority of the fatty-acylated RAS proteins are localized in plasma membrane

  11. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  12. Acyl-CoA binding protein and epidermal barrier function

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Neess, Ditte; Færgeman, Nils J

    2014-01-01

    The acyl-CoA binding protein (ACBP) is a 10kDa intracellular protein expressed in all eukaryotic species and mammalian tissues investigated. It binds acyl-CoA esters with high specificity and affinity and is thought to act as an intracellular transporter of acyl-CoA esters between different...... includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced...

  13. Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds.

    Science.gov (United States)

    Banaś, Walentyna; Sanchez Garcia, Alicia; Banaś, Antoni; Stymne, Sten

    2013-06-01

    The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.

  14. Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies

    Science.gov (United States)

    Ogo, Yuko; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Takaiwa, Fumio

    2016-01-01

    Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20–40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances. PMID:26438413

  15. Acyl Meldrum's acid derivatives: application in organic synthesis

    Science.gov (United States)

    Janikowska, K.; Rachoń, J.; Makowiec, S.

    2014-07-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references.

  16. Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis

    DEFF Research Database (Denmark)

    Rasmussen, J T; Færgeman, Nils J.; Kristiansen, K

    1994-01-01

    The dissociation constants for octanoyl-CoA, dodecanoyl-CoA and hexadecanoyl-CoA binding to acyl-CoA-binding protein (ACBP) were determined by using titration microcalorimetry. The KD values obtained, (0.24 +/- 0.02) x 10(-6) M, (0.65 +/- 0.2) x 10(-8) M and (0.45 +/- 0.2) x 10(-13) M respectively......, were much lower than expected. ACBP was able to extract hexadecanoyl-CoA from phosphatidylcholine membranes immobilized on a nitrocellulose membrane. The acyl-CoA/ACBP complex formed was able to transport acyl-CoA to mitochondria or microsomes in suspension, or to microsomes immobilized...

  17. Regioselective Acylation of Diols and Triols: The Cyanide Effect.

    Science.gov (United States)

    Peng, Peng; Linseis, Michael; Winter, Rainer F; Schmidt, Richard R

    2016-05-11

    Central topics of carbohydrate chemistry embrace structural modifications of carbohydrates and oligosaccharide synthesis. Both require regioselectively protected building blocks that are mainly available via indirect multistep procedures. Hence, direct protection methods targeting a specific hydroxy group are demanded. Dual hydrogen bonding will eventually differentiate between differently positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide or acetyl cyanide as an acylating agent, and DMAP as a catalyst yield at -78 °C the thermodynamically unfavorable axial O-acylation product; acyl migration is not observed under these conditions. This phenomenon was substantiated with 3,4-O-unproteced galacto- and fucopyranosides and 2,3-O-unprotected mannopyranosides. Even for 3,4,6-O-unprotected galactopyranosides as triols, axial 4-O-acylation is appreciably faster than O-acylation of the primary 6-hydroxy group. The importance of hydrogen bonding for this unusual regioselectivity could be confirmed by NMR studies and DFT calculations, which indicate favorable hydrogen bonding of cyanide to the most acidic axial hydroxy group supported by hydrogen bonding of the equatorial hydroxy group to the axial oxygen. Thus, the "cyanide effect" is due to dual hydrogen bonding of the axial hydroxy group which enhances the nucleophilicity of the respective oxygen atom, permitting an even faster reaction for diols than for mono-ols. In contrast, fluoride as a counterion favors dual hydrogen bonding to both hydroxy groups leading to equatorial O-acylation.

  18. Photoprotection and the photophysics of acylated anthocyanins.

    Science.gov (United States)

    da Silva, Palmira Ferreira; Paulo, Luísa; Barbafina, Adrianna; Eisei, Fausto; Quina, Frank H; Maçanita, António L

    2012-03-19

    The proposed role of anthocyanins in protecting plants against excess solar radiation is consistent with the occurrence of ultrafast (5-25 ps) excited-state proton transfer as the major de-excitation pathway of these molecules. However, because natural anthocyanins absorb mainly in the visible region of the spectra, with only a narrow absorption band in the UV-B region, this highly efficient deactivation mechanism would essentially only protect the plant from visible light. On the other hand, ground-state charge-transfer complexes of anthocyanins with naturally occurring electron-donor co-pigments, such as hydroxylated flavones, flavonoids, and hydroxycinnamic or benzoic acids, do exhibit high UV-B absorptivities that complement that of the anthocyanins. In this work, we report a comparative study of the photophysics of the naturally occurring anthocyanin cyanin, intermolecular cyanin-coumaric acid complexes, and an acylated anthocyanin, that is, cyanin with a pendant coumaric ester co-pigment. Both inter- and intramolecular anthocyanin-co-pigment complexes are shown to have ultrafast energy dissipation pathways comparable to those of model flavylium cation-co-pigment complexes. However, from the standpoint of photoprotection, the results indicate that the covalent attachment of co-pigment molecules to the anthocyanin represents a much more efficient strategy by providing the plant with significant UV-B absorption capacity and at the same time coupling this absorption to efficient energy dissipation pathways (ultrafast internal conversion of the complexed form and fast energy transfer from the excited co-pigment to the anthocyanin followed by adiabatic proton transfer) that avoid net photochemical damage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Carbapenems and SHV-1 β-Lactamase Form Different Acyl-Enzyme Populations in Crystals and Solution

    Science.gov (United States)

    Kalp, Matthew; Carey, Paul R.

    2009-01-01

    The reactions between single crystals of the SHV-1 β-lactamase enzyme and the carbapenems, meropenem, imipenem and ertapenem, have been studied by Raman microscopy. Aided by quantum mechanical calculations, major populations of two acyl-enzyme species, a labile Δ2-pyrroline and a more tightly bound Δ1-pyrroline, have been identified for all three compounds. These isomers differ only in the position of the double bond about the carbapenem nucleus. This discovery is consonant with X-ray crystallographic findings that also identified two populations for meropenem bound in SHV-1: one with the acyl C=O group in the oxyanion hole and the second with the acyl group rotated 180 degrees compared to its expected position [Nukaga, M., Bethel, C. R., Thomson, J. M., Hujer, A. M., Distler, A. M., Anderson, V. E., Knox, J. R., and Bonomo, R. A. (2008) Journal of the American Chemical Society]. When crystals of the Δ1 and Δ2 containing acyl-enzymes were exposed to solutions with no carbapenem, rapid deacylation of the Δ2 species was observed by kinetic Raman experiments. However, no change in the Δ1 population was observed over 1 hour, the effective lifetime of the crystal. These observations lead to the hypothesis that the stable Δ1 species is due to the form seen by X-ray with the acyl carbonyl outside the oxyanion hole, while the Δ2 species corresponds to the form with the carbonyl inside the oxyanion hole. Soak-in and soak-out Raman experiments also demonstrated that tautomeric exchange between the Δ1 and Δ2 forms does not occur on the crystalline enzyme. When meropenem or ertapenem were reacted with SHV-1 in solution, the Raman difference spectra demonstrated that only a major population corresponding to the Δ1 acyl-enzyme could be detected. The 1003 cm-1 mode of the phenyl ring positioned on the C3 side chain of ertapenem acts as an effective internal Raman intensity standard and the ratio of its intensity to that of the 1600 cm-1 feature of Δ1 provides an

  20. Cholinesterase catalyzed hydrolysis of O-acyl derivatives of serotonin

    International Nuclear Information System (INIS)

    Makhaeva, G.F.; Suvorov, N.N.; Ginodman, L.N.; Antonov, V.K.; AN SSSR, Moscow. Inst. Bioorganicheskoj Khimii)

    1977-01-01

    Hydrolysis of O acyl serotonin derivatives containing the residues of monocarbon dicarbon and amino acids under the effect of horse serum butyryl cholinesterase and bull erythrocytic acetylcholinesterase has been studied. It has been established, that acetylcholinesterase hydrolizes O acetylserotonin only; butyrylcholinesterase hydrolizes all the compounds investigated, except for 5,5'-terephthaloildioxytriptamine. The kinetic parameters of hydrolysis were determined. O acyl serotonin derivatives turned out good substrates of butylrylcholinesterase; serotonin and 5.5'-terephtaloildioxytriptamine are effective competitine inhibitors of the enzyme. Estimating of resistance of O acyl serotonin derivatines to blood cholinesterase effect under physiological conditions shows that the compounds investigated with the exception of 5,5'-terephthaloildioxytriptamine must be quickly hydrolyzed under butyrylcholinesterase action. 5,5'-terephthaloildioxytriptamine is suggested as a radioprotective preparation with the prolonged effect, which agrees with the biological test results

  1. N-hexanoyl-L-homoserine lactone-degrading Pseudomonas aeruginosa PsDAHP1 protects zebrafish against Vibrio parahaemolyticus infection.

    Science.gov (United States)

    Vinoj, Gopalakrishnan; Jayakumar, Rengarajan; Chen, Jiann-Chu; Withyachumnarnkul, Boonsirm; Shanthi, Sathappan; Vaseeharan, Baskaralingam

    2015-01-01

    Four strains of N-hexanoyl-L-homoserine lactone (AHL)-degrading Pseudomonas spp., named PsDAHP1, PsDAHP2, PsDAHP3, and PsDAHP4 were isolated and identified from the intestine of Fenneropenaeus indicus. PsDAHP1 showed the highest AHL-degrading activity among the four isolates. PsDAHP1 inhibited biofilm-forming exopolysaccharide and altered cell surface hydrophobicity of virulent green fluorescent protein (GFP)-tagged Vibrio parahaemolyticus DAHV2 (GFP-VpDAHV2). Oral administration of PsDAHP1 significantly reduced zebrafish mortality caused by GFP-VpDAHV2 challenge, and inhibited colonisation of GFP-VpDAHV2 in the gills and intestine of zebrafish as evidence by confocal laser scanning microscope and selective plating. Furthermore, zebrafish receiving PsDAHP1-containing feed had increased phagocytic cells of its leucocytes, increased serum activities of superoxide dismutase and lysozyme. The results suggest that Pseudomonas aeruginosa PsDAHP1 could protect zebrafish from V. parahaemolyticus infection by inhibiting biofilm formation and enhancing defence mechanisms of the fish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. N-(3-oxododecanoyl)-l-homoserine lactone modulates mitochondrial function and suppresses proliferation in intestinal goblet cells.

    Science.gov (United States)

    Tao, Shiyu; Niu, Liqiong; Cai, Liuping; Geng, Yali; Hua, Canfeng; Ni, Yingdong; Zhao, Ruqian

    2018-05-15

    The quorum-sensing molecule N‑(3‑oxododecanoyl)‑l‑homoserine lactone (C12-HSL), produced by the Gram negative human pathogenic bacterium Pseudomonas aeruginosa, modulates mammalian cell behavior. Our previous findings suggested that C12-HSL rapidly decreases viability and induces apoptosis in LS174T goblet cells. In this study, the effects of 100 μM C12-HSL on mitochondrial function and cell proliferation in LS174T cells treated for 4 h were evaluated by real-time PCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The results showed that the activities of mitochondrial respiratory chain complexes IV and V were significantly increased (P cells after C12-HSL treatment, with elevated intracellular ATP generation (P cell cycle arrest upon C12-HSL treatment. Apoptosis and cell proliferation related genes showed markedly altered expression levels (P cells after C12-HSL treatment. Moreover, the paraoxonase 2 (PON2) inhibitor TQ416 (1 μM) remarkably reversed the above C12-HSL associated effects in LS174T cells. These findings indicated that C12-HSL alters mitochondrial energy production and function, and inhibits cell proliferation in LS174T cells, with PON2 involvement. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases.

    Science.gov (United States)

    Guy, Jodie E; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-10-04

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals.

  4. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids.Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS.In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid.Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  5. Studies on acylation of lysolecithin in chicken intestine

    International Nuclear Information System (INIS)

    Lokesh, B.R.; Madhava Rao, A.; Murthy, S.K.

    1976-01-01

    The enzymatic acylation of lysolecithin to lecithin is shown to occur in the brush border-free particulate fraction of the small intestines of neonatal chicken. It requires ATP, coenzyme A and Mg 2+ or Mn 2+ for maximal activity. The system is specific for oleic acid. The fatty acid composition at the α-position of lysolecithin does not seem to influence the rate of acylation. The fatty acid incorporated into lysolecithin is shown to occupy exclusively, the β-position. [ 32 P]lecithin and [1- 14 C]oleic acid has been used as tracers in the studies. (author)

  6. Quantum chemical study of penicillin: Reactions after acylation

    Science.gov (United States)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  7. Copper(II)/amine synergistically catalyzed enantioselective alkylation of cyclic N-acyl hemiaminals with aldehydes.

    Science.gov (United States)

    Sun, Shutao; Mao, Ying; Lou, Hongxiang; Liu, Lei

    2015-07-07

    The first catalytic asymmetric alkylation of N-acyl quinoliniums with aldehydes has been described. A copper/amine synergistic catalytic system has been developed, allowing the addition of functionalized aldehydes to a wide range of electronically varied N-acyl quinoliniums in good yields with excellent enantiocontrol. The synergistic catalytic system was also effective for N-acyl dihydroisoquinoliniums and β-caboliniums, demonstrating the general applicability of the protocol in the enantioselective alkylation of diverse cyclic N-acyl hemiaminals.

  8. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride

    International Nuclear Information System (INIS)

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-01-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen. - Highlights: • Acylated collagen retained the unique triple helix conformation. • Acylated collagen had stronger thermostability than native collagen. • Amide I was the most sensitive band to the temperature for acylated collagen. • Amide II was the most sensitive band to the temperature for native collagen. • Auto-peak at 1680 cm −1 for acylated collagen disappeared at higher temperature

  9. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  10. Antileishmanial Activity of Aldonamides and N-Acyl-Diamine Derivatives

    Directory of Open Access Journals (Sweden)

    Elaine S. Coimbra

    2008-01-01

    Full Text Available A number of lipophilic N-acyl-diamines and aldonamides have been synthesized and tested for their in vitro antiproliferative activity against Leishmania amazonensis and L. chagasi. Ribonamides, having one amino group, displayed good to moderate inhibition of parasite growth. The best result was obtained for compounds 10 and 15 with IC50 against L. chagasi below 5 μM.

  11. Rapid Hydrogen Shift Reactions in Acyl Peroxy Radicals

    DEFF Research Database (Denmark)

    Knap, Hasse Christian; Jørgensen, Solvejg

    2017-01-01

    -shift with X = 6, 7, 8, or 9) in the hydroperoxy acyl peroxy radicals, this H-shift is a reversible reaction and it scrambles between two peroxides, hydroperoxy acyl peroxy and peroxy peroxoic acid radicals. The forward reaction rate constants of the 1,X-OOH H-shift reactions are estimated to be above 103 s–1...... with transition state theory corrected with Eckart quantum tunnelling correction. The ratio between the forward and reverse reaction rate constant of the 1,X-OOH H-shift reactions is around ∼105. Therefore, the equilibrium is pushed toward the production of peroxy peroxoic acid radicals. These very fast 1,X-OOH H......We have used quantum mechanical chemical calculations (CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/aug-cc-pVTZ) to investigate the hydrogen shift (H-shift) reactions in acyl peroxy and hydroperoxy acyl peroxy radicals. We have focused on the H-shift reactions from a hydroperoxy group (OOH) (1,X-OOH H...

  12. N(G)-Acyl-argininamides as NPY Y(1) receptor antagonists: Influence of structurally diverse acyl substituents on stability and affinity.

    Science.gov (United States)

    Weiss, Stefan; Keller, Max; Bernhardt, Günther; Buschauer, Armin; König, Burkhard

    2010-09-01

    N(G)-Acylated argininamides, covering a broad range of lipophilicity (calculated logD values: -1.8-12.5), were synthesized and investigated for NPY Y(1) receptor (Y(1)R) antagonism, Y(1)R affinity and stability in buffer (N(G)-deacylation, yielding BIBP 3226). Broad structural variation of substituents was tolerated. The K(i) (binding) and K(b) values (Y(1)R antagonism) varied from low nM to one-digit muM. Most of the compounds proved to be sufficiently stable at pH 7.4 over 90min to determine reliable pharmacological data in vitro. Exceptionally high instability was detected when a succinyl moiety was attached to the guanidine, probably, due to an intramolecular cleavage mechanism. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  14. Fatty acyl-CoA reductases of birds

    Science.gov (United States)

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  15. Striving towards improved Friedel-Crafts acylation catalysts

    International Nuclear Information System (INIS)

    Scott, N.M.; Deacon, G.B.

    1998-01-01

    Full text: Lanthanum, ytterbium and scandium salts of trifluoromethanesulfonic acid have been shown to act as promising Lewis acid catalysts for the Friedel-Craft acylation reactions. In our study catalytic acylation of anisole by acetic anhydride in nitroethane was investigated. Yields were determined after extraction of para-methoxyacetophenone from the reaction mixture by G.L.C using the external standardisation method. Anhydrous lanthanoid tris-triflate salts [Ln(O 3 SCF 3 ) 3 , Ln La, Y, Nd, Eu and Yb] were initially investigated as catalysts. Ytterbium tris-triflate was found to be the most effective giving ∼90% of the acylation product. The hydrated lanthanide tris-nitrate salts [Ln(NO 3 ) 3 .nH 2 O, Ln = La, Nd, Eu and Yb] were also investigated using in situ dehydration with acetic anhydride. These were found to have low solubility in the reaction mixture and gave poor yields of para-methoxyacetophenone. The formation of side products was suggested by the low total recovery of anisole and para-methoxyacetophenone. The blocking of coordination sites of these catalysts by tetraglyme resulted in a 50% reduction in acylation activity compared with the simple salt. Addition of Li(O 3 SCF 3 ) to Ln(O 3 SCF 3 ) 3 catalysts (ratio of 4:1)had only a slight accelerating effect on the Friedel-Crafts acylation reaction and the yield was only marginally greater than that in the absence of the added salt. In contrast Li(ClO 4 ) dramatically decreased reaction times and improved the yield of para-methoxyace-tophenone, as recently reported

  16. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    Science.gov (United States)

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  17. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K

    1999-01-01

    and pool formation and therefore also for the function of LCAs as metabolites and regulators of cellular functions [1]. The major factors controlling the free concentration of cytosol long chain acylCoA ester (LCA) include ACBP [2], sterol carrier protein 2 (SCP2) [3] and fatty acid binding protein (FABP...

  18. Octanoyl-Homoserine Lactone Is the Cognate Signal for Burkholderia mallei BmaR1-BmaI1 Quorum Sensing

    National Research Council Canada - National Science Library

    Duerkop, Breck A; Ulrich, Ricky L; Greenberg, E. P

    2007-01-01

    .... The obligate animal pathogen Burkholderia mallei produces several acyl-HSLs, and the B. mallei genome has four luxR and two luxI homologs, each of which has been established as a virulence factor...

  19. Development of an activity-based probe for acyl-protein thioesterases

    Science.gov (United States)

    Garland, Megan; Schulze, Christopher J.; Foe, Ian T.; van der Linden, Wouter A.; Child, Matthew A.

    2018-01-01

    Protein palmitoylation is a dynamic post-translational modification (PTM) important for cellular functions such as protein stability, trafficking, localization, and protein-protein interactions. S-palmitoylation occurs via the addition of palmitate to cysteine residues via a thioester linkage, catalyzed by palmitoyl acyl transferases (PATs), with removal of the palmitate catalyzed by acyl protein thioesterases (APTs) and palmitoyl-protein thioesterases (PPTs). Tools that target the regulators of palmitoylation–PATs, APTs and PPTs–will improve understanding of this essential PTM. Here, we describe the synthesis and application of a cell-permeable activity-based probe (ABP) that targets APTs in intact mammalian cells and the parasite Toxoplasma gondii. Using a focused library of substituted chloroisocoumarins, we identified a probe scaffold with nanomolar affinity for human APTs (HsAPT1 and HsAPT2) and synthesized a fluorescent ABP, JCP174-BODIPY TMR (JCP174-BT). We use JCP174-BT to profile HsAPT activity in situ in mammalian cells, to detect an APT in T. gondii (TgPPT1). We show discordance between HsAPT activity levels and total protein concentration in some cell lines, indicating that total protein levels may not be representative of APT activity in complex systems, highlighting the utility of this probe. PMID:29364904

  20. Polymorphism in 'L' shaped lipids: structure of N-, O-diacylethanolamines with mixed acyl chains.

    Science.gov (United States)

    Tarafdar, Pradip K; Swamy, Musti J

    2009-11-01

    Although solid state polymorphism in lipids has been established by spectroscopic and calorimetric studies long ago, only in a few cases crystal structures of different polymorphs of the same compound have been reported, possibly due to difficulties in obtaining high quality single crystals of individual polymorphs. Recent studies show that N-, O-diacylethanolamines (DAEs) can be derived by the O-acylation of the stress-related lipids, the N-acylethanolamines under physiological conditions. In this study, two DAEs with mixed acyl chains, namely N-palmitoyl, O-octanoylethanolamine and N-palmitoyl, O-decanoylethanolamine have been synthesized and their three-dimensional structures were determined. Both the compounds were found to adopt 'L' shaped structures and exist in two polymorphic forms, alpha and beta. In the alpha form a mixed-type chain packing has been observed whereas in the beta form the chain packing is symmetric. Similar polymorphic forms are likely to exist in other 'L' shaped lipids such as 1,3-diacylglycerols and ceramides, where polymorphism has been detected earlier, but three-dimensional structures - which can give precise information about the packing at atomic resolution - have not been reported.

  1. Highly efficient and regioselective acylation of pharmacologically interesting cordycepin catalyzed by lipase in the eco-friendly solvent 2-methyltetrahydrofuran.

    Science.gov (United States)

    Chen, Zhi-Gang; Zhang, Dan-Ni; Cao, Lin; Han, Yong-Bin

    2013-04-01

    A total of nine lipases and three proteases were tested for enzymatic regioselective acylation(s) of cordycepin with vinyl acetate in organic media. The highest conversion with better initial reaction rate was achieved with immobilized Candida antarctica lipase B (Novozym 435). An eco-friendly solvent 2-methyltetrahydrofuran (MeTHF) was thought to be the most suitable reaction medium. Novozym 435 was found to be a useful biocatalyst for the 25-g scale syntheses of cordycepin acetate (96.2% isolated yield), and the biocatalyst displayed excellent regioselectivity and high operational stability during the transformation. The 5'-substituted cordycepin derivative was the sole detectable product from each acylation reaction. Novozym 435 could be recycled for the synthesis of cordycepin derivative on a 25-g scale and 63% of its original activity was maintained after being reused for 7 batches. MeTHF could be considered as an eco-friendly solvent for the large scale use in biotransformation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes

    Science.gov (United States)

    Ericson, Megan E.; Frank, Matthew W.

    2016-01-01

    Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes. Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes. PMID:27736774

  3. Atypical cleavage of protonated N-fatty acyl amino acids derived from aspartic acid evidenced by sequential MS3 experiments.

    Science.gov (United States)

    Boukerche, Toufik Taalibi; Alves, Sandra; Le Faouder, Pauline; Warnet, Anna; Bertrand-Michel, Justine; Bouchekara, Mohamed; Belbachir, Mohammed; Tabet, Jean-Claude

    2016-12-01

    Lipidomics calls for information on detected lipids and conjugates whose structural elucidation by mass spectrometry requires to rationalization of their gas phase dissociations toward collision-induced dissociation (CID) processes. This study focused on activated dissociations of two lipoamino acid (LAA) systems composed of N-palmitoyl acyl coupled with aspartic and glutamic acid mono ethyl esters (as LAA (*D) and LAA (*E) ). Although in MS/MS, their CID spectra show similar trends, e.g., release of water and ethanol, the [(LAA (*D/*E) +H)-C 2 H 5 OH] + product ions dissociate via distinct pathways in sequential MS 3 experiments. The formation of all the product ions is rationalized by charge-promoted cleavages often involving stepwise processes with ion isomerization into ion-dipole prior to dissociation. The latter explains the maleic anhydride or ketene neutral losses from N-palmitoyl acyl aspartate and glutamate anhydride fragment ions, respectively. Consequently, protonated palmitoyl acid amide is generated from LAA (*D), whereas LAA (*E) leads to the [*E+H-H 2 O] + anhydride. The former releases ammonia to provide acylium, which gives the C n H (2n-1) and C n H (2n-3) carbenium series. This should offer structural information, e.g., to locate either unsaturation(s) or alkyl group branching present on the various fatty acyl moieties of lipo-aspartic acid in further studies based on MS n experiments.

  4. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  5. IMMOBILIZATION OF TANNIN ACYL HYDROLASE FROM ASPERGILLUS NIGER

    OpenAIRE

    B. Lenin Kumar*, N. Lokeswari and D. Sriramireddy

    2013-01-01

    ABSTRACT: Tannin acyl hydrolase, commonly referred to as tannase (E.C. 3.1.1.20), an inducible extra-cellular enzyme produced by a number of animals, plants and microbes. In this investigation, tannase production under solid-state fermentation by using Aspergillus niger and the waste residue of cashew husk was used as substrate for obtaining the desired fermented product. Microbial tannase is more stable than tannase from other sources like plants or animals. Tannase from fungal sources are r...

  6. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, K.; Rasmussen, Thomas Bovbjerg

    2002-01-01

    Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR lay expression of an unstable version of the green-fluorescent protein (Gfp...

  7. Defluoridation potential of jute fibers grafted with fatty acyl chain

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Suvendu; Saha, Prosenjit [Materials Science Centre, IIT Kharagpur, WB 721302 (India); Roy, Debasis, E-mail: debasis@civil.iitkgp.ernet.in [Department of Civil Engineering, IIT Kharagpur, WB 721302 (India); Sen, Ramkrishna [Department of Biotechnology, IIT Kharagpur, WB 721302 (India); Adhikari, Basudam [Materials Science Centre, IIT Kharagpur, WB 721302 (India)

    2015-11-30

    Graphical abstract: - Highlights: • Acyl chain grafted jute has been shown to accumulate fluoride ions. • Covalent and hydrogen bonding and protonation were the contributing factors. • The process is relatively inexpensive and maintenance-free. • Acyl chain grafted jute showed higher fluoride ions accumulation than alternatives. - Abstract: Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C−F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.

  8. Turnover and metabolism of phosphatidylglycerol acyl moieties in E. coli

    International Nuclear Information System (INIS)

    Cooper, C.L.; Rock, C.O.

    1987-01-01

    Fatty acids synthesized in mutants (plsB) blocked in de novo phospholipid biosynthesis were preferentially transferred to phosphatidylglycerol (PtdGro). The ratio of phospholipid species labeled with 32 P and [ 3 H]acetate in the absence of glycerol-3-P acyltransferase activity indicated that [ 3 H]acetate incorporation into PtdGro was due to fatty acid turnover. The magnitude of the turnover process was difficult to estimate due to a significant contraction of the acetyl-CoA pool following the inhibition of phospholipid synthesis. A possible connection between PtdGro turnover and protein acylation was investigated in an E. coli strain containing a lipoprotein expression vector. Cells were prelabeled with [ 3 H]acetate and lipoprotein expression was induced concomitant with the addition of exogenous [ 14 C]-palmitate. [ 14 C] Palmitate was assimilated into the l-position of phosphatidylethanolamine and transferred to the amino terminus of the lipoprotein. In contrast, the ester-linked lipoprotein fatty acids and PtdGro were not enriched in carbon-14 implying a metabolic relationship between these two pools. The data suggest that turnover of PtdGro acyl moieties is related to protein acylation, but a direct link between the two processes remains to be established

  9. The R117A variant of the Escherichia coli transacylase FabD synthesizes novel acyl-(acyl carrier proteins).

    Science.gov (United States)

    Marcella, Aaron M; Barb, Adam W

    2017-12-01

    The commercial impact of fermentation systems producing novel and biorenewable chemicals will flourish with the expansion of enzymes engineered to synthesize new molecules. Though a small degree of natural variability exists in fatty acid biosynthesis, the molecular space accessible through enzyme engineering is fundamentally limitless. Prokaryotic fatty acid biosynthesis enzymes build carbon chains on a functionalized acyl carrier protein (ACP) that provides solubility, stability, and a scaffold for interactions with the synthetic enzymes. Here, we identify the malonyl-coenzyme A (CoA)/holo-ACP transacylase (FabD) from Escherichia coli as a platform enzyme for engineering to diversify microbial fatty acid biosynthesis. The FabD R117A variant produced novel ACP-based primer and extender units for fatty acid biosynthesis. Unlike the wild-type enzyme that is highly specific for malonyl-CoA to produce malonyl-ACP, the R117A variant synthesized acetyl-ACP, succinyl-ACP, isobutyryl-ACP, 2-butenoyl-ACP, and β-hydroxybutyryl-ACP among others from holo-ACP and the corresponding acyl-CoAs with specific activities from 3.7 to 120 nmol min -1  mg -1 . FabD R117A maintained K M values for holo-ACP (~ 40 μM) and displayed small changes in K M for acetoacetyl-CoA (110 ± 30 μM) and acetyl-CoA (200 ± 70 μM) when compared to malonyl-CoA (80 ± 30 μM). FabD R117A represents a novel catalyst that synthesizes a broad range of acyl-acyl-ACPs.

  10. Rivastigmine Improves Appetite by Increasing the Plasma Acyl/Des-Acyl Ghrelin Ratio and Cortisol in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Yoshiko Furiya

    2018-03-01

    Full Text Available Background: Weight loss accelerates cognitive decline and increases mortality in patients with dementia. While acetylcholinesterase (AChE inhibitors are known to cause appetite loss, we sometimes encounter patients in whom switching from donepezil (AChE inhibitor to rivastigmine (AChE and butyrylcholinesterase [BuChE] inhibitor improves appetite. Since BuChE inactivates ghrelin, a potent orexigenic hormone, we speculated that rivastigmine improves appetite by inhibiting BuChE-mediated ghrelin inactivation. Methods: The subjects were patients with mild to moderate Alzheimer disease treated with either rivastigmine patch (n = 11 or donepezil (n = 11 for 6 months. Before and after treatment, we evaluated appetite (0, decreased; 1, slightly decreased; 2, normal; 3, slightly increased; 4, increased, cognitive function, and blood biochemical variables, including various hormones. Results: Rivastigmine treatment significantly improved appetite (from 1.6 ± 0.5 to 2.6 ± 0.7, whereas donepezil treatment did not (from 2.0 ± 0.0 to 1.8 ± 0.4. Simultaneously, rivastigmine, but not donepezil, significantly decreased the serum cholinesterase activity (from 304.3 ± 60.5 to 246.8 ± 78.5 IU/L and increased the cortisol level (from 11.86 ± 3.12 to 14.61 ± 3.29 μg/dL and the acyl/des-acyl ghrelin ratio (from 4.03 ± 2.96 to 5.28 ± 2.72. The levels of leptin, insulin, total ghrel­in, and cognitive function were not significantly affected by either treatment. Conclusions: Our results suggest that compared with donepezil, rivastigmine has the advantage of improving appetite by increasing the acyl/des-acyl ghrelin ratio and cortisol level, thereby preventing weight loss.

  11. Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains

    Science.gov (United States)

    Crittenden, Christopher M.; Akin, Lucas D.; Morrison, Lindsay J.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2017-06-01

    Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages. [Figure not available: see fulltext.

  12. Tasting Pseudomonas aeruginosa biofilms.Human neutrophils express the bitter receptor T2R38 as sensor for the quorum sensing molecule N-(3-oxododecanoyl-L-homoserine lactone

    Directory of Open Access Journals (Sweden)

    Susanne eMaurer

    2015-07-01

    Full Text Available Bacteria communicate with each other via specialized signalling molecules, known as quorum sensing molecules or autoinducers. The Pseudomonas aeruginosa-derived quorum sensing molecule N-(3-oxododecanoyl-L-homoserine lactone (AHL-12, however, also activates mammalian cells. As shown previously, AHL-12 induced chemotaxis, up-regulated CD11b expression, and enhanced phagocytosis of polymorphonuclear neutrophils (PMN. Circumstantial evidence concurred with a receptor for AHL-12, which so far has been elusive. We investigated the bitter receptor T2R38 as a potential candidate. Although identified as a taste receptor, cells outside the gustatory system express T2R38, for example epithelial cells in the lung. We now detected T2R38 in peripheral blood neutrophils, monocytes and lymphocytes on the cell membrane, but also intracellular. In neutrophils, T2R38 was located in vesicles with characteristics of lipid droplets, and super-resolution microscopy showed a co-localisation with the lipid droplet membrane. Neutrophils take up AHL-12, and it co-localized with T2R38 as seen by laser scan microscopy. Binding of AHL-12 to T2R28 was confirmed by pull-down assays using biotin-coupled AHL-12 as bait. A commercially available antibody to T2R38 inhibited binding of AHL-12 to neutrophils, and this antibody by itself stimulated neutrophils, similarly to AHL-12. In conclusion, our data provide evidence for expression of functional T2R38 on neutrophils, and are compatible with the notion that T2R38 is the receptor for AHL-12 on neutrophils.

  13. Transitional change in rat fetal cell proliferation in response to ghrelin and des-acyl ghrelin during the last stage of pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki; Nakahara, Keiko [Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192 (Japan); Kangawa, Kenji [Department of Biochemistry, National Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565 (Japan); Murakami, Noboru, E-mail: a0d201u@cc.miyazaki-u.ac.jp [Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192 (Japan)

    2010-03-12

    Expression of mRNA for the ghrelin receptor, GHS-R1a, was detected in various peripheral and central tissues of fetal rats, including skin, bone, heart, liver, gut, brain and spinal cord, on embryonic day (ED)15 and ED17. However, its expression in skin, bone, heart and liver, but not in gut, brain and spinal cord, became relatively weak on ED19 and disappeared after birth (ND2). Ghrelin and des-acyl ghrelin facilitated the proliferation of cultured fetal (ED17, 19), but not neonatal (ND2), skin cells. On the other hand, with regard to cells from the spinal cord and hypothalamus, the proliferative effect of ghrelin continued after birth, whereas the effect of des-acyl ghrelin on neurogenesis in these tissues was lost at the ED19 fetal and ND2 neonatal stages. Immunohistochemistry revealed that the cells in the hypothalamus induced to proliferate by ghrelin at the ND2 stage were positive for nestin and glial fibrillary acidic protein. These results suggest that in the period immediately prior to, and after birth, rat fetal cells showing proliferation in response to ghrelin and des-acyl ghrelin are at a transitional stage characterized by alteration of the expression of GHS-R1a and an undefined des-acyl ghrelin receptor, their responsiveness varying among different tissues.

  14. Transitional change in rat fetal cell proliferation in response to ghrelin and des-acyl ghrelin during the last stage of pregnancy

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki; Nakahara, Keiko; Kangawa, Kenji; Murakami, Noboru

    2010-01-01

    Expression of mRNA for the ghrelin receptor, GHS-R1a, was detected in various peripheral and central tissues of fetal rats, including skin, bone, heart, liver, gut, brain and spinal cord, on embryonic day (ED)15 and ED17. However, its expression in skin, bone, heart and liver, but not in gut, brain and spinal cord, became relatively weak on ED19 and disappeared after birth (ND2). Ghrelin and des-acyl ghrelin facilitated the proliferation of cultured fetal (ED17, 19), but not neonatal (ND2), skin cells. On the other hand, with regard to cells from the spinal cord and hypothalamus, the proliferative effect of ghrelin continued after birth, whereas the effect of des-acyl ghrelin on neurogenesis in these tissues was lost at the ED19 fetal and ND2 neonatal stages. Immunohistochemistry revealed that the cells in the hypothalamus induced to proliferate by ghrelin at the ND2 stage were positive for nestin and glial fibrillary acidic protein. These results suggest that in the period immediately prior to, and after birth, rat fetal cells showing proliferation in response to ghrelin and des-acyl ghrelin are at a transitional stage characterized by alteration of the expression of GHS-R1a and an undefined des-acyl ghrelin receptor, their responsiveness varying among different tissues.

  15. Room-Temperature Alternative to the Arbuzov Reaction: The Reductive Deoxygenation of Acyl Phosphonates

    OpenAIRE

    Kedrowski, Sean M. A.; Dougherty, Dennis A.

    2010-01-01

    The reductive deoxygenation of acyl phosphonates using a Wolff−Kishner-like sequence is described. This transformation allows direct access to alkyl phosphonates from acyl phosphonates at room temperature. The method can be combined with acyl phosphonate synthesis into a one pot, four-step procedure for the conversion of carboxylic acids into alkyl phosphonates. The methodology works well for a variety of aliphatic acids and shows a functional group tolerance similar to that of other hydrazon...

  16. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  17. New acylated flavone and cyanogenic glycosides from Linum grandiflorum

    DEFF Research Database (Denmark)

    Mohammed, Magdy M. D.; Christensen, Lars Porskjær; Ibrahim, Nabaweya A.

    2009-01-01

    The first investigation of Linum grandiflorum resulted in the isolation of one new acylated flavone O-diglycoside known as luteolin 7-O-a-D-(6000-E-feruloyl)glucopyranosyl (1!2)--D-glucopyranoside, and one new cyanogenic glycoside known as 2-[(30-isopropoxy-O--D-glucopyranosyl)oxy]-2......-methylbutanenitrile, together with four known flavonoid glycosides, three known cyanogenic glycosides and one alkyl glycoside. The new compounds were structurally elucidated via the extensive 1D, 2D NMR and DIFNOE together with ESI-TOFCID-MS/MS and HR-MALDI/MS....

  18. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    DEFF Research Database (Denmark)

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J

    2011-01-01

    Long chain acyl-CoA synthetase 1 (ACSL1) contributes 50 to 90% of total ACSL activity in liver, adipose tissue, and heart and appears to direct the use of long chain fatty acids for energy. Although the functional importance of ACSL1 is becoming clear, little is understood about its post...... and acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  19. Evolution of the acyl-CoA binding protein (ACBP)

    DEFF Research Database (Denmark)

    Burton, Mark; Rose, Timothy M; Faergeman, Nils J

    2005-01-01

    -CoA pool size, donation of acyl-CoA esters for beta-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified...... duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage...

  20. Pichia pastoris Mut(S) strains are prone to misincorporation of O-methyl-L-homoserine at methionine residues when methanol is used as the sole carbon source.

    Science.gov (United States)

    Schotte, Peter; Dewerte, Isabelle; De Groeve, Manu; De Keyser, Saskia; De Brabandere, Veronique; Stanssens, Patrick

    2016-06-07

    Over the last few decades the methylotrophic yeast Pichia pastoris has become a popular host for a wide range of products such as vaccines and therapeutic proteins. Several P. pastoris engineered strains and mutants have been developed to improve the performance of the expression system. Yield and quality of a recombinant product are important parameters to monitor during the host selection and development process but little information is published regarding quality differences of a product produced by different P. pastoris strains. We compared titer and quality of several Nanobodies(®) produced in wild type and Mut(S) strains. Titer in fed-batch fermentation was comparable between all strains for each Nanobody but a significant difference in quality was observed. Nanobodies expressed in Mut(S) strains contained a product variant with a Δ-16 Da mass difference that was not observed in wild type strains. This variant showed substitution of methionine residues due to misincorporation of O-methyl-L-homoserine, also called methoxine. Methoxine is likely synthesized by the enzymatic action of O-acetyl homoserine sulfhydrylase and we confirmed that Nanobodies produced in the corresponding knock-out strain contained no methoxine variants. We could show the incorporation of methoxine during biosynthesis by its addition to the culture medium. We showed that misincorporation of methoxine occurs particularly in P. pastoris Mut(S) strains. This reduction in product quality could outweigh the advantages of using Mut strains, such as lower oxygen and methanol demand, heat formation and in some cases improved expression. Methoxine incorporation in recombinant proteins is likely to occur when an excess of methanol is present during fermentation but can be avoided when the methanol feed rate protocol is carefully designed.

  1. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama; Brzozowska, Aleksandra; Rueping, Magnus

    2017-01-01

    . By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high

  2. Accumulation of N-acyl-ethanolamine phospholipids in rat brains during post-decapitative ischemia

    DEFF Research Database (Denmark)

    Moesgaard, B.; Hansen, Harald S.; Jaroszewski, J.W.

    1999-01-01

    -phospho(N-acyl)-ethanolamine (NAPE(PLAS)), respectively, by spiking with authentic materials. Additionally, the identification was verified by thin-layer chromatography, which also showed the accumulation of N-acyl-ethanolamine phospholipids. The use of K-EDTA instead of the commonly used Cs...

  3. 1,5-Anhydro-D-fructose: regioselective acylation with fatty acids

    DEFF Research Database (Denmark)

    Lundt, Inge; Andersen, Søren Møller; Marcussen, Jan

    1999-01-01

    Regioselective acylation of 1,5-anhydro-D-fructose was performed with dodecanoic acid to give 1,5-anhydro-6-O-dodecanoyl-D-fructose, chemically in 50% yield and enzymatically in quantitative yield. Quantitative conversions were also obtained using hexadecanoic and octadecanoic acids as acyl donors...

  4. A simple, effective, green method for regioselective 3-acylation of unprotected indoles

    DEFF Research Database (Denmark)

    Tran, Phuong Huong; Tran, Hai N.; Hansen, Poul Erik

    2015-01-01

    A fast and green method is developed for regioselective acylation of indoles in the 3-position without the need for protection of the NH position. The method is based on Friedel-Crafts acylation using acid anhydrides. The method has been optimized, and Y(OTf)3 in catalytic amounts is found...

  5. Cis–Trans Configuration of Coumaric Acid Acylation Affects the Spectral and Colorimetric Properties of Anthocyanins

    Directory of Open Access Journals (Sweden)

    Gregory T. Sigurdson

    2018-03-01

    Full Text Available The color expression of anthocyanins can be affected by a variety of environmental factors and structural characteristics. Anthocyanin acylation (type and number of acids is known to be key, but the influence of acyl isomers (with unique stereochemistries remains to be explored. The objective of this study was to investigate the effects of cis–trans configuration of the acylating group on the spectral and colorimetric properties of anthocyanins. Petunidin-3-rutinoside-5-glucoside (Pt-3-rut-5-glu and Delphinidin-3-rutinoside-5-glucoside (Dp-3-rut-5-glu and their cis and trans coumaroylated derivatives were isolated from black goji and eggplant, diluted in pH 1–9 buffers, and analyzed spectrophotometrically (380–700 nm and colorimetrically (CIELAB during 72 h of storage (25 °C, dark. The stereochemistry of the acylating group strongly impacted the spectra, color, and stability of the Dp and Pt anthocyanins. Cis acylated pigments exhibited the greatest λmax in all pH, as much as 66 nm greater than their trans counterparts, showing bluer hues. Cis acylation seemed to reduce hydration across pH, increasing color intensity, while trans acylation generally improved color retention over time. Dp-3-cis-p-cou-rut-5-glu exhibited blue hues even in pH 5 (C*ab = 10, hab = 256° where anthocyanins are typically colorless. Cis or trans double bond configurations of the acylating group affected anthocyanin spectral and stability properties.

  6. Suppression of acyl migration in enzymatic production of structured lipids through temperature programming

    DEFF Research Database (Denmark)

    Yang, Tiankui; Fruekilde, Maj-Britt; Xu, Xuebing

    2005-01-01

    Acyl migration in the glycerol backbone often leads to the increase of by-products in the enzymatic production of specific structured lipids. Acyl migration is a thermodynamic process and is very difficult to stop fully in actual reactions. The objective of this study was to investigate...

  7. Synthesis and Bioactivity of Pyrazole Acyl Thiourea Derivatives

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2012-05-01

    Full Text Available Sixteen novel pyrazole acyl thiourea derivatives 6 were synthesized from monomethylhydrazine (phenylhydrazine and ethyl acetoacetate. The key 5-chloro-3-methyl-1-substituted-1H-pyrazole-4-carbonyl chloride intermediates 4 were first generated in four steps through cyclization, formylation, oxidation and acylation. Thess were then reacted with ammonium thiocyanate in the presence of PEG-400 to afford 5-chloro-3-methyl-1-substituted-1H-pyrazole-4-carbonyl isothiocyanates 5. Subsequent reaction with fluorinated aromatic amines resulted in the formation of the title compounds. The synthesized compound were unequivocally characterized by IR, 1H-NMR, 13C-NMR and elemental analysis and some of the synthesized compounds displayed good antifungal activities against Gibberella zeae, Fusarium oxysporum, Cytospora mandshurica and anti-TMV activity in preliminary antifungal activity tests.

  8. N-acyl phosphatidylethanolamines affect the lateral distribution of cholesterol in membranes

    DEFF Research Database (Denmark)

    Térová, B.; Slotte, J.P.; Petersen, G.

    2005-01-01

    -acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel ¿ liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains...... in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak...... interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also...

  9. Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids

    DEFF Research Database (Denmark)

    Wadum, M.C.; Villadsen, J.K.; Feddersen, S.

    2002-01-01

    methods for the determination of free acyl-CoA concentrations. No such method is presently available. In the present study, we describe the synthesis of two acyl-CoA sensors for measuring free acyl-CoA concentrations using acyl-CoA-binding protein as a scaffold. Met24 and Ala53 of bovine acyl...... of ligand (excitation 387nm). Titration of FACI-24 and FACI-53 with hexadecanoyl-CoA and dodecanoyl-CoA increased the fluorescence yield 5.5-and 4.7-fold at 460 and 495nm respectively. FACI-24 exhibited a high, and similar increase in, fluorescence yield at 460nm upon binding of C14-C20 saturated...

  10. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon

    2015-01-01

    hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate...... to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may decrease the permeability. In conclusion, acylated sCT acts as its own in vitro intestinal permeation enhancer, with reversible effects...... on Caco-2 cells, indicating that acylation of sCT may represent a promising tool to increase intestinal permeability without adding oral permeation enhancers....

  11. Detection of Quorum Sensing Activity in the Multidrug-Resistant Clinical Isolate Pseudomonas aeruginosa Strain GB11

    Directory of Open Access Journals (Sweden)

    Huey Jia Cheng

    2014-07-01

    Full Text Available A multidrug-resistant clinical bacteria strain GB11 was isolated from a wound swab on the leg of a patient. Identity of stain GB11 as Pseudomonas aeruginosa was validated by using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS. Detection of the production of signaling molecules, N-acylhomoserine lactones (AHLs, was conducted using three different bacterial biosensors. A total of four different AHLs were found to be produced by strain GB11, namely N-butyryl homoserine lactone (C4-HSL, N-hexanoylhomoserine lactone (C6-HSL, N-octanoyl homoserine lactone (C8-HSL and N-3-oxo-dodecanoylhomoserine lactone (3-oxo-C12-HSL using high resolution liquid chromatography tandem mass spectrometry (LC-MS/MS. Of these detected AHLs, 3-oxo-C12-HSL was found to be the most abundant AHL produced by P. aeruginosa GB11.

  12. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Knudsen, J

    1997-01-01

    (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations...

  13. Relationships between acylated ghrelin with growth hormone, insulin resistance, lipid profile, and cardio respiratory function in lean and obese men

    Directory of Open Access Journals (Sweden)

    Hasan Matin Homaee

    2011-01-01

    Conclusions: Obese and lean inactive young men had different levels of acylated ghrelin, GH, insulin, insulin resistance index, cardiorespiratory function and body fat percent. Body fat percent, insulin, and GH levels appear to be best determinant factors of acylated ghrelin levels. Also, in both obese and lean young men, higher levels of cardiovascular function were associated with higher levels of acylated ghrelin.

  14. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals

    DEFF Research Database (Denmark)

    Black, P N; Færgeman, Nils J.; DiRusso, C C

    2000-01-01

    ). Both repression and activation are dependent upon the function of either of the acyl-CoA synthetases Faa1p or Faa4p. In mammals, purified hepatocyte nuclear transcription factor 4alpha (HNF-4alpha) like E. coli FadR, binds long chain acyl-CoA directly. Coexpression of HNF-4alpha and acyl-CoA synthetase...

  15. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    Science.gov (United States)

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.

  16. The frequency of a disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase in sudden infant death syndrome

    DEFF Research Database (Denmark)

    Banner, Jytte; Gregersen, N; Kølvraa, S

    1993-01-01

    A number of rare inherited metabolic disorders are known to lead to death in infancy. Deficiency of medium-chain acyl CoA dehydrogenase has, on clinical grounds, been related particularly to sudden infant death syndrome. The contribution of this disorder to the etiology of sudden infant death...... syndrome is still a matter of controversy. The present study investigated 120 well-defined cases of sudden infant death syndrome in order to detect the frequency of the most common disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase (G985) compared with the frequency...... in the general population. A highly specific polymerase chain reaction assay was applied on dried blood spots. No over-representation of homo- or heterozygosity for G985 appears to exist in such a strictly defined population, for which reason it may be more relevant to look at a broader spectrum of clinical...

  17. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.

    Science.gov (United States)

    Metz, J G; Pollard, M R; Anderson, L; Hayes, T R; Lassner, M W

    2000-03-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.

  18. Central and peripheral des-acyl ghrelin regulates body temperature in rats.

    Science.gov (United States)

    Inoue, Yoshiyuki; Nakahara, Keiko; Maruyama, Keisuke; Suzuki, Yoshiharu; Hayashi, Yujiro; Kangawa, Kenji; Murakami, Noboru

    2013-01-04

    In the present study using rats, we demonstrated that central and peripheral administration of des-acyl ghrelin induced a decrease in the surface temperature of the back, and an increase in the surface temperature of the tail, although the effect of peripheral administration was less marked than that of central administration. Furthermore, these effects of centrally administered des-acyl ghrelin could not be prevented by pretreatment with [D-Lys3]-GHRP-6 GH secretagogue receptor 1a (GHS-R1a) antagonists. Moreover, these actions of des-acyl ghrelin on body temperature were inhibited by the parasympathetic nerve blocker methylscopolamine but not by the sympathetic nerve blocker timolol. Using immunohistochemistry, we confirmed that des-acyl ghrelin induced an increase of cFos expression in the median preoptic nucleus (MnPO). Additionally, we found that des-acyl ghrelin dilated the aorta and tail artery in vitro. These results indicate that centrally administered des-acyl ghrelin regulates body temperature via the parasympathetic nervous system by activating neurons in the MnPO through interactions with a specific receptor distinct from the GHS-R1a, and that peripherally administered des-acyl ghrelin acts on the central nervous system by passing through the blood-brain barrier, whereas it exerts a direct action on the peripheral vascular system. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. A New Acylated Flavonol Glycoside from Chenopodium foliosum

    Directory of Open Access Journals (Sweden)

    Zlatina Kokanova-Nedialkova, , , , , and

    2014-07-01

    Full Text Available A new acylated flavonol glycoside, namely gomphrenol-3-O-( 5 '''-O-E-feruloyl-β-D-apiofuranosyl-(1→2[β-D-glucopyranosyl-(1→6]-β-D-glucopyranoside (1 was isolated from the aerial parts of Chenopodium foliosum Asch. The structure of 1 was determined by means of spectroscopic methods (1D and 2D NMR, UV, IR, and HRESIMS. Radical scavenging and antioxidant activities of 1 were established using DPPH and ABTS radicals, FRAP assay and inhibition of lipid peroxidation (LP in linoleic acid system by the ferric thiocyanate method. Compound 1 showed low activity (DPPH and ABTS or lack of activity (FRAP and LP. In combination with CCl 4, 1 reduced the damage caused by the hepatotoxic agent and preserved cell viability and GSH level, decreased LDH leakage and reduced lipid damage. Effects were concentration dependent, most visible at the highest concentration (100 µg/m L , and similar to those of silymarin .

  20. Acylation of proteins with myristic acid occurs cotranslationally

    International Nuclear Information System (INIS)

    Wilcox, C.; Hu, J.S.; Olson, E.N.

    1987-01-01

    Several proteins of viral and cellular origin are acylated with myristic acid early during their biogenesis. To investigate the possibility that myristylation occurred cotranslationally, the BC 3 H1 muscle cell line, which contains a broad array of myristylated proteins, was pulse-labeled with [ 3 H]myristic acid. Nascent polypeptide chains covalently associated with transfer RNA were isolated subsequently by ion-exchange chromatography. [ 3 H]Myristate was attached to nascent chains through an amide linkage and was identified by thin-layer chromatography after its release from nascent chains by acid methanolysis. Inhibition of cellular protein synthesis with puromycin resulted in cessation of [ 3 H]myristate-labeling of nascent chains, in agreement with the dependence of this modification on protein synthesis in vivo. These data represent a direct demonstration that myristylation of proteins is a cotranslational modification

  1. Very long-chain acyl-coenzyme A dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    A. V. Degtyareva

    2014-01-01

    Full Text Available The paper describes a case of a baby with a severe infant form of very long-chain acyl-coenzyme A dehydrogenase deficiency, a very rare genetic disorder. The basis for the disease is a disorder of mitochondrial β-oxidation of long-chain fatty acids. Accumulation of acyl-CoA-derived fatty acids causes a toxic effect on the myocardium and cardiac conduction system, liver, skeletal muscles, and other organs. The development of hypoglycemia is typical. Treatment in the acute period involves the immediately ceased delivery of long-chain triglycerides, the provision of the body with medium-chain triglycerides, and the correction of glycemia. In our observation the baby was born at term with a satisfactory condition in a family with a poor history (the first baby had suddenly died at the age of 3,5 months. The disease manifested itself as bradyarrhythmia and cardiac arrest on day 2 of life. The clinical symptom complex also included hepatomegalia, hypoglycemic episodes, lactate acidosis, and elevated blood levels of cytolytic enzymes and creatine phosphokinase. The diagnosis was suspected on the basis of the high blood values of acylcarnitines (primarily C14:1 and verified by a molecular genetic examination. Syndrome therapy and dietotherapy resulted in the abolishment of the abnormality. At the age of 2 years of life, the infant’s physical, motor, mental, and speech development corresponded to his age although he had mild right-sided hemiparesis. Thus, timely therapy determines the favorable prognosis of the disease even in its severe infant forms. 

  2. An in vitro fatty acylation assay reveals a mechanism for Wnt recognition by the acyltransferase Porcupine.

    Science.gov (United States)

    Asciolla, James J; Miele, Matthew M; Hendrickson, Ronald C; Resh, Marilyn D

    2017-08-18

    Wnt proteins are a family of secreted signaling proteins that play key roles in regulating cell proliferation in both embryonic and adult tissues. Production of active Wnt depends on attachment of palmitoleate, a monounsaturated fatty acid, to a conserved serine by the acyltransferase Porcupine (PORCN). Studies of PORCN activity relied on cell-based fatty acylation and signaling assays as no direct enzyme assay had yet been developed. Here, we present the first in vitro assay that accurately recapitulates PORCN-mediated fatty acylation of a Wnt substrate. The critical feature is the use of a double disulfide-bonded Wnt peptide that mimics the two-dimensional structure surrounding the Wnt acylation site. PORCN-mediated Wnt acylation was abolished when the Wnt peptide was treated with DTT, and did not occur with a linear (non-disulfide-bonded) peptide, or when the double disulfide-bonded Wnt peptide contained Ala substituted for the Ser acylation site. We exploited this in vitro Wnt acylation assay to provide direct evidence that the small molecule LGK974, which is in clinical trials for managing Wnt-driven tumors, is a bona fide PORCN inhibitor whose IC 50 for inhibition of Wnt fatty acylation in vitro closely matches that for inhibition of Wnt signaling. Side-by-side comparison of PORCN and Hedgehog acyltransferase (HHAT), two enzymes that attach 16-carbon fatty acids to secreted proteins, revealed that neither enzyme will accept the other's fatty acyl-CoA or peptide substrates. These findings illustrate the unique enzyme-substrate selectivity exhibited by members of the membrane-bound O -acyl transferase family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Plant Acyl-CoA:Lysophosphatidylcholine Acyltransferases (LPCATs) Have Different Specificities in Their Forward and Reverse Reactions*

    Science.gov (United States)

    Lager, Ida; Yilmaz, Jenny Lindberg; Zhou, Xue-Rong; Jasieniecka, Katarzyna; Kazachkov, Michael; Wang, Peng; Zou, Jitao; Weselake, Randall; Smith, Mark A.; Bayon, Shen; Dyer, John M.; Shockey, Jay M.; Heinz, Ernst; Green, Allan; Banas, Antoni; Stymne, Sten

    2013-01-01

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for seven LPCATs from five different species, including species accumulating hydroxylated acyl groups in their seed oil, with a preference for C18-unsaturated acyl-CoA and low activity with palmitoyl-CoA and ricinoleoyl (12-hydroxyoctadec-9-enoyl)-CoA. We showed that Arabidopsis LPCAT1 and LPCAT2 enzymes catalyzed the acylation and de-acylation of both sn positions of PC, with a preference for the sn-2 position. When acyl specificities of the Arabidopsis LPCATs were measured in the reverse reaction, sn-2-bound oleoyl, linoleoyl, and linolenoyl groups from PC were transferred to acyl-CoA to a similar extent. However, a ricinoleoyl group at the sn-2-position of PC was removed 4–6-fold faster than an oleoyl group in the reverse reaction, despite poor utilization in the forward reaction. The data presented, taken together with earlier published reports on in vivo lipid metabolism, support the hypothesis that plant LPCAT enzymes play an important role in regulating the acyl-CoA composition in plant cells by transferring polyunsaturated and hydroxy fatty acids produced on PC directly to the acyl-CoA pool for further metabolism or catabolism. PMID:24189065

  4. Radiochromatographic assay of N-acyl-phosphatidylethanolamine-specific phospholipase D activity.

    Science.gov (United States)

    Fezza, Filomena; Gasperi, Valeria; Mazzei, Cinzia; Maccarrone, Mauro

    2005-04-01

    A radiochromatographic method has been set up to assay the activity of N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), based on reversed-phase high-performance liquid chromatography (HPLC) and online scintillation counting. The anandamide (N-arachidonoylethanolamine, AEA), product released by NAPE-PLD from the N-arachidonoyl-phosphatidylethanolamine (NArPE) substrate, was separated using a C18 column eluted with methanol-water-acetic acid and was quantified with an external standard method. Baseline separation of AEA and NArPE was completed in less than 15 min, with a detection limit of 0.5 fmol AEA at a signal-to-noise ratio of 4:1. The sensitivity and accuracy of the radiochromatographic procedure allowed detection and characterization of NAPE-PLD activity in very tiny tissue samples or in samples where the enzymatic activity is very low. With this method, we could determine the kinetic constants (i.e., apparent Michaelis-Menten constant (Km) of 40.0+/-5.6 microM and maximum velocity (Vmax) of 22.2+/-3.5 pmol/min per milligram protein toward NArPE) and the distribution of NAPE-PLD activity in brain areas and peripheral tissues of mouse. In addition, we could collect unprecedented evidence that compounds widely used in studies of the endocannabinoid system (e.g., AEA and congeners, receptor a(nta)gonists and inhibitors of AEA degradation) can also affect NAPE-PLD activity.

  5. Attempts to Synthesize 3-acyl-4-hydroxycoumarins from Meldrum’s acid -- and Related Chemistry

    OpenAIRE

    Ye, Fengbin; Tropp, Kristin; Yu, Yiting

    2007-01-01

    We start our synthetic work with the acylation of Meldrum’s acid to get three different 5-acyl Meldrum’s acids. These compounds are attacked by various nucleophiles containing different hetero atoms to obtain β-ketoesters, β-ketoamides and the corresponding β-keto-phosphorus compounds respectively. New β-ketoamides could be synthesized and characterized. The reaction of acylated Meldrum’s acid and diphenylphosphine did not lead to the expected β-keto-phosphide compound, but the resulting prod...

  6. Exploring Cooperative Effects in Oxidative NHC Catalysis: Regioselective Acylation of Carbohydrates.

    Science.gov (United States)

    Cramer, David L; Bera, Srikrishna; Studer, Armido

    2016-05-23

    The utility of oxidative NHC catalysis for both the regioselective and chemoselective functionalization of carbohydrates is explored. Chiral NHCs allow for the highly regioselective oxidative esterification of various carbohydrates using aldehydes as acylation precursors. The transformation was also shown to be amenable to both cis/trans diol isomers, free amino groups, and selective for specific sugar epimers in competition experiments. Efficiency and regioselectivity of the acylation can be improved upon using two different NHC catalysts that act cooperatively. The potential of the method is documented by the regioselective acylation of an amino-linked neodisaccharide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Age-dependent decline in acyl-ghrelin concentrations and reduced association of acyl-ghrelin and growth hormone in healthy older adults.

    Science.gov (United States)

    Nass, Ralf; Farhy, Leon S; Liu, Jianhua; Pezzoli, Suzan S; Johnson, Michael L; Gaylinn, Bruce D; Thorner, Michael O

    2014-02-01

    Acyl-ghrelin is thought to have both orexigenic effects and to stimulate GH release. A possible cause of the anorexia of aging is an age-dependent decrease in circulating acyl-ghrelin levels. The purpose of the study was to compare acyl-ghrelin and GH concentrations between healthy old and young adults and to examine the relationship of acyl-ghrelin and GH secretion in both age groups. Six healthy older adults (age 62-74 y, body mass index range 20.9-29 kg/m(2)) and eight healthy young men (aged 18-28 y, body mass index range 20.6-26.2 kg/m(2)) had frequent blood samples drawn for hormone measurements every 10 minutes for 24 hours. Ghrelin was measured in an in-house, two-site sandwich ELISA specific for full-length acyl-ghrelin. GH was measured in a sensitive assay (Immulite 2000), and GH peaks were determined by deconvolution analysis. The acyl-ghrelin/GH association was estimated from correlations between amplitudes of individual GH secretory events and the average acyl-ghrelin concentration in the 60-minute interval preceding each GH burst. Twenty-four-hour mean (±SEM) GH (0.48 ± 0.14 vs 2.2 ± 0.3 μg/L, P adults compared with young adults. Twenty-four-hour cortisol concentrations were higher in the old than the young adults (15.1 ± 1.0 vs 10.6 ± 0.9 μg/dL, respectively, P young adults (0.16 ± 0.12 vs 0.69 ± 0.04, P age-dependent decline in circulating acyl-ghrelin levels, which might play a role both in the decline of GH and in the anorexia of aging. Our data also suggest that with normal aging, endogenous acyl-ghrelin levels are less tightly linked to GH regulation.

  8. Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles

    Science.gov (United States)

    Kreituss, Imants; Bode, Jeffrey W.

    2017-05-01

    Kinetic resolution is a common method to obtain enantioenriched material from a racemic mixture. This process will deliver enantiopure unreacted material when the selectivity factor of the process, s, is greater than 1; however, the scalemic reaction product is often discarded. Parallel kinetic resolution, on the other hand, provides access to two enantioenriched products from a single racemic starting material, but suffers from a variety of practical challenges regarding experimental design that limit its applications. Here, we describe the development of a flow-based system that enables practical parallel kinetic resolution of saturated N-heterocycles. This process provides access to both enantiomers of the starting material in good yield and high enantiopurity; similar results with classical kinetic resolution would require selectivity factors in the range of s = 100. To achieve this, two immobilized quasienantiomeric acylating agents were designed for the asymmetric acylation of racemic saturated N-heterocycles. Using the flow-based system we could efficiently separate, recover and reuse the polymer-supported reagents. The amide products could be readily separated and hydrolysed to the corresponding amines without detectable epimerization.

  9. Does des-acyl ghrelin improve glycemic control in obese diabetic subjects by decreasing acylated ghrelin levels?

    Science.gov (United States)

    Özcan, Behiye; Neggers, Sebastian J C M M; Miller, Anne Reifel; Yang, Hsiu-Chiung; Lucaites, Virginia; Abribat, Thierry; Allas, Soraya; Huisman, Martin; Visser, Jenny A; Themmen, Axel P N; Sijbrands, Eric J G; Delhanty, Patric J D; van der Lely, Aart Jan

    2014-06-01

    The objective of this study was to assess the effects of a continuous overnight infusion of des-acyl ghrelin (DAG) on acylated ghrelin (AG) levels and glucose and insulin responses to a standard breakfast meal (SBM) in eight overweight patients with type 2 diabetes. Furthermore, in the same patients and two additional subjects, the effects of DAG infusion on AG concentrations and insulin sensitivity during a hyperinsulinemic-euglycemic clamp (HEC) were assessed. A double-blind, placebo-controlled cross-over study design was implemented, using overnight continuous infusions of 3 and 10  μg DAG/kg per h and placebo to study the effects on a SBM. During a HEC, we studied the insulin sensitivity. We observed that, compared with placebo, overnight DAG administration significantly decreased postprandial glucose levels, both during continuous glucose monitoring and at peak serum glucose levels. The degree of improvement in glycemia was correlated with baseline plasma AG concentrations. Concurrently, DAG infusion significantly decreased fasting and postprandial AG levels. During the HEC, 2.5  h of DAG infusion markedly decreased AG levels, and the M-index, a measure of insulin sensitivity, was significantly improved in the six subjects in whom we were able to attain steady-state euglycemia. DAG administration was not accompanied by many side effects when compared with placebo. DAG administration improves glycemic control in obese subjects with type 2 diabetes through the suppression of AG levels. DAG is a good candidate for the development of compounds in the treatment of metabolic disorders or other conditions with a disturbed AG:DAG ratio, such as type 2 diabetes mellitus or Prader-Willi syndrome. © 2014 European Society of Endocrinology.

  10. Diketones and ketoesters synthesis by acylation of substituted trimethylsilyl lithio-malonates

    International Nuclear Information System (INIS)

    Mayani, Mbutyabo

    1983-01-01

    The acylation of trimethylsilyl substituted lithio malonates with dicarbonyl-dichlorides and diacid monoester chlorides gives, after a simple hydrolysis by water, various diketones and ketoesters. The yields are generally good. The method is easy. (author) [fr

  11. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  12. Purification of specific structured lipids by distillation: Effects on acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, A.; Adler-Nissen, Jens

    2001-01-01

    The cause and effects of acyl migration during the purification of specific structured lipids by distillation were studied in a conventional batch deodorizer with stripping steam. The mixture of specific structured lipids produced by lipase-catalyzed acidolysis between rapeseed oil and capric acid...... influenced the rate of acyl migration, and their combinations made the effect more severe. However, diacylglycerols were found to be the main reason for acyl migration. In the distillation of the specific structured lipid product mixture, distillation temperature and time were the main factors to determine...... the degree of acyl migration and the extent of separation of free fatty acids. The results indicate that more efficient separation technology should be used to improve the quality of the purified structured lipids. in order to reduce the distillation temperature, vacuum should be made as low as possible...

  13. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil

    International Nuclear Information System (INIS)

    Triggiani, M.; D'Souza, D.M.; Chilton, F.H.

    1991-01-01

    The biosynthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-2-acetyl-GPC) together with that of 1-alkyl-2-acetyl-GPC (platelet-activating factor) has been demonstrated in a variety of inflammatory cells and tissues. It has been hypothesized that the relative proportion of these phospholipids produced upon cell activation may be influenced by their rates of catabolism. We studied the catabolism of 1-acyl-2-acetyl-GPC in resting and activated human neutrophils and compared it to that of 1-alkyl-2-acetyl-GPC. Neutrophils rapidly catabolize both 1-alkyl-2-acetyl-GPC and 1-acyl-2-acetyl-GPC; however, the rate of catabolism of 1-acyl-2-acetyl-GPC is approximately 2-fold higher than that of 1-alkyl-2-acetyl-GPC. In addition, most of 1-acyl-2-acetyl-GPC is catabolized through a pathway different from that of 1-alkyl-2-acetyl-GPC. The main step in the catabolism of 1-acyl-2-acetyl-GPC is the removal of the long chain at the sn-1 position; the long chain residue is subsequently incorporated either into triglycerides or into phosphatidylcholine. The 1-lyso-2-acetyl-GPC formed in this reaction is then further degraded to glycerophosphocholine, choline, or phosphocholine. 1-Acyl-2-acetyl-GPC is also catabolized, to a lesser extent, through deacetylation at the sn-2 position and reacylation with a long chain fatty acid. Stimulation of neutrophils by A23187 results in a higher rate of catabolism of 1-acyl-2-acetyl-GPC by increasing both the removal of the long chain at the sn-1 position and the deacetylation-reacylation at the sn-2 position. In a broken cell preparation, the cytosolic fraction of the neutrophil was shown to contain an enzyme activity which cleaved the sn-1 position of 1-acyl-2-acetyl-GPC and 1-acyl-2-lyso-GPC but not of 1,2-diacyl-GPC

  14. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Directory of Open Access Journals (Sweden)

    Anara A Kamaeva

    Full Text Available Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL, were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  15. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Science.gov (United States)

    Kamaeva, Anara A; Vasilchenko, Alexey S; Deryabin, Dmitry G

    2014-01-01

    Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  16. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J

    2016-08-01

    The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.

  17. Acyl Meldrum's acid derivatives: application in organic synthesis

    International Nuclear Information System (INIS)

    Janikowska, K; Rachoń, J; Makowiec, S

    2014-01-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references

  18. Mild and Highly Efficient Copper(I Inspired Acylation of Alcohols and Polyols

    Directory of Open Access Journals (Sweden)

    Enoch A. Mensah

    2017-01-01

    Full Text Available A new and highly efficient method mediated by tetrakis(acetonitrilecopper(I triflate for activating both simple and highly hindered anhydrides in the acylation of alcohols and polyols is described. This new acylation method is mild and mostly proceeds at room temperature with low catalyst loading. The method is versatile and has been extended to a wide variety of different alcohol substrates to afford the corresponding ester products in good to excellent yields.

  19. Thioesterase activity and acyl-CoA/fatty acid cross-talk of hepatocyte nuclear factor-4{alpha}.

    Science.gov (United States)

    Hertz, Rachel; Kalderon, Bella; Byk, Tamara; Berman, Ina; Za'tara, Ghadeer; Mayer, Raphael; Bar-Tana, Jacob

    2005-07-01

    Hepatocyte nuclear factor-4alpha (HNF-4alpha) activity is modulated by natural and xenobiotic fatty acid and fatty acyl-CoA ligands as a function of their chain length, unsaturation, and substitutions. The acyl-CoA site of HNF-4alpha is reported here to consist of the E-F domain, to bind long-chain acyl-CoAs but not the respective free acids, and to catalyze the hydrolysis of bound fatty acyl-CoAs. The free acid pocket, previously reported in the x-ray structure of HNF-4alpha E-domain, entraps fatty acids but excludes acyl-CoAs. The acyl-CoA and free acid sites are distinctive and noncongruent. Free fatty acid products of HNF-4alpha thioesterase may exchange with free acids entrapped in the fatty acid pocket of HNF-4alpha. Cross-talk between the acyl-CoA and free fatty acid binding sites is abrogated by high affinity, nonhydrolyzable acyl-CoA ligands of HNF-4alpha that inhibit its thioesterase activity. Hence, HNF-4alpha transcriptional activity is controlled by its two interrelated acyl ligands and two binding sites interphased in tandem by the thioesterase activity. The acyl-CoA/free-acid and receptor/enzyme duality of HNF-4alpha extends the paradigm of nuclear receptors.

  20. Deciphering the acylation pattern of Yersinia enterocolitica lipid A.

    Directory of Open Access Journals (Sweden)

    Mar Reinés

    Full Text Available Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the

  1. Deciphering the acylation pattern of Yersinia enterocolitica lipid A.

    Science.gov (United States)

    Reinés, Mar; Llobet, Enrique; Dahlström, Käthe M; Pérez-Gutiérrez, Camino; Llompart, Catalina M; Torrecabota, Nuria; Salminen, Tiina A; Bengoechea, José A

    2012-01-01

    Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2)-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of

  2. Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications.

    Science.gov (United States)

    Rowland, Owen; Domergue, Frédéric

    2012-09-01

    Primary fatty alcohols are found throughout the biological world, either in free form or in a combined state. They are common components of plant surface lipids (i.e. cutin, suberin, sporopollenin, and associated waxes) and their absence can significantly perturb these essential barriers. Fatty alcohols and/or derived compounds are also likely to have direct functions in plant biotic and abiotic interactions. An evolutionarily related set of alcohol-forming fatty acyl reductases (FARs) is present in all kingdoms of life. Plant microsomal and plastid-associated FAR enzymes have been characterized, acting on acyl-coenzymeA (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) substrates, respectively. FARs have distinct substrate specificities both with regard to chain length and chain saturation. Fatty alcohols and wax esters, which are a combination of fatty alcohol and fatty acid, have a variety of commercial applications. The expression of FARs with desired specificities in transgenic microbes or oilseed crops would provide a novel means of obtaining these valuable compounds. In the present review, we report on recent progress in characterizing plant FAR enzymes and in understanding the biological roles of primary fatty alcohols, as well as describe the biotechnological production and industrial uses of fatty alcohols. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord

    International Nuclear Information System (INIS)

    Sato, Miho; Nakahara, Keiko; Goto, Shintaro; Kaiya, Hiroyuki; Miyazato, Mikiya; Date, Yukari; Nakazato, Masamitsu; Kangawa, Kenji; Murakami, Noboru

    2006-01-01

    Expressions of the growth hormone secretagogue receptor (GHS-R) mRNA and its protein were confirmed in rat fetal spinal cord tissues by RT-PCR and immunohistochemistry. In vitro, over 3 nM ghrelin and des-acyl ghrelin induced significant proliferation of primary cultured cells from the fetal spinal cord. The proliferating cells were then double-stained using antibodies against the neuronal precursor marker, nestin, and the cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), and the nestin-positive cells were also found to be co-stained with antibody against GHS-R. Furthermore, binding studies using [ 125 I]des-acyl ghrelin indicated the presence of a specific binding site for des-acyl ghrelin, and confirmed that the binding was displaced with unlabeled des-acyl ghrelin or ghrelin. These results indicate that ghrelin and des-acyl ghrelin induce proliferation of neuronal precursor cells that is both dependent and independent of GHS-R, suggesting that both ghrelin and des-acyl ghrelin are involved in neurogenesis of the fetal spinal cord

  4. Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses.

    Directory of Open Access Journals (Sweden)

    Anna Martirosyan

    Full Text Available Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+ T and CD8(+ T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.

  5. Plasma levels of acylated and total ghrelin in pediatric patients with chronic kidney disease.

    Science.gov (United States)

    Naufel, Maria Fernanda Soares; Bordon, Milena; de Aquino, Talita Marques; Ribeiro, Eliane Beraldi; de Abreu Carvalhaes, João Tomás

    2010-12-01

    This cross-sectional study set out to compare total and acyl ghrelin levels in children with mild chronic kidney disease (CKD) undergoing conservative treatment (n = 19) with children with end-stage renal disease (ESRD) undergoing hemodialysis (n = 24), and with healthy controls (n = 20). The relationship between ghrelin levels and parameters of renal function, nutritional status, and selective hormones were investigated. ESRD patients had higher total ghrelin levels than those with mild CKD or control individuals. However, acyl ghrelin did not differ between groups, indicating that the excess circulating ghrelin was desacylated. Since desacyl ghrelin has been shown to inhibit appetite, increased levels might contribute to protein-energy wasting in pediatric renal patients. When all 43 renal patients were combined, multiple regression analysis found age and glomerular filtration rate (GFR) to be significant negative predictors of total ghrelin. Acyl ghrelin was influenced negatively by age and positively by energy intake. Acyl to total ghrelin ratio related positively to GFR and energy intake. The results indicate that total but not acyl ghrelin is influenced by low GFR in children with CKD and suggests that ghrelin activation may be impaired in these patients. Since energy intake is a positive predictor of acyl ghrelin, the physiological control of ghrelin secretion appears to be altered in pediatric renal patients.

  6. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate.

    Science.gov (United States)

    Kormanik, Kaitlyn; Kang, Heejung; Cuebas, Dean; Vockley, Jerry; Mohsen, Al-Walid

    2012-12-01

    Sodium phenylbutyrate is used for treating urea cycle disorders, providing an alternative for ammonia excretion. Following conversion to its CoA ester, phenylbutyryl-CoA is postulated to undergo one round of β-oxidation to phenylacetyl-CoA, the active metabolite. Molecular modeling suggests that medium chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3), a key enzyme in straight chain fatty acid β-oxidation, could utilize phenylbutyryl-CoA as substrate. Moreover, phenylpropionyl-CoA has been shown to be a substrate for MCAD and its intermediates accumulate in patients with MCAD deficiency. We have examined the involvement of MCAD and other acyl-CoA dehydrogenases (ACADs) in the metabolism of phenylbutyryl-CoA. Anaerobic titration of purified recombinant human MCAD with phenylbutyryl-CoA caused changes in the MCAD spectrum that are similar to those induced by octanoyl-CoA, its bona fide substrate, and unique to the development of the charge transfer ternary complex. The calculated apparent dissociation constant (K(D app)) for these substrates was 2.16 μM and 0.12 μM, respectively. The MCAD reductive and oxidative half reactions were monitored using the electron transfer flavoprotein (ETF) fluorescence reduction assay. The catalytic efficiency and the K(m) for phenylbutyryl-CoA were 0.2 mM 34(-1)·sec(-1) and 5.3 μM compared to 4.0 mM(-1)·sec(-1) and 2.8 μM for octanoyl-CoA. Extracts of wild type and MCAD-deficient lymphoblast cells were tested for the ability to reduce ETF using phenylbutyryl-CoA as substrate. While ETF reduction activity was detected in extracts of wild type cells, it was undetectable in extracts of cells deficient in MCAD. The results are consistent with MCAD playing a key role in phenylbutyrate metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Diversity and dispersal of a ubiquitous protein family: acyl-CoA dehydrogenases.

    Science.gov (United States)

    Shen, Yao-Qing; Lang, B Franz; Burger, Gertraud

    2009-09-01

    Acyl-CoA dehydrogenases (ACADs), which are key enzymes in fatty acid and amino acid catabolism, form a large, pan-taxonomic protein family with at least 13 distinct subfamilies. Yet most reported ACAD members have no subfamily assigned, and little is known about the taxonomic distribution and evolution of the subfamilies. In completely sequenced genomes from approximately 210 species (eukaryotes, bacteria and archaea), we detect ACAD subfamilies by rigorous ortholog identification combining sequence similarity search with phylogeny. We then construct taxonomic subfamily-distribution profiles and build phylogenetic trees with orthologous proteins. Subfamily profiles provide unparalleled insight into the organisms' energy sources based on genome sequence alone and further predict enzyme substrate specificity, thus generating explicit working hypotheses for targeted biochemical experimentation. Eukaryotic ACAD subfamilies are traditionally considered as mitochondrial proteins, but we found evidence that in fungi one subfamily is located in peroxisomes and participates in a distinct beta-oxidation pathway. Finally, we discern horizontal transfer, duplication, loss and secondary acquisition of ACAD genes during evolution of this family. Through these unorthodox expansion strategies, the ACAD family is proficient in utilizing a large range of fatty acids and amino acids-strategies that could have shaped the evolutionary history of many other ancient protein families.

  8. Defluoridation potential of jute fibers grafted with fatty acyl chain

    Science.gov (United States)

    Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Sen, Ramkrishna; Adhikari, Basudam

    2015-11-01

    Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C-F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.

  9. New acylated flavonoid glycosides from flowers of Aerva javanica.

    Science.gov (United States)

    Mussadiq, Sara; Riaz, Naheed; Saleem, Muhammad; Ashraf, Muhammad; Ismail, Tayaba; Jabbar, Abdul

    2013-07-01

    Chromatographic purification of ethyl acetate soluble fraction of the methanolic extract of the flowers of Aerva javanica yielded three new acylated flavone glycosides: kaempferol-3-O-β-d-[4‴-E-p-coumaroyl-α-l-rhamnosyl(1 → 6)]-galactoside (1), kaempferol-3-O-β-d-[4‴-E-p-coumaroyl-α-l-rhamnosyl(1 → 6)]-(3″-E-p-coumaroyl)galactoside (2), and kaempferol-3-O-β-d-[4‴-E-p-coumaroyl-α-l-rhamnosyl(1 → 6)]-(4″-E-p-coumaroyl)galactoside (3), along with p-coumaric acid (4), caffeic acid (5), gallic acid (6), eicosanyl-trans-p-coumarate (7), hexadecyl ferulate (8), and hexacosyl ferulate (9). The compounds 1-9 were characterized using 1D ((1)H, (13)C) and 2D NMR (HMQC, HMBC, and COSY) spectroscopy and mass spectrometry (EI-MS, HR-EI-MS, FAB-MS, and HR-FAB-MS) and in comparison with the reported data in the literature. Compound 1 showed weak inhibitory activity against enzymes, such as acetylcholinesterase, butyrylcholinesterase, and lipoxygenase with IC50 values 205.1, 304.1, and 212.3 μM, respectively, whereas compounds 2 and 3 were only weakly active against the enzyme acetylcholinesterase.

  10. Fractionation and Characterization of Tannin Acyl Hydrolase from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    YUNITA ARIAN SANI ANWAR

    2009-09-01

    Full Text Available We previously produced tannin acyl hydrolase (tannase from Aspergillus niger isolated from cacao pod. In the present study the enzyme was subjected to fractionation by ammonium sulphate followed by dialysis process. The saturation level of ammonium sulphate used was 30-80% where the best enzyme activity was obtained at the saturation level of 60%. Compared to that of crude enzyme, specific activity of tannase after dialysis was four folds. Characterization results showed that optimum activity was at 35-50 oC and pH 6. Tannase was activated by K+ and Na+ at concentration of 0.01 and 0.05 M respectively. Mg2+ was found activate tannase only at 0.01 M. Addition of metal ions like Zn2+, Cu2+, Ca2+, Mn2+ and Fe2+ inhibited the enzyme activity. Kinetics analysis of various substrates tested showed that the Km value of tannic acid and gallotannin was 0.401 and 6.611 mM respectively. Vmax value of tannic acid was 10.804 U/ml and of gallotannin was 12.406 U/ml. Based on Michaelis-Menten constant (Km, the tannase obtained in the present study was more active in hydrolysing depside bonds rather than ester bonds.

  11. Fractionation and Characterization of Tannin Acyl Hydrolase from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    YUNITA ARIAN SANI ANWAR

    2009-09-01

    Full Text Available We previously produced tannin acyl hydrolase (tannase from Aspergillus niger isolated from cacao pod. In the present study the enzyme was subjected to fractionation by ammonium sulphate followed by dialysis process. The saturation level of ammonium sulphate used was 30–80% where the best enzyme activity was obtained at the saturation level of 60%. Compared to that of crude enzyme, specific activity of tannase after dialysis was four folds. Characterization results showed that optimum activity was at 35–50 °C and pH 6. Tannase was activated by K+ and Na+ at concentration of 0.01 and 0.05 M respectively. Mg2+ was found activate tannase only at 0.01 M. Addition of metal ions like Zn2+, Cu2+, Ca2+, Mn2+ and Fe2+ inhibited the enzyme activity. Kinetics analysis of various substrates tested showed that the Km value of tannic acid and gallotannin was 0.401 and 6.611 mM respectively. Vmax value of tannic acid was 10.804 U/ml and of gallotannin was 12.406 U/ml. Based on Michaelis-Menten constant (Km, the tannase obtained in the present study was more active in hydrolysing depside bonds rather than ester bonds.

  12. Acylation and metabolism of (n-6) fatty acids in hepatocytes

    International Nuclear Information System (INIS)

    Voss, A.C.; Sprecher, H.

    1986-01-01

    Isolated hepatocytes (5 x 10 6 in 2ml) from chow fed rats were incubated from 20 to 60 min. with increasing concentrations of [1- 14 C] labeled 18:2 (n-6), 18:3 (n-6) or 20:3 (n-6) to define optimum conditions for measuring acylation and metabolism to other (n-6) acids with subsequent incorporation into lipids. The triglycerides (TG) and phospholipids (PL) contained 157 and 80 nmols of 18:2 (n-6) and 6.0 and 6.1 nmols of other (n-6) acids, respectively, when cells were incubated with 0.3mM [1- 14 C] 18:2 (n-6) for 40 min. When cells were incubated with 0.3mM [1- 14 C] 18:2 (n-6) plus 0.15 to 0.45mM 18:3 (n-6) or 20:3 (n-6), the metabolism of 18:2 (n-6) to other (n-6) acids was inhibited but not totally abolished. These results may suggest that (n-6) acid made from linoleate do not totally equilibrate with exogenous 18:3 (n-6) or 20:3

  13. THE LATEST ADVANCEMENTS IN THE ACYLATION REACTIONS VIA CROSS-DEHYDROGENATIVE COUPLING AND/OR METAL CATALYSTS

    Directory of Open Access Journals (Sweden)

    Soykan Ağar

    2017-12-01

    Full Text Available There are quite many examples in the scientific literature regarding the acylation reactions, especially the metal-catalyzed acylation reactions, metal-free acylation reactions, metal-catalyzed acylation via cross-dehydrogenative coupling (CDC reactions and metal-free acylation via cross-dehydrogenative coupling (CDC reactions. In this review paper, the most important examples of these domains were brought together and their mechanisms were exhibited in a clear, chronological format. Following these, the best example study towards green chemistry with a metal-free and high-yielding route was mentioned and discussed to demonstrate what has achieved in this field regarding the new acylation reaction mechanisms using the advantages of cross-dehydrogenative coupling (CDC reactions. The most prominent studies regarding these domains have been examined thoroughly and the latest progress in this field was explained in detail.

  14. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans.

    Science.gov (United States)

    Tuck, Laura R; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D; Campopiano, Dominic J; Clarke, David J; Marles-Wright, Jon

    2016-02-22

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.

  15. Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast

    DEFF Research Database (Denmark)

    Mandrup, S; Jepsen, R; Skøtt, H

    1993-01-01

    We have expressed a bovine synthetic acyl-CoA-binding protein (ACBP) gene in yeast (Saccharomyces cerevisiae) under the control of the GAL1 promoter. The heterologously expressed bovine ACBP constituted up to 6.4% of total cellular protein and the processing was identical with that of native bovi...

  16. Both acyl and des-acyl ghrelin regulate adiposity and glucose metabolism via central nervous system ghrelin receptors.

    Science.gov (United States)

    Heppner, Kristy M; Piechowski, Carolin L; Müller, Anne; Ottaway, Nickki; Sisley, Stephanie; Smiley, David L; Habegger, Kirk M; Pfluger, Paul T; Dimarchi, Richard; Biebermann, Heike; Tschöp, Matthias H; Sandoval, Darleen A; Perez-Tilve, Diego

    2014-01-01

    Growth hormone secretagogue receptors (GHSRs) in the central nervous system (CNS) mediate hyperphagia and adiposity induced by acyl ghrelin (AG). Evidence suggests that des-AG (dAG) has biological activity through GHSR-independent mechanisms. We combined in vitro and in vivo approaches to test possible GHSR-mediated biological activity of dAG. Both AG (100 nmol/L) and dAG (100 nmol/L) significantly increased inositol triphosphate formation in human embryonic kidney-293 cells transfected with human GHSR. As expected, intracerebroventricular infusion of AG in mice increased fat mass (FM), in comparison with the saline-infused controls. Intracerebroventricular dAG also increased FM at the highest dose tested (5 nmol/day). Chronic intracerebroventricular infusion of AG or dAG increased glucose-stimulated insulin secretion (GSIS). Subcutaneously infused AG regulated FM and GSIS in comparison with saline-infused control mice, whereas dAG failed to regulate these parameters even with doses that were efficacious when delivered intracerebroventricularly. Furthermore, intracerebroventricular dAG failed to regulate FM and induce hyperinsulinemia in GHSR-deficient (Ghsr(-/-)) mice. In addition, a hyperinsulinemic-euglycemic clamp suggests that intracerebroventricular dAG impairs glucose clearance without affecting endogenous glucose production. Together, these data demonstrate that dAG is an agonist of GHSR and regulates body adiposity and peripheral glucose metabolism through a CNS GHSR-dependent mechanism.

  17. Acyl Chain Preference in Foam Cell Formation from Mouse Peritoneal Macrophages.

    Science.gov (United States)

    Fujiwara, Yuko; Hama, Kotaro; Tsukahara, Makoto; Izumi-Tsuzuki, Ryosuke; Nagai, Toru; Ohe-Yamada, Mihoko; Inoue, Keizo; Yokoyama, Kazuaki

    2018-01-01

    Macrophage foam cells play critical roles in the initiation and development of atherosclerosis by synthesizing and accumulating cholesteryl ester (CE) in lipid droplets. However, in analyzing lipid metabolism in foam cell formation, studies have focused on the sterol group, and little research has been done on the acyl chains. Therefore, we adapted a model system using liposomes containing particular acyl chains and examined the effect of various acyl chains on foam cell formation. Of the phosphatidylserine (PS) liposomes tested containing PS, phosphatidylcholine, and cholesterol, we found that unsaturated (C18:1), but not saturated (C16:0 and C18:0), PS liposomes induced lipid droplet formation, indicating that foam cell formation depends on the nature of the acyl chain of the PS liposomes. Experiments on the uptake and accumulation of cholesterol from liposomes by adding [ 14 C]cholesterol suggested that foam cell formation could be induced only when cholesterol was converted to CE in the case of C18:1 PS liposomes. Both microscopic observations and metabolic analysis suggest that cholesterol incorporated into either C16:0 or C18:0 PS liposomes may stay intact after being taken in by endosomes. The [ 14 C]C18:1 fatty acyl chain in the C18:1 PS liposome was used to synthesize CE and triacylglycerol (TG). Interestingly, the [ 14 C]C16:0 in the C18:1 PS liposome was metabolized to sphingomyelin rather than being incorporated into either CE or TG, which could be because of enzymatic acyl chain selectivity. In conclusion, our results indicate that the acyl chain preference of macrophages could have some impact on their progression to foam cells.

  18. Acute effect of exercise intensity and duration on acylated ghrelin and hunger in men.

    Science.gov (United States)

    Broom, David R; Miyashita, Masashi; Wasse, Lucy K; Pulsford, Richard; King, James A; Thackray, Alice E; Stensel, David J

    2017-03-01

    Acute exercise transiently suppresses the orexigenic gut hormone acylated ghrelin, but the extent to which exercise intensity and duration determine this response is not fully understood. The effects of manipulating exercise intensity and duration on acylated ghrelin concentrations and hunger were examined in two experiments. In experiment one, nine healthy males completed three, 4-h conditions (control, moderate-intensity running (MOD) and vigorous-intensity running (VIG)), with an energy expenditure of ~2.5 MJ induced in both MOD (55-min running at 52% peak oxygen uptake (V.O 2peak )) and VIG (36-min running at 75% V.O 2peak ). In experiment two, nine healthy males completed three, 9-h conditions (control, 45-min running (EX45) and 90-min running (EX90)). Exercise was performed at 70% V.O 2peak In both experiments, participants consumed standardised meals, and acylated ghrelin concentrations and hunger were quantified at predetermined intervals. In experiment one, delta acylated ghrelin concentrations were lower than control in MOD (ES = 0.44, P = 0.01) and VIG (ES = 0.98, P Hunger ratings were similar across the conditions (P = 0.35). In experiment two, delta acylated ghrelin concentrations were lower than control in EX45 (ES = 0.77, P Hunger ratings were lower than control in EX45 (ES = 0.20, P = 0.01) and EX90 (ES = 0.27, P = 0.001); EX45 and EX90 were similar (ES = 0.07, P = 0.34). Hunger and delta acylated ghrelin concentrations remained suppressed at 1.5 h in EX90 but not EX45. In conclusion, exercise intensity, and to a lesser extent duration, are determinants of the acylated ghrelin response to acute exercise. © 2017 Society for Endocrinology.

  19. Disruption of the acyl-coa binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Bloksgaard, Maria; Sørensen, Signe Bek

    2011-01-01

    The acyl-CoA binding protein/diazepam binding inhibitor (ACBP/DBI) is an intracellular protein that binds C14-C22 acyl-CoA esters and is thought to act as an acyl-CoA transporter. In vitro analyses have indicated that ACBP can transport acyl-CoA esters between different enzymatic systems; however....... The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads...

  20. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    International Nuclear Information System (INIS)

    Paes, Camila; Nakagami, Gojiro; Minematsu, Takeo; Nagase, Takashi; Huang, Lijuan; Sari, Yunita; Sanada, Hiromi

    2012-01-01

    Highlights: ► An evidence of the positive effect of AHL on epithelialization process is provided. ► AHL enhances keratinocyte’s ability to migrate in an in vitro scratch wound model. ► AHL induces the expression of Mmp13. ► Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte’s activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte’s ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration process.

  1. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Camila, E-mail: camilaquinetti@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakagami, Gojiro, E-mail: gojiron-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Minematsu, Takeo, E-mail: tminematsu-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nagase, Takashi, E-mail: tnagase@fb3.so-net.ne.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Huang, Lijuan, E-mail: koureikenhlj@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sari, Yunita, E-mail: yunita-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sanada, Hiromi, E-mail: hsanada-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer An evidence of the positive effect of AHL on epithelialization process is provided. Black-Right-Pointing-Pointer AHL enhances keratinocyte's ability to migrate in an in vitro scratch wound model. Black-Right-Pointing-Pointer AHL induces the expression of Mmp13. Black-Right-Pointing-Pointer Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte's activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte's ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration

  2. Potential of acylated peptides to target the influenza A virus

    Directory of Open Access Journals (Sweden)

    Daniel Lauster

    2015-04-01

    Full Text Available For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeBGF, preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay. Further, the inhibitory potential of stearylated PeBGF (C18-PeBGF was investigated by infection inhibition assays, in which we achieved low micromolar inhibition constants against both viral strains. In addition, we compared C18-PeBGF to other published amphiphilic peptide inhibitors, such as the stearylated sugar receptor mimicking peptide (Matsubara et al. 2010, and the “Entry Blocker” (EB (Jones et al. 2006, with respect to their antiviral activity against infection by Influenza A Virus (IAV H3N2. However, while this strategy seems at a first glance promising, the native situation is quite different from our experimental model settings. First, we found a strong potential of those peptides to form large amyloid-like supramolecular assemblies. Second, in vivo, the large excess of cell surface membranes provides an unspecific target for the stearylated peptides. We show that acylated peptides insert into the lipid phase of such membranes. Eventually, our study reveals serious limitations of this type of self-assembling IAV inhibitors.

  3. Acylation of cellular proteins with endogenously synthesized fatty acids

    International Nuclear Information System (INIS)

    Towler, D.; Glaser, L.

    1986-01-01

    A number of cellular proteins contain covalently bound fatty acids. Previous studies have identified myristic acid and palmitic acid covalently linked to protein, the former usually attached to proteins by an amide linkage and the latter by ester or thio ester linkages. While in a few instances specific proteins have been isolated from cells and their fatty acid composition has been determined, the most frequent approach to the identification of protein-linked fatty acids is to biosynthetically label proteins with fatty acids added to intact cells. This procedure introduces possible bias in that only a selected fraction of proteins may be labeled, and it is not known whether the radioactive fatty acid linked to the protein is identical with that which is attached to the protein when the fatty acid is derived from endogenous sources. We have examined the distribution of protein-bound fatty acid following labeling with [ 3 H]acetate, a general precursor of all fatty acids, using BC 3 H1 cells (a mouse muscle cell line) and A431 cells (a human epidermoid carcinoma). Myristate, palmitate, and stearate account for essentially all of the fatty acids linked to protein following labeling with [ 3 H]acetate, but at least 30% of the protein-bound palmitate in these cells was present in amide linkage. In BC3H1 cells, exogenous palmitate becomes covalently bound to protein such that less than 10% of the fatty acid is present in amide linkage. These data are compatible with multiple protein acylating activities specific for acceptor protein fatty acid chain length and linkage

  4. Arabidopsis PIZZA has the capacity to acylate brassinosteroids.

    Science.gov (United States)

    Schneider, Katja; Breuer, Christian; Kawamura, Ayako; Jikumaru, Yusuke; Hanada, Atsushi; Fujioka, Shozo; Ichikawa, Takanari; Kondou, Youichi; Matsui, Minami; Kamiya, Yuji; Yamaguchi, Shinjiro; Sugimoto, Keiko

    2012-01-01

    Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ), was partly rescued by supplying exogenous brassinolide (BL) and castasterone (CS), indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY) and 6-deoxocastasterone (6-deoxoCS), suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis.

  5. Toward Green Acylation of (Heteroarenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-11-01

    Full Text Available Green Friedel–Crafts acylation reactions belong to the most desired transformations in organic chemistry. The resulting ketones constitute important intermediates, building blocks, and functional molecules in organic synthesis as well as for the chemical industry. Over the past 60 years, advances in this topic have focused on how to make this reaction more economically and environmentally friendly by using green acylating conditions, such as stoichiometric acylations and catalytic homogeneous and heterogeneous acylations. However, currently well-established methodologies for their synthesis either produce significant amounts of waste or proceed under harsh conditions, limiting applications. Here, we present a new protocol for the straightforward and selective introduction of acyl groups into (hetero­arenes without directing groups by using available olefins with inexpensive CO. In the presence of commercial palladium catalysts, inter- and intramolecular carbonylative C–H functionalizations take place with good regio- and chemoselectivity. Compared to classical Friedel–Crafts chemistry, this novel methodology proceeds under mild reaction conditions. The general applicability of this methodology is demonstrated by the direct carbonylation of industrial feedstocks (ethylene and diisobutene as well as of natural products (eugenol and safrole. Furthermore, synthetic applications to drug molecules are showcased.

  6. Engineered Production of Short-Chain Acyl-Coenzyme A Esters in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Krink-Koutsoubelis, Nicolas; Loechner, Anne C.; Lechner, Anna

    2018-01-01

    Short-chain acyl-coenzyme A esters serve as intermediate compounds in fatty acid biosynthesis, and the production of polyketides, biopolymers and other value-added chemicals. S. cerevisiae is a model organism that has been utilized for the biosynthesis of such biologically and economically valuable...... compounds. However, its limited repertoire of short-chain acyl-CoAs effectively prevents its application as a production host for a plethora of natural products. Therefore, we introduced biosynthetic metabolic pathways to five different acyl-CoA esters into S. cerevisiae. Our engineered strains provide......-CoA at 0.5 μM; and isovaleryl-CoA, n-butyryl-CoA, and n-hexanoyl-CoA at 6 μM each. The acyl-CoAs produced in this study are common building blocks of secondary metabolites and will enable the engineered production of a variety of natural products in S. cerevisiae. By providing this toolbox of acyl...

  7. THE EFFECTS OF EXERCISE ON FOOD INTAKE AND HUNGER: RELATIONSHIP WITH ACYLATED GHRELIN AND LEPTIN

    Directory of Open Access Journals (Sweden)

    Serife Vatansever-Ozen

    2011-06-01

    Full Text Available This study investigated the effects of a long bout of aerobic exercise on hunger and energy intake and circulating levels of leptin and acylated ghrelin. Ten healthy male subjects undertook two, 4 h trials in a randomized crossover design. In the exercise trial subjects ran for 105 min at 50% of maximal oxygen uptake and the last 15 min at 70% of maximal oxygen uptake followed by a 120 min rest period. In the control trial, subjects rested for 4 h. Subjects consumed a buffet test meal at 180 min during each trial. Hunger ratings, acylated ghrelin, leptin, glucose and insulin concentrations were measured at 0, 1, 2, 3 and 4 h. No differences were found at baseline values for hunger, acylated ghrelin, leptin, insulin and glucose for both trials (p > 0.05. The estimated energy expenditure of the exercise trial was 1550 ± 136 kcal. Exercise did not change subsequent absolute energy intake, but produced a significant decrease (p < 0.05 in relative energy intake. A two-way ANOVA revealed a significant (p < 0. 05 interaction effect for hunger and acylated ghrelin. In conclusion, this exercise regimen had a positive effect on reducing appetite which is related to reduced acylated ghrelin responses over time. This finding lends support for a role of exercise in weight management

  8. Generation of fatty acids by an acyl esterase in the bioluminescent system of Photobacterium phosphoreum

    International Nuclear Information System (INIS)

    Carey, L.M.; Rodriguez, A.; Meighen, E.

    1984-01-01

    The fatty acid reductase complex from Photobacterium phosphoreum has been discovered to have a long chain ester hydrolase activity associated with the 34K protein component of the complex. This protein has been resolved from the other components (50K and 58K) of the fatty acid reductase complex with a purity of > 95% and found to catalyze the transfer of acyl groups from acyl-CoA primarily to thiol acceptors with a low level of transfer to glycerol and water. Addition of the 50K protein of the complex caused a dramatic change in specificity increasing the transfer to oxygen acceptors. The acyl-CoA hydrolase activity increased almost 10-fold, and hence free fatty acids can be generated by the 34K protein when it is present in the fatty acid reductase complex. Hydrolysis of acyl-S-mercaptoethanol and acyl-1-glycerol and the ATP-dependent reduction of the released fatty acids to aldehyde for the luminescent reaction were also demonstrated for the reconstituted fatty acid reductase complex, raising the possibility that the immediate source of fatty acids for this reaction in vivo could be the membrane lipids and/or the fatty acid synthetase system

  9. Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides

    Science.gov (United States)

    Takacs, Sara M.; Stuart, Jordyn M.; Basnet, Arjun; Raboune, Siham; Widlanski, Theodore S.; Doherty, Patrick; Bradshaw, Heather B.

    2013-01-01

    Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling. PMID:23874457

  10. Proghrelin peptides: Desacyl ghrelin is a powerful inhibitor of acylated ghrelin, likely to impair physiological effects of acyl ghrelin but not of obestatin A study of pancreatic polypeptide secretion from mouse islets

    DEFF Research Database (Denmark)

    Kumar, Rajesh; Salehi, Albert; Rehfeld, Jens F

    2010-01-01

    Proghrelin, produced by the ghrelin (A-like) cells of the gastric mucosa, gives rise to cleavage products, including desacyl ghrelin, acyl ghrelin and obestatin. The products are thought to be secreted concomitantly. In an earlier study we found acyl ghrelin and obestatin, but not desacyl ghrelin......, to suppress the release of hormones from isolated islets of mouse and rat pancreas....

  11. Proghrelin peptides: Desacyl ghrelin is a powerful inhibitor of acylated ghrelin, likely to impair physiological effects of acyl ghrelin but not of obestatin A study of pancreatic polypeptide secretion from mouse islets

    DEFF Research Database (Denmark)

    Kumar, Rajesh; Salehi, Albert; Rehfeld, Jens F

    2010-01-01

    Proghrelin, produced by the ghrelin (A-like) cells of the gastric mucosa, gives rise to cleavage products, including desacyl ghrelin, acyl ghrelin and obestatin. The products are thought to be secreted concomitantly. In an earlier study we found acyl ghrelin and obestatin, but not desacyl ghrelin...

  12. Kinetic study on the inhibition of xanthine oxidase by acylated derivatives of flavonoids synthesised enzymatically.

    Science.gov (United States)

    de Araújo, Maria Elisa Melo Branco; Franco, Yollanda Edwirges Moreira; Alberto, Thiago Grando; Messias, Marcia Cristina Fernandes; Leme, Camila Wielewski; Sawaya, Alexandra Christine Helena Frankland; Carvalho, Patricia de Oliveira

    2017-12-01

    Studies have reported that flavonoids inhibit xanthine oxidase (XO) activity; however, poor solubility and stability in lipophilic media limit their bioavailability and applications. This study evaluated the kinetic parameters of XO inhibition and partition coefficients of flavonoid esters biosynthesised from hesperidin, naringin, and rutin via enzymatic acylation with hexanoic, octanoic, decanoic, lauric, and oleic acids catalysed by Candida antarctica lipase B (CALB). Quantitative determination by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) showed higher conversion yields (%) for naringin and rutin esters using acyl donors with 8C and 10C. Rutin decanoate had higher partition coefficients (0.95), and naringin octanoate and naringin decanoate showed greater inhibitory effects on XO (IC 50 of 110.35 and 117.51 μM, respectively). Kinetic analysis showed significant differences (p flavonoids before and after acylation regarding K m values, whereas the values for V max were the same, implying the competitive nature of XO inhibition.

  13. Commelinid Monocotyledon Lignins Are Acylated by p-Coumarate1[OPEN

    Science.gov (United States)

    Free, Heather C.A.; Smith, Bronwen G.

    2018-01-01

    Commelinid monocotyledons are a monophyletic clade differentiated from other monocotyledons by the presence of cell wall-bound ferulate and p-coumarate. The Poaceae, or grass family, is a member of this group, and most of the p-coumarate in the cell walls of this family acylates lignin. Here, we isolated and examined lignified cell wall preparations from 10 species of commelinid monocotyledons from nine families other than Poaceae, including species from all four commelinid monocotyledon orders (Poales, Zingiberales, Commelinales, and Arecales). We showed that, as in the Poaceae, lignin-linked p-coumarate occurs exclusively on the hydroxyl group on the γ-carbon of lignin unit side chains, mostly on syringyl units. Although the mechanism of acylation has not been studied directly in these species, it is likely to be similar to that in the Poaceae and involve BAHD acyl-coenzyme A:monolignol transferases. PMID:29724771

  14. Synthesis of 1-isopropyl-3-acyl-5-methyl-benzimidazolone Derivatives and Their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Shaopeng Wei

    2013-03-01

    Full Text Available A series of N-acylated analogues of 1-isopropyl-3-acyl-5-methyl-benzimidazolone were synthesized. Bioassay results indicated that analogues 5-07 and 5-19 exhibited the most potency against Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Analogues 5-02, 5-07, 5-12, 5-15, 5-19, 5-20 and 5-25 could effectively inhibit the spore germination of Botrytis cinerea. The relationship between structure and their antimicrobial activity (SAR has also been discussed according to aliphatic acids and aromatic acids derivatives, respectively. This implied that the N-acylated derivatives of 5-methyl-benzimidazolone might be potential antimicrobial agents.

  15. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C-14-peptides

    DEFF Research Database (Denmark)

    Pedersen, T.B.; Kaasgaard, Thomas; Jensen, M.O.

    2005-01-01

    The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated...... peptide, which is a synthetic decapeptide N-terminally linked to a C-14 acyl chain (C-14-peptide), is incorporated into DPPC bilayers in amounts ranging from 0-20 mol %. The calorimetric scans of the two-component system demonstrate a distinct influence of the C-14-peptide on the lipid bilayer...... gel phase DPPC bilayers, inserts preferentially into preexisting defect regions and has a noticeable influence on the organization of the surrounding lipids. The presence of the C-14-peptide gives rise to a laterally heterogeneous bilayer structure with coexisting lipid domains characterized by a 10...

  16. Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.

    Science.gov (United States)

    Ellis, Jessica M; Wong, G William; Wolfgang, Michael J

    2013-05-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.

  17. Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B.

    Science.gov (United States)

    Martinelle, M; Hult, K

    1995-09-06

    The acyl transfer reactions catalysed by Candida antartica lipase B in organic media followed a bi-bi ping-pong mechanism, with competitive substrate inhibition by the alcohols used as acyl acceptors. The effect of organic solvents on Vm and Km was investigated. The Vm values in acetonitrile was 40-50% of those in heptane. High Km values in acetonitrile compared to those in heptane could partly be explained by an increased solvation of the substrates in acetonitrile. Substrate solvation caused a 10-fold change in substrate specificity, defined as (Vm/Km)ethyl octanoate/(Vm/Km)octanoic acid, going from heptane to acetonitrile. Deacylation was the rate determining step for the acyl transfer in heptane with vinyl- and ethyl octanoate as acyl donors and (R)-2-octanol as acyl acceptor. With 1-octanol, a rate determining deacylation step in heptane was indicated using the same acyl donors. Using 1-octanol as acceptor in heptane, S-ethyl thiooctanoate had a 25- to 30-fold lower Vm/Km value and vinyl octanoate a 4-fold higher Vm/Km value than that for ethyl octanoate. The difference showed to be a Km effect for vinyl octanoate and mainly a Km effect for S-ethyl thiooctanoate. The Vm values of the esterification of octanoic acid with different alcohols was 10-30-times lower than those for the corresponding transesterification of ethyl octanoate. The low activity could be explained by a low pH around the enzyme caused by the acid or a withdrawing of active enzyme by nonproductive binding by the acid.

  18. N-Acylated and d Enantiomer Derivatives of a Nonamer Core Peptide of Lactoferricin B Showing Improved Antimicrobial Activity

    OpenAIRE

    Wakabayashi, Hiroyuki; Matsumoto, Hiroshi; Hashimoto, Koichi; Teraguchi, Susumu; Takase, Mitsunori; Hayasawa, Hirotoshi

    1999-01-01

    N-acylated or d enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B.

  19. N-Acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity.

    Science.gov (United States)

    Wakabayashi, H; Matsumoto, H; Hashimoto, K; Teraguchi, S; Takase, M; Hayasawa, H

    1999-05-01

    N-acylated or D enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B.

  20. Continuous recording of long-chain acyl-coenzyme A synthetase activity using fluorescently labeled bovine serum albumin

    DEFF Research Database (Denmark)

    Demant, Erland J.F.; Nystrøm, Birthe T.

    2001-01-01

    acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes......acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes...

  1. Synthesis of 1-indanones through the intramolecular Friedel-Crafts acylation reaction using NbCl5 as Lewis acid

    International Nuclear Information System (INIS)

    Polo, Ellen Christine; Silva-Filho, Luiz Carlos da; Silva, Gil Valdo Jose da; Constantino, Mauricio Gomes

    2008-01-01

    The intramolecular Friedel-Crafts acylation reaction of 3-arylpropanoic acids to give 1-indanones can be effected in good yields under mild conditions (room temperature) by using niobium pentachloride. Our results indicate that NbCl 5 acts both as reagent (to transform carboxylic acids into acyl chlorides) and as catalyst in the Friedel-Crafts cyclization. (author)

  2. Acylation, Diastereoselective Alkylation, and Cleavage of an Oxazolidinone Chiral Auxiliary: A Multistep Asymmetric Synthesis Experiment for Advanced Undergraduates

    Science.gov (United States)

    Smith, Thomas E.; Richardson, David P.; Truran, George A.; Belecki, Katherine; Onishi, Megumi

    2008-01-01

    An introduction to the concepts and experimental techniques of diastereoselective synthesis using a chiral auxiliary is described. The 4-benzyl-2-oxazolidinone chiral auxiliary developed by Evans is acylated with propionic anhydride under mild conditions using DMAP as an acyl transfer catalyst. Deprotonation with NaN(TMS)[subscript 2] at -78…

  3. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Science.gov (United States)

    2010-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1...., chloride (PMN P-01-646; CAS No. 391232-99-8) is subject to reporting under this section for the significant...

  4. Production of specific-structured lipids by enzymatic interesterification: elucidation of acyl migration by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja; Høy, Carl-Erik

    1998-01-01

    Production of specific-structured lipids (SSL) by lipase-catalyzed interesterification has been attracting more and more attention recently. However, it was found that acyl migration occurs during the reaction and causes the production of by-products. In this paper, the elucidation of acyl...

  5. Inhibition of 3T3-L1 adipocyte differentiation by expression of acyl-CoA-binding protein antisense RNA

    DEFF Research Database (Denmark)

    Mandrup, S; Sorensen, R V; Helledie, T

    1998-01-01

    Several lines of evidence have recently underscored the significance of fatty acids or fatty acid-derived metabolites as signaling molecules in adipocyte differentiation. The acyl-CoA-binding protein (ACBP), which functions as an intracellular acyl-CoA pool former and transporter, is induced duri...

  6. Reaction of tantalum-alkyne complexes with isocyanates or acyl cyanides

    International Nuclear Information System (INIS)

    Kataoka, Yasutaka; Oguchi, Yoshiyuki; Yoshizumi, Kazuyuki; Miwatashi, Seiji; Takai, Kazuhiko; Utimoto, Kiitiro

    1992-01-01

    Treatment of alkynes with low-valent tantalum derived from TiCl 5 and zinc produces tantalum-alkyne complexes (not isolated), which react in situ with phenyl isocyanate (or butyl isocyanate) to give (E)-α, β-unsaturated amides stereoselectively. The tantalum-alkyne complexes also react with acyl cyanides in the presence of BF 3 ·OEt 2 to give α-cyanohydrins. In both reactions, filtration of the reaction mixture containing the tantalum-alkyne complexes before addition of isocyanates (or acyl cyanides) is indispensable to obtain good yields. (author)

  7. pHP-Tethered N-Acyl Carbamate: A Photocage for Nicotinamide.

    Science.gov (United States)

    Salahi, Farbod; Purohit, Vatsal; Ferraudi, Guillermo; Stauffacher, Cynthia; Wiest, Olaf; Helquist, Paul

    2018-05-04

    The synthesis of a new photocaged nicotinamide having an N-acyl carbamate linker and a p-hydroxyphenacyl (pHP) chromophore is described. The photophysical and photochemical studies showed an absorption maximum at λ = 330 nm and a quantum yield for release of 11% that are dependent upon both pH and solvent. While the acyl carbamate releases nicotinamide efficiently, a simpler amide linker was inert to photocleavage. This photocaged nicotinamide has significant advantages with respect to quantum yield, absorbance wavelength, rate of release, and solubility that make it the first practical example of a photocaged amide.

  8. Effect of room temperature ionic liquid structure on the enzymatic acylation of flavonoids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2010-01-01

    Enzymatic acylation reactions of flavonoids (rutin, esculin) with long chain fatty acids (palmitic, oleic acids) were carried out in 14 different ionic liquid media containing a range of cation and anion structures. Classification of RTILs according to flavonoid solubility (using COSMO...... must be struck that maximized flavonoid solubility with minimum negative impact on lipase activity. The process also benefitted from an increased reaction temperature which may have helped to reduced mass transfer limitations. Keywords: Room temperature ionic liquids (RTILs); Biosynthesis; Acylation......; Flavonoids; Lipase; Long chain fatty acids...

  9. Enantioselective N-Heterocyclic Carbene Catalysis via the Dienyl Acyl Azolium.

    Science.gov (United States)

    Gillard, Rachel M; Fernando, Jared E M; Lupton, David W

    2018-04-16

    Herein we report the enantioselective N-heterocyclic carbene catalyzed (4+2) annulation of the dienyl acyl azolium with enolates. The reaction exploits readily accessible acyl fluorides and TMS enol ethers to give a range of highly enantio- and diastereo-enriched cyclohexenes (most >97:3 er and >20:1 dr). The reaction was found to require high nucleophilicity NHC catalysts with mechanistic studies supporting a stepwise 1,6-addition/β-lactonization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Wadum, Majken; Feddersen, Søren

    2007-01-01

    -CoA binding protein, ACBP, has been proposed to play a pivotal role in the intracellular trafficking and utilization of long-chain fatty acyl-CoA esters. Depletion of acyl-CoA binding protein in yeast results in aberrant organelle morphology incl. fragmented vacuoles, multi-layered plasma membranes...... and accumulation of vesicles of variable sizes. In contrast to synthesis and turn-over of glycerolipids, the levels of very-long-chain fatty acids, long-chain bases and ceramide are severely affected by Acb1p depletion, suggesting that Acb1p, rather than playing a general role, serves specific roles in cellular...

  11. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes

    DEFF Research Database (Denmark)

    Mandrup, S; Hummel, R; Ravn, S

    1992-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein isolated from bovine liver by virtue of its ability to bind and induce the synthesis of medium-chain acyl-CoA esters. Surprisingly, it turned out to be identical to a protein named diazepam-binding Inhibitor (DBI) claimed to be an endogenous mod...... have molecularly cloned and characterized the ACBP/DBI gene family in rat. The rat ACBP/DBI gene family comprises one expressed gene and four processed pseudogenes of which one was shown to exist in two allelic forms. The expressed gene is organized into four exons and three introns...

  12. Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Etzerodt, Thomas Povl; Henriksen, Jonas Rosager; Rasmussen, Palle

    2011-01-01

    and positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared...... to previous reports where peptide acylation enhanced membrane affinity but also resulted in impaired selectivity. Our result may provide a method of enhancing selectivity of antimicrobial peptides toward bacterial membranes due to their high negative charge—a finding that should be investigated for other...

  13. Association of acylated cationic decapeptides with dipalmitoylphosphatidylserine-dipalmitoyl- phosphatidylcholine lipid membranes

    DEFF Research Database (Denmark)

    Pedersen, T. B.; Sabra, Mads Christian; Frokjaer, Sven

    2001-01-01

    decapeptides that are N-terminally linked with C-2, C-8, and C-14 acyl chains contain four basic histidine residues in their identical amino acid sequence. A binding model, based on changes in the intrinsic fluorescent properties of the peptides upon association with the DPPC-DPPS membranes, is used...... DPPC-DPPS lipid mixture. The extent of peptide association deduced from the heat capacity measurements suggests a strong binding and membrane insertion of the C-14 acylated peptide in accordance with the fluorescence measurements....

  14. Biosynthesis of Corynecins by Corynebacterium hydrocarboclastus. On the origin of the N-acyl group

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H; Tomita, F; Suzuki, T [Kyowa Hakko Kogyo Co. Ltd., Tokyo (Japan)

    1976-02-01

    1) The addition of amino acids, such as threonine, homoserine and methionine, to producing cultures resulted in an increase of the production of Corynecin 2. ..cap alpha..-Ketobutyric acid showed the similar effect. 2) The incorporation of these amino acids and the ketoacid into the propionyl group of Corynecin 2 was confirmed by the feeding experiments with labeled compounds, whereas propionic acid-U/sup 14/C was incorporated poorly into Corynecins with a relatively high degree of randomization of radioactivities. 3) L-Valine-U/sup 14/C was incorporated into Corynecin 3, suggesting that the isobutyryl group of Corynecin 3 was derived from L-valine via ..cap alpha..-ketoisovalerate. 4) The origin of the acetyl group of Corynecin I was discussed on the basis of the incorporation experiments with acetate, pyruvate and L-alanine, all labeled with /sup 14/C.

  15. Des-Acyl Ghrelin and Ghrelin O-Acyltransferase Regulate Hypothalamic-Pituitary-Adrenal Axis Activation and Anxiety in Response to Acute Stress

    NARCIS (Netherlands)

    Stark, R.; Santos, V.V.; Geenen, B.; Cabral, A.; Dinan, T.; Bayliss, J.A.; Lockie, S.H.; Reichenbach, A.; Lemus, M.B.; Perello, M.; Spencer, S.J.; Kozicz, L.T.; Andrews, Z.B.

    2016-01-01

    Ghrelin exists in two forms in circulation, acyl ghrelin and des-acyl ghrelin, both of which have distinct and fundamental roles in a variety of physiological functions. Despite this fact, a large proportion of papers simply measure and refer to plasma ghrelin without specifying the acylation

  16. Acute aerobic exercise differentially alters acylated ghrelin and perceived fullness in normal-weight and obese individuals.

    Science.gov (United States)

    Heden, Timothy D; Liu, Ying; Park, Youngmin; Dellsperger, Kevin C; Kanaley, Jill A

    2013-09-01

    Adiposity alters acylated ghrelin concentrations, but it is unknown whether adiposity alters the effect of exercise and feeding on acylated ghrelin responses. Therefore, the purpose of this study was to determine whether adiposity [normal-weight (NW) vs. obese (Ob)] influences the effect of exercise and feeding on acylated ghrelin, hunger, and fullness. Fourteen NW and 14 Ob individuals completed two trials in a randomized counterbalanced fashion, including a prior exercise trial (EX) and a no exercise trial (NoEX). During the EX trial, the participants performed 1 h of treadmill walking (55-60% peak O2 uptake) during the evening, 12 h before a 4-h standardized mixed meal test. Frequent blood samples were taken and analyzed for acylated ghrelin, and a visual analog scale was used to assess perceived hunger and fullness. In NW individuals, EX, compared with NoEX, reduced fasting acylated ghrelin concentrations by 18% (P = 0.03), and, in response to feeding, the change in acylated ghrelin (P = 0.02) was attenuated by 39%, but perceived hunger and fullness were unaltered. In Ob individuals, despite no changes in fasting or postprandial acylated ghrelin concentrations with EX, postprandial fullness was attenuated by 46% compared with NoEX (P = 0.05). In summary, exercise performed the night before a meal suppresses acylated ghrelin concentrations in NW individuals without altering perceived hunger or fullness. In Ob individuals, despite no changes in acylated ghrelin concentrations, EX reduced the fullness response to the test meal. Acylated ghrelin and perceived fullness responses are differently altered by acute aerobic exercise in NW and Ob individuals.

  17. delta 6 Hexadecenoic acid is synthesized by the activity of a soluble delta 6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm.

    Science.gov (United States)

    Cahoon, E B; Cranmer, A M; Shanklin, J; Ohlrogge, J B

    1994-11-04

    delta 6 Hexadecenoic acid (16:1 delta 6) composes more than 80% of the seed oil of Thunbergia alata. Studies were conducted to determine the biosynthetic origin of the double bond of this unusual fatty acid. Assays of fractions of developing T. alata seed endosperm with [1-14C]palmitoyl (16:0)-acyl carrier protein (ACP) revealed the presence of a soluble delta 6 desaturase activity. This activity was greatest when 16:0-ACP was provided as a substrate, whereas no desaturation of the coenzyme A ester of this fatty acid was detected. In addition, delta 6 16:0-ACP desaturase activity in T. alata endosperm extracts was dependent on the presence of ferredoxin and molecular oxygen and was stimulated by catalase. To further characterize this enzyme, a cDNA encoding a diverged acyl-ACP desaturase was isolated from a T. alata endosperm cDNA library using polymerase chain reaction with degenerate oligonucleotides corresponding to conserved amino acid sequences in delta 9 stearoyl (18:0)- and delta 4 16:0-ACP desaturases. The primary structure of the mature peptide encoded by this cDNA shares 66% identity with the mature castor delta 9 18:0-ACP desaturase and 57% identity with the mature coriander delta 4 16:0-ACP desaturase. Extracts of Escherichia coli that express the T. alata cDNA catalyzed the delta 6 desaturation of 16:0-ACP. These results demonstrate that 16:1 delta 6 in T. alata endosperm is formed by the activity of a soluble delta 6 16:0-ACP desaturase that is structurally related to the delta 9 18:0- and delta 4 16:0-ACP desaturases. Implications of this work to an understanding of active site structures of acyl-ACP desaturases are discussed.

  18. Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective

    NARCIS (Netherlands)

    de Kroon, A.I.P.M.|info:eu-repo/dai/nl/084765283; Rijken, P.J.|info:eu-repo/dai/nl/32716297X; De Smet, C.H.|info:eu-repo/dai/nl/304824224

    2013-01-01

    Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this

  19. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun

    2017-02-15

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha,beta-unsaturated acyl azoliums. High yields and broad scope as well as the investigation of reaction mechanism are reported.

  20. New bradykinin analogues acylated on the N-terminus: effect on rat uterus and blood pressure

    Czech Academy of Sciences Publication Activity Database

    Labudda, O.; Wierzba, T.; Sobolewski, D.; Sleszyňska, M.; Gawiňski, L.; Plačková, Malgorzata; Slaninová, Jiřina; Prahl, A.

    2007-01-01

    Roč. 54, č. 1 (2007), s. 193-198 ISSN 0001-527X Grant - others:State Comittee for Scientific Research(PL) PB1108/T09/2005/28 Institutional research plan: CEZ:AV0Z40550506 Keywords : bradykinin * antagonists * acylation Subject RIV: CE - Biochemistry Impact factor: 1.261, year: 2007 www.actabp.pl

  1. In vitro and in vivo aspects of N-acyl-phosphatidylethanolamine-containing liposomes

    DEFF Research Database (Denmark)

    Vermehren, C.; Clausen-Beck, B.; Frøkjær, S.

    2003-01-01

    Incorporation of the phospholipid, N-acyl-phosphatidylethanolamine (NAPE), has shown to increase the liposomal stability towards plasma components in vitro. Besides increasing the circulation-time, NAPE has been shown to contain fusiogenic properties. Hence, fusion between NAPE-liposomes and target...

  2. An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435.

    Science.gov (United States)

    Sánchez, Daniel Alberto; Tonetto, Gabriela Marta; Ferreira, María Luján

    2016-02-20

    In this work, the ethanolysis of triglycerides catalyzed by immobilized lipase was studied, focusing on the secondary reaction of acyl migration. The catalytic tests were performed in a solvent-free reaction medium using Novozym 435 as biocatalyst. The selected experimental variables were biocatalyst loading (5-20mg), reaction time (30-90min), and chain length of the fatty acids in triglycerides with and without unsaturation (short (triacetin), medium (tricaprylin) and long (tripalmitin/triolein)). The formation of 2-monoglyceride by ethanolysis of triglycerides was favored by long reaction times and large biocatalyst loading with saturated short- to medium-chain triglycerides. In the case of long-chain triglycerides, the formation of this monoglyceride was widely limited by acyl migration. In turn, acyl migration increased the yield of ethyl esters and minimized the content of monoglycerides and diglycerides. Thus, the enzymatic synthesis of biodiesel was favored by long-chain triglycerides (which favor the acyl migration), long reaction times and large biocatalyst loading. The conversion of acylglycerides made from long-chain fatty acids with unsaturation was relatively low due to limitations in their access to the active site of the lipase. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. N-acyl thioureas - selective ligands for complexing of heavy metals and noble metals

    International Nuclear Information System (INIS)

    Schuster, M.

    1992-01-01

    Acyl thioureas are complexing agents for heavy metals that are easily produced and very stable. Their favourable toxicological data make them particularly suitable for industrial applications, e.g. detoxification of metallic process solutions or solvent extraction of metals. (orig.) [de

  4. Tissue carnitine homeostasis in very-long-chain acyl-CoA dehydrogenase-deficient mice

    NARCIS (Netherlands)

    Spiekerkoetter, Ute; Tokunaga, Chonan; Wendel, Udo; Mayatepek, Ertan; Ijlst, Lodewijk; Vaz, Frederic M.; van Vlies, Naomi; Overmars, Henk; Duran, Marinus; Wijburg, Frits A.; Wanders, Ronald J.; Strauss, Arnold W.

    2005-01-01

    Deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD) is the most common long-chain fatty acid oxidation defect and presents with heterogeneous clinical manifestations. Accumulation of long-chain acylcarnitines and deficiency of free carnitine have often been proposed to play an important

  5. Selective Monoacylation of Ferrocene with Bulky Acylating Agents over Mesoporous Sieve AlKIT-5

    Czech Academy of Sciences Publication Activity Database

    Vitvarová, Dana; Voláková, Martina; Vlk, Josef; Vinu, A.; Štěpnička, P.; Čejka, Jiří

    2010-01-01

    Roč. 16, č. 26 (2010), s. 7773-7780 ISSN 0947-6539 R&D Projects: GA ČR GA104/07/0383; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40400503 Keywords : acylation * aluminum * ferrocene Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.476, year: 2010

  6. New cardenolide and acylated lignan glycosides from the aerial parts of Asclepias curassavica.

    Science.gov (United States)

    Warashina, Tsutomu; Shikata, Kimiko; Miyase, Toshio; Fujii, Satoshi; Noro, Tadataka

    2008-08-01

    Three new cardenolide glycosides and six new acylated lignan glycosides were obtained along with nineteen known compounds from the aerial parts of Asclepias curassavica L. (Asclepiadaceae). The structure of each compound was determined based on interpretations of NMR and MS measurements and chemical evidence.

  7. Endotoxin Structures in the Psychrophiles Psychromonas marina and Psychrobacter cryohalolentis Contain Distinctive Acyl Features

    Directory of Open Access Journals (Sweden)

    Charles R. Sweet

    2014-07-01

    Full Text Available Lipid A is the essential component of endotoxin (Gram-negative lipopolysaccharide, a potent immunostimulatory compound. As the outer surface of the outer membrane, the details of lipid A structure are crucial not only to bacterial pathogenesis but also to membrane integrity. This work characterizes the structure of lipid A in two psychrophiles, Psychromonas marina and Psychrobacter cryohalolentis, and also two mesophiles to which they are related using MALDI-TOF MS and fatty acid methyl ester (FAME GC-MS. P. marina lipid A is strikingly similar to that of Escherichia coli in organization and total acyl size, but incorporates an unusual doubly unsaturated tetradecadienoyl acyl residue. P. cryohalolentis also shows structural organization similar to a closely related mesophile, Acinetobacter baumannii, however it has generally shorter acyl constituents and shows many acyl variants differing by single methylene (-CH2- units, a characteristic it shares with the one previously reported psychrotolerant lipid A structure. This work is the first detailed structural characterization of lipid A from an obligate psychrophile and the second from a psychrotolerant species. It reveals distinctive structural features of psychrophilic lipid A in comparison to that of related mesophiles which suggest constitutive adaptations to maintain outer membrane fluidity in cold environments.

  8. Clinical aspects of short-chain acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Maldegem, B.T.; Wanders, R.J.A.; Wijburg, F.A.

    2010-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an autosomal recessive inborn error of mitochondrial fatty acid oxidation. SCADD is biochemically characterized by increased C4-carnitine in plasma and ethylmalonic acid in urine. The diagnosis of SCADD is confirmed by DNA analysis showing

  9. Purification of peroxisomal acyl-CoA: dihydroxyacetonephosphate acyltransferase from human placenta

    NARCIS (Netherlands)

    Ofman, R.; Wanders, R. J.

    1994-01-01

    The peroxisomal enzyme acyl-CoA:dihydroxyacetonephosphate acyltransferase (DHAPAT) was extracted from human placental membranes using CHAPS as a detergent in the presence of 1 M KCl. Prior to assay dipalmitoylphosphatidylcholine was added to the sample as eluted from the various columns in order to

  10. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...... be due to residual enzyme activity as a consequence of the two missense mutations. Treatment with L-carnitine and medium chain triglycerides in the diet did not reduce the attacks of rhabdomyolysis....

  11. Alkylation of phenols and acylation 2-methoxynaphthalene over SSZ-33, SSZ-35 and SSZ-42 zeolites

    Czech Academy of Sciences Publication Activity Database

    Vitvarová, Dana; Lupínková, Lenka; Kubů, Martin

    2015-01-01

    Roč. 210, JUL 2015 (2015), s. 133-141 ISSN 1387-1811 R&D Projects: GA ČR GAP106/11/0819 Institutional support: RVO:61388955 Keywords : phenol alkylation * 2-methoxynaphthalene acylation * SSZ-33 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.349, year: 2015

  12. Lysine sulfonamides as novel HIV-protease inhibitors: Nepsilon-acyl aromatic alpha-amino acids.

    Science.gov (United States)

    Stranix, Brent R; Lavallée, Jean-François; Sévigny, Guy; Yelle, Jocelyn; Perron, Valérie; LeBerre, Nicholas; Herbart, Dominik; Wu, Jinzi J

    2006-07-01

    A series of lysine sulfonamide analogues bearing Nepsilon-acyl aromatic amino acids were synthesized using an efficient synthetic route. Evaluation of these novel protease inhibitors revealed compounds with high potency against wild-type and multiple-protease inhibitor-resistant HIV viruses.

  13. Synthesis of acetylene alcohols of heterocyclic type and the acyl derivatives

    Directory of Open Access Journals (Sweden)

    Moldir Dyusebaeva

    2015-03-01

    Full Text Available A synthesis of potentially biologically active heterocyclic amino alcohols of acetylene (Piperidine and Morpholine under the conditions of Mannich reaction accomplished and received their acyl derivatives. Pharmacological activity (antibacterial and antispasmotic of synthesized compounds, also acute toxicological characteristics studied. The study showed that the combination of DMAE-4 has antispasmodic activity with low toxicity.

  14. A Rational Approach to Identify Inhibitors of Mycobacterium tuberculosis Enoyl Acyl Carrier Protein Reductase

    Czech Academy of Sciences Publication Activity Database

    Chhabria, M. T.; Parmar, K. B.; Brahmkshatriya, Pathik

    2013-01-01

    Roč. 19, č. 21 (2013), s. 3878-3883 ISSN 1381-6128 Institutional support: RVO:61388963 Keywords : mycobacterium tuberculosis * enoyl acyl carrier protein reductase * pharmacophore modeling * molecular docking * binding interactions Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.288, year: 2013

  15. Uncovering Key Structural Features of an Enantioselective Peptide-Catalyzed Acylation Utilizing Advanced NMR Techniques

    Czech Academy of Sciences Publication Activity Database

    Procházková, Eliška; Kolmer, A.; Ilgen, J.; Schwab, M.; Kaltschnee, L.; Fredersdorf, M.; Schmidts, V.; Wende, R. C.; Schreiner, P. R.; Thiele, C. M.

    2016-01-01

    Roč. 55, č. 51 (2016), s. 15754-15759 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : conformational analysis * enantioselective acylations * NMR spectroscopy * pure shift NMR * RDCs Subject RIV: CC - Organic Chemistry Impact factor: 11.994, year: 2016

  16. Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    lactams under ambient conditions. In this study, we demonstrated production of these chemicals using ORF26, an acyl-CoA ligase involved in the biosynthesis of ECO-02301 in Streptomyces aizunensis. This enzyme has a broad substrate spectrum and can cyclize 4-aminobutyric acid into γ-butyrolactam, 5...

  17. Improved Synthesis of 1-O-Acyl-β-d-Glucopyranose Tetraacetates

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2017-04-01

    Full Text Available An improved synthesis of 1-O-acyl glucosyl esters that avoids the use of expensive Ag reagents as well as the hydrolysis of unstable glucosyl bromides is reported. Notably, β-configuration products were obtained exclusively in good yields.

  18. Acylation of aromatic alcohols and phenols over InCl3 ...

    Indian Academy of Sciences (India)

    Unknown

    toluene sulphonic acid,5 ZnCl2,6 COCl2,7 Sc(OTf)3. 8 or Bi(OTf)3. 9] catalyst ... tion of benzene and other aromatic compounds.12,13. In this communication, we ... val of solvent from the reaction mixture by distillation. The acylated products ...

  19. Homochiral Acyl Isocyanates as Diagnostic NMR Probes for the Enantiomeric Purity of Chiral Alcohols

    Directory of Open Access Journals (Sweden)

    Gregory H. P. Roos

    2000-12-01

    Full Text Available The first reported acyl and sulfonylisocyanates were developed and tested in reactions with chiral alcohols to afford diastereomeric carbamates. NMR analysis of these investigates the chemical shift discrimination that would allow these activated isocyanates to be used as diagnostic probes of enantiomeric purity.

  20. An Efficient and Green Procedure for the Preparation of Acylals from ...

    African Journals Online (AJOL)

    An Efficient and Green Procedure for the Preparation of Acylals from Aldehydes Catalyzed by Alum [KAl(SO 4 ) 2 .12H 2 O] ... South African Journal of Chemistry ... mild reaction conditions, short reaction times and excellent yields, and offers a green synthetic solution by avoiding toxic catalysts and hazardous solvents.

  1. Acyl-CoA binding protein is an essential protein in mammalian cell lines

    DEFF Research Database (Denmark)

    Knudsen, Jens; Færgeman, Nils J.

    2002-01-01

    In the present work, small interference RNA was used to knock-down acyl-CoA binding protein (ACBP) in HeLa, HepG2 and Chang cells. Transfection with ACBP-specific siRNA stopped growth, detached cells from the growth surface and blocked thymidine and acetate incorporation. The results show...

  2. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  3. Two bifunctional enzymes from the marine protist Thraustochytrium roseum: biochemical characterization of wax ester synthase/acyl-CoA:diacylglycerol acyltransferase activity catalyzing wax ester and triacylglycerol synthesis.

    Science.gov (United States)

    Zhang, Nannan; Mao, Zejing; Luo, Ling; Wan, Xia; Huang, Fenghong; Gong, Yangmin

    2017-01-01

    °C, and WS activity was greatly decreased when temperature exceeds 47 °C. TrWSD4 and TrWSD5 are insensitive to ionic strength and reduced WS activity was observed when salt concentration exceeded 800 mM. The potential of T. roseum WS/DGATs to establish novel process for biotechnological production of WEs was demonstrated by heterologous expression in recombinant yeast. Expression of either TrWSD4 or TrWSD5 in Saccharomyces cerevisiae quadruple mutant H1246, which is devoid of storage lipids, resulted in the accumulation of WEs, but not any detectable TAGs, indicating a predominant WS activity in yeast. This study demonstrates both in vitro WS and DGAT activity of two T. roseum WS/DGATs, which were characterized as unspecific acyltransferases accepting a broad range of acyl-CoAs and fatty alcohols as substrates for WS activity but displaying substrate preference for medium-chain acyl-CoAs. In vivo characterization shows that these two WS/DGATs predominantly function as wax synthase and presents the feasibility for production of WEs by heterologous hosts.

  4. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    International Nuclear Information System (INIS)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-01-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. 14 C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell

  5. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  6. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects.

    Science.gov (United States)

    Antinone, Sarah E; Ghadge, Ghanashyam D; Ostrow, Lyle W; Roos, Raymond P; Green, William N

    2017-01-25

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.

  7. S-naproxen-ss-1-O-acyl glucuronide degradation kinetic studies by stopped-flow high-performance liquid chromatography-H-1 NMR and high-performance liquid chromatography-UV

    DEFF Research Database (Denmark)

    Mortensen, R. W.; Corcoran, O.; Cornett, Claus

    2001-01-01

    Acyl-migrated isomers of drug beta -1-O-acyl glucuronides have been implicated in drug toxicity because they can bind to proteins. The acyl migration and hydrolysis of S-naproxen-beta -1-O-acyl glucuronide (S-nap-g) was followed by dynamic stopped-flow HPLC-H-1 NMR and HPLC methods. Nine first or...

  8. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama

    2017-02-28

    A general and practical process for the conversion of prochiral ketones into the corresponding chiral acetates has been realized. An iron carbonyl complex is reported to catalyze the hydrogenation-dehydrogenation-hydrogenation of prochiral ketones. By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high yields and enantioselectivities. The use of an iron catalyst together with molecular hydrogen as the hydrogen donor and readily available ethyl acetate as acyl donor make this cascade process highly interesting in terms of both economic value and environmental credentials.

  9. Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimer's Dementia.

    Directory of Open Access Journals (Sweden)

    Adriana Cristofano

    Full Text Available This study aimed to determine the serum levels of free L-carnitine, acetyl-L-carnitine and 34 acyl-L-carnitine in healthy subjects and in patients with or at risk of Alzheimer's disease. Twenty-nine patients with probable Alzheimer's disease, 18 with mild cognitive impairment of the amnestic type, 24 with subjective memory complaint and 46 healthy subjects were enrolled in the study, and the levels of carnitine and acyl-carnitines were measured by tandem mass spectrometry. The concentrations of acetyl-L-carnitine progressively decreased passing from healthy subjects group (mean±SD, 5.6±1.3 μmol/L to subjective memory complaint (4.3±0.9 μmol/L, mild cognitive impairment (4.0±0.53 μmol/L, up to Alzheimer's disease (3.5±0.6 μmol/L group (p<0.001. The differences were significant for the comparisons: healthy subjects vs. subjective memory complaint, mild cognitive impairment or Alzheimer's disease group; and subjective memory complaint vs. Alzheimer's disease group. Other acyl-carnitines, such as malonyl-, 3-hydroxyisovaleryl-, hexenoyl-, decanoyl-, dodecanoyl-, dodecenoyl-, myristoyl-, tetradecenoyl-, hexadecenoyl-, stearoyl-, oleyl- and linoleyl-L-carnitine, showed a similar decreasing trend, passing from healthy subjects to patients at risk of or with Alzheimer's disease. These results suggest that serum acetyl-L-carnitine and other acyl-L-carnitine levels decrease along the continuum from healthy subjects to subjective memory complaint and mild cognitive impairment subjects, up to patients with Alzheimer's disease, and that the metabolism of some acyl-carnitines is finely connected among them. These findings also suggest that the serum levels of acetyl-L-carnitine and other acyl-L-carnitines could help to identify the patients before the phenotype conversion to Alzheimer's disease and the patients who would benefit from the treatment with acetyl-L-carnitine. However, further validation on a larger number of samples in a longitudinal

  10. Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimer's Dementia

    Science.gov (United States)

    Sapere, Nadia; La Marca, Giancarlo; Angiolillo, Antonella; Vitale, Michela; Corbi, Graziamaria; Scapagnini, Giovanni; Intrieri, Mariano; Russo, Claudio

    2016-01-01

    This study aimed to determine the serum levels of free L-carnitine, acetyl-L-carnitine and 34 acyl-L-carnitine in healthy subjects and in patients with or at risk of Alzheimer’s disease. Twenty-nine patients with probable Alzheimer’s disease, 18 with mild cognitive impairment of the amnestic type, 24 with subjective memory complaint and 46 healthy subjects were enrolled in the study, and the levels of carnitine and acyl-carnitines were measured by tandem mass spectrometry. The concentrations of acetyl-L-carnitine progressively decreased passing from healthy subjects group (mean±SD, 5.6±1.3 μmol/L) to subjective memory complaint (4.3±0.9 μmol/L), mild cognitive impairment (4.0±0.53 μmol/L), up to Alzheimer’s disease (3.5±0.6 μmol/L) group (p<0.001). The differences were significant for the comparisons: healthy subjects vs. subjective memory complaint, mild cognitive impairment or Alzheimer’s disease group; and subjective memory complaint vs. Alzheimer’s disease group. Other acyl-carnitines, such as malonyl-, 3-hydroxyisovaleryl-, hexenoyl-, decanoyl-, dodecanoyl-, dodecenoyl-, myristoyl-, tetradecenoyl-, hexadecenoyl-, stearoyl-, oleyl- and linoleyl-L-carnitine, showed a similar decreasing trend, passing from healthy subjects to patients at risk of or with Alzheimer’s disease. These results suggest that serum acetyl-L-carnitine and other acyl-L-carnitine levels decrease along the continuum from healthy subjects to subjective memory complaint and mild cognitive impairment subjects, up to patients with Alzheimer’s disease, and that the metabolism of some acyl-carnitines is finely connected among them. These findings also suggest that the serum levels of acetyl-L-carnitine and other acyl-L-carnitines could help to identify the patients before the phenotype conversion to Alzheimer’s disease and the patients who would benefit from the treatment with acetyl-L-carnitine. However, further validation on a larger number of samples in a longitudinal

  11. Disruption of the Acyl-CoA binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Marcher, Ann-Britt; Bloksgaard, Maria

    The acyl-CoA binding protein/diazepam binding inhibitor (ACBP/DBI) is an evolutionary conserved intracellular protein that binds C14-C22 acyl-CoA esters with very high affinity. ACBP is thought to act as an acyl-CoA transporter, and in vitro analyses have indicated that ACBP can transport acyl......-CoA esters between different enzymatic systems. However, little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP-/-). These mice are viable and fertile and develop normally. However, around weaning the ACBP-/- mice show decreased growth......) family, around the weaning period. As a result, the hepatic de novo cholesterogenesis is significantly decreased at weaning. The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors leading to reduced binding of SREBP...

  12. Synthesis and biological evaluation of S-acyl-3-thiopropyl prodrugs of N-phosphonoacetyl-L-aspartate (PALA).

    Science.gov (United States)

    Gagnard, Valérie; Leydet, Alain; Le Mellay, Véronique; Aubenque, Marielle; Morère, Alain; Montero, Jean-Louis

    2003-10-01

    The synthesis of new prodrugs of PALA characterised by the presence of S-acyl-3-thiopropyl, as enzyme-labile groups on the phosphonate moiety of PALA, is reported. The cytotoxic activities of PALA prodrugs were determined against human cell line (SW1573 lung carcinoma cells). A number of prodrugs bearing S-pivaloyl as acyl groups displayed cytotoxic activity in the same order of magnitude of PALA.

  13. Ethylene glycol causes acyl chain disordering in liquid-crystalline, unsaturated phospholipid model membranes, as measured by 2H NMR

    International Nuclear Information System (INIS)

    Nicolay, K.; Kruijff, B. de; Smaal, E.B.

    1986-01-01

    2 H NMR has been used to probe the effects of ethylene glycol at the level of the acyl chains in liposomes prepared from dioleoylphosphatidic acid or dioleoylphosphatidylcholine, labeled with 2 H at the 11-position of both oleic acid chains. Increasing concentrations of ethylene glycol lead to a proportional and substantial decrease in the quadrupolar splittings, measured from the 2 H NMR spectra of both liposomal system, indicative of acyl chain disordering. (Auth.)

  14. Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes

    DEFF Research Database (Denmark)

    Hu, Liping; Deeney, Jude T; Nolan, Christopher J

    2005-01-01

    -cells. The mechanisms by which lipolysis is regulated in different tissues is, therefore, of considerable interest. Here, the effects of long-chain acyl-CoA esters (LC-CoA) on lipase activity in islets and adipocytes were compared. Palmitoyl-CoA (Pal-CoA, 1-10 microM) stimulated lipase activity in islets from both....... The inhibitory effect of LC-CoA on adipocyte HSL was dependent on phosphorylation and enhanced by acyl-CoA-binding protein (ACBP). In contrast, the stimulatory effect on islet lipase activity was blocked by ACBP, presumably due to binding and sequestration of LC-CoA. These data suggest the following intertissue...

  15. Biocatalytic acylation of carbohydrates with fatty acids from palm fatty acid distillates.

    Science.gov (United States)

    Chaiyaso, Thanongsak; H-Kittikun, Aran; Zimmermann, Wolfgang

    2006-05-01

    Palm fatty acid distillates (PFAD) are by-products of the palm oil refining process. Their use as the source of fatty acids, mainly palmitate, for the biocatalytic synthesis of carbohydrate fatty acid esters was investigated. Esters could be prepared in high yields from unmodified acyl donors and non-activated free fatty acids obtained from PFAD with an immobilized Candida antarctica lipase preparation. Acetone was found as a compatible non-toxic solvent, which gave the highest conversion yields in a heterogeneous reaction system without the complete solubilization of the sugars. Glucose, fructose, and other acyl acceptors could be employed for an ester synthesis with PFAD. The synthesis of glucose palmitate was optimized with regard to the water activity of the reaction mixture, the reaction temperature, and the enzyme concentration. The ester was obtained with 76% yield from glucose and PFAD after reaction for 74 h with 150 U ml(-1) immobilized lipase at 40 degrees C in acetone.

  16. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P

    1997-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid beta-oxidation. Defects in the SCAD enzyme are associated with failure to thrive, often with neuromuscular dysfunction and elevated urinary excretion...... shown to be associated with ethylmalonic aciduria. From analysis of 18 unrelated Danish families, we show that the four SCAD gene polymorphisms constitute five allelic variants of the SCAD gene, and that the 625A variant together with the less frequent variant form of the three other polymorphisms (321C....... The evolutionary relationship between SCAD and five other members of the acyl-CoA dehydrogenase family was investigated by two independent approaches that gave similar phylogenetic trees....

  17. Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae.

    Science.gov (United States)

    Hao, Qing; Liu, Xiaoguang; Zhao, Guozhong; Jiang, Lu; Li, Ming; Zeng, Bin

    2016-03-01

    To characterize biochemically the lipid metabolism-regulating acyl-CoA binding protein (ACBP) from the industrially-important fungus Aspergillus oryzae. A full-length cDNA encoding a candidate ACBP from A. oryzae (AoACBP) was cloned and expressed in Escherichia coli as a maltose-binding protein (MBP) fusion protein. The MBP-AoACBP protein was purified by an amylose resin chromatography column. SDS-PAGE showed that MBP-AoACBP has an estimated molecular weight of 82 kDa. Microscale thermophoresis binding assay showed that the recombinant AoACBP displayed much greater affinity for palmitoyl-CoA (K d = 80 nM) than for myristoyl-CoA (K d = 510 nM), thus demonstrating the preference of AoACBP for long-chain acyl-CoA. The data support the identification of AoACBP as a long-chain ACBP in A. oryzae.

  18. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    Science.gov (United States)

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  19. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    Science.gov (United States)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  20. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    Science.gov (United States)

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Cholesterol esterification by mouse liver homogenate. Contribution to the study of ACYL-CoA: Cholesterol ACYL transferase in mammalian liver

    International Nuclear Information System (INIS)

    Soares, M.G.C.B.

    1976-01-01

    A cholesterol- esterifying enzyme from mouse liver has been partially characterized. The enzyme which showed optimum activity at pH 7,1 and required ATP and CoA, was identified as an acyl CoA: cholesterol acyl transferase (E.C.2.3.1.26). As a fuction of time the percentage of esterified cholesterol increased linearly during the first hour of incubation and continued to increase but not linearly with 4 hours, after which time no further net esterefication was observed. The relative concentration of esterified cholesterol remained constant between the fourth and twelveth hours of incubation but afterwards decreased when the incubation continued until 24 hours. The cholesterol- esterifying activity was 24,0+- 2,9 nmoles cholesterol esterified per gram tissue wet weight per minute. The mean percentages of free cholesterol esterified in and 24 hours respectively were 14,8+- 1,6 e 21,9+- 4,5. The subfractionation of labelled cholesteryl esters after one hour incubation of liver homogenate with 4-C 14 -Cholesterol showed the order of preference for the formation of the different ester classes to be monounsatured > diunsatured ≥ saturated >> polyunsaturated. The properties of the enzyme frommouse liver do not markedly differ from those of the previously recorded ACAT activity of rat liver. (Author) [pt

  2. Acquired multiple Acyl-CoA dehydrogenase deficiency in 10 horses with atypical myopathy.

    Science.gov (United States)

    Westermann, C M; Dorland, L; Votion, D M; de Sain-van der Velden, M G M; Wijnberg, I D; Wanders, R J A; Spliet, W G M; Testerink, N; Berger, R; Ruiter, J P N; van der Kolk, J H

    2008-05-01

    The aim of the current study was to assess lipid metabolism in horses with atypical myopathy. Urine samples from 10 cases were subjected to analysis of organic acids, glycine conjugates, and acylcarnitines revealing increased mean excretion of lactic acid, ethylmalonic acid, 2-methylsuccinic acid, butyrylglycine, (iso)valerylglycine, hexanoylglycine, free carnitine, C2-, C3-, C4-, C5-, C6-, C8-, C8:1-, C10:1-, and C10:2-carnitine as compared with 15 control horses (12 healthy and three with acute myopathy due to other causes). Analysis of plasma revealed similar results for these predominantly short-chain acylcarnitines. Furthermore, measurement of dehydrogenase activities in lateral vastus muscle from one horse with atypical myopathy indeed showed deficiencies of short-chain acyl-CoA dehydrogenase (0.66 as compared with 2.27 and 2.48 in two controls), medium-chain acyl-CoA dehydrogenase (0.36 as compared with 4.31 and 4.82 in two controls) and isovaleryl-CoA dehydrogenase (0.74 as compared with 1.43 and 1.61 nmol min(-1) mg(-1) in two controls). A deficiency of several mitochondrial dehydrogenases that utilize flavin adenine dinucleotide as cofactor including the acyl-CoA dehydrogenases of fatty acid beta-oxidation, and enzymes that degrade the CoA-esters of glutaric acid, isovaleric acid, 2-methylbutyric acid, isobutyric acid, and sarcosine was suspected in 10 out of 10 cases as the possible etiology for a highly fatal and prevalent toxic equine muscle disease similar to the combined metabolic derangements seen in human multiple acyl-CoA dehydrogenase deficiency also known as glutaric acidemia type II.

  3. Ultraviolet stimulated melanogenesis by human melanocytes is augmented by di-acyl glycerol but not TPA

    International Nuclear Information System (INIS)

    Friedmann, P.S.; Wren, F.E.; Matthews, J.N.

    1990-01-01

    Epidermal melanocytes (MC) synthesize melanin in response to ultraviolet radiation (UVR). The mechanisms mediating the UV-induced activation of melanogenesis are unknown but since UVR induces turnover of membrane phospholipids generating prostaglandins (PGs) and other products, it is possible that one of these might provide the activating signal. We have examined the effects of prostaglandins (PGs) E1, E2, D2, F2 alpha, and di-acyl glycerol upon the UV-induced responses of cultured human MC and the Cloudman S91 melanoma cell line. The PGs had little effect on unirradiated cells and did not alter the response to UVR in either human MC or S91 melanoma cells. However, a synthetic analogue of di-acyl glycerol, 1-oleyl 2-acetyl glycerol (OAG), caused a significant (P less than 0.0001), dose-related augmentation of melanin content both in human MC (seven-fold) and S91 cells (three-fold). UVR caused a significant augmentation of the OAG-induced melanogenesis of both human MC and S91 cells. Since OAG is known to activate protein kinase C, it was possible that the observed modulation of the UVR signal could be via that pathway. Di-octanoyl glycerol, another di-acyl glycerol, which activates kinase C, caused a small (70%) increase in melanogenesis in MC which was not altered by UVR. However, 12-0 tetradecanoyl phorbol 13-acetate (TPA), a potent activator of protein kinase C, had no significant effect on either basal or UV-induced melanin synthesis in either cell type. These data suggest that the UV-induced signal activating melanogenesis could be mediated by di-acyl glycerol. Furthermore, they imply that the signal is transduced via an alternative, pathway that might be independent of protein kinase C

  4. Ruthenium(III Chloride Catalyzed Acylation of Alcohols, Phenols, and Thiols in Room Temperature Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Mingzhong Cai

    2009-09-01

    Full Text Available Ruthenium(III chloride-catalyzed acylation of a variety of alcohols, phenols, and thiols was achieved in high yields under mild conditions (room temperature in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]. The ionic liquid and ruthenium catalyst can be recycled at least 10 times. Our system not only solves the basic problem of ruthenium catalyst reuse, but also avoids the use of volatile acetonitrile as solvent.

  5. Acid catalyzed solvent free synthesis of new 1-acyl-4-benzhydryl substituted pyrazoles

    International Nuclear Information System (INIS)

    Sher, M.; Kausar, T.; Riaz, N.; Sharif, A.

    2016-01-01

    A convenient, cost effective and environmentally benign methodology has been developed, which delivered fourteen new 1-acyl-4-benzhyrdyl substituted pyrazole derivatives under solvent free conditions. Target compounds were synthesized in good to excellent yields simply by grinding reactants in a pestle and mortar with catalytic amount of conc. H/sub 2/SO/sub 4/. All the newly formed compounds were fully characterized with the help of detailed spectroscopic techniques including FTIR, NMR and GC-MS. (author)

  6. Two new acylated flavonol glycosides from Mimosa pigra L. leaves sub-family Mimosoideae

    Directory of Open Access Journals (Sweden)

    Chinedu J. Okonkwo

    2016-12-01

    Conclusion: Myricetin, quercetin and their glycoside derivatives are strong antioxidants; and elicit cytotoxic effect on human cancer cell lines among other pharmacological activities. The isolation of acylated flavonoids in M. pigra provided an important insight on the evolutionary trend of the medicinal plant. While the dominance of flavonols, may account for the various ethnomedicinal uses of the herb and the mechanism and mode of its confirmed pharmacological actions.

  7. Organocatalyzed α-Sulfenylation of carbonyl compounds using N-formly/Acyl Sulfenmides

    International Nuclear Information System (INIS)

    Noh, Hyeon Wan; Lee, Chan; Jang, Hye Young

    2017-01-01

    α-Sulfenylation of aldehydes and ketones using N-formyl and N-acyl sulfenamides, prepared by Cu-catalyzed aerobic coupling of amides and thiols, was achieved in the presence of cyclic secondary amine⋅HCl catalysts. To obtain various sulfur-functionalized carbonyl compounds, sulfenamides containing aromatic and aliphatic organosulfur were investigated. As carbonyl compounds, cyclic and acyclic ketones, 1,3-dicarbonyl compounds, and aldehydes were investigated, affording the desired α-sulfenylation products in good yields

  8. Acyl chloride carbon insertion into dicarbaborane cages - new route to tricarbollide cages

    Czech Academy of Sciences Publication Activity Database

    Štíbr, Bohumil

    2015-01-01

    Roč. 87, č. 2 (2015), s. 135-142 ISSN 0033-4545. [IMEBORON/15./. Praha, 24.08.2014-28.08.2014] R&D Projects: GA ČR(CZ) GAP207/11/0705 Institutional support: RVO:61388980 Keywords : acyl chlorides * carbon insertion * carboranes * IMEBORON-XV * metallatricarbollides * tricarbollides Subject RIV: CA - Inorganic Chemistry Impact factor: 2.615, year: 2015

  9. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.

    Directory of Open Access Journals (Sweden)

    Zhaohui Hu

    Full Text Available With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt. was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0 and myristate (C14:0 were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0, from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.

  10. Organocatalyzed α-Sulfenylation of carbonyl compounds using N-formly/Acyl Sulfenmides

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyeon Wan; Lee, Chan; Jang, Hye Young [Dept. of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2017-03-15

    α-Sulfenylation of aldehydes and ketones using N-formyl and N-acyl sulfenamides, prepared by Cu-catalyzed aerobic coupling of amides and thiols, was achieved in the presence of cyclic secondary amine⋅HCl catalysts. To obtain various sulfur-functionalized carbonyl compounds, sulfenamides containing aromatic and aliphatic organosulfur were investigated. As carbonyl compounds, cyclic and acyclic ketones, 1,3-dicarbonyl compounds, and aldehydes were investigated, affording the desired α-sulfenylation products in good yields.

  11. A Scalable Method for Regioselective 3-Acylation of 2-Substituted Indoles under Basic Conditions

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Urruticoechea, Andoni; Larsen, Inna

    2015-01-01

    Privileged structures such as 2-arylindoles are recurrent molecular scaffolds in bioactive molecules. We here present an operationally simple, high yielding and scalable method for regioselective 3-acylation of 2-substituted indoles under basic conditions using functionalized acid chlorides. The ....... The method shows good tolerance to both electron-withdrawing and donating substituents on the indole scaffold and gives ready access to a variety of functionalized 3-acylindole building blocks suited for further derivatization....

  12. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25

    Science.gov (United States)

    Röttig, Annika; Strittmatter, Carl Simon; Schauer, Jennifer; Hiessl, Sebastian; Daniel, Rolf

    2016-01-01

    ABSTRACT Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli. The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected

  13. New anthrarobin acyl derivatives as butyrylcholinesterase inhibitors: synthesis, in vitro and in silico studies

    Directory of Open Access Journals (Sweden)

    Mehreen Lateef

    2017-07-01

    Full Text Available To treat Alzheimer's disease (AD, the available candidates are effective only against mild AD or have side effects. So, a study was planned to synthesis new candidates that may have good potential to treat AD. A series of new anthrarobin acyl derivatives (2–8 were synthesized by the reaction of anthrarobin (1 and acetic anhydride/acyl chlorides. The product were characterized by 1H NMR and EI-MS, and evaluated for butyrylcholinesterase (BuChE inhibition activity. Compounds 5 and 4 showed notable BuChE inhibitory potential with IC50 5.3 ± 1.23 and 17.2 ± 0.47 μM, respectively when compared with the standard eserine (IC50 7.8 ± 0.27 μM, compound 5 showed potent BuChE inhibition potential than the standard eserine. The active compounds 5 and 4 have acyl groups at 2-OH and 10-OH positions which may be responsible for inhibitory potential as this orientation is absent in other products. In silico studies of 5 and 4 products revealed the high inhibitory potential due to stable binding of ligand with the BuChE active sites with docking energy score −18.8779 kcal/mol and −23.1159 kcal/mol, respectively. Subsequently, compound 5 that have potent BuChE inhibitory activity could be the potential candidate for drug development for Alzheimer’s disease.

  14. Substantial species differences in relation to formation and degradation of N-acyl-ethanolamine phospholipids in heart tissue

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.

    2002-01-01

    beneficial effects on the heart, but in the literature there are indications of species differences in the activity of these enzymes. We have examined heart microsomes from rats, mice, guinea pigs, rabbits, frogs, cows, dogs, cats, mini pigs and human beings for activities of these two enzymes. N......-Acyl-transferase activity was very high in dogs and cats (>13 pmol/min/mg protein) whereas it was very low to barely detectable in the other species (45 pmol/min/mg protein) whereas it was 9 pmol/min/mg protein in frogs and below that in the other species. The ratio of activity between the two enzymes varied from 0.......002 to 15 in the investigated species. The activity of the two enzymes in rat hearts as opposed to rat brain did not change during development. These results indicate that there may be substantial species differences in the generation of anandamide and other NAEs as well as NAPEs in heart tissues....

  15. Analysis of amino acids and acyl carnitine profiles in low birth weight, preterm, and small for gestational age neonates.

    Science.gov (United States)

    Liu, Qian; Wu, Jing; Shen, Wen; Wei, Ran; Jiang, Jianhui; Liang, Jinqun; Chen, Min; Zhong, Mei; Yin, Aihua

    2017-11-01

    To analyze the amino acids (AA) and acyl carnitine (AC) profiles in dry blood spot (DBS) specimens of low birth weight (LBW), preterm birth (PTB), and small for gestational age (SGA), and to compare the concentration difference of AA and AC with those without above. This is a retrospectively study. Eight thousand nine hundred and seventy-nine uncomplicated pregnant newborns were enrolled into the study. DBS were collected on the third day of life, and concentrations of 11 types of AA, free carnitine and 30 types of AC were detected by using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS). Shapiro-Wilk test and Kruskal-Wallis rank test were applied in statistical analysis. Concentrations of most AA and AC in infants born in SGA were significantly higher than those in non-SGA group, while lower in LBW and PTB groups than those in non-LBW and non-PTB groups (p < 0.05). The difference of concentration of AA and AC in the subgroups suggested there may be a dysutilization of AA and AC in SGA, but an inborn insufficient of AA and AC in LBW and PTB neonates.

  16. Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids.

    Science.gov (United States)

    Huo, Tianyao; Ferruzzi, Mario G; Schwartz, Steven J; Failla, Mark L

    2007-10-31

    A carotenoid-rich salad meal with varying amounts and types of triglycerides (TG) was digested using simulated gastric and small intestinal conditions. Xanthophylls (lutein and zeaxanthin) and carotenes (alpha-carotene, beta-carotene, and lycopene) in chyme and micelle fraction were quantified to determine digestive stability and efficiency of micellarization (bioaccessibility). Micellarization of lutein (+zeaxanthin) exceeded that of alpha- and beta-carotenes, which was greater than that of lycopene for all test conditions. Micellarization of carotenes, but not lutein (+zeaxanthin), was enhanced (P structured TG (c18:1 > c8:0 > c4:0). The degree of unsaturation of c18 fatty acyl chains in TG added to the salad purée did not significantly alter the efficiency of micellarization of carotenoids. Relatively low amounts of triolein and canola oil (0.5-1%) were required for maximum micellarization of carotenes, but more oil (approximately 2.5%) was required when TG with medium chain saturated fatty acyl groups (e.g., trioctanoin and coconut oil) was added to the salad. Uptake of lutein and beta-carotene by Caco-2 cells also was examined by exposing cells to micelles generated during the simulated digestion of salad purée with either triolein or trioctanoin. Cell accumulation of beta-carotene was independent of fatty acyl composition of micelles, whereas lutein uptake was slightly, but significantly, increased from samples with digested triolein compared to trioctanoin. The results show that the in vitro transfer of alpha-carotene, beta-carotene, and lycopene from chyme to mixed micelles during digestion requires minimal (0.5-1%) lipid content in the meal and is affected by the length of fatty acyl chains but not the degree of unsaturation in TG. In contrast, fatty acyl chain length has limited if any impact on carotenoid uptake by small intestinal epithelial cells. These data suggest that the amount of TG in a typical meal does not limit the bioaccessibility of

  17. The presence of acylated ghrelin during in vitro maturation of bovine oocytes induces cumulus cell DNA damage and apoptosis, and impairs early embryo development.

    Science.gov (United States)

    Sirini, Matias A; Anchordoquy, Juan Mateo; Anchordoquy, Juan Patricio; Pascua, Ana M; Nikoloff, Noelia; Carranza, Ana; Relling, Alejandro E; Furnus, Cecilia C

    2017-10-01

    The aim of this study was to investigate the effects of acylated ghrelin supplementation during in vitro maturation (IVM) of bovine oocytes. IVM medium was supplemented with 20, 40 or 60 pM acylated ghrelin concentrations. Cumulus expansion area and oocyte nuclear maturation were studied as maturation parameters. Cumulus-oocyte complexes (COC) were assessed with the comet, apoptosis and viability assays. The in vitro effects of acylated ghrelin on embryo developmental capacity and embryo quality were also evaluated. Results demonstrated that acylated ghrelin did not affect oocyte nuclear maturation and cumulus expansion area. However, it induced cumulus cell (CC) death, apoptosis and DNA damage. The damage increased as a function of the concentration employed. Additionally, the percentages of blastocyst yield, hatching and embryo quality decreased with all acylated ghrelin concentrations tested. Our study highlights the importance of acylated ghrelin in bovine reproduction, suggesting that this metabolic hormone could function as a signal that prevents the progress to reproductive processes.

  18. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves

    International Nuclear Information System (INIS)

    Roughan, G.; Nishida, I.

    1990-01-01

    Fatty acid synthesis from [1-14C]acetate by chloroplasts isolated from peas and amaranthus was linear for at least 15 min, whereas incorporation of the tracer into long-chain acyl-acyl carrier protein (ACP) did not increase after 2-3 min. When reactions were transferred to the dark after 3-5 min, long-chain acyl-ACPs lost about 90% of their radioactivity and total fatty acids retained all of theirs. Half-lives of the long-chain acyl-ACPs were estimated to be 10-15 s. Concentrations of palmitoyl-, stearoyl-, and oleoyl-ACP as indicated by equilibrium labeling during steady-state fatty acid synthesis, ranged from 0.6-1.1, 0.2-0.7, and 0.4-1.6 microM, respectively, for peas and from 1.6-1.9, 1.3-2.6, and 0.6-1.4 microM, respectively, for amaranthus. These values are based on a chloroplast volume of 47 microliters/mg chlorophyll and varied according to the mode of the incubation. A slow increase in activity of the fatty acid synthetase in safflower chloroplasts resulted in long-chain acyl-ACPs continuing to incorporate labeled acetate for 10 min. Upon re-illumination following a dark break, however, both fatty acid synthetase activity and acyl-ACP concentrations increased very rapidly. Palmitoyl-ACP was present at concentrations up to 2.5 microM in safflower chloroplasts, whereas those of stearoyl- and oleoyl-ACPs were in the lower ranges measured for peas. Acyl-ACPs were routinely separated from extracts of chloroplasts that had been synthesising long-chain fatty acids from labeled acetate by a minor modification of the method of Mancha et al. The results compared favorably with those obtained using alternative analytical methods such as adsorption to filter paper and partition chromatography on silicic acid columns

  19. The most common mutation causing medium-chain acyl-CoA dehydrogenase deficiency is strongly associated with a particular haplotype in the region of the gene

    DEFF Research Database (Denmark)

    Kølvraa, S; Gregersen, N; Blakemore, A I

    1991-01-01

    RFLP haplotypes in the region containing the medium-chain acyl-CoA dehydrogenase (MCAD) gene on chromosome 1 have been determined in patients with MCAD deficiency. The RFLPs were detected after digestion of patient DNA with the enzymes BanII. PstI and TaqI and with an MCAD cDNA-clone as a probe....... Of 32 disease-causing alleles studied, 31 possessed the previously published A----G point-mutation at position 985 of the cDNA. This mutation has been shown to result in inactivity of the MCAD enzyme. In at least 30 of the 31 alleles carrying this G985 mutation a specific RFLP haplotype was present...

  20. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Science.gov (United States)

    2010-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. (a) Chemical substance and...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts (PMN P-03-46; CAS No. 136504-87-5) is subject to...

  1. Majority of cellular fatty acid acylated proteins are localized to the cytoplasmic surface of the plasma membrane

    International Nuclear Information System (INIS)

    Wilcox, C.A.; Olson, E.N.

    1987-01-01

    The BC 2 Hl muscle cell line was previously reported to contain a broad array of fatty acid acylated proteins. Palmitate was shown to be attached to membrane proteins posttranslationally through thiol ester linkages, whereas myristate was attached cotranslationally, or within seconds thereafter, to soluble and membrane-bound proteins through amide linkages. The temporal and subcellular differences between palmitate and myristate acylation suggested that these two classes of acyl proteins might follow different intracellular pathways to distinct subcellular membrane systems or organelles. In this study, the authors examined the subcellular localization of the major fatty acylated proteins in BC 4 Hl cells. Palmitate-containing proteins were localized to the plasma membrane, but only a subset of myristate-containing proteins was localized to this membrane fraction. The majority of acyl proteins were nonglycosylated and resistant to digestion with extracellular proteases, suggesting that they were not exposed to the external surface of the plasma membrane. Many proteins were, however, digested during incubation of isolated membranes with proteases, which indicates that these proteins were, however, digested during incubation of isolated membranes with proteases, which indicates that these proteins face the cytoplasm. Two-dimensional gel electrophoresis of proteins labeled with [ 3 H]palmitate and [ 3 H]myristate revealed that individual proteins were modified by only one of the two fatty acids and did not undergo both N-linked myristylation and ester-linked palmitylation. Together, these results suggest that the majority of cellular acyl proteins are routed to the cytoplasmic surface of the plasma membrane, and they raise the possibility that fatty acid acylation may play a role in intracellular sorting of nontransmembranous, nonglycosylated membrane proteins

  2. A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    Bina S. Siddiqui

    2008-08-01

    Full Text Available A simple, rapid, solvent-free, room temperature one pot synthesis of benzene ring acylated and demethylated analogues of harmine using acyl halides/acid anhydrides and AlCl3 has been developed. Eight different acyl halides/acid anhydrides were used in the synthesis. The resulting mixture of products was separated by column chromatography to afford 10- and 12-monoacyl analogues, along with 10,12-diacyl-11-hydroxy products. In five cases the corresponding 10-acyl-11-hydroxy analogues were also obtained. Yields from the eight syntheses (29 products in total were in the 6-34% range and all compounds were fully characterized.

  3. Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex

    DEFF Research Database (Denmark)

    Zou, Zhiying; Tong, Fumin; Færgeman, Nils J.

    2003-01-01

    the growth defect in the faa1Delta fat1Delta strain indicating some essential functions of Fat1p cannot be performed by Faa4p. Chromosomally encoded FAA1 and FAT1 are not able to suppress the growth deficiencies of the fat1Delta faa1Delta and faa1Delta faa4Delta strains, respectively, indicating Faa1p...... as trap were active when tested using the yeast two-hybrid system. Third, co-expressed, differentially tagged Fat1p and Faa1p or Faa4p were co-immunoprecipitated. Collectively, these data support the hypothesis that fatty acid import by vectorial acylation in yeast requires a multiprotein complex, which...... consists of Fat1p and Faa1p or Faa4p....

  4. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex

    Energy Technology Data Exchange (ETDEWEB)

    Marcella, Aaron M.; Culbertson, Sannie J.; Shogren-Knaak, Michael A.; Barb, Adam W.

    2017-11-01

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05 and 4.10 Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a KD = 62 ± 13 nM, followed by the binding of two more equivalents of holo-ACPP with KD = 1.2 ± 0.2 μM. Cooperativity was not observed for apo-ACPP which bound with KD = 2.4 ± 0.1 μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis.

  5. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex.

    Science.gov (United States)

    Marcella, Aaron M; Culbertson, Sannie J; Shogren-Knaak, Michael A; Barb, Adam W

    2017-11-24

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05and 4.10Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a K D =62±13nM, followed by the binding of two more equivalents of holo-ACPP with K D =1.2±0.2μM. Cooperativity was not observed for apo-ACPP which bound with K D =2.4±0.1μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Natural separation of the acyl-CoA ligase reaction results in a non-adenylating enzyme.

    Science.gov (United States)

    Wang, Nan; Rudolf, Jeffrey D; Dong, Liao-Bin; Osipiuk, Jerzy; Hatzos-Skintges, Catherine; Endres, Michael; Chang, Chin-Yuan; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2018-06-04

    Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.

  7. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation

    Science.gov (United States)

    2017-01-01

    Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC–MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure–property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response. PMID:28737384

  8. Characterization of the structure and immunostimulatory activity of a vaccine adjuvant, de-O-acylated lipooligosaccharide.

    Directory of Open Access Journals (Sweden)

    Ji Eun Han

    Full Text Available Lipopolysaccharide (LPS is a major component of the outer membrane of Gram-negative bacteria. LPS elicits strong immunopathological responses during bacterial infection, and the lipid A moiety of LPS is responsible for this immunostimulatory activity. Lipid A exerts its biological activity by sending signals via TLR4 present on immune cells, and TLR4 agonists have been a target for vaccine adjuvant. Previously, we demonstrated an adjuvant activity of deacylated lipooligosaccharide (dLOS to viral and bacterial antigens. In this study, we characterized the chemical structure of dLOS and evaluated its immunostimulatory activity on mouse and human immune cells in comparison with monophosphoryl lipid A (MPL. dLOS consists of the R3-type core, a glucosamine disaccharide with two phosphate groups, and two N-linked acyl groups [corrected], and two N-linked acyl groups. dLOS was similar to MPL in induction of cytokine production in mouse peritoneal macrophages, but was a more potent activator in human monocytes and dendritic cells (DCs. Results of an analysis of allogeneic T cell responses revealed that dLOS induces Th1, Th2, and Th17-type immune responses in a dose-dependent manner. The immunostimulatory activities of dLOS were completely abrogated in TLR4(-/- mice, which confirms its TLR4-dependency. These results suggest that in the presence of the core oligosaccharide, O-linked acyl groups of LPS are dispensable for activating the TLR4 signaling pathway. dLOS did not cause any pathological effects or death at 0.25, 0.5, or 1 mg per kg body weight in mice in the acute toxicity tests. This result suggests that dLOS has a low toxicity. dLOS should be considered for further development as a safe and effective adjuvant for human vaccines.

  9. Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate

    Directory of Open Access Journals (Sweden)

    Yoshimi eMatsumoto

    2012-02-01

    Full Text Available (--Epigallocatechin-3-O-gallate (EGCG has useful antiviral, antimicrobial, antitoxin, and antitumor properties. Previously, Mori, S. et al. (Bioorg Med Chem Lett 18:4249-4252, 2008 found that addition of long acyl chains (C16–18 to EGCG enhanced its anti-influenza virus activity up to 44-fold. The chemical stability of EGCG against oxidative degradation was also enhanced by acylation. We further evaluated the in vitro activity spectrum of the EGCG derivatives against a wide range of bacteria and fungi. A series of EGCG O-acyl derivatives were synthesized by lipase-catalyzed transesterification. These derivatives exhibited several-fold higher activities than EGCG, particularly against Gram-positive organisms. Antifungal activities of the derivatives were also 2 to 4-fold superior to those of EGCG. The activities of the EGCG derivatives against Gram-negative bacteria were not distinguishable from those of EGCG. Among the derivatives evaluated, MICs of dioctanoate, palmitate (C16, palmitoleate, and linolenate for 17 Staphylococcus aureus strains were 4–32 μg/ml, although MIC of EGCG for these 17 strains was >128 μg/ml. C16 demonstrated rapid bactericidal activity against MRSA at 25 μg/ml. The enhanced activity of C16 against S. aureus was supported by its increased membrane permeabilizing activity determined by increased SYTOX Green uptake. The EGCG derivatives were exported by the efflux pump AcrAB-TolC of Escherichia coli. The tolC deletion mutant exhibited higher sensitivity to C16 than to EGCG. Addition of long alkyl chains to EGCG significantly enhanced its activities against various bacteria and fungi, particularly against S. aureus including MRSA. C16 would be an alternative to antibiotics and disinfectants.

  10. Endogenous ghrelin-O-acyltransferase (GOAT) acylates local ghrelin in the hippocampus.

    Science.gov (United States)

    Murtuza, Mohammad I; Isokawa, Masako

    2018-01-01

    Ghrelin is an appetite-stimulating peptide. Serine 3 on ghrelin must be acylated by octanoate via the enzyme ghrelin-O-acyltransferase (GOAT) for the peptide to bind and activate the cognate receptor, growth hormone secretagogue receptor type 1a (GHSR1a). Interest in GHSR1a increased dramatically when GHSR1a mRNA was demonstrated to be widespread in the brain, including the cortex and hippocampus, indicating that it has multifaceted functions beyond the regulation of metabolism. However, the source of octanoylated ghrelin for GHSR1a in the brain, outside of the hypothalamus, is not well understood. Here, we report the presence of GOAT and its ability to acylate non-octanoylated ghrelin in the hippocampus. GOAT immunoreactivity is aggregated at the base of the dentate granule cell layer in the rat and wild-type mouse. This immunoreactivity was not affected by the pharmacological inhibition of GHSR1a or the metabolic state-dependent fluctuation of systemic ghrelin levels. However, it was absent in the GHSR1a knockout mouse hippocampus, pointing the possibility that the expression of GHSR1a may be a prerequisite for the production of GOAT. Application of fluorescein isothiocyanate (FITC)-conjugated non-octanoylated ghrelin in live hippocampal slice culture (but not in fixed culture or in the presence of GOAT inhibitors) mimicked the binding profile of FITC-conjugated octanoylated ghrelin, suggesting that extracellularly applied non-octanoylated ghrelin was acylated by endogenous GOAT in the live hippocampus while GOAT being mobilized out of neurons. Our results will advance the understanding for the role of endogenous GOAT in the hippocampus and facilitate the search for the source of ghrelin that is intrinsic to the brain. © 2017 International Society for Neurochemistry.

  11. Only Acyl Carrier Protein 1 (AcpP1 Functions in Pseudomonas aeruginosa Fatty Acid Synthesis

    Directory of Open Access Journals (Sweden)

    Jin-Cheng Ma

    2017-11-01

    Full Text Available The genome of Pseudomonas aeruginosa contains three open reading frames, PA2966, PA1869, and PA3334, which encode putative acyl carrier proteins, AcpP1, AcpP2, and AcpP3, respectively. In this study, we found that, although these apo-ACPs were successfully phosphopantetheinylated by P. aeruginosa phosphopantetheinyl transferase (PcpS and all holo-forms of these proteins could be acylated by Vibrio harveyi acyl-ACP synthetase (AasS, only AcpP1 could be used as a substrate for the synthesis of fatty acids, catalyzed by P. aeruginosa cell free extracts in vitro, and only acpP1 gene could restore growth in the Escherichia coliacpP mutant strain CY1877. And P. aeruginosaacpP1 could not be deleted, while disruption of acpP2 or acpP3 in the P. aeruginosa genome allowed mutant strains to grow as well as the wild type strain. These findings confirmed that only P. aeruginosa AcpP1 functions in fatty acid biosynthesis, and that acpP2 and acpP3 do not play roles in the fatty acid synthetic pathway. Moreover, disruption of acpP2 and acpP3 did not affect the ability of P. aeruginosa to produce N-acylhomoserine lactones (AHL, but replacement of P. aeruginosaacpP1 with E. coliacpP caused P. aeruginosa to reduce the production of AHL molecules, which indicated that neither P. aeruginosa AcpP2 nor AcpP3 can act as a substrate for synthesis of AHL molecules in vivo. Furthermore, replacement of acpP1 with E. coliacpP reduced the ability of P. aeruginosa to produce some exo-products and abolished swarming motility in P. aeruginosa.

  12. Isolation of diacyl glycerol acyl transferase (DGAT) inhibitors from Pachydictyon coriaceum.

    Science.gov (United States)

    Choi, Byoung Wook; Lee, Hyun Sun; Lee, Kyung Bok; Lee, Bong Ho

    2011-07-01

    The pharmacological inhibition of acyl CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) has emerged as a target for the treatment of obesity and type 2 diabetes. Chromatographic analysis of the brown alga, Pachydictyon coriaceum, led to the isolation of diterpene dictyol E and hydroxyisocrenulatin. Pharmacological assay of these compounds demonstrated DGAT inhibitory activity with IC₅₀ values of 46.0 μM and 23.3 μM, respectively. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Molecular diagnosis and characterization of medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common defect in mitochondrial beta-oxidation in humans. It is an autosomal recessive disorder which usually presents in infancy. The disease manifests itself in periods of metabolic stress to the beta-oxidation system and may...... of correct enzyme structure, and does not directly affect the catalytically active regions of the enzyme. We find that our diagnostic set up, consisting of an initial testing by the G985 assay, followed by semi-automated sequencing of DNA from those patients who were indicated to be compound heterozygous...

  14. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Touma, E H; Rashed, M S; Vianey-Saban, C

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased lo...... chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence....

  15. Acylated Flavone Glycosides from the Roots of Saussurea lappa and Their Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Yemireddy Venkata Ramnareddy

    2007-03-01

    Full Text Available The isolation of four novel acylated flavonoid glycosides from the roots of Saussurea lappa and their identification using a combination of 1D and 2D NMR and mass spectrometry is described. The in vitro antifungal and antibacterial activities of the isolated compounds and their mixture were tested on nine fungal and four bacterial strains, using the microdilution method. The compounds and mixture showed moderate to high antifungal activity against most of the fungi tested, compared to a miconazole standard, while only one compound and the mixture showed antibacterial activity against all strains tested.

  16. An Acylated Kaempferol Glycoside from Flowers of Foeniculum vulgare and F. Dulce

    OpenAIRE

    Soliman, Fathy M.; Shehata, Afaf H.; Khaleel, Amal E.; Ezzat, Shahera M.

    2002-01-01

    An acylated kaempferol glycoside, namely kaempferol-3-O-α-L-(2”,3”-di-E-pcoumaroyl)-rhamnoside (1) was isolated from the flowers of Foeniculum vulgare Mill. and F. dulce DC. It is thus isolated for the first time from family Apiaceae. In addition, the different organs of both plants afforded six flavonoid glycosides - namely afzelin (kaempferol-3-O-α-L-rhamnoside) (2), quercitrin (3), isorhamnetin-3-O-β-D-glucoside (4), isoquercitrin (5), rutin (6), and miquelianin (quercetin-3...

  17. The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    Science.gov (United States)

    Altabe, Silvia G.; Aguilar, Pablo; Caballero, Gerardo M.; de Mendoza, Diego

    2003-01-01

    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids. PMID:12730185

  18. Production of structured lipids: acyl migration during enzymatic interesterification and downstream processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    1997-01-01

    Production of structured lipids by lipase-catalyzed interesterification attracts great interests recently. Structured lipids are defined, in this article, as triacylglycerols which contain both medium or short chain fatty acids and long chain fatty acids, each groups locating specifically in the sn......-2 position or sn-1,3 positions of glycerol backbone. These kinds of lipids are reported to be promising for both enteral and parenteral nutrition. However, acyl migration occurs in the reaction stage and downstream purification process. This side-reaction causes by-products which are harmful...

  19. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    Science.gov (United States)

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-02

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  20. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Olpin, Simon E; Andresen, Brage S

    2007-01-01

    Multiple acyl-CoA dehydrogenation deficiency (MADD) is a disorder of fatty acid, amino acid and choline metabolism that can result from defects in two flavoproteins, electron transfer flavoprotein (ETF) or ETF: ubiquinone oxidoreductase (ETF:QO). Some patients respond to pharmacological doses......; several had previously suffered cyclical vomiting. Urine organic acid and plasma acyl-carnitine profiles indicated MADD. Clinical and biochemical parameters were either totally or partly corrected after riboflavin treatment. All patients had mutations in the gene for ETF:QO. In one patient, we show...... that the ETF:QO mutations are associated with a riboflavin-sensitive impairment of ETF:QO activity. This patient also had partial deficiencies of flavin-dependent acyl-CoA dehydrogenases and respiratory chain complexes, most of which were restored to control levels after riboflavin treatment. Low activities...

  1. Acylation of lithiated trimethylsilyl malonates and esters applied to the synthesis of molecules of biological interest, labelled with carbon 14

    International Nuclear Information System (INIS)

    Gorichon, Liliane

    1978-01-01

    This research thesis first reports an attempt to generalise the method of acylation of lithiated trimethylsilyl (TMS) malonates by introduction of new organic functions into the radical. This leads to the synthesis of some alkaloids such as nicotine and contine. The author also shows that fat acids can be labelled with carbon 14 in any position of the carbon chain. Thus, acylation of these malonates have been performed by using different acid chlorides. Then, the author reports attempts to simplify this method by using α-lithiated trimethylsilyl esters instead of malonates. He reports attempts of acylation of TMS isobutyrate, TMS proprionate and TMS acetate, by using different radioactive acid chlorides (benzoyl chloride, nicotinoyl chloride, lauryl chloride, and oleyl chloride). The author finally shows that both methods are equivalent by synthesising muscalure from TMS butylmalonate as well as from TMS hexanoate

  2. Acylation Modification of Antheraea pernyi Silk Fibroin Using Succinic Anhydride and Its Effects on Enzymatic Degradation Behavior

    Directory of Open Access Journals (Sweden)

    Xiufang Li

    2013-01-01

    Full Text Available The degradation rate of tissue engineering scaffolds should match the regeneration rate of new tissues. Controlling the degradation behavior of silk fibroin is an important subject for silk-based tissue engineering scaffolds. In this study, Antheraea pernyi silk fibroin was successfully modified with succinic anhydride and then characterized by zeta potential, ninhydrin method, and FTIR. In vitro, three-dimensional scaffolds prepared with modified silk fibroin were incubated in collagenase IA solution for 18 days to evaluate the impact of acylation on the degradation behavior. The results demonstrated that the degradation rate of modified silk fibroin scaffolds was more rapid than unmodified ones. The content of the β-sheet structure in silk fibroin obviously decreased after acylation, resulting in a high degradation rate. Above all, the degradation behavior of silk fibroin scaffolds could be regulated by acylation to match the requirements of various tissues regeneration.

  3. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors.

    Science.gov (United States)

    Roessler, Claudia; Nowak, Theresa; Pannek, Martin; Gertz, Melanie; Nguyen, Giang T T; Scharfe, Michael; Born, Ilona; Sippl, Wolfgang; Steegborn, Clemens; Schutkowski, Mike

    2014-09-26

    Sirtuins are NAD(+)-dependent deacetylases acting as sensors in metabolic pathways and stress response. In mammals there are seven isoforms. The mitochondrial sirtuin 5 is a weak deacetylase but a very efficient demalonylase and desuccinylase; however, its substrate acyl specificity has not been systematically analyzed. Herein, we investigated a carbamoyl phosphate synthetase 1 derived peptide substrate and modified the lysine side chain systematically to determine the acyl specificity of Sirt5. From that point we designed six potent peptide-based inhibitors that interact with the NAD(+) binding pocket. To characterize the interaction details causing the different substrate and inhibition properties we report several X-ray crystal structures of Sirt5 complexed with these peptides. Our results reveal the Sirt5 acyl selectivity and its molecular basis and enable the design of inhibitors for Sirt5. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 40 CFR 721.10193 - 1-Butanaminium, N-(3-aminopropyl)-N-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1-Butanaminium, N-(3-aminopropyl)-N...-aminopropyl)-N-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts. (a) Chemical substance and...-aminopropyl)-N-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts (PMN P-06-263, Chemical B; CAS No...

  5. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast

    DEFF Research Database (Denmark)

    Benghezal, Mohammed; Roubaty, Carole; Veepuri, Vijayanath

    2007-01-01

    Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal...

  6. Changes in acyl and total ghrelin concentrations and their association with dry matter intake, average daily gain, and feed efficiency of finishing beef steers and heifers

    Science.gov (United States)

    Ghrelin is a peptide hormone produced in the gut that is implicated in signaling appetite and regulating DMI. The objective of this experiment was to determine the change in acyl ghrelin, total ghrelin, and the ghrelin ratio (acyl ghrelin/total ghrelin) over an 84-d DMI and ADG measurement period a...

  7. Acylated 2-(N-arylaminomethylene)benzo[b]thiophene-3(2H)-Ones: Molecular Switches with Varying Migrants and Substituents

    International Nuclear Information System (INIS)

    Dubonosov, A.D.; Rybalkin, V.P.; Tsukanov, A.V.; Minkin, V.I.; Popova, L.L.; Revinsky, Y.V.; Bren, V.A.; Minkin, V.I.

    2009-01-01

    Synthesis and properties of photo chromic acylated 2-(N-arylaminomethylene)benzo[b]thiophene-3(2H)-ones are described. Their structure largely depends on the nature of acyl migrant and in a less degree on N-aryl substituent.

  8. Determination of hydrophobic coenzyme a esters and other lipids using a biosensor comprising a modified coenzyme a- and acyl-coa binding protein (acbp)

    DEFF Research Database (Denmark)

    2002-01-01

    , food and feed preparations, tissue extracts, acyl-CoA synthetase reaction media and various laboratory conditions using a modified Coenzyme A- and acyl-CoA binding protein (ACBP) is provided. Furthermore the invention relates to a construct comprising a peptide and a signal moiety for performing...

  9. Preparation of 5-acyl- and 5-aryl-substituted 1-(benzyloxy)pyrazoles via directed ortho-lithiation/transmetalation and palladium catalyzed cross- coupling

    DEFF Research Database (Denmark)

    Kristensen, Jesper Langgaard; Begtrup, M.; Vedsø, P.

    1998-01-01

    Palladium(0) catalyzed cross-coupling of 1-(benzyloxy)pyrazol-5-ylzinc halides 3a,b, prepared by transmetalation of 1-(benzyloxy)-5-lithiopyrazole (2), with acyl chlorides produced 5 acyl-1-(benzyloxy)pyrazoles 4a-d in high yields. Similar coupling of the pyrazol-5-ylzinc halide with amino-, hydr...

  10. Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine.

    Science.gov (United States)

    An, Xiao-De; Yu, Shouyun

    2015-06-05

    A one-pot synthesis of phenanthridines and quinolines from commercially available or easily prepared aldehydes has been reported. O-(4-Cyanobenzoyl)hydroxylamine was utilized as the nitrogen source to generate O-acyl oximes in situ with aldehydes catalyzed by Brønsted acid. O-Acyl oximes were then subjected to visible light photoredox catalyzed cyclization via iminyl radicals to furnish aza-arenes. A variety of phenanthridines and quinolines have been prepared assisted by Brønsted acid and photocatalyst under visible light at room temperature with satisfactory yields.

  11. Long-chain Acyl-CoA is not increased in Myotubes established from Type 2 Diabetic Subjects

    DEFF Research Database (Denmark)

    Just, Malene; Faergeman, Nils J; Knudsen, Jens

    2006-01-01

    Accumulation of intramuscular long-chain acyl-CoA esters (LCACoA) has previously in animal and human models been suggested to play an important role in lipid induced insulin resistance. The aim of this study was to examine whether myotubes established from type 2 diabetic (T2D) subjects and lean...... controls express differences in long-chain acyl-CoA esters (LCACoA) precultured under physiological conditions and during chronic exposure to palmitate (PA) and oleic acids (OA) with/without acute insulin stimulation. No significant differences were found between diabetic and control myotubes, neither...

  12. Ultrasonic pretreatment for lipase-catalyed synthesis of phytosterol esters with different acyl donors.

    Science.gov (United States)

    Zheng, Ming-Ming; Wang, Lian; Huang, Feng-Hong; Dong, Ling; Guo, Ping-Mei; Deng, Qian-Chun; Li, Wen-Lin; Zheng, Chang

    2012-09-01

    This study is focused on the enzymatic esterification of phytosterols with different acyl donors to produce the corresponding phytosterol esters catalyzed by Canadia sp. 99-125 lipase under ultrasound irradiation. An ultrasonic frequency of 35 kHz, power of 200 W and time of 1h was determined to guarantee satisfactory degree of esterification and lipase activity. The influence of temperature, substrates concentration and molar ratio was investigated subsequently. The optimum production was achieved in isooctane system at 60°C with phytosterol concentration of 150 μmol/mL and phytosterol to fatty acid molar ratio of 1:1.5, resulting in a phytosterol esters conversion of above 85.7% in short reaction time (8h). Phytosterols esters could also be converted in high yields to the corresponding long-chain acyl esters via transesterification with triacylglycerols (above 90.3%) under ultrasound irradiation. In optimum conditions, the overall esterification reaction rate using the ultrasonic pretreatment process was above 2-fold than that of mechanical stirring process without damage the lipase activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Configurational and constitutional information storage: multiple dynamics in systems based on pyridyl and acyl hydrazones.

    Science.gov (United States)

    Chaur, Manuel N; Collado, Daniel; Lehn, Jean-Marie

    2011-01-03

    The C=N group of hydrazones can undergo E/Z isomerization both photochemically and thermally, allowing the generation of a closed process that can be tuned by either of these two physical stimuli. On the other hand, hydrazine-exchange reactions enable a constitutional change in a given hydrazone. The two classes of processes: 1) configurational (physically stimulated) and 2) constitutional (chemically stimulated) give access to short-term and long-term information storage, respectively. Such transformations are reported herein for two hydrazones (bis-pyridyl hydrazone and 2-pyridinecarboxaldehyde phenylhydrazone) that undergo a closed, chemically or physically driven process, and, in addition, can be locked or unlocked at will by metal-ion coordination or removal. These features also extend to acyl hydrazones derived from 2-pyridinecarboxaldehyde. Similarly to the terpydine-like hydrazones, such acyl hydrazones can undergo both constitutional and configurational changes, as well as metal-ion coordination. All these types of hydrazones represent dynamic systems capable of acting as multiple state molecular devices, in which the presence of coordination sites furthermore allows the metal ion-controlled locking and unlocking of the interconversion of the different states. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Crystallization of the acyl-CoA thioesterase TesB from Yersinia pestis

    International Nuclear Information System (INIS)

    Swarbrick, Crystall M. D.; Patterson, Edward I.; Forwood, Jade K.

    2013-01-01

    The expression, purification, crystallization and diffraction of the acyl-CoA thioesterase TesB from Y. pestis are reported. X-ray crystallographic diffraction data to 2.0 Å resolution were collected at the Australian Synchrotron. Yersinia pestis is a highly virulent human pathogen and is the causative agent of bubonic plague. Spread through the bite of infected fleas, plague epidemics have marked important events in history, including the Justinian plague (6th century), the Black Death (14th century) which decimated nearly one quarter of the European population, and more recently the Orientalis plague (1894). To date, deaths are still being reported and, without treatment, the disease kills most people within 4 days. One of the thioesterases from Y. pestis, TesB, is a broad-range acyl-CoA thioesterase and is highly conserved within prokaryotes and throughout evolution, sharing sequence similarity with the HIV Nef binding protein ACOT8. Here the expression, purification, crystallization and diffraction of TesB are reported. TesB has been recombinantly expressed and crystallized using the vapour-diffusion hanging-drop technique at pH 7.0 and 290 K. After optimization, crystals diffracted to 2.0 Å resolution at the Australian Synchrotron and belong to the space group P12 1 1 (a = 73.55, b = 170.82, c = 101.98 Å), with eight molecules likely to be present in the asymmetric unit

  15. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors.

    Science.gov (United States)

    Montgomery, David C; Sorum, Alexander W; Guasch, Laura; Nicklaus, Marc C; Meier, Jordan L

    2015-08-20

    The finding that chromatin modifications are sensitive to changes in cellular cofactor levels potentially links altered tumor cell metabolism and gene expression. However, the specific enzymes and metabolites that connect these two processes remain obscure. Characterizing these metabolic-epigenetic axes is critical to understanding how metabolism supports signaling in cancer, and developing therapeutic strategies to disrupt this process. Here, we describe a chemical approach to define the metabolic regulation of lysine acetyltransferase (KAT) enzymes. Using a novel chemoproteomic probe, we identify a previously unreported interaction between palmitoyl coenzyme A (palmitoyl-CoA) and KAT enzymes. Further analysis reveals that palmitoyl-CoA is a potent inhibitor of KAT activity and that fatty acyl-CoA precursors reduce cellular histone acetylation levels. These studies implicate fatty acyl-CoAs as endogenous regulators of histone acetylation, and suggest novel strategies for the investigation and metabolic modulation of epigenetic signaling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Investigation of some characteristics of polyhydroxy milkweed triglycerides and their acylated derivatives in relation to lubricity.

    Science.gov (United States)

    Harry-O'kuru, Rogers E; Biresaw, Girma; Cermak, Steven C; Gordon, Sherald H; Vermillion, Karl

    2011-05-11

    Most industrial lubricants are derived from nonrenewable petroleum-based sources. As useful as these lubricants are, their unintended consequences are the pollution of the Earth's environment as a result of the slow degradation of the spent materials. Native seed oils, on the other hand, are renewable and are also biodegradable in the environment, but these oils often suffer a drawback in having lower thermal stability and a shorter shelf life because of the intrinsic -C═C- unsaturation in their structures. This drawback can be overcome, yet the inherent biodegradative property retained, by appropriate derivatization of the oil. Pursuant to this, this study investigated derivatized polyhydroxy milkweed oil to assess its suitability as lubricant. The milkweed plant is a member of the Asclepiadaceae, a family with many genera including the common milkweeds, Asclepias syriaca L., Asclepias speciosa L., Asclepias tuberosa L., etc. The seeds of these species contain mainly C-18 triglycerides that are highly unsaturated, 92%. The olefinic character of this oil has been chemically modified by generating polyhydroxy triglycerides (HMWO) that show high viscosity and excellent moisturizing characteristics. In this work, HMWO have been chemically modified by esterifying their hydroxyl groups with acyl groups of various chain lengths (C2-C5). The results of investigation into the effect of the acyl derivatives' chemical structure on kinematic and dynamic viscosity, oxidation stability, cold-flow (pour point, cloud point) properties, coefficient of friction, wear, and elastohydrodynamic film thickness are discussed.

  17. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications.

    Science.gov (United States)

    Harry-O'kuru, Rogers E; Biresaw, Girma; Gordon, Sherald; Xu, Jingyuan

    2018-01-01

    Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2-C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba ( Simmondsia chinensis ) plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50-60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its -C=C- bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity.

  18. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications

    Directory of Open Access Journals (Sweden)

    Rogers E. Harry-O’kuru

    2018-01-01

    Full Text Available Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2–C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba (Simmondsia chinensis plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50–60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its –C=C– bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity.

  19. Metal Chlorides Supported Solid Catalysts for F-C Acylations of Arenes

    Institute of Scientific and Technical Information of China (English)

    李阳; 刘云龙; 穆曼曼; 陈立功

    2015-01-01

    A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the excellent results were obtained over FeCl3/SiO2. These catalysts were characterized by BET, NH3-TPD and FT-IR of pyridine adsorption to clarify the structure-activity relationship. It was found that FeCl3/SiO2 has larger pore size and pore volume than other catalysts, which increased the accessibility of the catalyst. In addition, FeCl3/SiO2 ex-hibited higher molar ratio of Lewis acid sites and Brφnsted acid sites, which might be another reason for the in-crease of toluene conversion. Furthermore, the reaction parameters, including temperature, time and molar ratio, were optimized. Under the optimized conditions, 91.2%, conversion and 82.0%, selectivity were obtained. Mean-while, the generality of the catalyst was demonstrated by the acylations of alkyl substituted aromatics. Finally, the catalyst was reused for four runs with slight loss in catalytic activity, which attributed to the drain of the active component.

  20. Divorcing folding from function: how acylation affects the membrane-perturbing properties of an antimicrobial peptide

    DEFF Research Database (Denmark)

    Vad, Brian Stougaard; Thomsen, Line Aagot Hede; Bertelsen, Kresten

    2010-01-01

    Many small cationic peptides, which are unstructured in aqueous solution, have antimicrobial properties. These properties are assumed to be linked to their ability to permeabilize bacterial membranes, accompanied by the transition to an alpha-helical folding state. Here we show that there is no d......Many small cationic peptides, which are unstructured in aqueous solution, have antimicrobial properties. These properties are assumed to be linked to their ability to permeabilize bacterial membranes, accompanied by the transition to an alpha-helical folding state. Here we show...... that there is no direct link between folding of the antimicrobial peptide Novicidin (Nc) and its membrane permeabilization. N-terminal acylation with C8-C16 alkyl chains and the inclusion of anionic lipids both increase Nc's ability to form alpha-helical structure in the presence of vesicles. Nevertheless, both acylation......, this cannot rationalize our results since permeabilization and antimicrobial activities are observed well below concentrations where aggregation occurs. This suggests that significant induction of alpha-helical structure is not a prerequisite for membrane perturbation in this class of antimicrobial peptides...

  1. Silica gel-Supported Palladium Catalyst for the Acyl Sonogashira Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Shahin; Park, Jihoon; Park, Minkyu; Jin, Myungjong [Inha Univ., Incheon (Korea, Republic of)

    2013-06-15

    We have demonstrated an efficient and eco-friendly procedure for the synthesis of ynones using silica supported thiol-palladium complex as a recyclable catalyst under copper free mild reaction conditions. The material was synthesized by post grafting of 3-mercaptopropyltrimethoxysilane on amorphous silica and subsequently Pd(II) attached onto thiol groups. This synthetic method has notable advantages because it involves easily available, less costly and produces an easily recyclable catalyst in high yields of the products. The mild reaction conditions encouraged us to further extension for the development of novel multicomponent reactions. Thus we have explained the three component synthesis of pyrazoles in one-pot fashion with good yields. Specifically, this simple procedure for the ynone synthesis and this approach to synthesize N-containing heterocycles may be valuable tool in future. The acyl Sonogashira reaction between acyl chlorides and terminal alkynes is one of the most useful method for the preparation of ynones which are important intermediates to prepare versatile pharmaceutically and biologically active heterocyclic compounds such as pyrroles, pyrazoles, furans, furanones, isoxazoles, pyrimidines, quinolines, indolizidinones.

  2. Silica gel-Supported Palladium Catalyst for the Acyl Sonogashira Reaction

    International Nuclear Information System (INIS)

    Hossain, Shahin; Park, Jihoon; Park, Minkyu; Jin, Myungjong

    2013-01-01

    We have demonstrated an efficient and eco-friendly procedure for the synthesis of ynones using silica supported thiol-palladium complex as a recyclable catalyst under copper free mild reaction conditions. The material was synthesized by post grafting of 3-mercaptopropyltrimethoxysilane on amorphous silica and subsequently Pd(II) attached onto thiol groups. This synthetic method has notable advantages because it involves easily available, less costly and produces an easily recyclable catalyst in high yields of the products. The mild reaction conditions encouraged us to further extension for the development of novel multicomponent reactions. Thus we have explained the three component synthesis of pyrazoles in one-pot fashion with good yields. Specifically, this simple procedure for the ynone synthesis and this approach to synthesize N-containing heterocycles may be valuable tool in future. The acyl Sonogashira reaction between acyl chlorides and terminal alkynes is one of the most useful method for the preparation of ynones which are important intermediates to prepare versatile pharmaceutically and biologically active heterocyclic compounds such as pyrroles, pyrazoles, furans, furanones, isoxazoles, pyrimidines, quinolines, indolizidinones

  3. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    Directory of Open Access Journals (Sweden)

    Luis V. Rodríguez-Durán

    2011-01-01

    Full Text Available Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme.

  4. Novel strategies for upstream and downstream processing of tannin acyl hydrolase.

    Science.gov (United States)

    Rodríguez-Durán, Luis V; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme.

  5. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    Science.gov (United States)

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry.

  6. Biosynthesis of triacylglycerols containing very long chain monounsaturated acyl moieties in developing seeds

    International Nuclear Information System (INIS)

    Fehling, E.; Murphy, D.J.; Mukherjee, K.D.

    1990-01-01

    Particulate (15,000g) fractions from developing seeds of honesty (Lunaria annua L.) and mustard (Sinapis alba L.) synthesize radioactive very long chain monounsaturated fatty acids (gadoleic, erucic, and nervonic) from [1- 14 C]oleoyl-CoA and malonyl-CoA or from oleoyl-CoA and [2- 14 C]malonyl-CoA. The very long chain monounsaturated fatty acids are rapidly channeled to triacylglycerols and other acyl lipids without intermediate accumulation of their CoA thioesters. When [1- 14 C]oleoyl-CoA is used as the radioactive substrate, phosphatidylcholines and other phospholipids are most extensively radiolabeled by oleoyl moieties rather than by very long chain monounsaturated acyl moieties. When [2- 14 C]malonyl-CoA is used as the radioactive substrate, no radioactive oleic acid is formed and the newly synthesized very long chain monounsaturated fatty acids are extensively incorporated into phosphatidylcholines and other phospholipids as well as triacylglycerols. The pattern of labeling of the key intermediates of the Kennedy pathway, e.g. lysophosphatidic acids, phosphatidic acids, and diacylglycerols by the newly synthesized very long chain monounsaturated fatty acids is consistent with the operation of this pathway in the biosynthesis of triacylglycerols

  7. DEPENDENCE BETWEEN ACYLATION DEGREE AND SPECIFIC LYSIS ACTITIVY OF THE PSEUDOMONAS AERUGINOSA М6 BACTERIOPHAGE

    Directory of Open Access Journals (Sweden)

    Martynov A. V.

    2016-06-01

    Full Text Available Introduction. The purpose of this work is to study the influence of various degrees of protein’s acylation on lytic activity and other biological properties of Pseudomonas M6 bacteriophage. Materials and methods. The subject of the study were samples of the Pseudomonas O 12 bacteriophage, hereinafter named the M6 phage. Pure phage lines were obtained from individual standard-morphology phage plaques (plaque-forming units, or PFUs after ten passes over the indicator strain. In subsequent experiments, M6 phage samples were selected that had a sufficient level of purity (homogeneous in the morphology of virions that inactivated the homologic antiphage serum by no less than 99.0% and the heterologic antibacterial serum by no more than 1%, and a titer no lower than 10 PFU per ml (PFU/ml. Titration of the phages was conducted using the standard bilayer agar. The crude protein content in the phage suspensions was determined using the spectroscopic method (at 280 and 260 nm. Succinylation of the phage samples was conducted according to the method developed by T.J. Molenaar. The phage’s lytic activity spectrum was determined through spot tests on 224 strains of the Pseudomonas genus and 106 strains of other genera (correspondingly, of strains Enterobacter -40, Escherichia -10, Citrobacter -8, Hafnia -7, Serratia -6, Shigella -10, Salmonella -8, Proteus -7 through the use of a phage suspension containing 10 5 - 10 6 PFU/ml. (This concentration of infectious phage corpuscles corresponds with the critical distribution of the M6 phage. The results of the research were subjected to statistical processing using single-factor dispersion analysis. Results and discussion. One hundred percent phage protein acylation leads to a loss of adsorption ability on sensitive cells and is accompanied by a significant (more than 103 times decrease in the level of specific lytic activity in the phage preparations. The succinylation type being studied does not cause

  8. Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: identification of a new enzyme defect, resolution of its molecular basis, and evidence for distinct acyl-CoA dehydrogenases in isoleucine and valine metabolism

    NARCIS (Netherlands)

    Andresen, B. S.; Christensen, E.; Corydon, T. J.; Bross, P.; Pilgaard, B.; Wanders, R. J.; Ruiter, J. P.; Simonsen, H.; Winter, V.; Knudsen, I.; Schroeder, L. D.; Gregersen, N.; Skovby, F.

    2000-01-01

    Acyl-CoA dehydrogenase (ACAD) defects in isoleucine and valine catabolism have been proposed in clinically diverse patients with an abnormal pattern of metabolites in their urine, but they have not been proved enzymatically or genetically, and it is unknown whether one or two ACADs are involved. We

  9. Among Metabolic Factors, Significance of Fasting and Postprandial Increases in Acyl and Desacyl Ghrelin and the Acyl/Desacyl Ratio in Obstructive Sleep Apnea before and after Treatment.

    Science.gov (United States)

    Chihara, Yuichi; Akamizu, Takashi; Azuma, Masanori; Murase, Kimihiko; Harada, Yuka; Tanizawa, Kiminobu; Handa, Tomohiro; Oga, Toru; Mishima, Michiaki; Chin, Kazuo

    2015-08-15

    There are reports suggesting that obstructive sleep apnea (OSA) may itself cause weight gain. However, recent reports showed increases in body mass index (BMI) following continuous positive airway pressure (CPAP) treatments. When considering weight changes, changes in humoral factors that have significant effects on appetite such as acyl (AG) and desacyl ghrelin (DAG), leptin, insulin, and glucose and their interactions, examples of which are AG/DAG and AG/insulin, are important. The aim of this study was to test the hypothesis that some appetite-related factors had a specific profile before and after CPAP treatment. Metabolic parameters were measured cross-sectionally while fasting and 30, 60, 90, and 120 min following breakfast in no or mild OSA (apnea-hypopnea index fasting and postprandial glucose, insulin, and leptin levels did not differ between no or mild OSA and moderate-to-severe OSA participants, AG and DAG, including AG/DAG and AG/insulin, under fasting and postprandial conditions were significantly increased in the moderate-to-severe OSA patients (p continuous changes in ghrelin secretion in OSA patients existed at least within 3 months of CPAP treatment. Methods to prevent OSA as well as treatment in its early stage may be recommended. © 2015 American Academy of Sleep Medicine.

  10. Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein

    DEFF Research Database (Denmark)

    Kragelund, B B; Poulsen, K; Andersen, K V

    1999-01-01

    In the family of acyl-coenzyme A binding proteins, a subset of 26 sequence sites are identical in all eukaryotes and conserved throughout evolution of the eukaryotic kingdoms. In the context of the bovine protein, the importance of these 26 sequence positions for structure, function, stability...

  11. DNA-based prenatal diagnosis for severe and variant forms of multiple acyl-CoA dehydrogenation deficiency

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Andresen, Brage S; Christensen, Ernst

    2005-01-01

    OBJECTIVES: Multiple acyl-CoA dehydrogenation deficiency (MADD) is a clinically heterogeneous disorder of mitochondrial fatty acid, amino acid, and choline oxidation due to mutations in the genes encoding electron transfer flavoprotein (ETF) or ETF ubiquinone oxidoreductase (ETFQO). So far...

  12. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Spaan, András N.; Ijlst, Lodewijk; van Roermund, Carlo W. T.; Wijburg, Frits A.; Wanders, Ronald J. A.; Waterham, Hans R.

    2005-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is most often caused by mutations in the genes encoding the alpha- or beta-subunit of electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETF-DH). Since not all patients have

  13. Deficiency of acyl-CoA: Dihydroxyacetone phosphate acyltransferase in patients with Zellweger (cerebro-hepato-renal) syndrome

    NARCIS (Netherlands)

    Bosch, H. van den; Schutgens, R.B.H.; Romeyn, G.J.; Wanders, R.J.A.; Schrakamp, G.; Heymans, H.S.A.

    1984-01-01

    We have recently reported on plasmalogen deficiency in tissues and fibroblasts from patients with Zellweger syndrome. In this paper we have analyzed the activity of the first enzyme in the pathway leading to plasmalogen biosynthesis, i.e. acyl-CoA: dihydroxyacetone phosphate acyltransferase in

  14. Immunomodulatory N-acyl Dopamine Glycosides from the Icelandic Marine Sponge Myxilla incrustans Collected at a Hydrothermal Vent Site

    DEFF Research Database (Denmark)

    Einarsdottir, Eydis; Liu, Hong Bing; Freysdottir, Jona

    2016-01-01

    A chemical investigation of the sponge (Porifera) Myxilla incrustans collected from the unique submarine hydrothermal vent site Strytan, North of Iceland, revealed a novel family of closely related N-acyl dopamine glycosides. Three new compounds, myxillin A (1), B (2) and C (3), were isolated...

  15. Abnormal mitochondrial bioenergetics and heart rate dysfunction in mice lacking very-long-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Exil, VJ; Gardner, CD; Rottman, JN; Sims, H; Bartelds, B; Khuchua, Z; Sindhal, R; Ni, GM; Strauss, AW

    Mitochondrial very-long-chain acyl-CoA dehydrogenase ( VLCAD) deficiency is associated with severe hypoglycemia, cardiac dysfunction, and sudden death in neonates and children. Sudden death is common, but the underlying mechanisms are not fully understood. We report on a mouse model of VLCAD

  16. Evaluation of Effect of Microwave Irradiation on Syntheses and Reactions of Some New 3-Acyl-methylchromones

    Directory of Open Access Journals (Sweden)

    Mikulas Furdik

    1998-03-01

    Full Text Available The 3-Acyl-2-R-methylchromones (R = H, ArO, C6H4(CO2N were prepared in good yields by different methods from 2-hydroxyaroylacetone derivatives. Some subsequent reactions of these compounds with hydroxylamine and 3-formylchromones are described. The effect of microwave irradation on some condensation reactions was studied.

  17. Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency

    NARCIS (Netherlands)

    Diekman, E. F.; Visser, G.; Schmitz, J. P. J.; Nievelstein, R. A. J.; de Sain-van der Velden, M.; Wardrop, M.; van der Pol, W. L.; Houten, S. M.; van Riel, N. A. W.; Takken, T.; Jeneson, J. A. L.

    2016-01-01

    Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with

  18. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenemethanaminium, N-(3-aminopropyl...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzenemethanaminium, N-(3-aminopropyl)-N,N...

  19. Indium triflate in 1-isobutyl-3-methylimidazolium dihydrogenphosphate: an efficient and green catalytic system for Friedel-Crafts acylation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hoang, Huy Manh; Chau, Duy-Khiem Nguyen

    2015-01-01

    Indium triflate in the ionic liquid, 1-isobutyl-3-methylimidazolium dihydrogen phosphate ([i-BMIM]H2PO4), was found to show enhanced catalytic activity in the Friedel–Crafts acylation of various aromatic compounds with acid anhydrides. The catalytic system was easily recovered and reused without...

  20. Ethylmalonic aciduria is associated with an amino acid variant of short chain acyl-coenzyme A dehydrogenase

    DEFF Research Database (Denmark)

    Corydon, M J; Gregersen, N; Lehnert, W

    1996-01-01

    Ethylmalonic aciduria is a common biochemical finding in patients with inborn errors of short chain fatty acid beta-oxidation. The urinary excretion of ethylmalonic acid (EMA) may stem from decreased oxidation by short chain acyl-CoA dehydrogenase (SCAD) of butyryl-CoA, which is alternatively...

  1. Plasma concentrations of acyl-ghrelin are associated with average daily gain and feeding behavior in grow-finish pigs

    Science.gov (United States)

    Feeding behavior is an important component of growth and feed efficiency in swine. Acyl-ghrelin is a peptide produced in the stomach that is orexigenic. The role of ghrelin in regulating feeding behavior in swine under commercial conditions is unknown. The objectives of this study were to determine ...

  2. High activity of iron containing metal-organic-framework in acylation of p-xylene with benzoyl chloride

    Czech Academy of Sciences Publication Activity Database

    Kurfiřtová, Lenka; Seo, Y.; K.; Hwang, Y. K.; Chang, J.; S.; Čejka, Jiří

    2012-01-01

    Roč. 179, č. 1 (2012), s. 85-90 ISSN 0920-5861 R&D Projects: GA ČR GA104/07/0383 Institutional research plan: CEZ:AV0Z40400503 Keywords : acylation * p-xylene * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.980, year: 2012

  3. Novel Bradykinin Analogues Modified in the N-Terminal Part of the Molecule with a Variety of Acyl Substituents

    Czech Academy of Sciences Publication Activity Database

    Sleszynska, M.; Wierzba, T. H.; Malinowski, K.; Tůmová, Tereza; Lammek, B.; Slaninová, Jiřina; Prahl, A.

    2012-01-01

    Roč. 18, č. 2 (2012), s. 117-124 ISSN 1573-3149 Institutional research plan: CEZ:AV0Z40550506 Keywords : bradykinin analogues * B-2 receptor antagonists * bulky acyl groups * in vivo rat blood pressure test * in vitro rat uterus test Subject RIV: CE - Biochemistry Impact factor: 1.280, year: 2012

  4. An efficient and green synthesis of 1-indanone and 1-tetralone via intramolecular Friedel-Crafts acylation reaction

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Huynh, Vy Hieu; Hansen, Poul Erik

    2015-01-01

    Metal-triflate-catalyzed intramolecular Friedel–Crafts acylation of 3-arylpropanoic and 4-arylbutanoic acids in triflate-anion ionic liquids under monomodal microwave irradiation is reported. The environmentally benign synthetic procedure allows the formation of cyclic ketones in good yields with...

  5. N-Cinnamoylation of Antimalarial Classics: Effects of Using Acyl Groups Other than Cinnamoyl toward Dual-Stage Antimalarials.

    Science.gov (United States)

    Gomes, Ana; Machado, Marta; Lobo, Lis; Nogueira, Fátima; Prudêncio, Miguel; Teixeira, Cátia; Gomes, Paula

    2015-08-01

    In a follow-up study to our reports of N-cinnamoylated chloroquine and quinacrine analogues as promising dual-stage antimalarial leads with high in vitro potency against both blood-stage Plasmodium falciparum and liver-stage Plasmodium berghei, we decided to investigate the effect of replacing the cinnamoyl moiety with other acyl groups. Thus, a series of N-acylated analogues were synthesized, and their activities against blood- and liver-stage Plasmodium spp. were assessed along with their in vitro cytotoxicities. Although the new N-acylated analogues were found to be somewhat less active and more cytotoxic than their N-cinnamoylated counterparts, they equally displayed nanomolar activities in vitro against blood-stage drug-sensitive and drug-resistant P. falciparum, and significant in vitro liver-stage activity against P. berghei. Therefore, it is demonstrated that simple N-acylated surrogates of classical antimalarial drugs are promising dual-stage antimalarial leads. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A General and Selective Rhodium-Catalyzed Reduction of Amides, N-Acyl Amino Esters, and Dipeptides Using Phenylsilane.

    Science.gov (United States)

    Das, Shoubhik; Li, Yuehui; Lu, Liang-Qiu; Junge, Kathrin; Beller, Matthias

    2016-05-17

    This article describes a selective reduction of functionalized amides, including N-acyl amino esters and dipeptides, to the corresponding amines using simple [Rh(acac)(cod)]. The catalyst shows excellent chemoselectivity in the presence of different sensitive functional moieties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    International Nuclear Information System (INIS)

    Serek, Robert; Forwood, Jade K.; Hume, David A.; Martin, Jennifer L.; Kobe, Bostjan

    2006-01-01

    The C-terminal domain of the mouse long-chain acyl-CoA thioesterase has been expressed in bacteria and crystallized by vapour diffusion. The crystals diffract to 2.4 Å resolution. The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination

  8. Effects of hematopoietic stem cell transplantation on acyl-CoA oxidase deficiency: a sibling comparison study

    NARCIS (Netherlands)

    Wang, Raymond Y.; Monuki, Edwin S.; Powers, James; Schwartz, Phillip H.; Watkins, Paul A.; Shi, Yang; Moser, Ann; Shrier, David A.; Waterham, Hans R.; Nugent, Diane J.; Abdenur, Jose E.

    2014-01-01

    Acyl-CoA oxidase (ACOX1) deficiency is a rare disorder of peroxisomal very-long chain fatty acid oxidation. No reports detailing attempted treatment, longitudinal imaging, or neuropathology exist. We describe the natural history of clinical symptoms and brain imaging in two siblings with ACOX1

  9. Blunted suppression of acyl-ghrelin in response to fructose ingestion in obese adolescents: the role of insulin resistance.

    Science.gov (United States)

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania M; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert S; Cline, Gary; Caprio, Sonia

    2015-03-01

    Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared with glucose ingestion. This study evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Adolescents were divided into lean (n = 14), obese insulin sensitive (n = 12) (OIS), and obese insulin resistant (n = 15) (OIR). In a double-blind, cross-over design, subjects drank 75 g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Baseline acyl-ghrelin was highest in lean and lowest in OIR (P = 0.02). After glucose ingestion, acyl-ghrelin decreased similarly in lean and OIS but was lower in OIR (vs. lean, P = 0.03). Suppression differences were more pronounced after fructose (lean vs. OIS, P = 0.008, lean vs. OIR, P < 0.001). OIS became significantly hungrier after fructose (P = 0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Compared with lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. © 2015 The Obesity Society.

  10. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Halavaty, Andrei S. [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Kim, Youngchang [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Zhou, Min [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Onopriyenko, Olena; Skarina, Tatiana [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N. [Center for Structural Genomics of Infectious Diseases, (United States); J. Craig Venter Institute, Rockville, MD 20850 (United States); Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Savchenko, Alexei [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Anderson, Wayne F., E-mail: wf-anderson@northwestern.edu [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States)

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  11. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    International Nuclear Information System (INIS)

    Halavaty, Andrei S.; Kim, Youngchang; Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James; Zhou, Min; Onopriyenko, Olena; Skarina, Tatiana; Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N.; Joachimiak, Andrzej; Savchenko, Alexei; Anderson, Wayne F.

    2012-01-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS SA ), Vibrio cholerae (AcpS VC ) and Bacillus anthracis (AcpS BA ) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS BA is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS BA may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP

  12. Purification, crystallization and preliminary crystallographic analysis of very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Li, Zhijie; Zhai, Yujia; Fang, Junnan; Zhou, Qiangjun; Geng, Yunqi; Sun, Fei

    2010-01-01

    Very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans (cVLCAD) has been crystallized in space group C2 and its X-ray diffraction data set has been collected to 1.6 Å resolution. Unlike other VLCADs that were reported to form dimers, the purified cVLCAD was found as a homotetrameric protein according to static light-scattering measurements. Acyl-CoA dehydrogenase [acyl-CoA:(acceptor) 2,3-oxidoreductase; EC 1.3.99.3] catalyzes the first reaction step in mitochondrial fatty-acid β-oxidation. Here, the very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans (cVLCAD) has been cloned and overexpressed in Escherichia coli strain BL21 (DE3). Interestingly, unlike other very-long-chain acyl-CoA dehydrogenases, cVLCAD was found to form a tetramer by size-exclusion chromatography coupled with in-line static light-scattering, refractive-index and ultraviolet measurements. Purified cVLCAD (12 mg ml −1 ) was successfully crystallized by the hanging-drop vapour-diffusion method under conditions containing 100 mM Tris–HCl pH 8.0, 150 mM sodium chloride, 200 mM magnesium formate and 13% PEG 3350. The crystal has a tetragonal form and a complete diffraction data set was collected and processed to 1.8 Å resolution. The crystal belonged to space group C2, with unit-cell parameters a = 138.6, b = 116.7, c = 115.3 Å, α = γ = 90.0, β = 124.0°. A self-rotation function indicated the existence of one noncrystallographic twofold axis. A preliminary molecular-replacement solution further confirmed the presence of two molecules in one asymmetric unit, which yields a Matthews coefficient V M of 2.76 Å 3 Da −1 and a solvent content of 55%

  13. Alterations by peroxisome proliferators of acyl composition of hepatic phosphatidylcholine in rats, mice and guinea-pigs. Role of stearoyl-CoA desaturase.

    Science.gov (United States)

    Kawashima, Y; Hirose, A; Kozuka, H

    1986-01-01

    Rats, mice and guinea-pigs were administered p-chlorophenoxyisobutyric acid (clofibric acid) or 2,2'-(decamethylenedithio)diethanol (tiadenol). The treatments of rats and mice with either clofibric acid or tiadenol increased markedly the activities of stearoyl-CoA desaturase, palmitoyl-CoA chain elongation, 1-acylglycerophosphate (1-acyl-GP) acyltransferase and 1-acylglycerophosphocholine (1-acyl-GPC) acyltransferase, but not 2-acylglycerophosphocholine (2-acyl-GPC) acyltransferase in liver microsomes. The treatment of guinea-pigs with clofibric acid did not cause any change in the activities of these enzymes. The treatment of guinea-pigs with tiadenol caused a slight, but significant, increase in the activities of 1-acyl-GP acyltransferase and 1-acyl-GPC acyltransferase. The treatment of rats and mice with either clofibric acid or tiadenol increased markedly the proportion of 18:1 and decreased greatly the proportion of 18:0 in liver microsomal phosphatidylcholine. However, there is a considerable difference in the effects of the two peroxisome proliferators on the composition of polyunsaturated fatty acids in phosphatidylcholine between rats and mice. The treatment of guinea-pigs with either of the two peroxisome proliferators caused no change in acyl composition of phosphatidylcholine. The possible role of stearoyl-CoA desaturation in the regulation of acyl composition of phosphatidylcholine was discussed. PMID:2874791

  14. Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Seker, Tamay; Møller, Kasper; Nielsen, Jens

    2005-01-01

    The mevalonate pathway plays an important role in providing the cell with a number of essential precursors for the synthesis of biomass constituents. With respect to their chemical structure, the metabolites of this pathway can be divided into two groups: acyl esters [acetoacetyl CoA, acetyl Co......A, hydroxymethylglutaryl (HMG) CoA] and phosphorylated metabolites (isopentenyl pyrophosphate, dimethylallyl pyrophosphate, geranyl pyrophosphate, farnesyl pyrophosphate). In this study, we developed a method for the precise analysis of the intracellular concentration of acetoacetyl CoA, acetyl CoA and HMG CoA; and we...... used this method for quantification of these metabolites in Saccharomyces cerevisiae, both during batch growth on glucose and on galactose and in glucose-limited chemostat cultures operated at three different dilution rates. The level of the metabolites changed depending on the growth phase...

  15. Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Kontogeorgis, Georgios; Riisager, Anders

    2012-01-01

    as well as other enzymatic hydroxycinnamate acylations in ionic liquid systems. The choice of solvent system is highly decisive for enzyme stability, selectivity, and reaction yields in these synthesis reactions. To increase the understanding of the reaction environment and to facilitate solvent screening......-free microemulsions of a hydrocarbon, a polar alcohol, and water are interesting solvent systems because they accommodate different substrate and product solubilities and maintain enzyme stability. Ionic liquids may provide advantages as solvents in terms of increased substrate and product solubility, higher...... of their amphiphilicity and antioxidative potential. Synthetic reactions using mono- or disaccharides as one of the substrates may moreover direct new routes for biomass upgrading in the biorefinery. The paper reviews the available data for enzymatic hydroxycinnamate saccharide ester synthesis in organic solvent systems...

  16. The role of acyl-CoA:diacylglycerol acyltransferase (DGAT) in energy metabolism.

    Science.gov (United States)

    Yu, Yi-Hao; Ginsberg, Henry N

    2004-01-01

    Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC2.3.1.20), a key enzyme in triglyceride (TG) biosynthesis, not only participates in lipid metabolism but also influences metabolic pathways of other fuel molecules. Changes in the expression and/or activity levels of DGAT may lead to changes in systemic insulin sensitivity and energy homeostasis. The synthetic role of DGAT in adipose tissue, the liver, and the intestine, sites where endogenous levels of DGAT activity and TG synthesis are high, is relatively clear. Less clear is whether DGAT plays a mediating or preventive role in the development of ectopic lipotoxicity in tissues such as muscle and the pancreas, when their supply of free fatty acids (FFAs) exceeds their needs. Future studies with tissue-specific overexpression and/or knockout in these animal models would be expected to shed additional light on these issues.

  17. Synthesis and Characterization of Novel Acyl-Glycine Inhibitors of GlyT2.

    Science.gov (United States)

    Mostyn, Shannon N; Carland, Jane E; Shimmon, Susan; Ryan, Renae M; Rawling, Tristan; Vandenberg, Robert J

    2017-09-20

    It has been demonstrated previously that the endogenous compound N-arachidonyl-glycine inhibits the glycine transporter GlyT2, stimulates glycinergic neurotransmission, and provides analgesia in animal models of neuropathic and inflammatory pain. However, it is a relatively weak inhibitor with an IC 50 of 9 μM and is subject to oxidation via cyclooxygenase, limiting its therapeutic value. In this paper we describe the synthesis and testing of a novel series of monounsaturated C18 and C16 acyl-glycine molecules as inhibitors of the glycine transporter GlyT2. We demonstrate that they are up to 28 fold more potent that N-arachidonyl-glycine with no activity at the closely related GlyT1 transporter at concentrations up to 30 μM. This novel class of compounds show considerable promise as a first generation of GlyT2 transport inhibitors.

  18. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Sternberg, Claus

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen which is responsible for a wide range of infections. Production of virulence factors and biofilm formation by P. aeruginosa are partly regulated by cell-to-cell communication quorum-sensing systems. Identification of quorum-quenching reagents...... which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea...... epigallocatechin gallate (EGCG), which both function as inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) from the bacterial type II fatty acid synthesis pathway. Our studies suggest that EGCG has a higher binding affinity towards ENR of P. aeruginosa and is an efficient quorum-quenching reagent...

  19. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel

    2009-01-01

    maltoside (DDM). The aim has been to determine how surfactant chain length and micellar charge affect the denaturation mechanism. ACBP denatures in two steps irrespective of surfactant chain length, but with increasing chain length, the potency of the denaturant rises more rapidly than the critical micelle......Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl...... constants increases linearly with denaturant concentration below the cmc but declines at higher concentrations. Both shortening chain length and decreasing micellar charge reduce the overall kinetics of unfolding and makes the dependence of unfolding rate constants on surfactant concentration more complex...

  20. Myopathy in very-long-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Scholte, H R; Van Coster, R N; de Jonge, P C

    1999-01-01

    was deficient in muscle and fibroblasts, consistent with deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD). The gene of this enzyme had a homozygous deletion of three base pairs in exon 9, skipping lysine residue 238. Fibroblasts oxidised myristate, palmitate and oleate at a rate of 129, 62 and 38......A 30-year-old man suffered since the age of 13 years from exercise induced episodes of intense generalised muscle pain, weakness and myoglobinuria. Fasting ketogenesis was low, while blood glucose remained normal. Muscle mitochondria failed to oxidise palmitoylcarnitine. Palmitoyl-CoA dehydrogenase......% of controls. In contrast to patients with cardiac VLCAD deficiency, our patient had no lipid storage, a normal heart function, a higher rate of oleate oxidation in fibroblasts and normal free carnitine in plasma and fibroblasts. 31P-nuclear magnetic resonance spectroscopy of muscle showed a normal oxidative...

  1. Fulminant lipid storage myopathy due to multiple acyl-coenzyme a dehydrogenase deficiency.

    Science.gov (United States)

    Whitaker, Charles H; Felice, Kevin J; Silvers, David; Wu, Qian

    2015-08-01

    The lipid storage myopathies, primary carnitine deficiency, neutral lipid storage disease, and multiple acyl coenzyme A dehydrogenase deficiency (MADD), are progressive disorders that cause permanent weakness. These disorders of fatty acid metabolism and intracellular triglyceride degradation cause marked fat deposition and damage to muscle cells. We describe a rapidly progressive myopathy in a previously healthy 33-year-old woman. Over 4 months, she developed a proximal and axial myopathy associated with diffuse myalgia and dysphagia, ultimately leading to respiratory failure and death. Muscle biopsy showed massive accumulation of lipid. Plasma acylcarnitine and urine organic acid analysis was consistent with MADD. This was confirmed by molecular genetic testing, which revealed 2 pathogenic mutations in the ETFDH gene. This report illustrates a late-onset case of MADD and reviews the differential diagnosis and evaluation of patients with proximal myopathy and excessive accumulation of lipid on muscle biopsy. © 2014 Wiley Periodicals, Inc.

  2. An Acylated Kaempferol Glycoside from Flowers of Foeniculum vulgare and F. Dulce

    Directory of Open Access Journals (Sweden)

    Shahera M. Ezzat

    2002-02-01

    Full Text Available An acylated kaempferol glycoside, namely kaempferol-3-O-α-L-(2”,3”-di-E-pcoumaroyl-rhamnoside (1 was isolated from the flowers of Foeniculum vulgare Mill. and F. dulce DC. It is thus isolated for the first time from family Apiaceae. In addition, the different organs of both plants afforded six flavonoid glycosides - namely afzelin (kaempferol-3-O-α-L-rhamnoside (2, quercitrin (3, isorhamnetin-3-O-β-D-glucoside (4, isoquercitrin (5, rutin (6, and miquelianin (quercetin-3-O-β-D-glucuronide (7. Structure elucidation of the above mentioned flavonoids was achieved by UV, 1H- and 13C-NMR, 1H-1H COSY, HMQC and EI-MS.

  3. Synthesis of acyl analogues of coniferyl alcohol and their antimycobacterial activity

    International Nuclear Information System (INIS)

    Begum, S.; Siddiqui, B.S.

    2013-01-01

    In search of new anti-mycobacterial agents seven acyl and one benzyl derivatives of coniferyl alcohol were synthesized and evaluated along with coniferyl alcohol for antitubercular activity against Mycobacterium tuberculosis H37Rv (Mtb) in vitro. Four compounds (3-6) showed greater activity than the parent compound and inhibited MTB with IC/sub 90/ 9.11, 8.92, 4.28 and 3.01 micro g/mL respectively. Compound 6, the most potent compound in vitro exhibited CC/sub 50/ 10.216 micro g/mL in VERO cells with selectivity index 3.394. Reference compounds used were rifampin and isoniazid and had IC/sub 90/ 0.0031 and 0.063 micro g/mL respectively. (author)

  4. The acyl-CoA binding protein is required for normal epidermal barrier function in mice

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt

    2012-01-01

    (+/+) and ACBP(-/-) mice showed very similar composition, except for a significant and specific decrease in the very long chain free fatty acids (VLC-FFA) in stratum corneum of ACBP(-/-) mice. This finding indicates that ACBP is critically involved in the processes that lead to production of stratum corneum VLC......The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling...... with age. Morphology and development of skin and appendages are normal in ACBP(-/-) mice; however, the stratum corneum display altered biophysical properties with reduced proton activity and decreased water content. Mass spectrometry analyses of lipids from epidermis and stratum corneum of ACBP...

  5. Inhibition of Long Chain Fatty Acyl-CoA Synthetase (ACSL) and Ischemia Reperfusion Injury

    Science.gov (United States)

    Prior, Allan M.; Zhang, Man; Blakeman, Nina; Datta, Palika; Pham, Hung; Young, Lindon H.; Weis, Margaret T.; Hua, Duy H.

    2014-01-01

    Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [14C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion. PMID:24480468

  6. Parental Experiences of Raising a Child With Medium Chain Acyl-CoA Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Hilary Piercy

    2017-05-01

    Full Text Available Newborn screening enabling early diagnosis of medium chain acyl-CoA dehydrogenase deficiency (MCADD has dramatically improved health outcomes in children with MCADD. Achieving those outcomes depends on effective management by parents. Understanding parental management strategies and associated anxieties and concerns is needed to inform provision of appropriate care and support. Semistructured interviews were conducted with a purposive sample of parents of children aged 2 to 12 years. Thematic analysis identified two main themes. Managing dietary intake examined how parents managed day-to-day dietary intake to ensure adequate intake and protection of safe fasting intervals. Managing and preventing illness events explored parental experiences of managing illness events and their approach to preventing these events. Management strategies were characterized by caution and vigilance and influenced by a lack of confidence in others to manage the condition. The study identifies the need for increased awareness of the condition, particularly in relation to emergency treatment.

  7. Phosphatidylserine-stimulated production of N-acyl-phosphatidylethanolamines by Ca2+-dependent N-acyltransferase.

    Science.gov (United States)

    Hussain, Zahir; Uyama, Toru; Kawai, Katsuhisa; Binte Mustafiz, Smriti Sultana; Tsuboi, Kazuhito; Araki, Nobukazu; Ueda, Natsuo

    2018-05-01

    N-acyl-phosphatidylethanolamine (NAPE) is known to be a precursor for various bioactive N-acylethanolamines including the endocannabinoid anandamide. NAPE is produced in mammals through the transfer of an acyl chain from certain glycerophospholipids to phosphatidylethanolamine (PE) by Ca 2+ -dependent or -independent N-acyltransferases. The ε isoform of mouse cytosolic phospholipase A 2 (cPLA 2 ε) was recently identified as a Ca 2+ -dependent N-acyltransferase (Ca-NAT). In the present study, we first showed that two isoforms of human cPLA 2 ε function as Ca-NAT. We next purified both mouse recombinant cPLA 2 ε and its two human orthologues to examine their catalytic properties. The enzyme absolutely required Ca 2+ for its activity and the activity was enhanced by phosphatidylserine (PS). PS enhanced the activity 25-fold in the presence of 1 mM CaCl 2 and lowered the EC 50 value of Ca 2+ >8-fold. Using a PS probe, we showed that cPLA 2 ε largely co-localizes with PS in plasma membrane and organelles involved in the endocytic pathway, further supporting the interaction of cPLA 2 ε with PS in living cells. Finally, we found that the Ca 2+ -ionophore ionomycin increased [ 14 C]NAPE levels >10-fold in [ 14 C]ethanolamine-labeled cPLA 2 ε-expressing cells while phospholipase A/acyltransferase-1, acting as a Ca 2+ -independent N-acyltransferase, was insensitive to ionomycin for full activity. In conclusion, PS potently stimulated the Ca 2+ -dependent activity and human cPLA 2 ε isoforms also functioned as Ca-NAT. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The acyl-CoA binding protein affects Monascus pigment production in Monascus ruber CICC41233.

    Science.gov (United States)

    Long, Chuannan; Liu, Mengmeng; Chen, Xia; Wang, Xiaofang; Ai, Mingqiang; Cui, Jingjing; Zeng, Bin

    2018-02-01

    The present study verified whether acyl-coenzyme A (acyl-CoA)-binding protein (ACBP) affected the production of Monascus pigments (MPs) in Monascus ruber CICC41233 (MrACBP). Phylogenetic analysis revealed that the cloned Mracbp gene, which encoded the MrACBP protein, exhibited the closest match (99% confidence level) to the gene from Penicilliopsis zonata . The MrACBP and maltose-binding protein (MBP) were simultaneously expressed in Escherichia coli Rosetta DE3 in the form of a fusion protein. The microscale thermophoresis binding assay revealed that the purified MBP-MrACBP exhibited a higher affinity for myristoyl-CoA (Kd = 88.16 nM) than for palmitoyl-CoA (Kd = 136.07 nM) and octanoyl-CoA (Kd = 270.9 nM). Further, the Mracbp gene was homologously overexpressed in M. ruber CICC41233, and a positive transformant M. ruber ACBP5 was isolated. The fatty acid myristic acid in M. ruber ACBP5 was lower than that in the parent strain M. ruber CICC41233. However, when compared with the parent strain, the production of total MPs, water-soluble pigment, and ethanol-soluble pigment in M. ruber ACBP5 increased by 11.67, 9.80, and 12.70%, respectively, after 6 days. The relative gene expression level, as determined by a quantitative real-time polymerase chain reaction analysis, of the key genes acbp , pks , mppr1 , fasA , and fasB increased by 4.03-, 3.58-, 1.67-, 2.11-, and 2.62-fold after 6 days. These data demonstrate the binding preference of MrACBP for myristoyl-CoA, and its influence on MPs production.

  9. Structural insights into GDP-mediated regulation of a bacterial acyl-CoA thioesterase.

    Science.gov (United States)

    Khandokar, Yogesh B; Srivastava, Parul; Cowieson, Nathan; Sarker, Subir; Aragao, David; Das, Shubagata; Smith, Kate M; Raidal, Shane R; Forwood, Jade K

    2017-12-15

    Thioesterases catalyze the cleavage of thioester bonds within many activated fatty acids and acyl-CoA substrates. They are expressed ubiquitously in both prokaryotes and eukaryotes and are subdivided into 25 thioesterase families according to their catalytic active site, protein oligomerization, and substrate specificity. Although many of these enzyme families are well-characterized in terms of function and substrate specificity, regulation across most thioesterase families is poorly understood. Here, we characterized a TE6 thioesterase from the bacterium Neisseria meningitidis Structural analysis with X-ray crystallographic diffraction data to 2.0-Å revealed that each protein subunit harbors a hot dog-fold and that the TE6 enzyme forms a hexamer with D3 symmetry. An assessment of thioesterase activity against a range of acyl-CoA substrates revealed the greatest activity against acetyl-CoA, and structure-guided mutagenesis of putative active site residues identified Asn 24 and Asp 39 as being essential for activity. Our structural analysis revealed that six GDP nucleotides bound the enzyme in close proximity to an intersubunit disulfide bond interactions that covalently link thioesterase domains in a double hot dog dimer. Structure-guided mutagenesis of residues within the GDP-binding pocket identified Arg 93 as playing a key role in the nucleotide interaction and revealed that GDP is required for activity. All mutations were confirmed to be specific and not to have resulted from structural perturbations by X-ray crystallography. This is the first report of a bacterial GDP-regulated thioesterase and of covalent linkage of thioesterase domains through a disulfide bond, revealing structural similarities with ADP regulation in the human ACOT12 thioesterase. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Acylated and unacylated ghrelin do not directly stimulate glucose transport in isolated rodent skeletal muscle.

    Science.gov (United States)

    Cervone, Daniel T; Dyck, David J

    2017-07-01

    Emerging evidence implicates ghrelin, a gut-derived, orexigenic hormone, as a potential mediator of insulin-responsive peripheral tissue metabolism. However, in vitro and in vivo studies assessing ghrelin's direct influence on metabolism have been controversial, particularly due to confounding factors such as the secondary rise in growth hormone (GH) after ghrelin injection. Skeletal muscle is important in the insulin-stimulated clearance of glucose, and ghrelin's exponential rise prior to a meal could potentially facilitate this. This study was aimed at elucidating any direct stimulatory action that ghrelin may have on glucose transport and insulin signaling in isolated rat skeletal muscle, in the absence of confounding secondary factors. Oxidative soleus and glycolytic extensor digitorum longus skeletal muscles were isolated from male Sprague Dawley rats in the fed state and incubated with various concentrations of acylated and unacylated ghrelin in the presence or absence of insulin. Ghrelin did not stimulate glucose transport in either muscle type, with or without insulin. Moreover, GH had no acute, direct stimulatory effect on either basal or insulin-stimulated muscle glucose transport. In agreement with the lack of observed effect on glucose transport, ghrelin and GH also had no stimulatory effect on Ser 473 AKT or Thr 172 AMPK phosphorylation, two key signaling proteins involved in glucose transport. Furthermore, to our knowledge, we are among the first to show that ghrelin can act independent of its receptor and cause an increase in calmodulin-dependent protein kinase 2 (CaMKII) phosphorylation in glycolytic muscle, although this was not associated with an increase in glucose transport. We conclude that both acylated and unacylated ghrelin have no direct, acute influence on skeletal muscle glucose transport. Furthermore, the immediate rise in GH in response to ghrelin also does not appear to directly stimulate glucose transport in muscle. © 2017 The

  11. Intracellular long-chain acyl CoAs activate TRPV1 channels.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs, another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.

  12. Ethanol affects acylated and total ghrelin levels in peripheral blood of alcohol-dependent rats.

    Science.gov (United States)

    Szulc, Michal; Mikolajczak, Przemyslaw L; Geppert, Bogna; Wachowiak, Roman; Dyr, Wanda; Bobkiewicz-Kozlowska, Teresa

    2013-07-01

    There is a hypothesis that ghrelin could take part in the central effects of alcohol as well as function as a peripheral indicator of the changes which occur during long-term alcohol consumption. The aim of this study was to determine a correlation between alcohol concentration and acylated and total form of ghrelin after a single administration of alcohol (intraperitoneal, i.p.) (experiment 1) and prolonged ethanol consumption (experiment 2). The study was performed using Wistar alcohol preferring (PR) and non-preferring (NP) rats and rats from inbred line (Warsaw High Preferring, WHP; Warsaw Low Preferring, WLP). It was found that ghrelin in ethanol-naive WHP animals showed a significantly lower level when compared with the ethanol-naive WLP or Wistar rats. After acute ethanol administration in doses of 1.0; 2.0 and 4.0 g/kg, i.p., the simple (WHP) or inverse (WLP and Wistar) relationship between alcohol concentration and both form of ghrelin levels in plasma were found. Chronic alcohol intake in all groups of rats led to decrease of acylated ghrelin concentration. PR and WHP rats, after chronic alcohol drinking, had lower levels of both form of ghrelin in comparison with NP and WLP rats, respectively, and the observed differences in ghrelin levels were in inverse relationship with their alcohol intake. In conclusion, it is suggested that there is a strong relationship between alcohol administration or intake, ethanol concentration in blood and both active and total ghrelin level in the experimental animals, and that ghrelin plasma concentration can be a marker of alcohol drinking predisposition. © 2013 The Authors, Addiction Biology © 2013 Society for the Study of Addiction.

  13. Synthesis of novel O-acylated-D-ribono-1,5-lactones and structural assignment supported by conventional NOESY-NMR and X-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Marcus M.; Silveira, Gustavo P.; Caro, Miguel S.B. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica]. E-mail: msa@qmc.ufsc.br; Ellena, Javier [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2008-07-01

    A practical method for the structural assignment of 3,4-O-benzylidene-D-ribono-1,5-lactones and analogues using conventional NMR techniques and NOESY measurements in solution is described. 2-O-Acyl-3,4-O-benzylidene-D-ribono-1,5-lactones were prepared in good yields by acylation of Zinner's lactone with acyl chlorides under mildly basic conditions. Structural determination of 2-O-(4-nitrobenzoyl)-3,4-O-benzylidene-D-ribono-1,5-lactone was achieved by single crystal x-ray diffraction, which supports the results based on spectroscopic data. (author)

  14. Formation of adenosine 5'-tetraphosphate from the acyl phosphate intermediate: a difference between the MurC and MurD synthetases of Escherichia coli.

    Science.gov (United States)

    Bouhss, A; Dementin, S; van Heijenoort, J; Parquet, C; Blanot, D

    1999-06-18

    The mechanism of the Mur synthetases of peptidoglycan biosynthesis is thought to involve in each case the successive formation of an acyl phosphate and a tetrahedral intermediate. The existence of the acyl phosphates for the MurC and MurD enzymes from Escherichia coli was firmly established by their in situ reduction by sodium borohydride followed by acid hydrolysis, yielding the corresponding amino alcohols. Furthermore, it was found that MurD, but not MurC, catalyses the synthesis of adenosine 5'-tetraphosphate from the acyl phosphate, thereby substantiating its existence and pointing out a difference between the two enzymes.

  15. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  16. Quorum sensing signals are produced by Aeromonas salmonicida and quorum sensing inhibitors can reduce production of a potential virulence factor

    DEFF Research Database (Denmark)

    Rasch, Maria; Kastbjerg, Vicky Gaedt; Bruhn, Jesper Bartholin

    2007-01-01

    Many pathogens control production of virulence factors by self-produced signals in a process called quorum sensing (QS). We demonstrate that acyl homoserine lactone (AHL) signals, which enable bacteria to express certain phenotypes in relation to cell density, are produced by a wide spectrum...... of Aeromonas salmonicida strains. All 31 typical strains were AHL producers as were 21 of 26 atypical strains, but on a strain population basis, production of virulence factors such as protease, lipase, A-layer or pigment did not correlate with the production and accumulation of AHLs in the growth medium...... of Aeromonas salmonicida. The most efficient compound N-(heptylsulfanylacetyl)-L-homoserine lactone (HepS-AHL), reduced protease production by a factor of 10. Five extracellular proteases were detected on gelatin-containing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels and 3...

  17. Expression of the Acyl-Coenzyme A: Cholesterol Acyltransferase GFP Fusion Protein in Sf21 Insect Cells

    Science.gov (United States)

    Mahtani, H. K.; Richmond, R. C.; Chang, T. Y.; Chang, C. C. Y.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an important contributor to the pathological expression of plaque leading to artherosclerosis n a major health problem. Adequate knowledge of the structure of this protein will enable pharmaceutical companies to design drugs specific to the enzyme. ACAT is a membrane protein located in the endoplasmic reticulum.t The protein has never been purified to homogeneity.T.Y. Chang's laboratory at Dartmouth College provided a 4-kb cDNA clone (K1) coding for a structural gene of the protein. We have modified the gene sequence and inserted the cDNA into the BioGreen His Baculovirus transfer vector. This was successfully expressed in Sf2l insect cells as a GFP-labeled ACAT protein. The advantage to this ACAT-GFP fusion protein (abbreviated GCAT) is that one can easily monitor its expression as a function of GFP excitation at 395 nm and emission at 509 nm. Moreover, the fusion protein GCAT can be detected on Western blots with the use of commercially available GFP antibodies. Antibodies against ACAT are not readily available. The presence of the 6xHis tag in the transfer vector facilitates purification of the recombinant protein since 6xHis fusion proteins bind with high affinity to Ni-NTA agarose. Obtaining highly pure protein in large quantities is essential for subsequent crystallization. The purified GCAT fusion protein can readily be cleaved into distinct GFP and ACAT proteins in the presence of thrombin. Thrombin digests the 6xHis tag linking the two protein sequences. Preliminary experiments have indicated that both GCAT and ACAT are expressed as functional proteins. The ultimate aim is to obtain large quantities of the ACAT protein in pure and functional form appropriate for protein crystal growth. Determining protein structure is the key to the design and development of effective drugs. X-ray analysis requires large homogeneous crystals that are difficult to obtain in the gravity environment of earth

  18. The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD by newborn screening ontario

    Directory of Open Access Journals (Sweden)

    Fisher Lawrence

    2010-11-01

    Full Text Available Abstract Background Medium chain acyl-CoA dehydrogenase deficiency (MCADD is a disorder of mitochondrial fatty acid oxidation and is one of the most common inborn errors of metabolism. Identification of MCADD via newborn screening permits the introduction of interventions that can significantly reduce associated morbidity and mortality. This study reports on the first three years of newborn screening for MCADD in Ontario, Canada. Methods Newborn Screening Ontario began screening for MCADD in April 2006, by quantification of acylcarnitines (primarily octanoylcarnitine, C8 in dried blood spots using tandem mass spectrometry. Babies with positive screening results were referred to physicians at one of five regional Newborn Screening Treatment Centres, who were responsible for diagnostic evaluation and follow-up care. Results From April 2006 through March 2009, approximately 439 000 infants were screened for MCADD in Ontario. Seventy-four infants screened positive, with a median C8 level of 0.68 uM (range 0.33-30.41 uM. Thirty-one of the screen positive infants have been confirmed to have MCADD, while 36 have been confirmed to be unaffected. Screening C8 levels were higher among infants with MCADD (median 8.93 uM compared to those with false positive results (median 0.47 uM. Molecular testing was available for 29 confirmed cases of MCADD, 15 of whom were homozygous for the common c.985A > G mutation. Infants homozygous for the common mutation tended to have higher C8 levels (median 12.13 uM relative to compound heterozygotes for c.985A > G and a second detectable mutation (median 2.01 uM. Eight confirmed mutation carriers were identified among infants in the false positive group. The positive predictive value of a screen positive for MCADD was 46%. The estimated birth prevalence of MCADD in Ontario is approximately 1 in 14 000. Conclusions The birth prevalence of MCADD and positive predictive value of the screening test were similar to those

  19. Gas-phase acylation of aminopropyl-silica gel in the synthesis of some chemically bonded silica materials for analytical applications

    International Nuclear Information System (INIS)

    Basiuk, Vladimir; Khil'chevskaya, E.G.

    1991-01-01

    Gas-phase acylation of aminopropyl-silica gel with aliphatic dicarboxylic (succinic, adipic and sebacic) and 4-aminobenzoic acids is proposed as a rapid and efficient one-step method for the synthesis of carboxyalkyl- and 4-aminophenylamidopropyl-silica gels, usually used as zwitterion exchangers for liquid chromatography and matrices for multi-step syntheses of silica-bound aromatic azo reagents for the sorption and chromatographic separation of metal ions. Acylation degrees of 59-90% are achieved after 0.5 h. IR spectra of the acylation products and near-UV-visible spectra for bonded aromatic azo compounds, based on 4-aminobenzamidopropyl-silica gel, are presented. Some positive and negative aspects of the gas-phase acylation are discussed. (author). 34 refs.; 2 figs.; 2 tabs

  20. Effect of doxorubicin on the order and dynamics of the acyl chains of anionic and zwitterionic phospholipids in liquid-crystalline mixed model membranes

    NARCIS (Netherlands)

    Wolf, de F.A.; Nicolaij, K.; Kruijff, de B.

    1992-01-01

    We investigated the effect of the antineoplastic drug doxorubicin on the order of the acyl chains in liquid-crystalline mixed bilayers consisting of dioleoylphosphatidylserine (DOPS) or -phosphatidic acid (DOPA), and dioleoylphosphatidylcholine (DOPC) or - hosphatidylethanolamine (DOPE). Previous

  1. On the Unusual Homeoviscous Adaptation of the Membrane Fatty Acyl Components against the Thermal Stress in RhiΖobium meliloti

    International Nuclear Information System (INIS)

    Kang, Seb Yung; Jung, Seun Ho; Choi, Yong Hoon; Yang, Chul Hak; Kim, Hyun Won

    1999-01-01

    In order to maintain the optimal fluidity in membrane, microorganism genetically regulates the ratio of the unsaturated fatty acids (Ufos) to saturated ones of its biological membrane in response to external perturbing condition such as the change of temperature. The remodelling of fatty acyl chain composition is the most frequently observed response to altered growth temperature. It is reflected in the elevated proportions of unsaturated fatty acid (UFAs) at low temperature. Because cis double bonds, normally positioned at the middle of fatty acyl chains, introduce a kink of approximately 30 .deg. into acyl chain, UFAs pack less compactly and exhibit lower melting points than their saturated homologues. Thus, enrichment of membranes with UFAs offsets, to a significant degree, the increase in membrane order caused by a drop in temperature. This is so called homeoviscous adaptation of the membrane fatty acyl chains against thermal stress. Membrane maintains the optimal viscosity using homeoviscous adaptation.

  2. Plasma fatty acyl-carnitines during 8 Weeks of overfeeding: relation to diet energy expenditure and body composition: the PROOF study.

    Science.gov (United States)

    Bray, George A; Redman, Leanne M; de Jonge, Lilian; Rood, Jennifer; Sutton, Elizabeth F; Smith, Steven R

    2018-01-24

    Overfeeding is a strategy for evaluating the effects of excess energy intake. In this secondary analysis we tested the possibility that different levels of dietary protein might differentially modify the response of fatty acyl-carnitines to overfeeding. Twenty-three healthy adult men and women were overfed by 40% for 8 weeks while in-patients with diets containing 5% (LPD), 15% (NPD) or 25% (HPD) protein. Plasma fatty acyl-carnitines were measured by gas chromatography/mass spectrometry (GC/MS) at baseline and after 8 weeks of overfeeding. Measurements included: body composition by DXA, energy expenditure by ventilated hood and doubly-labeled water, fat cell size from subcutaneous fat biopsies, and fat distribution by CT scan. Analysis was done on 5 groups of fatty acyl-carnitines identified by principal components analysis and 6 individual short-chain fatty acyl carnitines. Higher protein intake was associated with significantly lower 8 week levels of medium chain fatty acids and C2, C4-OH and C 6:1, but higher values of C3 and C5:1 acyl-carnitines derived from essential amino acids. In contrast energy and fat intake were only weakly related to changes in fatty acyl-carnitines. A decease or smaller rise in 8 week medium chain acyl-carnitines was associated with an increase in sleeping energy expenditure (P = 0.0004), and fat free mass (P < 0.0001) and a decrease in free fatty acid concentrations (FFA) (P = 0.0067). In contrast changes in short-chain fatty acyl-carnitines were related to changes in resting energy expenditure (P = 0.0026), and fat free mass (P = 0.0007), and C4-OH was positively related to FFA (P = 0006). Protein intake was the major factor influencing changes in fatty acyl carnitines during overfeeding with higher values of most acyl-fatty acids on the low protein diet. The association of dietary protein and fat intake may explain the changes in energy expenditure and metabolic variables resulting in the observed

  3. N-acylated peptides derived from human lactoferricin perturb organization of cardiolipin and phosphatidylethanolamine in cell membranes and induce defects in Escherichia coli cell division.

    Directory of Open Access Journals (Sweden)

    Dagmar Zweytick

    Full Text Available Two types of recently described antibacterial peptides derived from human lactoferricin, either nonacylated or N-acylated, were studied for their different interaction with membranes of Escherichia coli in vivo and in model systems. Electron microscopy revealed striking effects on the bacterial membrane as both peptide types induced formation of large membrane blebs. Electron and fluorescence microscopy, however demonstrated that only the N-acylated peptides partially induced the generation of oversized cells, which might reflect defects in cell-division. Further a different distribution of cardiolipin domains on the E. coli membrane was shown only in the presence of the N-acylated peptides. The lipid was distributed over the whole bacterial cell surface, whereas cardiolipin in untreated and nonacylated peptide-treated cells was mainly located at the septum and poles. Studies with bacterial membrane mimics, such as cardiolipin or phosphatidylethanolamine revealed that both types of peptides interacted with the negatively charged lipid cardiolipin. The nonacylated peptides however induced segregation of cardiolipin into peptide-enriched and peptide-poor lipid domains, while the N-acylated peptides promoted formation of many small heterogeneous domains. Only N-acylated peptides caused additional severe effects on the main phase transition of liposomes composed of pure phosphatidylethanolamine, while both peptide types inhibited the lamellar to hexagonal phase transition. Lipid mixtures of phosphatidylethanolamine and cardiolipin revealed anionic clustering by all peptide types. However additional strong perturbation of the neutral lipids was only seen with the N-acylated peptides. Nuclear magnetic resonance demonstrated different conformational arrangement of the N-acylated peptide in anionic and zwitterionic micelles revealing possible mechanistic differences in their action on different membrane lipids. We hypothesized that both peptides kill

  4. Exploiting the acylating nature of the imide-Ugi intermediate: a straightforward synthesis of tetrahydro-1,4-benzodiazepin-2-ones.

    Science.gov (United States)

    Mossetti, Riccardo; Saggiorato, Dèsirèe; Tron, Gian Cesare

    2011-12-16

    We describe a simple and novel protocol for the synthesis of tetrahydro-1,4-benzodiazepin-2-ones with three points of diversity, exploiting the acylating properties of the recently rediscovered Ugi-imide. The final compounds can be easily prepared in three synthetic steps using a multicomponent reaction, a Staudinger reduction, and an acylative protocol, with good to excellent yields for each synthetic step.

  5. Quantitation of acyl migration during lipase-catalyzed acidolysis, and of the regioisomers of structured triacylglycerols formed

    DEFF Research Database (Denmark)

    Mu, Huiling; Kurvinen, J.P.; Kallio, H.

    2001-01-01

    degradation, and ranged from 39.0 to 48.7% and 0.6 to 9.3%, respectively. Quantitation of triacylglycerol molecular species was performed by ammonia negative ion chemical ionization (NICI) mass spectrometry (MS). The proportion of ACN (acyl carbon number) 34 species that contained one C-18 fatty acid and two...... C-8:0, in samples analyzed, varied from 12.5 to 23.2%. The selected regioisomers MLM and MML within the ACN 34 species group were quantified by NICI tandem MS (MS/MS) and were in the range of 97.1 to 98.4% and 1.6 to 2.9%, respectively. There was no correlation between the level of acyl migration...

  6. Isoforms of acyl carrier protein involved in seed-specific fatty acid synthesis.

    Science.gov (United States)

    Suh, M C; Schultz, D J; Ohlrogge, J B

    1999-03-01

    Seeds of coriandrum sativum (coriander) and Thunbergia alata (black-eyed Susan vine) produce unusual monoenoic fatty acids which constitute over 80% of the total fatty acids of the seed oil. The initial step in the formation of these fatty acids is the desaturation of palmitoyl-ACP (acyl carrier protein) at the delta(4) or delta(6) positions to produce delta(4)-hexadecenoic acid (16:1(delta(4)) or delta(6)-hexadecenoic acid (16:1(delta(6)), respectively. The involvement of specific forms of ACP in the production of these novel monoenoic fatty acids was studied. ACPs were partially purified from endosperm of coriander and T. alata and used to generate 3H- and 14C-labelled palmitoyl-ACP substrates. In competition assays with labelled palmitoyl-ACP prepared from spinach (Spinacia oleracea), delta(4)-acyl-ACP desaturase activity was two- to threefold higher with coriander ACP than with spinach ACP. Similarly, the T. alata delta(6) desaturase favoured T. alata ACP over spinach ACP. A cDNA clone, Cs-ACP-1, encoding ACP was isolated from a coriander endosperm cDNA library. Cs-ACP-1 mRNA was predominantly expressed in endosperm rather than leaves. The Cs-ACP-1 mature protein was expressed in E. coli and comigrated on SDS-PAGE with the most abundant ACP expressed in endosperm tissues. In in vitro delta(4)-palmitoyl-ACP desaturase assays, the Cs-ACP-1 expressed from E. coli was four- and 10-fold more active than spinach ACP or E. coli ACP, respectively, in the synthesis of delta(4)-hexadecenoic acid from palmitoyl-ACP. In contrast, delta(9)-stearoyl-ACP desaturase activity from coriander endosperm did not discriminate strongly between different ACP species. These results indicate that individual ACP isoforms are specifically involved in the biosynthesis of unusual seed fatty acids and further suggest that expression of multiple ACP isoforms may participate in determining the products of fatty acid biosynthesis.

  7. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase.

    Directory of Open Access Journals (Sweden)

    Steffen Kawelke

    Full Text Available Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2 and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2 was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity.

  8. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Banaś, Antoni

    2016-08-01

    Wax esters are used in industry for production of lubricants, pharmaceuticals and cosmetics. The only natural source of wax esters is jojoba oil. A much wider variety of industrial wax esters-containing oils can be generated through genetic engineering. Biotechnological production of tailor-made wax esters requires, however, a detailed substrate specificity of fatty acyl-CoA reductases (FAR) and wax synthases (WS), the two enzymes involved in wax esters synthesis. In this study we have successfully characterized the substrate specificity of jojoba FAR and jojoba WS. The genes encoding both enzymes were expressed heterologously in Saccharomyces cerevisiae and the activity of tested enzymes was confirmed by in vivo studies and in vitro assays using microsomal preparations from transgenic yeast. Jojoba FAR exhibited the highest in vitro activity toward 18:0-CoA followed by 20:1-CoA and 22:1-CoA. The activity toward other 11 tested acyl-CoAs was low or undetectable as with 18:2-CoA and 18:3-CoA. In assays characterizing jojoba WS combinations of 17 fatty alcohols with 14 acyl-CoAs were tested. The enzyme displayed the highest activity toward 14:0-CoA and 16:0-CoA in combination with C16-C20 alcohols as well as toward C18 acyl-CoAs in combination with C12-C16 alcohols. 20:1-CoA was efficiently utilized in combination with most of the tested alcohols. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Cytotoxic activity of acyl phloroglucinols isolated from the leaves of Eucalyptus cinerea F. Muell. ex Benth. cultivated in Egypt

    OpenAIRE

    Soliman, Fathy M.; Fathy, Magda M.; Salama, Maha M.; Al-Abd, Ahmed M.; Saber, Fatema R.; El-Halawany, Ali M.

    2014-01-01

    Two acyl phloroglucinol compounds namely; Sideroxylonal B (1) and Macrocarpal A (2) were isolated from the Sideroxylonal-Rich Extract (SRE) of the juvenile leaves of Eucalyptus cinerea; F. Muell. ex Benth cultivated in Egypt. Identification of the isolated compounds was established on the basis of physico-chemical properties and spectral analysis (1D & 2D NMR). The two compounds were isolated for the first time from this species. The SRE alongside with the isolated compounds were tested again...

  10. Polystyrene Supported Al(OTf)3: an Environmentally Friendly Heterogeneous Catalyst for Friedel-Crafts Acylation of Aromatic Compounds

    International Nuclear Information System (INIS)

    Boroujeni, Kaveh Parvanak

    2010-01-01

    Stable and non-hygroscopic polystyrene supported aluminium triflate (Ps-Al(OTf) 3 ), which is prepared easily from cheap and commercially available compounds was found to be an environmentally friendly heterogeneous catalyst for Friedel-Crafts acylation of arenes using acid chlorides in the absence of solvent under mild reaction conditions. The catalyst can be reused up to five times after simple washing with dichloromethane

  11. Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Dominique Rainteau

    Full Text Available BACKGROUND: Phospholipases D (PLD are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA. PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor. METHODOLOGY/PRINCIPAL FINDINGS: Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA. As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut, which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18:2- and 16:0/18:3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates. CONCLUSIONS: MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18:2- and 16:0/18:3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains.

  12. Plasma acyl ghrelin and nonesterified fatty acids are the best predictors for hunger status in pregnant gilts.

    Science.gov (United States)

    Ren, P; Yang, X J; Kim, J S; Menon, D; Pangeni, D; Manu, H; Tekeste, A; Baidoo, S K

    2017-12-01

    Sows are usually restricted fed during pregnancy to maximize their reproductive efficiency, which may predispose sows to a state of hunger. However, an objective measurement of hunger status has not been established. In the present study, we examined the correlation of plasma hormones and NEFA and selected the best predictors for hunger status using pregnant gilts. Three different levels of feed intake (0.5, 1.0 and 2.0 × maintenance energy intake [0.5M, 1.0M and 2.0M, respectively]) were imposed from Day 28 to 34 of gestation to create different hunger statuses in pregnant gilts. Plasma hormones related to energy homeostasis and NEFA were analyzed to quantify their response to different levels of feed intake. A total of 18 gilts (197.53 ± 6.41 kg) were allotted to 1 of 3 dietary treatments using a completely randomized design. Results showed that BW change, ADG, and G:F from Day 28 to 34 of gestation were higher ( ghrelin concentrations showed a relatively flat pattern during the 24-h period. Plasma acyl ghrelin and NEFA concentrations and areas under the curve (AUC) were greater ( ghrelin was the best predictor for consumption time ( = 0.82), whereas the AUC of NEFA was the best predictor for BW ( = 0.55) or backfat change ( = 0.42) from Day 28 to 34 of gestation. In conclusion, our data suggested that a relative flat pattern existed in pregnant gilts in terms of the diurnal plasma profile of acyl ghrelin and that the level of feed intake of pregnant gilts was negatively correlated with plasma concentrations of acyl ghrelin and NEFA, which, in turn, were negatively associated with feed consumption time. The AUC of acyl ghrelin and NEFA seemed to be the best predictors for hunger status of pregnant gilts.

  13. Regiospecific synthesis of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters (FAMEs)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Paulo; Santos, Juliane M. dos; D' Oca, Marcelo G. M.; Piovesan, Luciana A., E-mail: lpiovesan@gmail.com [Universidade Federal do Rio Grande (UFRS), RS (Brazil). Escola de Quimica e Alimentos; Kuhn, Bruna L.; Moreira, Dayse N.; Flores, Alex F.C.; Martins, Marcos A.P. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2012-11-15

    A series of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters was synthesized by the cyclo condensation of respective fatty hydrazides with 4-alkoxy- 1,1,1-trial omethyl-3-alquen-2-ones. Efficient and regiospecific cyclizations catalyzed by BF{sub 3}-MeOH gave the desired products in good to excellent yields and at high purity. (author)

  14. Dihydropyranone Formation by Ipso C–H Activation in a Glucal 3-Carbamate-Derived Rhodium Acyl Nitrenoid

    Science.gov (United States)

    Hurlocker, Brisa; Abascal, Nadia C.; Repka, Lindsay M.; Santizo-Deleon, Elsy; Smenton, Abigail L.; Baranov, Victoria; Gupta, Ritu; Bernard, Sarah E.; Chowdhury, Shenjuti; Rojas, Christian M.

    2011-01-01

    By using (N-tosyloxy)-3-O-carbamoyl-D-glucal 10, which removes the need for a hypervalent iodine(III) oxidant, we provide evidence for rhodium nitrenoid-mediated ipso C–H activation as the origin of a C3-oxidized dihydropyranone product 3. This system may be especially susceptible to such a pathway due to the ease of forming a cation upon hydride transfer to the rhodium-complexed acyl nitrene. PMID:21381715

  15. Cost-effectiveness analysis of universal newborn screening for medium chain acyl-CoA dehydrogenase deficiency in France

    OpenAIRE

    Hamers, Françoise F; Rumeau-Pichon, Catherine

    2012-01-01

    Abstract Background Five diseases are currently screened on dried blood spots in France through the national newborn screening programme. Tandem mass spectrometry (MS/MS) is a technology that is increasingly used to screen newborns for an increasing number of hereditary metabolic diseases. Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is among these diseases. We sought to evaluate the cost-effectiveness of introducing MCADD screening in France. Methods We developed a decision model t...

  16. Development of a sensitive method for a structural elucidation of acyl carnitines by means of GC-MS techniques

    International Nuclear Information System (INIS)

    Altmann, E.

    1999-11-01

    The goal of the present work was to develop a sensitive and reliable method to characterize the urinary acyl carnitines, to further establish it as routine procedure in hospitals, especially in Pedriatic Departments. The determination of the excreted acyl carnitines allows drawing conclusions on errors or deviations in the cellular metabolism. Applying the volatile lactone derivatives of the acyl carnitines various methods of GC/MS technique are compared. With the examined lactones under concern EI mass spectra furnish just a first incomplete information. Frequently the molecular peaks are not sufficiently intense. Yet by means of the retention times, the signals m/z 84, 85 and 144 as ion traces, as well as the characteristic fragmentation helpful information is provided. Concerning the +CI/NH 3 - mass spectra the protonated molecular ions (M + H) + and the usually very intense (M + NH 4 ) + - ions unambiguously render structural assignments. In the case of the - CI/NH 3 - mass spectra the (M-1) and (M-85) ions allow definitive assignments due to their lesser fragmentation tendency. Each of the analytical outcoming can be regarded as leading contribution in helpfully establishing the current method in every clinical hospital. (author)

  17. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Andresen, B S; Olpin, S; Poorthuis, B J

    1999-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence of cardiomyop......Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence...... of cardiomyopathy; a milder childhood form, with later onset, usually with hypoketotic hypoglycemia as the main presenting feature, low mortality, and rare cardiomyopathy; and an adult form, with isolated skeletal muscle involvement, rhabdomyolysis, and myoglobinuria, usually triggered by exercise or fasting......-phenotype relationship is in sharp contrast to what has been observed in medium-chain acyl-CoA dehydrogenase deficiency, in which no correlation between genotype and phenotype can be established....

  18. Heteropoly acid encapsulated into zeolite imidazolate framework (ZIF-67) cage as an efficient heterogeneous catalyst for Friedel–Crafts acylation

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, Muhammad; Jiang, Sai; Ji, Shengfu, E-mail: jisf@mail.buct.edu.cn

    2016-01-15

    A new strategy has been developed for the encapsulation of the phosphotungstic heteropoly acid (H{sub 3}PW{sub 12}O{sub 40} denoted as PTA) into zeolite imidazolate framework (ZIF-67) cage and the PTA@ZIF-67(ec) catalysts with different PTA content were prepared. The structure of the catalysts was characterized by XRD, BET, SEM, FT-IR, ICP-AES and TG. The catalytic activity and recovery properties of the catalysts for the Friedel-Crafts acylation of anisole with benzoyl chloride were evaluated. The results showed that 14.6–31.7 wt% PTA were encapsulated in the ZIF-67 cage. The PTA@ZIF-67(ec) catalysts had good catalytic activity for Friedel-Crafts acylation. The conversion of anisole can reach ~100% and the selectivity of the production can reach ~94% over 26.5 wt% PTA@ZIF-67(ec) catalyst under the reaction condition of 120 °C and 6 h. After reaction, the catalyst can be easily separated from the reaction mixture by the centrifugation. The recovered catalyst can be reused five times and the selectivity can be kept over 90%. - Graphical abstract: The PTA@ZIF-67 catalysts with different PTA content were prepared by encapsulating the PTA into ZIF-67 cage and the as-synthesized catalysts exhibited good catalytic activity for the Friedel–Craft acylation of anisole with benzoyl chloride.

  19. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    International Nuclear Information System (INIS)

    Hayashi, H.; Miwa, A.

    1989-01-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using [1- 14 C]butyric acid and [1- 14 C]lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of [ 14 C]lignoceric acid into primary bile acids was approximately four times higher than that of [ 14 C]butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both [ 14 C]lignoceric acid and [ 14 C]butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis

  20. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, H.; Miwa, A. (Josai Univ., Saitama (Japan))

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  1. Purification and Characterization of Tannin Acyl Hydrolase from Aspergillus niger ATCC 16620

    Directory of Open Access Journals (Sweden)

    Abdulhameed Sabu

    2005-01-01

    Full Text Available Tannin acyl hydrolase produced extracellularly by the fungal strain Aspergillus niger ATTC 16620 in solid state fermentation was purified from the cell free culture broth by ammonium sulphate fractionation followed by DEAE–Sephadex A-50 chromatography. SDS-PAGE analysis indicated that the enzyme protein molecular mass was 168 kDa. Enzyme activity was stable up to the temperature of 40 °C and the enzyme activity was optimal at pH=6. Tannase activity was maximal at 0.01 M concentration of the substrate. The addition of metal ions like Zn2+, Mn2+, Cu2+, Ca2+, Mg2+and Fe2+ inhibited the enzyme activity. Only K+ ions enhanced tannase activity, and an activity of 4.31 U/mL was reported here. Enzyme activity was maximal after 15–20 min of incubation time, with an activity of 3.9 U/mL. Km was found to be 1.03 mM and Vmax=4.25 mmol/min. Since the enzyme is active over a wide range of pH and temperature it could find potential use in the food-processing industry.

  2. Severe sensory neuropathy in patients with adult-onset multiple acyl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Wang, Zhaoxia; Hong, Daojun; Zhang, Wei; Li, Wurong; Shi, Xin; Zhao, Danhua; Yang, Xu; Lv, He; Yuan, Yun

    2016-02-01

    Multiple Acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid oxidation. Most patients with late-onset MADD are clinically characterized by lipid storage myopathy with dramatic responsiveness to riboflavin treatment. Abnormalities of peripheral neuropathy have rarely been reported in patients with late-onset MADD. We describe six patients who presented with proximal limb weakness and loss of sensation in the distal limbs. Muscle biopsy revealed typical myopathological patterns of lipid storage myopathy and blood acylcarnitine profiles showed a combined elevation of multiple acylcarnitines supporting the diagnosis of MADD. However, nerve conduction investigations and sural nerve biopsies in these patients indicated severe axonal sensory neuropathy. Causative ETFDH gene mutations were found in all six cases. No other causative gene mutations were identified in mitochondrial DNA and genes associated with hereditary neuropathies through next-generation-sequencing panel. Late-onset patients with ETFDH mutations can present with proximal muscle weakness and distal sensory neuropathy, which might be a new phenotypic variation, but the precise underlying pathogenesis remains to be elucidated. Copyright © 2015. Published by Elsevier B.V.

  3. Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor.

    Science.gov (United States)

    Alavijeh, Razieh Shafiee; Tabandeh, Fatemeh; Tavakoli, Omid; Karkhane, Aliasghar; Shariati, Parvin

    2015-01-01

    Microalgae have become an important source of biomass for biodiesel production. In enzymatic transesterification reaction, the enzyme activity is decreased in presence of alcohols. The use of different acyl acceptors such as methyl/ethyl acetate is suggested as an alternative and effective way to overcome this problem. In this study, ethyl acetate was used for the first time in the enzymatic production of biodiesel by using microalga, Chlorella vulgaris, as a triglyceride source. Enzymatic conversion of such fatty acids to biodiesel was catalyzed by Novozym 435 as an efficient immobilized lipase which is extensively used in biodiesel production. The best conversion yield of 66.71% was obtained at the ethyl acetate to oil molar ratio of 13:1 and Novozym 435 concentration of 40%, based on the amount of oil, and a time period of 72 h at 40℃. The results showed that ethyl acetate have no adverse effect on lipase activity and the biodiesel amount was not decreased even after seven transesterification cycles, so ethyl acetate has a great potential to be substituted for short-chain alcohols in transesterification reaction.

  4. Formation of the 67-kDa laminin receptor by acylation of the precursor.

    Science.gov (United States)

    Butò, S; Tagliabue, E; Ardini, E; Magnifico, A; Ghirelli, C; van den Brûle, F; Castronovo, V; Colnaghi, M I; Sobel, M E; Ménard, S

    1998-06-01

    Even though the involvement of the 67-kDa laminin receptor (67LR) in tumor invasiveness has been clearly demonstrated, its molecular structure remains an open problem, since only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated so far. A pool of recently obtained monoclonal antibodies directed against the recombinant 37LRP molecule was used to investigate the processing that leads to the formation of the 67-kDa molecule. In soluble extracts of A431 human carcinoma cells, these reagents recognize the precursor molecule as well as the mature 67LR and a 120-kDa molecule. The recovery of these proteins was found to be strikingly dependent upon the cell solubilization conditions: the 67LR is soluble in NP-40-lysis buffer whereas the 37LRP is NP-40-insoluble. Inhibition of 67LR formation by cerulenin indicates that acylation is involved in the processing of the receptor. It is likely a palmitoylation process, as indicated by sensitivity of NP-40-soluble extracts to hydroxylamine treatment. Immunoblotting assays performed with a polyclonal serum directed against galectin3 showed that both the 67- and the 120-kDa proteins carry galectin3 epitopes whereas the 37LRP does not. These data suggest that the 67LR is a heterodimer stabilized by strong intramolecular hydrophobic interactions, carried by fatty acids bound to the 37LRP and to a galectin3 cross-reacting molecule.

  5. 1-alkenyl-2-acyl glycerol is an intermediate in myocardial plasmenylcholine biosynthesis

    International Nuclear Information System (INIS)

    Ford, D.; Gross, R.

    1987-01-01

    The present study was undertaken to identify the metabolic pathway(s) responsible for myocardial plasmenylcholine biosynthesis. Rabbit myocardium contained .46 +/- .09 nmol/g wet wight of 1-alkenyl-2-acyl glycerol (AAG) which predominantly consisted of 16:0 molecular species at the sn-1 position. Incubation of rabbit myocardial microsomes (RMM) with [ 14 C]CDP-choline ( 14 C-CDPC) resulted in the rapid incorporation of radiolabeled choline into the choline glycerophospholipid pool. RP-HPLC separation of molecular species demonstrated that nearly equal amounts of radiolabel were incorporated into plasmenylcholine and phosphatidylcholine subclasses despite the fact that RMM contained 21 times the mass of diacyl glycerol as compared to AAG. RMM incorporation of 14 C-CDPC into choline glycerophospholipids was substantially greater than incorporation of [ 14 C] phosphorylcholine or [ 14 C] choline. RMM incorporation of 14 C-CDPC into plasmalogen molecular species was stimulated two fold by 500 μM CMP. Taken together, these results demonstrate that rabbit myocardium contains substantial quantities of AAG and that endogenous AAG is an efficient precursor of myocardial plasmenylcholine

  6. α-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice

    International Nuclear Information System (INIS)

    Lee, Young; Naseem, R. Haris; Park, Byung-Hyun; Garry, Daniel J.; Richardson, James A.; Schaffer, Jean E.; Unger, Roger H.

    2006-01-01

    α-Lipoic acid (α-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, α-LA protects against cardiac lipotoxicity, α-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In α-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activated receptor-γ cofactor-1α mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that α-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity

  7. New fatty acid and acyl glycoside from the aerial parts of Phyllanthus fraternus Webster.

    Science.gov (United States)

    Ali, Abuzer; Jameel, Mohammad; Ali, Mohammed

    2016-01-01

    Phyllanthus fraternus Webster (Euphorbiaceae) is used to treat dyspepsia, indigestion, jaundice, dysentery, diabetes, influenza, kidney stones, urinary tract diseases, vaginitis, and skin eruptions in traditional systems of medicine. The methanol extract of aerial parts of P. fraternus was obtained by soxhlation method. Isolation of compounds was done by silica gel column chromatography. Analytical thin layer chromatography was used to check the homogeneity of eluted fractions. The structures of isolated compounds were established on the basis of spectral studies and chemical reactions. Phytochemical investigation of a methanolic extract of the aerial parts yielded a new fatty acid characterized as cis-n-octacos-17-enoic acid (5) and a new acyl tetraglycoside formulated as n-dodecanoyl-O-β-D-glucopyranosyl-(2'→1'')-O-β-D-glucopyranosyl-(2''→1''')-O-β-D-glucopyranosyl-(2'''→1'''')-O-β-D-glucopyranoside (7) along with known compounds 1-pentacosanol (1), β-sitosteryl oleate (2), β-sitosteryl linoleate (3), stigmasterol (4) and palmityl glucuronoside (6).

  8. Cyclization Reaction of Acyl Thiourea Chitosan: Enhanced Antifungal Properties via Structural Optimization.

    Science.gov (United States)

    Qin, Yukun; Liu, Weixiang; Xing, Ronge; Liu, Song; Li, Kecheng; Li, Pengcheng

    2018-03-06

    In this study, 3-methyl-1,2,4-triazolyl chitosan (MTACS) and 3-chloromethyl-1,2,4-triazolyl chitosan (CMTACS) were prepared via cyclization of acyl thiourea chitosan (TUCS). Their structures were confirmed by FT-IR, ¹H-NMR, elemental analysis, DSC, XRD, and SEM. The conformations were predicted using the Gaussian 09 program. Additionally, the antifungal properties of MTACS and CMTACS against Stemphylium solani weber ( S. solani ), Alternaria porri ( A. porri ), and Gloeosporium theae-sinensis ( G. theae-sinensis ) were assayed in vitro and ranged from 250 μg/mL to 1000 μg/mL. The results showed that MTACS and CMTACS exhibited enhanced inhibitory effect on the selected fungi compared to the original chitosan and TUCS. In particular, they displayed better antifungal activities against A. porri and G. theae-sinensis than that of the positive control, Triadimefon. The findings described here may lead to them being used as antifungal agents for crop protection.

  9. Cyclization Reaction of Acyl Thiourea Chitosan: Enhanced Antifungal Properties via Structural Optimization

    Directory of Open Access Journals (Sweden)

    Yukun Qin

    2018-03-01

    Full Text Available In this study, 3-methyl-1,2,4-triazolyl chitosan (MTACS and 3-chloromethyl-1,2,4-triazolyl chitosan (CMTACS were prepared via cyclization of acyl thiourea chitosan (TUCS. Their structures were confirmed by FT-IR, 1H-NMR, elemental analysis, DSC, XRD, and SEM. The conformations were predicted using the Gaussian 09 program. Additionally, the antifungal properties of MTACS and CMTACS against Stemphylium solani weber (S. solani, Alternaria porri (A. porri, and Gloeosporium theae-sinensis (G. theae-sinensis were assayed in vitro and ranged from 250 μg/mL to 1000 μg/mL. The results showed that MTACS and CMTACS exhibited enhanced inhibitory effect on the selected fungi compared to the original chitosan and TUCS. In particular, they displayed better antifungal activities against A. porri and G. theae-sinensis than that of the positive control, Triadimefon. The findings described here may lead to them being used as antifungal agents for crop protection.

  10. Synthesis, characterisation and physicochemical properties of hydrophobically modified inulin using long-chain fatty acyl chlorides.

    Science.gov (United States)

    Han, Lingyu; Ratcliffe, I; Williams, P A

    2017-12-15

    A series of inulin derivatives were synthesized in aqueous solution using acyl chlorides with varying alkyl chain length (C10-C16). They were characterised using a number of techniques including MALDI TOF-MS, 1 H NMR and FTIR and their degree of substitution determined. The solution properties of the hydrophobically modified inulins were investigated using dye solubilisation and surface tension and it was confirmed that the molecules aggregated in solution above a critical concentration (critical aggregation concentration, CAC). The value of the CAC was found to be reasonably consistent between the different techniques and was shown to decrease with increasing hydrophobe chain length. It was found that the C10, C12 and C14 derivatives formed stable oil-in-water emulsions and the emulsion droplet size decreased with increasing alkyl chain length. The C16 derivative was not able to produce stable oil-in-water emulsions; however, it was able to form stable water-in-oil emulsions. The fact that the derivatives are able to form micellar-like aggregates and stabilise emulsions makes them suitable candidates for the encapsulation and delivery of active compounds with potential application in food, cosmetic, personal care and pharmaceutical formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    1991-01-01

    . All clones sequenced from the patient exhibited a single base substitution from adenine (A) to guanine (G) at position 985 in the MCAD cDNA as the only consistent base-variation compared with control cDNA. In contrast, the parents contained cDNA with the normal and the mutated sequence, revealing......A series of experiments has established the molecular defect in the medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) gene in a family with MCAD deficiency. Demonstration of intra-mitochondrial mature MCAD indistinguishable in size (42.5-kDa) from control MCAD, and of mRNA with the correct...... size of 2.4 kb, indicated a point-mutation in the coding region of the MCAD gene to be disease-causing. Consequently, cloning and DNA sequencing of polymerase chain reaction (PCR) amplified complementary DNA (cDNA) from messenger RNA of fibroblasts from the patient and family members were performed...

  12. Double-tailed acyl glycoside niosomal nanocarrier for enhanced oral bioavailability of Cefixime.

    Science.gov (United States)

    Imran, Muhammad; Shah, Muhammad Raza; Ullah, Farhat; Ullah, Shafi; Sadiq, Abdul; Ali, Imdad; Ahmed, Farid; Nawaz, Waqas

    2017-11-01

    Novel, safe, efficient, and cost effective surfactants from renewable resources has attracted attention for enhancing solubility and bioavailability of hydrophobic dugs. We report the synthesis, characterization, and biocompatibility of a novel non-ionic acyl glycoside double-tailed surfactant for niosomal drug delivery system. Structure of the surfactant was confirmed by 1 H NMR and mass spectroscopy. Applications of surfactant in niosomal drug delivery were explored using Cefixime as model. The shape, size, and polydispersity index (PDI) of drug loaded vesicles were investigated with atomic force microscope (AFM) and dynamic light scattering (DLS). Drug entrapping efficiency (EE%) was determined using HPLC. Biocompatibility of the surfactant was evaluated by in vitro cytotoxicity, blood hemolysis, and in vivo acute toxicity. Bioavailability of the surfactant based formulation was investigated in rabbits using HPLC. Vesicles were found to be 159.76 ± 6.54 nm with narrow size distribution and spherical shape. EE% was found to be 71.39 ± 3.52%. Novel surfactant was non-cytotoxicity and hemo-compatible even at 1000 μg/mL concentration and was safe up to 2000 mg/kg body weight. The in vivo bioavailability of niosomal formulation showed elevated plasma concentration and decreased clearance of Cefixime. Current findings reveal that this novel surfactant is biocompatible and could be employed for niosomal drug delivery.

  13. Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.

    Science.gov (United States)

    Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio

    2016-04-19

    Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids

    Energy Technology Data Exchange (ETDEWEB)

    Schluter, P.M.; Shanklin, J.; Xu, S.; Gagliardini, V.; Whittle, E.; Grossniklaus, U.; Schiestl, F. P.

    2011-04-05

    The orchids Ophrys sphegodes and O. exaltata are reproductively isolated from each other by the attraction of two different, highly specific pollinator species. For pollinator attraction, flowers chemically mimic the pollinators sex pheromones, the key components of which are alkenes with different double-bond positions. This study identifies genes likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturase (SAD) homologs. The expression of two isoforms, SAD1 and SAD2, is flower-specific and broadly parallels alkene production during flower development. SAD2 shows a significant association with alkene production, and in vitro assays show that O. sphegodes SAD2 has activity both as an 18:0-ACP {Delta}{sup 9} and a 16:0-ACP {Delta}{sup 4} desaturase. Downstream metabolism of the SAD2 reaction products would give rise to alkenes with double-bonds at position 9 or position 12, matching double-bond positions observed in alkenes in the odor bouquet of O. sphegodes. SAD1 and SAD2 show evidence of purifying selection before, and positive or relaxed purifying selection after gene duplication. By contributing to the production of species-specific alkene bouquets, SAD2 is suggested to contribute to differential pollinator attraction and reproductive isolation among these species. Taken together, these data are consistent with the hypothesis that SAD2 is a florally expressed barrier gene of large phenotypic effect and, possibly, a genic target of pollinator-mediated selection.

  15. STRUCTURAL AND FUNCTIONAL ASPECTS OF ACYL-COENZYME A BINDING PROTEINS (ACBPs: A COMPREHENSIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Richa Arya

    2012-06-01

    Full Text Available ACBP was originally identified as a mammalian diazepam binding inhibitor – a neuropeptide that has the ability to inhibit diazepam binding to the �-aminobutyric acid (GABA receptor (Guidotti et al., 1983. Typically, ACBPs are small (~10 kDa cytosolic proteins (Burton et al., 2005. However, a number of hybrid ACBPs are reported that are fused with ankyrin repeats, such as ACBP1 and ACBP2 in Arabidopsis thaliana (Chye et al., 1999; Li and Chye, 2003. Other functional domains, such as the human peroxisomal �3/ �2-enoyl-CoA isomerase (Geisbrecht et al., 1999, or any non-functional/ uncharacterized domain are also cited. ACBP predominantly functions as an intracellular acyl-CoA transporter and pool former, and is critical to lipid metabolism in cells (Gossett et al., 1996; Knudsen et al., 2000; Schroeder et al., 1998. Impaired lipid metabolism and other cellular functions in humans arising out of ACBP defects thus need to be explored. ACBP has only been reported in eukaryotes, not in prokaryotes, except for a few pathogenic eubacteria that might have acquired ACBP from eukaryotic hosts via lateral gene transfer (Burton et al., 2005. Whole genome sequences of several prokaryotes and pathogens being available currently, it is worthwhile to extend search for ACBPs beyond eukaryotes as well, to explore their potential as drug targets, given their essential role in lipid metabolism. As a prelude to such investigations, the current review summarizes available knowledge of ACBPs and outlines the scope of future research.

  16. Evaluation of protein acylation agents for the radioiodination of peptides: Application to labelling octreotide

    International Nuclear Information System (INIS)

    Zalutsky, M.; Vaidyanathan, G.

    2002-01-01

    The purpose of this study was to investigate the utility of two acylation agents originally developed for protein labelling - N-succinimidyl 3-[ 131 I]iodobenzoate and N-succinimidyl 5-[ 131 I]iodopyridine-3- carboxylate - for the radioiodination of peptides. Because of the widespread interest in imaging and treating malignancies that overexpress somatostatin receptors, octreotide was selected as the model peptide. Using these reagents, octreotide was coupled to 3-iodobenzoyl and 3-iodonicotinoyl templates, yielding [N-(3-iodobenzoyl)- D-Phe 1 ]octreotide (IBO) and [N-(3-iodonicotinoyl)-D-Phe 1 ]octreotide (INO), respectively. The IC 50 values for the binding of IBO and INO to somatostatin receptor expressing CA20948 rat pancreatic tumour membranes were 0.90 nM and 0.13 nM, respectively, compared with 0.35 nM for octreotide itself. Yields for the preparation of [ 131 I]IBO and [ 131 I]INO from N-succinimidyl 3-[ 131 I]iodobenzoate and N-succinimidyl 5-[ 131 I]iodopyridine-3- carboxylate, were 35-50%. In vitro assays with AR42J rat pancreatic tumour cells demonstrated considerably higher receptor-specific retention of cell-internalized radioiodine activity for [ 131 I]INO compared with [ 125 I]IBO. A tissue distribution study with both conjugates revealed low levels of activity in the thyroid, consistent with a low degree of deiodination of these radioiodinated peptide conjugates. (author)

  17. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    Directory of Open Access Journals (Sweden)

    Tor E. Kristensen

    2015-04-01

    Full Text Available Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA, many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  18. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    Science.gov (United States)

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  19. Early kinetic intermediate in the folding of acyl-CoA binding protein detected by fluorescence labeling and ultrarapid mixing

    DEFF Research Database (Denmark)

    Teilum, Kaare; Maki, Kosuke; Kragelund, Birthe B

    2002-01-01

    showed a major increase in tryptophan-dansyl fluorescence energy transfer, indicating formation of a partially collapsed ensemble of states on the 100-micros time scale. A subsequent decrease in dansyl fluorescence is attributed to intramolecular quenching of donor fluorescence on formation of the native...

  20. Anti-tumor effects of novel 5-O-acyl plumbagins based on the inhibition of mammalian DNA replicative polymerase activity.

    Directory of Open Access Journals (Sweden)

    Moe Kawamura

    Full Text Available We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone inhibits the activity of human mitochondrial DNA polymerase γ (pol γ. In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins. These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin showed the strongest suppression of human colon carcinoma (HCT116 cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin.

  1. Studies to further investigate the inhibition of human liver microsomal CYP2C8 by the acyl-β-glucuronide of gemfibrozil.

    Science.gov (United States)

    Jenkins, S M; Zvyaga, T; Johnson, S R; Hurley, J; Wagner, A; Burrell, R; Turley, W; Leet, J E; Philip, T; Rodrigues, A D

    2011-12-01

    In previous studies, gemfibrozil acyl-β-glucuronide, but not gemfibrozil, was found to be a mechanism-based inhibitor of cytochrome P450 2C8. To better understand whether this inhibition is specific for gemfibrozil acyl-β-glucuronide or whether other glucuronide conjugates are potential substrates for inhibition of this enzyme, we evaluated several pharmaceutical compounds (as their acyl glucuronides) as direct-acting and metabolism-dependent inhibitors of CYP2C8 in human liver microsomes. Of 11 compounds that were evaluated as their acyl glucuronide conjugates, only gemfibrozil acyl-β-glucuronide exhibited mechanism-based inhibition, indicating that CYP2C8 mechanism-based inhibition is very specific to certain glucuronide conjugates. Structural analogs of gemfibrozil were synthesized, and their glucuronide conjugates were prepared to further examine the mechanism of inhibition. When the aromatic methyl groups on the gemfibrozil moiety were substituted with trifluoromethyls, the resulting glucuronide conjugate was a weaker inhibitor of CYP2C8 and mechanism-based inhibition was abolished. However, the glucuronide conjugates of monomethyl gemfibrozil analogs were mechanism-based inhibitors of CYP2C8, although not as potent as gemfibrozil acyl-β-glucuronide itself. The ortho-monomethyl analog was a more potent inhibitor than the meta-monomethyl analog, indicating that CYP2C8 favors the ortho position for oxidation and potential inhibition. Molecular modeling of gemfibrozil acyl-β-glucuronide in the CYP2C8 active site is consistent with the ortho-methyl position being the favored site of covalent attachment to the heme. Moreover, hydrogen bonding to four residues (Ser100, Ser103, Gln214, and Asn217) is implicated.

  2. Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN above a Ponderosa pine forest

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2009-01-01

    Full Text Available During the Biosphere Effects on AeRosols and Photochemistry EXperiment 2007 (BEARPEX-2007, we observed eddy covariance (EC fluxes of speciated acyl peroxy nitrates (APNs, including peroxyacetyl nitrate (PAN, peroxypropionyl nitrate (PPN and peroxymethacryloyl nitrate (MPAN, above a Ponderosa pine forest in the western Sierra Nevada. All APN fluxes are net downward during the day, with a median midday PAN exchange velocity of −0.3 cm s−1; nighttime storage-corrected APN EC fluxes are smaller than daytime fluxes but still downward. Analysis with a standard resistance model shows that loss of PAN to the canopy is not controlled by turbulent or molecular diffusion. Stomatal uptake can account for 25 to 50% of the observed downward PAN flux. Vertical gradients in the PAN thermal decomposition (TD rate explain a similar fraction of the flux, suggesting that a significant portion of the PAN flux into the forest results from chemical processes in the canopy. The remaining "unidentified" portion of the net PAN flux (~15% is ascribed to deposition or reactive uptake on non-stomatal surfaces (e.g. leaf cuticles or soil. Shifts in temperature, moisture and ecosystem activity during the summer – fall transition alter the relative contribution of stomatal uptake, non-stomatal uptake and thermochemical gradients to the net PAN flux. Daytime PAN and MPAN exchange velocities are a factor of 3 smaller than those of PPN during the first two weeks of the measurement period, consistent with strong intra-canopy chemical production of PAN and MPAN during this period. Depositional loss of APNs can be 3–21% of the gross gas-phase TD loss depending on temperature. As a source of nitrogen to the biosphere, PAN deposition represents approximately 4–19% of that due to dry deposition of nitric acid at this site.

  3. Molecular Characterization of Two Fatty Acyl-CoA Reductase Genes From Phenacoccus solenopsis (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Li, Xiaolong; Zheng, Tianxiang; Zheng, Xiaowen; Han, Na; Chen, Xuexin; Zhang, Dayu

    2016-01-01

    Fatty acyl-CoA reductases (FARs) are key enzymes involved in fatty alcohol synthesis. Here, we cloned and characterized full-length cDNAs of two FAR genes from the cotton mealybug, Phenacoccus solenopsis. The results showed PsFAR I and PsFAR II cDNAs were 1,584 bp and 1,515 bp in length respectively. Both PsFAR I and PsFAR II were predicted to be located in the endoplasmic reticulum by Euk-mPLoc 2.0 approach. Both of them had a Rossmann folding region and a FAR_C region. Two conservative motifs were discovered in Rossmann folding region by sequence alignment including a NADPH combining motif, TGXXGG, and an active site motif, YXXXK. A phylogenetic tree made using MEGA 6.06 indicated that PsFAR I and PsFAR II were placed in two different branches. Gene expression analysis performed at different developmental stages showed that the expression of PsFar I is significantly higher than that of PsFar II in first and second instar nymphs and in male adults. Spirotetramat treatment at 125 mg/liter significantly increased the expression of PsFar I in third instar nymphs, but there was no effect in the expression of PsFar II Our results indicated these two FAR genes showed different expression patterns during insect development and after pesticide treatment, suggesting they play different roles in insect development and detoxification against pesticides. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  4. A bacterial acyl aminoacyl peptidase couples flexibility and stability as a result of cold adaptation.

    Science.gov (United States)

    Brocca, Stefania; Ferrari, Cristian; Barbiroli, Alberto; Pesce, Alessandra; Lotti, Marina; Nardini, Marco

    2016-12-01

    Life in cold environments requires an overall increase in the flexibility of macromolecular and supramolecular structures to allow biological processes to take place at low temperature. Conformational flexibility supports high catalytic rates of enzymes in the cold but in several cases is also a cause of instability. The three-dimensional structure of the psychrophilic acyl aminoacyl peptidase from Sporosarcina psychrophila (SpAAP) reported in this paper highlights adaptive molecular changes resulting in a fine-tuned trade-off between flexibility and stability. In its functional form SpAAP is a dimer, and an increase in flexibility is achieved through loosening of intersubunit hydrophobic interactions. The release of subunits from the quaternary structure is hindered by an 'arm exchange' mechanism, in which a tiny structural element at the N terminus of one subunit inserts into the other subunit. Mutants lacking the 'arm' are monomeric, inactive and highly prone to aggregation. Another feature of SpAAP cold adaptation is the enlargement of the tunnel connecting the exterior of the protein with the active site. Such a wide channel might compensate for the reduced molecular motions occurring in the cold and allow easy and direct access of substrates to the catalytic site, rendering transient movements between domains unnecessary. Thus, cold-adapted SpAAP has developed a molecular strategy unique within this group of proteins: it is able to enhance the flexibility of each functional unit while still preserving sufficient stability. Structural data are available in the Protein Data Bank under the accession number 5L8S. © 2016 Federation of European Biochemical Societies.

  5. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery.

    Science.gov (United States)

    Wang, Fengzhang; Yang, Yijie; Ju, Xingrong; Udenigwe, Chibuike C; He, Rong

    2018-03-21

    Curcumin is a polyphenol that exhibits several biological activities, but its low aqueous solubility results in low bioavailability. To improve curcumin bioavailability, this study has focused on developing a polyelectrolyte complexation method to form layer-by-layer assembled nanoparticles, for curcumin delivery, with positively charged chitosan (CS) and negatively charged acylated cruciferin (ACRU), a rapeseed globulin. Nanoparticles (NPs) were prepared from ACRU and CS (2:1) at pH 5.7. Three samples with weight of 5%, 10%, and 15% of curcumin, respectively, in ACRU/CS carrier were prepared. To verify the stability of the NPs, encapsulation efficiency and size of the 5% Cur-ACRU/CS NPs were determined at intervals of 5 days in a one month period. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and differential scanning calorimetry confirmed the electrostatic interaction and hydrogen bond formation between the carrier and core. The result showed that hollow ACRU/CS nanocapsules (ACRU/CS NPs) and curcumin-loaded ACRU/CS nanoparticles (Cur-ACRU/CS NPs) were homogenized spherical with average sizes of 200-450 nm and zeta potential of +15 mV. Encapsulation and loading efficiencies were 72% and 5.4%, respectively. In vitro release study using simulated gastro (SGF) and intestinal fluids (SIF) showed controlled release of curcumin in 6 h of exposure. Additionally, the Cur-ACRU/CS NPs are nontoxic to cultured Caco-2 cells, and the permeability assay indicated that Cur-ACRU/CS NPs had improved permeability efficiency of free curcumin through the Caco-2 cell monolayer. The findings suggest that ACRU/CS NPs can be used for encapsulation and delivery of curcumin in functional foods.

  6. Acylation stimulating protein, complement C3 and lipid metabolism in ketosis-prone diabetic subjects.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Ketosis-prone diabetes (KPDM is new-onset diabetic ketoacidosis without precipitating factors in non-type 1 diabetic patients; after management, some are withdrawn from exogenous insulin, although determining factors remain unclear.Twenty KPDM patients and twelve type 1 diabetic patients (T1DM, evaluated at baseline, 12 and 24 months with/without insulin maintenance underwent a standardized mixed-meal tolerance test (MMTT for 2 h.At baseline, triglyceride and C3 were higher during MMTT in KPDM vs. T1DM (p<0.0001 with no differences in non-esterified fatty acids (NEFA while Acylation Stimulating Protein (ASP tended to be higher. Within 12 months, 11 KPDM were withdrawn from insulin treatment (KPDM-ins, while 9 were maintained (KPDM+ins. NEFA was lower in KPDM-ins vs. KPDM+ins at baseline (p = 0.0006, 12 months (p<0.0001 and 24 months (p<0.0001 during MMTT. NEFA in KPDM-ins decreased over 30-120 minutes (p<0.05, but not in KPDM+ins. Overall, C3 was higher in KPDM-ins vs KPDM+ins at 12 months (p = 0.0081 and 24 months (p = 0.0019, while ASP was lower at baseline (p = 0.0024 and 12 months (p = 0.0281, with a decrease in ASP/C3 ratio.Notwithstanding greater adiposity in KPDM-ins, greater NEFA decreases and lower ASP levels during MMTT suggest better insulin and ASP sensitivity in these patients.

  7. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  8. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis1[OPEN

    Science.gov (United States)

    Hsiao, An-Shan; Xue, Yan

    2017-01-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1. Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 (GL2), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1, smo1-1, and ACBP1+/−smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1+/−smo1-1. Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. PMID:28500265

  9. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis.

    Science.gov (United States)

    Lung, Shiu-Cheung; Liao, Pan; Yeung, Edward C; Hsiao, An-Shan; Xue, Yan; Chye, Mee-Len

    2017-07-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis ( Arabidopsis thaliana ) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1 Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 ( GL2 ), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1 , smo1-1 , and ACBP1 +/- smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1 +/- smo1-1 Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Rheological investigation of high-acyl gellan gum hydrogel and its mixtures with simulated body fluids.

    Science.gov (United States)

    Osmałek, Tomasz Zbigniew; Froelich, Anna; Jadach, Barbara; Krakowski, Marek

    2018-05-01

    Purpose Most of the studies concerning gellan have been focused on its application as a food ingredient, however, gellan is often considered as a candidate for the development of novel pharmaceutical formulations. Taking into account that gellan is ion-sensitive, it can be assumed that its initial mechanical properties can change upon contact with body secretions. Therefore, the aim of the work was to investigate the rheological properties of pure high-acyl gellan gum hydrogel (0.4%) and its mixtures with selected simulated body fluids. Methods The rheological investigations were performed on rotational rheometer and included oscillatory temperature, amplitude, and frequency sweeping. The results enabled estimation of the linear viscoelastic regime, calculation of the cross-over points, and percentage of structure recovery. Results In the case of pure hydrogel no evidence of thermosensitivity was observed in the range of 20-40°C. In pH = 1.2 (NaCl/HCl) the hydrogel structure was almost entirely destroyed. Mixing with phosphate buffer (pH = 4.5) resulted in higher gel strength than after dilution with deionized water. The opposite effect was observed in the case of pH = 7.4. The studies performed for the mixture of GG hydrogel and mucin indicated interaction between the components. The hydrogel elasticity increased in the presence of simulated tear, but decreased in simulated saliva and vaginal fluid. Conclusions In this study, it was shown that the stability of a three-dimensional gellan structure may be affected by pH and the presence of mucin which most probably competed with gellan gum in divalent cations binding. The observations presented in this study may be important in terms of potential application of gellan gum as a potential carrier in drug delivery systems.

  11. A novel approach for over-expression, characterization, and isotopic enrichment of a homogeneous species of acyl carrier protein from Plasmodium falciparum

    International Nuclear Information System (INIS)

    Sharma, Shailendra Kumar; Modak, Rahul; Sharma, Shilpi; Sharma, Alok Kumar; Sarma, Siddhartha P.; Surolia, Avadhesha; Surolia, Namita

    2005-01-01

    Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis by transferring the acyl groups from one enzyme to another for the completion of the fatty acid synthesis cycle. Holo-ACP is the obligatory substrate for the synthesis of acyl-ACPs which act as the carrier and donor for various metabolic reactions. Despite its interactions with numerous proteins in the cell, its mode of interaction is poorly understood. Here, we report the over-expression of PfACP in minimal medium solely in its holo form and in high yield. Expression in minimal media provides a means to isotopically label PfACP for high resolution multi-nuclear and multi-dimensional NMR studies. Indeed, the proton-nitrogen correlated NMR spectrum exhibits very high chemical shift dispersion and resolution. We also show that holo-PfACP thus expressed is amenable to acylation reactions using Escherichia coli acyl-ACP synthetase as well as by standard chemical methods

  12. Expression of Vibrio harveyi acyl-ACP synthetase allows efficient entry of exogenous fatty acids into the Escherichia coli fatty acid and lipid A synthetic pathways.

    Science.gov (United States)

    Jiang, Yanfang; Morgan-Kiss, Rachael M; Campbell, John W; Chan, Chi Ho; Cronan, John E

    2010-02-02

    Although the Escherichia coli fatty acid synthesis (FAS) pathway is the best studied type II fatty acid synthesis system, a major experimental limitation has been the inability to feed intermediates into the pathway in vivo because exogenously supplied free fatty acids are not efficiently converted to the acyl-acyl carrier protein (ACP) thioesters required by the pathway. We report that expression of Vibrio harveyi acyl-ACP synthetase (AasS), a soluble cytosolic enzyme that ligates free fatty acids to ACP to form acyl-ACPs, allows exogenous fatty acids to enter the E. coli fatty acid synthesis pathway. The free fatty acids are incorporated intact and can be elongated or directly incorporated into complex lipids by acyltransferases specific for acyl-ACPs. Moreover, expression of AasS strains and supplementation with the appropriate fatty acid restored growth to E. coli mutant strains that lack essential fatty acid synthesis enzymes. Thus, this strategy provides a new tool for circumventing the loss of enzymes essential for FAS function.

  13. Acylation Enhances, but Is Not Required for, the Cytotoxic Activity of Mannheimia haemolytica Leukotoxin in Bighorn Sheep.

    Science.gov (United States)

    Batra, Sai A; Shanthalingam, Sudarvili; Munske, Gerhard R; Raghavan, Bindu; Kugadas, Abirami; Bavanthasivam, Jegarubee; Highlander, Sarah K; Srikumaran, Subramaniam

    2015-10-01

    Mannheimia haemolytica causes pneumonia in domestic and wild ruminants. Leukotoxin (Lkt) is the most important virulence factor of the bacterium. It is encoded within the four-gene lktCABD operon: lktA encodes the structural protoxin, and lktC encodes a trans-acylase that adds fatty acid chains to internal lysine residues in the protoxin, which is then secreted from the cell by a type 1 secretion system apparatus encoded by lktB and lktD. It has been reported that LktC-mediated acylation is necessary for the biological effects of the toxin. However, an LktC mutant that we developed previously was only partially attenuated in its virulence for cattle. The objective of this study was to elucidate the role of LktC-mediated acylation in Lkt-induced cytotoxicity. We performed this study in bighorn sheep (Ovis canadensis) (BHS), since they are highly susceptible to M. haemolytica infection. The LktC mutant caused fatal pneumonia in 40% of inoculated BHS. On necropsy, a large number of necrotic polymorphonuclear leukocytes (PMNs) were observed in the lungs. Lkt from the mutant was cytotoxic to BHS PMNs in an in vitro cytotoxicity assay. Flow cytometric analysis of mutant Lkt-treated PMNs revealed the induction of necrosis. Scanning electron microscopic analysis revealed the presence of pores and blebs on mutant-Lkt-treated PMNs. Mass spectrometric analysis confirmed that the mutant secreted an unacylated Lkt. Taken together, these results suggest that acylation is not necessary for the cytotoxic activity of M. haemolytica Lkt but that it enhances the potency of the toxin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.

    Science.gov (United States)

    Pannkuk, Evan L; Blair, Hannah B; Fischer, Amy E; Gerdes, Cheyenne L; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-01-01

    Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Acyl-CoA synthetase activity links wild-type but not mutant a-Synuclein to brain arachidonate metabolism

    DEFF Research Database (Denmark)

    Golovko, Mikhail; Rosenberger, Thad; Færgeman, Nils J.

    2006-01-01

    Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of alpha-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-(14)C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using......, our data demonstrate that alpha-synuclein has a major role in brain 20:4n-6 metabolism through its modulation of endoplasmic reticulum-localized acyl-CoA synthetase activity, although mutant forms of alpha-synuclein fail to restore this activity....

  16. The C-Terminal O-S Acyl Shift Pathway under Acidic Condition to Propose Peptide-Thioesters

    Directory of Open Access Journals (Sweden)

    Bo Mi Kim

    2016-11-01

    Full Text Available Peptide-thioester is a pivotal intermediate for peptide ligation and N-, C-terminal cyclization. In this study, desired pathway and the side products of two C-terminal handles, hydroxyethylthiol (HET and hydroxypropylthiol (HPT are described in different conditions as well as kinetic studies. In addition, a new mechanism of C-terminal residue racemization is proposed on the basis of differentiation of products derived from the two C-terminal handles in preparing peptide thioesters through an acid-catalyzed tandem thiol switch, first by an intramolecular O-S acyl shift, and then by an intermolecular S-S exchange.

  17. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine

    DEFF Research Database (Denmark)

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman

    2004-01-01

    Several disorders of the small intestine are associated with disturbances in villus architecture. Thus, an understanding of the molecular mechanisms associated with the differentiation of villi represents an important step in the improvement of the understanding of small intestinal pathology......-CoA synthetase 5 pattern correlate with conversion of intestinal epithelial cells to a gastric phenotype. These results suggest that deranged acyl-CoA synthetase 5 expression, synthesis, and activity are closely related to the state of villus architecture and epithelial homeostasis in human small intestine....

  18. Comparison of the effects of growth hormone on acylated ghrelin and following acute intermittent exercise in two levels of obesity

    Directory of Open Access Journals (Sweden)

    Majid Gholipour

    2013-08-01

    Full Text Available Background: The prevalence of obesity has risen enormously over the past few decad-es. Both food intake (Appetite and energy expenditure can influence body weight. Acylated ghrelin enhances appetite, and its plasma level is suppressed by growth horm-one. The present study, examines the effects of an intermittent exercise with progress-ive intensities on acylated ghrelin, appetite, and growth hormone in inactive male students with two levels of obesity.Methods: Eleven inactive males were allocated into two groups on the basis of their body mass index (BMI. Six subjects in group one, BMI= 31.18±0.92 kg/m2, and five subjects in group two, BMI= 36.94±2.25 kg/m2, ran on the treadmill with progressive intensities of 50, 60, 70 and 80% of VO2max for 10, 10, 5, and 2 min respectively. Blood samples were collected before the exercise (as the resting values, after each workload (during the exercise, and at 30, 60, and 120 min (during recovery.Results: Plasma acylated ghrelin concentrations and hunger ratings in two groups were decreased and remained significantly lower than resting values (P=0.008 and P=0.002 respectively at the end of the trial and there was no significant differences between groups. Growth hormone levels in two groups were increased and remained significant-ly higher than resting values (groups one P=0.012, group two P=0.005 at the end of the trial and there was no significant differences between groups. In addition, there were no significant differences between area under the curves (AUC values over total periods for acylated ghrelin, hunger ratings, and growth hormone in two groups.Conclusion: These findings indicate that individuals with two levels of obesity have the same response to the different intensities of treadmill running and two hours thereafter during recovery period, which can be considered for designing a more effective weighting loss training program.

  19. Formation of N-acyl-phosphatidylethanolamine and N-acylethanolamine (including anandamide) during glutamate-induced neurotoxicity

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Moesgaard, B.; Hansen, H.H.

    1999-01-01

    N-acyl-phosphatidylethanolamine (NAPE) is present in very small amounts in mammalian tissues (less than 0.1% of total phospholipids). However, NAPE as well as its degradation production, N-acylethanolamine (NAE), can be formed in certain neuronal tissues in response to increased [Ca ](i). A high...... activation of the N-methyl-D-aspartate-receptor. Both NAPE and, to a lesser extent, NAE accumulate in a linear fashion for many hours while at the same time the neurons are dying. Likewise, in neurons prelabeled with C-arachidonic acid, C-arachidonic acid-labeled NAPE, and anandamide (= N...

  20. Pilot batch production of specific-structured lipids by lipase-catalyzed interesterification: preliminary study on incorporation and acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik

    1998-01-01

    Effects of water content, reaction time and their relationships in the production of two types of specific-structured lipids (sn-MLM- and sn-LML-types: L-long chain fatty acids; M-medium chain fatty acids) by lipase-catalyzed interesterification in a solvent-free system were studied...... of two totally position-opposed lipids can be observed. Presumably these are caused by the different chain length of the fatty acids. The relationships between reaction time and water content are inverse and give a quantitative prediction of incorporation and acyl migration in selected reaction...