WorldWideScience

Sample records for detect bacterially infected

  1. Detecting Nosocomial Intrinsic Infections through Relating Bacterial ...

    African Journals Online (AJOL)

    Sierra Leone Journal of Biomedical Research ... Surgical procedures often lead to both intrinsic and extrinsic infections. ... This study demonstrated surgical procedures as precursory to intrinsic infections and that bacterial pathogens found on wounds and endogenous indicators of surgery are links to intrinsic infection.

  2. Detection of Peroxynitrite in Plants Exposed to Bacterial Infection.

    Science.gov (United States)

    Bellin, Diana; Delledonne, Massimo; Vandelle, Elodie

    2016-01-01

    Peroxynitrite is a highly reactive derivative of nitric oxide (NO) which is gaining attention in the plant biology community because it may play a role in NO signaling during biotic stress. Peroxynitrite can react with many different biomolecules, but its ability to nitrate the tyrosine residues of proteins is particularly important because this may regulate defense signaling in response to pathogens. The analysis of peroxynitrite levels in the context of its proposed defense role requires an accurate and specific detection method. Here, we describe a photometric assay using the fluorescent dye Hong Kong Green 2 as a specific and quantitative probe for peroxynitrite in Arabidopsis thaliana plants challenged with an avirulent strain of Pseudomonas syringae pv. tomato. This protocol includes the preparation of plant samples, the assay procedure, the measurement of peroxynitrite-specific fluorescence, and data presentation.

  3. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    rapid and easy-to-use test for bacterial infections. Clearly, this is a very ... detect antigens or specific antibodies, e.g. group A streptococcal antigen testing can be employed to reduce antibiotic use. Culture-based tests are often ... White blood cell count 12 000 cells/mm³; or the presence of >10% ...

  4. RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids

    Science.gov (United States)

    Abdullah, Zeinab; Schlee, Martin; Roth, Susanne; Mraheil, Mobarak Abu; Barchet, Winfried; Böttcher, Jan; Hain, Torsten; Geiger, Sergej; Hayakawa, Yoshihiro; Fritz, Jörg H; Civril, Filiz; Hopfner, Karl-Peter; Kurts, Christian; Ruland, Jürgen; Hartmann, Gunther; Chakraborty, Trinad; Knolle, Percy A

    2012-01-01

    Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill-defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG-I, MDA5 and STING thereby triggering interferon β production. Secreted Listeria nucleic acids also caused RIG-I-dependent IL-1β-production and inflammasome activation. The signalling molecule CARD9 contributed to IL-1β production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG-I provides a mechanistic explanation for efficient induction of immunity by live bacteria. PMID:23064150

  5. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...... about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria......-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial...

  6. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  7. Improved sensitivity for molecular detection of bacterial and Candida infections in blood.

    Science.gov (United States)

    Bacconi, Andrea; Richmond, Gregory S; Baroldi, Michelle A; Laffler, Thomas G; Blyn, Lawrence B; Carolan, Heather E; Frinder, Mark R; Toleno, Donna M; Metzgar, David; Gutierrez, Jose R; Massire, Christian; Rounds, Megan; Kennel, Natalie J; Rothman, Richard E; Peterson, Stephen; Carroll, Karen C; Wakefield, Teresa; Ecker, David J; Sampath, Rangarajan

    2014-09-01

    The rapid identification of bacteria and fungi directly from the blood of patients with suspected bloodstream infections aids in diagnosis and guides treatment decisions. The development of an automated, rapid, and sensitive molecular technology capable of detecting the diverse agents of such infections at low titers has been challenging, due in part to the high background of genomic DNA in blood. PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) allows for the rapid and accurate identification of microorganisms but with a sensitivity of about 50% compared to that of culture when using 1-ml whole-blood specimens. Here, we describe a new integrated specimen preparation technology that substantially improves the sensitivity of PCR/ESI-MS analysis. An efficient lysis method and automated DNA purification system were designed for processing 5 ml of whole blood. In addition, PCR amplification formulations were optimized to tolerate high levels of human DNA. An analysis of 331 specimens collected from patients with suspected bloodstream infections resulted in 35 PCR/ESI-MS-positive specimens (10.6%) compared to 18 positive by culture (5.4%). PCR/ESI-MS was 83% sensitive and 94% specific compared to culture. Replicate PCR/ESI-MS testing from a second aliquot of the PCR/ESI-MS-positive/culture-negative specimens corroborated the initial findings in most cases, resulting in increased sensitivity (91%) and specificity (99%) when confirmed detections were considered true positives. The integrated solution described here has the potential to provide rapid detection and identification of organisms responsible for bloodstream infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Development of a panel of recombinase polymerase amplification assays for detection of common bacterial urinary tract infection pathogens.

    Science.gov (United States)

    Raja, B; Goux, H J; Marapadaga, A; Rajagopalan, S; Kourentzi, K; Willson, R C

    2017-08-01

    To develop and evaluate the performance of a panel of isothermal real-time recombinase polymerase amplification (RPA) assays for detection of common bacterial urinary tract infection (UTI) pathogens. The panel included RPAs for Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Enterococcus faecalis. All five RPAs required reaction times of under 12 min to reach their lower limit of detection of 100 genomes per reaction or less, and did not cross-react with high concentrations of nontarget bacterial genomic DNA. In a 50-sample retrospective clinical study, the five-RPA assay panel was found to have a specificity of 100% (95% CI, 78-100%) and a sensitivity of 89% (95% CI, 75-96%) for UTI detection. The analytical and clinical validity of RPA for the rapid and sensitive detection of common UTI pathogens was established. Rapid identification of the causative pathogens of UTIs can be valuable in preventing serious complications by helping avoid the empirical treatment necessitated by traditional urine culture's 48-72-h turnaround time. The routine and widespread use of RPA to supplement or replace culture-based methods could profoundly impact UTI management and the emergence of multidrug-resistant pathogens. © 2017 The Society for Applied Microbiology.

  9. Detection of bacterial infection of agave plants by laser-induced fluorescence

    Science.gov (United States)

    Cervantes-Martinez, Jesus; Flores-Hernandez, Ricardo; Rodriguez-Garay, Benjamin; Santacruz-Ruvalcaba, Fernando

    2002-05-01

    Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.

  10. Bacterial Biofilm Infection Detected in Breast Implant-Associated Anaplastic Large-Cell Lymphoma.

    Science.gov (United States)

    Hu, Honghua; Johani, Khalid; Almatroudi, Ahmad; Vickery, Karen; Van Natta, Bruce; Kadin, Marshall E; Brody, Garry; Clemens, Mark; Cheah, Chan Yoon; Lade, Stephen; Joshi, Preeti Avinash; Prince, H Miles; Deva, Anand K

    2016-06-01

    A recent association between breast implants and the development of anaplastic large-cell lymphoma (ALCL) has been observed. The purpose of this study was to identify whether bacterial biofilm is present in breast implant-associated ALCL and, if so, to compare the bacterial microbiome to nontumor capsule samples from breast implants with contracture. Twenty-six breast implant-associated ALCL samples were analyzed for the presence of biofilm by real-time quantitative polymerase chain reaction, next-generation sequencing, fluorescent in situ hybridization, and scanning electron microscopy, and compared to 62 nontumor capsule specimens. Both the breast implant-associated ALCL and nontumor capsule samples yielded high mean numbers of bacteria (breast implant-associated ALCL, 4.7 × 10 cells/mg of tissue; capsule, 4.9 × 10 cells/mg of tissue). Analysis of the microbiome in breast implant-associated ALCL specimens showed significant differences with species identified in nontumor capsule specimens. There was a significantly greater proportion of Ralstonia spp. present in ALCL specimens compared with nontumor capsule specimens (p capsule specimens compared with breast implant-associated ALCL specimens (p < 0.001). Bacterial biofilm was visualized both on scanning electron microscopy and fluorescent in situ hybridization. This novel finding of bacterial biofilm and a distinct microbiome in breast implant-associated ALCL samples points to a possible infectious contributing cause. Breast implants are widely used in both reconstructive and aesthetic surgery, and strategies to reduce their contamination should be more widely studied and practiced. Risk, V.

  11. Detection of bacterial DNA in blood samples from febrile patients: underestimated infection or emerging contamination?

    NARCIS (Netherlands)

    Peters, Remco P. H.; Mohammadi, Tamimount; Vandenbroucke-Grauls, Christina M. J. E.; Danner, Sven A.; van Agtmael, Michiel A.; Savelkoul, Paul H. M.

    2004-01-01

    We applied real-time broad-range polymerase chain reaction (PCR) to detect bacteraemia in blood from febrile patients. Interpretation of amplification results in relation to clinical data and blood culture outcome was complex, although the reproducibility of the PCR results was good. Sequencing

  12. Radiometric detection of bacterial metabolism

    International Nuclear Information System (INIS)

    Camargo, E.E.; Wagner Junior, H.N.

    1979-01-01

    The measurement of 14 CO 2 produced by the bacterial oxidation of labelled compounds is discussed as a means of evaluating the bacterial metabolism. The following items are discussed:automated radiometric detection, types of graphs, clinical applications of the radiometric system and influential factors. Complementary studies on bacterial assimilation of substances are presented. (M.A.) [pt

  13. Metagenomic Diagnosis of Bacterial Infections

    Science.gov (United States)

    Nakamura, Shota; Maeda, Norihiro; Miron, Ionut Mihai; Yoh, Myonsun; Izutsu, Kaori; Kataoka, Chidoh; Honda, Takeshi; Yasunaga, Teruo; Nakaya, Takaaki; Kawai, Jun; Hayashizaki, Yoshihide; Horii, Toshihiro

    2008-01-01

    To test the ability of high-throughput DNA sequencing to detect bacterial pathogens, we used it on DNA from a patient’s feces during and after diarrheal illness. Sequences showing best matches for Campylobacter jejuni were detected only in the illness sample. Various bacteria may be detectable with this metagenomic approach. PMID:18976571

  14. Bacterial Skin Infections

    Science.gov (United States)

    ... other immune disorders, or hepatitis People who are undergoing chemotherapy or treatment with other drugs that suppress the immune system Skin that is inflamed or damaged by sunburn, scratching, or other trauma is more likely to become infected. In fact, ...

  15. (PCR) in the diagnosis of bacterial infections

    African Journals Online (AJOL)

    ... bacterial infections that can be diagnosed using the technique which include among others; Tuberculosis (TB), whooping cough, brain abscesses and spinal infection, otitis media with effusion, Mycoplasmal pneumonia, endophthalmitis and bacterial meningitis. Keywords: Polymerase chain reaction, Diagnosis, Bacteria, ...

  16. Bacterial biofilm and associated infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jamal

    2018-01-01

    Full Text Available Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living. Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.

  17. Biosensors for Whole-Cell Bacterial Detection

    Science.gov (United States)

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  18. Role of the chronic bacterial infection in urinary bladder carcinogenesis

    International Nuclear Information System (INIS)

    Higgy, N.A.

    1985-01-01

    The purpose of this thesis was to determine whether or not bacterial infection of the urinary bladder had a role in urinary bladder carcinogenesis. To investigate this proposition, four separate studies were conducted. The first study developed an experimental animal model where bacterial infection of the urinary bladder could be introduced and maintained for a period in excess of one year. The method of infection, inoculation of bacteria (Escherichia coli type 04) subserosally into the vesical wall, successfully caused persistent infection in the majority of animals. In the second study the temporal effects of bacterial infection on the induction of urothelial ornithine decarboxylase (ODC) and 3 H-thymidine uptake and DNA synthesis were examined. Bacterial infection of the urinary bladder induced urothelial ODC with a peak in enzyme activity 6 hr after infection. 3 H-Thymidine uptake and DNA synthesis peaked 48 hr after infection and coincided with the urothelial hyperplasia that occurred in response to the infection. In the third study the specific bladder carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) was given to rats concurrent with the urinary bacterial infection. In the fourth study rats were administered sodium nitrate and either dibutylamine or piperazine in the drinking water. The infected group developed bladder tumors while none were detected in the non-infected rats. From these studies it may be concluded that bacterial infection may have a significant role in the process of urinary bladder carcinogenesis

  19. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  20. Fluoroquinolones as imaging agents for bacterial infection.

    Science.gov (United States)

    Naqvi, Syed Ali Raza; Drlica, Karl

    2017-10-31

    Diagnosis of deep-seated bacterial infection is difficult, as neither standard anatomical imaging nor radiolabeled, autologous leukocytes distinguish sterile inflammation from infection. Two recent imaging efforts are receiving attention: (1) radioactive derivatives of sorbitol show good specificity with Gram-negative bacterial infections, and (2) success in combining anatomical and functional imaging for cancer diagnosis has rekindled interest in 99m Tc-fluoroquinolone-based imaging. With the latter, computed tomography (CT) would be combined with single-photon-emission-computed tomography (SPECT) to detect 99m Tc-fluoroquinolone-bacterial interactions. The present minireview provides a framework for advancing fluoroquinolone-based imaging by identifying gaps in our understanding of the process. One issue is the reliance of 99m Tc labeling on the reduction of sodium pertechnetate, which can lead to colloid formation and loss of specificity. Specificity problems may be reduced by altering the quinolone structure (for example, switching from ciprofloxacin to sitafloxacin). Another issue is the uncharacterized nature of 99m Tc-ciprofloxacin binding to, or sequestration in, bacteria: specific interactions with DNA gyrase, an intracellular fluoroquinolone target, are unlikely. Labeling with 68 Ga rather than 99m Tc enables detection by positron emission tomography, but with similar biological uncertainties. Replacing the C6-F of the fluoroquinolone with 18 F provides an alternative to pertechnetate and gallium that may lead to imaging based on drug interactions with gyrase. Gyrase-based imaging requires knowledge of fluoroquinolone action, which we update. We conclude that quinolone-based probes show promise for the diagnosis of infection, but improvements in specificity and sensitivity are needed. These improvements include the optimization of the quinolone structure; such chemistry efforts can be accelerated by refining microbiological assays.

  1. Tobacco use increases susceptibility to bacterial infection

    Directory of Open Access Journals (Sweden)

    Demuth Donald R

    2008-12-01

    Full Text Available Abstract Active smokers and those exposed to secondhand smoke are at increased risk of bacterial infection. Tobacco smoke exposure increases susceptibility to respiratory tract infections, including tuberculosis, pneumonia and Legionnaires disease; bacterial vaginosis and sexually transmitted diseases, such as chlamydia and gonorrhoea; Helicobacter pylori infection; periodontitis; meningitis; otitis media; and post-surgical and nosocomial infections. Tobacco smoke compromises the anti-bacterial function of leukocytes, including neutrophils, monocytes, T cells and B cells, providing a mechanistic explanation for increased infection risk. Further epidemiological, clinical and mechanistic research into this important area is warranted.

  2. Recurrent upper airway infections and bacterial biofilms.

    Science.gov (United States)

    Galli, J; Ardito, F; Calò, L; Mancinelli, L; Imperiali, M; Parrilla, C; Picciotti, P M; Fadda, G

    2007-04-01

    Bacterial biofilms identified in various medical devices used in otorhinolaryngology, including tympanostomy tubes, voice prostheses, and cochlear implants, can directly colonise mucosal tissues. The upper airways seem to be at high risk for this type of colonisation. Chronic and/or recurrent upper airway infections may be related to the complex structural and biochemical (quorum sensing) organisation of the biofilm which interferes with the activity of antibiotics (including those with proven in vitro efficacy), thus promoting the establishment of a chronic infection eradicable only by surgical treatment. Biofilm formation plays a role in upper respiratory infections: it not only explains the resistance of these infections to antibiotic therapy but it also represents an important element that contributes to the maintenance of a chronic inflammatory reaction. To document the presence of biofilms in surgical tissue specimens from patients with recurrent infection diseases, and identify their possible role in the chronicity of these infectious processes. We examined 32 surgical specimens from the upper respiratory tract (tonsils, adenoids, mucosa from the ethmoid and maxillary sinuses) of 28 patients (20 adults, eight children) with upper airway infections that had persisted despite repeated treatment with anti-inflammatory agents and antibiotics with demonstrated in vitro efficacy. Tissues were cultured using conventional methods and subjected to scanning electron microscopy for detection of biofilm formation. Over 80 per cent (26/32; 81.3 per cent) of the tissue specimens were culture-positive. Bacterial biofilms (associated in most cases with coccoid bacteria) were observed in 65.6 per cent of the tissue samples.

  3. Bacteriophages for detection of bacterial pathogens

    International Nuclear Information System (INIS)

    Kutateladze, M.

    2009-01-01

    The G. Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia) is one of the most famous institutions focused on bacteriophage research for the elaboration of appropriate phage methodologies for human and animal protection. The main direction of the institute is the study and production of bacteriophages against intestinal disorders (dysentery, typhoid, intesti) and purulent-septic infections (staphylococcus, streptococcus, pyophage, etc.). These preparations were successfully introduced during the Soviet era, and for decades were used throughout the former Soviet Union and in other Socialist countries for the treatment, prophylaxis, and diagnosis of various infectious diseases, including those caused by antibiotic-resistant bacterial strains. Bacteriophages were widely used for identifying and detecting infections caused by the most dangerous pathogens and causative agents of epidemiological outbreaks. The specific topic of this presentation is the phage typing of bacterial species, which can be an important method for epidemiological diagnostics. Together with different genetic methodologies - such as PCR-based methods, PFGE, plasmid fingerprinting, and ribosomal typing - phage typing is one method for identifying bacterial pathogens. The method has a high percentage of determination of phage types, high specificity of reaction, and is easy for interpretation and use by health workers. Phage typing was applied for inter-species differentiation of different species of Salmonella, S. typhi, Brucella spp, Staphylococcus aureus, E. col,i Clostridium deficile, Vibrio cholerae, Yersinia pestis, Yersinia enterocolitica, Lysteria monocytogenes, Clostridium perfringens, Clostridium tetani, plant pathogens, and other bacterial pathogens. In addition to addressing the utility and efficacy of phage typing, the paper will discuss the isolation and selection of diagnostic typing phages for interspecies differentiation of pathogens that is necessary

  4. Microconductometric Detection of Bacterial Contamination

    Directory of Open Access Journals (Sweden)

    Sarra EL ICHI

    2014-05-01

    Full Text Available Several approaches can be used for the electrochemical detection of bacterial contamination. Their performance can be assessed by the ability to detect bacteria at very low concentrations within a short-time response. We have already demonstrated that a conductometric biosensor based on interdigitated thin-film electrodes is adapted to detect bacteria in clinical samples like serum and compatible with microfluidic fabrication. The type of interdigitated microelectrodes influences the performance of the biosensor. This was shown by the results obtained in this work. A magnetic-nanoparticles based immunosensor was designed using gold screen-printed electrodes. The immunosensor was able to specifically detect E. coli in the range of 1-103 CFU mL-1. The new transducer offered a larger active sensing surface with a lower cost and a robust material. Accuracy of the conductance value was enhanced by differential measurements. The immunosensor is compatible with a microfluidic system.

  5. Procalcitonin as Predictor of Bacterial Infection in Meconium Aspiration Syndrome.

    Science.gov (United States)

    K, Mahendiran; Batra, Prerna; Faridi, M M A; Singh, N P

    2017-12-29

     There is a lack of definite consensus on indications for initiating antibiotics in neonates with meconium aspiration syndrome (MAS), instigating researchers to search for a biomarker that can help differentiate MAS from MAS with bacterial infection.  Our primary objective was to compare serum procalcitonin (PCT) levels in full-term vigorous neonates having MAS with or without bacterial infection.  Seventy term vigorous neonates with diagnosis of MAS were enrolled. Blood samples were taken for sepsis screen, C-reactive protein (CRP), PCT, and blood culture at 6 ± 2 hours of respiratory distress. Neonates were categorized into group 1 (MAS without bacterial infection) and group 2 (MAS with bacterial infection) based on blood culture. The duration of our study was 18 months.  Mean ± standard deviation PCT level was 2.52 ± 3.99 in group 1 and 2.71 ± 4.22 in group 2, which was comparable. At cutoff of 0.1 ng/mL, PCT had a sensitivity of 90% and specificity of 8% in detecting bacterial infection. Mean total leukocyte count, absolute neutrophil count, immature to total leucocyte ratio, microerythrocyte sedimentation rate, and CRP were comparable.  Though PCT is an early and reliable marker of neonatal infection, the levels were increased in neonates with MAS irrespective of the presence of bacterial infection. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Bacterial contamination of platelet concentrates: pathogen detection and inactivation methods

    Directory of Open Access Journals (Sweden)

    Dana Védy

    2009-04-01

    Full Text Available Whereas the reduction of transfusion related viral transmission has been a priority during the last decade, bacterial infection transmitted by transfusion still remains associated to a high morbidity and mortality, and constitutes the most frequent infectious risk of transfusion. This problem especially concerns platelet concentrates because of their favorable bacterial growth conditions. This review gives an overview of platelet transfusion-related bacterial contamination as well as on the different strategies to reduce this problem by using either bacterial detection or inactivation methods.

  7. Role of quorum sensing in bacterial infections

    Science.gov (United States)

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  8. Update on bacterial nosocomial infections.

    Science.gov (United States)

    Bereket, W; Hemalatha, K; Getenet, B; Wondwossen, T; Solomon, A; Zeynudin, A; Kannan, S

    2012-08-01

    With increasing use of antimicrobial agents and advance in lifesaving medical practices which expose the patients for invasive procedures, are associated with the ever increasing of nosocomial infections. Despite an effort in hospital infection control measures, health care associated infections are associated with significant morbidity and mortality adding additional health care expenditure which may leads to an economic crisis. The problem is further complicated with the emergence of difficult to treat multidrug resistant (MDR) microorganism in the hospital environment. Virtually every pathogen has the potential to cause infection in hospitalized patients but only limited number of both gram positive and gram negative bacteria are responsible for the majority of nosocomial infection. Among them Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Enterococci takes the leading. Many intrinsic and extrinsic factors predispose hospitalized patients for these pathogens. Following simple hospital hygienic practices and strictly following standard medical procedures greatly reduces infection to a significant level although not all nosocomial infections are avoidable. The clinical spectrum caused by nosocomial pathogens depend on body site of infection, the involving pathogen and the patient's underlying condition. Structural and non structural virulence factors associated with the bacteria are responsible for the observed clinical manifestation. Bacteria isolation and characterization from appropriate clinical materials with antimicrobial susceptibility testing is the standard of laboratory diagnosis.

  9. Sustainable strategies for treatment of bacterial infections

    DEFF Research Database (Denmark)

    Molin, Søren

    2014-01-01

    Resistance to antibiotics and the consequential failures of treatment based on antibiotics makes microbial infections a major threat to human health. This problem combined with rapidly increasing life-style disease problems challenge our healtcare system as well as the pharma industry, and if we do...... not in a foreseeable future develop novel approaches and strategies to combat bacterial infections, many people will be at risk of dying from even trivial infections for which we until recently had highly effective antibiotics. We have for a number of years investigated chronic bacterial lung infections in patients...... suffering from cystic fibrosis. These infections are optimal model scenarios for studies of antibiotic resistance development and microbial adaptation, and we suggest that this information should be useful when designing new anti-microbial strategies. In this respect it will be important to choose...

  10. Immunity to bacterial infection in the chicken.

    Science.gov (United States)

    Wigley, Paul

    2013-11-01

    Bacterial infections remain important to the poultry industry both in terms of animal and public health, the latter due to the importance of poultry as a source of foodborne bacterial zoonoses such as Salmonella and Campylobacter. As such, much focus of research to the immune response to bacterial infection has been to Salmonella. In this review we will focus on how research on avian salmonellosis has developed our understanding of immunity to bacteria in the chicken from understanding the role of TLRs in recognition of bacterial pathogens, through the role of heterophils, macrophages and γδ lymphocytes in innate immunity and activation of adaptive responses to the role of cellular and humoral immunity in immune clearance and protection. What is known of the immune response to other bacterial infections and in particular infections that have emerged recently as major problems in poultry production including Campylobacter jejuni, Avian Pathogenic Escherichia coli, Ornithobacterium rhinotracheale and Clostridium perfringens are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  12. Atypical bacterial pneumonia in the HIV-infected population.

    Science.gov (United States)

    Head, Breanne M; Trajtman, Adriana; Rueda, Zulma V; Vélez, Lázaro; Keynan, Yoav

    2017-01-01

    Human immunodeficiency virus (HIV)-infected individuals are more susceptible to respiratory tract infections by other infectious agents (viruses, bacteria, parasites, and fungi) as their disease progresses to acquired immunodeficiency syndrome. Despite effective antiretroviral therapy, bacterial pneumonia (the most frequently occurring HIV-associated pulmonary illness) remains a common cause of morbidity and mortality in the HIV-infected population. Over the last few decades, studies have looked at the role of atypical bacterial pneumonia (i.e. pneumonia that causes an atypical clinical presentation or responds differently to typical therapeutics) in association with HIV infection. Due to the lack of available diagnostic strategies, the lack of consideration, and the declining immunity of the patient, HIV co-infections with atypical bacteria are currently believed to be underreported. Thus, following an extensive database search, this review aimed to highlight the current knowledge and gaps regarding atypical bacterial pneumonia in HIV. The authors discuss the prevalence of Chlamydophila pneumoniae , Mycoplasma pneumoniae , Coxiella burnetii , Legionella species and others in the HIV-infected population as well as their clinical presentation, methods of detection, and treatment. Further studies looking at the role of these microbes in association with HIV are required. Increased knowledge of these atypical bacteria will lead to a more rapid diagnosis of these infections, resulting in an improved quality of life for the HIV-infected population.

  13. Respiratory bacterial infections in cystic fibrosis

    DEFF Research Database (Denmark)

    Ciofu, Oana; Hansen, Christine R; Høiby, Niels

    2013-01-01

    PURPOSE OF REVIEW: Bacterial respiratory infections are the main cause of morbidity and mortality in patients with cystic fibrosis (CF). Pseudomonas aeruginosa remains the main pathogen in adults, but other Gram-negative bacteria such as Achromobacter xylosoxidans and Stenotrophomonas maltophilia...

  14. Immunodiagnostic Techniques for Bacterial Infections

    Science.gov (United States)

    1981-01-01

    Seru7 Antigens (in vitro) Detected in Viral: Plant viruses Plant juice, tissue-culture fluid Influenza A2 Tissue- culture, chic], ciiorioallantoic fluid...Am. J. Clin. Path. 56:471-474, 1971. 29 18. Ryte] , M.W., Dee, T.H. , FerstenfeId, J.E. and HensIey, G.T. Possible pathogenetic role of capsular

  15. Infection of Bacterial Endosymbionts in Insects: A Comparative Study of Two Techniques viz PCR and FISH for Detection and Localization of Symbionts in Whitefly, Bemisia tabaci.

    Directory of Open Access Journals (Sweden)

    Harpreet Singh Raina

    Full Text Available Bacterial endosymbionts have been associated with arthropods and large number of the insect species show interaction with such bacteria. Different approaches have been used to understand such symbiont- host interactions. The whitefly, Bemisia tabaci, a highly invasive agricultural pest, harbors as many as seven different bacterial endosymbionts. These bacterial endosymbionts are known to provide various nutritional, physiological, environmental and evolutionary benefits to its insect host. In this study, we have tried to compare two techniques, Polymerase chain reaction (PCR and Flourescence in situ Hybridisation (FISH commonly used for identification and localization of bacterial endosymbionts in B. tabaci as it harbors one of the highest numbers of endosymbionts which have helped it in becoming a successful global invasive agricultural pest. The amplified PCR products were observed as bands on agarose gel by electrophoresis while the FISH samples were mounted on slides and observed under confocal microscope. Analysis of results obtained by these two techniques revealed the advantages of FISH over PCR. On a short note, performing FISH, using LNA probes proved to be more sensitive and informative for identification as well as localization of bacterial endosymbionts in B. tabaci than relying on PCR. This study would help in designing more efficient experiments based on much reliable detection procedure and studying the role of endosymbionts in insects.

  16. Molecular analysis of cross-bacterial contamination detected in ...

    African Journals Online (AJOL)

    ... the isolate Delftia acidovorans BP(R2) and it is also coupled to protein with molecular weight 25-26 KDa. As well as, this bacterial contamination was the reason for the false positive results observed during the detection of HCV infections. Journal of Applied Sciences and Environmental Management Vol. 9(1) 2005: 5-10.

  17. Optimising Antibiotic Usage to Treat Bacterial Infections

    Science.gov (United States)

    Paterson, Iona K.; Hoyle, Andy; Ochoa, Gabriela; Baker-Austin, Craig; Taylor, Nick G. H.

    2016-11-01

    The increase in antibiotic resistant bacteria poses a threat to the continued use of antibiotics to treat bacterial infections. The overuse and misuse of antibiotics has been identified as a significant driver in the emergence of resistance. Finding optimal treatment regimens is therefore critical in ensuring the prolonged effectiveness of these antibiotics. This study uses mathematical modelling to analyse the effect traditional treatment regimens have on the dynamics of a bacterial infection. Using a novel approach, a genetic algorithm, the study then identifies improved treatment regimens. Using a single antibiotic the genetic algorithm identifies regimens which minimise the amount of antibiotic used while maximising bacterial eradication. Although exact treatments are highly dependent on parameter values and initial bacterial load, a significant common trend is identified throughout the results. A treatment regimen consisting of a high initial dose followed by an extended tapering of doses is found to optimise the use of antibiotics. This consistently improves the success of eradicating infections, uses less antibiotic than traditional regimens and reduces the time to eradication. The use of genetic algorithms to optimise treatment regimens enables an extensive search of possible regimens, with previous regimens directing the search into regions of better performance.

  18. Empiric Antibiotic Therapy of Nosocomial Bacterial Infections.

    Science.gov (United States)

    Reddy, Pramod

    2016-01-01

    Broad-spectrum antibiotics are commonly used by physicians to treat various infections. The source of infection and causative organisms are not always apparent during the initial evaluation of the patient, and antibiotics are often given empirically to patients with suspected sepsis. Fear of attempting cephalosporins and carbapenems in penicillin-allergic septic patients may result in significant decrease in the spectrum of antimicrobial coverage. Empiric antibiotic therapy should sufficiently cover all the suspected pathogens, guided by the bacteriologic susceptibilities of the medical center. It is important to understand the major pharmacokinetic properties of antibacterial agents for proper use and to minimize the development of resistance. In several septic patients, negative cultures do not exclude active infection and positive cultures may not represent the actual infection. This article will review the important differences in the spectrum of commonly used antibiotics for nosocomial bacterial infections with a particular emphasis on culture-negative sepsis and colonization.

  19. Secondary Bacterial Infections Associated with Influenza Pandemics

    Directory of Open Access Journals (Sweden)

    Denise E. Morris

    2017-06-01

    Full Text Available Lower and upper respiratory infections are the fourth highest cause of global mortality (Lozano et al., 2012. Epidemic and pandemic outbreaks of respiratory infection are a major medical concern, often causing considerable disease and a high death toll, typically over a relatively short period of time. Influenza is a major cause of epidemic and pandemic infection. Bacterial co/secondary infection further increases morbidity and mortality of influenza infection, with Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus reported as the most common causes. With increased antibiotic resistance and vaccine evasion it is important to monitor the epidemiology of pathogens in circulation to inform clinical treatment and development, particularly in the setting of an influenza epidemic/pandemic.

  20. Bacterial Adaptation during Chronic Respiratory Infections

    Directory of Open Access Journals (Sweden)

    Louise Cullen

    2015-03-01

    Full Text Available Chronic lung infections are associated with increased morbidity and mortality for individuals with underlying respiratory conditions such as cystic fibrosis (CF and chronic obstructive pulmonary disease (COPD. The process of chronic colonisation allows pathogens to adapt over time to cope with changing selection pressures, co-infecting species and antimicrobial therapies. These adaptations can occur due to environmental pressures in the lung such as inflammatory responses, hypoxia, nutrient deficiency, osmolarity, low pH and antibiotic therapies. Phenotypic adaptations in bacterial pathogens from acute to chronic infection include, but are not limited to, antibiotic resistance, exopolysaccharide production (mucoidy, loss in motility, formation of small colony variants, increased mutation rate, quorum sensing and altered production of virulence factors associated with chronic infection. The evolution of Pseudomonas aeruginosa during chronic lung infection has been widely studied. More recently, the adaptations that other chronically colonising respiratory pathogens, including Staphylococcus aureus, Burkholderia cepacia complex and Haemophilus influenzae undergo during chronic infection have also been investigated. This review aims to examine the adaptations utilised by different bacterial pathogens to aid in their evolution from acute to chronic pathogens of the immunocompromised lung including CF and COPD.

  1. Bacterial diversity of symptomatic primary endodontic infection by clonal analysis

    Directory of Open Access Journals (Sweden)

    Letícia Maria Menezes NÓBREGA

    Full Text Available Abstract The aim of this study was to explore the bacterial diversity of 10 root canals with acute apical abscess using clonal analysis. Samples were collected from 10 patients and submitted to bacterial DNA isolation, 16S rRNA gene amplification, cloning, and sequencing. A bacterial genomic library was constructed and bacterial diversity was estimated. The mean number of taxa per canal was 15, ranging from 11 to 21. A total of 689 clones were analyzed and 76 phylotypes identified, of which 47 (61.84% were different species and 29 (38.15% were taxa reported as yet-uncultivable or as yet-uncharacterized species. Prevotella spp., Fusobacterium nucleatum, Filifactor alocis, and Peptostreptococcus stomatis were the most frequently detected species, followed by Dialister invisus, Phocaeicola abscessus, the uncharacterized Lachnospiraceae oral clone, Porphyromonas spp., and Parvimonas micra. Eight phyla were detected and the most frequently identified taxa belonged to the phylum Firmicutes (43.5%, followed by Bacteroidetes (22.5% and Proteobacteria (13.2%. No species was detected in all studied samples and some species were identified in only one case. It was concluded that acute primary endodontic infection is characterized by wide bacterial diversity and a high intersubject variability was observed. Anaerobic Gram-negative bacteria belonging to the phylum Firmicutes, followed by Bacteroidetes, were the most frequently detected microorganisms.

  2. MICROBIOLOGICAL DIAGNOSTICS OF THE MENINGOCOCCAL INFECTION AND PURULENT BACTERIAL MENINGITIS

    Directory of Open Access Journals (Sweden)

    L. A. Kraeva

    2011-01-01

    Full Text Available Abstract. In the review modern data on taxonomy, biological features and clinical significance of agent of meningococcal infection and bacterial purulent meningitis are presented. Methods of laboratory diagnostics as well as recommendations about use of high-quality culture media and diagnostic kits for isolation and identification of microorganisms are described. Modern techniques to detect sensitivity of bacteria to antibiotics are proposed.

  3. Targeted imaging of bacterial infections : advances, hurdles and hopes

    NARCIS (Netherlands)

    van Oosten, Marleen; Hahn, Markus; Crane, Lucia M. A.; Pleijhuis, Rick G.; Francis, Kevin P.; van Dijl, Jan Maarten; van Dam, Gooitzen M.

    2015-01-01

    Bacterial infections represent an increasing problem in modern health care, in particular due to ageing populations and accumulating bacterial resistance to antibiotics. Diagnosis is rarely straightforward and consequently treatment is often delayed or indefinite. Therefore, novel tools that can be

  4. Detection of antibiotic resistance in clinical bacterial strains from pets

    OpenAIRE

    Poeta, P.; Rodrigues, J.

    2008-01-01

    The identification of different bacterial strains and the occurrence of antibiotic resistance were investigated in several infection processes of pets as skin abscess with purulent discharge, bronco alveolar fluid, earwax, urine, mammary, and eye fluid. Streptococcus spp. and Staphylococcus spp. were the most detected in the different samples. A high frequency of antimicrobial resistance has been observed and this could reflect the wide use of antimicrobials in pets, making the effectiveness ...

  5. Role of Honey in Topical and Systemic Bacterial Infections.

    Science.gov (United States)

    Hussain, Muhammad Barkaat

    2018-01-01

    The development of bacterial resistance to antibiotics has made it more difficult and expensive to treat infections. Honey is getting worldwide attention as a topical therapeutic agent for wound infections and potential future candidate for systemic infections. The purpose of this review was to summarise different antibacterial bio-active compounds in honey, their synergistic interaction and their clinical implications in topical and systemic infections. In addition, contemporary testing methods for evaluating peroxide and non-peroxide antibacterial activity of honey were also critically appraised. MEDLINE, EMBASE, Cochrane Library, Pub Med, reference lists and databases were used to review the literature. Honey contains several unique antibacterial components. These components are believed to act on diverse bacterial targets, are broad spectrum, operate synergistically, prevent biofilm formation, and decrease production of virulence factors. Moreover, honey has the ability to block bacterial communication (quorum sensing), and therefore, it is unlikely that bacteria develop resistance against honey. Bacterial resistance against honey has not been documented so far. Unlike conventional antibiotics, honey only targets pathogenic bacteria without disturbing the growth of normal gastrointestinal flora when taken orally. It also contains prebiotics, probiotics, and zinc and enhances the growth of beneficial gut flora. The presence of such plethora of antibacterial properties in one product makes it a promising candidate not only in wound infections but also in systemic and particularly for gastrointestinal infections. Agar diffusion assay, being used for evaluating antibacterial activity of honey, is not the most appropriate and sensitive assay as it only detects non-peroxide activity when present at a higher level. Therefore, there is a need to develop more sensitive techniques that may be capable of detecting and evaluating different important components in honey as

  6. Bacterial infections of pulp and periodontal origin.

    Science.gov (United States)

    González-Moles, Miguel Angel; González, Nabila M

    2004-01-01

    The anatomical and structural characteristics of the pulp make this structure prone to altering as a result of, for instance, periodontal conditions (proximity), iatrogenic alterations, infections and involvement of vascular and nerve structures (it is surrounded by hard tissues that prevent expansion), to name just a few. Pulpitis is a process that courses with pain of varying intensity that allows us to determine the location of the lesion in clinical terms. Its evolution varies and may even progress to pulpar necrosis that in turn, produces neuritis-like pain. Diagnosis is established by means of clinical symptomatology and supported by X-rays, palpation of tissues at painful sites, application of electrical stimuli, heat, etc. Periodontitis is a bacterial infection originating in the apex. The most important form is the so-called acute apical periodontitis that arises as a result of a prior episode of pulpitis. It is characterized by acute pain located in the tooth, accompanied by the feeling of having a long-tooth. The patient refers being unable to chew on that side; there may be painful mobility of the tooth and an outflow of pus that alleviates symptoms. X-rays do not provide a lot of information, but may attest to a widening of the apical space. This pathology may disseminate to surrounding tissues, leading to conditions of considerable severity.

  7. Stress significantly increases mortality following a secondary bacterial respiratory infection

    Science.gov (United States)

    2012-01-01

    A variety of mechanisms contribute to the viral-bacterial synergy which results in fatal secondary bacterial respiratory infections. Epidemiological investigations have implicated physical and psychological stressors as factors contributing to the incidence and severity of respiratory infections and psychological stress alters host responses to experimental viral respiratory infections. The effect of stress on secondary bacterial respiratory infections has not, however, been investigated. A natural model of secondary bacterial respiratory infection in naive calves was used to determine if weaning and maternal separation (WMS) significantly altered mortality when compared to calves pre-adapted (PA) to this psychological stressor. Following weaning, calves were challenged with Mannheimia haemolytica four days after a primary bovine herpesvirus-1 (BHV-1) respiratory infection. Mortality doubled in WMS calves when compared to calves pre-adapted to weaning for two weeks prior to the viral respiratory infection. Similar results were observed in two independent experiments and fatal viral-bacterial synergy did not extend beyond the time of viral shedding. Virus shedding did not differ significantly between treatment groups but innate immune responses during viral infection, including IFN-γ secretion, the acute-phase inflammatory response, CD14 expression, and LPS-induced TNFα production, were significantly greater in WMS versus PA calves. These observations demonstrate that weaning and maternal separation at the time of a primary BHV-1 respiratory infection increased innate immune responses that correlated significantly with mortality following a secondary bacterial respiratory infection. PMID:22435642

  8. Bacterial infections in cynomolgus monkeys given small molecule immunomodulatory antagonists.

    Science.gov (United States)

    Price, Karen D

    2010-01-01

    Opportunistic infections (OIs) during the course of non-clinical toxicity studies can serve as a clinical indicator of immunosuppression. In monkeys, severity may be magnified since the possibility for fecal-oral and cage-to-cage transmission of bacteria exists, reserve capacity is low, and clinical signs of infection are not easily detected until the infectious process is well underway. This review summarizes a case study presented at the HESI-ILSI ITC-Sponsored workshop on Naturally Occurring Infections in Non-human Primates and Immunotoxicity Implications. It gives an overview on the impact of bacterial infections in monkeys on the development and regulatory assessment of three closely-related representative small molecule immunomodulatory (anti-inflammatory) drug candidates all inhibiting the same drug target. The infections, which sometimes progressed to bacteremia and death, originally manifested in the skin, upper respiratory tract, gastrointestinal tract, and less frequently as soft tissue abscesses. Infections were sporadic and not observed in all studies despite coverage of equivalent or higher systemic exposures or longer durations of treatment. To address concerns regarding inconsistency in the presentation and type of findings and their potential relationship to infection, steps were taken to identify causative agents (via culture, microscopy), implement various intervention and treatment regimens (supportive care, antibiotics, drug holiday), demonstrate reversibility of clinical and immune effects, and study major immune components/mechanisms affected (cytokine/stress protein profiling, immune cell phenotyping, and humoral/innate immune cell function tests). Appropriate diagnosis and characterization of the infection was critical to discrimination of these findings as a secondary pharmacologic effect rather than a direct drug-related target organ effect, and also guided clinical protocol design and regulatory acceptance.

  9. Bacterial Uropathogens in Urinary Tract Infection and Antibiotic ...

    African Journals Online (AJOL)

    BACKGROUND: Urinary tract infection (UTI) is one of the most common bacterial infections encountered by clinicians in developing countries. Area-specific monitoring studies aimed to gain knowledge about the type of pathogens responsible for urinary tract infections and their resistance patterns may help the clinician to ...

  10. New insights into valve-related intramural and intracellular bacterial diversity in infective endocarditis.

    Science.gov (United States)

    Oberbach, Andreas; Schlichting, Nadine; Feder, Stefan; Lehmann, Stefanie; Kullnick, Yvonne; Buschmann, Tilo; Blumert, Conny; Horn, Friedemann; Neuhaus, Jochen; Neujahr, Ralph; Bagaev, Erik; Hagl, Christian; Pichlmaier, Maximilian; Rodloff, Arne Christian; Gräber, Sandra; Kirsch, Katharina; Sandri, Marcus; Kumbhari, Vivek; Behzadi, Armirhossein; Behzadi, Amirali; Correia, Joao Carlos; Mohr, Friedrich Wilhelm; Friedrich, Maik

    2017-01-01

    In infective endocarditis (IE), a severe inflammatory disease of the endocardium with an unchanged incidence and mortality rate over the past decades, only 1% of the cases have been described as polymicrobial infections based on microbiological approaches. The aim of this study was to identify potential biodiversity of bacterial species from infected native and prosthetic valves. Furthermore, we compared the ultrastructural micro-environments to detect the localization and distribution patterns of pathogens in IE. Using next-generation sequencing (NGS) of 16S rDNA, which allows analysis of the entire bacterial community within a single sample, we investigated the biodiversity of infectious bacterial species from resected native and prosthetic valves in a clinical cohort of 8 IE patients. Furthermore, we investigated the ultrastructural infected valve micro-environment by focused ion beam scanning electron microscopy (FIB-SEM). Biodiversity was detected in 7 of 8 resected heart valves. This comprised 13 bacterial genera and 16 species. In addition to 11 pathogens already described as being IE related, 5 bacterial species were identified as having a novel association. In contrast, valve and blood culture-based diagnosis revealed only 4 species from 3 bacterial genera and did not show any relevant antibiotic resistance. The antibiotics chosen on this basis for treatment, however, did not cover the bacterial spectra identified by our amplicon sequencing analysis in 4 of 8 cases. In addition to intramural distribution patterns of infective bacteria, intracellular localization with evidence of bacterial immune escape mechanisms was identified. The high frequency of polymicrobial infections, pathogen diversity, and intracellular persistence of common IE-causing bacteria may provide clues to help explain the persistent and devastating mortality rate observed for IE. Improved bacterial diagnosis by 16S rDNA NGS that increases the ability to tailor antibiotic therapy may

  11. New insights into valve-related intramural and intracellular bacterial diversity in infective endocarditis.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available In infective endocarditis (IE, a severe inflammatory disease of the endocardium with an unchanged incidence and mortality rate over the past decades, only 1% of the cases have been described as polymicrobial infections based on microbiological approaches. The aim of this study was to identify potential biodiversity of bacterial species from infected native and prosthetic valves. Furthermore, we compared the ultrastructural micro-environments to detect the localization and distribution patterns of pathogens in IE.Using next-generation sequencing (NGS of 16S rDNA, which allows analysis of the entire bacterial community within a single sample, we investigated the biodiversity of infectious bacterial species from resected native and prosthetic valves in a clinical cohort of 8 IE patients. Furthermore, we investigated the ultrastructural infected valve micro-environment by focused ion beam scanning electron microscopy (FIB-SEM.Biodiversity was detected in 7 of 8 resected heart valves. This comprised 13 bacterial genera and 16 species. In addition to 11 pathogens already described as being IE related, 5 bacterial species were identified as having a novel association. In contrast, valve and blood culture-based diagnosis revealed only 4 species from 3 bacterial genera and did not show any relevant antibiotic resistance. The antibiotics chosen on this basis for treatment, however, did not cover the bacterial spectra identified by our amplicon sequencing analysis in 4 of 8 cases. In addition to intramural distribution patterns of infective bacteria, intracellular localization with evidence of bacterial immune escape mechanisms was identified.The high frequency of polymicrobial infections, pathogen diversity, and intracellular persistence of common IE-causing bacteria may provide clues to help explain the persistent and devastating mortality rate observed for IE. Improved bacterial diagnosis by 16S rDNA NGS that increases the ability to tailor antibiotic

  12. Bacterial blood stream infections and antibiogram among febrile ...

    African Journals Online (AJOL)

    , ceftriaxone and trimethoprim-sulfamethoxazole. The present study revealed that bacterial blood stream infections linked with high levels of drug resistance would pose a challenge in treatment of patients with BSIs. Hence, blood culture with ...

  13. Bacterial pathogens associated with infected wounds in Ogun State ...

    African Journals Online (AJOL)

    OSUTH) between August 1999 and July 2000 in the Orthopaedics, Obstetrics and Gynaecological units to identify the bacterial pathogens associated with infected wounds as well as their antibiotic sensitivity profile. A total of 1670 patients were ...

  14. Exploring bacterial infections: theoretical and experimental studies of the bacterial population dynamics and antibiotic treatment

    Science.gov (United States)

    Shao, Xinxian

    Bacterial infections are very common in human society. Thus extensive research has been conducted to reveal the molecular mechanisms of the pathogenesis and to evaluate the antibiotics' efficacy against bacteria. Little is known, however, about the population dynamics of bacterial populations and their interactions with the host's immune system. In this dissertation, a stochatic model is developed featuring stochastic phenotypic switching of bacterial individuals to explain the single-variant bottleneck discovered in multi strain bacterial infections. I explored early events in a bacterial infection establishment using classical experiments of Moxon and Murphy on neonatal rats. I showed that the minimal model and its simple variants do not work. I proposed modifications to the model that could explain the data quantitatively. The bacterial infections are also commonly established in physical structures, as biofilms or 3-d colonies. In contrast, most research on antibiotic treatment of bacterial infections has been conducted in well-mixed liquid cultures. I explored the efficacy of antibiotics to treat such bacterial colonies, a broadly applicable method is designed and evaluated where discrete bacterial colonies on 2-d surfaces were exposed to antibiotics. I discuss possible explanations and hypotheses for the experimental results. To verify these hypotheses, we investigated the dynamics of bacterial population as 3-d colonies. We showed that a minimal mathematical model of bacterial colony growth in 3-d was able to account for the experimentally observed presence of a diffusion-limited regime. The model further revealed highly loose packing of the cells in 3-d colonies and smaller cell sizes in colonies than plancktonic cells in corresponding liquid culture. Further experimental tests of the model predictions have revealed that the ratio of the cell size in liquid culture to that in colony cultures was consistent with the model prediction, that the dead cells

  15. Concomitant Bacterial Meningitis in Infants With Urinary Tract Infection.

    Science.gov (United States)

    Thomson, Joanna; Cruz, Andrea T; Nigrovic, Lise E; Freedman, Stephen B; Garro, Aris C; Ishimine, Paul T; Kulik, Dina M; Uspal, Neil G; Grether-Jones, Kendra L; Miller, Aaron S; Schnadower, David; Shah, Samir S; Aronson, Paul L; Balamuth, Fran

    2017-09-01

    To determine age-stratified prevalence of concomitant bacterial meningitis in infants ≤60 days with a urinary tract infection, we performed a 23-center, retrospective study of 1737 infants with urinary tract infection. Concomitant bacterial meningitis was rare, but more common in infants 0-28 days of age [0.9%; 95% confidence interval (CI): 0.4%-1.9%) compared with infants 29-60 days of age (0.2%; 95% CI: 0%-0.8%).

  16. Clinical indicators for bacterial co-infection in Ghanaian children with P. falciparum infection.

    Directory of Open Access Journals (Sweden)

    Maja Verena Nielsen

    Full Text Available Differentiation of infectious causes in severely ill children is essential but challenging in sub- Saharan Africa. The aim of the study was to determine clinical indicators that are able to identify bacterial co-infections in P. falciparum infected children in rural Ghana. In total, 1,915 severely ill children below the age of 15 years were recruited at Agogo Presbyterian Hospital in Ghana between May 2007 and February 2011. In 771 (40% of the children malaria parasites were detected. This group was analyzed for indicators of bacterial co-infections using bivariate and multivariate regression analyses with 24 socio-economic variables, 16 terms describing medical history and anthropometrical information and 68 variables describing clinical symptoms. The variables were tested for sensitivity, specificity, positive predictive value and negative predictive value. In 46 (6.0% of the children with malaria infection, bacterial co-infection was detected. The most frequent pathogens were non-typhoid salmonellae (45.7%, followed by Streptococcus spp. (13.0%. Coughing, dehydration, splenomegaly, severe anemia and leukocytosis were positively associated with bacteremia. Domestic hygiene and exclusive breastfeeding is negatively associated with bacteremia. In cases of high parasitemia (>10,000/μl, a significant association with bacteremia was found for splenomegaly (OR 8.8; CI 1.6-48.9, dehydration (OR 18.2; CI 2.0-166.0 and coughing (OR 9.0; CI 0.7-118.6. In children with low parasitemia, associations with bacteremia were found for vomiting (OR 4.7; CI 1.4-15.8, severe anemia (OR 3.3; CI 1.0-11.1 and leukocytosis (OR 6.8 CI 1.9-24.2. Clinical signs of impaired microcirculation were negatively associated with bacteremia. Ceftriaxone achieved best coverage of isolated pathogens. The results demonstrate the limitation of clinical symptoms to determine bacterial co-infections in P. falciparum infected children. Best clinical indicators are dependent on the

  17. The burden of invasive bacterial infections in Pemba, Zanzibar.

    Directory of Open Access Journals (Sweden)

    Kamala Thriemer

    Full Text Available BACKGROUND: We conducted a surveillance study to determine the leading causes of bloodstream infection in febrile patients seeking treatment at three district hospitals in Pemba Island, Zanzibar, Tanzania, an area with low malaria transmission. METHODS: All patients above two months of age presenting to hospital with fever were screened, and blood was collected for microbiologic culture and malaria testing. Bacterial sepsis and malaria crude incidence rates were calculated for a one-year period and were adjusted for study participation and diagnostic sensitivity of blood culture. RESULTS: Blood culture was performed on 2,209 patients. Among them, 166 (8% samples yielded bacterial growth; 87 (4% were considered as likely contaminants; and 79 (4% as pathogenic bacteria. The most frequent pathogenic bacteria isolated were Salmonella Typhi (n = 46; 58%, followed by Streptococcus pneumoniae (n = 12; 15%. The crude bacteremia rate was 6/100,000 but when adjusted for potentially missed cases the rate may be as high as 163/100,000. Crude and adjusted rates for S. Typhi infections and malaria were 4 and 110/100,000 and 4 and 47/100,000, respectively. Twenty three (51%, 22 (49% and 22 (49% of the S. Typhi isolates were found to be resistant toward ampicillin, chloramphenicol and cotrimoxazole, respectively. Multidrug resistance (MDR against the three antimicrobials was detected in 42% of the isolates. CONCLUSIONS: In the presence of very low malaria incidence we found high rates of S. Typhi and S. pneumoniae infections on Pemba Island, Zanzibar. Preventive measures such as vaccination could reduce the febrile disease burden.

  18. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  19. Community-acquired bacterial bloodstream infections in HIV-infected patients: a systematic review

    NARCIS (Netherlands)

    Huson, Michaëla A. M.; Stolp, Sebastiaan M.; van der Poll, Tom; Grobusch, Martin P.

    2014-01-01

    Information on community-acquired bacterial bloodstream infections (BSIs) in individuals infected with human immunodeficiency virus (HIV) is limited. We conducted a systematic literature review. The case fraction of community-acquired bacterial BSIs in hospitalized patients is 20% and 30% in adults

  20. [Relationship between periodontal diseases and ascending bacterial infection with preterm delivery].

    Science.gov (United States)

    Ovalle, Alfredo; Gamonal, Jorge; Martínez, M Angélica; Silva, Nora; Kakarieka, Elena; Fuentes, Ariel; Chaparro, Alejandra; Gajardo, Marta; León, Rubén; Ahumada, Alexis; Cisternas, Carlos

    2009-04-01

    There is an association between periodontal diseases and preterm delivery. To assess the relationship between periodontal diseases, ascending bacterial infection and placental pathology with preterm delivery. A periodontal examination and collection of amniotic fluid and subgingival plaque samples were performed in women with preterm labor with intact membranes, without an evident clinical cause or preterm premature rupture of membranes, without clinical chorioamnionitis or labor and a gestational age between 24 and 34 weeks. Microbial invasion of the amniotic cavity was defined as the presence of a positive amniotic fluid culture. Cervicovaginal infection was defined as a bacterial vaginosis or positive culture of cervix or vagina with a high neutrophil count. Ascending bacterial infection was diagnosed as the microbial invasion of the amniotic cavity by ascending bacteria or cervicovaginal infection. Corioamnionitis, funisitis or vellositis were diagnosed. Fifty-nine women were included: forty-two with preterm labor with intact membranes and seventeen with preterm premature rupture of membranes. The prevalence of periodontal diseases was 93.2%. Microbial invasion of the amniotic fluid was detected in 27.1% of patients. periodontal pathogenic bacteria were isolated in 18.6% of amniotic fluid samples and 71.2% of subgingival plaque samples. The prevalence of ascending bacterial infection was 83.1% and in 72.9% of women it was associated with periodontal disease. Preterm delivery (<37 weeks) occurred in 64.4% of patients and was significantly associated with generalized periodontal disease and with the association of ascending bacterial infection and periodontal diseases. Patients with preterm delivery and generalized periodontal disease had a higher frequency of chorioamnionitis and funisitis. Generalized periodontal disease and its association with ascending bacterial infection are related to preterm delivery and placental markers of bacterial ascending infection.

  1. AEROBIC BACTERIAL ISOLATES FROM INFECTED WOUNDS

    African Journals Online (AJOL)

    boaz

    Nurs. Times. 1985; 81:16-19. 5. Calvin M. Cutaneous wound repair. Wounds. 1998; 10(1): 12-32. 6. Brook I. Aerobic and anaerobic microbiology of necrotizing fasciitis in children. PediatrDermatol. 1996; 13:281-284. 7. Madsen SM, Westh H, Danielson L,. Rosadahi VT Bacterial colonization and healing of venous leg ulcers.

  2. TBK1 protects vacuolar integrity during intracellular bacterial infection.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    2007-03-01

    Full Text Available TANK-binding kinase-1 (TBK1 is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella, more extensive bacterial proliferation was observed in tbk1(-/- than tbk1(+/+ cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1(-/-cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity.

  3. Gram-Negative Bacterial Wound Infections

    Science.gov (United States)

    2016-07-01

    32). In the case of the latter infective agents, miltefosine proved to be an effective antibacterial agent against P. aeruginosa; its administration ...neutropenic via intraperitoneal administration of 150 mg/kg and 100 mg/kg cyclophosphamide in sterile saline on day 4 and day 1 prior to infection (day...319 putative nicotinate -nucleotide diphosphorylase is located downstream of plc1 and transcribed in 320 the opposite direction. The plc1 gene

  4. Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT.

    Directory of Open Access Journals (Sweden)

    Luis A Diaz

    2007-10-01

    Full Text Available Traditional imaging techniques for the localization and monitoring of bacterial infections, although reasonably sensitive, suffer from a lack of specificity. This is particularly true for musculoskeletal infections. Bacteria possess a thymidine kinase (TK whose substrate specificity is distinct from that of the major human TK. The substrate specificity difference has been exploited to develop a new imaging technique that can detect the presence of viable bacteria.Eight subjects with suspected musculoskeletal infections and one healthy control were studied by a combination of [(124I]FIAU-positron emission tomography and CT ([(124I]FIAU-PET/CT. All patients with proven musculoskeletal infections demonstrated positive [(124I]FIAU-PET/CT signals in the sites of concern at two hours after radiopharmaceutical administration. No adverse reactions with FIAU were observed.[(124I]FIAU-PET/CT is a promising new method for imaging bacterial infections.

  5. Comparison of enterovirus detection in cerebrospinal fluid with Bacterial Meningitis Score in children

    Science.gov (United States)

    Pires, Frederico Ribeiro; Franco, Andréia Christine Bonotto Farias; Gilio, Alfredo Elias; Troster, Eduardo Juan

    2017-01-01

    ABSTRACT Objective To measure the role of enterovirus detection in cerebrospinal fluid compared with the Bacterial Meningitis Score in children with meningitis. Methods A retrospective cohort based on analysis of medical records of pediatric patients diagnosed as meningitis, seen at a private and tertiary hospital in São Paulo, Brazil, between 2011 and 2014. Excluded were patients with critical illness, purpura, ventricular shunt or recent neurosurgery, immunosuppression, concomitant bacterial infection requiring parenteral antibiotic therapy, and those who received antibiotics 72 hours before lumbar puncture. Results The study included 503 patients. Sixty-four patients were excluded and 94 were not submitted to all tests for analysis. Of the remaining 345 patients, 7 were in the Bacterial Meningitis Group and 338 in the Aseptic Meningitis Group. There was no statistical difference between the groups. In the Bacterial Meningitis Score analysis, of the 338 patients with possible aseptic meningitis (negative cultures), 121 of them had one or more points in the Bacterial Meningitis Score, with sensitivity of 100%, specificity of 64.2%, and negative predictive value of 100%. Of the 121 patients with positive Bacterial Meningitis Score, 71% (86 patients) had a positive enterovirus detection in cerebrospinal fluid. Conclusion Enterovirus detection in cerebrospinal fluid was effective to differentiate bacterial from viral meningitis. When the test was analyzed together with the Bacterial Meningitis Score, specificity was higher when compared to Bacterial Meningitis Score alone. PMID:28767914

  6. Innate Immune Sensors and Gastrointestinal Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Georgina L. Hold

    2011-01-01

    Full Text Available The gastrointestinal microbiota is a major source of immune stimulation. The interaction between host pattern-recognition receptors and conserved microbial ligands profoundly influences infection dynamics. Identifying and understanding the nature of these interactions is a key step towards obtaining a clearer picture of microbial pathogenesis. These interactions underpin a complex interplay between microbe and host that has far reaching consequences for both. Here, we review the role of pattern recognition receptors in three prototype diseases affecting the stomach, the small intestine, and large intestine, respectively (Helicobacter pylori infection, Salmonella infection, and inflammatory bowel disease. Specifically, we review the nature and impact of pathogen:receptor interactions, their impact upon pathogenesis, and address the relevance of pattern recognition receptors in the development of therapies for gastrointestinal diseases.

  7. Detection of latent infection by Ralstonia solanacearum in potato ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... The potential of using stems for the detection of latent infection caused by Ralstonia solanacearum (Rs) was studied. Forty plants each were collected from four farms with bacterial wilt incidence below 4% in two growing seasons ... diseases and low potato yields (Nyangeri et al., 1984;. Eden-Green, 1991 ...

  8. common bacterial isolates from infected eyes abstract

    African Journals Online (AJOL)

    LIVINGSTON

    Pathogenic microorganisms cause diseases to the eyes due to their virulence and host's reduced resistance from many factors such as personal hygiene, living conditions, socio-economic status, nutrition, genetics, physiology, fever and age . The areas in the eye that are frequently infected are the conjunctiva, lid and ...

  9. Combinations of bacterial species in endodontic infections

    NARCIS (Netherlands)

    Peters, LB; Wesselink, P.R.; van Winkelhoff, AJ

    Aim This study was undertaken to investigate combinations of bacteria found in root-canal infections of teeth with periapical bone destruction without clinical signs and symptoms. Methodology Endodontic samples from 58 root canals were cultured anaerobically and microorganisms were counted and

  10. Increased Sleep Promotes Survival during a Bacterial Infection in Drosophila

    Science.gov (United States)

    Kuo, Tzu-Hsing; Williams, Julie A.

    2014-01-01

    Study Objectives: The relationship between sleep and immune function is not well understood at a functional or molecular level. We therefore used a genetic approach in Drosophila to manipulate sleep and evaluated effects on the ability of flies to fight bacterial infection. Setting: Laboratory. Participants: Drosophila melanogaster. Methods and Results: We used a genetic approach to transiently alter neuronal excitability in the mushroom body, a region in the central brain that is known to regulate sleep. Flies with increased sleep for up to two days prior to a bacterial infection showed increased resistance to the infection and improved survival. These flies also had increased expression levels of a subset of anti-microbial peptide mRNA prior to infection, as well as increased NFκB activity during infection as indicated by in vivo luciferase reporter activity. In contrast, flies that experienced reduced sleep for up to two days prior to infection had no effect on survival or on NFκB activity during infection. However, flies with reduced sleep showed an altered defense mechanism, such that resistance to infection was increased, but at the expense of reduced tolerance. This effect was dependent on environmental condition. Conclusions: Increasing sleep enhanced activity of an NFκB transcription factor, increased resistance to infection, and strongly promoted survival. Together, these findings support the hypothesis that sleep is beneficial to the host by maintaining a robust immune system. Citation: Kuo TH, Williams JA. Increased sleep promotes survival during a bacterial infection in Drosophila. SLEEP 2014;37(6):1077-1086. PMID:24882902

  11. DMPD: Role of Nods in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17379560 Role of Nods in bacterial infection. Bourhis LL, Werts C. Microbes Infect.... 2007 Apr;9(5):629-36. Epub 2007 Jan 27. (.png) (.svg) (.html) (.csml) Show Role of Nods in bacterial infection.... PubmedID 17379560 Title Role of Nods in bacterial infection. Authors Bourhis LL, Werts C. Publication M

  12. Serious bacterial infections in febrile young children: Lack of value ...

    African Journals Online (AJOL)

    Fever is both a marker of insignificant viral infection, as well as more serious bacterial sepsis. Therefore ... febrile children under the age of 5 years (with an axillary temperature ≥38°C) who presented to Steve Biko Academic Hospital, Pretoria, with signs and symptoms of pneumonia, meningitis and/or generalised sepsis.

  13. Comprehensive Diagnosis of Bacterial Infection Associated with Acute Cholecystitis Using Metagenomic Approach

    Directory of Open Access Journals (Sweden)

    Manabu Kujiraoka

    2017-04-01

    Full Text Available Acute cholecystitis (AC, which is strongly associated with retrograde bacterial infection, is an inflammatory disease that can be fatal if inappropriately treated. Currently, bacterial culture testing, which is basically recommended to detect the etiological agent, is a time-consuming (4–6 days, non-comprehensive approach. To rapidly detect a potential pathogen and predict its antimicrobial susceptibility, we undertook a metagenomic approach to characterize the bacterial infection associated with AC. Six patients (P1–P6 who underwent cholecystectomy for AC were enrolled in this study. Metagenome analysis demonstrated possible single or multiple bacterial infections in four patients (P1, P2, P3, and P4 with 24-h experimental procedures; in addition, the CTX-M extended-spectrum ß-lactamase (ESBL gene was identified in two bile samples (P1 and P4. Further whole genome sequencing of Escherichia coli isolates suggested that CTX-M-27-producing ST131 and CTX-M-14-producing novel-ST were identified in P1 and P4, respectively. Metagenome analysis of feces and saliva also suggested some imbalance in the microbiota for more comprehensive assessment of patients with AC. In conclusion, metagenome analysis was useful for rapid bacterial diagnostics, including assessing potential antimicrobial susceptibility, in patients with AC.

  14. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Science.gov (United States)

    Furuse, Yuki; Finethy, Ryan; Saka, Hector A; Xet-Mull, Ana M; Sisk, Dana M; Smith, Kristen L Jurcic; Lee, Sunhee; Coers, Jörn; Valdivia, Raphael H; Tobin, David M; Cullen, Bryan R

    2014-01-01

    MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  15. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    Full Text Available MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  16. Gram-Negative Bacterial Wound Infections

    Science.gov (United States)

    2014-05-01

    Associated with Bovine Brucellosis in Pakistan S. Ali1, H. Neubauer2 , F. Melzer2, I. Khan’, Q. Ali’, E. N. Abatih’, N. Ullah1, M. W. Akbar’, S...Pasteurellosis in Bovine Animals in the Lori Province, Armenia A. Abrahamyan; State Food Safety Services, Armenia 503 African Swine Fever Detection... Bovine Tuberculosis in Cattle Farms in Zaria and Kaduna and Possible Transmission Through Milk P. N. Mbianga, V. J. Umoh, A. I. 0, K. C. A; Ahmadu

  17. Sensitive Detection of Deliquescent Bacterial Capsules through Nanomechanical Analysis.

    Science.gov (United States)

    Nguyen, Song Ha; Webb, Hayden K

    2015-10-20

    Encapsulated bacteria usually exhibit strong resistance to a wide range of sterilization methods, and are often virulent. Early detection of encapsulation can be crucial in microbial pathology. This work demonstrates a fast and sensitive method for the detection of encapsulated bacterial cells. Nanoindentation force measurements were used to confirm the presence of deliquescent bacterial capsules surrounding bacterial cells. Force/distance approach curves contained characteristic linear-nonlinear-linear domains, indicating cocompression of the capsular layer and cell, indentation of the capsule, and compression of the cell alone. This is a sensitive method for the detection and verification of the encapsulation status of bacterial cells. Given that this method was successful in detecting the nanomechanical properties of two different layers of cell material, i.e. distinguishing between the capsule and the remainder of the cell, further development may potentially lead to the ability to analyze even thinner cellular layers, e.g. lipid bilayers.

  18. Simultaneous Detection of Three Bacterial Seed-Borne Diseases in Rice Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    In Jeong Kang

    2016-12-01

    Full Text Available Burkholderia glumae (bacterial grain rot, Xanthomonas oryzae pv. oryzae (bacterial leaf blight, and Acidovorax avenae subsp. avenae (bacterial brown stripe are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae, and transposase A gene sequence for X. oryzae pv. oryzae, three sets of primers had been designed to produce 402 bp for B. glumae, 490 bp for X. oryzae, and 290 bp for A. avenae subsp. avenae with the 63°C as an optimum annealing temperature. Samples collected from naturally infected fields were detected with two bacteria, B. glumae and A. avenae subsp. avenae but X. oryzae pv. oryzae was not detected. This assay can be used to identify pathogens directly from infected seeds, and will be an effective tool for the identification of the three pathogens in rice plants.

  19. Simultaneous Detection of Three Bacterial Seed-Borne Diseases in Rice Using Multiplex Polymerase Chain Reaction.

    Science.gov (United States)

    Kang, In Jeong; Kang, Mi-Hyung; Noh, Tae-Hwan; Shim, Hyeong Kwon; Shin, Dong Bum; Heu, Suggi

    2016-12-01

    Burkholderia glumae (bacterial grain rot), Xanthomonas oryzae pv. oryzae (bacterial leaf blight), and Acidovorax avenae subsp. avenae (bacterial brown stripe) are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae , and transposase A gene sequence for X. oryzae pv. oryzae , three sets of primers had been designed to produce 402 bp for B. glumae , 490 bp for X. oryzae , and 290 bp for A. avenae subsp. avenae with the 63°C as an optimum annealing temperature. Samples collected from naturally infected fields were detected with two bacteria, B. glumae and A. avenae subsp. avenae but X. oryzae pv. oryzae was not detected. This assay can be used to identify pathogens directly from infected seeds, and will be an effective tool for the identification of the three pathogens in rice plants.

  20. Original Paper Detecting Nosocomial Intrinsic Infections through ...

    African Journals Online (AJOL)

    2011-04-20

    Apr 20, 2011 ... Key Words: Bacterial pathogens, Endogenous indicators, NosocomiaI infection, Surgery. Received 30 October 2010/ Accepted 30 March 2011. INTRODUCTION. Micro-organisms from intrinsic and extrinsic sources have been known to cause nosocomial infections (CDC, 1991). The human body enables.

  1. Bacterial interference in upper respiratory tract infections: a systematic review.

    Science.gov (United States)

    Benninger, Michael; Brook, Itzhak; Bernstein, Joel M; Casey, Janet R; Roos, Kristian; Marple, Bradley; Farrar, Judith R

    2011-01-01

    Published definitions of bacterial interference (BI) differ, some focusing on changes in the normal flora and others on changes in subsequent infection. A need for consensus was identified at a roundtable discussion of BI in upper respiratory tract infections (URTI). We conducted a systematic review of the available data to justify a consensus definition of BI specific to URTI as "a dynamic, antagonistic interaction between at least 2 organisms that affects the life cycle of each, changes the microenvironment, and alters the organisms' colonization, invasiveness, and ability to affect the health of the host." Continued communication among the faculty postroundtable was used to identify and refine the search criteria to (1) in vitro and in vivo studies assessing bacterial URTI, (2) BI evaluated by response to treatment of URTI with antimicrobial agents, and (3) bacterial function in relation to interactions between normal (nonpathogenic) and pathological flora. The criteria were applied to systematic searches of MEDLINE (1950 onward), EMBASE (1974 onward), and the Cochrane Library (2007). Twenty-nine studies met the inclusion criteria, most focused on children with recurrent infections. Qualitative analysis supports the consensus definition. Interfering organisms affected the life cycle of test pathogens and inhibited their colonization, invasiveness, and health outcomes. Data were insufficient for statistical analysis. Interactions between interfering organisms and potential pathogens isolated from the same host can alter response to infection and treatment. More studies are needed, particularly in adults, to understand the role of interfering organisms, the influence of antibiotics, and the potential for recolonization posttreatment.

  2. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations

    International Nuclear Information System (INIS)

    Welling, M.M.; Pauwels, E.K.J.; Paulusma-Annema, A.; Nibbering, P.H.; Balter, H.S.

    2000-01-01

    The aim of this study was to select technetium-99m labelled peptides that can discriminate between bacterial infections and sterile inflammations. For this purpose, we first assessed the binding of various 99m Tc-labelled natural or synthetic peptides, which are based on the sequence of the human antimicrobial peptide ubiquicidin (UBI) or human lactoferrin (hLF), to bacteria and to leucocytes in vitro. In order to select peptides that preferentially bind to bacteria over host cells, radiolabelled peptides were injected into mice intraperitoneally infected with Klebsiella pneumoniae (K. pneumoniae) and the amount of radioactivity associated with the bacteria and with the leucocytes was quantitated. The next phase focussed on discrimination between bacterial infections and sterile inflammatory processes using 99m Tc-labelled peptides in mice intramuscularly infected with various bacteria (e.g. multi-drug-resistant Staphylococcus aureus) and in animals that had been injected with lipopolysaccharides (LPS) of bacterial origin to create a sterile inflammatory process. Also, we studied the distribution of 99m Tc-labelled UBI 29-41 and UBI 18-35 in rabbits having an experimental thigh muscle infection with K. pneumoniae and in rabbits injected with LPS. Based on the results of our in vitro and in vivo binding assays, two peptides, i.e. UBI 29-41 and UBI 18-35, were selected as possible candidates for infection imaging. The radiolabelled peptides can detect infections with both gram-positive and gram-negative bacteria in mice as early as 5-30 min after injection, with a target-to-non-target (T/NT) ratio between 2 and 3; maximum T/NT ratios were seen within 1 h after injection. In rabbits, high T/NT ratios (>5) for 99m Tc-labelled UBI 29-41 were observed from 1 h after injection. No accumulation of the selected 99m Tc-labelled UBI-derived peptides was observed in thighs of mice and rabbits previously injected with LPS. Scintigraphic investigation into the biodistribution of

  3. Severe bacterial infections in patients with non-transfusion-dependent thalassemia: prevalence and clinical risk factors

    Directory of Open Access Journals (Sweden)

    Nattiya Teawtrakul

    2015-10-01

    Conclusion: The prevalence of bacterial infection in patients with NTDT was found to be moderate. Time after splenectomy >10 years, deferoxamine therapy, and iron overload may be clinical risk factors for severe bacterial infection in patients with NTDT. Bacterial infection should be recognized in splenectomized patients with NTDT, particularly those who have an iron overload.

  4. Acute Sleep Deprivation Enhances Post-Infection Sleep and Promotes Survival during Bacterial Infection in Drosophila

    Science.gov (United States)

    Kuo, Tzu-Hsing; Williams, Julie A.

    2014-01-01

    Study Objectives: Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. Setting: Laboratory. Participants: Drosophila melanogaster. Methods and Results: Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. Conclusions: Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection. Citation: Kuo TH, Williams JA. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila. SLEEP 2014;37(5):859-869. PMID:24790264

  5. Viral infection of the pregnant cervix predisposes to ascending bacterial infection

    Science.gov (United States)

    Racicot, Karen; Cardenas, Ingrid; Wünsche, Vera; Aldo, Paulomi; Guller, Seth; Means, Robert; Romero, Roberto; Mor, Gil

    2014-01-01

    Preterm birth is the major cause of neonatal mortality and morbidity, and bacterial infections that ascend from the lower female reproductive tract (FRT) are the most common route of uterine infection leading to preterm birth. The uterus and growing fetus are protected from ascending infection by the cervix, which controls and limits microbial access by the production of mucus, cytokines and anti-microbial peptides (AMPs). If this barrier is compromised, bacteria may enter the uterine cavity leading to preterm birth. Using a mouse model, we demonstrate, for the first time, that viral infection of the cervix, during pregnancy, reduces the capacity of the FRT to prevent bacterial infection of the uterus. This is due to differences in susceptibility of the cervix to infection by virus during pregnancy and the associated changes in TLR and AMP expression and function. We suggest that preterm labor is a polymicrobial disease, which requires a multifactorial approach for its prevention and treatment. PMID:23752614

  6. Effects of Viral and Bacterial Infections on Marginal Periodontium

    Directory of Open Access Journals (Sweden)

    Bukhari Csilla

    2017-06-01

    Full Text Available Background: There are several risk factors, general and local, which favor the onset of periodontal destruction, and their knowledge is essential to their correct identification and for the adoption of a suitable therapeutic management. The aim of the study was to assess periodontal health status of patients suffering from viral and bacterial infections and to determine the eventual relationship between periodontal diseases and infectious diseases.

  7. Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

    Science.gov (United States)

    Herberg, Jethro A; Kaforou, Myrsini; Wright, Victoria J; Shailes, Hannah; Eleftherohorinou, Hariklia; Hoggart, Clive J; Cebey-López, Miriam; Carter, Michael J; Janes, Victoria A; Gormley, Stuart; Shimizu, Chisato; Tremoulet, Adriana H; Barendregt, Anouk M; Salas, Antonio; Kanegaye, John; Pollard, Andrew J; Faust, Saul N; Patel, Sanjay; Kuijpers, Taco; Martinón-Torres, Federico; Burns, Jane C; Coin, Lachlan J M; Levin, Michael

    Because clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others. To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children. Febrile children presenting to participating hospitals in the United Kingdom, Spain, the Netherlands, and the United States between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n = 24) and inflammatory diseases (n = 48) and on published gene expression datasets. A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis. Definite bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group and in the indeterminate infection group. The discovery group of 240 children (median age, 19 months; 62% male) included 52 with definite bacterial infection, of whom 36 (69%) required intensive care, and 92 with definite viral infection, of whom 32 (35%) required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript

  8. Bacterial sensitivity to fosfomycin in pregnant women with urinary infection

    Directory of Open Access Journals (Sweden)

    Rodrigo Batista Souza

    2015-05-01

    Full Text Available The aim this study was to determine the in vitro susceptibility to fosfomycin of bacteria isolated from urine samples of pregnant women with urinary tract infection. Samples of urine culture with bacterial growth of pregnant women were collected from clinical laboratories in Tubarão, state of Santa Catarina, Brazil, between September 2012 and May 2013. In the experimental stage, the colonies were tested for sensitivity to fosfomycin by using the Kirby–Bauer method. The following information relating to the samples was also collected: patients’ age, colony count, type(s of identified bacterial(s and result of the antimicrobial sensitivity test. Student's t-test was used for mean comparison. A total of 134 samples were selected for the study. The age of the subjects ranged from 15 to 40 years (mean 26.7. Escherichia coli (Gram-negative and Staphylococcus aureus (Gram-positive were the most commonly identified species. In 89% of cases, the microorganisms were sensitive to fosfomycin. E. coli and S. aureus were the main species of bacteria responsible for urinary tract infections in women in the study area. The most prevalent microorganisms in pregnant women with urinary tract infection were susceptible to fosfomycin.

  9. Use of Multiplex PCR for Diagnosis of Bacterial Infection Respiratory Mixed

    Directory of Open Access Journals (Sweden)

    Al-ssum, R. M.

    2010-01-01

    Full Text Available Atypical bacteria grow very slowly in culture or they do not grow at all leading to delays in detection and diagnosis. PCR multiplex was performed on template DNAs extracted from seventy three collected specimens. Thirty seven showed positive indication for the presence of bacterial infection. The incidence of Mycoplasma pneumoniae, Chlamydia pneumonia and Legionella pneumophila as a single infecting agent was 31.5%, 27.5% and 20 % respectively. Dual agent infection caused by Mycoplasma + Chlamydia, Mycoplasma + Legionella and Legionella + Chlamydia was 24%, 20% and 15% respectively. Triple agent infection caused by Legionella + Mycoplasma + Chlamydia was 17.5%. The etiology of the infection was M. pneumoniae, L. pneumophila or C. pneumoniae as a single etiology or in combination of two or three organisms.

  10. Illuminating the detection chain of bacterial bioreporters

    NARCIS (Netherlands)

    Meer, J.R. van der; Tropel, D.; Jaspers, M.

    2004-01-01

    Engineering bacteria for measuring chemicals of environmental or toxicological concern (bioreporter bacteria) has grown slowly into a mature research area. Despite many potential advantages, current bioreporters do not perform well enough to comply with environmental detection standards. Basically,

  11. Transcriptional response of Musca domestica larvae to bacterial infection.

    Directory of Open Access Journals (Sweden)

    Ting Tang

    Full Text Available The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs, various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin, which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system.

  12. Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice

    Science.gov (United States)

    2013-01-01

    Background Recent studies of Giardia lamblia outbreaks have indicated that 40–80% of infected patients experience long-lasting functional gastrointestinal disorders after parasitic clearance. Our aim was to assess changes in the intestinal barrier and spatial distribution of commensal bacteria in the post-clearance phase of Giardia infection. Methods Mice were orogastrically inoculated with G. lamblia trophozoites (strain GS/M) or pair-fed with saline and were sacrificed on post-infective (PI) days 7 (colonization phase) and 35 (post-clearance phase). Gut epithelial barrier function was assessed by Western blotting for occludin cleavage and luminal-to-serosal macromolecular permeability. Gut-associated, superficial adherent, and mucosal endocytosed bacteria were measured by agar culturing and were examined by fluorescence in situ hybridization. Intracellular bacteria cultured from isolated mucosal cells were characterized by 16S rDNA sequencing. Neutrophil-specific esterase staining, a myeloperoxidase activity assay, and enzyme-linked immunosorbent assays for cytokine concentrations were used to verify intestinal tissue inflammation. Results Tight junctional damage was detected in the intestinal mucosa of Giardia-infected mice on PI days 7 and 35. Although intestinal bacterial overgrowth was evident only during parasite colonization (PI day 7), enhanced mucosal adherence and endocytosis of bacteria were observed on PI days 7 and 35. Multiple bacterial strains, including Bacillus, Lactobacillus, Staphylococcus, and Phenylobacterium, penetrated the gut mucosa in the post-infective phase. The mucosal influx of bacteria coincided with increases in neutrophil infiltration and myeloperoxidase activity on PI days 7 and 35. Elevated intestinal IFNγ, TNFα, and IL-1β levels also were detected on PI day 35. Conclusions Giardia-infected mice showed persistent tight junctional damage and bacterial penetration, accompanied by mucosal inflammation, after parasite clearance

  13. Etiologic structure of bacterial intestinal infections in monkeys of Adler breeding center.

    Science.gov (United States)

    Ardasheliya, S N; Kalashnikova, V A; Dzhikidze, E K

    2011-10-01

    We studied etiologic structure of bacterial intestinal infections in monkeys of Adler nursery. A total of 533 monkeys with diarrhea syndrome and monkeys dead from intestinal infections, as well as clinically healthy monkeys and animals dead from other pathologies were examined by bacteriological and molecular-genetic methods. Pathogenic enterobacteria Shigella and Salmonella and microaerophile Campylobacter were found in 5 and 19%, respectively. A high percentage (49%) of intestinal diseases of unknown etiology was revealed in monkeys. The fact that the number of detected opportunistic enterobacteria did not differ in healthy and diseased monkeys suggests that they are not involved into the etiology of intestinal disease.

  14. Combinations of bacterial species associated with symptomatic endodontic infections in a Chinese population.

    Science.gov (United States)

    Qi, Z; Cao, H; Jiang, H; Zhao, J; Tang, Z

    2016-01-01

    To use microarrays to detect 11 selected bacteria in infected root canals, revealing bacterial combinations that are associated with clinical symptoms and signs of primary endodontic infections in a Chinese population. DNA was extracted from 90 samples collected from the root canals of teeth with primary endodontic infections in a Chinese population, and the 16S rRNA gene was amplified by polymerase chain reaction (PCR). The PCR products were hybridized to microarrays containing specific oligonucleotide probes targeting 11 species, and the arrays were screened with a confocal laser scanner. Pearson's chi-squared test and cluster analysis were performed to investigate the associations between the bacterial combinations and clinical symptoms and signs using SAS 8.02. Seventy-seven samples (86%) yielded at least one of the 11 target species. Parvimonas micra (56%), Porphyromonas endodontalis (51%), Tannerella forsythia (48%), Prevotella intermedia (44%) and Porphyromonas gingivalis (37%) were the most prevalent taxa and were often concomitant. The following positive associations were found between the bacterial combinations and clinical features: P. endodontalis and T. forsythia with abscess; P. gingivalis and P. micra with sinus tract; P. gingivalis and P. endodontalis or P. micra and P. endodontalis with abscess and sinus tract; and the combination of P. endodontalis, P. micra, T. forsythia and P. gingivalis with sinus tract (P endodontic origin with bacterial synergism in a Chinese population. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Nanosized Selenium: A Novel Platform Technology to Prevent Bacterial Infections

    Science.gov (United States)

    Wang, Qi

    As an important category of bacterial infections, healthcare-associated infections (HAIs) are considered an increasing threat to the safety and health of patients worldwide. HAIs lead to extended hospital stays, contribute to increased medical costs, and are a significant cause of morbidity and mortality. In the United States, infections encountered in the hospital or a health care facility affect more than 1.7 million patients, cost 35.7 billion to 45 billion, and contribute to 88,000 deaths in hospitals annually. The most conventional and widely accepted method to fight against bacterial infections is using antibiotics. However, because of the widespread and sometimes inappropriate use of antibiotics, many strains of bacteria have rapidly developed antibiotic resistance. Those new, stronger bacteria pose serious, worldwide threats to public health and welfare. In 2014, the World Health Organization (WHO) reported antibiotic resistance as a global serious threat that is no longer a prediction for the future but is now reality. It has the potential to affect anyone, of any age, in any country. The most effective strategy to prevent antibiotic resistance is minimizing the use of antibiotics. In recent years, nanomaterials have been investigated as one of the potential substitutes of antibiotics. As a result of their vastly increased ratio of surface area to volume, nanomaterials will likely exert a stronger interaction with bacteria which may affect bacterial growth and propagation. A major concern of most existing antibacterial nanomaterials, like silver nanoparticles, is their potential toxicity. But selenium is a non-metallic material and a required nutrition for the human body, which is recommended by the FDA at a 53 to 60 μg daily intake. Nanosized selenium is considered to be healthier and less toxic compared with many metal-based nanomaterials due to the generation of reactive oxygen species from metals, especially heavy metals. Therefore, the objectives of

  16. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila.

    Science.gov (United States)

    Kuo, Tzu-Hsing; Williams, Julie A

    2014-05-01

    Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. Laboratory. Drosophila melanogaster. Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection.

  17. Tachypleus lysate test for endotoxin in patients with Gram negative bacterial infections.

    Science.gov (United States)

    Usawattanakul, W; Tharavanij, S; Limsuwan, A

    1979-03-01

    Amoebocyte lysate from the horseshoe crabs (Tachypleus gigas) which abounds in the Gulf of Thailand was used to detect endotoxin in patients with Gram-negative bacteremia, in patients with Gram-positive bacterial infections as well as in the control. The Tachypleus lysate test (TLT) was positive in 94.4% of 36 patients with Gram-negative bacteremia before initiation of antibiotic therapy. Only 4% of 50 healthy individuals were positive and all 7 patients with Gram-positive bacterial infections were negative. The threshold sensitivity of TLT was 0.625 micrograms endotoxin per ml of the plasma. In comparison with the commercial Limulus lysate test (LLT), the TLT was slightly more sensitive in exhibiting higher grade of reaction, eventhough the threshold sensitivity was the same.

  18. Antimicrobial Nanoparticle for the Treatment of Bacterial Infection

    Science.gov (United States)

    Pornpattananangkul, Dissaya

    Liposomes are spherical lipid vesicles with bilayered membrane structure, which have been recognized as one of the most widely used carriers for delivering a myriad of pharmaceuticals. Liposomes can carry both hydrophilic and hydrophobic agents with high efficiency and protect them from undesired effects of external conditions. However, the applications of liposomes are usually limited by their instability during storage. They are inclined to fuse with one another immediately after preparation, resulting in undesired mixing, increase in size, and payload loss. To overcome this limitation, this dissertation will focus on the technology to stabilize liposomes during storage and destabilize at specific conditions in order to allow controllable therapeutic release, as well as demonstrate their application to treat one of the bacterial infection diseases, acne vulgaris. The first area of this research is stimuli-responsive liposomes development, where the liposomes are stabilized by introducing gold nanoparticles to adsorb to their surface. As a result, the liposomes are prevented from fusing with one another and undesirable payload release during storage or physiological environments. Moreover, therapeutic is controllably released depending on environment conditions, such as acidic pH and bacterial virulence factor. In case of acid-responsive liposomes, the bound gold nanoparticles can effectively prevent liposomes from fusing with one another at neutral pH value, while at acidic environment (e.g. pHhuman skin are typically acidic. Demonstrated by fluorescent and antimicrobial experiments, the bound gold nanoparticles effectively prevent LipoLA from fusing with one another at neutral pH value. However, at acidic condition, the gold particles detatch from LipoLA surface, allowing the fusion with P.acnes membrane and lauric acid delivery, resulting in a complete killing effect. The stimuli-responsive liposomes presented here provide a new, safe, and effective approach to

  19. A Printed Multicomponent Paper Sensor for Bacterial Detection.

    Science.gov (United States)

    Ali, M Monsur; Brown, Christine L; Jahanshahi-Anbuhi, Sana; Kannan, Balamurali; Li, Yingfu; Filipe, Carlos D M; Brennan, John D

    2017-09-26

    We present a simple all-in-one paper-based sensor for E. coli detection using a composite ink made of a fluorogenic DNAzyme probe for bacterial recognition and signal generation, lysozyme that lyses whole bacterial cells, and pullulan/trehalose sugars that stabilize printed bioactive molecules. The paper sensor is capable of producing a fluorescence signal as a readout within 5 minutes upon contacting E. coli, can achieve a limit of detection of 100 cells/mL, in a variety of sample matrixes, without sample enrichment, and remains stable for at least 6 months when stored at ambient temperature. Therefore, this simple paper sensor provides rapid bacterial testing on site, and can be shipped and stored under ambient conditions to benefit users living in resource-limited regions.

  20. Fibrinous pericarditis secondary to bacterial infection in a cat.

    Science.gov (United States)

    Tagawa, Michihito; Kurashima, Chihiro; Shimbo, Genya; Omura, Hiroshi; Koyama, Kenji; Horiuchi, Noriyuki; Kobayashi, Yoshiyasu; Kawamoto, Keiko; Miyahara, Kazuro

    2017-06-10

    A three-year-old spayed domestic short-haired cat presented for evaluation of weight loss, cardiomegaly and pleural effusion. Echocardiographic examination demonstrated a thickened pericardium with mild pericardial effusion and a large volume of pleural effusion characterized by exudate. Although the cat was treated with antibiotics, the clinical symptoms did not improve. The cat developed dyspnea and died on day 7. Necropsy revealed a large amount of modified transudates ascites, pleural effusion and markedly dilated pericardium. Histopathological examination revealed severe exudation of fibrin and granulation tissue in a thick layer of the epicardium. The cat was diagnosed with fibrinous pericarditis secondary to bacterial infection.

  1. [Biofilm and bacterial microrganisms in genito-urinary infections].

    Science.gov (United States)

    Mazzoli, Sandra

    2009-06-01

    Biofilms represent a cohesive matrix of microrganisms and other cellular constituents that might be present in any natural environment. Microrganisms able to produce biofilms undergo a number of distinctive and typical phenomenon, such as adhesiveness on infected cellular surfaces that consequently becomes irreversible, so deeply changing the microrganisms physiological status. In addition, biofilms play a central role in consenting microrganisms to survive and subsequently to spread in the host, since exocellular matrix protects pathogen bacteria from antibodies and immunocompetent cells devoted to their destruction, and from antimicrobial agents. So, use of antimicrobials able to penetrate cellular membrane and to act into the cell has to be considered as essential in the treatment of infections that may possibly involve biofilm-producer microrganisms, considering their aggressive and virulent behaviour and their intrinsic bacterial resistance.

  2. Preventing Bacterial Infections using Metal Oxides Nanocoatings on Bone Implant

    Science.gov (United States)

    Duceac, L. D.; Straticiuc, S.; Hanganu, E.; Stafie, L.; Calin, G.; Gavrilescu, S. L.

    2017-06-01

    Nowadays bone implant removal is caused by infection that occurs around it possibly acquired after surgery or during hospitalization. The purpose of this study was to reveal some metal oxides applied as coatings on bone implant thus limiting the usual antibiotics-resistant bacteria colonization. Therefore ZnO, TiO2 and CuO were synthesized and structurally and morphologically analized in order to use them as an alternative antimicrobial agents deposited on bone implant. XRD, SEM, and FTIR characterization techniques were used to identify structure and texture of these nanoscaled metal oxides. These metal oxides nanocoatings on implant surface play a big role in preventing bacterial infection and reducing surgical complications.

  3. Oxygen measurements in platelet fluids - a new non-invasive method to detect bacterial contaminations in platelets.

    Science.gov (United States)

    Mueller, M M; Hourfar, M K; Huber, E; Sireis, W; Weichert, W; Seifried, E; Tonn, T; Schmidt, M

    2012-06-01

    The residual risk for bacterial contamination in blood components especially in platelets is one to two orders of magnitude higher than for transfusion relevant viral infections. The majority of all bacterial transmitted fatalities occurred at the end of platelet shelf life. Therefore, the maximum shelf life of platelet concentrates (PC) was reduced to 4 days after blood donation in Germany in 2008. A new continuous non-invasive bacterial detection method was developed by O(2) measurements in the platelet fluids and tested with 10 transfusion relevant bacteria species. The bacterial concentration at the time point of a positive signal of PreSense O(2) ranged between 10(2) and 10(5) CFU mL(-1) . Harmful transfusion-transmitted bacterial infection would have probably been prevented by this novel technology. Only strict anaerobic bacteria strains like Clostridium perfringens were not detected within the study period of 72 h. The described non-invasive bacterial detection method represents a new approach to prevent transmission of bacterial infection in platelets. The method is characterised by the advantage that all investigations can be performed until right up to the time of transfusion, and therefore, reduce the risk for sample errors to a minimum. © 2012 The Authors. Transfusion Medicine © 2012 British Blood Transfusion Society.

  4. Ascites bacterial burden and immune cell profile are associated with poor clinical outcomes in the absence of overt infection.

    Directory of Open Access Journals (Sweden)

    Kevin J Fagan

    Full Text Available Bacterial infections, most commonly spontaneous bacterial peritonitis in patients with ascites, occur in one third of admitted patients with cirrhosis, and account for a 4-fold increase in mortality. Bacteria are isolated from less than 40% of ascites infections by culture, necessitating empirical antibiotic treatment, but culture-independent studies suggest bacteria are commonly present, even in the absence of overt infection. Widespread detection of low levels of bacteria in ascites, in the absence of peritonitis, suggests immune impairment may contribute to higher susceptibility to infection in cirrhotic patients. However, little is known about the role of ascites leukocyte composition and function in this context. We determined ascites bacterial composition by quantitative PCR and 16S rRNA gene sequencing in 25 patients with culture-negative, non-neutrocytic ascites, and compared microbiological data with ascites and peripheral blood leukocyte composition and phenotype. Bacterial DNA was detected in ascitic fluid from 23 of 25 patients, with significant positive correlations between bacterial DNA levels and poor 6-month clinical outcomes (death, readmission. Ascites leukocyte composition was variable, but dominated by macrophages or T lymphocytes, with lower numbers of B lymphocytes and natural killer cells. Consistent with the hypothesis that impaired innate immunity contributes to susceptibility to infection, high bacterial DNA burden was associated with reduced major histocompatibility complex class II expression on ascites (but not peripheral blood monocytes/macrophages. These data indicate an association between the presence of ascites bacterial DNA and early death and readmission in patients with decompensated cirrhosis. They further suggest that impairment of innate immunity contributes to increased bacterial translocation, risk of peritonitis, or both.

  5. COEXISTENCE OF BACTERIAL INFECTION IN SPUTUM POSITIVE PULMONARY TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    Shashi Bhushan

    2015-12-01

    Full Text Available AIM AND OBJECTIVES To study the coexistence of bacterial infection among patients with confirmed sputum positive pulmonary tuberculosis. METHODS Study conducted at department of pulmonary medicine Victoria Hospital Bangalore, Karnataka, India, from January 2015 to June 2015 in confirmed positive sputum pulmonary tuberculosis patient, all patients were subjected for sputum gram staining and culture and sensitivity and checked for bacterial growth. RESULTS Total 150 patients were confirmed to have sputum positive pulmonary tuberculosis from January 2015 to June 2015 both inpatient and outpatient were subjected to undergo sputum gram stain and culture and sensitivity with the following growth Klebsiella 40% E coli 15.33% Pseudomonas 9.33% Pneumococci 4.66% gram negative non fermenters 2.66% methicillin resistant Staphylococcus aureus 1.33% Citrobacter 1.33% Enterobacter 1.33%, Serratia/Staphylococci aureus/Proteus .66%. CONCLUSION The most common secondary infection observed out of 150 patients is Klebsiella which is seen in 60 patients followed by E coli in 23 patients, pseudomonas in 14 patients Pneumococci in 7 pt gram negative non fermenter 4 pt, Methicillin resistant Staph aureus, Citrobacter, Enterobacter in 2 patients each Serratia, Proteus, Staphylococcus aureus in 1 patient each.

  6. Canine bacterial urinary tract infections: new developments in old pathogens.

    Science.gov (United States)

    Thompson, Mary F; Litster, Annette L; Platell, Joanne L; Trott, Darren J

    2011-10-01

    Uncomplicated bacterial urinary tract infections (UTIs) occur commonly in dogs. Persistent or recurrent infections are reported less frequently. They typically occur in dogs with an underlying disease and are sometimes asymptomatic, especially in dogs with predisposing chronic disease. Escherichia coli is the organism most frequently cultured in both simple and complicated UTIs. Organisms such as Enterococcus spp. and Pseudomonas spp. are less common in uncomplicated UTI, but become increasingly prominent in dogs with recurrent UTI. The ability of bacteria to acquire resistance to antimicrobials and/or to evade host immune defence mechanisms is vital for persistence in the urinary tract. Antimicrobial therapy limitations and bacterial strains with such abilities require novel control strategies. Sharing of resistant bacteria between humans and dogs has been recently documented and is of particular concern for E. coli O25b:H4-ST131 strains that are both virulent and multi-drug resistant. The epidemiology of complicated UTIs, pathogenic traits of uropathogens and new therapeutic concepts are outlined in this review. Copyright © 2011. Published by Elsevier Ltd.

  7. Observations of Bacterial Behavior during Infection Using the ARGOS Method

    Science.gov (United States)

    Charest, A. J.; Algarni, S.; Iannacchione, G. S.

    2015-03-01

    This research employed the Area Recorded Generalized Optical Scattering (ARGOS) approach which allowed for the observation of bacterial changes in terms of individual particles and population dynamics in real time. This new approach allows for an aqueous environment to be manipulated while conducting time-specific measurements over an indefinite amount of time. This current study provides a more time-specific method in which the bacteria remained within the initial conditions and allows for more time precision than provided by analyzing concentrations of plaque-forming units (PFU). This study involved the bacteria (F-amp) during infection by bacteriophage (MS2). The relative total intensity allows for detailed measurements of the bacteria population over time. The bacteria characteristics were also evaluated such as the root mean square image difference (at specific wavevectors), fractal dimension and effective radius. The growth rate of the infected bacteria occurred at a rate higher than the uninfected bacteria similarly, the death rates were also higher for the infected bacteria than the uninfected bacteria. The present study indicates that bacteria may react to infection by increasing the rate of population growth.

  8. Prevalence and bacterial susceptibility of hospital acquired urinary tract infection

    Directory of Open Access Journals (Sweden)

    Dias Neto José Anastácio

    2003-01-01

    Full Text Available PURPOSE: Urinary tract infection is the most common nosocomially acquired infection. It is important to know the etiology and antibiotic susceptibility infectious agents to guide the initial empirical treatment. OBJECTIVE: To determine the prevalence of bacterial strains and their antibiotic susceptibility in nosocomially acquired urinary tract infection in a university hospital between January and June 2003. METHODS: We analyzed the data of 188 patients with positive urine culture (= 10(5 colony-forming units/mL following a period of 48 hours after admission. RESULTS: Half of patients were male. Mean age was 50.26 ± 22.7 (SD, range 3 months to 88 years. Gram-negative bacteria were the agent in approximately 80% of cases. The most common pathogens were E. coli (26%, Klebsiella sp. (15%, P. aeruginosa (15% and Enterococcus sp. (11%. The overall bacteria susceptibility showed that the pathogens were more sensible to imipenem (83%, second or third generation cephalosporin and aminoglycosides; and were highly resistant to ampicillin (27% and cefalothin (30%. It is important to note the low susceptibility to ciprofloxacin (42% and norfloxacin (43%. CONCLUSION: This study suggests that if one can not wait the results of urine culture, the best choices to begin empiric treatment are imipenem, second or third generation cephalosporin and aminoglycosides. Cefalothin and ampicillin are quite ineffective to treat these infections.

  9. Bacterial interference for prevention of urinary tract infection: an overview.

    Science.gov (United States)

    Darouiche, R O; Hull, R A

    2000-01-01

    Urinary tract infection (UTI) is the most common infection in patients with spinal cord injury (SCI) and is a major cause of morbidity and mortality in this population. The bladders of patients with SCI, particularly those with indwelling bladder catheters, can become colonized by a variety of organisms, including those that may, and others that may not, cause symptoms of infection. The latter group of bacteria, so-called benign colonizers, are often left untreated because they may provide some protection against symptomatic infection with more pathogenic bacteria. In recent years, deliberate urogenital tract colonization with benign bacterial strains was studied with the objective of offering some protection against invasion by uropathogenic strains. When well-characterized strains of Lactobacillus sp. were used to colonize the vagina of women prone to frequent UTI, a moderate reduction in the rate of recurrent UTI was observed. In other studies, a non-pathogenic prototype of Escherichia coli (strain 83,972) causing asymptomatic bacteriuria was used for deliberate bladder colonization. These preliminary observations encourage the examination of the safety and preventive efficacy of this approach in human subjects.

  10. A novel method to detect bacterial resistance to disinfectants

    Directory of Open Access Journals (Sweden)

    Xiao-Feng He

    2017-09-01

    Full Text Available In clinical practice, the important hygienic prevention of bacterial pathogen spread is disinfection of potentially contaminated area. Benzalkonium bromide and chlorhexidine acetate are commonly used disinfectants with a broad spectrum of anti-microbial effect. It is vital to inhibit the spread of pathogen in hospital. However, a large number of pathogens with the decreased antiseptic susceptibility have been isolated from clinical samples which showed an increased minimal inhibitory concentration (MIC against those antiseptics. These resistant pathogens are the major causes for nosocomial cross-infections in hospital. The present study demonstrated the utility of Oxford plate assay system in determining the potential disinfectant resistance of bacteria. The microbiological assay is based on the inhibitory effect of tested disinfectants upon the strains of Staphylococcus aureus and Escherichia coli. Statistical analysis of the bioassay results indicated the linear correlation (r = 0.87–0.99, P < 0.01 between the diameter of growth inhibition zone and the log dosage of the tested disinfectants. Moreover, comparison of inhibitory efficacy of benzalkonium bromide upon 29 S. aureus strains isolated from clinical samples by both Oxford plate method and broth dilution method showed that the diameter of growth inhibition zone has significantly negative correlation with the minimal inhibitory concentration (MIC (r = −0.574, P < 0.001. These results suggest that the Oxford plate is a simple and time-saving method in detecting potential clinical disinfectant resistance and its usefulness for routine surveillance of pathogenic resistance to disinfectants warrants further investigation.

  11. Use of procalcitonin for the prediction and treatment of acute bacterial infection in children.

    Science.gov (United States)

    Pierce, Richard; Bigham, Michael T; Giuliano, John S

    2014-06-01

    Procalcitonin (PCT) is increasingly utilized to determine the presence of infection or to guide antibiotic therapy. This review will highlight the diagnostic and prognostic utility of serum PCT in children. Recent studies endorse the use of serum PCT to detect invasive infection, to differentiate sepsis from noninfectious systemic inflammatory response syndrome, and to guide antibiotic therapy. Typical values for maximal sensitivity and specificity are less than 0.5  ng/ml for noninfectious inflammation and greater than 2.0  ng/ml for bacterial sepsis. PCT appears to be a reliable indicator of infection. PCT has performed better than C-reactive protein in some settings, though pediatric comparative data are lacking. PCT may aid in diagnosing infection in challenging patient populations such as those with sickle cell disease, congenital heart defects, neutropenia, and indwelling central venous catheters. Antibiotic therapy tailored to serial PCT measurements may shorten the antibiotic exposure without increasing treatment failure. PCT is a reliable serum marker for determining the presence or absence of invasive bacterial infection and response to antibiotic therapy. Tailoring antibiotics to PCT levels may reduce the duration of therapy without increasing treatment failure, but more research is needed in children.

  12. Detection of Bacterial Endospores in Soil by Terbium Fluorescence

    Directory of Open Access Journals (Sweden)

    Andrea Brandes Ammann

    2011-01-01

    Full Text Available Spore formation is a survival mechanism of microorganisms when facing unfavorable environmental conditions resulting in “dormant” states. We investigated the occurrence of bacterial endospores in soils from various locations including grasslands (pasture, meadow, allotment gardens, and forests, as well as fluvial sediments. Bacterial spores are characterized by their high content of dipicolinic acid (DPA. In the presence of terbium, DPA forms a complex showing a distinctive photoluminescence spectrum. DPA was released from soil by microwaving or autoclaving. The addition of aluminium chloride reduced signal quenching by interfering compounds such as phosphate. The highest spore content (up to 109 spores per gram of dry soil was found in grassland soils. Spore content is related to soil type, to soil depth, and to soil carbon-to-nitrogen ratio. Our study might provide a basis for the detection of “hot spots” of bacterial spores in soil.

  13. Retrospective Analysis of Bacterial and Viral Co-Infections in Pneumocystis spp. Positive Lung Samples of Austrian Pigs with Pneumonia.

    Directory of Open Access Journals (Sweden)

    Christiane Weissenbacher-Lang

    Full Text Available Aim of this study was the retrospective investigation of viral (porcine circovirus type 2 (PCV2, porcine reproductive and respiratory syndrome virus (PRRSV, torque teno sus virus type 1 and 2 (TTSuV1, TTSuV2 and bacterial (Bordetella bronchiseptica (B. b., Mycoplasma hyopneumoniae (M. h., and Pasteurella multocida (P. m. co-infections in 110 Pneumocystis spp. positive lung samples of Austrian pigs with pneumonia. Fifty-one % were positive for PCV2, 7% for PRRSV, 22% for TTSuV1, 48% for TTSuV2, 6% for B. b., 29% for M. h., and 21% for P. m. In 38.2% only viral, in 3.6% only bacterial and in 40.0% both, viral and bacterial pathogens were detected. In 29.1% of the cases a co-infection with 1 pathogen, in 28.2% with 2, in 17.3% with 3, and in 7.3% with 4 different infectious agents were observed. The exposure to Pneumocystis significantly decreased the risk of a co-infection with PRRSV in weaning piglets; all other odds ratios were not significant. Four categories of results were compared: I = P. spp. + only viral co-infectants, II = P. spp. + both viral and bacterial co-infectants, III = P. spp. + only bacterial co-infectants, and IV = P. spp. single infection. The evaluation of all samples and the age class of the weaning piglets resulted in a predomination of the categories I and II. In contrast, the suckling piglets showed more samples of category I and IV. In the group of fattening pigs, category II predominated. Suckling piglets can be infected with P. spp. early in life. With increasing age this single infections can be complicated by co-infections with other respiratory diseases.

  14. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis.

    Science.gov (United States)

    Telleria, Erich L; Sant'Anna, Maurício R Viana; Alkurbi, Mohammad O; Pitaluga, André N; Dillon, Rod J; Traub-Csekö, Yara M

    2013-01-11

    Phlebotomine insects harbor bacterial, viral and parasitic pathogens that can cause diseases of public health importance. Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the New World. Insects can mount a powerful innate immune response to pathogens. Defensin peptides take part in this response and are known to be active against Gram-positive and Gram-negative bacteria, and some parasites. We studied the expression of a defensin gene from Lutzomyia longipalpis to understand its role in sand fly immune response. We identified, sequenced and evaluated the expression of a L. longipalpis defensin gene by semi-quantitative RT-PCR. The gene sequence was compared to other vectors defensins and expression was determined along developmental stages and after exposure of adult female L. longipalpis to bacteria and Leishmania. Phylogenetic analysis showed that the L. longipalpis defensin is closely related to a defensin from the Old World sand fly Phlebotomus duboscqi. Expression was high in late L4 larvae and pupae in comparison to early larval stages and newly emerged flies. Defensin expression was modulated by oral infection with bacteria. The Gram-positive Micrococcus luteus induced early high defensin expression, whilst the Gram-negative entomopathogenic Serratia marcescens induced a later response. Bacterial injection also induced defensin expression in adult insects. Female sand flies infected orally with Leishmania mexicana showed no significant difference in defensin expression compared to blood fed insects apart from a lower defensin expression 5 days post Leishmania infection. When Leishmania was introduced into the hemolymph by injection there was no induction of defensin expression until 72 h later. Our results suggest that L. longipalpis modulates defensin expression upon bacterial and Leishmania infection, with patterns of expression that are distinct among bacterial species and routes of infection.

  15. Differences of serum procalcitonin levels between bacterial infection and flare in systemic lupus erythematosus patients

    Science.gov (United States)

    Patrick, J.; Marpaung, B.; Ginting, Y.

    2018-03-01

    Differentiate bacterial infections from flare in SLE patients is difficult to do because clinical symptoms of infection is similar to flare. SLE patients with infection require antibiotic therapy with decreased doses of immunosuppressant while in flare diseases require increased immunosuppressant. Procalcitonin (PCT), a biological marker, increased in serum patients with bacterial infections and expected to be a solution of problem. The aim of this study was to examine the function of PCT serum as marker to differentiate bacterial infection and flare in SLE patients. This cross-sectional study was conducted in Adam Malik Hospital from January-July 2017. We examined 80 patients SLE flare (MEX-SLEDAI>5), screen PCT and culture according to focal infection. Data were statistically analyzed. 80 SLE patients divided into 2 groups: bacterial infection group (31 patients) and non-infection/flare group (49 patients). Median PCT levels of bacterial infection group was 1.66 (0.04-8.45)ng/ml while flare group was 0.12 (0.02-0.81)ng/ml. There was significant difference of serum Procalcitonin level between bacterial infection and flare group in SLE patients (p=0.001). Procalcitonin serum levels can be used as a biomarker to differentiate bacterial infections and flare in SLE patients.

  16. Predicting bacterial infections among pediatric cancer patients with febrile neutropenia

    DEFF Research Database (Denmark)

    Ojha, Rohit P; Asdahl, Peter H; Steyerberg, Ewout W

    2017-01-01

    INTRODUCTION: The Predicting Infectious Complications in Neutropenic Children and Young People with Cancer (PICNICC) model was recently developed for antibiotic stewardship among pediatric cancer patients, but limited information is available about its clinical usefulness. We aimed to assess...... the performance of the PICNICC model for predicting microbiologically documented bacterial infections among pediatric cancer patients with febrile neutropenia. MATERIALS AND METHODS: We used data for febrile neutropenia episodes at a pediatric cancer center in Aarhus, Denmark between 2000 and 2016. We assessed...... calibration but did not improve net benefit. CONCLUSIONS: The PICNICC model has potential for reducing unnecessary antibiotic exposure for pediatric cancer patients with febrile neutropenia, but continued validation and refinement is necessary to optimize clinical usefulness....

  17. Impact of bacterial infections on aging and cancer

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Madsen, Claus Desler; Rasmussen, Lene Juel

    2014-01-01

    The commensal floras that inhabit the gastrointestinal tract play critical roles in immune responses, energy metabolism, and even cancer prevention. Pathogenic and out of place commensal bacteria, can however have detrimental effects on the host, by introducing genomic instability and mitochondrial...... DNA repair subunits of major DNA repair pathways and increase production of reactive oxygen species (ROS). Defects in DNA repair cause mutations and genomic instability and are found in several cancers as well as in progeroid syndromes. This review describes our contemporary view on how bacterial...... infections impact DNA repair and damage, and the consequence on the mitochondrial and nuclear genomes. We argue that in the gastrointestinal tract, these mechanisms can contribute to tumorigenesis as well as cellular aging of the digestive system....

  18. Metabolic host responses to infection by intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Wolfgang eEisenreich

    2013-07-01

    Full Text Available The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defence answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies.

  19. How nanotechnology-enabled concepts could contribute to the prevention, diagnosis and therapy of bacterial infections.

    Science.gov (United States)

    Herrmann, Inge K

    2015-05-29

    This viewpoint summarizes a selection of nanotechnology-based key concepts relevant to critical care medicine. It focuses on novel approaches for a trigger-dependent release of antimicrobial substances from degradable nano-sized carriers, the ultra-sensitive detection of analytes in body fluid samples by plasmonic and fluorescent nanoparticles, and the rapid removal of pathogens from whole blood using magnetic nanoparticles. The concepts presented here could significantly contribute to the prevention, diagnosis and therapy of bacterial infections in future and it is now our turn to bring them from the bench to the bedside.

  20. Infection-related hemolysis and susceptibility to Gram-negative bacterial co-infection

    Directory of Open Access Journals (Sweden)

    Katharine eOrf

    2015-06-01

    Full Text Available Increased susceptibility to co-infection with enteric Gram-negative bacteria, particularly non-typhoidal Salmonella, is reported in malaria and Oroya fever (Bartonella bacilliformis infection, and can lead to increased mortality. Accumulating epidemiological evidence indicates a causal association with risk of bacterial co-infection, rather than just co-incidence of common risk factors. Both malaria and Oroya fever are characterised by hemolysis, and observations in humans and animal models suggest that hemolysis causes the susceptibility to bacterial co-infection. Evidence from animal models implicates hemolysis in the impairment of a variety of host defence mechanisms, including macrophage dysfunction, neutrophil dysfunction and impairment of adaptive immune responses. One mechanism supported by evidence from animal models and human data, is the induction of heme oxygenase-1 in bone marrow, which impairs the ability of developing neutrophils to mount a competent oxidative burst. As a result, dysfunctional neutrophils become a new niche for replication of intracellular bacteria. Here we critically appraise and summarize the key evidence for mechanisms which may contribute to these very specific combinations of co-infections, and propose interventions to ameliorate this risk.

  1. Using Natural Products to Treat Resistant and Persistent Bacterial Infections

    Science.gov (United States)

    Deering, Robert W.

    Antimicrobial resistance is a growing threat to human health both worldwide and in the United States. Most concerning is the emergence of multi-drug resistant (MDR) bacterial pathogens, especially the 'ESKAPE' pathogens for which treatment options are dwindling. To complicate the problem, approvals of antibiotic drugs are extremely low and many research and development efforts in the pharmaceutical industry have ceased, leaving little certainty that critical new antibiotics are nearing the clinic. New antibiotics are needed to continue treating these evolving infections. In addition to antibiotics, approaches that aim to inhibit or prevent antimicrobial resistance could be useful. Also, studies that improve our understanding of bacterial pathophysiology could lead to new therapies for infectious disease. Natural products, especially those from the microbial world, have been invaluable as resources for new antibacterial compounds and as insights into bacterial physiology. The goal of this dissertation is to find new ways to treat resistant bacterial infections and learn more about the pathophysiology of these bacteria. Investigations of natural products to find molecules able to be used as new antibiotics or to modulate resistance and other parts of bacterial physiology are crucial aspects of the included studies. The first included study, which is reported in chapter two, details a chemical investigation of a marine Pseudoalteromonas sp. Purification efforts of the microbial metabolites were guided by testing against a resistance nodulation of cell division model of efflux pumps expressed in E. coli. These pumps play an important role in the resistance of MDR Gram negative pathogens such as Pseudomonas aeruginosa and Enterobacteriaceae. Through this process, 3,4-dibromopyrrole-2,5-dione was identified as a potent inhibitor of the RND efflux pumps and showed synergistic effects against the E. coli strain with common antibiotics including fluoroquinolones, beta

  2. Rapid label-free identification of mixed bacterial infections by surface plasmon resonance

    Directory of Open Access Journals (Sweden)

    Fu Weiling

    2011-06-01

    Full Text Available Abstract Background Early detection of mixed aerobic-anaerobic infection has been a challenge in clinical practice due to the phenotypic changes in complex environments. Surface plasmon resonance (SPR biosensor is widely used to detect DNA-DNA interaction and offers a sensitive and label-free approach in DNA research. Methods In this study, we developed a single-stranded DNA (ssDNA amplification technique and modified the traditional SPR detection system for rapid and simultaneous detection of mixed infections of four pathogenic microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, Clostridium tetani and Clostridium perfringens. Results We constructed the circulation detection well to increase the sensitivity and the tandem probe arrays to reduce the non-specific hybridization. The use of 16S rDNA universal primers ensured the amplification of four target nucleic acid sequences simultaneously, and further electrophoresis and sequencing confirmed the high efficiency of this amplification method. No significant signals were detected during the single-base mismatch or non-specific probe hybridization (P 2 values of >0.99. The lowest detection limits were 0.03 nM for P. aeruginosa, 0.02 nM for S. aureus, 0.01 nM for C. tetani and 0.02 nM for C. perfringens. The SPR biosensor had the same detection rate as the traditional culture method (P Conclusions Our method can rapidly and accurately identify the mixed aerobic-anaerobic infection, providing a reliable alternative to bacterial culture for rapid bacteria detection.

  3. Co-infections with respiratory viruses in dogs with bacterial pneumonia.

    Science.gov (United States)

    Viitanen, S J; Lappalainen, A; Rajamäki, M M

    2015-01-01

    Bacterial pneumonia (BP) is an inflammation of the lower airways and lung parenchyma secondary to bacterial infection. The pathogenesis of BP in dogs is complex and the role of canine respiratory viruses has not been fully evaluated. The aim of this study was to investigate the occurrence of viral co-infections in dogs with BP and to assess demographic or clinical variables as well as disease severity associated with viral co-infections. Twenty household dogs with BP caused by opportunistic bacteria and 13 dogs with chronic (>30 days) tracheobronchitis caused by Bordetella bronchiseptica (BBTB). Prospective cross-sectional observational study. Diagnosis was confirmed by clinical and laboratory findings, diagnostic imaging, and cytologic and microbiologic analysis of bronchoalveolar lavage or transtracheal wash fluid. Canine parainfluenza virus (CPIV), canine adenovirus, canine herpes virus, canine influenzavirus, canine distemper virus, canine respiratory coronavirus (CRCoV) and canine pneumovirus, as well as B. bronchiseptica and Mycoplasma spp. were analyzed in respiratory samples using PCR assays. CPIV was detected in 7/20 and CRCoV in 1/20 dogs with BP. Respiratory viruses were not detected in dogs with BBTB. There were no significant differences in clinical variables between BP dogs with and without a viral co-infection. Respiratory viruses were found frequently in dogs with BP and may therefore play an important role in the etiology and pathogenesis of BP. Clinical variables and disease severity did not differ between BP dogs with and without viral co-infection. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  4. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    Energy Technology Data Exchange (ETDEWEB)

    Welling, M. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Feitsma, H.I.J. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Calame, W. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Ensing, G.J. (Mallinckrodt Medical, Petten (Netherlands)); Goedemans, W. (Mallinckrodt Medical, Petten (Netherlands)); Pauwels, E.K.J. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands))

    1994-10-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P<0.03) higher for the purified than for the unpurified immunoglobulin. For the in vivo study, mice were infected in the thigh muscle with Staph. aureus or K. pneumoniae. After 18 h 0.1 mg of technetium-99m labelled polyclonal immunoglobulin or [sup 99m]Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P<0.03) for protein charge-purified polyclonal immunoglobulin than for unpurified polyclonal human immunoglobulin. Already within 1 h the infected tissues could be detected by the purified immunoglobulin. It is concluded that [sup 99m]Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than [sup 99m]Tc-labelled unpurified immunoglobulin. (orig.)

  5. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    International Nuclear Information System (INIS)

    Welling, M.; Feitsma, H.I.J.; Calame, W.; Ensing, G.J.; Goedemans, W.; Pauwels, E.K.J.

    1994-01-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P 99m Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P 99m Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than 99m Tc-labelled unpurified immunoglobulin. (orig.)

  6. Nucleic acid detection technologies and marker molecules in bacterial diagnostics.

    Science.gov (United States)

    Scheler, Ott; Glynn, Barry; Kurg, Ants

    2014-05-01

    There is a growing need for quick and reliable methods for microorganism detection and identification worldwide. Although traditional culture-based technologies are trustworthy and accurate at a relatively low cost, they are also time- and labor-consuming and are limited to culturable bacteria. Those weaknesses have created a necessity for alternative technologies that are capable for faster and more precise bacterial identification from medical, food or environmental samples. The most common current approach is to analyze the nucleic acid component of analyte solution and determine the bacterial composition according to the specific nucleic acid profiles that are present. This review aims to give an up-to-date overview of different nucleic acid target sequences and respective analytical technologies.

  7. Comparison of Established Diagnostic Methodologies and a Novel Bacterial smpB Real-Time PCR Assay for Specific Detection of Haemophilus influenzae Isolates Associated with Respiratory Tract Infections.

    Science.gov (United States)

    Reddington, Kate; Schwenk, Stefan; Tuite, Nina; Platt, Gareth; Davar, Danesh; Coughlan, Helena; Personne, Yoann; Gant, Vanya; Enne, Virve I; Zumla, Alimuddin; Barry, Thomas

    2015-09-01

    Haemophilus influenzae is a significant causative agent of respiratory tract infections (RTI) worldwide. The development of a rapid H. influenzae diagnostic assay that would allow for the implementation of infection control measures and also improve antimicrobial stewardship for patients is required. A number of nucleic acid diagnostics approaches that detect H. influenzae in RTIs have been described in the literature; however, there are reported specificity and sensitivity limitations for these assays. In this study, a novel real-time PCR diagnostic assay targeting the smpB gene was designed to detect all serogroups of H. influenzae. The assay was validated using a panel of well-characterized Haemophilus spp. Subsequently, 44 Haemophilus clinical isolates were collected, and 36 isolates were identified as H. influenzae using a gold standard methodology that combined the results of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and a fucK diagnostic assay. Using the novel smpB diagnostic assay, 100% concordance was observed with the gold standard, demonstrating a sensitivity of 100% (95% confidence interval [CI], 90.26% to 100.00%) and a specificity of 100% (95% CI, 63.06% to 100.00%) when used on clinical isolates. To demonstrate the clinical utility of the diagnostic assay presented, a panel of lower RTI samples (n = 98) were blindly tested with the gold standard and smpB diagnostic assays. The results generated were concordant for 94/98 samples tested, demonstrating a sensitivity of 90.91% (95% CI, 78.33% to 97.47%) and a specificity of 100% (95% CI, 93.40% to 100.00%) for the novel smpB assay when used directly on respiratory specimens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Comparison of individual and pooled sampling methods for detecting bacterial pathogens of fish

    Science.gov (United States)

    Mumford, Sonia; Patterson, Chris; Evered, J.; Brunson, Ray; Levine, J.; Winton, J.

    2005-01-01

    Examination of finfish populations for viral and bacterial pathogens is an important component of fish disease control programs worldwide. Two methods are commonly used for collecting tissue samples for bacteriological culture, the currently accepted standards for detection of bacterial fish pathogens. The method specified in the Office International des Epizooties Manual of Diagnostic Tests for Aquatic Animals permits combining renal and splenic tissues from as many as 5 fish into pooled samples. The American Fisheries Society (AFS) Blue Book/US Fish and Wildlife Service (USFWS) Inspection Manual specifies the use of a bacteriological loop for collecting samples from the kidney of individual fish. An alternative would be to more fully utilize the pooled samples taken for virology. If implemented, this approach would provide substantial savings in labor and materials. To compare the relative performance of the AFS/USFWS method and this alternative approach, cultures of Yersinia ruckeri were used to establish low-level infections in groups of rainbow trout (Oncorhynchus mykiss) that were sampled by both methods. Yersinia ruckeri was cultured from 22 of 37 groups by at least 1 method. The loop method yielded 18 positive groups, with 1 group positive in the loop samples but negative in the pooled samples. The pooled samples produced 21 positive groups, with 4 groups positive in the pooled samples but negative in the loop samples. There was statistically significant agreement (Spearman coefficient 0.80, P methods to permit detection of low-level bacterial infections of rainbow trout.

  9. [Investigation of bacterial and viral etiology in community acquired central nervous system infections with molecular methods].

    Science.gov (United States)

    Kahraman, Hasip; Tünger, Alper; Şenol, Şebnem; Gazi, Hörü; Avcı, Meltem; Örmen, Bahar; Türker, Nesrin; Atalay, Sabri; Köse, Şükran; Ulusoy, Sercan; Işıkgöz Taşbakan, Meltem; Sipahi, Oğuz Reşat; Yamazhan, Tansu; Gülay, Zeynep; Alp Çavuş, Sema; Pullukçu, Hüsnü

    2017-07-01

    In this multicenter prospective cohort study, it was aimed to evaluate the bacterial and viral etiology in community-acquired central nervous system infections by standart bacteriological culture and multiplex polymerase chain reaction (PCR) methods. Patients hospitalized with central nervous system infections between April 2012 and February 2014 were enrolled in the study. Demographic and clinical information of the patients were collected prospectively. Cerebrospinal fluid (CSF) samples of the patients were examined by standart bacteriological culture methods, bacterial multiplex PCR (Seeplex meningitis-B ACE Detection (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Listeria monocytogenes, Group B streptococci) and viral multiplex PCR (Seeplex meningitis-V1 ACE Detection kits herpes simplex virus-1 (HSV1), herpes simplex virus-2 (HSV2), varicella zoster virus (VZV), cytomegalovirus (CMV), Epstein Barr virus (EBV) and human herpes virus 6 (HHV6)) (Seeplex meningitis-V2 ACE Detection kit (enteroviruses)). Patients were classified as purulent meningitis, aseptic meningitis and encephalitis according to their clinical, CSF (leukocyte level, predominant cell type, protein and glucose (blood/CSF) levels) and cranial imaging results. Patients who were infected with a pathogen other than the detection of the kit or diagnosed as chronic meningitis and other diseases during the follow up, were excluded from the study. A total of 79 patients (28 female, 51 male, aged 42.1 ± 18.5) fulfilled the study inclusion criteria. A total of 46 patients were classified in purulent meningitis group whereas 33 were in aseptic meningitis/encephalitis group. Pathogens were detected by multiplex PCR in 41 patients. CSF cultures were positive in 10 (21.7%) patients (nine S.pneumoniae, one H.influenzae) and PCR were positive for 27 (58.6%) patients in purulent meningitis group. In this group one type of bacteria were detected in 18 patients (14 S.pneumoniae, two N

  10. Circulating Chemokine Levels in Febrile Infants With Serious Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Hsiu-Lin Chen

    2009-12-01

    Full Text Available Early diagnosis of serious bacterial infections (SBI in febrile young infants based on clinical symptoms and signs is difficult. This study aimed to evaluate the diagnostic values of circulating chemokines and C-reactive protein (CRP levels in febrile young infants < 3 months of age with suspected SBI. We enrolled 43 febrile young infants < 3 months of age with clinically suspected SBI who were admitted to the neonatal intensive care unit or complete nursing unit of the pediatric department of Kaohsiung Medical University Hospital between December 2006 and July 2007. Blood was drawn from the patients at admission, and complete blood counts, plasma levels of CRP, granulocyte colony-stimulating factor (G-CSF, and chemokines, including interleukin-8 (IL-8, macrophage inflammatory protein-1α, macrophage inflammatory protein-1β, monokine induced by interferon-γ, and monocyte chemotactic protein-1 were measured. Patients’ symptoms and signs, length of hospital stay, main diagnosis, and results of routine blood tests and microbiological culture results were recorded. Twenty-six infants (60.5% were diagnosed with SBI, while 17 (39.5% had no evidence of SBI based on the results of bacterial cultures. CRP, IL-8 and G-CSF levels were significantly higher in the infants with SBI than in those without SBI. Plasma levels of other chemokines were not significantly different between the groups. The area under the receiver-operating characteristic (ROC curve for differentiating between the presence and absence of SBI was 0.79 for CRP level. Diagnostic accuracy was further improved by combining CRP and IL-8, when the area under the ROC curve increased to 0.91. CRP levels were superior to IL-8 and G-CSF levels for predicting SBI in febrile infants at initial survey. IL-8 levels could be used as an additional diagnostic tool in the initial evaluation of febrile young infants, allowing clinicians to treat these patients more appropriately.

  11. Bacterial colonisation of suture material after routine neurosurgical procedures: relevance for wound infection.

    Science.gov (United States)

    Hong, Bujung; Winkel, Andreas; Ertl, Philipp; Stumpp, Sascha Nico; Schwabe, Kerstin; Stiesch, Meike; Krauss, Joachim K

    2018-03-01

    Wound healing impairment is a serious problem in surgical disciplines which may be associated with chronic morbidity, increased cost and patient discomfort. Here we aimed to investigate the relevance of bacterial colonisation on suture material using polymerase chain reaction (PCR) to detect and taxonomically classify bacterial DNA in patients with and without wound healing problems after routine neurosurgical procedures. Repeat surgery was performed in 25 patients with wound healing impairment and in 38 patients with well-healed wounds. To determine the presence of bacteria, a 16S rDNA-based PCR detection method was applied. Fragments of 500 bp were amplified using universal primers which target hypervariable regions within the bacterial 16S rRNA gene. Amplicons were separated from each other by single-strand conformation polymorphism (SSCP) analysis, and finally classified using Sanger sequencing. PCR/SSCP detected DNA of various bacteria species on suture material in 10/38 patients with well-healed wounds and in 12/25 patients with wound healing impairment including Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes and Escherichia coli. Microbiological cultures showed bacterial growth in almost all patients with wound healing impairment and positive results in PCR/SSCP (10/12), while this was the case in only one patient with a well-healed wound (1/10). Colonisation of suture material with bacteria occurs in a relevant portion of patients with and without wound healing impairment after routine neurosurgical procedures. Suture material may provide a nidus for bacteria and subsequent biofilm formation. Most likely, however, such colonisation of sutures is not a general primer for subsequent wound infection.

  12. Human Infections and Detection of Plasmodium knowlesi

    Science.gov (United States)

    Daneshvar, Cyrus

    2013-01-01

    SUMMARY Plasmodium knowlesi is a malaria parasite that is found in nature in long-tailed and pig-tailed macaques. Naturally acquired human infections were thought to be extremely rare until a large focus of human infections was reported in 2004 in Sarawak, Malaysian Borneo. Human infections have since been described throughout Southeast Asia, and P. knowlesi is now recognized as the fifth species of Plasmodium causing malaria in humans. The molecular, entomological, and epidemiological data indicate that human infections with P. knowlesi are not newly emergent and that knowlesi malaria is primarily a zoonosis. Human infections were undiagnosed until molecular detection methods that could distinguish P. knowlesi from the morphologically similar human malaria parasite P. malariae became available. P. knowlesi infections cause a spectrum of disease and are potentially fatal, but if detected early enough, infections in humans are readily treatable. In this review on knowlesi malaria, we describe the early studies on P. knowlesi and focus on the epidemiology, diagnosis, clinical aspects, and treatment of knowlesi malaria. We also discuss the gaps in our knowledge and the challenges that lie ahead in studying the epidemiology and pathogenesis of knowlesi malaria and in the prevention and control of this zoonotic infection. PMID:23554413

  13. Raman Hyperspectral Imaging for Detection of Watermelon Seeds Infected with Acidovorax citrulli

    OpenAIRE

    Lee, Hoonsoo; Kim, Moon S.; Qin, Jianwei; Park, Eunsoo; Song, Yu-Rim; Oh, Chang-Sik; Cho, Byoung-Kwan

    2017-01-01

    The bacterial infection of seeds is one of the most important quality factors affecting yield. Conventional detection methods for bacteria-infected seeds, such as biological, serological, and molecular tests, are not feasible since they require expensive equipment, and furthermore, the testing processes are also time-consuming. In this study, we use the Raman hyperspectral imaging technique to distinguish bacteria-infected seeds from healthy seeds as a rapid, accurate, and non-destructive det...

  14. Bacterial infection as a likely cause of adverse reactions to polyacrylamide hydrogel fillers in cosmetic surgery

    DEFF Research Database (Denmark)

    Christensen, Lise; Breiting, Vibeke; Bjarnsholt, Thomas

    2013-01-01

    Background. The etiology of long-lasting adverse reactions to gel fillers used in cosmetic surgery is not known. Bacterial infection and immunological reaction to the product have been suggested. Methods. We performed a case-control study, with 77 biopsies and 30 cytology specimens originating from...... 59 patients with adverse reactions to polyacrylamide gel, and 54 biopsies and 2 cytology specimens from 28 control subjects with no adverse reactions. Samples from 5 patients and 4 controls could not be investigated for presence of bacteria owing to limited material. Samples from the remaining 54...... in bacteriologically investigated samples from 53 of 54 patients (98%), and in none of the 24 controls (0%). The bacteria were lying in small clusters, which in symptomatic lesions were detected up to 5 years postinjection. Conclusions. Commensal bacteria of low virulence are capable of producing long-term infection...

  15. Parasitic and Bacterial Infections of Myocastor coypus in a Metropolitan Area of Northwestern Italy.

    Science.gov (United States)

    Zanzani, Sergio A; Di Cerbo, Annarita; Gazzonis, Alessia L; Epis, Sara; Invernizzi, Anna; Tagliabue, Silvia; Manfredi, Maria T

    2016-01-01

    Coypus (Myocastor coypus) are widespread throughout Europe. In northern Italy, they are abundant in the flatland areas, and their high population densities can cause economic loss and ecosystem damage. We examined 153 coypus for selected parasitic and bacterial infections. We found Strongyloides myopotami (63.4% prevalence), Trichostrongylus duretteae (28.1%), Eimeria coypi (86.3%), and Eimeria seideli (6.8%), but did not find Giardia duodenalis or Cryptosporidium spp. We also isolated Staphylococcus aureus (10.1%), Escherichia coli (4.5%), and Streptococcus spp. (3.4%) from lung samples; no Salmonella spp. were isolated from fecal samples. Coypus had antibodies to Toxoplasma gondii (28.9%) and to four serovars of Leptospira interrogans (44.9%); Australis/Bratislava was the serovar most frequently detected. It is clear that coypu can be infected with pathogens of human and veterinary importance.

  16. The Fractional-Order mathematical modeling of bacterial resistance against multiple antibiotics in case of local bacterial infection

    Directory of Open Access Journals (Sweden)

    Bahatdin Daşbaşı

    2017-06-01

    Full Text Available In this study, it is described the general forms of fractional-order differential equations and asymtotic stability of their system’s equilibria. In addition that, the stability analysis of equilibrium points of the local bacterial infection model which is fractional-order differential equation system, is made. Results of this analysis are supported via numerical simulations drawn by datas obtained from literature for mycobacterium tuberculosis and the antibiotics isoniazid (INH, rifampicin (RIF, streptomycin (SRT and pyrazinamide (PRZ used against this bacterial infection.

  17. The role of bacterial infection and inflammation in the generation of overactive bladder symptoms

    OpenAIRE

    Gill, K.

    2016-01-01

    There is substantial evidence of considerable insensitivity affecting the current tests used to screen for urinary infection. The studies within this thesis provide original work in examining the performance of recommended diagnostic tests for urinary tract infection, and explore the bacterial ecology of urinary infection and its associated urothelial inflammatory response in patients with symptoms of overactive bladder. The association between lower urinary tract inflammation, bacterial colo...

  18. Development of quantitative PCR methods for diagnosis of bacterial vaginosis and vaginal yeast infection

    OpenAIRE

    Eiderbrant, Kristina

    2011-01-01

    Vaginitis is a vaginal infection which affects many women all over the world. The disorder is characterized by an infection of the vaginal area which can cause problems like abnormal vaginal discharge, itching and redness. The two most common causes of vaginitis are bacterial vaginosis and Candida vaginitis. The prevalence of bacterial vaginosis in Sweden is around 10-20 % and approximately 75 % of all women will once in their lifetime suffer from vaginal yeast infection. The clinical symptom...

  19. Bacterial Meningitis in HIV-Infected Patients: Case Reports and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Robert Tommasini

    1992-01-01

    Full Text Available Meningitis is not an uncommon complication of the acquired immune deficiency syndrome. Purulent meningitis is not a well recognized infection in human immunodeficiency virus (HIV positive patients. Three cases of bacterial meningitis caused by Streptococcus pneumoniae, Neisseria meningitidis and Listeria monocytogenes are presented. These cases illustrate that common community organisms may present in HIV positive patients. An acquired B cell defect may predispose to bacterial infections responsible for meningitis in HIV-infected patients.

  20. Imaging of bacterial infections of the sacroiliac joint

    International Nuclear Information System (INIS)

    Groves, C.; Cassar-Pullicino, V.

    2004-01-01

    Infection of the sacroiliac joint can be pyogenic or granulomatous and is usually unilateral. There are a number of predisposing conditions including drug abuse and intra articular steroid injection, but in 44% of cases, no definite predisposing factors can be identified. Considerable delay between presentation and diagnosis is recognized. The clinical picture may be non-specific and variable, and clinical suspicion may be low due to the relatively low incidence of the condition. This is compounded by difficulties in clinical examination of the SIJs. The diagnosis is based on a history suggestive of infection, clinical or radiographic localization to the SIJs, and a positive blood culture or joint aspirate. The pathology of pyogenic sacroiliitis is reviewed with respect to the anatomy of the SIJ, and the differential diagnoses considered. The imaging findings, and relative merits of all the modalities are discussed with particular consideration given to changes over the course of the disease. Imaging strategies are evaluated and proposed. As the commonest presenting symptom is low back pain, consideration should be given to the addition of a STIR sequence covering the SIJs on all routine lumbar spine MR examinations. MR imaging is the most sensitive and specific imaging modality, while CT-guided arthrocentesis improves diagnostic confidence. Tc 99 MDP blood pool imaging mirrors the clinical features of resolution, and scintigraphy may be the best method to monitor response to treatment. Targeted antibiotic therapy usually leads to a full recovery. A high incidence of clinical suspicion, with MR imaging at an early stage are the essential prerequisites to an accurate diagnosis of bacterial sacroiliitis. (orig.) [de

  1. [Characteristics of epidemiology and antimicrobial resistance of gram-negative bacterial bloodstream infections in children].

    Science.gov (United States)

    Dong, L; Zhang, X Y; Li, C C; Li, Z; Xia, Y Q

    2017-09-02

    resistant Enterobacteriaceae were isolated, which were all sensitive to amikacin and the sensitive rates to fluoroquinolone reached 88.9%. Five strains which were detected sensitive to tigecycline were all sensitive. The proportion of Klebsiella sp in Gram-negative bacteria between 2013-2015 and 2010-2012 were 32.9% and 21.2%, respectively. The resistance rates of Escherichia coli and Klebsiella pneumoniae to β-lactams and its enzyme inhibitors and carbapenems had no significant change. Conclusion: Gram-negative bacterial bloodstream infections occur more frequently in newborns. Most children had combined underlying diseases. Escherichia coli and Klebsiella pneumoniae are the most common pathogens. β-Lactams and its enzyme inhibitors and carbapenems are the empirical choice of antimicrobial therapy for severe Enterobacteriaceae bloodstream bacterial infections.

  2. Smart phone based bacterial detection using bio functionalized fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Rajendran, Vinoth Kumar; Bakthavathsalam, Padmavathy; Ali, Baquir Mohammed Jaffar

    2014-01-01

    We are describing immunochromatographic test strips with smart phone-based fluorescence readout. They are intended for use in the detection of the foodborne bacterial pathogens Salmonella spp. and Escherichia coli O157. Silica nanoparticles (SiNPs) were doped with FITC and Ru(bpy), conjugated to the respective antibodies, and then used in a conventional lateral flow immunoassay (LFIA). Fluorescence was recorded by inserting the nitrocellulose strip into a smart phone-based fluorimeter consisting of a light weight (40 g) optical module containing an LED light source, a fluorescence filter set and a lens attached to the integrated camera of the cell phone in order to acquire high-resolution fluorescence images. The images were analysed by exploiting the quick image processing application of the cell phone and enable the detection of pathogens within few minutes. This LFIA is capable of detecting pathogens in concentrations as low as 10 5 cfu mL −1 directly from test samples without pre-enrichment. The detection is one order of magnitude better compared to gold nanoparticle-based LFIAs under similar condition. The successful combination of fluorescent nanoparticle-based pathogen detection by LFIAs with a smart phone-based detection platform has resulted in a portable device with improved diagnosis features and having potential application in diagnostics and environmental monitoring. (author)

  3. Occult bacterial lower urinary tract infections in cats-urinalysis and culture findings.

    Science.gov (United States)

    Litster, Annette; Moss, Susan; Platell, Joanne; Trott, Darren J

    2009-04-14

    Bacterial urinary tract infections (UTIs) can be detected in feline urine submitted for urinalysis and culture as part of the diagnostic workup for a variety of conditions. Our aim was to investigate urinalysis and culture findings in urine specimens from cats with no history of lower urinary tract signs. Study inclusion criteria required cystocentesis specimens from cats with no history of lower urinary tract signs, inappropriate urination, or previous UTI (including pyelonephritis). Of 132 specimens, 38 were culture positive and 94 were culture negative. Culture positive urine specimens were more likely to come from older female cats (p=0.03, p<0.001, respectively) and they had higher pH (p=0.001), erythrocyte (p=0.013) and leukocyte counts (p=0.003) than culture negative urine specimens. Gram-negative infected specimens (n=15) had lower urine specific gravity and higher leukocyte counts than Gram-positive infected specimens (n=21; p=0.0012, p=0.005, respectively) and culture negative specimens (p=0.003, p<0.0001, respectively). Urine protein:creatinine ratio was higher in Gram-negative infected urine than in culture negative urine (p=0.013). Enterococcus faecalis was the most commonly isolated bacteria (19 of a total of 44 isolates; 43.2%) and E. coli phylogenetic group B2 was the most common Gram-negative isolate (14 of a total of 44 isolates; 31.8%). We conclude that feline bacterial urinary tract infections can occur in cats without lower urinary tract signs, particularly older females and that they are associated with high urine erythrocyte and leukocyte counts.

  4. Protection against Helicobacter pylori and other bacterial infections by garlic.

    Science.gov (United States)

    Sivam, G P

    2001-03-01

    Louis Pasteur was the first to describe the antibacterial effect of onion and garlic juices. Historically, garlic has been used worldwide to fight bacterial infections. Allium vegetables, particularly garlic (Allium sativum L.) exhibit a broad antibiotic spectrum against both gram-positive and gram-negative bacteria. Noteworthy results published include the following: 1) raw juice of garlic was found to be effective against many common pathogenic bacteria-intestinal bacteria, which are responsible for diarrhea in humans and animals; 2) garlic is effective even against those strains that have become resistant to antibiotics; 3) the combination of garlic with antibiotics leads to partial or total synergism; 4) complete lack of resistance has been observed repeatedly; 5) even toxin production by microorganisms is prevented by garlic. Helicobacter pylori (H. pylori) is a bacterium implicated in the etiology of stomach cancer and ulcers. The incidence of stomach cancer is lower in populations with a high intake of allium vegetables. We have demonstrated in vitro that H. pylori is susceptible to garlic extract at a fairly moderate concentration. Even some antibiotic-resistant H. pylori strains are susceptible to garlic. Clinical trials are necessary to explore the possibility of using garlic as a low-cost remedy for eradicating H. pylori.

  5. Evaluation of Novel Antimicrobial Peptides as Topical Anti-Infectives with Broad-Spectrum Activity against Combat-Related Bacterial and Fungal Wound Infections

    Science.gov (United States)

    2017-10-01

    succeeded in developing resistance to a variety of AMPs. 2. Keywords Antimicrobial, peptides, anti-fungal, wounds, burns, bacterial resistance ...against Combat- Related Bacterial and Fungal Wound Infections PRINCIPAL INVESTIGATOR: Louis Edward Clemens Ph.D. CONTRACTING ORGANIZATION: Riptide...Anti-Infectives with Broad- Spectrum Activity against Combat-Related Bacterial and Fungal Wound Infections 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  6. Neglected pathogens: bacterial infections in persons with human immunodeficiency virus infection. A review of the literature (1).

    Science.gov (United States)

    Fish, D N; Danziger, L H

    1993-01-01

    Bacterial infections, including those that cause infection in the healthy host as well as those that are more opportunistic, occur very commonly among persons infected with the human immunodeficiency virus (HIV). Bacterial infections are a direct result of the severe humoral and cellular immune defects found in these patients. Epidemiologic factors such as intravenous drug use and stage of HIV infection may also play important roles. Pulmonary, bloodstream, gastrointestinal, central nervous system, skin and soft tissue, and catheter-related infections are common, as are endocarditis, prostatitis, and others. Frequently reported pathogens are common organisms such as Staphylococcus aureus, Haemophilus influenzae, Streptococcus pneumoniae, and enteric gram-negative pathogens, as well as less typical ones such as Listeria monocytogenes and Nocardia sp. The frequency of infection is specific to organ system and pathogen, often being many times higher than in immunocompetent hosts. Prompt recognition and aggressive therapy are required to reduce morbidity and mortality due to these infections.

  7. DMPD: The role of Toll-like receptors and Nod proteins in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476921 The role of Toll-like receptors and Nod proteins in bacterial infection. P...of Toll-like receptors and Nod proteins in bacterial infection. PubmedID 15476921 Title The role of Toll-like receptors and Nod prote...ins in bacterial infection. Authors Philpott DJ, Girardi

  8. Investigation of Clinical Relevance of Bacterial Colonization in Patients With Suspected Viral Respiratory Tract Infection By Using Multiplex PCR Method

    Directory of Open Access Journals (Sweden)

    Vedat Turhan

    2013-02-01

    Full Text Available Numerous viral and bacterial pathogens have been reported causing acute respiratory tract infection (ARTI. Nasopharyngeal swab (NPS specimens from 351 patients (278 children, 73 adults with suspected upper and lower ARTI were submitted during the study period from Jan. 2005 to Dec. 2006. Organism-specific nucleic acids were detected using TemPlex technology (ResPlex I and II, Genaco Biomedical Products, Huntsville, AL. Amplified products were identified using a suspension array for multiplex detection performed on a Luminex 100 instrument (Luminex, Austin, TX. A total of 221 viral and bacterial respiratory agents were detected in 148 patients (135 [48.5%] of the 278 children and 13 [17.8%] of the 73 adults with suspected ARTI. A single respiratory pathogen was detected in 89 patients [25.35%], whereas mixed infection with two or three pathogens was found in 59 [16.8%] of 351 suspected patients. S. pneumonia was the most frequently isolated strain (54 [15.3%] of 351 patients, followed by H. influenzae (37 [10.5%], rhinoviruses (35 [9.9%], influenza A virus (23 [6.5%], enteroviruses (19 [5.4%], hMPV (14 [3.9%], PIV-1 (12 [3.4%], PIV-3 (11 [3.1%], RSV (10 [2.8%], and influenza B virus (6 [1.7%]. Mixed infections were more frequent in children (56 [20.1%] of 278 than adult patients (3 [4.1%] of 73 patients. The detection rate of the bacteria peaked in the spring season (37 [40.6%] of 91 bacteria, followed by winter (24 infections, autumn (18 infections and summer (12 infections. The prevalence of co-infection is ~40%, finding a much higher incidence of co-infection with more than one agent than that reported previously. [Dis Mol Med 2013; 1(1.000: 2-7

  9. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix®RT-PCR.

    Science.gov (United States)

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was

  10. Diagnosis of Upper and Lower Respiratory Tract Bacterial Infections with the Use of Multiplex PCR Assays

    Directory of Open Access Journals (Sweden)

    Jenny Kourea-Kremastinou

    2013-03-01

    Full Text Available The investigation of respiratory infections by molecular techniques provides important information about the epidemiology of respiratory disease, especially during the post-vaccination era. The objective of the present study was the detection of bacterial pathogens directly in clinical samples from patients with upper and lower respiratory tract infections using multiplex polymerase chain reaction (PCR assays developed in our laboratory. Clinical samples taken over a three-year period (2007–2009 and obtained from 349 patients (adults (n = 66; children (n = 283 with signs and symptoms of certain upper or lower respiratory tract infections, consisted of: bronchoalveolar lavages (BAL, n = 83, pleural fluids (n = 29, and middle-ear aspirates (n = 237. Overall, 212 samples (61% were confirmed by culture and/or PCR. Among the positive samples, Streptococcus pneumoniae (mainly serotype 3 was predominant (104/212; 49.0%, followed by non-typable Haemophilus influenzae (NTHi 59/212; 27.8% and Streptococcus pyogenes (47/212; 22%. Haemophilus influenzae type b was detected in only three samples. The underlying microbiology of respiratory infections is gradually changing in response to various selective pressures, such as vaccine use and antibiotic consumption. The application of multiplex PCR (mPCR assays is particularly useful since it successfully identified the microorganisms implicated in acute otitis media or lower respiratory tract infections in nearly 75% of patients with a positive result compared to conventional cultures. Non-culture identification of the implicated pneumococcal serotypes is also an important issue for monitoring pneumococcal infections in the era of conjugate pneumococcal vaccines.

  11. Validity of procalcitonin for the diagnosis of bacterial infection in elderly patients.

    Science.gov (United States)

    Gómez-Cerquera, Juan Manuel; Daroca-Pérez, Rafael; Baeza-Trinidad, Ramón; Casañas-Martinez, Marta; Mosquera-Lozano, Jose Daniel; Ramalle-Gómara, Enrique

    2015-10-01

    PCT has been consolidated as a key tool in the diagnosis of bacterial infections in general population. Few studies have been conducted to determine the applicability of this test in elderly patients. Study of validity of PCT on elderly patients. Two groups were formed; the first group was formed by patients aged 75 years or older, under bacterial infection criteria and PCT on the initial Lab test. The second group was formed by patients aged 75 years or older with any noninfectious disease; these patients were asked PCT in the initial Lab test. Sensitivity, specificity, positive and negative likelihood ratio were calculated. 161 patients were included, 95 with probable bacterial infection and 66 without infection. Patients with probable bacterial infection criteria, 72% of them had PCT >0.5 ng/mL. Patients without infection, 8% of the patients had PCT >0.5 ng/mL. Sensitivity and specificity of PCT to bacterial infection with the cutoff value of 0.5 ng/mL was 72% and 92%, respectively. PCT can be used in elderly patients to diagnose bacterial infections because it has proved good sensitivity and high specificity. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  12. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection.

    Science.gov (United States)

    Uppu, Divakara S S M; Samaddar, Sandip; Ghosh, Chandradhish; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta

    2016-01-01

    Bacterial biofilms represent the root-cause of chronic or persistent infections in humans. Gram-negative bacterial infections due to nosocomial and opportunistic pathogens such as Acinetobacter baumannii are more difficult to treat because of their inherent and rapidly acquiring resistance to antibiotics. Due to biofilm formation, A. baumannii has been noted for its apparent ability to survive on artificial surfaces for an extended period of time, therefore allowing it to persist in the hospital environment. Here we report, maleic anhydride based novel cationic polymers appended with amide side chains that disrupt surface established multi-drug resistant A. baumannii biofilms. More importantly, these polymers significantly (p polymers also show potent antibacterial efficacy against methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococci (VRE) and multi-drug resistant clinical isolates of A. baumannii with minimal toxicity to mammalian cells. We observe that optimal hydrophobicity dependent on the side chain chemical structure of these polymers dictate the selective toxicity to bacteria. Polymers interact with the bacterial cell membranes by causing membrane depolarization, permeabilization and energy depletion. Bacteria develop rapid resistance to erythromycin and colistin whereas no detectable development of resistance occurs against these polymers even after several passages. These results suggest the potential use of these polymeric biomaterials in disinfecting biomedical device surfaces after the infection has become established and also for the topical treatment of chronic bacterial infections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions.

    Science.gov (United States)

    Ribeiro, Marta; Monteiro, Fernando J; Ferraz, Maria P

    2012-01-01

    Staphylococcus comprises up to two-thirds of all pathogens in orthopedic implant infections and they are the principal causative agents of two major types of infection affecting bone: septic arthritis and osteomyelitis, which involve the inflammatory destruction of joint and bone. Bacterial adhesion is the first and most important step in implant infection. It is a complex process influenced by environmental factors, bacterial properties, material surface properties and by the presence of serum or tissue proteins. Properties of the substrate, such as chemical composition of the material, surface charge, hydrophobicity, surface roughness and the presence of specific proteins at the surface, are all thought to be important in the initial cell attachment process. The biofilm mode of growth of infecting bacteria on an implant surface protects the organisms from the host immune system and antibiotic therapy. The research for novel therapeutic strategies is incited by the emergence of antibiotic-resistant bacteria. This work will provide an overview of the mechanisms and factors involved in bacterial adhesion, the techniques that are currently being used studying bacterial-material interactions as well as provide insight into future directions in the field.

  14. Skin bacterial flora as a potential risk factor predisposing to late bacterial infection after cross-linked hyaluronic acid gel augmentation.

    Science.gov (United States)

    Netsvyetayeva, Irina; Marusza, Wojciech; Olszanski, Romuald; Szyller, Kamila; Krolak-Ulinska, Aneta; Swoboda-Kopec, Ewa; Sierdzinski, Janusz; Szymonski, Zachary; Mlynarczyk, Grazyna

    2018-01-01

    Cross-linked hyaluronic acid (HA) gel is widely used in esthetic medicine. Late bacterial infection (LBI) is a rare, but severe complication after HA augmentation. The aim of this study was to determine whether patients who underwent the HA injection procedure and developed LBI had qualitatively different bacterial flora on the skin compared to patients who underwent the procedure without any complications. The study group comprised 10 previously healthy women with recently diagnosed, untreated LBI after HA augmentation. The control group comprised 17 healthy women who had a similar amount of HA injected with no complications. To assess the difference between the two groups, their skin flora was cultured from nasal swabs, both before and after antibiotic treatment in the study group. A significant increase in the incidence of Staphylococcus epidermidis was detected in the control group ( P =0.000) compared to the study group. The study group showed a significantly higher incidence of Staphylococcus aureus ( P =0.005), Klebsiella pneumoniae ( P =0.006), Klebsiella oxytoca ( P =0.048), and Staphylococcus haemolyticus ( P =0.048) compared to the control group. The bacterial flora on the skin differed in patients with LBI from the control group. The control group's bacterial skin flora was dominated by S. epidermidis . Patients with LBI had a bacterial skin flora dominated by potentially pathogenic bacteria.

  15. Bacterial infection identification by an anti-peptidoglycan aptamer labeled with Technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Antero Silva Ribeiro; Ferreira, Iêda Mendes [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, Andre Luis Branco de; Cardoso, Valbert Nascimento [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Full text: Introduction: A variety of radiopharmaceuticals is used to detect infection, but long-term clinical use has shown that the majority of them cannot distinguish between inflammation and infection. Nuclear medicine clinics are still awaiting the optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. Material and Methods: An aptamer for the peptidoglycan (main constituent of bacterial cell walls) termed Antibac1 was selected in a previous work. In the present study, this aptamer were labeled with {sup 99m}Tc and evaluated for bacterial infections identification by scintigraphy. All protocols were approved by the local Ethics Committee for Animal Experimentation of the Federal University of Minas Gerais (CETEA / UFMG), Protocol number 108/2014. Labeling with {sup 99m}Tc was performed by the direct method and the complex stability was evaluated in saline, plasma and presence of cysteine. The biodistribution and scintigraphic imaging studies with the {sup 99m}Tc-Antibac1 were carried out in two distinct experimental infection models: Swiss mice infected in the right thigh with Staphylococcus aureus or Candida albicans. {sup 99m}Tc radiolabeled library, consisting of oligonucleotides with random sequences, was used as a control in both experimental models. The direct radiolabeling allowed radiolabel yields above 90%. Results: A high complex stability was obtained in saline solution and plasma, but 51% of transchelation was verified after 24 h in the presence of cysteine. Scintigraphic images of S. aureus infected mice that received the {sup 99m}Tc-Antibac1 showed target to non-target ratios of 4.7 ± 0.90 and 4.6 ± 0.10 at 1.5 and 3.0 h, respectively. These values were statistically higher than

  16. Detection of Mycoplasma hyopneumoniae in naturally infected gilts over time.

    Science.gov (United States)

    Takeuti, Karine L; de Barcellos, David E S N; de Lara, Anne C; Kunrath, Cintia F; Pieters, Maria

    2017-05-01

    Mycoplasma hyopneumoniae causes a chronic respiratory infection in pigs and its transmission occurs mainly by direct contact and by vertical transmission (sow-to-piglet). The objective of this study was to assess the detection dynamics and persistence of M. hyopneumoniae natural infection in replacement gilts. Forty-four twenty-day-old gilts were selected from a M. hyopneumoniae positive farm and followed up to one day prior to their first weaning. Laryngeal swabs were collected every 30days, starting at day 20, for M. hyopneumoniae detection by real-time PCR, resulting in 12 samplings. Piglets born to selected females were sampled via laryngeal swabs one day prior to weaning to evaluate sow-to-piglet transmission. The M. hyopneumoniae prevalence was estimated at each one of the 12 samplings in gilts and a multiple comparison test and Bonferroni correction were performed. Bacterial detection in gilts started at 110days of age (doa) and a significant increase (phyopneumoniae prevalence remained above 20% from 140 to 230 doa, decreasing thereafter. However, it did not reach 0% at any sampling after 110 doa. In this study, M. hyopneumoniae was not detected in piglets sampled prior to weaning. The M. hyopneumoniae detection pattern showed that in natural infections, gilts were positive for M. hyopneumoniae for one to three months, but occasionally long-term detection may occur. Moreover, the lack of M. hyopneumoniae detection throughout the study in 18.2% of gilts indicated the existence of negative subpopulations in positive herds. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Rapid detection of bacterial meningitis using a point-of-care glucometer.

    Science.gov (United States)

    Rousseau, Geoffroy; Asmolov, Romain; Grammatico-Guillon, Leslie; Auvet, Adrien; Laribi, Said; Garot, Denis; Jouan, Youenn; Dequin, Pierre-François; Guillon, Antoine

    2017-08-10

    In case of acute bacterial meningitis, a decision on the need for intensive care admission should be made within the first hour. The aim of this study was to assess the ability of a point-of-care glucometer to determine abnormal cerebrospinal fluid (CSF) glucose concentration at the bedside that contributes toward bacterial meningitis diagnosis. We carried out a prospective study and simultaneously measured the glucose concentrations in CSF and blood using a central laboratory and a point-of-care glucometer. We compared CSF/blood glucose ratios obtained at the bedside with a glucometer versus those obtained by the central laboratory. We determined the performance characteristics of the CSF/blood glucose ratio provided by a glucometer to detect bacterial infection in the CSF immediately after CSF sampling. We screened 201 CSF collection procedures during the study period and included 172 samples for analysis. Acute bacterial meningitis was diagnosed in 17/172 (9.9%) of CSF samples. The median turnaround time for a point-of-care glucometer analysis was 5 (interquartile range 2-10) min versus 112 (interquartile range 86-154) min for the central laboratory (P<0.0001). The optimal cut-off of the CSF/blood glucose ratio calculated from a bedside glucometer was 0.46, with a sensitivity of 94.1% (95% confidence interval: 71.3-99.9%), a specificity of 91% (95% confidence interval: 85.3-95%), and a positive likelihood ratio of 10. A glucometer accurately detects an abnormal CSF/blood glucose ratio immediately after the lumbar puncture. This cheap point-of-care method has the potential to speed up the diagnostic process of patients with bacterial meningitis.

  18. Zoonotic Ancylostoma ceylanicum Infection Detected by Endoscopy

    Science.gov (United States)

    Ngui, Romano; Lim, Yvonne A. L.; Ismail, Wan Hafiz Wan; Lim, Kie Nyok; Mahmud, Rohela

    2014-01-01

    We report a case of Ancylostoma ceylanicum infection detected by endoscopy. It was diagnosed and confirmed using polymerase chain reaction (PCR) and DNA sequencing. The patient is a 58-year-old Malaysian woman who lives in a rural area, where uncontrolled populations of stray and semidomesticated dogs live in close proximity with humans. PMID:24891471

  19. Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms

    Directory of Open Access Journals (Sweden)

    Zhijun Song

    2013-06-01

    Full Text Available Prosthesis-related infection is a serious complication for patients after orthopedic joint replacement, which is currently difficult to treat with antibiotic therapy. Consequently, in most cases, removal of the infected prosthesis is the only solution to cure the infection. It is, therefore, important to understand the comprehensive interaction between the microbiological situation and the host immune responses that lead to prosthesis infections. Evidence indicates that prosthesis infections are actually biofilm-correlated infections that are highly resistant to antibiotic treatment and the host immune responses. The authors reviewed the related literature in the context of their clinical experience, and discussed the possible etiology and mechanism leading to the infections, especially problems related to bacterial biofilm, and prophylaxis and treatment of infection, including both microbiological and surgical measures. Recent progress in research into bacterial biofilm and possible future treatment options of prosthesis-related infections are discussed.

  20. Bacterial infections in Lilongwe, Malawi: aetiology and antibiotic resistance.

    Science.gov (United States)

    Makoka, Mwai H; Miller, William C; Hoffman, Irving F; Cholera, Rushina; Gilligan, Peter H; Kamwendo, Debbie; Malunga, Gabriel; Joaki, George; Martinson, Francis; Hosseinipour, Mina C

    2012-03-21

    Life-threatening infections present major challenges for health systems in Malawi and the developing world because routine microbiologic culture and sensitivity testing are not performed due to lack of capacity. Use of empirical antimicrobial therapy without regular microbiologic surveillance is unable to provide adequate treatment in the face of emerging antimicrobial resistance. This study was conducted to determine antimicrobial susceptibility patterns in order to inform treatment choices and generate hospital-wide baseline data. Culture and susceptibility testing was performed on various specimens from patients presenting with possible infectious diseases at Kamuzu Central Hospital, Lilongwe, Malawi. Between July 2006 and December 2007 3104 specimens from 2458 patients were evaluated, with 60.1% from the adult medical service. Common presentations were sepsis, meningitis, pneumonia and abscess. An etiologic agent was detected in 13% of patients. The most common organisms detected from blood cultures were Staphylococcus aureus, Escherichia coli, Salmonella species and Streptococcus pneumoniae, whereas Streptococcus pneumoniae and Cryptococcus neoformans were most frequently detected from cerebrospinal fluid. Haemophilus influenzae was rarely isolated. Resistance to commonly used antibiotics was observed in up to 80% of the isolates while antibiotics that were not commonly in use maintained susceptibility. There is widespread resistance to almost all of the antibiotics that are empirically used in Malawi. Antibiotics that have not been widely introduced in Malawi show better laboratory performance. Choices for empirical therapy in Malawi should be revised accordingly. A microbiologic surveillance system should be established and prudent use of antimicrobials promoted to improve patient care.

  1. Inhibition of bacterial adherence by cranberry juice: potential use for the treatment of urinary tract infections.

    Science.gov (United States)

    Sobota, A E

    1984-05-01

    Cranberry juice has been widely used for the treatment and prevention of urinary tract infections and is reputed to give symptomatic relief from these infections. Attempts to account for the potential benefit derived from the juice have focused on urine acidification and bacteriostasis. In this investigation it is demonstrated that cranberry juice is a potent inhibitor of bacterial adherence. A total of 77 clinical isolates of Escherichia coli were tested. Cranberry juice inhibited adherence by 75 per cent or more in over 60 per cent of the clinical isolates. Cranberry cocktail was also given to mice in the place of their normal water supply for a period of 14 days. Urine collected from these mice inhibited adherence of E. coli to uroepithelial cells by approximately 80 per cent. Antiadherence activity could also be detected in human urine. Fifteen of 22 subjects showed significant antiadherence activity in the urine 1 to 3 hours after drinking 15 ounces of cranberry cocktail. It is concluded that the reported benefits derived from the use of cranberry juice may be related to its ability to inhibit bacterial adherence.

  2. Simultaneous Detection of 13 Key Bacterial Respiratory Pathogens by Combination of Multiplex PCR and Capillary Electrophoresis.

    Science.gov (United States)

    Jiang, Lu Xi; Ren, Hong Yu; Zhou, Hai Jian; Zhao, Si Hong; Hou, Bo Yan; Yan, Jian Ping; Qin, Tian; Chen, Yu

    2017-08-01

    Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebacterium diphtheriae, and Streptococcus pyogenes. Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 152 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. This study revealed that the MPCE assay is a rapid, reliable, and high-throughput method with high specificity and sensitivity. This assay has great potential in the molecular epidemiological survey of respiratory pathogens. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  3. Conventional and molecular methods to detect bacterial pathogens in mussels.

    Science.gov (United States)

    Gugliandolo, C; Lentini, V; Spanò, A; Maugeri, T L

    2011-01-01

    To detect Aeromonas spp., Salmonella spp., Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus in mussels and water samples from a farming area, conventional and molecular methods were applied to enrichment cultures. The aerolysin gene (aero) of Aeromonas spp., the invasion plasmid antigen B (ipaB) gene of Salmonella spp., the enterotoxin secretion protein (epsM) gene of V. cholerae, the species-specific region of 16S rRNA gene of V. vulnificus, the 16S-23S rDNA (IGS) gene of V. parahaemolyticus and the pR72H fragment of V. parahaemolyticus were amplified by multiplex polymerase chain reaction (PCR) assays on DNA extracted from enrichment cultures. The haemolysin gene (tdh) of pathogenic V. parahaemolyticus was also amplified. Conventional culture method allowed the isolation of V. parahaemolyticus and V. vulnificus from water and mussels. The genes aero, epsM and 16S rRNA of V. vulnificus were occasionally detected in the enrichment cultures. In mussels, the ipaB and IGS genes were detected from June to September and from April to November, respectively. All genes, except aero, were amplified from mussels collected in September, when pathogenic V. parahaemolyticus (tdh+) strains were also isolated. Multiplex-PCR assays were more sensitive and faster than conventional procedures. The results emphasize the need of an accurate and rapid detection of bacterial pathogens in mussels to protect human health. © 2010 The Authors. Letters in Applied Microbiology © 2010 The Society for Applied Microbiology.

  4. Correlation between the neutrophil-lymphocyte count ratio and bacterial infection in patient with human immunodeficiency virus

    Science.gov (United States)

    Kusnadi, D.; Liwang, M. N. I.; Katu, S.; Mubin, A. H.; Halim, R.

    2018-03-01

    Parameters for starting antibiotic therapy such as CRP andleukocytosis are considered non-specific. Previous studies have shown the Neutrophil-Lymphocyte Count Ratio (NLCR) can serve as the basis of bacterial infection, the level of infection, and the basis of antibiotic therapy. Compared with the Procalcitonin parameter, this NLCR is rapid, an inexpensive and requires no additional sampling. To determine the correlation between The Neutrophil-LymphocyteCount Ratio to bacterial infection in HIV patients. This study was a cross-sectional observational approach to HIV subject at Wahidin Sudirohusodo and Hasanuddin University Hospital. The subjects performed routine blood, microbiology test,and blood Procalcitonin levels tests. Then performed NLCR calculations based on routine blood results. The subjects then grouped the presence or absence of bacterial infection.In 146 study subjects, there were 78 (53.4%) with bacterial infections and 68 (46.6%) without bacterial infection as controls. Subjects with bacterial infections had higher total neutrophils (84.83) compared with non-bacterial infections. Subjects with bacterial infections had total lymphocytes with an average of 8.51 lower than non-bacterial infections. Subjects with bacterial infections had higher NLCR values with an average of 12.80. The Neutrophil-Lymphocyte Count Ratio can become a marker of bacterial infection in HIV patients.

  5. Association of RNA Biosignatures With Bacterial Infections in Febrile Infants Aged 60 Days or Younger

    Science.gov (United States)

    Mahajan, Prashant; Kuppermann, Nathan; Mejias, Asuncion; Suarez, Nicolas; Chaussabel, Damien; Casper, T. Charles; Smith, Bennett; Alpern, Elizabeth R.; Anders, Jennifer; Atabaki, Shireen M.; Bennett, Jonathan E.; Blumberg, Stephen; Bonsu, Bema; Borgialli, Dominic; Brayer, Anne; Browne, Lorin; Cohen, Daniel M.; Crain, Ellen F.; Cruz, Andrea T.; Dayan, Peter S.; Gattu, Rajender; Greenberg, Richard; Hoyle, John D.; Jaffe, David M.; Levine, Deborah A.; Lillis, Kathleen; Linakis, James G.; Muenzer, Jared; Nigrovic, Lise E.; Powell, Elizabeth C.; Rogers, Alexander J.; Roosevelt, Genie; Ruddy, Richard M.; Saunders, Mary; Tunik, Michael G.; Tzimenatos, Leah; Vitale, Melissa; Dean, J. Michael; Ramilo, Octavio

    2016-01-01

    IMPORTANCE Young febrile infants are at substantial risk of serious bacterial infections; however, the current culture-based diagnosis has limitations. Analysis of host expression patterns (“RNA biosignatures”) in response to infections may provide an alternative diagnostic approach. OBJECTIVE To assess whether RNA biosignatures can distinguish febrile infants aged 60 days or younger with and without serious bacterial infections. DESIGN, SETTING, AND PARTICIPANTS Prospective observational study involving a convenience sample of febrile infants 60 days or younger evaluated for fever (temperature >38° C) in 22 emergency departments from December 2008 to December 2010 who underwent laboratory evaluations including blood cultures. A random sample of infants with and without bacterial infections was selected for RNA biosignature analysis. Afebrile healthy infants served as controls. Blood samples were collected for cultures and RNA biosignatures. Bioinformatics tools were applied to define RNA biosignatures to classify febrile infants by infection type. EXPOSURE RNA biosignatures compared with cultures for discriminating febrile infants with and without bacterial infections and infants with bacteremia from those without bacterial infections. MAIN OUTCOMES AND MEASURES Bacterial infection confirmed by culture. Performance of RNA biosignatures was compared with routine laboratory screening tests and Yale Observation Scale (YOS) scores. RESULTS Of 1883 febrile infants (median age, 37 days; 55.7%boys), RNA biosignatures were measured in 279 randomly selected infants (89 with bacterial infections—including 32 with bacteremia and 15 with urinary tract infections—and 190 without bacterial infections), and 19 afebrile healthy infants. Sixty-six classifier genes were identified that distinguished infants with and without bacterial infections in the test set with 87%(95%CI, 73%-95%) sensitivity and 89% (95%CI, 81%-93%) specificity. Ten classifier genes distinguished

  6. Current advances in aptamer-assisted technologies for detecting bacterial and fungal toxins.

    Science.gov (United States)

    Alizadeh, N; Memar, M Y; Mehramuz, B; Abibiglou, S S; Hemmati, F; Samadi Kafil, H

    2018-03-01

    Infectious diseases are among the common leading causes of morbidity and mortality worldwide. Associated with the emergence of new infectious diseases, the increasing number of antimicrobial-resistant isolates presents a serious threat to public health and hospitalized patients. A microbial pathogen may elicit several host responses and use a variety of mechanisms to evade host defences. These methods and mechanisms include capsule, lipopolysaccharides or cell wall components, adhesions and toxins. Toxins inhibit phagocytosis, cause septic shock and host cell damages by binding to host surface receptors and invasion. Bacterial and fungal pathogens are able to apply many different toxin-dependent mechanisms to disturb signalling pathways and the structural integrity of host cells for establishing and maintaining infections Initial techniques for analysis of bacterial toxins were based on in vivo or in vitro assessments. There is a permanent demand for appropriate detection methods which are affordable, practical, careful, rapid, sensitive, efficient and economical. Aptamers are DNA or RNA oligonucleotides that are selected by systematic evolution of ligands using exponential enrichment (SELEX) methods and can be applied in diagnostic applications. This review provides an overview of aptamer-based methods as a novel approach for detecting toxins in bacterial and fungal pathogens. © 2017 The Society for Applied Microbiology.

  7. Diagnostic accuracy of presepsin (sCD14-ST) for prediction of bacterial infection in cerebrospinal fluid samples from children with suspected bacterial meningitis or ventriculitis.

    Science.gov (United States)

    Stubljar, David; Kopitar, Andreja Natasa; Groselj-Grenc, Mojca; Suhadolc, Kristina; Fabjan, Teja; Skvarc, Miha

    2015-04-01

    Children with temporary external ventricular drains (EVD) are prone to nosocomial infections. Diagnosis of bacterial meningitis and ventriculitis in these children is challenging due to frequent blood contamination of cerebrospinal fluid (CSF) and the presence of chemical ventriculitis. The aim of this study was to compare diagnostic accuracy of presepsin (sCD14-ST), a novel biomarker of bacterial infection in CSF, to predict bacterial infection in comparison to the accuracy of established biomarkers like those demonstrated in biochemical analysis of CSF. We conducted a prospective study with 18 children with suspected bacterial meningitis or ventriculitis who had 66 episodes of disease. CSF samples were taken from external ventricular drainage. We measured presepsin in CSF, as well as CSF leukocyte count, glucose, and proteins. CSF was also taken to prove bacterial infection with culture methods or with 16S rRNA gene broad-range PCR (SepsiTest; Molzym, Germany). Infection was clinically confirmed in 57 (86%) episodes of suspected meningitis or ventriculitis. Chemical ventriculitis was diagnosed in 9 (14%) episodes of suspected meningitis or ventriculitis. Diagnostic accuracies presented as area under the curve (AUC) for sCD14-ST, leukocytes, and proteins measured in CSF were 0.877 (95% confidence interval [CI], 0.793 to 0.961), 0.798 (95% CI, 0.677 to 0.920), and 0.857 (95% CI, 0.749 to 0.964), respectively. With CSF culture, we detected bacteria in 17 samples, compared to 37 detected with broad-range PCR. It was found that presepsin was present at a significantly higher level in children with clinically proven ventriculitis than in those without meningitis or ventriculitis. Diagnostic accuracies of presepsin were superior to those of leukocytes or proteins in CSF. Presepsin-guided 16S rRNA gene PCR could be used in everyday clinical practice to improve etiological diagnosis of meningitis and ventriculitis and to prescribe more appropriate antibiotics. Copyright

  8. bacterial uropathogens in urinary tract infection and antibiotic ...

    African Journals Online (AJOL)

    User

    2011-07-02

    Jul 2, 2011 ... (prevalence, risk factors, bacterial isolates and antibiotic sensitivity) is fundamental for care givers and health planners to guide the expected interventions. Thus, the aim of this study was to determine bacterial etiologic agent of uropathogens and evaluate their in vitro susceptibility pattern to commonly used.

  9. Biochemical principle of Limulus test for detecting bacterial endotoxins.

    Science.gov (United States)

    Iwanaga, Sadaaki

    2007-05-01

    A hemocyte lysate from horseshoe crab (Limulus) produced a gel, when exposed to Gram-negative bacterial endotoxins, lipopolysaccharides (LPS). This gelation reaction of the lysate, so-called Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. Recent biochemical studies on the principle of Limulus test indicate that the hemocytes contain several serine protease zymogens, which constitute a coagulation cascade triggered by endotoxins, and that there is a (1,3)-β-D-glucan-mediated coagulation pathway which also results in the formation of gel. Up to now, six protein components, designated coagulogen, proclotting enzyme, factor B, factor C, and factor G, all of which are closely associated with the endotoxin-mediated coagulation pathway, have been purified and biochemically characterized. The molecular structures of these proteins have also been elucidated. Moreover, the reconstitution experiments using the isolated clotting factors, factor C, factor B, proclotting enzyme and coagulogen in the presence of endotoxin, leads to the formation of coagulin gel. Here, I will focus on the biochemical principle of Limulus test for detecting bacterial endotoxins, and its activation and regulation mechanism on the LPS-mediated coagulation cascade.

  10. 75 FR 52755 - Draft Guidance for Industry on Acute Bacterial Skin and Skin Structure Infections: Developing...

    Science.gov (United States)

    2010-08-27

    ... antimicrobial drugs for the treatment of acute bacterial skin and skin structure infections (ABSSSI), impetigo... of antimicrobial drugs for the treatment of ABSSSI, impetigo, and minor cutaneous abscesses. This...

  11. Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus).

    Science.gov (United States)

    Leydet, Brian F; Liang, Fang-Ting

    2013-04-01

    There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one A. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and B. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Fish losses due to bacterial flora and infections of fishes in Kainji ...

    African Journals Online (AJOL)

    This paper assesses the losses incurred as a result of bacterial flora and infection in captured and cultured fish. The role played by these bacterial flora on the overall quality and health of fish is discussed. Bacteria have been reported to cause diseases in ponds and increase in the spoilage rate of raw and preserved fish in ...

  13. Bacterial Toxin-Triggered Drug Release from Gold Nanoparticle-Stabilized Liposomes for the Treatment of Bacterial Infection

    Science.gov (United States)

    Pornpattananangkul, Dissaya; Zhang, Li; Olson, Sage; Aryal, Santosh; Obonyo, Marygorret; Vecchio, Kenneth; Huang, Chun-Ming; Zhang, Liangfang

    2011-01-01

    We report a new approach to selectively delivering antimicrobials to the sites of bacterial infections by utilizing bacterial toxins to activate drug release from gold nanoparticle-stabilized phospholipid liposomes. The binding of chitosan modified gold nanoparticles to the surface of liposomes can effectively prevent them from fusing with one another and from undesirable payload release in regular storage or physiological environments. However, once these protected liposomes “see” bacteria that secrete toxins, the toxins will insert into the liposome membranes and form pores, through which the encapsulated therapeutic agents are released. The released drugs subsequently impose antimicrobial effects on the toxin-secreting bacteria. Using methicillin-resistant Staphycoccus aureus (MRSA) as a model bacterium and vacomycin as a model anti-MRSA antibiotic, we demonstrate that the synthesized gold nanoparticle-stabilized liposomes can completely release the encapsulated vacomycin within 24 h in the presence of MRSA bacteria and lead to inhibition of MRSA growth as effective as an equal amount of vacomycin loaded liposomes (without nanoparticle stabilizers) and free vacomycin. This bacterial toxin enabled drug release from nanoparticle-stabilized liposomes provides a new, safe and effective approach for the treatment of bacterial infections. This technique can be broadly applied to treat a variety of infections caused by bacteria that secrete pore-forming toxins. PMID:21344925

  14. Detecting rare gene transfer events in bacterial populations

    Directory of Open Access Journals (Sweden)

    Kaare Magne Nielsen

    2014-01-01

    Full Text Available Horizontal gene transfer (HGT enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.

  15. Bacterial infections in Lilongwe, Malawi: aetiology and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Makoka Mwai H

    2012-03-01

    Full Text Available Abstract Background Life-threatening infections present major challenges for health systems in Malawi and the developing world because routine microbiologic culture and sensitivity testing are not performed due to lack of capacity. Use of empirical antimicrobial therapy without regular microbiologic surveillance is unable to provide adequate treatment in the face of emerging antimicrobial resistance. This study was conducted to determine antimicrobial susceptibility patterns in order to inform treatment choices and generate hospital-wide baseline data. Methods Culture and susceptibility testing was performed on various specimens from patients presenting with possible infectious diseases at Kamuzu Central Hospital, Lilongwe, Malawi. Results Between July 2006 and December 2007 3104 specimens from 2458 patients were evaluated, with 60.1% from the adult medical service. Common presentations were sepsis, meningitis, pneumonia and abscess. An etiologic agent was detected in 13% of patients. The most common organisms detected from blood cultures were Staphylococcus aureus, Escherichia coli, Salmonella species and Streptococcus pneumoniae, whereas Streptococcus pneumoniae and Cryptococcus neoformans were most frequently detected from cerebrospinal fluid. Haemophilus influenzae was rarely isolated. Resistance to commonly used antibiotics was observed in up to 80% of the isolates while antibiotics that were not commonly in use maintained susceptibility. Conclusions There is widespread resistance to almost all of the antibiotics that are empirically used in Malawi. Antibiotics that have not been widely introduced in Malawi show better laboratory performance. Choices for empirical therapy in Malawi should be revised accordingly. A microbiologic surveillance system should be established and prudent use of antimicrobials promoted to improve patient care.

  16. [Risk factors of bacterial nosocomial infection after pediatric liver transplantation].

    Science.gov (United States)

    Zhu, H; Gao, W

    2017-08-02

    Objective: To analyze the risk factors of nosocomial infection after liver transplantation in children, so as to provide scientific evidence for the prevention and control of nosocomial infection. Method: Clinical data of 223 pediatric patients undergoing liver transplantation between January 2014 and December 2015 were analyzed retrospectively. Univariate and multivariate analyses were carried out to investigate the risk factors of infection after transplantation. Result: Totally 51 children were infected among the 223 patients, the infection rate was 22.86%(51/223). Among the 74 cases with infection, 38 were infected with the blood (included peripherally inserted central catheters) accounting for 51.35 %; and surgical site infection accounted for 21.62%, the respiratory tract infections accounted for 18.92% and the other infections accounted for 8.11%. Totally 74 strains of infectious pathogens were found in 51 cases of infected patients, including Gram-negative bacteria accounting for 48.65%, Gram-positive bacteria accounting for 44.59% and the fungus accounting for 6.76%. According to a variety of survey factors, univariate analysis showed factors of hospitalization time, hospitalization time before surgery, surgical duration, and reoperation had statistically significant association with nosocomial infection( P nosocomial infection after pediatric liver transplantation. Conclusion: There are a variety of risk factors for the postoperative infections after liver transplantation in children. It is necessary to take into account the surgery factor, medical staff factor and hospital management factor. Management strengthening of these factors is necessary to reduce the infection rate.

  17. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection

    DEFF Research Database (Denmark)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H

    2017-01-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacterial...... of cell nuclei were automatically quantified using a spot detection-tool. The spot detection-output was exported to Excel, where data analysis was performed. In this article, micrographs and spot detection data are made available to facilitate implementation of the method....

  18. Bacterial infections after pediatric heart transplantation: Epidemiology, risk factors and outcomes.

    Science.gov (United States)

    Rostad, Christina A; Wehrheim, Karla; Kirklin, James K; Naftel, David; Pruitt, Elizabeth; Hoffman, Timothy M; L'Ecuyer, Thomas; Berkowitz, Katie; Mahle, William T; Scheel, Janet N

    2017-09-01

    Bacterial infections represent a major cause of morbidity and mortality in heart transplant recipients. However, data describing the epidemiology and outcomes of these infections in children are limited. We analyzed the Pediatric Heart Transplant Study database of patients transplanted between 1993 and 2014 to determine the etiologies, risk factors and outcomes of children with bacterial infections post-heart transplantation. Of 4,458 primary transplants in the database, there were 4,815 infections that required hospitalization or intravenous therapy, 2,047 (42.51%) of which were bacterial. The risk of bacterial infection was highest in the first month post-transplant, and the bloodstream was the most common site (24.82%). In the early post-transplant period (transplant), coagulase-negative staphylococci were the most common pathogens (16.97%), followed by Enterobacter sp (11.99%) and Pseudomonas sp (11.62%). In the late post-transplant period, community-acquired pathogens Streptococcus pneumoniae (6.27%) and Haemophilus influenzae (2.82%) were also commonly identified. Patients' characteristics independently associated with acquisition of bacterial infection included younger age (p transplant. Overall mortality post-bacterial infection was 33.78%, and previous cardiac surgery (p heart transplant recipients and were associated with high mortality rates. The risk of acquiring a bacterial infection was highest in the first month post-transplant, and a large proportion of the infections were caused by multidrug-resistant pathogens. Copyright © 2017 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  19. Bacterial infection increases risk of carcinogenesis by targeting mitochondria

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A.B.; Desler, Claus; Rasmussen, Lene Juel

    2017-01-01

    pathways, and compares the impact of the bacterial alteration of mitochondrial function to that of cancer. Bacterial virulence factors have been demonstrated to induce mutations of mitochondrial DNA (mtDNA) and to modulate DNA repair pathways of the mitochondria. Furthermore, virulence factors can induce...... or impair the intrinsic apoptotic pathway. The effect of bacterial targeting of mitochondria is analogous to behavior of mitochondria in a wide array of tumours, and this strongly suggests that mitochondrial targeting of bacteria is a risk factor for carcinogenesis....

  20. 'Bioluminescent' reporter phage for the detection of Category A bacterial pathogens.

    Science.gov (United States)

    Schofield, David A; Molineux, Ian J; Westwater, Caroline

    2011-07-08

    Yersinia pestis and Bacillus anthracis are Category A bacterial pathogens that are the causative agents of the plague and anthrax, respectively. Although the natural occurrence of both diseases' is now relatively rare, the possibility of terrorist groups using these pathogens as a bioweapon is real. Because of the disease's inherent communicability, rapid clinical course, and high mortality rate, it is critical that an outbreak be detected quickly. Therefore methodologies that provide rapid detection and diagnosis are essential to ensure immediate implementation of public health measures and activation of crisis management. Recombinant reporter phage may provide a rapid and specific approach for the detection of Y. pestis and B. anthracis. The Centers for Disease Control and Prevention currently use the classical phage lysis assays for the confirmed identification of these bacterial pathogens. These assays take advantage of naturally occurring phage which are specific and lytic for their bacterial hosts. After overnight growth of the cultivated bacterium in the presence of the specific phage, the formation of plaques (bacterial lysis) provides a positive identification of the bacterial target. Although these assays are robust, they suffer from three shortcomings: 1) they are laboratory based; 2) they require bacterial isolation and cultivation from the suspected sample, and 3) they take 24-36 h to complete. To address these issues, recombinant "light-tagged" reporter phage were genetically engineered by integrating the Vibrio harveyi luxAB genes into the genome of Y. pestis and B. anthracis specific phage. The resulting luxAB reporter phage were able to detect their specific target by rapidly (within minutes) and sensitively conferring a bioluminescent phenotype to recipient cells. Importantly, detection was obtained either with cultivated recipient cells or with mock-infected clinical specimens. For demonstration purposes, here we describe the method for the phage

  1. Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection

    Directory of Open Access Journals (Sweden)

    Vidlak Debbie

    2012-06-01

    Full Text Available Abstract Although IL-17A (commonly referred to as IL-17 has been implicated in the pathogenesis of central nervous system (CNS autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R knockout (KO mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25. In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT cell and gamma-delta (γδ T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.

  2. Some viral and bacterial respiratory tract infections of dairy cattle during the summer season

    Directory of Open Access Journals (Sweden)

    Kale M.

    2013-01-01

    Full Text Available In this research, dairy cattle with respiratory system problems that were brought to a private slaughterhouse in Burdur province were investigated for viral and bacterial infections present in the summer season. The blood samples were collected from 56 animals. The samples were tested for antibodies against bovine herpesvirus 1 (BoHV-1, bovine viral diarrhea virus (BVDV, bovine respiratory syncytial virus (BRSV, bovine parainfluenza virus 3 (BPIV-3 and bovine adenovirus 3 (BAV-3 by ELISA. Bacteriological cultivation was carried out from lung samples taken after cutting the same animals. The seropositivity rates which were determined for 5 viruses in cattle (BoHV- 1, BVDV, BRSV, BPIV-3 and BAV-3 were 7.14%, 50%, 94.64%, 94.64% and 82.14% respectively. The presence of antibodies against the viruses was as follows; 5.36% of cattle had antibodies against only one virus, 14.29% against two, 30.36% against three, 44.64% against four and 5.36% against five viruses. A total of 36 bacterial agents were isolated from 30 out of 56 lung samples. From the lung samples, only one bacterium was isolated from 39.3% (22/56 samples, and more than one bacterium from 14.3% (8/56. Escherichia coli, Staphylococcus aureus and Streptococcus spp. were detected as the most often isolated agents. Compared to bacteria, the rates of viral infections associated with Escherichia coli (BRSV+BPIV-3+BAV- 3+Escherichia coli; 8.92% and BRSV+BPIV-3+Escherichia coli; 5.35% were higher. As a consequence, it was thought that primary agents which were the viruses and bacteria may have attended as secondary factors in respiratory tract infections of dairy cattle.

  3. Desialylation of Spermatozoa and Epithelial Cell Glycocalyx Is a Consequence of Bacterial Infection of the Epididymis*

    Science.gov (United States)

    Khosravi, Farhad; Michel, Vera; Galuska, Christina E.; Bhushan, Sudhanshu; Christian, Philipp; Schuppe, Hans-Christian; Pilatz, Adrian; Galuska, Sebastian P.; Meinhardt, Andreas

    2016-01-01

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in humans. In men, pathogens can also spread to the genital tract via the continuous ductal system, eliciting bacterial prostatitis and/or epididymo-orchitis. Antibiotic treatment usually clears pathogens in acute epididymitis; however, the fertility of patients can be permanently impaired. Because a premature acrosome reaction was observed in an UPEC epididymitis mouse model, and sialidases on the sperm surface are considered to be activated via proteases of the acrosome, we aimed to investigate whether alterations of the sialome of epididymal spermatozoa and surrounding epithelial cells occur during UPEC infection. In UPEC-elicited acute epididymitis in mice, a substantial loss of N-acetylneuraminic acid residues was detected in epididymal spermatozoa and epithelial cells using combined laser microdissection/HPLC-ESI-MS analysis. In support, a substantial reduction of sialic acid residues bound to the surface of spermatozoa was documented in men with a recent history of E. coli-associated epididymitis. In vitro, such an UPEC induced N-acetylneuraminic acid release from human spermatozoa was effectively counteracted by a sialidase inhibitor. These findings strongly suggest a substantial remodeling of the glycocalyx of spermatozoa and epididymal epithelial cells by endogenous sialidases after a premature acrosome reaction during acute epididymitis. PMID:27339898

  4. Desialylation of Spermatozoa and Epithelial Cell Glycocalyx Is a Consequence of Bacterial Infection of the Epididymis.

    Science.gov (United States)

    Khosravi, Farhad; Michel, Vera; Galuska, Christina E; Bhushan, Sudhanshu; Christian, Philipp; Schuppe, Hans-Christian; Pilatz, Adrian; Galuska, Sebastian P; Meinhardt, Andreas

    2016-08-19

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in humans. In men, pathogens can also spread to the genital tract via the continuous ductal system, eliciting bacterial prostatitis and/or epididymo-orchitis. Antibiotic treatment usually clears pathogens in acute epididymitis; however, the fertility of patients can be permanently impaired. Because a premature acrosome reaction was observed in an UPEC epididymitis mouse model, and sialidases on the sperm surface are considered to be activated via proteases of the acrosome, we aimed to investigate whether alterations of the sialome of epididymal spermatozoa and surrounding epithelial cells occur during UPEC infection. In UPEC-elicited acute epididymitis in mice, a substantial loss of N-acetylneuraminic acid residues was detected in epididymal spermatozoa and epithelial cells using combined laser microdissection/HPLC-ESI-MS analysis. In support, a substantial reduction of sialic acid residues bound to the surface of spermatozoa was documented in men with a recent history of E. coli-associated epididymitis. In vitro, such an UPEC induced N-acetylneuraminic acid release from human spermatozoa was effectively counteracted by a sialidase inhibitor. These findings strongly suggest a substantial remodeling of the glycocalyx of spermatozoa and epididymal epithelial cells by endogenous sialidases after a premature acrosome reaction during acute epididymitis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Mutual viral and bacterial infections after housing rats of various breeders within an experimental unit.

    Science.gov (United States)

    Boot, R; van Herck, H; van der Logt, J

    1996-01-01

    Fifteen athymic rat strains from 11 breeding colonies were housed within an experimental facility for an immunological study. Health status records supplied with 14 of the strains listed infections by Kilham's rat virus (KRV), Clostridium piliforme (Bacillus piliformis) and Pasteurella pneumotropica for 2, 2 and 1 colonies respectively. In sera taken previous to the study from euthymic rats of 10 strains, antibodies to KRV were detected in 3 strains, to Pneumonia virus of mice (PVM), Rat corona virus (RCV) and Sendai virus in one strain each and to P. pneumotropica in 2 strains. Only 2 of the KRV infections had been reported by the supplier. During the study rats of all 10 strains developed antibodies to 2-4 of viral antigens. Eight out of 10 rat strains seroconverted to 1-5 of the antigens C. piliforme (B. piliformis), Bordetella bronchiseptica, Haemophilus spp., P. pneumotropica and Streptobacillus moniliformis. Two rat strains housed in filtertop cages did not develop antibodies to bacterial antigens. The potential detrimental effects of intercurrent infections on the outcome of the comparative immunological study are discussed.

  6. Vascular homograft use in a femoropopliteal rare bacterial infection bypass.

    Science.gov (United States)

    Dainese, Luca; Saccu, Claudio; Zoli, Stefano; Trabattoni, Piero; Guarino, Anna; Cavallero, Annalisa; Spirito, Rita

    2012-12-01

    We report on a patient with a femoropopliteal bypass infected by Kytococcus sedentarius. Treatment consisted of resection of the infected prosthesis with homograft substitution and antibiotic therapy started postoperatively. At 6 months followup, the patient showed no signs of infection and results of laboratory findings were normal.

  7. Safety and effectiveness of home intravenous antibiotic therapy for multidrug-resistant bacterial infections.

    Science.gov (United States)

    Mujal, A; Sola, J; Hernandez, M; Villarino, M-A; Machado, M-L; Baylina, M; Tajan, J; Oristrell, J

    2015-06-01

    Home intravenous antibiotic therapy is an alternative to hospital admission for moderately severe infections. However, few studies have analyzed its safety and effectiveness in the treatment of infections caused by multidrug-resistant bacteria. The purpose of this study is to analyze the safety and effectiveness of home intravenous antibiotic therapy in multidrug-resistant bacterial infections. We analyzed prospectively all patients admitted to our service who underwent home intravenous antibiotic therapy during the period 2008-2012. All the treatments were administered by caretakers or self-administered by patients, through elastomeric infusion devices. Effectiveness was evaluated by analyzing the readmission rate for poor infection control. Safety was evaluated by analyzing adverse events, catheter-related complications, and readmissions not related to poor infection control. There were 433 admissions (in 355 patients) for home intravenous antibiotic therapy during the study period. There were 226 (52.2 %) admissions due to multidrug-resistant bacterial infections and 207 (47.8 %) due to non-multidrug-resistant infections. Hospital readmissions in patients with multidrug-resistant infections were uncommon. Multidrug-resistant enterococcal infections, healthcare-associated infections, and carbapenem therapy were independent variables associated with increased readmissions due to poor infection control. Readmissions not related to poor infection control, adverse events, and catheter-related complications were similar in multidrug-resistant compared to non-multidrug-resistant bacterial infections. Home intravenous therapy, administered by patients or their caretakers using elastomeric infusion pumps, was safe and effective for the treatment of most multidrug-resistant bacterial infections.

  8. High specificity ZnO quantum dots for diagnosis and treatment in bacterial infection

    Science.gov (United States)

    Zhang, Min; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    Early diagnosis and effective treatment of bacterial infection has become increasingly important. Herein, we developed a fluorescent nano-probe MPA@ZnO-PEP by conjugating SiO2-stabilized ZnO quantum dot (ZnO@SiO2) with bacteria-targeting peptide PEP, which was encapsulated with MPA, a near infrared (NIR) dye. The nanoprobe MPA@ZnO-PEP showed excellent fluorescence property and could specifically distinguish bacterial infection from sterile inflammation both in vitro and in vivo. The favorable biocompatability of MPA@ZnO-PEP was verified by MTT assay. This probe was further modified with antibiotic methicillin to form the theranostic nanoparticle MPA/Met@ZnO-PEP with amplified antibacterial activity. These results promised the great potential of MPA@ZnO-PEP for efficient non-invasive early diagnosis of bacterial infections and effective bacterial-targeting therapy.

  9. Microfluidic system for the identification of bacterial pathogens causing urinary tract infections

    Science.gov (United States)

    Becker, Holger; Hlawatsch, Nadine; Haraldsson, Tommy; van der Wijngaart, Wouter; Lind, Anders; Malhotra-Kumar, Surbi; Turlej-Rogacka, Agata; Goossens, Herman

    2015-03-01

    Urinary tract infections (UTIs) are among the most common bacterial infections and pose a significant healthcare burden. The growing trend in antibiotic resistance makes it mandatory to develop diagnostic kits which allow not only the determination of a pathogen but also the antibiotic resistances. We have developed a microfluidic cartridge which takes a direct urine sample, extracts the DNA, performs an amplification using batch-PCR and flows the sample over a microarray which is printed into a microchannel for fluorescence detection. The cartridge is injection-molded out of COP and contains a set of two-component injection-molded rotary valves to switch between input and to isolate the PCR chamber during thermocycling. The hybridization probes were spotted directly onto a functionalized section of the outlet microchannel. We have been able to successfully perform PCR of E.coli in urine in this chip and perform a fluorescence detection of PCR products. An upgraded design of the cartridge contains the buffers and reagents in blisters stored on the chip.

  10. Bacterial infections in Wegener's granulomatosis : mechanisms potentially involved in autoimmune pathogenesis

    NARCIS (Netherlands)

    Tadema, Henko; Heeringa, Peter; Kallenberg, Cees G. M.

    Purpose of review Wegener's granulomatosis is associated with bacterial infection, in particular nasal carriage of Staphylococcus aureus. Infection may play a role in the induction of autoimmunity as well as in the effector phase of the disease. Here, the current hypotheses aiming to explain the

  11. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection

    Science.gov (United States)

    Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2016-01-01

    Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.

  12. Current concepts in the management of bacterial skin infections in children

    Directory of Open Access Journals (Sweden)

    Palit Aparna

    2010-01-01

    Full Text Available Bacterial skin infections in children vary widely clinically, starting from mild superficial folliculitis to deep necrotizing fasciitis. The causative organisms are mostly Staphylococcus aureus and Streptococcus, with occasional involvement of Gram-negative organisms. Treatment of even the milder forms of bacterial skin infections is of importance because of the long-term morbidity associated with them. However, because of global emergence of resistant strains of bacteria, treatment of these conditions is becoming increasingly difficult. The current antibacterial resistance patterns in organisms causing skin and soft tissue infections and the problems encountered in their management in children have been discussed.

  13. Intestinal Bacterial Communities of Trypanosome-Infected and Uninfected Glossina palpalis palpalis from Three Human African Trypanomiasis Foci in Cameroon

    Directory of Open Access Journals (Sweden)

    Franck Jacob

    2017-08-01

    Full Text Available Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene. Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont, Serratia, and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis. The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia, were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status.

  14. Identification of Genes Induced in Lolium multiflorum by Bacterial Wilt Infection

    DEFF Research Database (Denmark)

    Wichmann, Fabienne; Asp, Torben; Widmer, Franco

    2010-01-01

    expressed upon infection will serve as the basis for the identification of key genes involved in bacterial wilt resistance and to develop molecular markers for marker assisted breeding. Fluorescently labelled cDNA prepared from plant leaves collected at four different time points after infection......Xanthomonas translucens pv. graminis(Xtg) causes bacterial wilt in many forage grasses including Italian ryegrass (Lolium multiflorum Lam), seriously reducing yield and quality. Breeding for resistance is currently the only practicable means of disease control. Molecular markers closely linked...... to resistance genes or QTL could complement and support phenotypic selection. We used comparative gene expression analysis of a partially resistant L. multiflorum genotype infected and not infected with Xtg to identify genes involved in the control of resistance to bacterial wilt. The genes differentially...

  15. Feline bacterial urinary tract infections: An update on an evolving clinical problem.

    Science.gov (United States)

    Litster, Annette; Thompson, Mary; Moss, Susan; Trott, Darren

    2011-01-01

    Although feline urine is increasingly submitted for bacterial culture and susceptibility testing as part of a more general diagnostic work-up for a range of presentations in veterinary practice, bacterial urinary tract infections (UTIs) are relatively uncommon due to a variety of physical and immunological barriers to infection. Culture positive urine is most often obtained from older female cats and the clinical history may include hematuria, dysuria and pollakiuria, or the infection may be occult. Urinalysis usually reveals hematuria and pyuria, and Escherichia coli and Gram-positive cocci are cultured most frequently. Most feline UTIs can be successfully treated using oral amoxicillin or amoxicillin/clavulanic acid administered for at least 14days, but the prevalence of antimicrobial resistance amongst infecting bacterial species is a growing concern. There is currently no conclusive information on the safety and efficacy of alternative therapeutic agents for the treatment of feline UTIs. 2009 Elsevier Ltd. All rights reserved.

  16. Reptiles as Reservoirs of Bacterial Infections: Real Threat or Methodological Bias?

    Science.gov (United States)

    Zancolli, Giulia; Mahsberg, Dieter; Sickel, Wiebke; Keller, Alexander

    2015-10-01

    Bacterial infections secondary to snakebites and human pathogens (e.g., Salmonella) have been linked to the oral microbiota of snakes and pet reptiles. Based on culture-dependent studies, it is speculated that snakes' oral microbiota reflects the fecal flora of their ingested preys. However, cultured-based techniques have been shown to be limited as they fail to identify unculturable microorganisms which represent the vast majority of the microbial diversity. Here, we used culture-independent high-throughput sequencing to identify reptile-associated pathogens and to characterize the oral microbial community of five snakes, one gecko, and two terrapins. Few potential human pathogens were detected at extremely low frequencies. Moreover, bacterial taxa represented in the snake's oral cavity bore little resemblance to their preys' fecal microbiota. Overall, we found distinct, highly diverse microbial communities with consistent, species-specific patterns contrary to previous culture-based studies. Our study does not support the widely held assumption that reptiles' oral cavity acts as pathogen reservoir and provides important insights for future research.

  17. Herpesviral-bacterial co-infection in mandibular third molar pericoronitis.

    Science.gov (United States)

    Jakovljevic, Aleksandar; Andric, Miroslav; Knezevic, Aleksandra; Milicic, Biljana; Beljic-Ivanovic, Katarina; Perunovic, Neda; Nikolic, Nadja; Milasin, Jelena

    2017-06-01

    The aim of this study was to assess the presence of herpesviruses and periodontopathic bacteria and to establish their potential association with pericoronitis. Fifty samples obtained with paper points (30 from pericoronitis and 20 controls) were subjected to polymerase chain reaction (PCR) analysis. A single-stage and nested PCR assays were used to detect herpesviruses: human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) and six periodontopathic anaerobic bacteria: Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Parvimonas micra, Treponema denticola, and Tannarella forsythia. Pericoronitis samples harbored HCMV and EBV at significantly higher rates than the control group (70 vs. 40 % and 46.7 vs. 15 %, P = 0.035, P = 0.021, respectively). P. micra and T. forsythia (66.7 vs. 0 %, and 40 vs. 10 %, P = 0.001, P = 0.021, respectively) were significantly more common in pericoronitis compared to the control group. Multivariate logistic regression analysis showed that the presence of T. forsythia was associated with pericoronitis development (OR 7.3, 95 % CI, 1.2-43.2, P = 0.028). The occurrence of HCVM and EBV extends our previous knowledge on microbiota in pericoronitis. These PCR-based findings demonstrated that bacterial and viral DNA occurred concomitantly in pericoronitis samples. T. forsythia appeared to be significantly associated with pericoronitis development in the examined sample. Herpesviral-bacterial co-infections might exacerbate the progression of pericoronitis.

  18. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens.

    Science.gov (United States)

    Powell, Jennifer R; Ausubel, Frederick M

    2008-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the relationship between the animal innate immune system and a variety of bacterial and fungal pathogens. Extensive genetic and molecular tools are available in C. elegans, facilitating an in-depth analysis of host defense factors and pathogen virulence factors. Many of these factors are conserved in insects and mammals, indicating the relevance of the nematode model to the vertebrate innate immune response. Here, we describe pathogen assays for a selection of the most commonly studied bacterial and fungal pathogens using the C. elegans model system.

  19. Comparison of enterovirus detection in cerebrospinal fluid with Bacterial Meningitis Score in children.

    Science.gov (United States)

    Pires, Frederico Ribeiro; Franco, Andréia Christine Bonotto Farias; Gilio, Alfredo Elias; Troster, Eduardo Juan

    2017-01-01

    To measure the role of enterovirus detection in cerebrospinal fluid compared with the Bacterial Meningitis Score in children with meningitis. A retrospective cohort based on analysis of medical records of pediatric patients diagnosed as meningitis, seen at a private and tertiary hospital in São Paulo, Brazil, between 2011 and 2014. Excluded were patients with critical illness, purpura, ventricular shunt or recent neurosurgery, immunosuppression, concomitant bacterial infection requiring parenteral antibiotic therapy, and those who received antibiotics 72 hours before lumbar puncture. The study included 503 patients. Sixty-four patients were excluded and 94 were not submitted to all tests for analysis. Of the remaining 345 patients, 7 were in the Bacterial Meningitis Group and 338 in the Aseptic Meningitis Group. There was no statistical difference between the groups. In the Bacterial Meningitis Score analysis, of the 338 patients with possible aseptic meningitis (negative cultures), 121 of them had one or more points in the Bacterial Meningitis Score, with sensitivity of 100%, specificity of 64.2%, and negative predictive value of 100%. Of the 121 patients with positive Bacterial Meningitis Score, 71% (86 patients) had a positive enterovirus detection in cerebrospinal fluid. Enterovirus detection in cerebrospinal fluid was effective to differentiate bacterial from viral meningitis. When the test was analyzed together with the Bacterial Meningitis Score, specificity was higher when compared to Bacterial Meningitis Score alone. Avaliar o papel da pesquisa de enterovírus no líquido cefalorraquidiano em comparação com o Escore de Meningite Bacteriana em crianças com meningite. Coorte retrospectiva, realizada pela análise de prontuários, incluindo pacientes pediátricos, com diagnóstico de meningite e atendidos em um hospital privado e terciário, localizado em São Paulo, entre 2011 e 2014. Foram excluídos os pacientes com doença crítica, púrpura, deriva

  20. Bacterial infections in cirrhosis - does standard empirical therapy need a rethink?

    OpenAIRE

    Shiran Shetty; Venkatakrishnan Leelakrishnan; Krishnaveni Janarthanan

    2016-01-01

    Background: Patients with cirrhosis not only have a higher incidence and a greater severity of infections but infections increase the mortality and morbidity in cirrhosis. Third-generation cephalosporins and quinolones are currently the most commonly recommended first-line empirical therapy in most infections. This study was conducted to study the bacterial etiology, susceptibility of these organisms to these commonly used antibiotics. Methods: All patients of cirrhosis of liver admitted t...

  1. Subversion of the B-cell compartment during parasitic, bacterial, and viral infections

    OpenAIRE

    Borhis, Gwenoline; Richard, Yolande

    2015-01-01

    International audience; AbstractRecent studies on HIV infection have identified new human B-cell subsets with a potentially important impact on anti-viral immunity. Current work highlights the occurrence of similar B-cell alterations in other viral, bacterial, and parasitic infections, suggesting that common strategies have been developed by pathogens to counteract protective immunity. For this review, we have selected key examples of human infections for which B-cell alterations have been de...

  2. The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection

    Science.gov (United States)

    Goldberg, Brittany E.; Mongodin, Emmanuel F.; Jones, Cheron E.; Chung, Michelle; Fraser, Claire M.; Tate, Anupama; Zeichner, Steven L.

    2015-01-01

    The oral microbial community (microbiota) plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi’s sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are needed to better

  3. The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection.

    Directory of Open Access Journals (Sweden)

    Brittany E Goldberg

    Full Text Available The oral microbial community (microbiota plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi's sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are

  4. Drug resistance patterns of bacterial isolates from infected wounds ...

    African Journals Online (AJOL)

    unhcc

    Conclusions: High frequency of mono and multi-drug resistant bacterial pathogens were documented. Thus, an alternative method to the causative agent and antimicrobial susceptibility testing surveillance in areas where there is no culture facility is needed to assist health professionals for the selection of appropriate ...

  5. A Survey of Bacterial and Fungal Oppurtunistic Infections among ...

    African Journals Online (AJOL)

    The bacterial pathogens were isolated using Blood and Chocolate agar plates and identified biochemically except the Acid Fast Bacilli (AFB) which was tested in all the HIV positive samples by Ziehl Neelson staining technique. The fungal pathogens were isolated using Sabouraud Dextrose Agar (SDA) with antibiotics and ...

  6. Modulation of pulmonary innate immunity during bacterial infection: Animal studies

    NARCIS (Netherlands)

    Schultz, Marcus J.; van der Poll, Tom

    2002-01-01

    Both the increasing number of immunocompromised patients susceptible to pneumonia and the development of bacterial resistance are significant problems related to the treatment of pneumonia. The primary outcome of treatment for pneumonia is to tip the balance towards a successful host response. An

  7. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    Science.gov (United States)

    Pallavali, Roja Rani; Degati, Vijaya Lakshmi; Lomada, Dakshayani; Reddy, Madhava C; Durbaka, Vijaya Raghava Prasad

    2017-01-01

    Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS), Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100%) were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence, our results suggest

  8. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    Directory of Open Access Journals (Sweden)

    Roja Rani Pallavali

    Full Text Available Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS, Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100% were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence

  9. An abattoir survey of bacterial and fungal infections of cattle ...

    African Journals Online (AJOL)

    As for fungi infections, Candida and Mucor spp. were observed with a higher prevalence of candidiasis, which varied significantly (P < 0.05) between localities and sex, but was comparable between breeds and different age groups. Mucor spp. Infections were recorded only in vulva, oviducts and ovaries. This study suggest ...

  10. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection

    Directory of Open Access Journals (Sweden)

    Kempashanaiah Nanjundappa

    2011-08-01

    Full Text Available Abstract Background Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy. Results We developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80. Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection. Conclusions A recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host

  11. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection

    Science.gov (United States)

    2011-01-01

    Background Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy. Results We developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat) gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80). Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection. Conclusions A recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host. The recombinant phage

  12. The role of bacterial biofilms in chronic infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas

    2013-01-01

    wounds, chronic otitis media and implant- and catheter-associated infections, affect millions of people in the developed world each year and many deaths occur as a consequence. In general, bacteria have two life forms during growth and proliferation. In one form, the bacteria exist as single, independent...... cells (planktonic) whereas in the other form, bacteria are organized into sessile aggregates. The latter form is commonly referred to as the biofilm growth phenotype. Acute infections are assumed to involve planktonic bacteria, which are generally treatable with antibiotics, although successful......Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most...

  13. Chronic filarial infection provides protection against bacterial sepsis by functionally reprogramming macrophages.

    Directory of Open Access Journals (Sweden)

    Fabian Gondorf

    2015-01-01

    Full Text Available Helminths immunomodulate their hosts and induce a regulatory, anti-inflammatory milieu that prevents allergies and autoimmune diseases. Helminth immunomodulation may benefit sepsis outcome by preventing exacerbated inflammation and severe pathology, but the influence on bacterial clearance remains unclear. To address this, mice were chronically infected with the filarial nematode Litomosoides sigmodontis (L.s. and the outcome of acute systemic inflammation caused by i.p. Escherichia coli injection was determined. L.s. infection significantly improved E. coli-induced hypothermia, bacterial clearance and sepsis survival and correlated with reduced concentrations of associated pro-inflammatory cytokines/chemokines and a less pronounced pro-inflammatory macrophage gene expression profile. Improved sepsis outcome in L.s.-infected animals was mediated by macrophages, but independent of the alternatively activated macrophage subset. Endosymbiotic Wolbachia bacteria that are present in most human pathogenic filariae, as well as L.s., signal via TLR2 and modulate macrophage function. Here, gene expression profiles of peritoneal macrophages from L.s.-infected mice revealed a downregulation of genes involved in TLR signaling, and pulsing of macrophages in vitro with L.s. extract reduced LPS-triggered activation. Subsequent transfer improved sepsis outcome in naïve mice in a Wolbachia- and TLR2-dependent manner. In vivo, phagocytosis was increased in macrophages from L.s.-infected wild type, but not TLR2-deficient animals. In association, L.s. infection neither improved bacterial clearance in TLR2-deficient animals nor ameliorated E. coli-induced hypothermia and sepsis survival. These results indicate that chronic L.s. infection has a dual beneficial effect on bacterial sepsis, reducing pro-inflammatory immune responses and improving bacterial control. Thus, helminths and their antigens may not only improve the outcome of autoimmune and allergic diseases

  14. Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection.

    Science.gov (United States)

    Mei, Lin; Lu, Zhentan; Zhang, Xinge; Li, Chaoxing; Jia, Yanxia

    2014-09-24

    Herein, a nontoxic nanocomposite is synthesized by reduction of silver nitrate in the presence of a cationic polymer displaying strong antimicrobial activity against bacterial infection. These nanocomposites with a large concentration of positive charge promote their adsorption to bacterial membranes through electrostatic interaction. Moreover, the synthesized nanocomposites with polyvalent and synergistic antimicrobial effects can effectively kill both Gram-positive and Gram-negative bacteria without the emergence of bacterial resistance. Morphological changes obtained by transmission electron microscope observation show that these nanocomposites can cause leakage and chaos of intracellular contents. Analysis of the antimicrobial mechanism confirms that the lethal action of nanocomposites against the bacteria started with disruption of the bacterial membrane, subsequent cellular internalization of the nanoparticles, and inhibition of intracellular enzymatic activity. This novel antimicrobial material with good cytocompatibility promotes healing of infected wounds in diabetic rats, and has a promising future in the treatment of other infectious diseases.

  15. Bacterial Hyaluronidase Promotes Ascending GBS Infection and Preterm Birth

    Directory of Open Access Journals (Sweden)

    Jay Vornhagen

    2016-06-01

    Full Text Available Preterm birth increases the risk of adverse birth outcomes and is the leading cause of neonatal mortality. A significant cause of preterm birth is in utero infection with vaginal microorganisms. These vaginal microorganisms are often recovered from the amniotic fluid of preterm birth cases. A vaginal microorganism frequently associated with preterm birth is group B streptococcus (GBS, or Streptococcus agalactiae. However, the molecular mechanisms underlying GBS ascension are poorly understood. Here, we describe the role of the GBS hyaluronidase in ascending infection and preterm birth. We show that clinical GBS strains associated with preterm labor or neonatal infections have increased hyaluronidase activity compared to commensal strains obtained from rectovaginal swabs of healthy women. Using a murine model of ascending infection, we show that hyaluronidase activity was associated with increased ascending GBS infection, preterm birth, and fetal demise. Interestingly, hyaluronidase activity reduced uterine inflammation but did not impact placental or fetal inflammation. Our study shows that hyaluronidase activity enables GBS to subvert uterine immune responses, leading to increased rates of ascending infection and preterm birth. These findings have important implications for the development of therapies to prevent in utero infection and preterm birth.

  16. Bovine pasteurellosis and other bacterial infections of the respiratory tract.

    Science.gov (United States)

    Griffin, Dee

    2010-03-01

    Despite technological, biologic, and pharmacologic advances the bacterial component of the bovine respiratory disease (BRD) complex continues to have a major adverse effect on the health and wellbeing of stocker and feeder cattle. Overlooked in this disappointing assessment is evaluation of the effects that working with younger, lighter-weight cattle have on managing the bacterial component of the BRD complex. Most problems associated with BRD come from cattle taken from and comingled with cattle operations that have inconsistent or nonexistent cattle health management. This article reviews the biologic, clinical, and management aspects of Pasteurella multocida, Mannheimia haemolytica, Histophilus somni, and Mycoplasma bovis, primarily as related to current production management considerations of stocker and feeder cattle. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Spontaneous Bacterial Peritonitis Caused by Infection with Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Michael Vincent F. Tablang

    2008-11-01

    Full Text Available Spontaneous bacterial peritonitis is a severe and life-threatening complication in patients with ascites caused by advanced liver disease. The organisms most commonly involved are coliform bacteria and third-generation cephalosporins are the empiric antibiotics of choice. This is an uncommon case of spontaneous bacterial peritonitis caused by Listeria monocytogenes in a female patient with liver cirrhosis from autoimmune hepatitis. She did not improve with ceftriaxone and her course was complicated by hepatic encephalopathy, seizures and multi-organ failure. This case emphasizes that a high index of suspicion should be maintained for timely diagnosis and treatment. Listerial peritonitis should be suspected in patients with end-stage liver disease and inadequate response to conventional antibiotics within 48–72 h. Ampicillin/sulbactam should be initiated while awaiting results of ascitic fluid or blood culture.

  18. Radiopharmaceuticals For Detection Of Inflammation And Infection

    International Nuclear Information System (INIS)

    Nurlaila, Z.

    2002-01-01

    Feeling of pain in the body could be caused by reaction of inflantation and infection as well. One of the methods could be used to detect the reaction is nuclear technique using radiopharmaceutical as radiotracer. Some radiopharmaceuticals having specific accunulation mechanism to diagnose the presence of inflamations and infections with satisfactory results. Among those radiophannaceuticals are technetium-99m-hexamethylpropileneamine-white blood cell ( 99m Tc-HMPAO-WBC), indium-111-oxine-white blood cell ( 111 In-oksin-WBC). technetium-99m-immunoglobuline G ( 99m Tc-lgG) and technetium-99m-infecton ( 99m Tc-infecton). In visualization using this method. the information of a serial previous medical treatment of the patient should be known, because cer1ain medicament, could influence the biological characteristic of radiopharmaceuticals and hence. a missed diagnosis could be resulted. This review discusses several radiopharmaceuticals for inflamation and infection, diagnoses their accumulation, mechanism in the body. Besides, the radiopharmaceuticals interaction with several drugs are also reviewed

  19. Epidemiological analysis of bacterial strains involved in hospital infection in a University Hospital from Brazil

    Directory of Open Access Journals (Sweden)

    MORAES Bianca Aguiar de

    2000-01-01

    Full Text Available Hospital infections cause an increase in morbidity and mortality of hospitalized patients with significant rise in hospital costs. The aim of this work was an epidemiological analysis of hospital infection cases occurred in a public University Hospital in Rio de Janeiro. Hence, 238 strains were isolated from 14 different clinical materials of 166 patients hospitalized in the period between August 1995 and July 1997. The average age of the patients was 33.4 years, 72.9% used antimicrobials before having a positive culture. The most common risk conditions were surgery (19.3%, positive HIV or AIDS (18.1% and lung disease (16.9%. 24 different bacterial species were identified, S. aureus (21% and P. aeruginosa (18.5% were predominant. Among 50 S. aureus isolated strains 36% were classified as MRSA (Methicillin Resistant S. aureus. The Gram negative bacteria presented high resistance to aminoglycosides and cephalosporins. A diarrhea outbreak, detected in high-risk neonatology ward, was caused by Salmonella serovar Infantis strain, with high antimicrobial resistance and a plasmid of high molecular weight (98Mda containing virulence genes and positive for R factor.

  20. Lack of Correlation between Bristol Stool Scale and Quantitative Bacterial Load in Infection

    Directory of Open Access Journals (Sweden)

    Abrar K. Thabit

    2015-01-01

    Full Text Available Decision to test for Clostridium difficile infection (CDI is usually made when patients have loose stools with Bristol stool score of ≤5. We aimed to assess the relationship between bacterial load of C. difficile and Bristol stool scale, as well as stool frequency in stool samples collected from patients infected with the organism. Samples were collected at baseline, during therapy, and at the end of therapy. Spearman correlation test was used to evaluate these relationships. No correlation between Bristol stool scale and fecal load of C. difficile was found for both spores and vegetative cells at all time points as counts were persistently high ( P = non-significant. Weak positive correlations were found between stool frequency and fecal load of C. difficile spores and vegetative cells ( r s = 0.22 and 0.24, P = 0.04 and 0.03, respectively. These findings indicate that quantitative colony counts were sufficiently high to detect C. difficile , irrespective of stool consistency, and suggest that semiformed stool should be sought for the pathogen in symptomatic patients with frequent stools.

  1. Lack of Correlation between Bristol Stool Scale and Quantitative Bacterial Load in Clostridium difficile Infection.

    Science.gov (United States)

    Thabit, Abrar K; Nicolau, David P

    2015-01-01

    Decision to test for Clostridium difficile infection (CDI) is usually made when patients have loose stools with Bristol stool score of ≥5. We aimed to assess the relationship between bacterial load of C. difficile and Bristol stool scale, as well as stool frequency in stool samples collected from patients infected with the organism. Samples were collected at baseline, during therapy, and at the end of therapy. Spearman correlation test was used to evaluate these relationships. No correlation between Bristol stool scale and fecal load of C. difficile was found for both spores and vegetative cells at all time points as counts were persistently high (P = non-significant). Weak positive correlations were found between stool frequency and fecal load of C. difficile spores and vegetative cells (r s = 0.22 and 0.24, P = 0.04 and 0.03, respectively). These findings indicate that quantitative colony counts were sufficiently high to detect C. difficile, irrespective of stool consistency, and suggest that semiformed stool should be sought for the pathogen in symptomatic patients with frequent stools.

  2. The Relation between Helicobacter pylori Infection and Acute Bacterial Diarrhea in Children

    Directory of Open Access Journals (Sweden)

    Maryam Monajemzadeh

    2014-01-01

    Full Text Available Background. H. pylori infection leads to chronic gastritis in both children and adults. But recently, there are arising theories of its protective effect in diarrheal diseases. Aim. To explore the prevalence of H. pylori infection in children with bacterial diarrhea and compare it with healthy controls. Patients and Methods. Two matched groups consisted of 122 consecutive children, aged 24–72 months old, with acute bacterial diarrhea, who had Shigellosis (N=68 and Salmonellosis (N=54 as patients group and 204 healthy asymptomatic children as control group enrolled in this study. Results. The prevalence of H. pylori infection in healthy control children was significantly higher than in patients group, (odds ratio = 3.6, 95% CI: 1.33–9.5, P=0.007. In our study, only 2/54 Salmonella infected patients and 3/68 of Shigellosis had evidence of H. pylori infection, while normal control children had 27/204 infected individuals. Conclusion. H. pylori infection may play a protective role against bacterial diarrhea in children. So it is important to consider all of the positive and negative aspects of H. pylori infection before its eradication.

  3. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy

    DEFF Research Database (Denmark)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H.

    2017-01-01

    cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8...... day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues...

  4. Interferon in resistance to bacterial and protozoan infections

    Science.gov (United States)

    Sonnenfeld, Gerald; Gould, Cheryl L.; Kierszenbaum, Felipe; Degee, Antonie L. W.; Mansfield, John M.

    1986-01-01

    The effects of genetic differences in mouse strains on the modulation of protozoan infections by interferon (IFN) were investigated. In one set of experiments, three different strains of mice were injected with T. cruzi, and their sera were assayed at five time intervals for IFN titer. A greater quantity of IFN was produced by mouse strains that were susceptible to T. cruzi infection than by the more resistant strain. In another set of experiments, spleen cell cultures from inbred strains of mice were challenged with an antigen made from T.b. rhodesiense. The cells from mice resistant to infection, produced greater amounts of IFN-gamma than did cells from the susceptible mice. In a third set of experiments, it was found that mice injected with T.b. rhodesiense before being infected with a diabetogenic virus (EMC-D) were resistant to the effects of the virus and did not produce virus-specific antibody.

  5. [Microbiological diagnosis of bacterial infection associated with delivery and postpartum].

    Science.gov (United States)

    Padilla-Ortega, Belén; Delgado-Palacio, Susana; García-Garrote, Fernando; Rodríguez-Gómez, Juan Miguel; Romero-Hernández, Beatriz

    2016-05-01

    The newborn may acquire infections during delivery due to maternal colonization of the birth canal, by microorganisms such as Streptococcus agalactiae that caused early neonatal infection, or acquisition through the placenta, amniotic fluid or birth products. After birth, the newborn that needs hospitalization can develop nosocomial infections during their care and exceptionally through lactation by infectious mastitis or incorrect handling of human milk, which does not require to stop breastfeeding in most cases. It is important and necessary to perform microbiological diagnosis for the correct treatment of perinatal infections, especially relevant in preterm infants with low or very low weight with high mortality rates. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  6. Coxiella Burnetii: Host and Bacterial Responses to Infection

    Science.gov (United States)

    2007-10-16

    of Q fever organisms from paturient placentas of naturally infected dairy cows . Public Health Rep 1950;65:541. [9] Welsh HH, Lennette EH, Abinanti FR...sheep, and pos- ibly cows [8,9]. In the laboratory, C. burnetii is routinely ultured in chicken embryo yolk sacs, in cell cultures, and can e recovered...infecting SCV develop nto large cell variants (LCV) that are metabolically active. he SCV and LCV are antigenically different [13]. Tran- ition between

  7. Findings of bacterial microflora in piglets infected with conventional swine plague

    Directory of Open Access Journals (Sweden)

    Prodanov Jasna

    2002-01-01

    Full Text Available Piglets infected with the conventional swine plague virus as a result of secondary bacterial infections sometimes show an insufficiently clear clinical and pathoanatomical picture, which is why the very procedure of diagnosis is complex and the final diagnosis unreliable. That is why these investigations were aimed at examining the presence of bacterial microflora in diseased and dead pilgets which were found to have the viral antigen for CSP using the fluorescent antibody technique, in cases where the pathomorphological finding was not characteristic for conventional swine plague. Autopsies of dead piglets most often showed changes in the digestive tract and lungs, with resulting technopathy and diseases of infective nature. Such findings on knowledge of a present bacterial microflora are especially important in cases when conventional swine plague is controlled on farms and an announcement that the disease has been contained is in the offing.

  8. Bacterial sexually transmitted infections among HIV-infected patients in the United States: estimates from the Medical Monitoring Project.

    Science.gov (United States)

    Flagg, Elaine W; Weinstock, Hillard S; Frazier, Emma L; Valverde, Eduardo E; Heffelfinger, James D; Skarbinski, Jacek

    2015-04-01

    Bacterial sexually transmitted infections may facilitate HIV transmission. Bacterial sexually transmitted infection testing is recommended for sexually active HIV-infected patients annually and more frequently for those at elevated sexual risk. We estimated percentages of HIV-infected patients in the United States receiving at least one syphilis, gonorrhea, or chlamydia test, and repeat (≥2 tests, ≥3 months apart) tests for any of these sexually transmitted infections from mid-2008 through mid-2010. The Medical Monitoring Project collects behavioral and clinical characteristics of HIV-infected adults receiving medical care in the United States using nationally representative sampling. Sexual activity included self-reported oral, vaginal, or anal sex in the past 12 months. Participants reporting more than 1 sexual partner or illicit drug use before/during sex in the past year were classified as having elevated sexual risk. Among participants with only 1 sex partner and no drug use before/during sex, those reporting consistent condom use were classified as low risk; those reporting sex without a condom (or for whom this was unknown) were classified as at elevated sexual risk only if they considered their sex partner to be a casual partner, or if their partner was HIV-negative or partner HIV status was unknown. Bacterial sexually transmitted infection testing was ascertained through medical record abstraction. Among sexually active patients, 55% were tested at least once in 12 months for syphilis, whereas 23% and 24% received at least one gonorrhea and chlamydia test, respectively. Syphilis testing did not vary by sex/sexual orientation. Receipt of at least 3 CD4+ T-lymphocyte cell counts and/or HIV viral load tests in 12 months was associated with syphilis testing in men who have sex with men (MSM), men who have sex with women only, and women. Chlamydia testing was significantly higher in sexually active women (30%) compared with men who have sex with women only

  9. Procalcitonin as a biomarker of bacterial infection in sickle cell vaso-occlusive crisis.

    Science.gov (United States)

    Patel, Dilip Kumar; Mohapatra, Manoj Kumar; Thomas, Ancil George; Patel, Siris; Purohit, Prasanta

    2014-01-01

    Sickle cell anaemia (SCA) patients with vaso-occlusive crisis (VOC) have signs of inflammation and it is often difficult to diagnose a bacterial infection in them. This study was undertaken to evaluate the role of serum procalcitonin (PCT) as a biomarker of bacterial infection in acute sickle cell vaso-occlusive crisis. Hundred homozygous SCA patients were studied at Sickle Cell Clinic and Molecular Biology Laboratory, V.S.S. Medical College, Burla, Odisha, India. All the patients were divided into three categories namely category-A (VOC/ACS with SIRS but without evidence of bacterial infection - 66 patients), category-B (VOC/ACS with SIRS and either proven or suspected bacterial infection - 24 patients) and category-C (SCA patients in steady state without VOC/ACS or SIRS - 10 patients). Complete blood count, C-reactive protein (CRP) estimation and PCT measurement were done in all the patients. There was no significant difference in TLC and CRP values between category-A and B. In category-A, the PCT level was value >0.5 ng/mL with 87.5% of patients having >2 ng/mL. In category-C, PCT value was value (100%) for bacterial infection at a cutoff value of 0.5 ng/mL; whereas the specificity is excellent at a cut-off value of 2 ng/mL. SCA patients with VOC/ACS and SIRS having a PCT level of value of >2 ng/mL is indicative of bacterial infection necessitating early antimicrobial therapy.

  10. Statin Treatment and Mortality in Bacterial Infections – A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Björkhem-Bergman, Linda; Bergman, Peter; Andersson, Jan; Lindh, Jonatan D.

    2010-01-01

    Background Several studies have reported improved survival in severe bacterial infections among statin treated patients. In addition, statins have been ascribed beneficial anti-inflammatory effects. The aim of this study was to evaluate the effect of statin-treatment on mortality in patients with bacterial infections, by means of a systematic review and a meta-analysis. Methodology and Principal Findings Studies investigating the association between statin use and mortality in patients with bacterial disease were identified in a systematic literature review and a meta-analysis was performed to calculate the overall odds ratio of mortality in statin users. The literature search identified 947 citations from which 40 relevant studies were extracted. In all, 15 studies comprising 113 910 patients were included in the final analysis. Statin use was associated with a significantly (pstatin treatment was no longer significant, with an OR of 0.79 (95% CI 0.58–1.07). Conclusion/Significance According to the meta-analysis of observational studies presented here, patients on statin therapy seem to have a better outcome in bacterial infections. However, the association did not reach statistical significance after adjustment for apparent publication bias. Thus, there is a great need for randomised controlled trials investigating the possible beneficial effect of statins in bacterial infections. PMID:20502712

  11. Bacterial Infections Following Splenectomy for Malignant and Nonmalignant Hematologic Diseases

    Science.gov (United States)

    Leone, Giuseppe; Pizzigallo, Eligio

    2015-01-01

    Splenectomy, while often necessary in otherwise healthy patients after major trauma, finds its primary indication for patients with underlying malignant or nonmalignant hematologic diseases. Indications of splenectomy for hematologic diseases have been reducing in the last few years, due to improved diagnostic and therapeutic tools. In high-income countries, there is a clear decrease over calendar time in the incidence of all indication splenectomy except nonmalignant hematologic diseases. However, splenectomy, even if with different modalities including laparoscopic splenectomy and partial splenectomy, continue to be a current surgical practice both in nonmalignant hematologic diseases, such as Immune Thrombocytopenic Purpura (ITP), Autoimmune Hemolytic Anemia (AIHA), Congenital Hemolytic Anemia such as Spherocytosis, Sickle Cell Anemia and Thalassemia and Malignant Hematological Disease, such as lymphoma. Today millions of people in the world are splenectomized. Splenectomy, independently of its cause, induces an early and late increase in the incidence of venous thromboembolism and infections. Infections remain the most dangerous complication of splenectomy. After splenectomy, the levels of antibody are preserved but there is a loss of memory B cells against pneumococcus and tetanus, and the loss of marginal zone monocytes deputed to immunological defense from capsulated bacteria. Commonly, the infections strictly correlated to the absence of the spleen or a decreased or absent splenic function are due to encapsulated bacteria that are the most virulent pathogens in this set of patients. Vaccination with polysaccharide and conjugate vaccines again Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis should be performed before the splenectomy. This practice reduces but does not eliminate the occurrence of overwhelming infections due to capsulated bacteria. At present, most of infections found in splenectomized patients are due to Gram

  12. Rapid detection of bacterial pathogens using flourescence spectroscopy and chemometrics

    Science.gov (United States)

    This work presents the development of a method for rapid bacterial identification based on the fluorescence spectroscopy combined with multivariate analysis. Fluorescence spectra of pure three different genera of bacteria (Escherichia coli, Salmonella, and Campylobacter) were collected from 200...

  13. Cockroaches ’ bacterial infections in wards of hospitals, Hamedan city, west of Iran

    Directory of Open Access Journals (Sweden)

    Nejati Jalil

    2012-10-01

    Full Text Available Objective: To identify the relationship between different species of cockroaches with their bacterial infection in different wards of Hamedan county hospitals, western Iran. Methods: Using sticky trap, hand collection and glass trap, 250 cockroaches were collected from 14 wards of 5 hospitals. After having their identification determined by detection key, all of them were used to isolate bacteria from cuticle and alimentary tract. Results: From four identified species, Blatella germanica were the most common in all of the wards (88.8% and next was the Periplaneta Americana (8%. 20 bacteria species isolated from cockroaches' surface and 21 from digestive organ. Escherichia coli were the most predominant bacteria isolated from external surface (26.5 % as well as alimentary tract (30.8%. The frequency of investigated bacteria on cockroaches' body surface was not significantly different between Periplaneta Americana and Blattella germanica except for Kllebsiella oxytoca (P<0.001 and Providensia Spp (P=0.035. Also, frequency of detected bacteria in cockroaches' digestive organ was not significantly different between these two species. Furthermore, the frequency of bacteria isolated from the cockroaches' external surface was not significantly different from that of digestive organ except for shigella disantery (P<0.001, Pseudomonas aeroginosa (P<0.001 and Klebsiella oxytoca (P=0.01 3. Conclusions: Since cockroaches can carry pathogenic bacteria, so their existence in the hospitals could be a serious public health problem. It is suggested to compile programs in order to control cockroaches especially in the hospitals.

  14. Organelle targeting during bacterial infection: insights from Listeria.

    Science.gov (United States)

    Lebreton, Alice; Stavru, Fabrizia; Cossart, Pascale

    2015-06-01

    Listeria monocytogenes, a facultative intracellular bacterium responsible for severe foodborne infections, is now recognized as a multifaceted model in infection biology. Comprehensive studies of the molecular and cellular basis of the infection have unraveled how the bacterium crosses the intestinal and feto-placental barriers, invades several cell types in which it multiplies and moves, and spreads from cell to cell. Interestingly, although Listeria does not actively invade host cell organelles, it can interfere with their function. We discuss the effect of Listeria on the endoplasmic reticulum (ER) and the mechanisms leading to the fragmentation of the mitochondrial network and its consequences, and review the strategies used by Listeria to subvert nuclear functions, more precisely to control host gene expression at the chromatin level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Evaluation of 99mTc-amoxicillin sodium as an infection imaging agent in bacterially infected and sterile inflamed rats

    International Nuclear Information System (INIS)

    Derya Ilem-Ozdemir; Oya Caglayan-Orumlu; Makbule Asikoglu; Hayal Ozkilic; Ferda Yilmaz; Mine Hosgor-Limoncu

    2016-01-01

    Bacterial infection is one of the major causes of morbidity and mortality especially in developing countries. The aim of this study was to develop a new radiopharmaceutical for imaging infection. The labeling conditions were optimized, and lyophilized kits were developed for instant preparing. The stability of 99m Tc-AMOX in human serum was identified, sterility and pyrogenicity of the radiopharmaceutical were estimated, gamma scintigraphy and in vivo biodistribution with infected rats were investigated. The promising properties of 99m Tc-AMOX combined with the development of reliable and instant lyophilized kit afford the opportunity of inflammatory process imaging. (author)

  16. Perinatal Exposure to Environmental Tobacco Smoke (ETS Enhances Susceptibility to Viral and Secondary Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Jocelyn A. Claude

    2012-10-01

    Full Text Available Studies suggest childhood exposure to environmental tobacco smoke (ETS leads to increased incidence of infections of the lower respiratory tract. The objective of this study was to determine whether perinatal exposure to ETS increases the incidence, morbidity and severity of respiratory influenza infection and whether a secondary bacterial challenge at the peak of a pre-existing viral infection creates an enhanced host-pathogen susceptibility to an opportunistic infection. Timed-pregnant female Balb/c mice were exposed to either ETS for 6 h/day, 7 d/week beginning on gestation day 14 and continuing with the neonates to 6 weeks of age. Control animals were exposed to filtered air (FA. At the end of exposure, mice were intranasally inoculated with a murine-adapted influenza A. One week later, an intranasal inoculation of S. aureus bacteria was administered. The respective treatment groups were: bacteria only, virus only or virus+bacteria for both FA and ETS-exposed animals for a total of six treatment groups. Animal behavior and body weights were documented daily following infection. Mice were necropsied 1-day post-bacterial infection. Bronchoalveolar lavage fluid (BALF cell analysis demonstrated perinatal exposure to ETS, compared to FA, leads to delayed but enhanced clinical symptoms and enhanced total cell influx into the lungs associated with viral infection followed by bacterial challenge. Viral infection significantly increases the number of neutrophils entering the lungs following bacterial challenge with either FA or ETS exposure, while the influx of lymphocytes and monocytes is significantly enhanced only by perinatal ETS exposure. There is a significant increase in peribronchiolar inflammation following viral infection in pups exposed to ETS compared with pups exposed to FA, but no change is noted in the degree of lung injury between FA and ETS-exposed animals following bacterial challenge. The data suggests perinatal exposure to ETS

  17. Bacterial Internalization, Localization, and Effectors Shape the Epithelial Immune Response during Shigella flexneri Infection.

    Science.gov (United States)

    Lippmann, Juliane; Gwinner, Frederik; Rey, Camille; Tamir, Uyanga; Law, Helen K W; Schwikowski, Benno; Enninga, Jost

    2015-09-01

    Intracellular pathogens are differentially sensed by the compartmentalized host immune system. Nevertheless, gene expression studies of infected cells commonly average the immune responses, neglecting the precise pathogen localization. To overcome this limitation, we dissected the transcriptional immune response to Shigella flexneri across different infection stages in bulk and single cells. This identified six distinct transcriptional profiles characterizing the dynamic, multilayered host response in both bystander and infected cells. These profiles were regulated by external and internal danger signals, as well as whether bacteria were membrane bound or cytosolic. We found that bacterial internalization triggers a complex, effector-independent response in bystander cells, possibly to compensate for the undermined host gene expression in infected cells caused by bacterial effectors, particularly OspF. Single-cell analysis revealed an important bacterial strategy to subvert host responses in infected cells, demonstrating that OspF disrupts concomitant gene expression of proinflammatory, apoptosis, and stress pathways within cells. This study points to novel mechanisms through which bacterial internalization, localization, and injected effectors orchestrate immune response transcriptional signatures. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Bacterial pattern and antibiotic sensitivity in children and adolescents with infected atopic dermatitis

    Science.gov (United States)

    Samosir, C. T.; Ruslie, R. H.; Rusli, R. E.

    2018-03-01

    Atopic dermatitis (AD) is a pruritic and chronic inflammatory skin disease which affected approximately 20% in children. Bacterial infection is common in AD patients and correlates directly with AD severity. A cross-sectional study was conducted to evaluate the prevalence of bacterial skin infection in AD patients and its relation with severity of AD and also to study bacteria in the infected AD and its antibiotic sensitivity. Samples were 86 children and adolescents with an AD in Helvetia Community Health Center Medan from March 2016 until February 2017. Index of SCORing Atopic Dermatitis (SCORAD) was used to evaluate the severity of AD. Lesion and nonlesional skinwere swabbed to take sterile cultures. All bacteria noted and tested for antibiotic sensitivity. Datawere by using Chi-Square and Mann Whitney test with 95% CI and p-value<0.05 was considered statistically significant. Fifty-six AD patients (65.1%) were bacterial infected. There was a significant relationship between severity of AD and bacterial infection (p = 0.006). Staphylococcus aureus was the leading bacteria from all degrees of AD severity. Isolated Staphylococcus aureuswas sensitive to amoxicillin-clavulanate (93.3%), clindamycin (90%), erythromycin (90%), and gentamicin (90%), while sensitivity to tetracycline was low (20%).

  19. Biomarker-based classification of bacterial and fungal whole-blood infections in a genome-wide expression study

    Directory of Open Access Journals (Sweden)

    Andreas eDix

    2015-03-01

    Full Text Available Sepsis is a clinical syndrome that can be caused by bacteria or fungi. Early knowledge on the nature of the causative agent is a prerequisite for targeted anti-microbial therapy. Besides currently used detection methods like blood culture and PCR-based assays, the analysis of the transcriptional response of the host to infecting organisms holds great promise. In this study, we aim to examine the transcriptional footprint of infections caused by the bacterial pathogens Staphylococcus aureus and Escherichia coli and the fungal pathogens Candida albicans and Aspergillus fumigatus in a human whole-blood model. Moreover, we use the expression information to build a random forest classifier to classify if a sample contains a bacterial, fungal, or mock-infection. After normalizing the transcription intensities using stably expressed reference genes, we filtered the gene set for biomarkers of bacterial or fungal blood infections. This selection is based on differential expression and an additional gene relevance measure. In this way, we identified 38 biomarker genes, including IL6, SOCS3, and IRG1 which were already associated to sepsis by other studies. Using these genes, we trained the classifier and assessed its performance. It yielded a 96% accuracy (sensitivities >93%, specificities >97% for a 10-fold stratified cross-validation and a 92% accuracy (sensitivities and specificities >83% for an additional test dataset comprising Cryptococcus neoformans infections. Furthermore, the classifier is robust to Gaussian noise, indicating correct class predictions on datasets of new species. In conclusion, this genome-wide approach demonstrates an effective feature selection process in combination with the construction of a well-performing classification model. Further analyses of genes with pathogen-dependent expression patterns can provide insights into the systemic host responses, which may lead to new anti-microbial therapeutic advances.

  20. Phagocytes, Antibiotics, and Self-Limiting Bacterial Infections.

    Science.gov (United States)

    Levin, Bruce R; Baquero, Fernando; Ankomah, Peter Pierre; McCall, Ingrid C

    2017-11-01

    Most antibiotic use in humans is to reduce the magnitude and term of morbidity of acute, community-acquired infections in immune competent patients, rather than to save lives. Thanks to phagocytic leucocytes and other host defenses, the vast majority of these infections are self-limiting. Nevertheless, there has been a negligible amount of consideration of the contribution of phagocytosis and other host defenses in the research for, and the design of, antibiotic treatment regimens, which hyper-emphasizes antibiotics as if they were the sole mechanism responsible for the clearance of infections. Here, we critically review this approach and its limitations. With the aid of a heuristic mathematical model, we postulate that if the rate of phagocytosis is great enough, for acute, normally self-limiting infections, then (i) antibiotics with different pharmacodynamic properties would be similarly effective, (ii) low doses of antibiotics can be as effective as high doses, and (iii) neither phenotypic nor inherited antibiotic resistance generated during therapy are likely to lead to treatment failure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bacterial infections in alcoholic and nonalcoholic liver cirrhosis

    DEFF Research Database (Denmark)

    Sargenti, Konstantina; Prytz, Hanne; Bertilsson, Sara

    2015-01-01

    .001), this relationship was not significant after adjustment for confounders in Cox regression analysis (P=0.056). Resistance to piperacilin-tazobactam and carbapenems was more common in infections occurring in alcoholic versus nonalcoholic cirrhosis (13 vs. 5%, P=0.057 and 12 vs. 2%, P=0.009). Alcoholic etiology...

  2. STUDIES ON BACTERIAL INFECTIONS OF DIABETIC FOOT ULCER

    African Journals Online (AJOL)

    Dr Oboro VO

    ABSTRACT. Microbial study for aerobic organisms from 100 cases of diabetic foot ulcers was carried out to determine the etiological agents and their antibiogram. Polymicrobial infection was observed in all the cases. The most frequently isolated aerobic organisms were Staphylococcus aureus and Pseudomonas ...

  3. Multi-scale fluorescence imaging of bacterial infections in animal models

    Science.gov (United States)

    Bixler, Joel N.; Kong, Ying; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2013-03-01

    Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), currently affects roughly one-third of the world's population. Drug resistant strains of Mtb decrease the effectiveness of current therapeutics and demand the development of new antimicrobial therapies. In addition, the current vaccine, Bacille Calmette Guérin (BCG), has variable efficacy for disease prevention in different populations. Animal studies are often limited by the need to sacrifice at discrete time points for pathology and tissue homogenization, which greatly reduces spatial and temporal resolution. Optical imaging offers the potential for a minimally-invasive solution to imaging on a macroscopic and microscopic scale, allowing for high resolution study of infection. We have integrated a fluorescence microendoscope into a whole-animal optical imaging system, allowing for simultaneous microscopic and macroscopic imaging of tdTomato expressing BCG in vivo. A 535 nm LED was collimated and launched into a 10,000 element fiber bundle with an outer diameter of 0.66 mm. The fiber bundle can be inserted through an intra-tracheal catheter into the lung of a mouse. Fluorescence emission can either be (1) collected by the bundle and imaged onto the surface of a CCD camera for localized detection or (2) the fluorescence can be imaged by the whole animal imaging system providing macroscopic information. Results from internal localized excitation and external whole body detection indicate the potential for imaging bacterial infections down to 100 colony forming units. This novel imaging technique has the potential to allow for functional studies, enhancing the ability to assess new therapeutic agents.

  4. [Newborn bacterial infection caused by materno-fetal contamination. Retrospective epidemiologic study at a maternity unit].

    Science.gov (United States)

    Blond, M H; Gold, F; Quentin, R; Pierre, F; Kompanietz, J; Soutoul, J H; Laugier, J

    1991-01-01

    A retrospective epidemiological study of neonatal bacterial infection due to contamination from the mother was carried out in maternity unit. We analysed the results of taking bacterial swabs from the skin and GI tract in newborn children when there was a possibility, or even probability, from the criteria given that there would be infection. These results compare with different criteria. In 19 months there were 2,622 live born children; 40.6% of those had swabs taken; the infection rate was 0.61% of newborns, but 16% of the newborns, had asymptomatic colonisation by bacteria. The high risks of finding positive swabs as shown by increased infection rates by colonisation occurred where the mothers had high temperatures. Our results led us to change the criteria for antibiotic treatment immediately after birth, in newborn babies.

  5. Procedures involving lipid media for detection of bacterial contamination in breweries.

    Science.gov (United States)

    Van Vuuren, H J; Louw, H A; Loos, M A; Meisel, R

    1977-01-01

    The liquid equivalent of universal beer agar, designated universal beer liquid medium, and its beer-free equivalent, universal liquid medium (UL), were equally effective in demonstrating bacterial contamination in 120 of 200 samples from different stages of commercial brewing process. Growth of the contaminants after 3 days was consistently more luxuriant in the UL medium. A yeast-water substrate medium failed to reveal many contaminants detected with UL in 392 samples from three breweries and revealed only a few not detected with UL. The use of UL and a lactose-peptone medium, with microscope examination of the media for bacterial growth, permitted detection of 93% of the known contaminants compared to 87%, detected with UL alone; this combination or universal beer liquid medium plus lactose-peptone medium can therefore be recommended for the detection of bacterial contaminants in brewery samples. Bacterial contamination of pitching yeasts appeared to be a particular problem in the breweries investigated. PMID:848948

  6. Selection of aptamers for use as radiopharmaceuticals in bacterial infection diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ieda Mendes; Faria, Ligia Santana de; Correa, Cristiane Rodrigues; Andrade, Antero Silva Ribeiro de, E-mail: imendesf@yahoo.com.br, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The difficulty in early detection of specific foci in the bacterial infection caused by bacteria has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy has the advantage that an image of the whole body could be obtained. This study aims to obtain aptamers specific bacteria for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as {sup 99m}Tc, {sup 18}F and {sup 32}P. In this study aptamers anti-peptidoglycan, the main component of the outer cell wall of bacteria, were obtained through SELEX. The SELEX started with a pool of ssDNA that had 10{sup 15}different sequences (library), each oligo has two fixed regions merging a portion of 25 random nucleotides. Initially, the library of ssDNA was incubated with peptidoglycan, for 1h at 37 dec C with stirring. Subsequently, amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reaction). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 rounds of selection the oligonucleotides were cloned using TOPO plasmid and Escherichia coli strain Top10F'. The plasmid DNA from 40 colonies were extracted and quantified. The plasmids were sequenced using the sequencing MegaBase, and two different aptamers sequences were obtained from all clones. The aptamers obtained were synthesized and subsequently labeled with {sup 32}P in the 5' end. The labeled aptamers were incubated

  7. Selection of aptamers for use as radiopharmaceuticals in bacterial infection diagnosis

    International Nuclear Information System (INIS)

    Ferreira, Ieda Mendes; Faria, Ligia Santana de; Correa, Cristiane Rodrigues; Andrade, Antero Silva Ribeiro de

    2013-01-01

    The difficulty in early detection of specific foci in the bacterial infection caused by bacteria has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy has the advantage that an image of the whole body could be obtained. This study aims to obtain aptamers specific bacteria for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as 99m Tc, 18 F and 32 P. In this study aptamers anti-peptidoglycan, the main component of the outer cell wall of bacteria, were obtained through SELEX. The SELEX started with a pool of ssDNA that had 10 15 different sequences (library), each oligo has two fixed regions merging a portion of 25 random nucleotides. Initially, the library of ssDNA was incubated with peptidoglycan, for 1h at 37 dec C with stirring. Subsequently, amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reaction). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 rounds of selection the oligonucleotides were cloned using TOPO plasmid and Escherichia coli strain Top10F'. The plasmid DNA from 40 colonies were extracted and quantified. The plasmids were sequenced using the sequencing MegaBase, and two different aptamers sequences were obtained from all clones. The aptamers obtained were synthesized and subsequently labeled with 32 P in the 5' end. The labeled aptamers were incubated with 10 7 Staphylococcus aureus

  8. [The value of fibrinogen concentrations in neonatal bacterial infections of maternal origin (author's transl)].

    Science.gov (United States)

    de Gamarra, E; Savaglio, N; Moriette, G; Relier, J P

    1980-03-01

    The changes of fibrinogen levels in the neonatal period have been systematically studied in the neonatal intensive care unit at Port-Royal Hospital. A prospective study has been performed in 29 children with bacterial infections which were definitely of maternal origin. High fibrinogen levels persist as long as the infection remains active. Return of fibrinogen levels to normal could be considered as a criterion, if not of cure, at least of the efficacy of treatment.

  9. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues

    OpenAIRE

    Hidalgo-Grass, Carlos; Mishalian, Inbal; Dan-Goor, Mary; Belotserkovsky, Ilia; Eran, Yoni; Nizet, Victor; Peled, Amnon; Hanski, Emanuel

    2006-01-01

    Group A Streptococcus (GAS) causes the life-threatening infection in humans known as necrotizing fasciitis (NF). Infected subcutaneous tissues from an NF patient and mice challenged with the same GAS strain possessed high bacterial loads but a striking paucity of infiltrating polymorphonuclear leukocytes (PMNs). Impaired PMN recruitment was attributed to degradation of the chemokine IL-8 by a GAS serine peptidase. Here, we use bioinformatics approach coupled with target mutagenesis to identif...

  10. The role of phagocytes and specific antibodies in gamma irradiated mice infected by intracellular bacterial pathogens

    International Nuclear Information System (INIS)

    Kovarova, H.; Stulik, J.; Ledvina, M.

    1987-01-01

    The activation of oxygen metabolism in peritoneal macrophages during the defence against Francisella tularensis infection was inhibited by gamma irradiation of mice with 4.0 Gy. The application of specific antibodies protected the irradiated mice from the lethal infection without reactivation of oxygen metabolism in mononuclear phagocytes. These results demonstrated that the protecting function of the specific antibodies in the defence system against intracellular bacterial pathogens will be mediated by the oxygen-independent mechanisms. (author)

  11. Lack of Correlation between Bristol Stool Scale and Quantitative Bacterial Load in Infection

    OpenAIRE

    Abrar K. Thabit; David P. Nicolau

    2015-01-01

    Decision to test for Clostridium difficile infection (CDI) is usually made when patients have loose stools with Bristol stool score of ≤5. We aimed to assess the relationship between bacterial load of C. difficile and Bristol stool scale, as well as stool frequency in stool samples collected from patients infected with the organism. Samples were collected at baseline, during therapy, and at the end of therapy. Spearman correlation test was used to evaluate these relationships. No correlation ...

  12. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections

    OpenAIRE

    Hurdle, Julian G.; O’Neill, Alex J.; Chopra, Ian; Lee, Richard E.

    2011-01-01

    Persistent infections involving slow-growing or non-growing bacteria are hard to treat with antibiotics that target biosynthetic processes in growing cells. Consequently, there is a need for antimicrobials that can treat infections containing dormant bacteria. In this Review, we discuss the emerging concept that disrupting the bacterial membrane bilayer or proteins that are integral to membrane function (including membrane potential and energy metabolism) in dormant bacteria is a strategy for...

  13. Optimization of serious bacterial infections intensive therapy in children in Anesthesiology and Intensive Care Department

    Directory of Open Access Journals (Sweden)

    M. Yu. Kurochkin

    2014-08-01

    Full Text Available Effective selection of antibiotics in children with severe bacterial infections is often difficult because of microflora resistance. Extracorporeal detoxication methods, particularly discrete plasmapheresis are usually used for septic shock and total organ failure prevention. The aim of research. To conduct microbiological monitoring and to study a dynamics of medium molecular peptides in discrete plasmapheresis for intensive care optimization in children with severe bacterial infections in Anesthesiology and Intensive Care Department (AICU. Materials and methods. We investigated respiratory tract microflora by bacteriological method in 120 newborns and 30 children from 1 month with severe bacterial infections at admission and during prolonged stay in AICU. Discrete plasmapheresis was held in four children. Dynamic of medium molecular peptides was studied at admission, before discrete plasmapheresis and after it. Statistical data processing was performed using the Microsoft Excel software package. Results. It was found that in AICU in older children in admission grampositive and gramnegative flora was defined in equal quantity. The best sensitivity of the respiratory tract microflora was for the glycopeptides, oxazolidinones , II generation cephalosporins and macrolides, more than 60% - for aminoglycosides and lincosamides. However, when children spent more than 7-14 days in the department, nosocomial microflora was represented primarily by gram-negative organisms (80%, especially Pseudomonas aeruginosa. It was found to be inappropriate to use cephalosporins and macrolides in AICU for older children after their long stay there; the sensitivity to aminoglycosides was less than 60%, to anti-pseudomonal carbapenems not more than 30%. In AICU of newborns grampositive flora was found in 95%, mostly Staphylococcus haemolyticus. It was entirely sensitive for glycopeptides, oxazolidinones, fluoroquinolones, carbapenems, and also for co-trimoxazole and

  14. Widespread bacterial infection affecting Rana temporaria tadpoles in mountain areas

    Directory of Open Access Journals (Sweden)

    Rocco Tiberti

    2011-06-01

    Full Text Available Periodic mass die-offs of Rana temporaria tadpole populations have occurred in the ponds of prealpine mountain areas of Brescia (northern Italy since the early 2000s. The author reports some observational data and analytical results from three sites: tadpoles from mortality events had erythema, especially on the legs, suggestive of septicemia. Bacterial culture of these tadpoles revealed Aeromonas hydrophila and Aeromonas sobria, two organisms often associated with Red leg disease. Egg mass counts from 29 pastureland ponds did not revealed breeding activity declines over five years in the Monte Guglielmo area. Aeromonas hydrophila and Aeromonas sobria usually behave as opportunistic bacteria that can become pathogenic after suppression of the immune system by endogenous or exogenous stressors. Thus, a plurality of environmental factors may contribute to mortality events; some of them are discussed, including loss of high altitude breeding ponds resulting in overcrowding and poor water quality in remaining ponds and the presence of other pathogens.

  15. Development of aptamers for use as radiopharmaceuticals in the bacterial infection identification

    International Nuclear Information System (INIS)

    Ferreira, Ieda Mendes

    2013-01-01

    The difficulty in early detection of specific foci caused by bacteria in the bacterial infection has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy had the advantage that a whole body image could be obtained, since specific tracers were available. This study aims to obtain aptamers specific for bacteria identification for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as 99 mTc, 18 F and 32 P. In this study, aptamers anti-peptidoglycan, the main component of the bacterial outer cell wall, were obtained through SELEX. Whole cells of Staphylococcus aureus were also used to perform the SELEX to cells (cell-SELEX). The selection of aptamers was performed by two different procedures (A and B). The A process has been accomplished by 15 SELEX rounds in which the separation of the oligonucleotides bound to the peptidoglycan of unbound ones was performed by filtration. In the B process 15 SELEX rounds were performed using the centrifugation for this separation, followed by 5 rounds cell-SELEX. The SELEX started with a pool of ssDNA (single stranded DNA). For A process, initially a library of ssDNA was incubated with peptidoglycan and the amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reation). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 selection rounds the selected oligonucleotides were cloned

  16. Detection of bacterial blight resistant gene xa5 using linked marker ...

    African Journals Online (AJOL)

    Detection of bacterial blight resistant gene xa5 using linked marker approaches. SA Naveed, M Babar, A Arif, Y Zafar, M Sabar, I Ali, M Chragh, M Arif. Abstract. Rice is the primary source of food for 57% of the world's population. Genetic resistance is important to control many kinds of pathogenic diseases. Bacterial blight ...

  17. Secondary bacterial infection in Ghanaian patients with scabies.

    Science.gov (United States)

    Adjei, O; Brenya, R C

    1997-11-01

    From 110 patients with secondarily infected scabies lesions, 105 bacteria consisting of 66 aerobes and 39 anaerobes were isolated. A mixture of aerobic and anaerobic bacteria was present in 15 (13.6%). The predominant aerobic and anaerobic bacteria were staphylococcous aureus 39.1% and pepostreptococcus spp. 14.2% respectively. Organisms that resided in the mucus membranes close to or in contact with the lesions predominated in those infections. Most organisms were recovered from the finger and buttock lesions. These organisms were mainly staph. aureus, beta-haemolytic streptococci group. A and peptostreptococcus. More than 80% of staph. aureus isolated were resistant to penicillin. Less than 20% of the anaerobes were resistant to penicillin. The enteric Gram-negative, E. coli and Klebsiella spp. showed 100% sensitivity to Amoxycilin/clavulanic acid and gentamicin. Pseudomonas spp. were only susceptible to gentamicin, Amoxycillin/clavulanic acid proved to be the most active therapeutic agent in in vitro against the isolated microorganisms.

  18. Getting “Inside” Type I IFNs: Type I IFNs in Intracellular Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Deann T. Snyder

    2017-01-01

    Full Text Available Type I interferons represent a unique and complex group of cytokines, serving many purposes during innate and adaptive immunity. Discovered in the context of viral infections, type I IFNs are now known to have myriad effects in infectious and autoimmune disease settings. Type I IFN signaling during bacterial infections is dependent on many factors including whether the infecting bacterium is intracellular or extracellular, as different signaling pathways are activated. As such, the repercussions of type I IFN induction can positively or negatively impact the disease outcome. This review focuses on type I IFN induction and downstream consequences during infection with the following intracellular bacteria: Chlamydia trachomatis, Listeria monocytogenes, Mycobacterium tuberculosis, Salmonella enterica serovar Typhimurium, Francisella tularensis, Brucella abortus, Legionella pneumophila, and Coxiella burnetii. Intracellular bacterial infections are unique because the bacteria must avoid, circumvent, and even co-opt microbial “sensing” mechanisms in order to reside and replicate within a host cell. Furthermore, life inside a host cell makes intracellular bacteria more difficult to target with antibiotics. Because type I IFNs are important immune effectors, modulating this pathway may improve disease outcomes. But first, it is critical to understand the context-dependent effects of the type I IFN pathway in intracellular bacterial infections.

  19. Probiotics: a new way to fight bacterial pulmonary infections?

    Science.gov (United States)

    Alexandre, Y; Le Blay, G; Boisramé-Gastrin, S; Le Gall, F; Héry-Arnaud, G; Gouriou, S; Vallet, S; Le Berre, R

    2014-01-01

    Antibiotics, of which Fleming has identified the first representative, penicillin, in 1928, allowed dramatical improvement of the treatment of patients presenting with infectious diseases. However, once an antibiotic is used, resistance may develop more or less rapidly in some bacteria. It is thus necessary to develop therapeutic alternatives, such as the use of probiotics, defined by the World Health Organization (WHO) as "micro-organisms which, administered live and in adequate amounts, confer a benefit to the health of the host". The scope of these micro-organisms is broad, concerning many areas including that of infectious diseases, especially respiratory infections. We describe the rational use of probiotics in respiratory tract infections and detail the results of various clinical studies describing the use of probiotics in the management of respiratory infections such as nosocomial or community acquired pneumonia, or on specific grounds such as cystic fibrosis. The results are sometimes contradictory, but the therapeutic potential of probiotics seems promising. Implementing research to understand their mechanisms of action is critical to conduct therapeutic tests based on a specific rational for the strains to be used, the dose, as well as the chosen mode and rhythm of administration. Copyright © 2013. Published by Elsevier SAS.

  20. Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections

    Directory of Open Access Journals (Sweden)

    Adrian eRangel-Vega

    2015-04-01

    Full Text Available Bacterial infections remain one of the leading causes of death worldwide, and the therapeutic outlook for these infections is worsening, due the rise of antibiotic resistant strains. The pharmaceutical industry has produced few new types of antibiotics in more than a decade. Researchers are taking several approaches towards developing new classes of antibiotics, including (1 focusing on new targets and processes, such as bacterial cell-cell communication that upregulates virulence; (2 designing inhibitors of bacterial resistance, such as blockers of multi-drug efflux pumps; and (3 using alternative antimicrobials such as bacteriophages. In addition, the strategy of finding new uses for existing drugs is beginning to produce results: antibacterial properties have been discovered in existing anticancer, antifungal, anthelmintic, and anti-inflammatory drugs. In this work we discuss the antimicrobial properties of gallium based compounds, 5-fluorouracil, ciclopirox, diflunisal, and some other FDA-approved drugs.

  1. Acute bacterial infections of the lower respiratory tract in children from low-income countries

    NARCIS (Netherlands)

    Fleer, A; Wolf, B.H.M.

    Acute bacterial infection of the lower respiratory tract is a major cause of morbidity and mortality in children and is responsible for 4 million childhood deaths each year. Most of these deaths are caused by pneumonia and occur in the youngest children in the poorest parts of the world. Severe

  2. Delayed metamorphosis and recurrence of bacterial infection in irradiated Rana clamitans tadpoles

    International Nuclear Information System (INIS)

    Hart, D.R.

    1982-03-01

    X-ray doses of 5 and 10 Gy (1 Gy/min) given to premetamorphic Green Frog (Rana clamitans) tadpoles delayed their metamorphosis relative to unirradiated controls. Previous pathogenic bacterial infections recurred in irradiated animals prior to metamorphic climax. Limited mortality occurred during metamorphic climax, 80-105 days after irradiation

  3. Bacterial Infection as a Likely Cause of Adverse Reactions to Polyacrylamide Hydrogel Fillers in Cosmetic Surgery

    NARCIS (Netherlands)

    Christensen, Lise; Breiting, Vibeke; Bjarnsholt, Thomas; Eickhardt, Steffen; Høgdall, Estrid; Janssen, Martin; Pallua, Norbert; Zaat, Sebastian A. J.

    2013-01-01

    Background. The etiology of long-lasting adverse reactions to gel fillers used in cosmetic surgery is not known. Bacterial infection and immunological reaction to the product have been suggested. Methods. We performed a case-control study, with 77 biopsies and 30 cytology specimens originating from

  4. The effect of HIV infection on the host response to bacterial sepsis

    NARCIS (Netherlands)

    Huson, Michaëla A. M.; Grobusch, Martin P.; van der Poll, Tom

    2015-01-01

    Bacterial sepsis is an important cause of morbidity and mortality in patients with HIV. HIV causes increased susceptibility to invasive infections and affects sepsis pathogenesis caused by pre-existing activation and exhaustion of the immune system. We review the effect of HIV on different

  5. SOCS Proteins as Regulators of Inflammatory Responses Induced by Bacterial Infections: A Review

    Directory of Open Access Journals (Sweden)

    Skyla A. Duncan

    2017-12-01

    Full Text Available Severe bacterial infections can lead to both acute and chronic inflammatory conditions. Innate immunity is the first defense mechanism employed against invading bacterial pathogens through the recognition of conserved molecular patterns on bacteria by pattern recognition receptors (PRRs, especially the toll-like receptors (TLRs. TLRs recognize distinct pathogen-associated molecular patterns (PAMPs that play a critical role in innate immune responses by inducing the expression of several inflammatory genes. Thus, activation of immune cells is regulated by cytokines that use the Janus kinase/signal transducers and activators of transcription (JAK/STAT signaling pathway and microbial recognition by TLRs. This system is tightly controlled by various endogenous molecules to allow for an appropriately regulated and safe host immune response to infections. Suppressor of cytokine signaling (SOCS family of proteins is one of the central regulators of microbial pathogen-induced signaling of cytokines, principally through the inhibition of the activation of JAK/STAT signaling cascades. This review provides recent knowledge regarding the role of SOCS proteins during bacterial infections, with an emphasis on the mechanisms involved in their induction and regulation of antibacterial immune responses. Furthermore, the implication of SOCS proteins in diverse processes of bacteria to escape host defenses and in the outcome of bacterial infections are discussed, as well as the possibilities offered by these proteins for future targeted antimicrobial therapies.

  6. Jamming bacterial communications: new strategies to combat bacterial infections and the development of biofilms

    DEFF Research Database (Denmark)

    Givskov, Michael Christian; Hentzer, Morten

    2006-01-01

    The growth and activity of microorganisms affect our lives in both positive and negative ways. We have, since early times, tried to combat unwanted microbes and utilize those expressing useful traits. Microorganisms can cause diseases and chronic infections in humans, animals, and plants. In medi......The growth and activity of microorganisms affect our lives in both positive and negative ways. We have, since early times, tried to combat unwanted microbes and utilize those expressing useful traits. Microorganisms can cause diseases and chronic infections in humans, animals, and plants...... with surfaces and we as scientists must therefore turn our attention to this sessile mode of growth (33). It appears that the ability to form surface-associated, structured and cooperative consortia (referred to as biofilms) is one of the most remarkable and ubiquitous characteristics of bacteria (12...

  7. Clinical features of the course of localized and generalized bacterial infections in children

    Directory of Open Access Journals (Sweden)

    M.M. Murhina

    2017-04-01

    Full Text Available Background. Sepsis continues to be one of the most urgent problems of our time, as there is a tendency to an increase in the incidence and consistently high mortality. Objective: to study the clinical features of the course of bacterial infections in children. Materials and methods. 115 children with generalized and localized forms of bacterial infection were examined. The main group (47 children — children with sepsis, the comparison group (68 children — with a localized bacterial infection. Age of children was from 1 month to 18 years. Distribution to groups was carried out by the presence of signs of systemic inflammation response syndrome (SIRS and organ dysfunction. Results. The study found that the level and duration of the main symptoms of SIRS (hyperthermia, tachycardia and tachypnoe were statistically significantly higher in the sepsis group. With increasing signs of SIRS and the development of septic shock, the duration and severity of the clinical signs of SIRS increased in direct proportion. Tachycardia almost always (93 % accompanies the development of sepsis, while localized bacterial infections occur in only a third of children. 40 % of children with sepsis require oxygen therapy. Signs of SIRS are greater in children with localization of the bacterial focus in the ENT and chest cavity, while with central nervous system infection, they passed most quickly. In inotropic support, children with a primary outbreak in ENT were most in need — 44.4 % of cases, children with localization of the focus of bacterial infection in the abdominal cavity did not demand it at all. The average length of stay in the department of intensive care in the children of the comparison group was 5.14 days (95% confidence interval (CI 4.42–5.87, and in children of the main group — 13.1 days (95% CI 9.16–17, which was 2.5 times higher (p < 0.01. Conclusions. The indicator and duration of the main manifestations of SIRS (hyperthermia, tachycardia

  8. Biomarkers and bacterial pneumonia risk in patients with treated HIV infection: a case-control study.

    Directory of Open Access Journals (Sweden)

    Sonja M Bjerk

    Full Text Available Despite advances in HIV treatment, bacterial pneumonia continues to cause considerable morbidity and mortality in patients with HIV infection. Studies of biomarker associations with bacterial pneumonia risk in treated HIV-infected patients do not currently exist.We performed a nested, matched, case-control study among participants randomized to continuous combination antiretroviral therapy (cART in the Strategies for Management of Antiretroviral Therapy trial. Patients who developed bacterial pneumonia (cases and patients without bacterial pneumonia (controls were matched 1∶1 on clinical center, smoking status, age, and baseline cART use. Baseline levels of Club Cell Secretory Protein 16 (CC16, Surfactant Protein D (SP-D, C-reactive protein (hsCRP, interleukin-6 (IL-6, and d-dimer were compared between cases and controls.Cases (n = 72 and controls (n = 72 were 25.7% female, 51.4% black, 65.3% current smokers, 9.7% diabetic, 36.1% co-infected with Hepatitis B/C, and 75.0% were on cART at baseline. Median (IQR age was 45 (41, 51 years with CD4+ count of 553 (436, 690 cells/mm(3. Baseline CC16 and SP-D were similar between cases and controls, but hsCRP was significantly higher in cases than controls (2.94 µg/mL in cases vs. 1.93 µg/mL in controls; p = 0.02. IL-6 and d-dimer levels were also higher in cases compared to controls, though differences were not statistically significant (p-value 0.06 and 0.10, respectively.In patients with cART-treated HIV infection, higher levels of systemic inflammatory markers were associated with increased bacterial pneumonia risk, while two pulmonary-specific inflammatory biomarkers, CC16 and SP-D, were not associated with bacterial pneumonia risk.

  9. Anomaly Detection in Host Signaling Pathways for the Early Prognosis of Acute Infection.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    Full Text Available Clinical diagnosis of acute infectious diseases during the early stages of infection is critical to administering the appropriate treatment to improve the disease outcome. We present a data driven analysis of the human cellular response to respiratory viruses including influenza, respiratory syncytia virus, and human rhinovirus, and compared this with the response to the bacterial endotoxin, Lipopolysaccharides (LPS. Using an anomaly detection framework we identified pathways that clearly distinguish between asymptomatic and symptomatic patients infected with the four different respiratory viruses and that accurately diagnosed patients exposed to a bacterial infection. Connectivity pathway analysis comparing the viral and bacterial diagnostic signatures identified host cellular pathways that were unique to patients exposed to LPS endotoxin indicating this type of analysis could be used to identify host biomarkers that can differentiate clinical etiologies of acute infection. We applied the Multivariate State Estimation Technique (MSET on two human influenza (H1N1 and H3N2 gene expression data sets to define host networks perturbed in the asymptomatic phase of infection. Our analysis identified pathways in the respiratory virus diagnostic signature as prognostic biomarkers that triggered prior to clinical presentation of acute symptoms. These early warning pathways correctly predicted that almost half of the subjects would become symptomatic in less than forty hours post-infection and that three of the 18 subjects would become symptomatic after only 8 hours. These results provide a proof-of-concept for utility of anomaly detection algorithms to classify host pathway signatures that can identify presymptomatic signatures of acute diseases and differentiate between etiologies of infection. On a global scale, acute respiratory infections cause a significant proportion of human co-morbidities and account for 4.25 million deaths annually. The

  10. Besifloxacin: a novel anti-infective for the treatment of bacterial conjunctivitis

    Directory of Open Access Journals (Sweden)

    Timothy L Comstock

    2010-03-01

    Full Text Available Timothy L Comstock1, Paul M Karpecki2, Timothy W Morris3, Jin-Zhong Zhang41Global Medical Affairs, Pharmaceuticals, Bausch and Lomb, Inc., Rochester, NY, USA; 2Koffler Vision Group, Lexington, KY, USA; 3Research and Development Microbiology and Sterilization Sciences, Bausch and Lomb, Inc., Rochester, NY, USA; 4Global Preclinical Development, Bausch and Lomb, Inc., Rochester, NY, USAAbstract: Bacterial conjunctivitis, commonly known as pink eye, is demographically unbiased in its prevalence and can be caused by a variety of aerobic and anaerobic bacteria. Timely empiric treatment with a broad-spectrum anti-infective, such as a topical fluoroquinolone, is critical in preventing potentially irreversible ocular damage. However, the rise in ocular methicillin-resistant Staphylococcus aureus isolates and the patterns of fluoroquinolone resistance for patients with other ocular bacterial infections mandate the need for new agents targeted for ocular use. Besifloxacin, a novel broad-spectrum fluoroquinolone, is approved for the treatment of bacterial conjunctivitis. It has a uniquely balanced dual-targeting activity that inhibits both DNA gyrase and topoisomerase IV and is associated with a lower incidence of resistance development. Besifloxacin is not marketed in other formulations, ensuring that its exposure is limited to bacterial populations in and around the eye. This specifically precludes any bacterial exposure to besifloxacin resulting from systemic use, which further reduces the likelihood of emergence of bacterial resistance. In vitro, besifloxacin has demonstrated equivalent or superior activity compared with other commonly used topical antibiotics. In clinical trials, besifloxacin has consistently demonstrated efficacy and safety in the treatment of patients with bacterial conjunctivitis. Besifloxacin is considered safe and is well tolerated with no observed contraindications.Keywords: conjunctivitis, fluoroquinolones, besifloxacin

  11. Detection of bacterial blight resistance genes in basmati rice landraces.

    Science.gov (United States)

    Ullah, I; Jamil, S; Iqbal, M Z; Shaheen, H L; Hasni, S M; Jabeen, S; Mehmood, A; Akhter, M

    2012-07-20

    Aromatic basmati rice is vulnerable to bacterial blight disease. Genes conferring resistance to bacterial blight have been identified in coarse rice; however, their incorporation into basmati varieties compromises the prized basmati aroma. We identified bacterial blight resistance genes Xa4, xa5, Xa7, and xa13 in 52 basmati landraces and five basmati cultivars using PCR markers. The Xa7 gene was found to be the most prevalent among the cultivars and landraces. The cultivars Basmati-385 and Basmati-2000 also contained the Xa4 gene; however, xa5 and xa13 were confined to landraces only. Ten landraces were found to have multiple resistance genes. Landraces Basmati-106, Basmati-189 and Basmati-208 contained Xa4 and Xa7 genes. Whereas, landraces Basmati-122, Basmati-427, Basmati-433 were observed to have xa5 and Xa7 genes. Landraces Basmati-48, Basmati-51A, Basmati-334, and Basmati-370A possessed Xa7 and xa13 genes. The use of landraces containing recessive genes xa5 and xa13 as donor parents in hybridization with cultivars Basmati-385 and Basmati-2000, which contain the genes Xa4 and Xa7, will expedite efforts to develop bacterial blight-resistant basmati rice cultivars through marker assisted selection, based on a pyramiding approach, without compromising aroma and grain quality.

  12. Detecting bacterial endophytes in tropical grasses of the Brachiaria ...

    African Journals Online (AJOL)

    Plant-growth-promoting (PGP) bacteria include a diverse group of soil bacteria thought to stimulate plant growth by various mechanisms. Brachiaria forage grasses, of African origin, are perennials that often grow under low-input conditions and are likely to harbour unique populations of PGP bacteria. Three bacterial strains ...

  13. Diagnosis of bacterial infection | Boyles | South African Medical ...

    African Journals Online (AJOL)

    Because of slow turnaround times, these tests are frequently used to focus or stop antibiotic therapy after empiric initiation. Nucleic acid amplification tests raise the possibility of detecting organisms with high sensitivity, specificity and reduced turnaround time, and novel diagnostic modalities relying on nanotechnology and ...

  14. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology.

    Science.gov (United States)

    Reyes, Leticia; Herrera, David; Kozarov, Emil; Roldán, Silvia; Progulske-Fox, Ann

    2013-04-01

    The objective of this review was to perform a systematic evaluation of the literature reporting current scientific evidence for periodontal bacteria as contributors to atherosclerosis. Literature from epidemiological, clinical and experimental studies concerning periodontal bacteria and atherosclerosis were reviewed. Gathered data were categorized into seven "proofs" of evidence that periodontal bacteria: 1) disseminate from the oral cavity and reach systemic vascular tissues; 2) can be found in the affected tissues; 3) live within the affected site; 4) invade affected cell types in vitro; 5) induce atherosclerosis in animal models of disease; 6) non-invasive mutants of periodontal bacteria cause significantly reduced pathology in vitro and in vivo; and 7) periodontal isolates from human atheromas can cause disease in animal models of infection. Substantial evidence for proofs 1 to 6 was found. However, proof 7 has not yet been fulfilled. Despite the lack of evidence that periodontal bacteria obtained from human atheromas can cause atherosclerosis in animal models of infection, attainment of proofs 1 to 6 provides support that periodontal pathogens can contribute to atherosclerosis. © 2013 European Federation of Periodontology and American Academy of Periodontology.

  15. Bacterial contamination of platelet components not detected by BacT/ALERT®.

    Science.gov (United States)

    Abela, M A; Fenning, S; Maguire, K A; Morris, K G

    2018-02-01

    To investigate the possible causes for false negative results in BacT/ALERT ® 3D Signature System despite bacterial contamination of platelet units. The Northern Ireland Blood Transfusion Service (NIBTS) routinely extends platelet component shelf life to 7 days. Components are sampled and screened for bacterial contamination using an automated microbial detection system, the BacT/ALERT ® 3D Signature System. We report on three platelet components with confirmed bacterial contamination, which represent false negative BacT/ALERT ® results and near-miss serious adverse events. NIBTS protocols for risk reduction of bacterial contamination of platelet components are described. The methodology for bacterial detection using BacT/ALERT ® is outlined. Laboratory tests, relevant patient details and relevant follow-up information are analysed. In all three cases, Staphylococcus aureus was isolated from the platelet residue and confirmed on terminal sub-culture using BacT/ALERT ® . In two cases, S. aureus with similar genetic makeup was isolated from the donors. Risk reduction measures for bacterial contamination of platelet components are not always effective. Automated bacterial culture detection does not eliminate the risk of bacterial contamination. Visual inspection of platelet components prior to release, issue and administration remains an important last line of defence. © 2017 British Blood Transfusion Society.

  16. Traditional insulin-use practices and the incidence of bacterial contamination and infection.

    Science.gov (United States)

    Borders, L M; Bingham, P R; Riddle, M C

    1984-01-01

    While complex procedures are usually recommended to prevent infection at insulin injection sites, adherence to these procedures is imperfect and their value incompletely established. Among 254 adult insulin users in two clinic populations, the reported prevalence of complete performance of four traditional insulin-use practices (handwashing, vial prep, skin prep, discarding of plastic syringes after one use) was 29%, and none of the individual practices considered was performed regularly by more than two-thirds of the subjects. Even so, there was no infection at 2828 injection sites, and there was no significant bacterial contamination of insulin or syringes. These findings fail to support the view that traditional practices provide protection to insulin users against infection or bacterial growth in insulin or syringes. The authors suggest that modification of traditional teaching methods would do no harm, and that benefits could include financial savings, improved client success with self-care, and enhanced health care provider credibility.

  17. Suitability of Optical, Physical and Chemical Measurements for Detection of Changes in Bacterial Drinking Water Quality

    Science.gov (United States)

    Ikonen, Jenni; Pitkänen, Tarja; Miettinen, Ilkka T.

    2013-01-01

    In this study, different optical, physical and chemical measurements were tested for their capacity to detect changes in water quality. The tests included UV-absorbance at 254 nm, absorbance at 420 nm, turbidity, particle counting, temperature, pH, electric conductivity (EC), free chlorine concentration and ATP concentration measurements. Special emphasis was given to investigating the potential for measurement tools to detect changes in bacterial concentrations in drinking water. Bacterial colony counts (CFU) and total bacterial cell counts (TBC) were used as reference methods for assessing the bacterial water quality. The study consists of a series of laboratory scale experiments: monitoring of regrowth of Pseudomonas fluorescens, estimation of the detection limits for optical measurements using Escherichia coli dilutions, verification of the relationships by analysing grab water samples from various distribution systems and utilisation of the measurements in the case of an accidentally contaminated distribution network. We found significant correlations between the tested measurements and the bacterial water quality. As the bacterial contamination of water often co-occurs with the intrusion of matrixes containing mainly non-bacterial components, the tested measurement tools can be considered to have the potential to rapidly detect any major changes in drinking water quality. PMID:24284353

  18. Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts.

    Science.gov (United States)

    Brady, Cristina M; Asplen, Mark K; Desneux, Nicolas; Heimpel, George E; Hopper, Keith R; Linnen, Catherine R; Oliver, Kerry M; Wulff, Jason A; White, Jennifer A

    2014-01-01

    Facultative bacterial endosymbionts can play an important role in the evolutionary trajectory of their hosts. Aphids (Hemiptera: Aphididae) are infected with a wide variety of facultative endosymbionts that can confer ecologically relevant traits, which in turn may drive microevolutionary processes in a dynamic selective environment. However, relatively little is known about how symbiont diversity is structured in most aphid species. Here, we investigate facultative symbiont species richness and prevalence among world-wide populations of the cowpea aphid, Aphis craccivora Koch. We surveyed 44 populations of A. craccivora, and detected 11 strains of facultative symbiotic bacteria, representing six genera. There were two significant associations between facultative symbiont and aphid food plant: the symbiont Arsenophonus was found at high prevalence in A. craccivora populations collected from Robinia sp. (locust), whereas the symbiont Hamiltonella was almost exclusively found in A. craccivora populations from Medicago sativa (alfalfa). Aphids collected from these two food plants also had divergent mitochondrial haplotypes, potentially indicating the formation of specialized aphid lineages associated with food plant (host-associated differentiation). The role of facultative symbionts in this process remains to be determined. Overall, observed facultative symbiont prevalence in A. craccivora was lower than that of some other well-studied aphids (e.g., Aphis fabae and Acyrthosiphon pisum), possibly as a consequence of A. craccivora's almost purely parthenogenetic life history. Finally, most (70 %) of the surveyed populations were polymorphic for facultative symbiont infection, indicating that even when symbiont prevalence is relatively low, symbiont-associated phenotypic variation may allow population-level evolutionary responses to local selection.

  19. Scintigraphic images of bacterial infection using aptamers directly labeled with 99mTc

    International Nuclear Information System (INIS)

    Santos, S.R.; Correa, C.R.; Andrade, A.S.R.; Barros, A.L.B.; Diniz, S.O.F.; Cardoso, V.N.

    2015-01-01

    Staphylococcus aureus is specie of great medical importance and is the most commonly agent found in infections of soft tissues, bone infections and bone prostheses. In this study, aptamers selected to S. aureus were labeled by the direct method with 99m Tc and used for bacterial infection identification by scintigraphy. The radiolabeled aptamers radiochemical purity and stability were assessed by thin-layer chromatography (TLC). Three groups of Swiss mice (n=6) were used for the scintigraphic imaging studies. The first group was infected intramuscularly in the right thigh with S. aureus, the second group with C. albicans and the third group received zymosan to induce aseptic inflammation. After 24 h, radiolabeled aptamers (18 MBq) were injected by the tail vein. Scintigraphic images were acquired at 1 h and 4 h postinjection. The radiolabeling yield with 99m Tc was over 90%. The radiolabeled aptamers were stable in 0.9% saline, plasma and cysteine excess. The scintigraphic image profiles showed high uptake in the kidneys and bladder in all groups, indicating a main renal excretion consistent with the hydrophilic nature of the molecule. No accumulation of radioactivity was observed in the thyroid, stomach, liver and spleen, indicating acceptable levels of radiochemical impurities. The group infected with S. aureus showed a visible uptake in the infected right thigh at 1 h post-injection. For the control groups (C. albicans and zymosan) visible differences between the right and left thighs were not observed. The radiolabeled aptamers were able to distinguish aseptic inflammation from bacterial infection and bacterial from fungal infection. (author)

  20. Scintigraphic images of bacterial infection using aptamers directly labeled with {sup 99m}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.R.; Correa, C.R.; Andrade, A.S.R., E-mail: sararoberta7@hotmail.com, E-mail: crisrcorrea@gmail.com, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, A.L.B.; Diniz, S.O.F.; Cardoso, V.N., E-mail: brancodebarros@yahoo.com.br, E-mail: valbertcardoso@yahoo.com.br, E-mail: simoneodilia@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Farmacia. Departamento de Analises Clinicas e Toxicologicas

    2015-07-01

    Staphylococcus aureus is specie of great medical importance and is the most commonly agent found in infections of soft tissues, bone infections and bone prostheses. In this study, aptamers selected to S. aureus were labeled by the direct method with {sup 99m}Tc and used for bacterial infection identification by scintigraphy. The radiolabeled aptamers radiochemical purity and stability were assessed by thin-layer chromatography (TLC). Three groups of Swiss mice (n=6) were used for the scintigraphic imaging studies. The first group was infected intramuscularly in the right thigh with S. aureus, the second group with C. albicans and the third group received zymosan to induce aseptic inflammation. After 24 h, radiolabeled aptamers (18 MBq) were injected by the tail vein. Scintigraphic images were acquired at 1 h and 4 h postinjection. The radiolabeling yield with {sup 99m}Tc was over 90%. The radiolabeled aptamers were stable in 0.9% saline, plasma and cysteine excess. The scintigraphic image profiles showed high uptake in the kidneys and bladder in all groups, indicating a main renal excretion consistent with the hydrophilic nature of the molecule. No accumulation of radioactivity was observed in the thyroid, stomach, liver and spleen, indicating acceptable levels of radiochemical impurities. The group infected with S. aureus showed a visible uptake in the infected right thigh at 1 h post-injection. For the control groups (C. albicans and zymosan) visible differences between the right and left thighs were not observed. The radiolabeled aptamers were able to distinguish aseptic inflammation from bacterial infection and bacterial from fungal infection. (author)

  1. Bacterial Infections across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma, and Asaia

    Directory of Open Access Journals (Sweden)

    Stefanie Kautz

    2013-01-01

    Full Text Available Bacterial endosymbionts are common across insects, but we often lack a deeper knowledge of their prevalence across most organisms. Next-generation sequencing approaches can characterize bacterial diversity associated with a host and at the same time facilitate the fast and simultaneous screening of infectious bacteria. In this study, we used 16S rRNA tag encoded amplicon pyrosequencing to survey bacterial communities of 310 samples representing 221 individuals, 176 colonies and 95 species of ants. We found three distinct endosymbiont groups—Wolbachia (Alphaproteobacteria: Rickettsiales, Spiroplasma (Firmicutes: Entomoplasmatales, and relatives of Asaia (Alphaproteobacteria: Rhodospirillales—at different infection frequencies (at the ant species level: 22.1%, 28.4%, and 14.7%, resp. and relative abundances within bacterial communities (1.0%–99.9%. Spiroplasma was particularly enriched in the ant genus Polyrhachis, while Asaia relatives were most prevalent in arboreal ants of the genus Pseudomyrmex. While Wolbachia and Spiroplasma have been surveyed in ants before, Asaia, an acetic acid bacterium capable of fixing atmospheric nitrogen, has received much less attention. Due to sporadic prevalence across all ant taxa investigated, we hypothesize facultative associations for all three bacterial genera. Infection patterns are discussed in relation to potential adaptation of specific bacteria in certain ant groups.

  2. Biochemical principle of Limulus test for detecting bacterial endotoxins

    OpenAIRE

    Iwanaga, Sadaaki

    2007-01-01

    A hemocyte lysate from horseshoe crab (Limulus) produced a gel, when exposed to Gram-negative bacterial endotoxins, lipopolysaccharides (LPS). This gelation reaction of the lysate, so-called Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. Recent biochemical studies on the principle of Limulus test indicate that the hemocytes contain several serine protease zymogens, which constitute a coagulation cascade triggered by endotoxins, and that ther...

  3. Advances in nucleic acid-based diagnostics of bacterial infections

    DEFF Research Database (Denmark)

    Barken, Kim Bundvig; Haagensen, Janus Anders Juul; Tolker-Nielsen, Tim

    2007-01-01

    Methods for rapid detection of infectious bacteria and antimicrobial-resistant pathogens have evolved significantly over the last decade. Many of the new procedures are nucleic acid-based and replace conventional diagnostic methods like culturing which is time consuming especially with fastidious...... of these pathogens is important to isolate patients and prevent further spreading of the diseases. Newly developed diagnostic procedures are superior with respect to turnaround time, sensitivity and specificity. Methods like multiplex real time PCR and different array-based technologies offer the possibility...

  4. Ceftaroline fosamil for the treatment of acute bacterial skin and skin structure infections.

    Science.gov (United States)

    Beresford, Eric; Biek, Donald; Jandourek, Alena; Mawal, Yogesh; Riccobene, Todd; Friedland, H David

    2014-03-01

    Skin infections have traditionally been classified by the US FDA as uncomplicated and complicated. In August 2010, the FDA released a new guidance document for the development of drugs to treat acute bacterial skin and skin structure infections (ABSSSI) and this was updated in 2013. Several new issues were addressed and henceforth skin infections in clinical trials were termed ABSSSI. In the USA, the annual prevalence of methicillin-resistant Staphylococcus aureus-related skin infections have continuously increased from 32.7% in 1998 to 53.8% in 2007. Ceftaroline fosamil is the only cephalosporin approved in the USA for monotherapy treatment of ABSSSI including infections caused by methicillin-resistant S. aureus. The efficacy of ceftaroline fosamil was shown in the CANVAS clinical trials. The CANVAS Day-3 analyses met an earlier, primary efficacy time point requested by the FDA. Ceftaroline has minimal drug-drug interactions, is well tolerated and possesses the safety profile associated with the cephalosporin class.

  5. Acute bacterial skin and skin structure infections in internal medicine wards: old and new drugs.

    Science.gov (United States)

    Falcone, Marco; Concia, Ercole; Giusti, Massimo; Mazzone, Antonino; Santini, Claudio; Stefani, Stefania; Violi, Francesco

    2016-08-01

    Skin and soft tissue infections (SSTIs) are a common cause of hospital admission among elderly patients, and traditionally have been divided into complicated and uncomplicated SSTIs. In 2010, the FDA provided a new classification of these infections, and a new category of disease, named acute bacterial skin and skin structure infections (ABSSSIs), has been proposed as an independent clinical entity. ABSSSIs include three entities: cellulitis and erysipelas, wound infections, and major cutaneous abscesses This paper revises the epidemiology of SSTIs and ABSSSIs with regard to etiologies, diagnostic techniques, and clinical presentation in the hospital settings. Particular attention is owed to frail patients with multiple comorbidities and underlying significant disease states, hospitalized on internal medicine wards or residing in nursing homes, who appear to be at increased risk of infection due to multi-drug resistant pathogens and treatment failures. Management of ABSSSIs and SSTIs, including evaluation of the hemodynamic state, surgical intervention and treatment with appropriate antibiotic therapy are extensively discussed.

  6. Bacterial infections in horses: a retrospective study at the University Equine Clinic of Bern.

    Science.gov (United States)

    Panchaud, Y; Gerber, V; Rossano, A; Perreten, V

    2010-04-01

    Bacterial infections present a major challenge in equine medicine. Therapy should be based on bacteriological diagnosis to successfully minimize the increasing number of infections caused by multidrug-resistant bacteria. The present study is a retrospective analysis of bacteriological results from purulent infections in horses admitted at the University Equine Clinic of Bern from 2004 to 2008. From 378 samples analyzed, 557 isolates were identified, of which Staphylococcus aureus, Streptococcus equi subsp. zooepidemicus and coliforms were the most common. Special attention was paid to infections with methicillin-resistant S. aureus (MRSA) ST398 and a non-MRSA, multidrug-resistant S. aureus clone ST1 (BERN100). Screening of newly-admitted horses showed that 2.2 % were carriers of MRSA. Consequent hygiene measures taken at the Clinic helped to overcome a MRSA outbreak and decrease the number of MRSA infections.

  7. Prevalence of Bacterial Vaginosis and Associated Risk Factors among Women Complaining of Genital Tract Infection

    Directory of Open Access Journals (Sweden)

    Adane Bitew

    2017-01-01

    Full Text Available Background. Bacterial vaginosis is a global concern due to the increased risk of acquisition of sexually transmitted infections. Objectives. To determine the prevalence of bacterial vaginosis and bacteria causing aerobic vaginitis. Methods. A cross-sectional study was conducted among 210 patients between September 2015 and July 2016 at St. Paul’s Hospital. Gram-stained vaginal swabs were examined microscopically and graded as per Nugent’s procedure. Bacteria causing aerobic vaginitis were characterized, and their antimicrobial susceptibility pattern was determined. Results. The overall prevalence of bacterial vaginosis was 48.6%. Bacterial vaginosis was significantly associated with number of pants used per day (p=0.001 and frequency of vaginal bathing (p=0.045. Of 151 bacterial isolates, 69.5% were Gram-negative and 30.5% were Gram-positive bacteria. The overall drug resistance level of Gram-positive bacteria was high against penicillin, tetracycline, and erythromycin. Cefoxitin and tobramycin were the most active drugs against Gram-positive bacteria. The overall drug resistance level of Gram-negative bacteria was high against tetracycline, ampicillin, and amoxicillin. Amikacin and tobramycin were the most active drugs against Gram-negative bacteria. Conclusions. The prevalence of bacterial vaginosis was high and was affected by individual hygiene. Routine culture of vaginal samples should be performed on patients with vaginitis and the drug susceptibility pattern of each isolate should be determined.

  8. Lysozyme-responsive polymer systems for detection of infection

    NARCIS (Netherlands)

    Schiffer, Doris; Verient, Vanessa; Luschnig, Daniel; Blokhuis-Arkes, Miriam H.E.; van der Palen, Job J.A.M.; Gamerith, Clemens; Burnet, Michael; Sigl, Eva; Heinzle, Andrea; Guebitz, Georg M.

    2015-01-01

    There is a strong need for new point-of-care systems for the detection of wound infection. Overseen infections in chronic wounds induce severe complications, such as delayed healing and high risks for the patients, while time-consuming common gold and silver standard methods for infection assessment

  9. Population pharmacokinetics of ceftaroline in patients with acute bacterial skin and skin structure infections or community-acquired bacterial pneumonia.

    Science.gov (United States)

    Van Wart, Scott A; Forrest, Alan; Khariton, Tatiana; Rubino, Christopher M; Bhavnani, Sujata M; Reynolds, Daniel K; Riccobene, Todd; Ambrose, Paul G

    2013-11-01

    Ceftaroline, the active form of ceftaroline fosamil, is a broad-spectrum cephalosporin antibiotic. A population pharmacokinetic (PPK) model for ceftaroline was developed in NONMEM® using data from 185 healthy subjects and 92 patients with acute bacterial skin and skin structure infection (ABSSSI). Data from 128 patients with community-acquired bacterial pneumonia (CABP) were used for external model validation. Healthy subjects received 50-2,000 mg ceftaroline fosamil via intravenous (IV) infusion over 1 hour or intramuscular (IM) injection q12h or q24h. ABSSSI and CABP patients received 600 mg of ceftaroline fosamil IV over 1 hour q12h. A three-compartment model with zero-order IV or parallel first-order IM input and first-order elimination described ceftaroline fosamil PK. A two-compartment model with first-order conversion of prodrug to ceftaroline and parallel linear and saturable elimination described ceftaroline PK. Creatinine clearance was the primary determinant of ceftaroline exposure. Good agreement between the observed data and both population (r(2)  = 0.93) and individual post-hoc (r(2)  = 0.98) predictions suggests the PPK model can adequately approximate ceftaroline PK using covariate information. Such a PPK model can evaluate dose adjustments for patients with renal impairment and generate ceftaroline exposures for use in pharmacokinetic-pharmacodynamic assessments of efficacy in patients with ABSSSI or CABP. © 2013, The American College of Clinical Pharmacology.

  10. Metabolic profiling for detection of Staphylococcus aureus infection and antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Henrik Antti

    Full Text Available Due to slow diagnostics, physicians must optimize antibiotic therapies based on clinical evaluation of patients without specific information on causative bacteria. We have investigated metabolomic analysis of blood for the detection of acute bacterial infection and early differentiation between ineffective and effective antibiotic treatment. A vital and timely therapeutic difficulty was thereby addressed: the ability to rapidly detect treatment failures because of antibiotic-resistant bacteria. Methicillin-resistant Staphylococcus aureus (MRSA and methicillin-sensitive S. aureus (MSSA were used in vitro and for infecting mice, while natural MSSA infection was studied in humans. Samples of bacterial growth media, the blood of infected mice and of humans were analyzed with combined Gas Chromatography/Mass Spectrometry. Multivariate data analysis was used to reveal the metabolic profiles of infection and the responses to different antibiotic treatments. In vitro experiments resulted in the detection of 256 putative metabolites and mice infection experiments resulted in the detection of 474 putative metabolites. Importantly, ineffective and effective antibiotic treatments were differentiated already two hours after treatment start in both experimental systems. That is, the ineffective treatment of MRSA using cloxacillin and untreated controls produced one metabolic profile while all effective treatment combinations using cloxacillin or vancomycin for MSSA or MRSA produced another profile. For further evaluation of the concept, blood samples of humans admitted to intensive care with severe sepsis were analyzed. One hundred thirty-three putative metabolites differentiated severe MSSA sepsis (n = 6 from severe Escherichia coli sepsis (n = 10 and identified treatment responses over time. Combined analysis of human, in vitro, and mice samples identified 25 metabolites indicative of effective treatment of S. aureus sepsis. Taken together, this

  11. Diagnostic Accuracy of Ascites Fluid Gross Appearance in Detection of Spontaneous Bacterial Peritonitis

    Directory of Open Access Journals (Sweden)

    Hamed Aminiahidashti

    2014-08-01

    Full Text Available Introduction: Spontaneous bacterial peritonitis (SBP as a monomicrobial infection of ascites fluid is one of the most important causes of morbidity and mortality in cirrhotic patients. This study was aimed to determine the diagnostic accuracy of ascites fluid color in detection of SBP in cirrhotic cases referred to the emergency department. Methods: Cirrhotic patients referred to the ED for the paracentesis of ascites fluid were enrolled. For all studied patients, the results of laboratory analysis and gross appearance of ascites fluid registered and reviewed by two emergency medicine specialists. The sensitivity, specificity, positive and negative predictive value, and positive and negative likelihood ration of the ascites fluid gross appearance in detection of SBP were measured with 95% confidence interval. Results: The present project was performed in 80 cirrhotic patients with ascites (52.5 female. The mean of the subjects’ age was 56.25±12.21 years (35-81. Laboratory findings revealed SBP in 23 (29% cases. Fifty nine (73% cases had transparent ascites fluid appearance of whom 17 (29% ones suffered from SBP. From 21 (26% cases with opaque ascites appearance, 15 (71% had SBP. The sensitivity and specificity of the ascites fluid appearance in detection of SBP were 46.88% (Cl: 30.87-63.55 and 87.50% (95% Cl: 75.3-94.14, respectively. Conclusion: It seems that the gross appearance of ascites fluid had poor diagnostic accuracy in detection of SBP and considering its low sensitivity, it could not be used as a good screening tool for this propose.

  12. Infections and infestations of the gastrointestinal tract. Part 1: Bacterial, viral and fungal infections

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R., E-mail: rakslide@gmail.com [Department of Clinical Radiology, South Warwickshire NHS Foundation Trust, Warwick (United Kingdom); Rajesh, A. [Department of Radiology, University Hospitals of Leicester NHS Trust (United Kingdom); Rawat, S. [Department of Radiology, Ruby Hall Clinic, Pune (India); Rajiah, P. [Imaging Institute, Cleveland Clinic, Cleveland, OH (United States); Ramachandran, I. [Department of Clinical Radiology, South Warwickshire NHS Foundation Trust, Warwick (United Kingdom)

    2012-05-15

    The purpose of this article is to review the imaging findings of various infections affecting the gastrointestinal tract. Barium examinations, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasonography all play an important role in the diagnostic workup of gastrointestinal tract infections. Knowledge of differential diagnosis, sites of involvement, and typical imaging features of different infections can help in accurate diagnosis and guide treatment.

  13. Macrophage origin limits functional plasticity in helminth-bacterial co-infection.

    Directory of Open Access Journals (Sweden)

    Dominik Rückerl

    2017-03-01

    Full Text Available Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2 similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell.

  14. Development and application of a multiplex PCR assay for rapid detection of 4 major bacterial pathogens in ducks.

    Science.gov (United States)

    Wei, B; Cha, S-Y; Kang, M; Park, I-J; Moon, O-K; Park, C-K; Jang, H-K

    2013-05-01

    Infections with Pasteurella multocida, Salmonella enterica, Riemerella anatipestifer, and Escherichia coli result in high morbidity and mortality, which cause significant economic loss in the poultry industry. It can be difficult to distinguish these pathogens based on clinical signs because these pathogens can cause similar clinical signs and coinfections can occur. Thus, rapid and sensitive detection of these 4 major bacterial pathogens are important in ducks. The aim of this study was to develop a multiplex PCR (mPCR) assay for simultaneously detecting and identifying these 4 pathogenic bacteria in a single tube reaction. The target genes used were KMT1 of P. multocida, the invasion protein gene of S. enterica, 16S rDNA of R. anatipestifer, and the alkaline phosphatase gene of E. coli. The detection limit of the assay for all bacterial DNA was 10 pg. The mPCR did not produce any nonspecific amplification products when tested against other related pathogens, including Staphylococcus aureus, Streptococcus pyogenes, Clostridium perfringens, Mycoplasma gallinarum, Mycoplasma synoviae, and Mycoplasma gallisepticum, which can also infect ducks. We applied mPCR to field samples, and the results were the same as the single PCR results. These results suggest that mPCR for the 4 bacteria is a useful and rapid technique to apply to field samples.

  15. Gallium-67 myocardial imaging for the detection of bacterial endocarditis

    International Nuclear Information System (INIS)

    Wiseman, J.; Rouleau, J.; Rigo, P.; Strauss, H.W.; Pitt, B.

    1976-01-01

    Eleven patients with a clinical diagnosis of bacterial endocarditis underwent scintillation scanning of the precordial region 2--7 days after the intravenous administration of 3 mCi of gallium-67 citrate. Seven had positive scans, 3 of which were confirmed by postmortem imaging at autopsy. Serial images revealed the scans to be frequently negative at 48 hours and positive from 3 to 8 days following injection. Uptake was not seen in the region of the myocardium 48 hours or longer after the injection of 15 patients without endocarditis used as controls

  16. Gallium-67 myocardial imaging for the detection of bacterial endocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Wiseman, J.; Rouleau, J.; Rigo, P.; Strauss, H.W.; Pitt, B.

    1976-07-01

    Eleven patients with a clinical diagnosis of bacterial endocarditis underwent scintillation scanning of the precordial region 2--7 days after the intravenous administration of 3 mCi of gallium-67 citrate. Seven had positive scans, 3 of which were confirmed by postmortem imaging at autopsy. Serial images revealed the scans to be frequently negative at 48 hours and positive from 3 to 8 days following injection. Uptake was not seen in the region of the myocardium 48 hours or longer after the injection of 15 patients without endocarditis used as controls.

  17. Detection of postcardiotomy bacterial pericarditis with gallium-67 citrate

    Energy Technology Data Exchange (ETDEWEB)

    Zuckier, L.S.; Weissmann, H.S.; Goldman, M.J.; Brodman, R.; Kamholz, S.L.; Freeman, L.M.

    1986-04-01

    A 46-year-old man who had undergone apical cardiac aneurysmectomy with a ventriculotomy graft and implanted automatic cardioverter-defibrillator electrodes, presented with fever, left-sided pleuritic chest pain, and a draining sinus. A Ga-67 scan was performed to aid in determining whether the infection was limited to the chest wall or if it had penetrated deeper to the cardiac structures. Uptake of gallium within the cardiac region, in association with minimal rib uptake of Tc-99m MDP, strongly supported the existence of infection within the pericardium. CT scan demonstrated a pericardial collection which under CT-guided aspiration proved to be purulent. Definitive surgical drainage was performed, and the patient was discharged 4 weeks postoperatively. Ga-67 imaging can provide an accurate and relatively rapid means of localizing infection in the postcardiotomy patient. A thorough bibliography of pericardial gallium uptake is provided.

  18. Raman Hyperspectral Imaging for Detection of Watermelon Seeds Infected with Acidovorax citrulli.

    Science.gov (United States)

    Lee, Hoonsoo; Kim, Moon S; Qin, Jianwei; Park, Eunsoo; Song, Yu-Rim; Oh, Chang-Sik; Cho, Byoung-Kwan

    2017-09-23

    The bacterial infection of seeds is one of the most important quality factors affecting yield. Conventional detection methods for bacteria-infected seeds, such as biological, serological, and molecular tests, are not feasible since they require expensive equipment, and furthermore, the testing processes are also time-consuming. In this study, we use the Raman hyperspectral imaging technique to distinguish bacteria-infected seeds from healthy seeds as a rapid, accurate, and non-destructive detection tool. We utilize Raman hyperspectral imaging data in the spectral range of 400-1800 cm -1 to determine the optimal band-ratio for the discrimination of watermelon seeds infected by the bacteria Acidovorax citrulli using ANOVA. Two bands at 1076.8 cm -1 and 437 cm -1 are selected as the optimal Raman peaks for the detection of bacteria-infected seeds. The results demonstrate that the Raman hyperspectral imaging technique has a good potential for the detection of bacteria-infected watermelon seeds and that it could form a suitable alternative to conventional methods.

  19. [Epidemiology of nosocomial bacterial infection in a neonatal intensive care unit in Morocco].

    Science.gov (United States)

    Maoulainine, F-M-R; Elidrissi, N-S; Chkil, G; Abba, F; Soraa, N; Chabaa, L; Amine, M; Aboussad, A

    2014-09-01

    In neonatal intensive care units, the incidence of nosocomial infection is high. This study aimed to determine the epidemiology of a nosocomial bacterial infection in the neonatal intensive care unit of Mohamed VI university hospital. A total of 702 newborns were included in this study. Of the 702 neonates studied, 91 had developed a nosocomial infection. The incidence rate was 13% and incidence density was 21.2 per 1000 patient-days. The types of infection were: bloodstream infections (89%), pneumonia (6.6%), meningitis (3.3%), and urinary tract infections (1.1%). Nosocomial infection was particularly frequent in cases of low birth weight, prematurity, young age at admission, umbilical venous catheter, and mechanical ventilation. Multiresistant bacteria included enterobacteria producing betalactamase (76.9%), especially enterobacteria that were dominated by Klebsiella pneumoniae (39.7%). The mortality rate was 52.7% in nosocomial infections, 19 (20.87%) of whom had septic shock. The results of this study show that nosocomial infection is an intrahospital health problem that could be remedied by a prevention strategy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis.

    Science.gov (United States)

    Conover, Matt S; Hadjifrangiskou, Maria; Palermo, Joseph J; Hibbing, Michael E; Dodson, Karen W; Hultgren, Scott J

    2016-04-12

    Uropathogenic Escherichia coli (UPEC) is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs). Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs) of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly, lacZ was highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A ΔlacZ strain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, a galK mutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated gene yeaR revealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies. Urinary tract infections (UTIs) are one of the most common bacterial infections, impacting mostly women. Every year, millions of UTIs occur in the U.S. with most being caused by uropathogenic E. coli(UPEC). During a UTI, UPEC invade bladder cells and form an intracellular bacterial community

  1. Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city.

    Directory of Open Access Journals (Sweden)

    Golam Sarower Bhuyan

    Full Text Available The study aimed to examine for the first time the spectra of viral and bacterial pathogens along with the antibiotic susceptibility of the isolated bacteria in under-5 children with acute respiratory infections (ARIs in hospital settings of Dhaka, Bangladesh. Nasal swabs were collected from 200 under-five children hospitalized with clinical signs of ARIs. Nasal swabs from 30 asymptomatic children were also collected. Screening of viral pathogens targeted ten respiratory viruses using RT-qPCR. Bacterial pathogens were identified by bacteriological culture methods and antimicrobial susceptibility of the isolates was determined following CLSI guidelines. About 82.5% (n = 165 of specimens were positive for pathogens. Of 165 infected cases, 3% (n = 6 had only single bacterial pathogens, whereas 43.5% (n = 87 cases had only single viral pathogens. The remaining 36% (n = 72 cases had coinfections. In symptomatic cases, human rhinovirus was detected as the predominant virus (31.5%, followed by RSV (31%, HMPV (13%, HBoV (11%, HPIV-3 (10.5%, and adenovirus (7%. Streptococcus pneumoniae was the most frequently isolated bacterial pathogen (9%, whereas Klebsiella pneumaniae, Streptococcus spp., Enterobacter agglomerans, and Haemophilus influenzae were 5.5%, 5%, 2%, and 1.5%, respectively. Of 15 multidrug-resistant bacteria, a Klebsiella pneumoniae isolate and an Enterobacter agglomerans isolate exhibited resistance against more than 10 different antibiotics. Both ARI incidence and predominant pathogen detection rates were higher during post-monsoon and winter, peaking in September. Pathogen detection rates and coinfection incidence in less than 1-year group were significantly higher (P = 0.0034 and 0.049, respectively than in 1-5 years age group. Pathogen detection rate (43% in asymptomatic cases was significantly lower compared to symptomatic group (P<0.0001. Human rhinovirus, HPIV-3, adenovirus, Streptococcus pneumonia, and Klebsiella pneumaniae had

  2. Bacterial vaginosis, alterations in vaginal flora and HIV genital shedding among HIV-1-infected women in Mozambique

    Directory of Open Access Journals (Sweden)

    Robert D Kirkcaldy

    2011-05-01

    Full Text Available Objectives. We investigated whether abnormal vaginal flora, including bacterial vaginosis (BV, are associated with detection of cervical HIV-1 RNA among HIV-infected women in Mozambique. Methods. We obtained clinical data and vaginal specimens from HIV-infected women registering for their first visit at one of two HIV care clinics in Mozambique. We compared women with detectable cervical HIV viral load (≥40 copies/ml with women with undetectable cervical HIV. Results. We enrolled 106 women. Women with abnormal vaginal flora (intermediate Nugent scores, 4 - 6 were more likely to have detectable cervical HIV RNA then women with normal vaginal flora (adjusted odds ratio 7.2 (95% confidence interval 1.8 - 29.1, adjusted for CD4 count. Women with BV had a non-significantly higher likelihood of detectable cervical HIV than women with normal flora. Conclusions. Abnormal vaginal flora were significantly associated with cervical HIV expression. Further research is needed to confirm this relationship.

  3. DETECTION OF BACTERIAL SMALL TRANSCRIPTS FROM RNA-SEQ DATA: A COMPARATIVE ASSESSMENT.

    Science.gov (United States)

    Peña-Castillo, Lourdes; Grüell, Marc; Mulligan, Martin E; Lang, Andrew S

    2016-01-01

    Small non-coding RNAs (sRNAs) are regulatory RNA molecules that have been identified in a multitude of bacterial species and shown to control numerous cellular processes through various regulatory mechanisms. In the last decade, next generation RNA sequencing (RNA-seq) has been used for the genome-wide detection of bacterial sRNAs. Here we describe sRNA-Detect, a novel approach to identify expressed small transcripts from prokaryotic RNA-seq data. Using RNA-seq data from three bacterial species and two sequencing platforms, we performed a comparative assessment of five computational approaches for the detection of small transcripts. We demonstrate that sRNA-Detect improves upon current standalone computational approaches for identifying novel small transcripts in bacteria.

  4. Hindlimb suspension and SPE-like radiation impairs clearance of bacterial infections.

    Directory of Open Access Journals (Sweden)

    Minghong Li

    Full Text Available A major risk of extended space travel is the combined effects of weightlessness and radiation exposure on the immune system. In this study, we used the hindlimb suspension model of microgravity that includes the other space stressors, situational and confinement stress and alterations in food intake, and solar particle event (SPE-like radiation to measure the combined effects on the ability to control bacterial infections. A massive increase in morbidity and decrease in the ability to control bacterial growth was observed using 2 different types of bacteria delivered by systemic and pulmonary routes in 3 different strains of mice. These data suggest that an astronaut exposed to a strong SPE during extended space travel is at increased risk for the development of infections that could potentially be severe and interfere with mission success and astronaut health.

  5. Critical appraisal of ceftaroline in the management of community-acquired bacterial pneumonia and skin infections

    Directory of Open Access Journals (Sweden)

    Goodman JJ

    2012-03-01

    Full Text Available Julian J Goodman, Stanley I MartinDivision of Infectious Diseases, The Ohio State University, Columbus, OH, USAAbstract: Ceftaroline is a novel broad-spectrum cephalosporin ß-lactam antibiotic with activity against methicillin-resistant Staphylococcus aureus (MRSA as well as multidrug-resistant Streptococcus pneumoniae among other routine Gram positive and Gram negative organisms. It has been approved by the US Food and Drug Administration for treatment of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections (ABSSSIs. Ceftaroline is approved for treatment of ABSSSI due to MRSA, however currently there are no data for pneumonia due to MRSA in humans. Herein we review the major clinical trials as well as ceftaroline microbiology, pharmacokinetics, and safety, followed by a look at further directions for investigation of this new agent.Keywords: ceftaroline, pneumonia, skin infection

  6. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection.

    Science.gov (United States)

    Bikard, David; Hatoum-Aslan, Asma; Mucida, Daniel; Marraffini, Luciano A

    2012-08-16

    Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. CCD Camera Detection of HIV Infection.

    Science.gov (United States)

    Day, John R

    2017-01-01

    Rapid and precise quantification of the infectivity of HIV is important for molecular virologic studies, as well as for measuring the activities of antiviral drugs and neutralizing antibodies. An indicator cell line, a CCD camera, and image-analysis software are used to quantify HIV infectivity. The cells of the P4R5 line, which express the receptors for HIV infection as well as β-galactosidase under the control of the HIV-1 long terminal repeat, are infected with HIV and then incubated 2 days later with X-gal to stain the infected cells blue. Digital images of monolayers of the infected cells are captured using a high resolution CCD video camera and a macro video zoom lens. A software program is developed to process the images and to count the blue-stained foci of infection. The described method allows for the rapid quantification of the infected cells over a wide range of viral inocula with reproducibility, accuracy and at relatively low cost.

  8. Device-associated infection rates and bacterial resistance in six academic teaching hospitals of Iran: Findings from the International Nocosomial Infection Control Consortium (INICC).

    Science.gov (United States)

    Jahani-Sherafat, Somayeh; Razaghi, Maryam; Rosenthal, Victor D; Tajeddin, Elahe; Seyedjavadi, Simasadat; Rashidan, Marjan; Alebouyeh, Masoud; Rostampour, Maryam; Haghi, Arezo; Sayarbayat, Masoumeh; Farazmandian, Somayeh; Yarmohammadi, Tahere; Arshadi, Fardokht K; Mansouri, Nahid; Sarbazi, Mohammad R; Vilar, Mariano; Zali, Mohammad R

    2015-01-01

    Device-associated health care-acquired infections (DA-HAIs) pose a threat to patient safety, particularly in the intensive care unit (ICU). However, few data regarding DA-HAI rates and their associated bacterial resistance in ICUs from Iran are available. A DA-HAI surveillance study was conducted in six adult and pediatric ICUs in academic teaching hospitals in Tehran using CDC/NHSN definitions. We collected prospective data regarding device use, DA-HAI rates, and lengths of stay from 2584 patients, 16,796 bed-days from one adult ICU, and bacterial profiles and bacterial resistance from six ICUs. Among the DA-HAIs, there were 5.84 central line-associated bloodstream infections (CLABs) per 1000 central line-days, 7.88 ventilator-associated pneumonias (VAPs) per 1000 mechanical ventilator-days and 8.99 catheter-associated urinary tract infections (CAUTIs) per 1000 urinary catheter-days. The device utilization ratios were 0.44 for central lines, 0.42 for mechanical ventilators and 1.0 for urinary catheters. The device utilization ratios of mechanical ventilators and urinary catheters were higher than those reported in the ICUs of the INICC and the CDC's NHSN reports, but central line use was lower. The DA-HAI rates in this study were higher than the CDC's NHSN report. However, compared with the INICC report, the VAP rate in our study was lower, while the CLAB rate was similar and the CAUTI rate was higher. Nearly 83% of the samples showed a mixed-type infection. The most frequent pathogens were Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa, followed by Klebsiella pneumoniae and Enterococcus spp. In the S. aureus isolates, 100% were resistant to oxacillin. Overall resistances of A. baumannii and K. pneumonia to imipenem were 70.5% and 76.7%, respectively. A multiple drug resistance phenotype was detected in 68.15% of the isolates. The DA-HAI rates in Iran were shown to be higher than the CDC-NHSN rates and similar to the INICC rates

  9. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Golda-Cepa, M., E-mail: golda@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Syrek, K. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Brzychczy-Wloch, M. [Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow (Poland); Sulka, G.D. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kotarba, A., E-mail: kotarba@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  10. Review of oritavancin for the treatment of acute bacterial skin and skin structure infections

    Directory of Open Access Journals (Sweden)

    Ana Alejandra García Robles

    2018-03-01

    Full Text Available Objective: To assess critically oritavancin, a second-generation lipoglycopeptide, for the treatment of Acute Bacterial Skin and Skin Structure Infections caused by susceptible Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. Method: An evaluation report of oritavancin in Acute Bacterial Skin and Skin Structure Infections was carried out according to the methodology of the Group for drug evaluation, standardization and research in drug selection of the Spanish Society of Hospital Pharmacy (SEFH1, with the MADRE 4.0 program. A search was made in PubMed, in the web www.clinicaltrials. gov, Embase, PubMed and UptoDate. The European Medication Agency and Food and Drug Administration evaluation reports were also used. Results: Single-dose oritavancin demonstrated its non-inferiority efficacy versus vancomycin in Acute Bacterial Skin and Skin Structure nfections, with a similar safety profile. Its potential advantage over other therapeutic alternatives lies in its administration in single dose and in its no need for plasma levels monitoring, which would allow its administration on an outpatient basis. Regarding to the other alternative possibilities of oral (linezolid, tedizolid or IM (teicoplanin treatment, oritavancin would improve the adherence to the treatment. Although oritavancin could be more efficient in certain scenarios (outpatient treatment versus inpatient treatment with alternatives, there are no convincing studies in this regard so far. On the other hand, alternative drugs above-mentioned, can also allow outpatient treatment, reducing advantages of oritavancin and further increasing cost differences. Therefore, given that the efficacy is similar to the alternatives, a cost minimization analysis could be considered. Conclusions: Oritavancin is comparable in terms of efficacy and safety to the existing alternatives in Acute Bacterial Skin and Skin Structure Infections, without improvements in the cost

  11. Heparin-Related Thrombocytopenia Triggered by Severe Status of Systemic Lupus Erythematosus and Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Satoshi Suzuki

    2016-01-01

    Full Text Available A patient with severe lupus nephritis developed thrombocytopenia during treatment with high-dose steroids. In addition to viral- or disease-induced cytopenia, the pathology was believed to arise from diverse contributing factors, such as thrombotic microangiopathy and heparin-related thrombocytopenia (HIT. By combining plasma exchange therapy and intravenous cyclophosphamide, we successfully controlled the SLE activity and improved the thrombocytopenia. An antecedent bacterial infection or SLE activity is believed to have contributed to the concurrent HIT.

  12. Inflammatory Monocyte Recruitment Is Regulated by Interleukin-23 during Systemic Bacterial Infection

    Science.gov (United States)

    Indramohan, Mohanalaxmi; Sieve, Amy N.; Break, Timothy J.

    2012-01-01

    Listeria monocytogenes is a Gram-positive intracellular pathogen that causes meningitis and septicemia in immunocompromised individuals and spontaneous abortion in pregnant women. The innate immune response against L. monocytogenes is primarily mediated by neutrophils and monocytes. Interleukin-23 (IL-23) is an important proinflammatory cytokine well known for its role in neutrophil recruitment in various infectious and autoimmune diseases. We have previously shown that IL-23 is required for host resistance against L. monocytogenes and for neutrophil recruitment to the liver, but not the spleen, during infection. Despite efficient neutrophil recruitment to the spleen, IL-23p19 knockout (KO) mice have an increased bacterial burden in this organ, suggesting that IL-23 may regulate the recruitment/function of another cell type to the spleen. In this study, we show that specific depletion of neutrophils abrogated the differences in bacterial burdens in the livers but not the spleens of C57BL/6 (B6) and IL-23p19 KO mice. Interestingly, L. monocytogenes-infected IL-23p19 KO mice had fewer monocytes in the spleen than B6 mice, as well as a reduction in the monocyte-recruiting chemokines CCL2 and CCL7. Additionally, the overall concentrations of tumor necrosis factor alpha (TNF-α) and nitric oxide (NO•), as well as the percentages and total numbers of monocytes producing TNF-α and NO•, were reduced in IL-23p19 KO mice compared to levels in B6 mice, leading to increased bacterial burdens in the spleens of L. monocytogenes-infected IL-23p19 KO mice. Collectively, our data establish that IL-23 is required for the optimal recruitment of TNF-α- and NO•-producing inflammatory monocytes, thus revealing a novel mechanism by which this proinflammatory cytokine provides protection against bacterial infection. PMID:22966045

  13. A Perfect Storm: Increased Colonization and Failure of Vaccination Leads to Severe Secondary Bacterial Infection in Influenza Virus-Infected Obese Mice

    Directory of Open Access Journals (Sweden)

    Erik A. Karlsson

    2017-09-01

    Full Text Available Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae. Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population.

  14. Evaluation of aztreonam and ampicillin vs. amikacin and ampicillin for treatment of neonatal bacterial infections.

    Science.gov (United States)

    Umaña, M A; Odio, C M; Castro, E; Salas, J L; McCracken, G H

    1990-03-01

    In a prospective randomized, open study we evaluated aztreonam (AZ) for treatment of neonatal bacterial infections. There were 147 patients enrolled in the study; 75 received AZ and ampicillin (AMP) and 72 amikacin (AM) and AMP (conventional therapy). Twenty-eight AZ/AMP-treated patients and 32 conventionally treated patients had bacteriologically documented infections caused by gram-negative enteric bacilli or Pseudomonas species. Treatment groups were comparable in age, clinical status, and type and severity of underlying disease at the time of enrollment. Bronchopneumonia and infections caused by Pseudomonas species occurred significantly more often in AM/AMP-treated patients compared with patients given AZ/AMP. Sepsis was documented in 83% of patients in each treatment group and Gram-negative enteric bacilli and Pseudomonas species were the principal pathogens. Median peak serum bactericidal titers against the etiologic agent were 1:64 for the AZ/AMP and 1:16 for AM/AMP-treated patients. Case fatality rates resulting from the primary infection were 7 and 22% (P = 0.011), superinfection occurred in 39% and 34% and treatment failure occurred in 7 and 28% (P = 0.036) of the AZ/AMP and AM/AMP-treated patients, respectively. No clinical adverse reactions were observed in either group. Based on these results aztreonam appears to be at least as effective as and possibly more effective than amikacin when used initially with ampicillin for empiric treatment of neonatal bacterial infections.

  15. Clinical characteristics, pathogens implicated and therapeutic outcomes of mixed infection in adult bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Wan-Chen Tsai

    2012-10-01

    Full Text Available We reviewed retrospectively the data for adult patients with bacterial meningitis over a period of 10.5 years in our hospital. The clinical characteristics and laboratory data of the 21 cases (52 strains of mixed infection were analyzed. Two hundred and fifteen cases of single pathogen adult bacterial meningitis (ABM were also included for comparison. Post-neurosurgical type of ABM was presented in 86% of the mixed infection group. Brain abscess was found in three patients. Fourteen patients survived and seven cases died. The analysis showed a statistical significance for the mixed infection group having a higher rate of nosocomially-acquired, post-neurosurgical condition, hydrocephalus, and lower level of cerebrospinal fluid white cell count, protein and lactate than the single pathogen group. Logistic regression analysis showed the independent factor of “hydrocephalus” (p = 0.002. Presence of hydrocephalus is a significant neuroimaging feature when compared with the single pathogen group. As compared with the previous study results of mixed infection in ABM, the present study showed a change of pathogens implicated of increasing Pseudomonas spp. and Acinetobacter spp. infections, and an emergence of anaerobic pathogens. All these changes deserve special attention because of the need for an appropriate choice of empirical antibiotics and choice of culture method.

  16. Identification of a human neonatal immune-metabolic network associated with bacterial infection.

    Science.gov (United States)

    Smith, Claire L; Dickinson, Paul; Forster, Thorsten; Craigon, Marie; Ross, Alan; Khondoker, Mizanur R; France, Rebecca; Ivens, Alasdair; Lynn, David J; Orme, Judith; Jackson, Allan; Lacaze, Paul; Flanagan, Katie L; Stenson, Benjamin J; Ghazal, Peter

    2014-08-14

    Understanding how human neonates respond to infection remains incomplete. Here, a system-level investigation of neonatal systemic responses to infection shows a surprisingly strong but unbalanced homeostatic immune response; developing an elevated set-point of myeloid regulatory signalling and sugar-lipid metabolism with concomitant inhibition of lymphoid responses. Innate immune-negative feedback opposes innate immune activation while suppression of T-cell co-stimulation is coincident with selective upregulation of CD85 co-inhibitory pathways. By deriving modules of co-expressed RNAs, we identify a limited set of networks associated with bacterial infection that exhibit high levels of inter-patient variability. Whereas, by integrating immune and metabolic pathways, we infer a patient-invariant 52-gene-classifier that predicts bacterial infection with high accuracy using a new independent patient population. This is further shown to have predictive value in identifying infection in suspected cases with blood culture-negative tests. Our results lay the foundation for future translation of host pathways in advancing diagnostic, prognostic and therapeutic strategies for neonatal sepsis.

  17. The effect of vacuum-assisted closure in bacterial clearance of the infected abdomen.

    Science.gov (United States)

    Pliakos, Ioannis; Michalopoulos, Nikolaos; Papavramidis, Theodossis S; Arampatzi, Stergiani; Diza-Mataftsi, Eudoxia; Papavramidis, Spiros

    2014-02-01

    Laparostomy with vacuum-assisted closure (VAC) plays an important role in improving survival in the presence of abdominal infection. We conducted a study of the qualitative changes in the bacterial flora of the peritoneal cavity in patients with severe abdominal infection treated with laparostomy and a VAC device. Thirty-nine patients with severe abdominal infection treated with abdominal opening and VAC were registered in a clinical study. When an incidence of 53.8% of hospital-acquired peritoneal infection (HAPI) was found in the study patient population, it was decided to divide the patients in two groups according to whether or not they developed a HAPI. The patients' outcomes were then analyzed. The durations of abdominal opening (p=0.04), length of stay in the intensive care unit (ICU) (p=0.01), and of hospitalization (p=0.04) were significantly greater in patients with HAPI than in those without it, whereas mortality did not differ on the basis of these three variables. Superinfection is common in laparostomy done with a VAC device for managing severe abdominal infection. The data in the present study show that VAC does not alter the quality of the bacterial burden in primary abdominal contamination, nor does it seem to prevent a high incidence of HAPI. However, VAC is as effective in reducing mortality among patients with HAPI as among those without it.

  18. Broad-Range Bacterial Capture from Fluid-Samples: Implications for Amplification-Free Contamination Detection

    Directory of Open Access Journals (Sweden)

    Monika WEBER

    2016-08-01

    Full Text Available Fluid-Screen, Inc. presents a bacterial concentration and filtration method based on dielectrophoresis and alternating current kinetics. Dielectrophoresis has been previously shown to induce particle motion; however, bacterial capture efficiency and reproducibility have consistently been low, reducing its potential for practical applications. In this study, we introduce a novel, patent-pending electrode system optimized to simultaneously capture a wide range of bacterial species from a variety of aqueous solutions. Specifically, we show that the method of dielectrophoresis used induces responses in both characteristic Gram- negative Escherichia coli and Gram-positive Enterococcus faecalis bacteria, as well as with Bacillus subtilis and Aestuariimicrobium kwangyangense. We have adapted the electrode design to create a bacterial sample preparatio unit, termed the sample sorter, that is able to capture multiple bacterial species and release them simultaneously for bacterial concentration and exchange from complex matrices to defined buffer media. This technology can be used on its own or in conjunction with standard bacterial detection methods such as mass spectroscopy. The Fluid-Screen product will dramatically improve testing and identification of bacterial contaminants in various industrial settings by eliminating the need for amplification of samples and by reducing the time to identification.

  19. Ceftaroline Fosamil for the Treatment of Staphylococcus aureus Bacteremia Secondary to Acute Bacterial Skin and Skin Structure Infections or Community-Acquired Bacterial Pneumonia

    OpenAIRE

    Vazquez, Jose A.; Maggiore, Christy R.; Cole, Phillip; Smith, Alexander; Jandourek, Alena; Friedland, H. David

    2014-01-01

    Background The Clinical Assessment Program and Teflaro? Utilization Registry is designed to collect information on the clinical use of ceftaroline fosamil in the Unites States. This report presents data on the treatment of patients with Staphylococcus aureus bacteremia (SAB) secondary to acute bacterial skin and skin structure infections (ABSSSIs) or community-acquired bacterial pneumonia (CABP). Methods Patients diagnosed with ABSSSI or CABP were identified through sequential review of rando...

  20. Detection of mastitis pathogens by analysis of volatile bacterial metabolites

    NARCIS (Netherlands)

    Hettinga, K.A.; Valenberg, van H.J.F.; Lam, T.J.G.M.; Hooijdonk, van A.C.M.

    2008-01-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In

  1. Norfloxacin and metronidazole topical formulations for effective treatment of bacterial infections and burn wounds.

    Science.gov (United States)

    Dua, Kamal; Malipeddi, Venkata Ramana; Madan, Jyotsna; Gupta, Gaurav; Chakravarthi, Srikumar; Awasthi, Rajendra; Kikuchi, Irene Satiko; De Jesus Andreoli Pinto, Terezinha

    2016-06-01

    Our various previous findings have shown the suitability of norfloxacin in the treatment of bacterial infections and burn wounds in alone as well as in combination with Curcuma longa in various topical (ointments, gels, and creams) and transdermal drug delivery systems. Keeping these facts in consideration, we have made an another attempt to prepare semisolid formulations containing 1% w/w of norfloxacin and metronidazole with different bases like Carbopol, polyethylene glycol, and hydroxypropylmethyl cellulose for effective treatment of bacterial infections and burn wounds. The prepared formulations were evaluated for physicochemical parameters, in vitro drug release, antimicrobial activity, and burn wound healing properties. The prepared formulations were compared with Silver Sulfadiazine cream 1%, USP. Antimicrobial activity of norfloxacin semisolid formulations was found to be equally effective against both aerobic and anaerobic bacteria in comparison to a marketed formulation of Silver Sulfadiazine 1% cream, USP. Based on the burn wound healing property, the prepared norfloxacin semisolid formulation was found to be in good agreement with marketed Silver Sulfadiazine 1% cream, USP. These findings suggest formulations containing norfloxacin and metronidazole may also prove as an effective alternative for existing remedies in the treatment of bacterial infections and burn wounds.

  2. The Effects of Vaccination and Immunity on Bacterial Infection Dynamics In Vivo

    Science.gov (United States)

    Coward, Chris; Restif, Olivier; Dybowski, Richard; Grant, Andrew J.; Maskell, Duncan J.; Mastroeni, Pietro

    2014-01-01

    Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body. PMID:25233077

  3. Emerging treatment options for acute bacterial skin and skin structure infections: focus on intravenous delafloxacin

    Directory of Open Access Journals (Sweden)

    Righi E

    2018-04-01

    Full Text Available Elda Righi, Alessia Carnelutti, Antonio Vena, Matteo Bassetti Infectious Diseases Division, Santa Maria della Misericordia University Hospital, Udine, Italy Abstract: The increase in hospitalization due to acute bacterial skin and skin structure infections (ABSSSI caused by resistant pathogens supports the need for new treatment options. Antimicrobial options for ABSSSI that provide broad-spectrum coverage, including gram-negative pathogens and multidrug-resistant gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA, are limited. Delafloxacin is a novel fluoroquinolone available as intravenous and oral formulations and is characterized by an increased efficacy in acidic environments and activity on bacterial biofilm. Delafloxacin displays enhanced in vitro activity against MRSA, and enterococci, while maintaining efficacy against gram-negative pathogens and anaerobes. Delafloxacin has been studied for the treatment of ABSSSI and respiratory infections. Phase III studies have demonstrated noninferiority of delafloxacin compared to vancomycin, linezolid, tigecycline, and the combination of vancomycin plus aztreonam in the treatment of ABSSSI. Due to its favorable pharmacokinetic characteristics, the wide spectrum of action, and the potential for sequential therapy, delafloxacin represents a promising option in the empirical and targeted treatment of ABSSSI, both in hospital- and in community-based care. Keywords: bacterial skin and skin structure infections, multidrug-resistant bacteria, methicillin-resistant Staphylococcus aureus, delafloxacin

  4. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda; Kirienko, Natalia V; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  5. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    Full Text Available The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  6. The effects of vaccination and immunity on bacterial infection dynamics in vivo.

    Directory of Open Access Journals (Sweden)

    Chris Coward

    2014-09-01

    Full Text Available Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body.

  7. Enrichment of bacteria samples by centrifugation improves the diagnosis of orthopaedics-related infections via real-time PCR amplification of the bacterial methicillin-resistance gene.

    Science.gov (United States)

    Tsuru, Arisa; Setoguchi, Takao; Kawabata, Naoya; Hirotsu, Masataka; Yamamoto, Takuya; Nagano, Satoshi; Yokouchi, Masahiro; Kakoi, Hironori; Kawamura, Hideki; Ishidou, Yasuhiro; Tanimoto, Akihide; Komiya, Setsuro

    2015-07-03

    To effectively treat orthopaedic infections by methicillin-resistant strains, an early diagnosis is necessary. Bacterial cultures and real-time polymerase chain reaction (PCR) have been used to define methicillin-resistant staphylococci. However, even when patients display clinical signs of infections, bacterial culture and real-time PCR often cannot confirm infection. The aim of this study was to prospectively compare the utility of real-time PCR for the mecA gene detection following centrifugation of human samples with suspected orthopaedic infections. In addition to the conventional real-time PCR method, we performed real-time PCR following centrifugation of the sample at 4,830×g for 10 min in a modified real-time PCR (M-PCR) method. We suspended cultured methicillin-resistant Staphylococcus aureus and generated standard dilution series for in vitro experiments. The in vitro detection sensitivity of the M-PCR method was approximately 5.06 times higher than that of the conventional real-time PCR method. We performed bacterial culture, pathological examination, real-time PCR, and M-PCR to examine the infectious fluids and tissues obtained from 36 surgical patients at our hospital. Of these, 20 patients who had undergone primary total hip arthroplasty were enrolled as negative controls. In addition, 15 patients were examined who were clinically confirmed to have an infection, including periprosthetic joint infection (eight patients), pyogenic spondylitis (two patients), infectious pseudoarthrosis (two patients), and after spine surgery (three patients). In one sample from a patient who developed infectious pseudoarthrosis and two samples from surgical site infections after spine surgery, the mecA gene was detected only by the M-PCR method. In one patient with infectious pseudoarthrosis, one patient with infection after arthroplasty, and two patients with purulent spondylitis, the detection sensitivity of the M-PCR method was increased compared with PCR (clinical

  8. Interleukin-8 and leukotriene B4 in bronchoalveolar lavage fluid from HIV-infected patients with bacterial pneumonia

    DEFF Research Database (Denmark)

    Krarup, E; Vestbo, Jørgen; Benfield, T L

    1997-01-01

    Human immunodeficiency virus (HIV)-infected patients are at increased risk of contracting bacterial infections, mainly pneumonia. Despite this, little is known about immunopathogenic mechanisms in HIV-related bacterial pneumonia. This paper investigates the presence of the neutrophil chemotactic...... mediators, interleukin-8 (IL_8) and leukotriene B4 (LTB4), in bronchoalveolar lavage (BAL) fluid from 27 HIV-infected patients with bacterial pneumonia. Significantly elevated levels of IL-8 were found in BAL fluid of patients with bacterial pneumonia [529 pg ml-1 (296-1161 pg ml-1)] compared to matched...... patients with Pneumocystis carinii pneumonia (PCP) [59 pg ml-1 (42-254 pg ml-1)] and healthy controls [58 pg ml-1 (37-82 pg ml-1)]. Levels of LTB4 were not elevated during bacterial pneumonia when compared to PCP patients and healthy controls. Furthermore, a positive correlation was found between IL-8...

  9. Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis

    Directory of Open Access Journals (Sweden)

    Matt S. Conover

    2016-04-01

    Full Text Available Uropathogenic Escherichia coli (UPEC is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs. Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly, lacZ was highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A ΔlacZ strain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, a galK mutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated gene yeaR revealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies.

  10. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    International Nuclear Information System (INIS)

    Liu, Shijie; Shao, Chen; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao

    2015-01-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml −1 , compared with the free Ce6 value of 29.85 μg ml −1 . Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects. (paper)

  11. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  12. Assessment of bacterial infection in chronic wounds in the elderly: biopsy versus VERSAJET.

    Science.gov (United States)

    Mattera, Edi; Iovene, Maria Rosaria; Rispoli, Corrado; Falco, Giuseppe; Rocco, Nicola; Accurso, Antonello

    2014-01-01

    The aim of this study was to evaluate the hydro-surgery VERSAJET system as a suitable alternative to the traditional invasive tissue sampling technique in detecting bacteria and their load in chronic wounds in the elderly. To investigate and evaluate bacterial incidence and load in chronic wounds, we simultaneously performed on 19 affected patients a deep tissue biopsy and tissue collections by the VERSAJET hydro-surgical system. After local cleaning and anesthesia, a deep biopsy was performed with a punch of 3-4 mm in diameter. Subsequently, three tissue samples were collected by the VERSAJET system: one from the first washing in order to investigate the superficial contamination; one from the second washing to investigate deep tissue infection investigation and one from the third washing as a control procedure. After treatment, all tissue samples were cultured in vitro for diagnostic and micro-biological assessment. Nineteen patients with chronic wounds of the lower limbs were enrolled from February 2010 to May 2013. Concordance between deep tissue biopsy cultures and tissue cultures collected by the VERSAJET system was examined. The deep tissue biopsy cultures showed complete concordance with the VERSAJET as follows: 2 patients (11%) for the first washing sample; 10 patients (53%) for the second washing sample; 4 patients (21%) for the third washing sample. However, with reference to only aerobic isolated strains, the concordance of the VERSAJET second washing samples cultures with a biopsy of the deep tissue cultures was very high (84%) and fairly high (63%) in the anaerobic isolated strains. The second VERSAJET washing sample cultures seem to have the highest concordance with the biopsy of the deep tissue cultures. Tissue biopsy remains the leading technique for detecting bacteria and their load in chronic wounds. However, this study shows that the hydro-surgery VERSAJET system is sufficiently effective in detecting bacteria and their load in chronic wounds

  13. A Novel 3D Skin Explant Model to Study Anaerobic Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Grazieli Maboni

    2017-09-01

    Full Text Available Skin infection studies are often limited by financial and ethical constraints, and alternatives, such as monolayer cell culture, do not reflect many cellular processes limiting their application. For a more functional replacement, 3D skin culture models offer many advantages such as the maintenance of the tissue structure and the cell types present in the host environment. A 3D skin culture model can be set up using tissues acquired from surgical procedures or post slaughter, making it a cost effective and attractive alternative to animal experimentation. The majority of 3D culture models have been established for aerobic pathogens, but currently there are no models for anaerobic skin infections. Footrot is an anaerobic bacterial infection which affects the ovine interdigital skin causing a substantial animal welfare and financial impact worldwide. Dichelobacter nodosus is a Gram-negative anaerobic bacterium and the causative agent of footrot. The mechanism of infection and host immune response to D. nodosus is poorly understood. Here we present a novel 3D skin ex vivo model to study anaerobic bacterial infections using ovine skin explants infected with D. nodosus. Our results demonstrate that D. nodosus can invade the skin explant, and that altered expression of key inflammatory markers could be quantified in the culture media. The viability of explants was assessed by tissue integrity (histopathological features and cell death (DNA fragmentation over 76 h showing the model was stable for 28 h. D. nodosus was quantified in all infected skin explants by qPCR and the bacterium was visualized invading the epidermis by Fluorescent in situ Hybridization. Measurement of pro-inflammatory cytokines/chemokines in the culture media revealed that the explants released IL1β in response to bacteria. In contrast, levels of CXCL8 production were no different to mock-infected explants. The 3D skin model realistically simulates the interdigital skin and has

  14. The EXIT Strategy: an Approach for Identifying Bacterial Proteins Exported during Host Infection.

    Science.gov (United States)

    Perkowski, E F; Zulauf, K E; Weerakoon, D; Hayden, J D; Ioerger, T R; Oreper, D; Gomez, S M; Sacchettini, J C; Braunstein, M

    2017-04-25

    Exported proteins of bacterial pathogens function both in essential physiological processes and in virulence. Past efforts to identify exported proteins were limited by the use of bacteria growing under laboratory ( in vitro ) conditions. Thus, exported proteins that are exported only or preferentially in the context of infection may be overlooked. To solve this problem, we developed a genome-wide method, named EXIT ( ex ported i n vivo t echnology), to identify proteins that are exported by bacteria during infection and applied it to Mycobacterium tuberculosis during murine infection. Our studies validate the power of EXIT to identify proteins exported during infection on an unprecedented scale (593 proteins) and to reveal in vivo induced exported proteins (i.e., proteins exported significantly more during in vivo infection than in vitro ). Our EXIT data also provide an unmatched resource for mapping the topology of M. tuberculosis membrane proteins. As a new approach for identifying exported proteins, EXIT has potential applicability to other pathogens and experimental conditions. IMPORTANCE There is long-standing interest in identifying exported proteins of bacteria as they play critical roles in physiology and virulence and are commonly immunogenic antigens and targets of antibiotics. While significant effort has been made to identify the bacterial proteins that are exported beyond the cytoplasm to the membrane, cell wall, or host environment, current methods to identify exported proteins are limited by their use of bacteria growing under laboratory ( in vitro ) conditions. Because in vitro conditions do not mimic the complexity of the host environment, critical exported proteins that are preferentially exported in the context of infection may be overlooked. We developed a novel method to identify proteins that are exported by bacteria during host infection and applied it to identify Mycobacterium tuberculosis proteins exported in a mouse model of tuberculosis

  15. Point-Counterpoint: A Nucleic Acid Amplification Test for Streptococcus pyogenes Should Replace Antigen Detection and Culture for Detection of Bacterial Pharyngitis.

    Science.gov (United States)

    Pritt, Bobbi S; Patel, Robin; Kirn, Thomas J; Thomson, Richard B

    2016-10-01

    Nucleic acid amplification tests (NAATs) have frequently been the standard diagnostic approach when specific infectious agents are sought in a clinic specimen. They can be applied for specific agents such as S. pyogenes, or commercial multiplex NAATs for detection of a variety of pathogens in gastrointestinal, bloodstream, and respiratory infections may be used. NAATs are both rapid and sensitive. For many years, S. pyogenes testing algorithms used a rapid and specific group A streptococcal antigen test to screen throat specimens, followed, in some clinical settings, by a throat culture for S. pyogenes to increase the sensitivity of its detection. Now S. pyogenes NAATs are being used with increasing frequency. Given their accuracy, rapidity, and ease of use, should they replace antigen detection and culture for the detection of bacterial pharyngitis? Bobbi Pritt and Robin Patel of the Mayo Clinic, where S. pyogenes NAATs have been used for well over a decade with great success, will explain the advantages of this approach, while Richard (Tom) Thomson and Tom Kirn of the NorthShore University HealthSystem will discuss their concerns about this approach to diagnosing bacterial pharyngitis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. The Red Flour Beetle as a Model for Bacterial Oral Infections

    Science.gov (United States)

    Milutinović, Barbara; Stolpe, Clemens; Peuβ, Robert; Armitage, Sophie A. O.; Kurtz, Joachim

    2013-01-01

    Experimental infection systems are important for studying antagonistic interactions and coevolution between hosts and their pathogens. The red flour beetle Tribolium castaneum and the spore-forming bacterial insect pathogen Bacillus thuringiensis (Bt) are widely used and tractable model organisms. However, they have not been employed yet as an efficient experimental system to study host-pathogen interactions. We used a high throughput oral infection protocol to infect T. castaneum insects with coleopteran specific B. thuringiensis bv. tenebrionis (Btt) bacteria. We found that larval mortality depends on the dietary spore concentration and on the duration of exposure to the spores. Furthermore, differential susceptibility of larvae from different T. castaneum populations indicates that the host genetic background influences infection success. The recovery of high numbers of infectious spores from the cadavers indicates successful replication of bacteria in the host and suggests that Btt could establish infectious cycles in T. castaneum in nature. We were able to transfer plasmids from Btt to a non-pathogenic but genetically well-characterised Bt strain, which was thereafter able to successfully infect T. castaneum, suggesting that factors residing on the plasmids are important for the virulence of Btt. The availability of a genetically accessible strain will provide an ideal model for more in-depth analyses of pathogenicity factors during oral infections. Combined with the availability of the full genome sequence of T. castaneum, this system will enable analyses of host responses during infection, as well as addressing basic questions concerning host-parasite coevolution. PMID:23737991

  17. The red flour beetle as a model for bacterial oral infections.

    Directory of Open Access Journals (Sweden)

    Barbara Milutinović

    Full Text Available Experimental infection systems are important for studying antagonistic interactions and coevolution between hosts and their pathogens. The red flour beetle Tribolium castaneum and the spore-forming bacterial insect pathogen Bacillus thuringiensis (Bt are widely used and tractable model organisms. However, they have not been employed yet as an efficient experimental system to study host-pathogen interactions. We used a high throughput oral infection protocol to infect T. castaneum insects with coleopteran specific B. thuringiensis bv. tenebrionis (Btt bacteria. We found that larval mortality depends on the dietary spore concentration and on the duration of exposure to the spores. Furthermore, differential susceptibility of larvae from different T. castaneum populations indicates that the host genetic background influences infection success. The recovery of high numbers of infectious spores from the cadavers indicates successful replication of bacteria in the host and suggests that Btt could establish infectious cycles in T. castaneum in nature. We were able to transfer plasmids from Btt to a non-pathogenic but genetically well-characterised Bt strain, which was thereafter able to successfully infect T. castaneum, suggesting that factors residing on the plasmids are important for the virulence of Btt. The availability of a genetically accessible strain will provide an ideal model for more in-depth analyses of pathogenicity factors during oral infections. Combined with the availability of the full genome sequence of T. castaneum, this system will enable analyses of host responses during infection, as well as addressing basic questions concerning host-parasite coevolution.

  18. Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm

    Directory of Open Access Journals (Sweden)

    Justyna Nowakowska

    2014-08-01

    Full Text Available The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI animal models that closely resemble human disease are needed. Applications of the tissue cage and catheter abscess foreign body infection models in the mouse will be discussed herein. Both models allow the investigation of biofilm and virulence of various bacterial species and a comprehensive insight into the host response at the same time. They have also been proven to serve as very suitable tools to study the anti-adhesive and anti-infective efficacy of different biomaterial coatings. The tissue cage model can additionally be used to determine pharmacokinetics, efficacy and cytotoxicity of antimicrobial compounds as the tissue cage fluid can be aspirated repeatedly without the need to sacrifice the animal. Moreover, with the advance in innovative imaging systems in rodents, these models may offer new diagnostic measures of infection. In summary, animal foreign body infection models are important tools in the development of new antimicrobials against IAI and can help to elucidate the complex interactions between bacteria, the host immune system, and prosthetic materials.

  19. In vitro and in vivo evaluation of [{sup 18}F]ciprofloxacin for the imaging of bacterial infections with PET

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Brunner, Martin; Zeitlinger, Markus; Mueller, Ulrich; Lackner, Edith; Joukhadar, Christian; Mueller, Markus [Medical University Vienna, Division of Clinical Pharmacokinetics, Department of Clinical Pharmacology, Vienna (Austria); Ziegler, Sophie; Minar, Erich [Medical University Vienna, Division of Angiology, Department of Internal Medicine II, Vienna (Austria); Dobrozemsky, Georg [Medical University Vienna, Department of Nuclear Medicine, Vienna (Austria); Medical University Vienna, Department of Biomedical Engineering and Physics, Vienna (Austria); Mitterhauser, Markus; Wadsak, Wolfgang; Dudczak, Robert; Kletter, Kurt [Medical University Vienna, Department of Nuclear Medicine, Vienna (Austria)

    2005-02-01

    The suitability of the{sup 18}F-labelled fluoroquinolone antibiotic ciprofloxacin ([{sup 18}F]ciprofloxacin) for imaging of bacterial infections with positron emission tomography (PET) was assessed in vitro and in vivo. For the in vitro experiments, suspensions of various E. colistrains were incubated with different concentrations of [{sup 18}F]ciprofloxacin (0.01-5.0 {mu}g/ml) and radioactivity retention was measured in a gamma counter. For the in vivo experiments, 725 {+-} 9 MBq [{sup 18}F]ciprofloxacin was injected intravenously into four patients with microbiologically proven bacterial soft tissue infections of the lower extremities and time-radioactivity curves were recorded in infected and uninfected tissue for 5 h after tracer injection. Binding of [{sup 18}F]ciprofloxacin to bacterial cells was rapid, non-saturable and readily reversible. Moreover, bacterial binding of the agent was similar in ciprofloxacin-resistant and ciprofloxacin-susceptible clinical isolates. These findings suggest that non-specific binding rather than specific binding to bacterial type II topoisomerase enzymes is the predominant mechanism of bacterial retention of the radiotracer. PET studies in the four patients with microbiologically proven bacterial soft tissue infections demonstrated locally increased radioactivity uptake in infected tissue, with peak ratios between infected and uninfected tissue ranging from 1.8 to 5.5. Radioactivity was not retained in infected tissue and appeared to wash out with a similar elimination half-life as in uninfected tissue, suggesting that the kinetics of [{sup 18}F]ciprofloxacin in infected tissue are governed by increased blood flow and vascular permeability due to local infection rather than by a binding process. Taken together, our results indicate that [{sup 18}F]ciprofloxacin is not suited as a bacteria-specific infection imaging agent for PET. (orig.)

  20. Value of serum PCT in early diagnosis of bacterial infection in patients with liver failure

    Directory of Open Access Journals (Sweden)

    WANG Chuanmin

    2017-06-01

    Full Text Available ObjectiveTo investigate the value of serum procalcitonin (PCT in early diagnosis of bacterial infection in patients with liver failure. MethodsA total of 463 patients with hepatitis B were selected from January to December, 2014, in the Department of Infectious Diseases, Taihe Hospital. According to the degree of liver injury, the patients were divided into four groups: mild liver injury group (n=120, moderate liver injury group (n=222, sever liver injury group (n=53, and liver failure group (n=68. Serum PCT was measured for all patients, and the white blood cell count (WBC and high-sensitivity C-reactive protein (hsCRP were measured for patients with liver failure. The clinical manifestations were observed and recorded. The t test was used for comparison of normally distributed continuous data, while the Kruskal-Wallis H test was used for non-normally distributed continuous data; the Mann-Whitney U test was used for pairwise comparison of continuous data. The chi-square test was used for comparison of categorical data. The receiver operating characteristic (ROC curve was used for the analysis of predictive value. ResultsThe liver failure group had a significantly higher PCT level than the severe liver injury group, moderate liver injury group, and mild liver injury group (0.81[0.34-2.15] vs 0.53[0.21-1.59], 0.35[010-1.18], and 0.17[0.10-0.60], χ2=25.091, P<0.05. The liver failure patients with PCT levels of <0.25 ng/ml (n=10, 0.25-0.5 ng/ml (n=10, and >0.5 ng/ml (n=48 had infection rates of 20%, 30%, and 66.7%, respectively, with a significant difference between the patients with a PCT level of >0.5 ng/ml and those with PCT levels of <0.25 ng/ml and 0.25-0.5 ng/ml (χ2=5631,4650,P=0018,0031. Among the liver failure patients, the infection cases had significantly higher PCT, WBC, and hsCRP than the non-infection cases (PCT: 3.72±1.33 ng/ml vs 0.34±0.12 ng/ml, t=-2.547, P=0.015; hsCRP: 16.70±7.03 mg

  1. Post-splenectomy infections in chronic schistosomiasis as a consequence of bacterial translocation

    Directory of Open Access Journals (Sweden)

    Kedma de Magalhães Lima

    2015-06-01

    Full Text Available INTRODUCTION : Bacterial translocation is the invasion of indigenous intestinal bacteria through the gut mucosa to normally sterile tissues and internal organs. Schistosomiasis may cause alterations in the immune system and damage to the intestines, portal system and mesenteric lymph nodes. This study investigated bacterial translocation and alterations in the intestinal microbiota and mucosa in schistosomiasis and splenectomized mice. METHODS : Forty female 35-day-old Swiss Webster mice were divided into the following four groups with 10 animals each: schistosomotic (ESF, splenectomized schistosomotic (ESEF, splenectomized (EF and control (CF. Infection was achieved by introduction of 50 Schistosoma mansoni (SLM cercariae through the skin. At 125 days after birth, half of the parasitized and unparasitized mice were subjected to splenectomy. Body weights were recorded for one week after splenectomy; then, the mice were euthanized to study bacterial translocation, microbiota composition and intestinal morphometry. RESULTS : We observed significant reductions in the weight increases in the EF, ESF and ESEF groups. There were increases of at least 1,000 CFU of intestinal microbiota bacteria in these groups compared with the CF. The EF, ESF and ESEF mice showed decreases in the heights and areas of villi and the total villus areas (perimeter. We observed frequent co-infections with various bacterial genera. CONCLUSIONS : The ESEF mice showed a higher degree of sepsis. This finding may be associated with a reduction in the immune response associated with the absence of the spleen and a reduction in nutritional absorption strengthened by both of these factors (Schistosoma infection and splenectomy.

  2. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    Science.gov (United States)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  3. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    Science.gov (United States)

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host–pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host–pathogen interactions. PMID:25699030

  4. Challenges in the diagnosis of ulcerative colitis with concomitant bacterial infections and chronic infectious colitis.

    Science.gov (United States)

    Lin, Wei-Chen; Chang, Chen-Wang; Chen, Ming-Jen; Chu, Cheng-Hsin; Shih, Shou-Chuan; Hsu, Tzu-Chi; Wang, Horng-Yang

    2017-01-01

    Ulcerative colitis (UC) is a chronic inflammation of the large bowel characterized by diarrhea and a negative stool culture. However, several enteropathogens have been implicated as causative agents in UC. The differentiation between chronic infectious colitis (IC) and UC with concurrent infection is difficult owing to their similar clinical presentations. The study aimed to explore the presentations and diagnostic clues that enable differentiation between UC with concomitant infections and chronic IC. The study included 17 UC patients with a bacterial infection and 46 with chronic IC. The UC patients (47 ± 19 years) were younger than the chronic IC patients (58 ± 20 years) (P = 0.022). Bloody diarrhea was more common in UC than in chronic IC (58.8% vs 10.9%, P UC patients had lower antibiotic response rates than chronic IC patients (60.0% vs 87.2%, P = 0.026). Aeromonas species and Clostridium difficile were common in both groups. Histological features of cryptitis and crypt abscess were useful in the diagnosis of UC (P = 0.052 and P = 0.016, respectively). Bloody diarrhea in a young adult, decreased response to antibiotic treatment, and results of endoscopy with biopsy are important features in the diagnosis of UC with bacterial infection.

  5. Role of neutrophil to lymphocyte and monocyte to lymphocyte ratios in the diagnosis of bacterial infection in patients with fever.

    Science.gov (United States)

    Naess, Are; Nilssen, Siri Saervold; Mo, Reidun; Eide, Geir Egil; Sjursen, Haakon

    2017-06-01

    To study the role of the neutrophil:lymphocyte ratio (NLR) and monocyte:lymphocyte ratio (MLR) in discriminating between different patient groups hospitalized for fever due to infection and those without infection. For 299 patients admitted to hospital for fever with unknown cause, a number of characteristics including NLR and MLR were recorded. These characteristics were used in a multiple multinomial regression analysis to estimate the probability of a final diagnostic group of bacterial, viral, clinically confirmed, or no infection. Both NLR and MLR significantly predicted final diagnostic group. Being highly correlated, however, both variables could not be retained in the same model. Both variables also interacted significantly with duration of fever. Generally, higher values of NLR and MLR indicated larger probabilities for bacterial infection and low probabilities for viral infection. Patients with septicemia had significantly higher NLR compared to patients with other bacterial infections with fever for less than one week. White blood cell counts, neutrophil counts, and C-reactive proteins did not differ significantly between septicemia and the other bacterial infection groups. NLR is a more useful diagnostic tool to identify patients with septicemia than other more commonly used diagnostic blood tests. NLR and MLR may be useful in the diagnosis of bacterial infection among patients hospitalized for fever.

  6. Anemia Rate Assessment in Hospitalized Patients with Acute Bacterial Infection in Qom Hospitals, Qom, Iran, 2007-2008

    Directory of Open Access Journals (Sweden)

    A.H. Ghanuni

    2009-06-01

    Full Text Available Background and ObjectivesImmunosuppression is regarded among the risk factors for bacterial infection. But in recent studies, anemia was considered a predisposing factor for bacterial infections. The main goals of this study was to assess the rate of anemia in hospitalized patients with acute bacterial infection and to determine the relationship between anemia and bacterial infection as a predisposing factor.Methods 311 hospitalized patients whose bacterial infection was well documented based on the files present in Kamkar, Arabnia, Fatemi, and Sahamieh hospitals in Qom, Iran, were selected for the present study. They were categorized into various age groups from newborns to the elderly. The data included, age, sex, Hb of the patients the first, third and discharge day, HCT in the first, third and discharge day, MCV, MCH, MCHC, WBC in the first, third, fourth day, Diff in the first and fourth days, ESR, CRP, maximum of fever and disease, chronic disease, smoking. A P<0.05 was considered as being significant.Results On the basis of hemoglobin rate, 43.9 % of patients had anemia as a co-disease. There was no anemia among newborns, but 57% of infants had it. Patients who had pyorrheal lymphadenitis had maximum rate of anemia among other patients. ConclusionOn the average, the rate of anemia in this study was 2.1 times more than that of general population in Qom, as well as in any of the age groups. This difference indicates that anemia rate in patients with acute bacterial infections is more common than general population. However, more studies are needed for the assessment of the relationship between anemia and bacterial infection as a predisposing factor. But it seems that the hemoglobin level and severity of disease have direct effects on each other. Keywords: Anemia; Bacterial Infections; Patients; Qom, Iran.

  7. Antibiotic Resistance and Virulence Phenotypes of Recent Bacterial Strains Isolated from Urinary Tract Infections in Elderly Patients with Prostatic Disease.

    Science.gov (United States)

    Delcaru, Cristina; Podgoreanu, Paulina; Alexandru, Ionela; Popescu, Nela; Măruţescu, Luminiţa; Bleotu, Coralia; Mogoşanu, George Dan; Chifiriuc, Mariana Carmen; Gluck, Marinela; Lazăr, Veronica

    2017-05-31

    Acute bacterial prostatitis is one of the frequent complications of urinary tract infection (UTI). From the approximately 10% of men having prostatitis, 7% experience a bacterial prostatitis. The purpose of this study was to investigate the prevalence of uropathogens associated with UTIs in older patients with benign prostatic hyperplasia and to assess their susceptibility to commonly prescribed antibiotics as well as the relationships between microbial virulence and resistance features. Uropathogenic Escherichia coli was found to be the most frequent bacterial strain isolated from patients with benign prostatic hyperplasia, followed by Enterococcus spp., Enterobacter spp., Klebsiella spp., Proteus spp., Pseudomonas aeruginosa , and Serratia marcescens . Increased resistance rates to tetracyclines, quinolones, and sulfonamides were registered. Besides their resistance profiles, the uropathogenic isolates produced various virulence factors with possible implications in the pathogenesis process. The great majority of the uropathogenic isolates revealed a high capacity to adhere to HEp-2 cell monolayer in vitro, mostly exhibiting a localized adherence pattern. Differences in the repertoire of soluble virulence factors that can affect bacterial growth and persistence within the urinary tract were detected. The Gram-negative strains produced pore-forming toxins-such as hemolysins, lecithinases, and lipases-proteases, siderophore-like molecules resulted from the esculin hydrolysis and amylases, while Enterococcus sp. strains were positive only for caseinase and esculin hydrolase. Our study demonstrates that necessity of investigating the etiology and local resistance patterns of uropathogenic organisms, which is crucial for determining appropriate empirical antibiotic treatment in elderly patients with UTI, while establishing correlations between resistance and virulence profiles could provide valuable input about the clinical evolution and recurrence rates of UTI.

  8. Antibiotic Resistance and Virulence Phenotypes of Recent Bacterial Strains Isolated from Urinary Tract Infections in Elderly Patients with Prostatic Disease

    Directory of Open Access Journals (Sweden)

    Cristina Delcaru

    2017-05-01

    Full Text Available Acute bacterial prostatitis is one of the frequent complications of urinary tract infection (UTI. From the approximately 10% of men having prostatitis, 7% experience a bacterial prostatitis. The purpose of this study was to investigate the prevalence of uropathogens associated with UTIs in older patients with benign prostatic hyperplasia and to assess their susceptibility to commonly prescribed antibiotics as well as the relationships between microbial virulence and resistance features. Uropathogenic Escherichia coli was found to be the most frequent bacterial strain isolated from patients with benign prostatic hyperplasia, followed by Enterococcus spp., Enterobacter spp., Klebsiella spp., Proteus spp., Pseudomonas aeruginosa, and Serratia marcescens. Increased resistance rates to tetracyclines, quinolones, and sulfonamides were registered. Besides their resistance profiles, the uropathogenic isolates produced various virulence factors with possible implications in the pathogenesis process. The great majority of the uropathogenic isolates revealed a high capacity to adhere to HEp-2 cell monolayer in vitro, mostly exhibiting a localized adherence pattern. Differences in the repertoire of soluble virulence factors that can affect bacterial growth and persistence within the urinary tract were detected. The Gram-negative strains produced pore-forming toxins—such as hemolysins, lecithinases, and lipases—proteases, siderophore-like molecules resulted from the esculin hydrolysis and amylases, while Enterococcus sp. strains were positive only for caseinase and esculin hydrolase. Our study demonstrates that necessity of investigating the etiology and local resistance patterns of uropathogenic organisms, which is crucial for determining appropriate empirical antibiotic treatment in elderly patients with UTI, while establishing correlations between resistance and virulence profiles could provide valuable input about the clinical evolution and

  9. Fungal and Bacterial Infection Mitigation with Antibiotic and Antifungal Loaded Biopolymer Sponges

    Science.gov (United States)

    Parker, Ashley Cox

    Musculoskeletal injuries are some of the most prevalent injuries in both civilian and military populations and their infections can be difficult to treat, often resulting in multiple surgeries and increased costs. In both previous and recent military operations, extremity injuries have been the most common battlefield injuries and many involve complex, open fractures. These extremity injuries are especially susceptible to multiple pathogenic, and sometimes drug resistant, bacteria and fungi. Fungal infections have recently become increasingly problematic in both military and civilian populations and have significantly higher amputation rates than those from bacterial infections. Many of these bacterial and fungal strains adhere to tissue and implanted orthopaedic hardware within wounds, forming biofilms. These problematic, often polymicrobial, infections threaten the health of the patient, but the risk also exists of spreading within hospitals to become prominent resistant infections. Local antimicrobial delivery releases high levels of antimicrobials directly to injured wound tissue, overcoming sub-bactericidal or subfungicidal antimicrobial levels present in the avascular wound zones. This research will determine the ability of modified chitosan sponges, buffered with sodium acetate or blended with polyethylene glycol (PEG), to act as short term adjunctive therapies to initial surgical treatment for delivering both antibiotics and/or antifungals for early abatement of infection. The objective of this work was to evaluate both types of modified sponges for in vitro and in vivo material characteristics and device functionality. In vitro analysis demonstrated both the buffered and PEG modified chitosan sponges exhibited increased degradation and functional cytocompatibility. The chitosan/PEG sponges were able to be loaded with hydrophobic antifungals and the sponges released in vitro biologically active concentrations, alone or in combination with the antibiotic

  10. A functional gene array for detection of bacterial virulence elements

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessed tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.

  11. Comparative tissue transcriptomics reveal prompt inter-organ communication in response to local bacterial kidney infection

    Directory of Open Access Journals (Sweden)

    Rhen Mikael

    2011-02-01

    Full Text Available Abstract Background Mucosal infections elicit inflammatory responses via regulated signaling pathways. Infection outcome depends strongly on early events occurring immediately when bacteria start interacting with cells in the mucosal membrane. Hitherto reported transcription profiles on host-pathogen interactions are strongly biased towards in vitro studies. To detail the local in vivo genetic response to infection, we here profiled host gene expression in a recent experimental model that assures high spatial and temporal control of uropathogenic Escherichia coli (UPEC infection within the kidney of a live rat. Results Transcriptional profiling of tissue biopsies from UPEC-infected kidney tissue revealed 59 differentially expressed genes 8 h post-infection. Their relevance for the infection process was supported by a Gene Ontology (GO analysis. Early differential expression at 3 h and 5 h post-infection was of low statistical significance, which correlated to the low degree of infection. Comparative transcriptomics analysis of the 8 h data set and online available studies of early local infection and inflammation defined a core of 80 genes constituting a "General tissue response to early local bacterial infections". Among these, 25% were annotated as interferon-γ (IFN-γ regulated. Subsequent experimental analyses confirmed a systemic increase of IFN-γ in rats with an ongoing local kidney infection, correlating to splenic, rather than renal Ifng induction and suggested this inter-organ communication to be mediated by interleukin (IL-23. The use of comparative transcriptomics allowed expansion of the statistical data handling, whereby relevant data could also be extracted from the 5 h data set. Out of the 31 differentially expressed core genes, some represented specific 5 h responses, illustrating the value of comparative transcriptomics when studying the dynamic nature of gene regulation in response to infections. Conclusion Our hypothesis

  12. Deciphering the bacterial microbiome of citrus plants in response to 'Candidatus Liberibacter asiaticus'-infection and antibiotic treatments.

    Directory of Open Access Journals (Sweden)

    Muqing Zhang

    Full Text Available The bacterial microbiomes of citrus plants were characterized in response to 'Candidatus Liberibacter asiaticus' (Las-infection and treatments with ampicillin (Amp and gentamicin (Gm by Phylochip-based metagenomics. The results revealed that 7,407 of over 50,000 known Operational Taxonomic Units (OTUs in 53 phyla were detected in citrus leaf midribs using the PhyloChip™ G3 array, of which five phyla were dominant, Proteobacteria (38.7%, Firmicutes (29.0%, Actinobacteria (16.1%, Bacteroidetes (6.2% and Cyanobacteria (2.3%. The OTU62806, representing 'Candidatus Liberibacter', was present with a high titer in the plants graft-inoculated with Las-infected scions treated with Gm at 100 mg/L and in the water-treated control (CK1. However, the Las bacterium was not detected in the plants graft-inoculated with Las-infected scions treated with Amp at 1.0 g/L or in plants graft-inoculated with Las-free scions (CK2. The PhyloChip array demonstrated that more OTUs, at a higher abundance, were detected in the Gm-treated plants than in the other treatment and the controls. Pairwise comparisons indicated that 23 OTUs from the Achromobacter spp. and 12 OTUs from the Methylobacterium spp. were more abundant in CK2 and CK1, respectively. Ten abundant OTUs from the Stenotrophomonas spp. were detected only in the Amp-treatment. These results provide new insights into microbial communities that may be associated with the progression of citrus huanglongbing (HLB and the potential effects of antibiotics on the disease and microbial ecology.

  13. Osteomyelitis in a Paleozoic reptile: ancient evidence for bacterial infection and its evolutionary significance

    Science.gov (United States)

    Reisz, Robert R.; Scott, Diane M.; Pynn, Bruce R.; Modesto, Sean P.

    2011-06-01

    We report on dental and mandibular pathology in Labidosaurus hamatus, a 275 million-year-old terrestrial reptile from North America and associate it with bacterial infection in an organism that is characterized by reduced tooth replacement. Analysis of the surface and internal mandibular structure using mechanical and CT-scanning techniques permits the reconstruction of events that led to the pathology and the possible death of the individual. The infection probably occurred as a result of prolonged exposure of the dental pulp cavity to oral bacteria, and this exposure was caused by injury to the tooth in an animal that is characterized by reduced tooth replacement cycles. In these early reptiles, the reduction in tooth replacement is an evolutionary innovation associated with strong implantation and increased oral processing. The dental abscess observed in L. hamatus, the oldest known infection in a terrestrial vertebrate, provides clear evidence of the ancient association between terrestrial vertebrates and their oral bacteria.

  14. Synthesis and biodistribution of 99mTc-Vancomycin in a model of bacterial infection

    International Nuclear Information System (INIS)

    Roohi, S.; Mushtaq, A.; Malik, S.A.

    2005-01-01

    Vancomycin Hydrochloride is an antibiotic produced by the growth of certain strains of Streptomyces orientalis. As vancomycin hydrochloride is poorly absorbed after oral administration; it is given intravenously for therapy of systemic infections. Vancomycin was labeled with technetium-99m pertechnetate using SnCl 2 . 2H 2 O as reducing agent. The labeling efficiency depends on ligand/reductant ratio, pH, and volume of reaction mixture. Radiochemical purity and stability of 99m Tc-Vancomycin was determined by thin layer chromatography. Biodistribution studies of 99m Tc-Vancomycin were performed in a model of bacterial infection in Sprague-Dawley rats. A significantly higher accumulation of 99m Tc-Vancomycin was seen at sites of S. aureus infected animals. Whereas uptake of 99m Tc-Vancomycin in turpentine inflamed rats were quite low. (orig.)

  15. Osteomyelitis in a Paleozoic reptile: ancient evidence for bacterial infection and its evolutionary significance.

    Science.gov (United States)

    Reisz, Robert R; Scott, Diane M; Pynn, Bruce R; Modesto, Sean P

    2011-06-01

    We report on dental and mandibular pathology in Labidosaurus hamatus, a 275 million-year-old terrestrial reptile from North America and associate it with bacterial infection in an organism that is characterized by reduced tooth replacement. Analysis of the surface and internal mandibular structure using mechanical and CT-scanning techniques permits the reconstruction of events that led to the pathology and the possible death of the individual. The infection probably occurred as a result of prolonged exposure of the dental pulp cavity to oral bacteria, and this exposure was caused by injury to the tooth in an animal that is characterized by reduced tooth replacement cycles. In these early reptiles, the reduction in tooth replacement is an evolutionary innovation associated with strong implantation and increased oral processing. The dental abscess observed in L. hamatus, the oldest known infection in a terrestrial vertebrate, provides clear evidence of the ancient association between terrestrial vertebrates and their oral bacteria.

  16. Synthesis and biodistribution of {sup 99m}Tc-Vancomycin in a model of bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Roohi, S.; Mushtaq, A. [Isotope Production Div., Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan); Malik, S.A. [Dept. of Biological Sciences, Quaid-e-Azam Univ., Islamabad (Pakistan)

    2005-07-01

    Vancomycin Hydrochloride is an antibiotic produced by the growth of certain strains of Streptomyces orientalis. As vancomycin hydrochloride is poorly absorbed after oral administration; it is given intravenously for therapy of systemic infections. Vancomycin was labeled with technetium-99m pertechnetate using SnCl{sub 2} . 2H{sub 2}O as reducing agent. The labeling efficiency depends on ligand/reductant ratio, pH, and volume of reaction mixture. Radiochemical purity and stability of {sup 99m}Tc-Vancomycin was determined by thin layer chromatography. Biodistribution studies of {sup 99m}Tc-Vancomycin were performed in a model of bacterial infection in Sprague-Dawley rats. A significantly higher accumulation of {sup 99m}Tc-Vancomycin was seen at sites of S. aureus infected animals. Whereas uptake of {sup 99m}Tc-Vancomycin in turpentine inflamed rats were quite low. (orig.)

  17. Subversion of the B-cell compartment during parasitic, bacterial, and viral infections.

    Science.gov (United States)

    Borhis, Gwenoline; Richard, Yolande

    2015-03-26

    Recent studies on HIV infection have identified new human B-cell subsets with a potentially important impact on anti-viral immunity. Current work highlights the occurrence of similar B-cell alterations in other viral, bacterial, and parasitic infections, suggesting that common strategies have been developed by pathogens to counteract protective immunity. For this review, we have selected key examples of human infections for which B-cell alterations have been described, to highlight the similarities and differences in the immune responses to a variety of pathogens. We believe that further comparisons between these models will lead to critical progress in the understanding of B-cell mechanisms and will open new target avenues for therapeutic interventions.

  18. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette

    2009-01-01

    with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14-18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase...... protein response occurring concomitantly with the hepatic response. This suggests that the acute phase protein response is a more disseminated systemic response than previously thought. The current study provides to our knowledge the first example of porcine extrahepatic expression and regulation of C...... parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we studied gene expression changes in peripheral lymphoid tissues as compared to hepatic expression changes, 14-18 h after lung...

  19. Predictors of Early Readmission in Patients With Cirrhosis After the Resolution of Bacterial Infections.

    Science.gov (United States)

    Piano, Salvatore; Morando, Filippo; Carretta, Giovanni; Tonon, Marta; Vettore, Elia; Rosi, Silvia; Stanco, Marialuisa; Pilutti, Chiara; Romano, Antonietta; Brocca, Alessandra; Sticca, Antonietta; Donato, Daniele; Angeli, Paolo

    2017-10-01

    In patients with cirrhosis, infections represent a frequent trigger for complications, increasing frequency of hospitalizations and mortality rate. This study aimed to identify predictors of early readmission (30 days) and of mid-term mortality (6 months) in patients with liver cirrhosis discharged after a hospitalization for bacterial and/or fungal infection. A total of 199 patients with cirrhosis discharged after an admission for a bacterial and/or fungal infection were included in the study and followed up for a least 6 months. During follow-up, 69 patients (35%) were readmitted within 30 days from discharge. C-reactive protein (CRP) value at discharge (odds ratio (OR)=1.91; P=0.022), diagnosis of acute-on-chronic liver failure during the hospital stay (OR=2.48; P=0.008), and the hospitalization in the last 30 days previous to the admission/inclusion in the study (OR=1.50; P=0.042) were found to be independent predictors of readmission. During the 6-month follow-up, 47 patients (23%) died. Age (hazard ratio (HR)=1.05; P=0.001), model of end-stage liver disease (MELD) score (HR=1.13; P10 mg/l at discharge had a significantly higher probability of being readmitted within 30 days (44% vs. 24%; P=0.007) and a significantly lower probability of 6-month survival (62% vs. 88%; P<0.001) than those with a CRP ≤10 mg/l. CRP showed to be a strong predictor of early hospital readmission and 6-month mortality in patients with cirrhosis after hospitalization for bacterial and/or fungal infection. CRP values could be used both in the stewardship of antibiotic treatment and to identify fragile patients who deserve a strict surveillance program.

  20. Effects of antihistamines on innate immune responses to severe bacterial infection in mice.

    Science.gov (United States)

    Metz, Martin; Doyle, Elizabeth; Bindslev-Jensen, Carsten; Watanabe, Takeshi; Zuberbier, Torsten; Maurer, Marcus

    2011-01-01

    Sedating and non-sedating histamine H(1) receptor (H1R) antagonists and H2R blockers are widely used drugs which are generally considered to be safe medications. However, recently, these drugs have been shown to possibly impair the outcome of perforating appendicitis in children. It was the aim of this study to characterize the effects of histamine receptor blockade in severe bacterial infections in more detail. To obtain information on the safety of histamine receptor blockade in more detail, we used pharmacological and genetic approaches targeting histamine receptors and performed cecal ligation and puncture (CLP), a mouse model of septic peritonitis. After induction of septic peritonitis, morbidity and mortality were monitored closely. Here, we show that oral treatment with first-generation H1R antihistamine diphenhydramine, H2R blocker cimetidine and H3/4R blocker thioperamide impairs optimal innate immune responses in severe murine bacterial sepsis. However, these adverse effects are not mediated by H1R, as mice deficient for H1R show similar rates of morbidity and mortality after CLP as their wild-type controls. Similarly, the second-generation antihistamine desloratadine neither affects morbidity nor mortality after CLP. Our findings indicate that sedating first-generation H1R antihistamines and H2R blockers might impair innate immune responses to bacteria and that these drugs should be used with caution in patients with severe bacterial infections. Copyright © 2011 S. Karger AG, Basel.

  1. Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages.

    Science.gov (United States)

    Cisek, Agata Anna; Dąbrowska, Iwona; Gregorczyk, Karolina Paulina; Wyżewski, Zbigniew

    2017-02-01

    The therapeutic use of bacteriophages has seen a renewal of interest blossom in the last few years. This reversion is due to increased difficulties in the treatment of antibiotic-resistant strains of bacteria. Bacterial resistance to antibiotics, a serious problem in contemporary medicine, does not implicate resistance to phage lysis mechanisms. Lytic bacteriophages are able to kill antibiotic-resistant bacteria at the end of the phage infection cycle. Thus, the development of phage therapy is potentially a way to improve the treatment of bacterial infections. However, there are antibacterial phage therapy difficulties specified by broadening the knowledge of the phage nature and influence on the host. It has been shown during experiments that both innate and adaptive immunity are involved in the clearance of phages from the body. Immunological reactions against phages are related to the route of administration and may vary depending on the type of bacterial viruses. For that reason, it is very important to test the immunological response of every single phage, particularly if intravenous therapy is being considered. The lack of these data in previous years was one of the reasons for phage therapy abandonment despite its century-long study. Promising results of recent research led us to look forward to a phage therapy that can be applied on a larger scale and subsequently put it into practice.

  2. Antigen detection of entamoeba histolytica intestinal infection: cost ...

    African Journals Online (AJOL)

    Purpose: Laboratory diagnosis of Entamoeba histolytica infection is still being made through compound light microscopy in resource limited countries despite the associated flaws. This study is aimed at applying and determining the usefulness of ELISA antigen detection technique for E. histolytica intestinal infection ...

  3. Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice.

    Science.gov (United States)

    Cui, Z; Ojaghian, M R; Tao, Z; Kakar, K U; Zeng, J; Zhao, W; Duan, Y; Vera Cruz, C M; Li, B; Zhu, B; Xie, G

    2016-05-01

    The aim of this study was to develop a multiplex PCR (mPCR) assay for rapid, sensitive and simultaneous detection of six important rice pathogens: Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, Pseudomonas fuscovaginae, Burkholderia glumae, Burkholderia gladioli and Acidovorax avenae subsp. avenae. Specific primers were designed through a bioinformatics pipeline. Sensitivity of detection was established using both traditional PCR and quantitative real-time PCR on isolated DNA and on bacterial cells both in vitro and in simulated diseased seeds and the parameters were optimized for an mPCR assay. A total of 150 bacterial strains were tested for specificity. The mPCR assay accurately predicted the presence of pathogens among 44 symptomatic and asymptomatic rice seed, sheath and leaf samples. This study confirmed that this mPCR assay is a rapid, reliable and simple tool for the simultaneous detection of six important rice bacterial pathogens. This study is the first report of a method allowing simultaneous detection of six major rice pathogens. The ability to use crude extracts from plants without bacterial isolation or DNA extraction enhances the value of this mPCR technology for rapid detection and aetiological/epidemiological studies. © 2016 The Society for Applied Microbiology.

  4. A locked nucleic acid (LNA)-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture.

    Science.gov (United States)

    Zhu, Lingxiang; Shen, Dingxia; Zhou, Qiming; Li, Zexia; Fang, Xiangdong; Li, Quan-Zhen

    2015-01-01

    Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA)-based quantitative real-time PCR (LNA-qPCR) method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1-10 colony forming units (CFU) per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4%) were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates.

  5. A locked nucleic acid (LNA-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture.

    Directory of Open Access Journals (Sweden)

    Lingxiang Zhu

    Full Text Available Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA-based quantitative real-time PCR (LNA-qPCR method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1-10 colony forming units (CFU per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4% were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates.

  6. Relationship among bacterial virulence, bladder dysfunction, vesicoureteral reflux and patterns of urinary tract infection in children.

    Science.gov (United States)

    Storm, Douglas W; Patel, Ashay S; Horvath, Dennis J; Li, Birong; Koff, Stephen A; Justice, Sheryl S

    2012-07-01

    We hypothesized that virulence levels of Escherichia coli isolates causing pediatric urinary tract infections differ according to severity of infection and also among various uropathies known to contribute to pediatric urinary tract infections. We evaluated these relationships using in vitro cytokine interleukin-6 elicitation. E. coli isolates were cultured from children presenting with urinary tract infections. In vitro cytokine (interleukin-6) elicitation was quantified for each isolate and the bacteria were grouped according to type of infection and underlying uropathy (neurogenic bladder, nonneurogenic bowel and bladder dysfunction, primary vesicoureteral reflux, no underlying etiology). A total of 40 E. coli isolates were collected from children with a mean age of 61.5 months (range 1 to 204). Mean level of in vitro cytokine elicitation from febrile urinary tract infection producing E. coli was significantly lower than for nonfebrile strains (p = 0.01). The interleukin-6 response to E. coli in the neurogenic bladder group was also significantly higher than in the vesicoureteral reflux (p = 0.01) and no underlying etiology groups (p = 0.02). In vitro interleukin-6 elicitation, an established marker to determine bacterial virulence, correlates inversely with clinical urinary tract infection severity. Less virulent, high cytokine producing E. coli were more likely to cause cystitis and were more commonly found in patients with neurogenic bladder and nonneurogenic bowel and bladder dysfunction, whereas higher virulence isolates were more likely to produce febrile urinary tract infections and to affect children with primary vesicoureteral reflux and no underlying etiology. These findings suggest that bacteria of different virulence levels may be responsible for differences in severity of pediatric urinary tract infections and may vary among different underlying uropathies. Copyright © 2012 American Urological Association Education and Research, Inc. Published by

  7. A Two-Tube Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Viral and Bacterial Pathogens of Infectious Diarrhea

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2014-01-01

    Full Text Available Diarrhea caused by viral and bacterial infections is a major health problem in developing countries. The purpose of this study is to develop a two-tube multiplex PCR assay using automatic electrophoresis for simultaneous detection of 13 diarrhea-causative viruses or bacteria, with an intended application in provincial Centers for Diseases Control and Prevention, China. The assay was designed to detect rotavirus A, norovirus genogroups GI and GII, human astrovirus, enteric adenoviruses, and human bocavirus (tube 1, and Salmonella, Vibrio parahaemolyticus, diarrheagenic Escherichia coli, Campylobacter jejuni, Shigella, Yersinia, and Vibrio cholera (tube 2. The analytical specificity was examined with positive controls for each pathogen. The analytical sensitivity was evaluated by performing the assay on serial tenfold dilutions of in vitro transcribed RNA, recombinant plasmids, or bacterial culture. A total of 122 stool samples were tested by this two-tube assay and the results were compared with those obtained from reference methods. The two-tube assay achieved a sensitivity of 20–200 copies for a single virus and 102-103 CFU/mL for bacteria. The clinical performance demonstrated that the two-tube assay had comparable sensitivity and specificity to those of reference methods. In conclusion, the two-tube assay is a rapid, cost-effective, sensitive, specific, and high throughput method for the simultaneous detection of enteric bacteria and virus.

  8. Analysis of Campylobacter jejuni infection in the gnotobiotic piglet and genome-wide identification of bacterial factors required for infection.

    Science.gov (United States)

    de Vries, Stefan P W; Linn, Aileen; Macleod, Kareen; MacCallum, Amanda; Hardy, Simon P; Douce, Gill; Watson, Eleanor; Dagleish, Mark P; Thompson, Hal; Stevenson, Andy; Kennedy, David; Baig, Abiyad; Coward, Chris; Maskell, Duncan J; Smith, David G E; Grant, Andrew J; Everest, Paul

    2017-03-10

    To investigate how Campylobacter jejuni causes the clinical symptoms of diarrhoeal disease in humans, use of a relevant animal model is essential. Such a model should mimic the human disease closely in terms of host physiology, incubation period before onset of disease, clinical signs and a comparable outcome of disease. In this study, we used a gnotobiotic piglet model to study determinants of pathogenicity of C. jejuni. In this model, C. jejuni successfully established infection and piglets developed an increased temperature with watery diarrhoea, which was caused by a leaky epithelium and reduced bile re-absorption in the intestines. Further, we assessed the C. jejuni genes required for infection of the porcine gastrointestinal tract utilising a transposon (Tn) mutant library screen. A total of 123 genes of which Tn mutants showed attenuated piglet infection were identified. Our screen highlighted a crucial role for motility and chemotaxis, as well as central metabolism. In addition, Tn mutants of 14 genes displayed enhanced piglet infection. This study gives a unique insight into the mechanisms of C. jejuni disease in terms of host physiology and contributing bacterial factors.

  9. Antimicrobial resistance in bacterial pathogens among hospitalized children with community acquired lower respiratory tract infections in Dongguan, China (2011-2016).

    Science.gov (United States)

    He, Xiaoguang; Xie, Mingyu; Li, Siping; Ye, Junqin; Peng, Qi; Ma, Qiang; Lu, Xiaomei; Zhong, Baimao

    2017-09-11

    Bacterial pathogens are a major cause of childhood community acquired lower respiratory tract infections (CA-LRTIs), and few data described the impact of antimicrobial resistance on children with CA-LRTIs. This study aims to investigate the antimicrobial resistance in common bacterial agents among hospitalized children with CA-LRTIs between 2011 and 2016 in Dongguan, China. Sputum samples were collected from hospitalized children (0-5 years old) with CA-LRTIs in Dongguan Children's Hospital. Bacterial pathogens were detected using traditional culture methods, and disc diffusion tests were used to determine antibiotic resistance. Among the 2360 samples analyzed, 342 (14.5%) were positive for bacterial infection. The most prevalent pathogen was MSSA (2.3%), followed by MRSA (1.5%), E. coli (1.7%), E. coli ESBLs (1.2%), K. pneumonia ESBLs (1.5%), K. pneumonia (1.4%) and S. pneumonia (1.3%). Of the hospitalized patients with bacteria causing of CA-LRTIs, 90.1% were less than 1-year-old. MSSA and MRSA were more commonly isolated in infants less than 3 months. E. coli, K. pneumonia and K. pneumonia ESBLs were more common bacteria causing CA-LRTIs in infants less than 1 month. Resistance levels to penicillins, fluoroquinolones, macrolides, cephalosporins, carbapenems and vancomycin varied in different bacteria. S. aureus, E coli and K. pneumonia were the common bacterial isolates recovered from chidren with CA-LTRIs during 2011-2015. Age group of under 1 year old was at a high risk of bacterial infections. Many isolates showed antibiotic resistance level was associated with antibiotic usage in clinic. Increasing surveillance of antibiotic resistance is urgently needed and develops better strategies to cure the antibiotic abuse in China.

  10. Bacterial gene expression detected in human faeces by reverse transcription-PCR

    NARCIS (Netherlands)

    Fitzsimons, N.A.; Akkermans, A.D.L.; Vos, de W.M.; Vaughan, E.E.

    2003-01-01

    A method to isolate and specifically detect bacterial messenger RNA (mRNA) in human faeces is presented. The surface layer protein gene slpA of Lactobacillus acidophilus ATCC 4356(T) was chosen as a model system because it is transcribed at a high level to a relatively stable mRNA (Boot et al.,

  11. Detection of bacterial blight resistant gene xa5 using linked marker ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... Detection of bacterial blight resistant gene xa5 using linked marker approaches. Shahzad Amir Naveed2, Muhammad Babar3*, Ajuman Arif1, Yusaf Zafar1, Muhammad Sabar1,. Iftikhar Ali2, Muhammad Chragh1 and Muhammad Arif1. 1National Institute for Biotechnology and Genetic Engineering (NIBGE), ...

  12. Evaluation of a PCR for detection of Actinobacillus pleuropneumoniae in mixed bacterial cultures from tonsils

    DEFF Research Database (Denmark)

    Gram, T.; Ahrens, Peter; Nielsen, J.P.

    1996-01-01

    strains of A. lignieresii. The lower detection limit of the PCR test was 10(3) A. pleuropneumoniae CFU/PCR test tube and was not affected by addition of 10(6) E. coli CFU/PCR test tube. Mixed bacterial cultures from tonsils of 101 pigs from 9 different herds were tested by culture and by PCR using four...

  13. [Transfusion-transmitted bacterial infection of a apheresis platelet concentrate with Streptococcus gallolyticus: Analysis of one case].

    Science.gov (United States)

    Le Niger, C; Dalbies, F; Narbonne, V; Hery-Arnaud, G; Virmaux, M; Léostic, C; Hervé, F; Liétard, C

    2014-06-01

    Bacterial infections are uncommon complications of the blood products transfusion but they are potentially serious. Many advances have been done over the past few years to guarantee the microbiological security of blood products as the donors selection with a medical talk, the derivation of the first 30 millilitres blood during the donation, the deleucocytation of blood products… But in spite of these advances, cases of bacterial infection always remain. The purpose of this study was to point out the platelet concentrate's transfusion-transmitted bacterial infection with Streptococcus gallolyticus and the unusual consequence for the donor by uncovering an asymptomatic rectal neoplastic tumor. This study as raised as to whether the usefulness of systematic bacterial inactivation in the platelets concentrates. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Interferon-induced protein 56 (IFI56) is induced by VHSV infection but not by bacterial infection in olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Hwang, Jee Youn; Ahn, Sang Jung; Kwon, Mun-Gyeong; Seo, Jung Soo; Hwang, Seong Don; Son, Maeng-Hyun

    2017-07-01

    Interferon-inducible protein 56 (IFI56, also known as ISG56/IFIT1, interferon-induced protein with tetratricopeptide repeats 1) is strongly induced in response to interferon and a potent inhibitor of viral replication and translational initiation. Here, we describe the identification of IFI56 (OfIFI56) in olive flounder, its characteristic features, and expression levels in various tissues before and after viral hemorrhagic septicemia virus (VHSV) infection. The full-length OfIFI56 sequence was identified from rapid amplification of cDNA ends PCR. The complete coding sequence of OfIFI56 is 1971 bp in length and encodes 431 amino acids. The putative OfIFI56 protein has multiple tetratricopeptide (TPR) motifs, which regulate diverse biological processes, such as organelle targeting, protein import, and vesicle fusion. Based on sequence analysis, the Larimichthys crocea IFI56 protein (61%) had the highest sequence homology to OfIFI56. In healthy olive flounder, OfIFI56 mRNA expression was detected in many tissues such as intestine, gill, head kidney, heart, spleen, and trunk kidney tissues. After VHSV challenge, OfIFI56 mRNA was significantly up-regulated in these tissues. Additionally, OfIFI56 expression was induced by poly I:C but not by Streptococcus parauberis and S. iniae infection or lipopolysaccharide injection in kidney and spleen tissues of olive flounder. These results demonstrate that piscine OfIFI56 expression is not induced by bacterial infection but is selectively induced by viral infection, especially VHSV, and that OfIFI56 may play an important role in the host response against VHSV infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bacterial infection affects protein synthesis in primary lymphoid tissues and circulating lymphocytes of rats.

    Science.gov (United States)

    Papet, Isabelle; Ruot, Benoît; Breuillé, Denis; Walrand, Stéphane; Farges, Marie-Chantal; Vasson, Marie-Paule; Obled, Christiane

    2002-07-01

    Bacterial infection alters whole-body protein homeostasis. Although immune cells are of prime importance for host defense, the effect of sepsis on their protein synthesis rates is poorly documented. We analyzed protein synthesis rates in rat primary lymphoid tissues and circulating lymphocytes after infection. Male Sprague-Dawley rats were studied 1, 2, 6 or 10 d after an intravenous injection of live Escherichia coli. Control healthy rats consumed food ad libitum (d 0) or were pair-fed to infected rats. Protein synthesis was quantified using a flooding dose of L-(4,4,4-(2)H(3))valine. Sepsis induced a delayed increase in total blood leukocytes and a rapid and persistent inversion of the counts. Basal fractional rates of protein synthesis (ks) were 117, 73 and 29%/d in bone marrow, thymus and circulating lymphocytes, respectively. Pair-feeding strongly depressed the absolute protein synthesis rates (ASR) of bone marrow (d 2 and 10) and thymus (d 2-10). The infection per se increased bone marrow, thymus and circulating lymphocyte ks but at various postinfection times. It decreased bone marrow (d 1) and thymus (d 1 and 2) ASR but increased lymphocyte (d 2 and 10) and bone marrow (d 10) ASR. Our results reflect the deleterious effect of anorexia on primary lymphoid tissues. The host defense against bacterial infection exhibited time- and tissue-dependent modifications of protein synthesis, indicating that blood lymphocyte protein data are not representative of the immune system as a whole. Optimization of nutritional supports would be facilitated by including protein synthesis measurements of the immune system.

  16. Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia

    Directory of Open Access Journals (Sweden)

    Püntener Ursula

    2012-06-01

    Full Text Available Abstract Background Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against overactivity of the immune system. In this study, we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection. Methods Mice were given repeated doses of lipopolysaccharide (LPS or a single injection of live Salmonella typhimurium. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry. To assess priming of the innate immune response in the brain, mice were infected with Salmonella typhimurium and subsequently challenged with a focal unilateral intracerebral injection of LPS. Results Repeated systemic LPS challenges resulted in increased brain IL-1β, TNF-α and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1β and IL-12 levels in Salmonella typhimurium-infected mice increased over three weeks, with high interferon-γ levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS four weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice. Conclusions These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have a profound effect on the onset and/or progression of pre-existing neurodegenerative disease.

  17. Effect of irradiation on the detection of bacterial DNA in contaminated food samples by DNA hybridization

    International Nuclear Information System (INIS)

    Rowe, T.F.; Towner, K.J.

    1994-01-01

    A membrane-based DNA hybridization technique was used in a model system to examine the effect of irradiation treatment on the detection of bacterial contamination in foodstuffs. Although hybridization signals were reduced compared with otherwise identical unirradiated food samples, artificial contamination levels in excess of 10 5 cfu per test could be distinguished in 12 of the 13 foods examined following the irradiation process. In no case were viable bacteria detected following irradiation treatment. (Author)

  18. Altered functionality of anti-bacterial antibodies in patients with chronic hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Anne Lamontagne

    Full Text Available Using comparative glycoproteomics, we have previously identified a glycoprotein that is altered in both amount and glycosylation as a function of liver cirrhosis. The altered glycoprotein is an agalactosylated (G0 immunoglobulin G molecule (IgG that recognizes the heterophilic alpha-gal epitope. Since the alpha gal epitope is found on gut enterobacteria, it has been hypothesized that anti-gal antibodies are generated as a result of increased bacterial exposure in patients with liver disease.The N-linked glycosylation of anti-gal IgG molecules from patients with fibrosis and cirrhosis was determined and the effector function of anti-bacterial antibodies from over 100 patients examined. In addition, markers of microbial exposure were determined.Surprisingly, the subset of agalactosylated anti-gal antibodies described here, was impaired in their ability to mediate complement mediated lysis and inhibited the complement-mediated destruction of common gut bacteria. In an analysis of serum from more than 100 patients with liver disease, we have shown that those with increased levels of this modified anti-gal antibody had increased levels of markers of bacterial exposure.Anti-gal antibodies in patients with liver cirrhosis were reduced in their ability to mediate complement mediated lysis of target cells. As bacterial infection is a major complication in patients with cirrhosis and bacterial products such as LPS are thought to play a major role in the development and progression of liver fibrosis, this finding has many clinical implications in the etiology, prognosis and treatment of liver disease.

  19. Elevation of serum thymidine kinase 1 in a bacterial infection: canine pyometra.

    Science.gov (United States)

    Sharif, H; Hagman, R; Wang, L; Eriksson, S

    2013-01-01

    Pyometra is a bacterial infection of the uterus that is common in dogs and is potentially life-threatening if delayed in diagnosis and/or treatment. Thymidine kinase 1 (TK1) is a cytosolic enzyme involved in DNA precursor synthesis, and it is also present in serum from patients with malignant diseases. TK1 has been used as a cell proliferation biomarker for many years in human medicine and recently in dogs. However, little is known regarding serum TK1 levels in individuals with bacterial infection. The objective of this study was to determine the activity of serum TK1 in dogs with pyometra and compare it with hematologic and biochemical parameters, e.g., acute phase proteins and inflammatory mediators such as C-reactive protein and Prostaglandin F(2α). Serum and plasma TK1 activity of 40 healthy female dogs and 54 dogs with pyometra were analyzed using an optimized [(3)H]-thymidine phosphorylation assay. TK1 activities in serum or plasma were significantly higher in dogs with pyometra as compared with healthy female dogs (mean ± SD: 4.0 ± 7.3 pmol/min/mL in the pyometra group and 1.07 ± 0.34 pmol/min/mL in healthy control group). However, there was no difference in TK1 activity between systemic inflammatory response syndrome (SIRS) positive (n = 38) and SIRS negative (n = 16) pyometra cases. Furthermore, the plasma TK1 activity decreased in six and increased in one pyometra patients (n = 10), 24 h after ovariohysterectomy. No significant correlations (P > 0.05) were found between TK1 activity and hematological or other biochemical parameters. In conclusion, the TK1 activity was significantly elevated in dogs with pyometra. Further studies are needed to evaluate the mechanism and role of serum TK1 activity in bacterial infections and its possible diagnostic or prognostic value. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Hypoxia determines survival outcomes of bacterial infection through HIF-1α-dependent reprogramming of leukocyte metabolism

    OpenAIRE

    Thompson, A.A.R.; Dickinson, R.S.; Murphy, F.; Thomson, J.P.; Marriott, H.M.; Tavares, A.; Willson, J.; Williams, L.; Lewis, A.; Mirchandani, A.; Coelho, P.D.S.; Doherty, C.; Ryan, E.; Watts, E.; Morton, N.M.

    2017-01-01

    Hypoxia and bacterial infection frequently coexist, in both acute and chronic clinical settings, and typically result in adverse clinical outcomes. To ameliorate this morbidity, we investigated the interaction between hypoxia and the host response. In the context of acute hypoxia, both Staphylococcus aureus and Streptococcus pneumoniae infections rapidly induced progressive neutrophil-mediated morbidity and mortality, with associated hypothermia and cardiovascular compromise. Preconditioning ...

  1. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.; Hentzer, Morten

    2004-01-01

    lung infection by targeting bacterial quorum-sensing without directly killing bacteria or inhibiting their growth. Methods: Study I. Mice with Escherichia coli MT102 [luxR-PluxI-gfp(ASV)] lung infection were injected intravenously with N-acyl homoserine lactones with or without furanones to test...

  2. Usefulness of clinical data and rapid diagnostic tests to identify bacterial etiology in adult respiratory infections

    Directory of Open Access Journals (Sweden)

    Pilar Toledano-Sierra

    2015-01-01

    Full Text Available Respiratory tract infections are a common complaint and most of them, such as common cold and laryngitis, are viral in origin, so antibiotic use should be exceptional. However, there are other respiratory tract infections (sinusitis, pharyngitis, lower respiratory tract infections, and exacerbations of chronic obstructive pulmonary disease where a bacterial etiology is responsible for a non-negligible percentage, and antibiotics are often empirically indicated. The aim of the study is to identify the strength of the data obtained from the symptoms, physical examination and rapid diagnostic methods in respiratory infections in which antibiotic use is frequently proposed in order to improve diagnosis and influence the decision to prescribe these drugs. The review concludes that history, physical examination and rapid tests are useful to guide the need for antibiotic treatment in diseases such as acute sinusitis, acute pharyngitis, exacerbation of lower respiratory tract infection and chronic obstructive pulmonary disease. However, no isolated data is accurate enough by itself to confirm or rule out the need for antibiotics. Therefore, clinical prediction rules bring together history and physical examination, thereby improving the accuracy of the decision to indicate or not antibiotics.

  3. Effects of low intensity laser in in vitro bacterial culture and in vivo infected wounds

    Directory of Open Access Journals (Sweden)

    Pâmela Rosa Pereira

    Full Text Available OBJECTIVE: to compare the effects of low intensity laser therapy on in vitro bacterial growth and in vivo in infected wounds, and to analyze the effectiveness of the AsGa Laser technology in in vivo wound infections. METHODS: in vitro: Staphylococcus aureus were incubated on blood agar plates, half of them being irradiated with 904 nm wavelength laser and dose of 3J/cm2 daily for seven days. In vivo: 32 male Wistar rats were divided into control group (uninfected and Experimental Group (Infected. Half of the animals had their wounds irradiated. RESULTS: in vitro: there was no statistically significant variation between the experimental groups as for the source plates and the derived ones (p>0.05. In vivo: there was a significant increase in the deposition of type I and III collagen in the wounds of the infected and irradiated animals when assessed on the fourth day of the experiment (p=0.034. CONCLUSION: low-intensity Laser Therapy applied with a wavelength of 904nm and dose 3J/cm2 did not alter the in vitro growth of S. aureus in experimental groups; in vivo, however, it showed significant increase in the deposition of type I and III collagen in the wound of infected and irradiated animals on the fourth day of the experiment.

  4. The EXIT Strategy: an Approach for Identifying Bacterial Proteins Exported during Host Infection

    Science.gov (United States)

    Perkowski, E. F.; Zulauf, K. E.; Weerakoon, D.; Hayden, J. D.; Ioerger, T. R.; Oreper, D.; Gomez, S. M.; Sacchettini, J. C.

    2017-01-01

    ABSTRACT Exported proteins of bacterial pathogens function both in essential physiological processes and in virulence. Past efforts to identify exported proteins were limited by the use of bacteria growing under laboratory (in vitro) conditions. Thus, exported proteins that are exported only or preferentially in the context of infection may be overlooked. To solve this problem, we developed a genome-wide method, named EXIT (exported in vivo technology), to identify proteins that are exported by bacteria during infection and applied it to Mycobacterium tuberculosis during murine infection. Our studies validate the power of EXIT to identify proteins exported during infection on an unprecedented scale (593 proteins) and to reveal in vivo induced exported proteins (i.e., proteins exported significantly more during in vivo infection than in vitro). Our EXIT data also provide an unmatched resource for mapping the topology of M. tuberculosis membrane proteins. As a new approach for identifying exported proteins, EXIT has potential applicability to other pathogens and experimental conditions. PMID:28442606

  5. Secondary bacterial infections of buruli ulcer lesions before and after chemotherapy with streptomycin and rifampicin.

    Science.gov (United States)

    Yeboah-Manu, Dorothy; Kpeli, Grace S; Ruf, Marie-Thérèse; Asan-Ampah, Kobina; Quenin-Fosu, Kwabena; Owusu-Mireku, Evelyn; Paintsil, Albert; Lamptey, Isaac; Anku, Benjamin; Kwakye-Maclean, Cynthia; Newman, Mercy; Pluschke, Gerd

    2013-01-01

    Buruli ulcer (BU), caused by Mycobacterium ulcerans is a chronic necrotizing skin disease. It usually starts with a subcutaneous nodule or plaque containing large clusters of extracellular acid-fast bacilli. Surrounding tissue is destroyed by the cytotoxic macrolide toxin mycolactone produced by microcolonies of M. ulcerans. Skin covering the destroyed subcutaneous fat and soft tissue may eventually break down leading to the formation of large ulcers that progress, if untreated, over months and years. Here we have analyzed the bacterial flora of BU lesions of three different groups of patients before, during and after daily treatment with streptomycin and rifampicin for eight weeks (SR8) and determined drug resistance of the bacteria isolated from the lesions. Before SR8 treatment, more than 60% of the examined BU lesions were infected with other bacteria, with Staphylococcus aureus and Pseudomonas aeruginosa being the most prominent ones. During treatment, 65% of all lesions were still infected, mainly with P. aeruginosa. After completion of SR8 treatment, still more than 75% of lesions clinically suspected to be infected were microbiologically confirmed as infected, mainly with P. aeruginosa or Proteus miriabilis. Drug susceptibility tests revealed especially for S. aureus a high frequency of resistance to the first line drugs used in Ghana. Our results show that secondary infection of BU lesions is common. This could lead to delayed healing and should therefore be further investigated.

  6. Immunostimulation using bacterial antigens – mechanism ofaction and clinical practice inviral respiratory tract infections

    Directory of Open Access Journals (Sweden)

    Wojciech Feleszko

    2015-12-01

    Full Text Available Recurrent respiratory tract infections constitute a significant problem in the practice of a general practitioner and paediatrician. Antibiotic resistance of bacterial strains, which has been growing for years, prompts the search for alternative ways of combating pathogens. One of them is the usage of preparations based on cell lysis of various bacterial strains. Bacterial lysates have been available in Europe for many years. In preclinical trials, they are characterised by the capability of reducing infections caused by bacteria and viruses that are not the components of the preparations. A range of clinical trials have demonstrated their usefulness in reducing the frequency of seasonal respiratory tract infections and antibiotic use. Moreover, patients with chronic obstructive pulmonary disease gain an additional advantage in the form of the reduction of the risk of hospitalization due to disease exacerbations and a positive influence on the survival curve. The action of bacterial lysates is based on oral immunostimulation of gut-associated lymphoid tissue, which results in increased antibody production. Moreover, they activate a range of mucosal mechanisms of non-specific immunity, mainly by enhancing the activity of TLR-dependent mechanisms. The efficacy of this group of drugs has been confirmed in a range of clinical trials, systematic reviews and meta-analyses. Recent studies also indicate their immunoregulatory potential, suggesting that they might be used in the future in preventing allergies, asthma and autoimmune diseases. To conclude, physicians (paediatricians, laryngologists, pulmonologists should consider reducing the use of antibiotics in their daily practice. Instead, they should offer preparations that promote the immune system, thus controlling infections in a better way.

  7. BET 2: Can procalcitonin accurately diagnose serious bacterial infection in emergency department patients with SIRS?

    Science.gov (United States)

    Wilson, Joel; Baskerville, Jerry; Zarabi, Sahar

    2017-09-01

    A shortcut review was carried out to establish whether serum procalcitonin levels can be used to identify serious bacterial infection in ED patients with undifferentiated SIRS. 14 papers presented the best evidence to answer the clinical question. The review concludes that raised procalcitonin levels are associated with bacteraemia; however, there are no clinical management studies addressing this question in ED patients with SIRS. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Review of oritavancin for the treatment of acute bacterial skin and skin structure infections.

    Science.gov (United States)

    García Robles, Ana Alejandra; López Briz, Eduardo; Fraga Fuentes, María Dolores; Asensi Diez, Rocío; Sierra Sánchez, Jesús Francisco

    2018-03-01

    To assess critically oritavancin, a second-generation  lipoglycopeptide, for the treatment of Acute Bacterial Skin and Skin Structure Infections caused by susceptible Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. An evaluation report of oritavancin in Acute Bacterial Skin and Skin  Structure Infections was carried out according to the methodology of the Group  for drug evaluation, standardization and research in drug selection of the  Spanish Society of Hospital Pharmacy (SEFH)1, with the MADRE 4.0 program. A  search was made in PubMed, in the web www.clinicaltrials. gov, Embase,  PubMed and UptoDate. The European Medication Agency and Food and Drug  Administration evaluation reports were also used. Single-dose oritavancin demonstrated its non-inferiority efficacy versus  vancomycin in Acute Bacterial Skin and Skin Structure  nfections, with a similar safety profile. Its potential advantage over other  therapeutic alternatives lies in its administration in single dose and in its no need for plasma levels monitoring, which would allow its administration on an outpatient basis. Regarding to the other alternative possibilities of oral  (linezolid, tedizolid) or IM (teicoplanin) treatment, oritavancin would improve the  adherence to the treatment. Although oritavancin could be more  efficient in certain scenarios (outpatient treatment versus inpatient treatment  with alternatives), there are no convincing studies in this regard so far. On the  other hand, alternative drugs above-mentioned, can also allow outpatient  treatment, reducing advantages of oritavancin and further increasing cost  differences. Therefore, given that the efficacy is similar to the alternatives, a  cost minimization analysis could be considered. Oritavancin is comparable in terms of efficacy and safety to the  existing alternatives in Acute Bacterial Skin and Skin Structure Infections,  without improvements in the cost

  9. Detection of prion infectivity in fat tissues of scrapie-infected mice.

    Directory of Open Access Journals (Sweden)

    Brent Race

    2008-12-01

    Full Text Available Distribution of prion infectivity in organs and tissues is important in understanding prion disease pathogenesis and designing strategies to prevent prion infection in animals and humans. Transmission of prion disease from cattle to humans resulted in banning human consumption of ruminant nervous system and certain other tissues. In the present study, we surveyed tissue distribution of prion infectivity in mice with prion disease. We show for the first time detection of infectivity in white and brown fat. Since high amounts of ruminant fat are consumed by humans and also incorporated into animal feed, fat-containing tissues may pose a previously unappreciated hazard for spread of prion infection.

  10. The Human Skin Microbiome Associates with the Outcome of and Is Influenced by Bacterial Infection.

    Science.gov (United States)

    van Rensburg, Julia J; Lin, Huaiying; Gao, Xiang; Toh, Evelyn; Fortney, Kate R; Ellinger, Sheila; Zwickl, Beth; Janowicz, Diane M; Katz, Barry P; Nelson, David E; Dong, Qunfeng; Spinola, Stanley M

    2015-09-15

    The influence of the skin microbiota on host susceptibility to infectious agents is largely unexplored. The skin harbors diverse bacterial species that may promote or antagonize the growth of an invading pathogen. We developed a human infection model for Haemophilus ducreyi in which human volunteers are inoculated on the upper arm. After inoculation, papules form and either spontaneously resolve or progress to pustules. To examine the role of the skin microbiota in the outcome of H. ducreyi infection, we analyzed the microbiomes of four dose-matched pairs of "resolvers" and "pustule formers" whose inoculation sites were swabbed at multiple time points. Bacteria present on the skin were identified by amplification and pyrosequencing of 16S rRNA genes. Nonmetric multidimensional scaling (NMDS) using Bray-Curtis dissimilarity between the preinfection microbiomes of infected sites showed that sites from the same volunteer clustered together and that pustule formers segregated from resolvers (P = 0.001, permutational multivariate analysis of variance [PERMANOVA]), suggesting that the preinfection microbiomes were associated with outcome. NMDS using Bray-Curtis dissimilarity of the endpoint samples showed that the pustule sites clustered together and were significantly different than the resolved sites (P = 0.001, PERMANOVA), suggesting that the microbiomes at the endpoint differed between the two groups. In addition to H. ducreyi, pustule-forming sites had a greater abundance of Proteobacteria, Bacteroidetes, Micrococcus, Corynebacterium, Paracoccus, and Staphylococcus species, whereas resolved sites had higher levels of Actinobacteria and Propionibacterium species. These results suggest that at baseline, resolvers and pustule formers have distinct skin bacterial communities which change in response to infection and the resultant immune response. Human skin is home to a diverse community of microorganisms, collectively known as the skin microbiome. Some resident

  11. Six cases of Aerococcus sanguinicola infection: Clinical relevance and bacterial identification

    DEFF Research Database (Denmark)

    Ibler, K.; Jensen, K.T.; Ostergaard, C.

    2008-01-01

    were associated with infective endocarditis. Most patients were elderly (median age 70 y) and had underlying neurological disorders including dementia, cerebral degeneration, and myelomeningocele. The primary focus of infection was the urinary tract in 3 cases and the gallbladder in 1; no focus...... was detected in 2 cases. Long-term prognosis was poor reflecting the frailty of the patients. All strains were susceptible to penicillin, ampicillin, cefuroxime, vancomycin, erythromycin, and rifampicin. The optimal treatment of infection with A. sanguinicola has yet to be determined Udgivelsesdato: 2008...

  12. Molecular detection of Cylindrocarpon destructans in infected ...

    African Journals Online (AJOL)

    A species-specific polymerase chain reaction (PCR) assay was developed for rapid detection of C. destructans in diseased ginseng roots and artificially inoculated soil. One pair of specific primers was designed from comparisons of nucleotide sequences of the nuclear ribosomal internal transcribed spacer (ITS) regions of ...

  13. Increased β-glucuronidase activity in bronchoalveolar lavage fluid of children with bacterial lung infection: A case-control study.

    Science.gov (United States)

    Panagiotopoulou, Evgenia C; Fouzas, Sotirios; Douros, Konstantinos; Triantaphyllidou, Irene-Eva; Malavaki, Christina; Priftis, Kostas N; Karamanos, Nikos K; Anthracopoulos, Michael B

    2015-11-01

    β-Glucuronidase is a lysosomal enzyme released into the extracellular fluid during inflammation. Increased β-glucuronidase activity in the cerebrospinal and peritoneal fluid has been shown to be a useful marker of bacterial inflammation. We explored the role of β-glucuronidase in the detection of bacterial infection in bronchoalveolar lavage fluid (BALF) of paediatric patients. In this case-control study, % polymorphonuclear cell count (PMN%), β-glucuronidase activity, interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α) and elastase were measured in culture-positive (≥10(4) cfu/mL, C+) and -negative (C-) BALF samples obtained from children. A total of 92 BALF samples were analysed. The median β-glucuronidase activity (measured in nanomoles of 4-methylumbelliferone (4-MU)/mL BALF/h) was 246.4 in C+ (interquartile range: 71.2-751) and 21.9 in C- (4.0-40.8) (P < 0.001). The levels of TNF-α and IL-8 were increased in C+ as compared with C- (5.4 (1.7-12.6) vs 0.7 (0.2-6.2) pg/mL, P < 0.001 and 288 (76-4300) vs 287 (89-1566) pg/mL, P = 0.042, respectively). Elastase level and PMN% did not differ significantly (50 (21-149) vs 26 (15-59) ng/mL, P = 0.051 and 20 (9-40) vs 18 (9-34) %, P = 0.674, respectively). The area under the curve of β-glucuronidase activity (0.856, 95% confidence interval (CI): 0.767-0.920) was higher than that of TNF-α (0.718; 95% CI: 0.614-0.806; P = 0.040), IL-8 (0.623; 95% CI: 0.516-0.722; P = 0.001), elastase (0.645; 95% CI: 0.514-0.761; P = 0.008) and PMN% (0.526; 95 % CI: 0.418-0.632; P < 0.001). This study demonstrates a significant increase of β-glucuronidase activity in BALF of children with culture-positive bacterial inflammation. In our population β-glucuronidase activity showed superior predictive ability for bacterial lung infection than other markers of inflammation. © 2015 Asian Pacific Society of Respirology.

  14. Advances and Opportunities in Nanoparticle- and Nanomaterial-Based Vaccines against Bacterial Infections.

    Science.gov (United States)

    Lin, Leon Chien-Wei; Chattopadhyay, Saborni; Lin, Jung-Chen; Hu, Che-Ming Jack

    2018-03-06

    As the dawn of the postantibiotic era we approach, antibacterial vaccines are becoming increasingly important for managing bacterial infection and reducing the need for antibiotics. Despite the success of vaccination, vaccines remain unavailable for many pressing microbial diseases, including tuberculosis, chlamydia, and staphylococcus infections. Amid continuing research efforts in antibacterial vaccine development, the advancement of nanomaterial engineering has brought forth new opportunities in vaccine designs. With increasing knowledge in antibacterial immunity and immunologic adjuvants, innovative nanoparticles are designed to elicit the appropriate immune responses for effective antimicrobial defense. Rationally designed nanoparticles are demonstrated to overcome delivery barriers to shape the adaptive immunity. This article reviews the advances in nanoparticle- and nanomaterial-based antibacterial vaccines and summarizes the development of nanoparticulate adjuvants for immune potentiation against microbial pathogens. In addition, challenges and progress in ongoing antibacterial vaccine development are discussed to highlight the opportunities for future vaccine designs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection

    Science.gov (United States)

    Gupta, Akash; Saleh, Neveen M.; Das, Riddha; Landis, Ryan F.; Bigdeli, Arafeh; Motamedchaboki, Khatereh; Rosa Campos, Alexandre; Pomeroy, Kenneth; Mahmoudi, Morteza; Rotello, Vincent M.

    2017-06-01

    Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. Antibiotic treatment of resistant infections further contributes to the rapidly increasing number of antibiotic-resistant species and strains. Synthetic macromolecules such as nanoparticles (NPs) exhibit broad-spectrum activity against MDR species, however lack of specificity towards bacteria relative to their mammalian hosts limits their widespread therapeutic application. Here, we demonstrate synergistic antimicrobial therapy using hydrophobically functionalized NPs and fluoroquinolone antibiotics for treatment of MDR bacterial strains. An 8-16-fold decrease in antibiotic dosage is achieved in presence of engineered NPs to combat MDR strains. This strategy demonstrates the potential of using NPs to ‘revive’ antibiotics that have been rendered ineffective due to the development of resistance by pathogenic bacteria.

  16. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, Mark T.

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

  17. Photodynamic therapy can induce non-specific protective immunity against a bacterial infection

    Science.gov (United States)

    Tanaka, Masamitsu; Mroz, Pawel; Dai, Tianhong; Kinoshita, Manabu; Morimoto, Yuji; Hamblin, Michael R.

    2012-03-01

    Photodynamic therapy (PDT) for cancer is known to induce an immune response against the tumor, in addition to its well-known direct cell-killing and vascular destructive effects. PDT is becoming increasingly used as a therapy for localized infections. However there has not to date been a convincing report of an immune response being generated against a microbial pathogen after PDT in an animal model. We have studied PDT as a therapy for bacterial arthritis caused by Staphylococcus aureus infection in the mouse knee. We had previously found that PDT of an infection caused by injection of MRSA (5X107 CFU) into the mouse knee followed 3 days later by 1 μg of Photofrin and 635- nm diode laser illumination with a range of fluences within 5 minutes, gave a biphasic dose response. The greatest reduction of MRSA CFU was seen with a fluence of 20 J/cm2, whereas lower antibacterial efficacy was observed with fluences that were either lower or higher. We then tested the hypothesis that the host immune response mediated by neutrophils was responsible for most of the beneficial antibacterial effect. We used bioluminescence imaging of luciferase expressing bacteria to follow the progress of the infection in real time. We found similar results using intra-articular methylene blue and red light, and more importantly, that carrying out PDT of the noninfected joint and subsequently injecting bacteria after PDT led to a significant protection from infection. Taken together with substantial data from studies using blocking antibodies we believe that the pre-conditioning PDT regimen recruits and stimulates neutrophils into the infected joint which can then destroy bacteria that are subsequently injected and prevent infection.

  18. Evaluation of Nucleic Acid Isothermal Amplification Methods for Human Clinical Microbial Infection Detection

    Directory of Open Access Journals (Sweden)

    Brett E. Etchebarne

    2017-12-01

    Full Text Available Battling infection is a major healthcare objective. Untreated infections can rapidly evolve toward the condition of sepsis in which the body begins to fail and resuscitation becomes critical and tenuous. Identification of infection followed by rapid antimicrobial treatment are primary goals of medical care, but precise identification of offending organisms by current methods is slow and broad spectrum empirical therapy is employed to cover most potential pathogens. Current methods for identification of bacterial pathogens in a clinical setting typically require days of time, or a 4- to 8-h growth phase followed by DNA extraction, purification and PCR-based amplification. We demonstrate rapid (70–120 min genetic diagnostics methods utilizing loop-mediated isothermal amplification (LAMP to test for 15 common infection pathogen targets, called the Infection Diagnosis Panel (In-Dx. The method utilizes filtration to rapidly concentrate bacteria in sample matrices with lower bacterial loads and direct LAMP amplification without DNA purification from clinical blood, urine, wound, sputum and stool samples. The In-Dx panel was tested using two methods of detection: (1 real-time thermocycler fluorescent detection of LAMP amplification and (2 visual discrimination of color change in the presence of Eriochrome Black T (EBT dye following amplification. In total, 239 duplicate samples were collected (31 blood, 122 urine, 73 mucocutaneous wound/swab, 11 sputum and two stool from 229 prospectively enrolled hospital patients with suspected clinical infection and analyzed both at the hospital and by In-Dx. Sensitivity (Se of the In-Dx panel targets pathogens from urine samples by In-Dx was 91.1% and specificity (Sp was 97.3%, with a positive predictive value (PPV of 53.7% and a negative predictive value (NPV of 99.7% as compared to clinical microbial detection methods. Sensitivity of detection of the In-Dx panel from mucocutaneous swab samples was 65.5% with a

  19. Simultaneous Detection of Key Bacterial Pathogens Related to Pneumonia and Meningitis Using Multiplex PCR Coupled With Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2018-04-01

    Full Text Available Pneumonia and meningitis continue to present an enormous public health burden and pose a major threat to young children. Among the causative organisms of pneumonia and meningitis, bacteria are the most common causes of serious disease and deaths. It is challenging to accurately and rapidly identify these agents. To solve this problem, we developed and validated a 12-plex PCR coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS method (bacterial pathogen-mass spectrometry, BP-MS that can be used to simultaneously screen for 11 key bacterial pathogens related to pneumonia and meningitis. Forty-six nasopharyngeal swabs and 12 isolates were used to determine the specificity of the method. The results showed that, using the BP-MS method, we could accurately identify the expected bacteria without cross-reactivity with other pathogens. For the 11 target bacterial pathogens, the analytical sensitivity of the BP-MS method was as low as 10 copies/reaction. To further evaluate the clinical effectiveness of this method, 204 nasopharyngeal swabs from hospitalized children with suspected pneumonia were tested using this method. In total, 81.9% (167/204 of the samples were positive for at least one of the 11 target pathogens. Among the 167 bacteria-positive samples, the rate of multiple infections was 55.7% (93/167, and the most frequent combination was Streptococcus pneumoniae with Haemophilus influenzae, representing 46.2% (43/93 two-pathogen mixed infections. We used real-time PCR and nested PCR to confirm positive results, with identical results obtained for 81.4% (136/167 of the samples. The BP-MS method is a sensitive and specific molecular detection technique in a multiplex format and with high sample throughput. Therefore, it will be a powerful tool for pathogen screening and antibiotic selection at an early stage of disease.

  20. Antibiotic Resistance: New Challenge in the Management of Bacterial Eye Infections.

    Science.gov (United States)

    Talukder, A K; Sultana, Z; Jahan, I; Khanam, M; Rahman, M; Rahman, M F; Rahman, M B

    2017-01-01

    Ophthalmologists are still facing difficulties in managing bacterial eye infections. The study was designed for the isolation and identification of bacteria from infected eyes and observation of the sensitivity and resistant pattern. This cross sectional study was performed among 160 patients of suspected bacterial eye infection at Dr. K. Zaman BNSB Eye Hospital, Mymensingh and Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh from March, 2010 to June, 2014. After collection of the samples from suspected infected eyes, it was nourished into nutrient broth in shaking incubator for three hours and then cultured into nutrient agar media followed by Mannitol salt agar, MacConkey's agar and blood agar. Bacteria were categorized by colony characteristics and Gram staining. Antibiogram was performed by disc diffusion method on Mueller Hinton agar media. McFarland Equivalence Turbidity Standard was maintained. The efficacy of the drug was evaluated by measuring the diameter of the zone of inhibition surrounding the disc. Ten percent Staphylococcus species isolates was resistant to Gatifloxacin, Gentamicin, Tobramycin and Cloxacillin, 26.0% to Ciprofloxacin, 40.0% to Azythromycin and Moxifloxacin, 58.0% to Cefixime and 64.0% to Cephalexin. Methicillin resistant Staphylococcus aureus was 62.8%. About 24.0% Streptococcus species isolates was resistant to Gatifloxacin, 33.3% to Azythromycin, Ciprofloxacin, Gentamycin, Moxifloxacin and Tobramycin, 52.4% to Cefixime and 71.4% to Cephalexin. About 9.0% of Pseudomonas species was resistant to Gatifloxacin and Tobramycin, 14.7% to Ciprofloxacin, 26.5% to Cefixime, 29.4% to Gentamicin and Moxifloxacin, 44.1% to Azythromycin and 82.3% to Cephalexin and Cloxacillin. Rational use of antibiotics and proper attentions of concerned authorities are necessary to overcome the emergent ocular situation leaded by antibiotic resistant.

  1. Detection of anaerobic odontogenic infections by fluorine-18 fluoromisonidazole

    International Nuclear Information System (INIS)

    Liu Renshyan; Chu Leeshing; Yen Sanhui; Chang Chenpei; Chou Kuoliang; Wu Liangchi; Chang Chiwei; Lui Muntain; Chen Kuangy; Yeh Shinhwa

    1996-01-01

    Odontogenic infections are a potential risk for patients who receive cervicofacial radiotherapy and should be treated before irradiation. Anaerobic microbial infections are the most common causes. This study assessed the value of the hypoxic imaging agent fluorine-18 fluoromisonidazole (FMISO) in detecting anaerobic odontogenic infections. Positron emission tomography (PET) imaging was performed at 2 h after injection of 370 MBq (10 mCi) of FMISO in 26 nasopharyngeal carcinoma patients and six controls with healthy teeth. Tomograms were interpreted visually to identify hypoxic foci in the jaw. All patients received thorough dental examinations as a pre-radiotherapy work-up. Fifty-one sites of periodonititis, 15 periodontal abscesses, 14 sites of dental caries with root canal infection, 23 sites of dental caries without root canal infection, and seven necrotic pulps were found by dental examination. Anaerobic pathogens were isolated from 12 patients. Increased uptake of FMISO was found at 45 out of 51 sites of periodontitis, all 15 sites of periodontal abscess, all 14 sites of dental caries with root canal infection, all seven sites of necrotic pulp and 15 sites of dental carries without obvious evidence of active root canal infection. No abnormal uptake was seen in the healthy teeth of patients or in the six controls. The diagnostic sensitivity, specificity, positive and negative predictive values, and accuracy of FMISO PET scan in detecting odontogenic infections were 93%, 97%, 84%, 99% and 96%, respectively. 18 F-fluoride ion bone scan done in three patients showed that 18 F-fluoride ion plays no role in the demonstration of anaerobic odontogenic infection. FMISO PET scan is a sensitive method for the detection of anaerobic odontogenic infections, and may play a complementary role in the evaluation of the dental condition of patients with head and neck tumours prior to radiation therapy. (orig.)

  2. Detection of anaerobic odontogenic infections by fluorine-18 fluoromisonidazole

    Energy Technology Data Exchange (ETDEWEB)

    Liu Renshyan [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital, National Yang-Ming Univ. Medical School, Taipei (Taiwan, Province of China); Chu Leeshing [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital, National Yang-Ming Univ. Medical School, Taipei (Taiwan, Province of China)]|[National Defense Medical Center, Taipei (Taiwan); Yen Sanhui [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital, National Yang-Ming Univ. Medical School, Taipei (Taiwan, Province of China)]|[National Defense Medical Center, Taipei (Taiwan); Chang Chenpei [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital, National Yang-Ming Univ. Medical School, Taipei (Taiwan, Province of China); Chou Kuoliang [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital, National Yang-Ming Univ. Medical School, Taipei (Taiwan, Province of China); Wu Liangchi [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital, National Yang-Ming Univ. Medical School, Taipei (Taiwan, Province of China); Chang Chiwei [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital, National Yang-Ming Univ. Medical School, Taipei (Taiwan, Province of China); Lui Muntain [Dept. of Dentistry, Taipei Veterans General Hospital (Taiwan, Province of China); Chen Kuangy [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital, National Yang-Ming Univ. Medical School, Taipei (Taiwan, Province of China)]|[National Defense Medical Center, Taipei (Taiwan); Yeh Shinhwa [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital, National Yang-Ming Univ. Medical School, Taipei (Taiwan, Province of China)

    1996-10-01

    Odontogenic infections are a potential risk for patients who receive cervicofacial radiotherapy and should be treated before irradiation. Anaerobic microbial infections are the most common causes. This study assessed the value of the hypoxic imaging agent fluorine-18 fluoromisonidazole (FMISO) in detecting anaerobic odontogenic infections. Positron emission tomography (PET) imaging was performed at 2 h after injection of 370 MBq (10 mCi) of FMISO in 26 nasopharyngeal carcinoma patients and six controls with healthy teeth. Tomograms were interpreted visually to identify hypoxic foci in the jaw. All patients received thorough dental examinations as a pre-radiotherapy work-up. Fifty-one sites of periodonititis, 15 periodontal abscesses, 14 sites of dental caries with root canal infection, 23 sites of dental caries without root canal infection, and seven necrotic pulps were found by dental examination. Anaerobic pathogens were isolated from 12 patients. Increased uptake of FMISO was found at 45 out of 51 sites of periodontitis, all 15 sites of periodontal abscess, all 14 sites of dental caries with root canal infection, all seven sites of necrotic pulp and 15 sites of dental carries without obvious evidence of active root canal infection. No abnormal uptake was seen in the healthy teeth of patients or in the six controls. The diagnostic sensitivity, specificity, positive and negative predictive values, and accuracy of FMISO PET scan in detecting odontogenic infections were 93%, 97%, 84%, 99% and 96%, respectively. {sup 18}F-fluoride ion bone scan done in three patients showed that {sup 18}F-fluoride ion plays no role in the demonstration of anaerobic odontogenic infection. FMISO PET scan is a sensitive method for the detection of anaerobic odontogenic infections, and may play a complementary role in the evaluation of the dental condition of patients with head and neck tumours prior to radiation therapy. (orig.)

  3. An "On-Site Transformation" Strategy for Treatment of Bacterial Infection.

    Science.gov (United States)

    Qi, Guo-Bin; Zhang, Di; Liu, Fu-Hua; Qiao, Zeng-Ying; Wang, Hao

    2017-09-01

    To date, numerous nanosystems have been developed as antibiotic replacements for bacterial infection treatment. However, these advanced systems are limited owing to their nontargeting accumulation and the consequent side effects. Herein, transformable polymer-peptide biomaterials have been developed that enable specific accumulation in the infectious site and long-term retention, resulting in enhanced binding capability and killing efficacy toward bacteria. The polymer-peptide conjugates are composed of a chitosan backbone and two functional peptides, i.e., an antimicrobial peptide and a poly(ethylene glycol)-tethered enzyme-cleavable peptide (CPC-1). The CPC-1 initially self-assembles into nanoparticles with pegylated coronas. Upon the peptides are cleaved by the gelatinase secreted by a broad spectrum of bacterial species, the resultant compartments of nanoparticles spontaneously transformed into fibrous nanostructures that are stabilized by enhanced chain-chain interaction, leading to exposure of antimicrobial peptide residues for multivalent cooperative electrostatic interactions with bacterial membranes. Intriguingly, the in situ morphological transformation also critically improves the accumulation and retention of CPC-1 in infectious sites in vivo, which exhibits highly efficient antibacterial activity. This proof-of-concept study demonstrates that pathological environment-driven smart self-assemblies may provide a new idea for design of high-performance biomaterials for disease diagnostics and therapeutics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis

    Directory of Open Access Journals (Sweden)

    Cheng-Yen Kao

    2016-02-01

    Full Text Available Helicobacter pylori pathogenesis and disease outcomes are mediated by a complex interplay between bacterial virulence factors, host, and environmental factors. After H. pylori enters the host stomach, four steps are critical for bacteria to establish successful colonization, persistent infection, and disease pathogenesis: (1 Survival in the acidic stomach; (2 movement toward epithelium cells by flagella-mediated motility; (3 attachment to host cells by adhesins/receptors interaction; (4 causing tissue damage by toxin release. Over the past 20 years, the understanding of H. pylori pathogenesis has been improved by studies focusing on the host and bacterial factors through epidemiology researches and molecular mechanism investigations. These include studies identifying the roles of novel virulence factors and their association with different disease outcomes, especially the bacterial adhesins, cag pathogenicity island, and vacuolating cytotoxin. Recently, the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in H. pylori. In addition, a more available complete genomic database of H. pylori strains isolated from patients with different gastrointestinal diseases worldwide is helpful to characterize this bacterium. This review highlights the key findings of H. pylori virulence factors reported over the past 20 years.

  5. Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections.

    Science.gov (United States)

    Hong, Bang-Xing; Jiang, Li-Fang; Hu, Yu-Shan; Fang, Dan-Yun; Guo, Hui-Yu

    2004-09-01

    A rapid and accurate method for detection for common pathogenic bacteria in foodborne infections was established by using oligonucleotide array technology. Nylon membrane was used as the array support. A mutation region of the 23S rRNA gene was selected as the discrimination target from 14 species (genera) of bacteria causing foodborne infections and two unrelated bacterial species. A pair of universal primers was designed for PCR amplification of the 23S rRNA gene. Twenty-one species (genera)-specific oligonucleotide detection probes were synthesized and spotted onto the nylon membranes. The 23S rRNA gene amplification products of 14 species of pathogenic bacteria were hybridized to the oligonucleotide array. Hybridization results were analyzed with digoxigenin-linked enzyme reaction. Results indicated that nine species of pathogenic bacteria (Escherichia coli, Campylobacter jejuni, Shigella dysenteriae, Vibrio cholerae, Vibrio parahaemolyticus, Proteus vulgaris, Bacillus cereus, Listeria monocytogenes and Clostridium botulinum) showed high sensitivity and specificity for the oligonucleotide array. Two other species (Salmonella enterica and Yersinia enterocolitica) gave weak cross-reaction with E. coli, but the reaction did not affect their detection. After redesigning the probes, positive hybridization results were obtained with Staphylococcus aureus, but not with Clostridium perfringens and Streptococcus pyogenes. The oligonucleotide array can also be applied to samples collected in clinical settings of foodborne infections. The superiority of oligonucleotide array over other tests lies on its rapidity, accuracy and efficiency in the diagnosis, treatment and control of foodborne infections.

  6. Comparison of three serological tests to detect Paragonimus mexicanus infections in infected cats

    OpenAIRE

    Cornejo, William R.; Departamento de Microbiología Médica, Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Instituto de Medicina Tropical “Daniel A. Carrión”, Facultad de Medicina, Universidad Nacional Mayor de San Marcos.; Alva, Pilar F.; Departamento de Microbiología Médica, Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Instituto de Medicina Tropical “Daniel A. Carrión”, Facultad de Medicina, Universidad Nacional Mayor de San Marcos.; Sevilla, Carlos R.; Departamento de Microbiología Médica, Facultad de Medicina, Universidad Nacional Mayor de San Marcos.; Huiza, Alina F.; Departamento de Microbiología Médica, Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Instituto de Medicina Tropical “Daniel A. Carrión”, Facultad de Medicina, Universidad Nacional Mayor de San Marcos.

    2012-01-01

    Background: Paragonimiasis is a lung disease caused by Paragonimus trematodes genus. Human infection laboratory diagnosis is usually done by detection of parasite eggs in sputum or feces; however, findings may be negative and alternative diagnostic methods are required. Objectives: To compare three serologic tests for detection of Paragonimus mexicanus somatic antigen (PmAS) antibodies in serum samples of cats infected experimentally. Design: Experimental study. Setting: Instituto de Medicina...

  7. Bacterial urinary tract infection after solid organ transplantation in the RESITRA cohort.

    Science.gov (United States)

    Vidal, E; Torre-Cisneros, J; Blanes, M; Montejo, M; Cervera, C; Aguado, J M; Len, O; Carratalá, J; Cordero, E; Bou, G; Muñoz, P; Ramos, A; Gurguí, M; Borrell, N; Fortún, J

    2012-12-01

    Urinary tract infection (UTI) is the most common infection in renal transplant patients, but it is necessary to determine the risk factors for bacterial UTI in recipients of other solid organ transplants (SOTs), as well as changes in etiology, clinical presentation, and prognosis. In total, 4388 SOT recipients were monitored in 16 transplant centers belonging to the Spanish Network for Research on Infection in Transplantation (RESITRA). The frequency and characteristics of bacterial UTI in transplant patients were obtained prospectively from the cohort (September 2003 to February 2005). A total of 192 patients (4.4%) presented 249 episodes of bacterial UTI (0.23 episodes per 1000 transplantation days); 156 patients were kidney or kidney-pancreas transplant recipients, and 36 patients were liver, heart, and lung transplant recipients. The highest frequency was observed in renal transplants (7.3%). High frequency of cystitis versus pyelonephritis without related mortality was observed in both groups. The most frequent etiology was Escherichia coli (57.8%), with 25.7% producing extended-spectrum β-lactamase (ESBL). In all transplants but renal, most cases occurred in the first month after transplantation. Cases were uniformly distributed during the first 6 months after transplantation in renal recipients. Age (odds ratio [OR] per decade 1.1, 95% confidence interval [CI] 1.02-1.17), female gender (OR 1.74, 95% CI 1.42-2.13), and the need for immediate post-transplant dialysis (OR 1.63, 95% CI 1.29-2.05) were independent variables associated with bacterial UTI in renal and kidney-pancreas recipients. The independent risk factors identified in non-renal transplants were age (OR per decade 1.79, 95% CI 1.09-3.48), female gender (OR 1.7, 95% CI 1.43-2.49), and diabetes (OR 1.02, 95% CI 1.001-1.040). UTI was frequent in renal transplants, but also not unusual in non-renal transplants. Because E. coli continues to be the most frequent etiology, the emergence of ESBL

  8. Tedizolid for treatment of acute bacterial skin and skin structure infections.

    Science.gov (United States)

    Hui, Ye; Xiaoju, Lü

    2015-01-01

    Tedizolid is a newly approved drug of the oxazolidinone class. It has high in vitro activity against Gram-positive bacteria, including multidrug-resistant strains. Peak plasma concentration of tedizolid is obtained within 3 h of oral dosing (PO), with high bioavailability. Tedizolid is mostly metabolized via the liver, and is excreted in feces in the form of a sulfate conjugate. Tedizolid 200 mg taken once daily demonstrated non-inferior efficacy and a good safety profile in patients with acute bacterial skin and skin structure infections. Results of two pivotal Phase III clinical trials showed that 6 days of 200 mg tedizolid PO or sequential intravenous (IV)/PO once-daily treatment was non-inferior to 10 days of 600 mg linezolid PO or sequential IV/PO twice-daily treatment at 48-72 h (primary end point) and at the test-of-cure in patients with acute bacterial skin and skin structure infections. The Phase II and Phase III trials also demonstrated that tedizolid was well tolerated.

  9. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen.

    Directory of Open Access Journals (Sweden)

    Ashkan Javid

    Full Text Available Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.

  10. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivative for bacterial skin infection

    Science.gov (United States)

    Chen, Zhuo; Zhang, Yaxin; Li, Linsen; Zhou, Shanyong; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2014-09-01

    Folliculitis, furunculosis and acne vulgaris are very common skin disorders of the hair follicles and are associated with large grease-producing (sebaceous) glands. Although the detailed mechanisms involved these skin disorders are not fully understood, it is believed that the bacteria Propionibacterium acnes and Staphylococcus aureus are the key pathogenic factors involved. Conventional treatments targeting the pathogenic factors include a variety of topical and oral medications such as antibiotics. The wide use of antibiotics leads to bacterial resistance, and hence there is a need for new alternatives in above bacterial skin treatment. Photodynamic antimicrobial chemotherapy (PACT) is based on an initial photosensitization of the infected area, followed by irradiation with visible light, producing singlet oxygen which is cytotoxic to bacteria. Herein we reported a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5) and its PACT effect for the bacteria involved in these skin infections. Our results demonstrated strong bactericidal effects of this photosensitizer on both strains of the bacteria, suggesting ZnPc-(Lys)5 as a promising antimicrobial photosensitizer for the treatment of infectious diseases caused by these bacteria.

  11. Bacterial urinary tract infection among pregnant women in Sana'a City Yemen

    International Nuclear Information System (INIS)

    Al-Ghalibi, S.M.; Al-Moayad, E.; Al-Jaufy, A.

    2007-01-01

    Urinary tract infection (UTI) is considered to be the most common bacterial infection during pregnancy. This study was designed to determine the prevalence of UTI among pregnant women, to identify the risk factors associated with UTI, to isolate and identify bacteria that are responsible for UTI and to determine the activity of some antibiotics against isolated bacteria. A total of 400 midstream urine specimens were collected from pregnant women (PW) and non-pregnant women (NPW). Identification and antibiotic sensitivity tests were made for the isolated bacteria. The prevalence rates of UTI in PW and NPW were 24.3% and 18.0% respectively. The association between pregnancy and UTI was not statistically significant (P=0.19). The higher prevalence rate of UTI was found in the age group 21-25 years old. However, there was no statistical significant association between age and UTI. The second trimester and third trimester were associated with higher prevalence of UTI (38.3%) and (37.0%), respectively but it was not statistically significant. High frequency of urination and lower abdominal pain were the most common symptoms. There was no statistical association between UTI and contraceptive use. The most common isolates were S. aureus and E.Coli, while the most effective antibiotics for most bacterial isolates were ciprofloxacin, ofloxacin and norofloxacin. (author)

  12. Roles of the host oxidative immune response and bacterial antioxidant rubrerythrin during Porphyromonas gingivalis infection.

    Directory of Open Access Journals (Sweden)

    Piotr Mydel

    2006-07-01

    Full Text Available The efficient clearance of microbes by neutrophils requires the concerted action of reactive oxygen species and microbicidal components within leukocyte secretory granules. Rubrerythrin (Rbr is a nonheme iron protein that protects many air-sensitive bacteria against oxidative stress. Using oxidative burst-knockout (NADPH oxidase-null mice and an rbr gene knockout bacterial strain, we investigated the interplay between the phagocytic oxidative burst of the host and the oxidative stress response of the anaerobic periodontal pathogen Porphyromonas gingivalis. Rbr ensured the proliferation of P. gingivalis in mice that possessed a fully functional oxidative burst response, but not in NADPH oxidase-null mice. Furthermore, the in vivo protection afforded by Rbr was not associated with the oxidative burst responses of isolated neutrophils in vitro. Although the phagocyte-derived oxidative burst response was largely ineffective against P. gingivalis infection, the corresponding oxidative response to the Rbr-positive microbe contributed to host-induced pathology via potent mobilization and systemic activation of neutrophils. It appeared that Rbr also provided protection against reactive nitrogen species, thereby ensuring the survival of P. gingivalis in the infected host. The presence of the rbr gene in P. gingivalis also led to greater oral bone loss upon infection. Collectively, these results indicate that the host oxidative burst paradoxically enhances the survival of P. gingivalis by exacerbating local and systemic inflammation, thereby contributing to the morbidity and mortality associated with infection.

  13. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy

    Science.gov (United States)

    Gafter-Gvili, Anat; Fraser, Abigail; Paul, Mical; Vidal, Liat; Lawrie, Theresa A; van de Wetering, Marianne D; Kremer, Leontien CM; Leibovici, Leonard

    2014-01-01

    Background Bacterial infections are a major cause of morbidity and mortality in patients who are neutropenic following chemotherapy for malignancy. Trials have shown the efficacy of antibiotic prophylaxis in reducing the incidence of bacterial infections but not in reducing mortality rates. Our systematic review from 2006 also showed a reduction in mortality. Objectives This updated review aimed to evaluate whether there is still a benefit of reduction in mortality when compared to placebo or no intervention. Search methods We searched the Cochrane Cancer Network Register of Trials (2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 2, 2011), MEDLINE (1966 to March 2011), EMBASE (1980 to March 2011), abstracts of conference proceedings and the references of identified studies. Selection criteria Randomised controlled trials (RCTs) or quasi-RCTs comparing different types of antibiotic prophylaxis with placebo or no intervention, or another antibiotic, to prevent bacterial infections in afebrile neutropenic patients. Data collection and analysis Two authors independently appraised the quality of each trial and extracted data from the included trials. Analyses were performed using RevMan 5.1 software. Main results One-hundred and nine trials (involving 13,579 patients) that were conducted between the years 1973 to 2010 met the inclusion criteria. When compared with placebo or no intervention, antibiotic prophylaxis significantly reduced the risk of death from all causes (46 trials, 5635 participants; risk ratio (RR) 0.66, 95% CI 0.55 to 0.79) and the risk of infection-related death (43 trials, 5777 participants; RR 0.61, 95% CI 0.48 to 0.77). The estimated number needed to treat (NNT) to prevent one death was 34 (all-cause mortality) and 48 (infection-related mortality). Prophylaxis also significantly reduced the occurrence of fever (54 trials, 6658 participants; RR 0.80, 95% CI 0.74 to 0.87), clinically documented infection

  14. An integrated microfluidic analysis microsystems with bacterial capture enrichment and in-situ impedance detection

    Science.gov (United States)

    Liu, Hai-Tao; Wen, Zhi-Yu; Xu, Yi; Shang, Zheng-Guo; Peng, Jin-Lan; Tian, Peng

    2017-09-01

    In this paper, an integrated microfluidic analysis microsystems with bacterial capture enrichment and in-situ impedance detection was purposed based on microfluidic chips dielectrophoresis technique and electrochemical impedance detection principle. The microsystems include microfluidic chip, main control module, and drive and control module, and signal detection and processing modulet and result display unit. The main control module produce the work sequence of impedance detection system parts and achieve data communication functions, the drive and control circuit generate AC signal which amplitude and frequency adjustable, and it was applied on the foodborne pathogens impedance analysis microsystems to realize the capture enrichment and impedance detection. The signal detection and processing circuit translate the current signal into impendence of bacteria, and transfer to computer, the last detection result is displayed on the computer. The experiment sample was prepared by adding Escherichia coli standard sample into chicken sample solution, and the samples were tested on the dielectrophoresis chip capture enrichment and in-situ impedance detection microsystems with micro-array electrode microfluidic chips. The experiments show that the Escherichia coli detection limit of microsystems is 5 × 104 CFU/mL and the detection time is within 6 min in the optimization of voltage detection 10 V and detection frequency 500 KHz operating conditions. The integrated microfluidic analysis microsystems laid the solid foundation for rapid real-time in-situ detection of bacteria.

  15. Real-Time Microbiology Laboratory Surveillance System to Detect Abnormal Events and Emerging Infections, Marseille, France.

    Science.gov (United States)

    Abat, Cédric; Chaudet, Hervé; Colson, Philippe; Rolain, Jean-Marc; Raoult, Didier

    2015-08-01

    Infectious diseases are a major threat to humanity, and accurate surveillance is essential. We describe how to implement a laboratory data-based surveillance system in a clinical microbiology laboratory. Two historical Microsoft Excel databases were implemented. The data were then sorted and used to execute the following 2 surveillance systems in Excel: the Bacterial real-time Laboratory-based Surveillance System (BALYSES) for monitoring the number of patients infected with bacterial species isolated at least once in our laboratory during the study periodl and the Marseille Antibiotic Resistance Surveillance System (MARSS), which surveys the primary β-lactam resistance phenotypes for 15 selected bacterial species. The first historical database contained 174,853 identifications of bacteria, and the second contained 12,062 results of antibiotic susceptibility testing. From May 21, 2013, through June 4, 2014, BALYSES and MARSS enabled the detection of 52 abnormal events for 24 bacterial species, leading to 19 official reports. This system is currently being refined and improved.

  16. Risk factors and features of recurrent bacterial complications of upper respiratory tract viral infections in children

    Directory of Open Access Journals (Sweden)

    Karpenko A.V.

    2017-10-01

    Full Text Available The aim of the study was to determine risk factors for recurrent bacterial complications of the upper respiratory tract viral infection (URTI in children, as well as the clinical and immunological features of the course of such complications. We enrolled 214 children aged 3-18 years with URTIs complicated with acute otitis media or acute bacterial rhinosinusitis. Frequency of bacterial complications of URI in 128 children was low (group I and in 86 children it met the criteria of recurrent course (group II. In addition to the standard examination, lysozyme levels in the oropharyngeal secretion were determined three times during the disease. It was found that children of group II were characterized by an early debut of respiratory morbidity (at the age of 6.00 (4.00, 12.00 months against 13.00 (4.50, 16.00 months in children of group I (p<0,0001, as well as a longer duration of catarrhal and intoxication syndromes in similar forms of the disease. The most significant risk factors for the formation of the recurring complication pattern were maternal smoking (OR=2.73, 95% CI [1.34, 5.48], along with gastroenterological pathology and frequent URTI in the mother and a shortened period of breastfeeding. In children with recurrent bacterial complications of URTI, there was an impaired local resistance of the upper respiratory tract mucous membranes (as a decrease in the concentrations of lysozyme in all periods of the disease, which persisted after recovery.

  17. Evidence of Bacterial Biofilms among Infected and Hypertrophied Tonsils in Correlation with the Microbiology, Histopathology, and Clinical Symptoms of Tonsillar Diseases

    Directory of Open Access Journals (Sweden)

    Saad Musbah Alasil

    2013-01-01

    Full Text Available Diseases of the tonsils are becoming more resistant to antibiotics due to the persistence of bacteria through the formation of biofilms. Therefore, understanding the microbiology and pathophysiology of such diseases represent an important step in the management of biofilm-related infections. We have isolated the microorganisms, evaluated their antimicrobial susceptibility, and detected the presence of bacterial biofilms in tonsillar specimens in correlation with the clinical manifestations of tonsillar diseases. Therefore, a total of 140 palatine tonsils were collected from 70 patients undergoing tonsillectomy at University Malaya Medical Centre. The most recovered isolate was Staphylococcus aureus (39.65% followed by Haemophilus influenzae (18.53%. There was high susceptibility against all selected antibiotics except for cotrimoxazole. Bacterial biofilms were detected in 60% of patients and a significant percentage of patients demonstrated infection manifestation rather than obstruction. In addition, an association between clinical symptoms like snore, apnea, nasal obstruction, and tonsillar hypertrophy was found to be related to the microbiology of tonsils particularly to the presence of biofilms. In conclusion, evidence of biofilms in tonsils in correlation with the demonstrated clinical symptoms explains the recalcitrant nature of tonsillar diseases and highlights the importance of biofilm’s early detection and prevention towards better therapeutic management of biofilm-related infections.

  18. Elevated carbon monoxide in the exhaled breath of mice during a systemic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Alan G Barbour

    Full Text Available Blood is the specimen of choice for most laboratory tests for diagnosis and disease monitoring. Sampling exhaled breath is a noninvasive alternative to phlebotomy and has the potential for real-time monitoring at the bedside. Improved instrumentation has advanced breath analysis for several gaseous compounds from humans. However, application to small animal models of diseases and physiology has been limited. To extend breath analysis to mice, we crafted a means for collecting nose-only breath samples from groups and individual animals who were awake. Samples were subjected to gas chromatography and mass spectrometry procedures developed for highly sensitive analysis of trace volatile organic compounds (VOCs in the atmosphere. We evaluated the system with experimental systemic infections of severe combined immunodeficiency Mus musculus with the bacterium Borrelia hermsii. Infected mice developed bacterial densities of ∼10(7 per ml of blood by day 4 or 5 and in comparison to uninfected controls had hepatosplenomegaly and elevations of both inflammatory and anti-inflammatory cytokines. While 12 samples from individual infected mice on days 4 and 5 and 6 samples from uninfected mice did not significantly differ for 72 different VOCs, carbon monoxide (CO was elevated in samples from infected mice, with a mean (95% confidence limits effect size of 4.2 (2.8-5.6, when differences in CO2 in the breath were taken into account. Normalized CO values declined to the uninfected range after one day of treatment with the antibiotic ceftriaxone. Strongly correlated with CO in the breath were levels of heme oxygenase-1 protein in serum and HMOX1 transcripts in whole blood. These results (i provide further evidence of the informativeness of CO concentration in the exhaled breath during systemic infection and inflammation, and (ii encourage evaluation of this noninvasive analytic approach in other various other rodent models of infection and for utility in

  19. Duplex recombinase polymerase amplification assays incorporating competitive internal controls for bacterial meningitis detection.

    Science.gov (United States)

    Higgins, Owen; Clancy, Eoin; Forrest, Matthew S; Piepenburg, Olaf; Cormican, Martin; Boo, Teck Wee; O'Sullivan, Nicola; McGuinness, Claire; Cafferty, Deirdre; Cunney, Robert; Smith, Terry J

    2018-01-30

    Recombinase polymerase amplification (RPA) is an isothermal nucleic acid amplification technology that provides rapid and robust infectious disease pathogen detection, ideal for point-of-care (POC) diagnostics in disease-prevalent low-resource countries. We have developed and evaluated three duplex RPA assays incorporating competitive internal controls for the detection of leading bacterial meningitis pathogens. Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae singleplex RPA assays were initially developed and evaluated, demonstrating 100% specificity with limits of detection of 4.1, 8.5 and 3.9 genome copies per reaction, respectively. Each assay was further developed into internally controlled duplex RPA assays via the incorporation of internal amplification control templates. Clinical performance of each internally controlled duplex RPA assay was evaluated by testing 64 archived PCR-positive clinical samples. Compared to real-time PCR, all duplex RPA assays demonstrated 100% diagnostic specificity, with diagnostic sensitivities of 100%, 86.3% and 100% for the S. pneumoniae, N. meningitidis and H. influenzae assays, respectively. This study details the first report of internally controlled duplex RPA assays for the detection of bacterial meningitis pathogens: S. pneumoniae, N. meningitidis and H. influenzae. We have successfully demonstrated the clinical diagnostic utility of each duplex RPA assay, introducing effective diagnostic technology for POC bacterial meningitis identification in disease-prevalent developing countries. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Broad-spectrum biosensor capable of detecting and identifying diverse bacterial and Candida species in blood.

    Science.gov (United States)

    Metzgar, David; Frinder, Mark; Lovari, Robert; Toleno, Donna; Massire, Christian; Blyn, Lawrence B; Ranken, Raymond; Carolan, Heather E; Hall, Thomas A; Moore, David; Hansen, Christian J; Sampath, Rangarajan; Ecker, David J

    2013-08-01

    We describe an assay which uses broad-spectrum, conserved-site PCR paired with mass spectrometry analysis of amplicons (PCR/electrospray ionization-mass spectrometry [ESI-MS]) to detect and identify diverse bacterial and Candida species in uncultured specimens. The performance of the assay was characterized using whole-blood samples spiked with low titers of 64 bacterial species and 6 Candida species representing the breadth of coverage of the assay. The assay had an average limit of detection of 100 CFU of bacteria or Candida per milliliter of blood, and all species tested yielded limits of detection between 20 and 500 CFU per milliliter. Over 99% of all detections yielded correct identifications, whether they were obtained at concentrations well above the limit of detection or at the lowest detectable concentrations. This study demonstrates the ability of broad-spectrum PCR/ESI-MS assays to detect and identify diverse organisms in complex natural matrices that contain high levels of background DNA.

  1. Magnetic resonance imaging of bacterial and tuberculous spondylodiscitis with associated complications and non-infectious spinal pathology mimicking infections: a pictorial review.

    Science.gov (United States)

    Kumar, Yogesh; Gupta, Nishant; Chhabra, Avneesh; Fukuda, Takeshi; Soni, Neetu; Hayashi, Daichi

    2017-06-05

    Magnetic resonance (MR) imaging plays an important role in the evaluation of bacterial and tuberculous spondylodiscitis and associated complications. Owing to its high sensitivity and specificity, it is a powerful diagnostic tool in the early diagnosis of ongoing infections, and thus provides help in prompt initiation of appropriate, therapy which may be medical or surgical, by defining the extent of involvement and detection of complications such as epidural and paraspinal abscesses. More specifically, MR imaging helps in differentiating bacterial from tuberculous infections and enables follow up of progression or resolution after appropriate treatment. However, other non-infectious pathology can demonstrate similar MR imaging appearances and one should be aware of these potential mimickers when interpreting MR images. Radiologists and other clinicians need to be aware of these potential mimics, which include such pathologies as Modic type I degenerative changes, trauma, metastatic disease and amyloidosis. In this pictorial review, we will describe and illustrate imaging findings of bacterial and tuberculous spondylodiscitis, their complications and non-infectious pathologies that mimic these spinal infections.

  2. Helicobacter pylori infection but not small intestinal bacterial overgrowth may play a pathogenic role in rosacea

    Science.gov (United States)

    Federico, A; Ruocco, E; Lo Schiavo, A; Masarone, M; Tuccillo, C; Peccerillo, F; Miranda, A; Romano, L; de Sio, C; de Sio, I; Persico, M; Ruocco, V; Riegler, G; Loguercio, C; Romano, M

    2015-01-01

    Background and aims Recent studies suggest a potential relationship between rosacea and Helicobacter pylori (H. pylori) infection or small intestinal bacterial overgrowth (SIBO), but there is no firm evidence of an association between rosacea and H. pylori infection or SIBO. We performed a prospective study to assess the prevalence of H. pylori infection and/or SIBO in patients with rosacea and evaluated the effect of H. pylori or SIBO eradication on rosacea. Methods We enrolled 90 patients with rosacea from January 2012 to January 2013 and a control group consisting of 90 patients referred to us because of mapping of nevi during the same period. We used the 13C Urea Breath Test and H. pylori stool antigen (HpSA) test to assess H. pylori infection and the glucose breath test to assess SIBO. Patients infected by H. pylori were treated with clarithromycin-containing sequential therapy. Patients positive for SIBO were treated with rifaximin. Results We found that 44/90 (48.9%) patients with rosacea and 24/90 (26.7%) control subjects were infected with H. pylori (p = 0.003). Moreover, 9/90 (10%) patients with rosacea and 7/90 (7.8%) subjects in the control group had SIBO (p = 0.6). Within 10 weeks from the end of antibiotic therapy, the skin lesions of rosacea disappeared or decreased markedly in 35/36 (97.2%) patients after eradication of H. pylori and in 3/8 (37.5%) patients who did not eradicate the infection (p Rosacea skin lesions decreased markedly in 6/7 (85.7%) after eradication of SIBO whereas of the two patients who did not eradicate SIBO, one (50%) showed an improvement in rosacea (p = 0.284). Conclusions Prevalence of H. pylori infection was significantly higher in patients with rosacea than control group, whereas SIBO prevalence was comparable between the two groups. Eradication of H. pylori infection led to a significant improvement of skin symptoms in rosacea patients. PMID:25653855

  3. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    Science.gov (United States)

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection.

  4. Critical role of tedizolid in the treatment of acute bacterial skin and skin structure infections

    Directory of Open Access Journals (Sweden)

    Ferrández O

    2016-12-01

    Full Text Available Olivia Ferrández,1,2 Olatz Urbina,1 Santiago Grau1,3 1Hospital Pharmacy, Hospital Universitari del Mar, Barcelona, Spain; 2Nursing Department, Universitat Pompeu Fabra, Barcelona, Spain; 3Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain Abstract: Tedizolid phosphate has high activity against the Gram-positive microorganisms mainly involved in acute bacterial skin and skin structure infections, such as strains of Staphylococcus aureus (including methicillin-resistant S. aureus strains and methicillin-sensitive S. aureus strains, Streptococcus pyogenes, Streptococcus agalactiae, the Streptococcus anginosus group, and Enterococcus faecalis, including those with some mechanism of resistance limiting the use of linezolid. The area under the curve for time 0–24 hours/minimum inhibitory concentration (MIC pharmacodynamic ratio has shown the best correlation with the efficacy of tedizolid, versus the time above MIC ratio and the maximum drug concentration/minimum inhibitory concentration ratio. Administration of this antibiotic for 6 days has shown its noninferiority versus administration of linezolid for 10 days in patients with skin and skin structure infections enrolled in two Phase III studies (ESTABLISH-1 and ESTABLISH-2. Tedizolid’s more favorable safety profile and dosage regimen, which allow once-daily administration, versus linezolid, position it as a good therapeutic alternative. However, whether or not the greater economic cost associated with this antibiotic is offset by its shorter treatment duration and possibility of oral administration in routine clinical practice has yet to be clarified. Keywords: tedizolid, tedizolid phosphate, acute bacterial skin and skin structure infections, oxazolidinone, linezolid resistance

  5. Potential role of tedizolid phosphate in the treatment of acute bacterial skin infections.

    Science.gov (United States)

    Urbina, Olatz; Ferrández, Olivia; Espona, Mercè; Salas, Esther; Ferrández, Irene; Grau, Santiago

    2013-01-01

    Tedizolid phosphate (TR-701), a prodrug of tedizolid (TR-700), is a next-generation oxazolidinone that has shown favorable results in the treatment of acute bacterial skin and skin-structure infections in its first Phase III clinical trial. Tedizolid has high bioavailability, penetration, and tissue distribution when administered orally or intravenously. The activity of tedizolid was greater than linezolid against strains of Staphylococcus spp., Streptococcus spp., and Enterococcus spp. in vitro studies, including strains resistant to linezolid and those not susceptible to vancomycin or daptomycin. Its pharmacokinetic characteristics allow for a once-daily administration that leads to a more predictable efficacy and safety profile than those of linezolid. No hematological adverse effects have been reported associated with tedizolid when used at the therapeutic dose of 200 mg in Phase I, II, or III clinical trials of up to 3 weeks of tedizolid administration. Given that the clinical and microbiological efficacy are similar for the 200, 300, and 400 mg doses, the lowest effective dose of 200 mg once daily for 6 days was selected for Phase III studies in acute bacterial skin and skin-structure infections, providing a safe dosing regimen with low potential for development of myelosuppression. Unlike linezolid, tedizolid does not inhibit monoamine oxidase in vivo, therefore interactions with adrenergic, dopaminergic, and serotonergic drugs are not to be expected. In conclusion, tedizolid is a novel antibiotic with potent activity against Gram-positive microorganisms responsible for skin and soft tissue infections, including strains resistant to vancomycin, linezolid, and daptomycin, thus answers a growing therapeutic need.

  6. Non-labeled QCM Biosensor for Bacterial Detection using Carbohydrate and Lectin Recognitions

    Science.gov (United States)

    Shen, Zhihong; Huang, Mingchuan; Xiao, Caide; Zhang, Yun; Zeng, Xiangqun; Wang, Peng G.

    2008-01-01

    High percentages of harmful microbes or their secreting toxins bind to specific carbohydrate sequences on human cells at the recognition and attachment sites. A number of studies also show that lectins react with specific structures of bacteria and fungi. In this report, we take advantage of the fact that a high percentage of microorganisms have both carbohydrate and lectin binding pockets at their surface. We demonstrate here for the first time that a carbohydrate non-labeled mass sensor in combination with lectin-bacterial O-antigen recognition can be used for detection of high molecular weight bacterial targets with remarkably high sensitivity and specificity. A functional mannose self-assembled monolayer (SAM) in combination with lectin Con A was used as molecular recognition elements for the detection of E. coli W1485 using Quartz Crytsal Microbalance (QCM) as a transducer. The multivalent binding of Concanavalin A (Con A) to the Escherichia coli (E. coli) surface O-antigen favors the strong adhesion of E. coli to mannose modified QCM surface by forming bridges between these two. As a result, the contact area between cell and QCM surface increases that leads to rigid and strong attachment. Therefore it enhances the binding between E. coli and the mannose. Our results show a significant improvement of the sensitivity and specificity of carbohydrate QCM biosensor with a experimental detection limit of a few hundred bacterial cells. The linear range is from 7.5 × 102 to 7.5 × 107 cells/mL that is four decade wider than the mannose alone QCM sensor. The change of damping resistances for E. coli adhesion experiments was no more than 1.4% suggesting that the bacterial attachment was rigid, rather than a viscoelastic behavior. Little non-specific binding was observed for Staphylococcus aureus and other proteins (Fetal Bovine serum, Erythrina cristagalli lectin). Our approach not only overcomes the challenges of applying QCM technology for bacterial detection but

  7. Clinical differences between respiratory viral and bacterial mono- and dual pathogen detected among Singapore military servicemen with febrile respiratory illness.

    Science.gov (United States)

    Ho, Zheng Jie Marc; Zhao, Xiahong; Cook, Alex R; Loh, Jin Phang; Ng, Sock Hoon; Tan, Boon Huan; Lee, Vernon J

    2015-07-01

    Although it is known that febrile respiratory illnesses (FRI) may be caused by multiple respiratory pathogens, there are no population-level studies describing its impact on clinical disease. Between May 2009 and October 2012, 7733 FRI patients and controls in the Singapore military had clinical data and nasal wash samples collected prospectively and sent for PCR testing. Patients with one pathogen detected (mono-pathogen) were compared with those with two pathogens (dual pathogen) for differences in basic demographics and clinical presentation. In total, 45.8% had one pathogen detected, 20.2% had two pathogens detected, 30.9% had no pathogens detected, and 3.1% had more than two pathogens. Multiple pathogens were associated with recruits, those with asthma and non-smokers. Influenza A (80.0%), influenza B (73.0%) and mycoplasma (70.6%) were most commonly associated with mono-infections, while adenovirus was most commonly associated with dual infections (62.9%). Influenza A paired with S. pneumoniae had higher proportions of chills and rigors than their respective mono-pathogens (P = 0.03, P = 0.009). H. influenzae paired with either enterovirus or parainfluenzae had higher proportions of cough with phlegm than their respective mono-pathogens. Although there were observed differences in mean proportions of body temperature, nasal symptoms, sore throat, body aches and joint pains between viral and bacterial mono-pathogens, there were few differences between distinct dual-pathogen pairs and their respective mono-pathogen counterparts. A substantial number of FRI patients have multiple pathogens detected. Observed clinical differences between patients of dual pathogen and mono-pathogen indicate the likely presence of complex microbial interactions between the various pathogens. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  8. Importance of Bacterial Replication and Alveolar Macrophage-Independent Clearance Mechanisms during Early Lung Infection with Streptococcus pneumoniae

    Science.gov (United States)

    Camberlein, Emilie; Cohen, Jonathan M.; José, Ricardo; Hyams, Catherine J.; Callard, Robin; Chimalapati, Suneeta; Yuste, Jose; Edwards, Lindsey A.; Marshall, Helina; van Rooijen, Nico; Noursadeghi, Mahdad

    2015-01-01

    Although the importance of alveolar macrophages for host immunity during early Streptococcus pneumoniae lung infection is well established, the contribution and relative importance of other innate immunity mechanisms and of bacterial factors are less clear. We have used a murine model of S. pneumoniae early lung infection with wild-type, unencapsulated, and para-amino benzoic acid auxotroph mutant TIGR4 strains to assess the effects of inoculum size, bacterial replication, capsule, and alveolar macrophage-dependent and -independent clearance mechanisms on bacterial persistence within the lungs. Alveolar macrophage-dependent and -independent (calculated indirectly) clearance half-lives and bacterial replication doubling times were estimated using a mathematical model. In this model, after infection with a high-dose inoculum of encapsulated S. pneumoniae, alveolar macrophage-independent clearance mechanisms were dominant, with a clearance half-life of 24 min compared to 135 min for alveolar macrophage-dependent clearance. In addition, after a high-dose inoculum, successful lung infection required rapid bacterial replication, with an estimated S. pneumoniae doubling time of 16 min. The capsule had wide effects on early lung clearance mechanisms, with reduced half-lives of 14 min for alveolar macrophage-independent and 31 min for alveolar macrophage-dependent clearance of unencapsulated bacteria. In contrast, with a lower-dose inoculum, the bacterial doubling time increased to 56 min and the S. pneumoniae alveolar macrophage-dependent clearance half-life improved to 42 min and was largely unaffected by the capsule. These data demonstrate the large effects of bacterial factors (inoculum size, the capsule, and rapid replication) and alveolar macrophage-independent clearance mechanisms during early lung infection with S. pneumoniae. PMID:25583525

  9. Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model

    DEFF Research Database (Denmark)

    van de Weert-van Leeuwen, Pauline B; de Vrankrijker, Angélica M M; Fentz, Joachim

    2013-01-01

    moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa) load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should......Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim...... of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa) affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28...

  10. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  11. Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format

    Energy Technology Data Exchange (ETDEWEB)

    Pinzon, NM; Aukema, KG; Gralnick, JA; Wackett, LP

    2011-06-28

    A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone production as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. IMPORTANCE In recent years, there has been renewed interest in advanced biofuel sources such as bacterial hydrocarbon production. Previous studies used solvent extraction of bacterial cultures followed by gas chromatography-mass spectrometry (GC-MS) to detect and quantify ketones and hydrocarbons (Beller HR, Goh EB, Keasling JD, Appl. Environ. Microbiol. 76: 1212-1223, 2010; Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP, Appl. Environ. Microbiol. 76: 3850-3862, 2010). While these analyses are powerful and accurate, their labor-intensive nature makes them intractable to high-throughput screening; therefore, methods for rapid identification of bacterial strains that are overproducing hydrocarbons are needed. The use of high

  12. Adults hospitalised with acute respiratory illness rarely have detectable bacteria in the absence of COPD or pneumonia; viral infection predominates in a large prospective UK sample.

    Science.gov (United States)

    Clark, Tristan W; Medina, Marie-jo; Batham, Sally; Curran, Martin D; Parmar, Surendra; Nicholson, Karl G

    2014-11-01

    Many adult patients hospitalised with acute respiratory illness have viruses detected but the overall importance of viral infection compared to bacterial infection is unclear. Patients were recruited from two acute hospital sites in Leicester (UK) over 3 successive winters. Samples were taken for viral and bacterial testing. Of the 780 patients hospitalised with acute respiratory illness 345 (44%) had a respiratory virus detected. Picornaviruses were the most commonly isolated viruses (detected in 23% of all patients). Virus detection rates exceeded 50% in patients with exacerbation of asthma (58%), acute bronchitis and Influenza-like-illness (64%), and ranged from 30 to 50% in patients with an exacerbation of COPD (38%), community acquired pneumonia (36%) and congestive cardiac failure (31%). Bacterial detection was relatively frequent in patients with exacerbation of COPD and pneumonia (25% and 33% respectively) but was uncommon in all other groups. Antibiotic use was high across all clinical groups (76% overall) and only 21% of all antibiotic use occurred in patients with detectable bacteria. Respiratory viruses are the predominant detectable aetiological agents in most hospitalised adults with acute respiratory illness. Antibiotic usage in hospital remains excessive including in clinical conditions associated with low rates of bacterial detection. Efforts at reducing excess antibiotic use should focus on these groups as a priority. Registered International Standard Controlled Trial Number: 21521552. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  13. Comparison of enterovirus detection in cerebrospinal fluid with Bacterial Meningitis Score in children

    OpenAIRE

    Pires, Frederico Ribeiro; Franco, Andréia Christine Bonotto Farias; Gilio, Alfredo Elias; Troster, Eduardo Juan

    2017-01-01

    ABSTRACT Objective To measure the role of enterovirus detection in cerebrospinal fluid compared with the Bacterial Meningitis Score in children with meningitis. Methods A retrospective cohort based on analysis of medical records of pediatric patients diagnosed as meningitis, seen at a private and tertiary hospital in São Paulo, Brazil, between 2011 and 2014. Excluded were patients with critical illness, purpura, ventricular shunt or recent neurosurgery, immunosuppression, concomitant bact...

  14. [Bacterial culture and drug sensitivity analysis of upper urinary tract calculi complicating with infection].

    Science.gov (United States)

    Wang, Shu; Shi, Yong-kang; Huang, Xiao-bo; Ma, Kai; Xu, Qing-quan; Xiong, Lin-lin; Li, Jian-xing; Wang, Xia-feng

    2014-10-18

    To investigate the bacteriology and drug sensitivity of upper urinary tract calculi patients, and to provide information for choosing suitable antibiotics. In the study, 21 patients who suffered from lithiasis in upper urinary tract and required an emergency drainage for acute obstruction and infection were the "acute group"; 64 patients with calculi in upper urinary tract and accompanied with no infectious symptoms were the "common group". The bacteriology and drug sensitivity of the two groups were investigated. Gram-negative bacteria infected the most common of upper urinary tract calculi patients with infection, accounting for 71.4% in the acute group and 65.7% in the common group, among which Escherichia coli were the predominant ones (35.7% in the acute group and 32.9% in the common group). No difference was found between these two groups in bacterial distribution (P>0.05). Although the average drug resistance rate of Gram-negative bacteria in the acute group was higher than that in the common group, it revealed no significant difference (P>0.05). The drug resistance rate to semisynthetic penicillin, cefuroxime and ceftriaxone were more than 50%, 60%, and 50%, respectively. Quinolones, such as ciprofloxacin and levofloxacin, got a 45% drug resistance. Aminoglycoside, carbapenema were sensitive to Gram-negative bacteria. Cefoperazone/sulbactam and piperacillin/tazobactam were more effective than ceftriaxone and piperacillin, respectively. There was no significant difference between upper urinary tract calculi patients with acute infection and common infection in bacteriology and drug sensitivity. Semisynthetic penicillin, the second generation of cephalosporin and quinolone were no longer the good choices of empirical use. Antibiotics combined with β-lactamase inhibitors would be an ideal empirical therapeutic choice.

  15. [Treatment of superficial bacterial cutaneous infections: a survey among general practitioners in France].

    Science.gov (United States)

    Fourtillan, E; Tauveron, V; Binois, R; Lehr-Drylewicz, A-M; Machet, L

    2013-12-01

    Superficial bacterial skin infection and superinfection of skin diseases are usually treated by general practitioners using antiseptics or antibiotics. However, acquired resistance to biocidal agents, both systemic and topical, is growing. Our aim was to assess the skill of GPs in clinical situations involving common skin infections. On 16 June 2010, we sent a questionnaire to all GPs in a rural region of France (the Cher department) together with a stamped addressed envelope for the reply. The questionnaire contained seven pages of multiple-choice questions and five clinical cases, each one illustrated with a photograph (sty, furuncle, whitlow, colonized chronic wounds and impetigo). Anonymity of responses was guaranteed. Data was analysed using the Clinsight(®) software package. The response rate was 51% (102 responses). GPs reported little difficulty in treating these patients (median 3, range 1 to 8 on a scale of increasing difficulty from 0 to 10). The main results of the study are firstly the frequency of combination of at least one antiseptic with one antibiotic (46%); secondly, the frequency of combination of two antibiotics (20% of cases); thirdly, the frequent prescription of systemic antibiotics for chronic wounds colonized by Pseudomonas aeruginosa (61%). Our study shows the high frequency of prescriptions for combined therapy to treat superficial skin infections despite the fact that monotherapy with either an antiseptic or an antibiotic would probably suffice. It also shows the unnecessary prescription of antibiotics for colonization of a chronic wound. The study was limited in terms of size and design: it was a questionnaire rather than an analysis of prescriptions actually made in "real life", and the response rate was 51%. In addition, aside from impetigo, for which randomised studies and recommendations were given, the other surface infections (sty, folliculitis, whitlow) tend to be treated more empirically. Dissemination of recommendations

  16. Molecular Detection of Helicobacter pylori ‎Infection in Gastric Biopsy Specimens by PCR

    Directory of Open Access Journals (Sweden)

    Haider Ali AlNaji‎

    2017-12-01

    Full Text Available Infection with Helicobacter pylori is associated with the development of different gastric disorders. Clinical outcome of H. pylori infection related to virulence factors that encoded by genes of this bacteria that can be used in a molecular detection such as the housekeeping genes; ureA and ureC. 16S rRNA is also used in bacterial diagnosis. Seventy-five patients with dyspeptic symptoms sent to esophago- gastroduodenal scope (OGD unit at Merjan Hospital in Babylon Province.  They were diagnosed by specialist physicians and selected in the current study and were classified 43 patients had gastritis, 23 patients had peptic ulcer disease(PUD, 3 had growth like mass non cancer and 6 were normal as negative control.      The results of multiplex PCR and monoplex PCR revealed that a total of 49 (65.3% cases were found positive for H. pylori by 16S rRNA and ureA, whereas ureC primer is less sensitive for bacterial detection

  17. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens.

    Science.gov (United States)

    Higgins, Owen; Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert; Smith, Terry J

    2018-02-09

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae , Neisseria meningitidis and Haemophilus influenzae . Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae , N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.

  18. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP Assay for the Detection of Bacterial Meningitis Pathogens

    Directory of Open Access Journals (Sweden)

    Owen Higgins

    2018-02-01

    Full Text Available Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.

  19. Ceftaroline fosamil and treatment of acute bacterial skin and skin structure infections: CAPTURE study experience.

    Science.gov (United States)

    Santos, Paul D; Davis, Amanda; Jandourek, Alena; Smith, Alexander; David Friedland, H

    2013-12-01

    The Clinical Assessment Program and TEFLARO Utilization Registry (CAPTURE) is a multicentre retrospective cohort study in the USA describing treatment of acute bacterial skin and skin structure infection (ABSSSI) with ceftaroline fosamil (CPT-F). Charts for review were chosen by random selection. Among 647 evaluable patients, 52% were obese, 46% had diabetes mellitus (DM), and 19% had peripheral vascular disease (PVD). Methicillin-resistant Staphylococcus aureus (MRSA) was recovered in 28% and methicillin-susceptible S. aureus (MSSA), 11%. Antibiotics were administered prior to CPT-F treatment in 80%, and concurrently in 39%. Clinical success overall was 85%; in patients with DM, 83%; with PVD, 76%; and in obese patients, 88%. Clinical success was ≥ 79% across all infection types; 81% for MRSA and 83% for MSSA; and 86% for ceftaroline monotherapy and 84% for concurrent therapy. These high clinical success rates support CPT-F as an effective treatment option for ABSSSI, including infections due to MRSA and patients with significant co-morbidities.

  20. Risk score to stratify children with suspected serious bacterial infection: observational cohort study.

    Science.gov (United States)

    Brent, Andrew J; Lakhanpaul, Monica; Thompson, Matthew; Collier, Jacqueline; Ray, Samiran; Ninis, Nelly; Levin, Michael; MacFaul, Roddy

    2011-04-01

    To derive and validate a clinical score to risk stratify children presenting with acute infection. Observational cohort study of children presenting with suspected infection to an emergency department in England. Detailed data were collected prospectively on presenting clinical features, laboratory investigations and outcome. Clinical predictors of serious bacterial infection (SBI) were explored in multivariate logistic regression models using part of the dataset, each model was then validated in an independent part of the dataset, and the best model was chosen for derivation of a clinical risk score for SBI. The ability of this score to risk stratify children with SBI was then assessed in the entire dataset. Final diagnosis of SBI according to criteria defined by the Royal College of Paediatrics and Child Health working group on Recognising Acute Illness in Children. Data from 1951 children were analysed. 74 (3.8%) had SBI. The sensitivity of individual clinical signs was poor, although some were highly specific for SBI. A score was derived with reasonable ability to discriminate SBI (area under the receiver operator characteristics curve 0.77, 95% CI 0.71 to 0.83) and risk stratify children with suspected SBI. This study demonstrates the potential utility of a clinical score in risk stratifying children with suspected SBI. Further work should aim to validate the score and its impact on clinical decision making in different settings, and ideally incorporate it into a broader management algorithm including additional investigations to further stratify a child's risk.

  1. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    Directory of Open Access Journals (Sweden)

    Leonardo De La Fuente

    Full Text Available Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen.

  2. The Bacterial Pathogen Xylella fastidiosa Affects the Leaf Ionome of Plant Hosts during Infection

    Science.gov (United States)

    De La Fuente, Leonardo; Parker, Jennifer K.; Oliver, Jonathan E.; Granger, Shea; Brannen, Phillip M.; van Santen, Edzard; Cobine, Paul A.

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  3. Molecular Detection of Schistosome Infections with a Disposable Microfluidic Cassette.

    Directory of Open Access Journals (Sweden)

    Jinzhao Song

    2015-12-01

    Full Text Available Parasitic helminths such as schistosomes, as well as filarial and soil-transmitted nematodes, are estimated to infect at least a billion people worldwide, with devastating impacts on human health and economic development. Diagnosis and monitoring of infection dynamics and efficacy of treatment depend almost entirely on methods that are inaccurate, labor-intensive, and unreliable. These shortcomings are amplified and take on added significance in mass drug administration programs, where measures of effectiveness depend on accurate monitoring of treatment success (or failure, changes in disease transmission rates, and emergence of possible drug resistance. Here, we adapt isothermal molecular assays such as loop-mediated isothermal amplification (LAMP to a simple, hand-held, custom-made field-ready microfluidic device that allows sensitive and specific detection of schistosome cell-free nucleic acids in serum and plasma (separated with a point-of-care plasma separator from Schistosoma mansoni-infected mice. Cell-free S. mansoni DNA was detected with our device without prior extraction from blood. Our chip exhibits high sensitivity (~2 x 10(-17 g/μL, with a positive signal for S. mansoni DNA detectable as early as one week post infection, several weeks before parasite egg production commences. These results indicate that incorporation of isothermal amplification strategies with our chips could represent a strategy for rapid, simple, low-cost diagnosis of both pre-patent and chronic schistosome infections as well as potential monitoring of treatment efficacy.

  4. Monitoring bacterial burden, inflammation and bone damage longitudinally using optical and μCT imaging in an orthopaedic implant infection in mice.

    Directory of Open Access Journals (Sweden)

    Jared A Niska

    Full Text Available Recent advances in non-invasive optical, radiographic and μCT imaging provide an opportunity to monitor biological processes longitudinally in an anatomical context. One particularly relevant application for combining these modalities is to study orthopaedic implant infections. These infections are characterized by the formation of persistent bacterial biofilms on the implanted materials, causing inflammation, periprosthetic osteolysis, osteomyelitis, and bone damage, resulting in implant loosening and failure.An orthopaedic implant infection model was used in which a titanium Kirshner-wire was surgically placed in femurs of LysEGFP mice, which possess EGFP-fluorescent neutrophils, and a bioluminescent S. aureus strain (Xen29; 1×10(3 CFUs was inoculated in the knee joint before closure. In vivo bioluminescent, fluorescent, X-ray and μCT imaging were performed on various postoperative days. The bacterial bioluminescent signals of the S. aureus-infected mice peaked on day 19, before decreasing to a basal level of light, which remained measurable for the entire 48 day experiment. Neutrophil EGFP-fluorescent signals of the S. aureus-infected mice were statistically greater than uninfected mice on days 2 and 5, but afterwards the signals for both groups approached background levels of detection. To visualize the three-dimensional location of the bacterial infection and neutrophil infiltration, a diffuse optical tomography reconstruction algorithm was used to co-register the bioluminescent and fluorescent signals with μCT images. To quantify the anatomical bone changes on the μCT images, the outer bone volume of the distal femurs were measured using a semi-automated contour based segmentation process. The outer bone volume increased through day 48, indicating that bone damage continued during the implant infection.Bioluminescent and fluorescent optical imaging was combined with X-ray and μCT imaging to provide noninvasive and longitudinal

  5. Dynamic laser speckle to detect motile bacterial response of Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Sendra, H; Murialdo, S; Passoni, L

    2007-01-01

    This proposal deals with the technique for detection of motile response of Pseudomonas aeruginosa using dynamic laser speckle or biospeckle as an alternative method. The study of bacterial displacement plays an essential role in biocatalysts processes and biodegradation. Hence, some biodegrading enzymes are benign catalytic that could be used for the production of industrially useful compounds as well as in wastewater treatments. This work presents an experimental set up and a computational process using frame sequences of dynamic laser speckle as a novel application. The objective was the detection of different levels of motility in bacteria. The encouraging results were achieved through a direct and non invasive observation method of the phenomenon

  6. Human Cytomegalovirus: detection of congenital and perinatal infection in Argentina

    Science.gov (United States)

    Distéfano, Angélica Lidia; Alonso, Alicia; Martin, Fabián; Pardon, Fabián

    2004-01-01

    Background Human cytomegalovirus (CMV) is one of the most commonly found agents of congenital infections. Primary maternal infection is associated with risk of symptomatic congenital diseases, and high morbidity is frequently associated with very low birth weight. Neonates with asymptomatic infection develop various sequelae during infancy. This is the first Argentine study performed in neonates with congenital and postnatal HCMV infection. The purpose of this study was to evaluate the performance of the polymerase chain reaction (PCR) technique with different pairs of primers, to detect cytomegalovirus isolated in tissue cultures and directly in urine and dried blood spot (DBS) specimens. Results were compared with IgM detection. Methods The study was performed between 1999 and 2001 on routine samples in the Laboratory. A total of 61 urine and 56 serum samples were selected from 61 newborns/infants, 33 patients whose samples were analyzed during the first two to three weeks of life were considered congenital infections; the remaining 28 patients whose samples were taken later than the third week were grouped as perinatal infections, although only in 4 the perinatal transmission of infection was determined unequivocally Cytomegalovirus diagnosis was made by isolating the virus from urine samples in human foreskin fibroblast cells. Three different primer pairs directed to IE, LA and gB genes were used for the HCMV PCR assay in viral isolates. Subsequently, PCR and nested PCR (nPCR) assays with gB primers were performed directly in urine and in 11 samples of dried blood spot (DBS) on Guthrie Card, these results were then compared with serology. Results The main clinical manifestations of the 33 patients with congenital infection were purpura, jaundice, hepatomegaly and anaemia. Three patients presented low birth weight as single symptom, 10, intracranial calcifications, and 2, kidney failure. In the 28 patients grouped as with perinatal infection, anaemia

  7. Innate immune system favors emergency monopoiesis at the expense of DC-differentiation to control systemic bacterial infection in mice.

    Science.gov (United States)

    Pasquevich, Karina A; Bieber, Kristin; Günter, Manina; Grauer, Matthias; Pötz, Oliver; Schleicher, Ulrike; Biedermann, Tilo; Beer-Hammer, Sandra; Bühring, Hans-Jörg; Rammensee, Hans-Georg; Zender, Lars; Autenrieth, Ingo B; Lengerke, Claudia; Autenrieth, Stella E

    2015-10-01

    DCs are professional APCs playing a crucial role in the initiation of T-cell responses to combat infection. However, systemic bacterial infection with various pathogens leads to DC-depletion in humans and mice. The mechanisms of pathogen-induced DC-depletion remain poorly understood. Previously, we showed that mice infected with Yersinia enterocolitica (Ye) had impaired de novo DC-development, one reason for DC-depletion. Here, we extend these studies to gain insight into the molecular mechanisms of DC-depletion and the impact of different bacteria on DC-development. We show that the number of bone marrow (BM) hematopoietic progenitors committed to the DC lineage is reduced following systemic infection with different Gram-positive and Gram-negative bacteria. This is associated with a TLR4- and IFN-γ-signaling dependent increase of committed monocyte progenitors in the BM and mature monocytes in the spleen upon Ye-infection. Adoptive transfer experiments revealed that infection-induced monopoiesis occurs at the expense of DC-development. Our data provide evidence for a general response of hematopoietic progenitors upon systemic bacterial infections to enhance monocyte production, thereby increasing the availability of innate immune cells for pathogen control, whereas impaired DC-development leads to DC-depletion, possibly driving transient immunosuppression in bacterial sepsis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. "DETECTION OF BACTERIAL, METHICILLIN RESISTANCE, AND β-LACTAMASE GENES FOUND IN WOUND SWABS BY MULTIPLEX POLYMERASE CHAIN REACTION"

    Directory of Open Access Journals (Sweden)

    S. Sadeghian

    2004-05-01

    Full Text Available Coagulase-positive and coagulase negative, methicillin-resistant staphylococci are major causes of serious nosocomial infections and it is very important to have a reliable test to detect these bacteria. A multiplex polymerase chain reaction (mPCR was used on 100 clinical samples for simultaneous amplification of the universal bacterial, mec-A encoding the penicillin binding protein 2a, which is associated with staphylococcal methicillin resistance and TEM-1 encoding the β-lactamase, which accounts for the majority of all cases of the plasmid β-lactamase resistance worldwide. Out of 100 wound swabs tested, 99% with universal primers, 26% with TEM-1 primers and 6% with mec-A primers were positive. Dot blot Digoxigenin hybridization on the 30 samples was carried out to confirm identified bacteria with specific bacterial probes. Out of 100 wound swabs, 38% were positive with Staphylococcus aureus probe, 23% were positive with enteric bacteria probe, 7% were positive with Streptococcus agalactia probe and 1% were positive with Haemophilus influenza probe. The mPCR method used in this study, was designed to be incorporated into the workflow of the clinical microbiology laboratory and allows for the identification of intrinsic resistance in a timely and reliable manner.

  9. Lipocalin 2 Imparts Selective Pressure on Bacterial Growth in the Bladder and Is Elevated in Women with Urinary Tract Infection

    Science.gov (United States)

    Steigedal, Magnus; Marstad, Anne; Haug, Markus; Damås, Jan K.; Strong, Roland K.; Roberts, Pacita L.; Himpsl, Stephanie D.; Stapleton, Ann; Hooton, Thomas M.; Mobley, Harry L. T.; Hawn, Thomas R.

    2014-01-01

    Competition for iron is a critical component of successful bacterial infections, but the underlying in vivo mechanisms are poorly understood. We have previously demonstrated that lipocalin 2 (LCN2) is an innate immunity protein that binds to bacterial siderophores and starves them for iron, thus representing a novel host defense mechanism to infection. In the present study we show that LCN2 is secreted by the urinary tract mucosa and protects against urinary tract infection (UTI). We found that LCN2 was expressed in the bladder, ureters, and kidneys of mice subject to UTI. LCN2 was protective with higher bacterial numbers retrieved from bladders of Lcn2-deficient mice than from wild-type mice infected with the LCN2-sensitive Escherichia coli strain H9049. Uropathogenic E. coli mutants in siderophore receptors for salmochelin, aerobactin, or yersiniabactin displayed reduced fitness in wild-type mice, but not in mice deficient of LCN2, demonstrating that LCN2 imparts a selective pressure on bacterial growth in the bladder. In a human cohort of women with recurrent E. coli UTIs, urine LCN2 levels were associated with UTI episodes and with levels of bacteriuria. The number of siderophore systems was associated with increasing bacteriuria during cystitis. Our data demonstrate that LCN2 is secreted by the urinary tract mucosa in response to uropathogenic E. coli challenge and acts in innate immune defenses as a colonization barrier that pathogens must overcome to establish infection. PMID:25398327

  10. Application of photostable quantum dots for indirect immunofluorescent detection of specific bacterial serotypes on small marine animals

    International Nuclear Information System (INIS)

    Decho, Alan W; Beckman, Erin M; Chandler, G Thomas; Kawaguchi, Tomohiro

    2008-01-01

    An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae

  11. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization.

    Science.gov (United States)

    Hyre, Amanda N; Kavanagh, Kylie; Kock, Nancy D; Donati, George L; Subashchandrabose, Sargurunathan

    2017-03-01

    Urinary tract infection (UTI) is a major global infectious disease affecting millions of people annually. Human urinary copper (Cu) content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC). UPEC upregulates the expression of Cu efflux genes during clinical UTI in patients as an adaptive response to host-derived Cu. Whether Cu is mobilized to urine as a host response to UTI and its role in protection against UTI remain unresolved. To address these questions, we tested the hypothesis that Cu is a host effector mobilized to urine during UTI to limit bacterial growth. Our results reveal that Cu is mobilized to urine during UTI caused by the major uropathogens Proteus mirabilis and Klebsiella pneumoniae , in addition to UPEC, in humans. Ceruloplasmin, a Cu-containing ferroxidase, is found at higher levels in UTI urine than in healthy control urine and serves as the molecular source of urinary Cu during UTI. Our results demonstrate that ceruloplasmin decreases the bioavailability of iron in urine by a transferrin-dependent mechanism. Experimental UTI with UPEC in nonhuman primates recapitulates the increased urinary Cu content observed during clinical UTI. Furthermore, Cu-deficient mice are highly colonized by UPEC, indicating that Cu is involved in the limiting of bacterial growth within the urinary tract. Collectively, our results indicate that Cu is a host effector that is involved in protection against pathogen colonization of the urinary tract. Because urinary Cu levels are amenable to modulation, augmentation of the Cu-based host defense against UTI represents a novel approach to limiting bacterial colonization during UTI. Copyright © 2017 American Society for Microbiology.

  12. Bacterial agents and antibiotic sensitivity in children with urinary infection in two hospitals of Popayan, Colombia

    Directory of Open Access Journals (Sweden)

    Carolina Álvarez-Czeczotta

    2012-06-01

    Full Text Available Introduction: Urinary Tract Infection (UTI is a common condition in children. Isolation of bacteria and early management is a priority in order to contribute to the reduction of morbidity and avoid bacterial resistance. Objectives: To identify bacterial etiologic agents and antibiotic sensitivity in children (1 month to 5 years of age with UTI in two hospitals of Popayán, Colombia. Materials and methods: We conducted a cross-sectional study in children aged 1 month to 5 years of age who consulted the emergency services of two hospitals with clinical suspicion of UTI. The sample was 123 children. Using an instrument collected demographic variables, signs and symptoms, results of urinalysis, urine culture, sensitivity testing, treatment, and UTI classification. We determined the frequency and proportions of sociodemographic and clinical variables, bacterial agents and antibiotic resistance. Data was analyzed using SPSS 11.5 program. Results: We included 129 children diagnosed with UTI with positive urine culture, bladder catheter taken with 97.7% of cases. 74.8% of patients were female. Escherichia coli was the seed that was isolated more frequently (95.4%, then Sp Proteus (2.4%, and Klebsiella pneumoniae (1.6%. The antibiotics to which the bacteria showed adequate sensitivity were: ceftriaxone, amikacin, gentamicin, ciprofloxacin, nitrofurantoin, cefuroxime and cephalexin. Showed low sensitivity: ampicillin and trimethoprim sulfa. Conclusions: Escherichia coli was the bacteria that cause of UTI in our study population. For initial empiric treatment of hospitalized patients would recommend parenteral drug third generation cephalosporins (ceftriaxone and aminoglycosides (amikacin, gentamicin. For outpatient management, oral antibiotics showed greater sensitivity were nalidixic acid, cefuroxime and cephalexin.

  13. Development of Methionyl-tRNA Synthetase Inhibitors as Antibiotics for Gram-Positive Bacterial Infections.

    Science.gov (United States)

    Faghih, Omeed; Zhang, Zhongsheng; Ranade, Ranae M; Gillespie, J Robert; Creason, Sharon A; Huang, Wenlin; Shibata, Sayaka; Barros-Álvarez, Ximena; Verlinde, Christophe L M J; Hol, Wim G J; Fan, Erkang; Buckner, Frederick S

    2017-11-01

    Antibiotic-resistant bacteria are widespread and pose a growing threat to human health. New antibiotics acting by novel mechanisms of action are needed to address this challenge. The bacterial methionyl-tRNA synthetase (MetRS) enzyme is essential for protein synthesis, and the type found in Gram-positive bacteria is substantially different from its counterpart found in the mammalian cytoplasm. Both previously published and new selective inhibitors were shown to be highly active against Gram-positive bacteria with MICs of ≤1.3 μg/ml against Staphylococcus , Enterococcus , and Streptococcus strains. Incorporation of radioactive precursors demonstrated that the mechanism of activity was due to the inhibition of protein synthesis. Little activity against Gram-negative bacteria was observed, consistent with the fact that Gram-negative bacterial species contain a different type of MetRS enzyme. The ratio of the MIC to the minimum bactericidal concentration (MBC) was consistent with a bacteriostatic mechanism. The level of protein binding of the compounds was high (>95%), and this translated to a substantial increase in MICs when the compounds were tested in the presence of serum. Despite this, the compounds were very active when they were tested in a Staphylococcus aureus murine thigh infection model. Compounds 1717 and 2144, given by oral gavage, resulted in 3- to 4-log decreases in the bacterial load compared to that in vehicle-treated mice, which was comparable to the results observed with the comparator drugs, vancomycin and linezolid. In summary, the research describes MetRS inhibitors with oral bioavailability that represent a class of compounds acting by a novel mechanism with excellent potential for clinical development. Copyright © 2017 American Society for Microbiology.

  14. Accuracy of C - Reactive protein as a bacterial infection marker in critically immunosuppressed patients: A systematic review and meta-analysis.

    Science.gov (United States)

    de Oliveira, Vanessa Martins; Moraes, Rafael Barberena; Stein, Airton Tetelbom; Wendland, Eliana Márcia

    2017-12-01

    There is a need for a better understanding of the role of C-reactive protein (CRP) as a valid marker for the detection of bacterial infections in critically immunosuppressed patients. A high negative predictive value of CRP is also needed to rule out sepsis and bacterial infections in immunocompetent patients. However, few studies have evaluated the performance of CRP in immunocompromised hosts. The aim of the present study was to evaluate the performance of CRP as a marker of infection in critically immunosuppressed patients. The inclusion criterion was immunosuppression for which CRP was used as a bacterial infection marker. Searches were performed in the Cochrane Register, MEDLINE, EMBASE, SCOPUS, Web OF Science, LILACS and CINAHL databases. We applied the Quality Assessment of Diagnostic Accuracy Studies tool 2 (QUADAS 2) to evaluate the quality of the articles and evaluated the test accuracy parameters using hierarchical summary receiver operating characteristic (HSROC) curves and bivariate random effect models. Only 13 of 21 studies produced quantitative results. We analyzed all studies using the random effects method (restricted maximum likelihood) and obtained a joint diagnostic odds ratio (DOR) of 3.04 (95% confidence interval [CI] 1.71-5.40) with heterogeneity (I 2 =91%, Q=181.48, p<0.001). Therefore, a bivariate model was applied. Analyzing the tuberculosis carrier, steroid user, or presence of opportunistic infection subgroups, as described in the proposal, was not possible due to the lack of information on these topics included in the articles. CRP appears to be a good screening tool for sepsis in critically immunosuppressed patients. Submitted PROSPERO 2015: CRD42015019329. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. New perspectives to the enterotoxigenic E. coli F4 porcine infection model: Susceptibility genotypes in relation to performance, diarrhoea and bacterial shedding.

    Science.gov (United States)

    Roubos-van den Hil, Petra J; Litjens, Ralph; Oudshoorn, Anna-Katharina; Resink, Jan Willem; Smits, Coen H M

    2017-04-01

    Enterotoxigenic E. coli (ETEC), causing post-weaning diarrhoea, is a major problem in weaned piglets. Individual animal responses to ETEC infection show high variability in animal experiments. Two studies were designed to optimize the ETEC F4ac infection model in piglets by combining the genotype susceptibility with performance, diarrhoea incidence and bacterial shedding. The studies were performed with respectively 120 and 80 male piglets that were tested for susceptibility or resistance towards ETEC O149:F4ac by a DNA marker based test. Three different genotypes were observed; resistant (RR), susceptible heterozygote (RS) and susceptible homozygote (SS). Piglets, were orally infected with an inoculum suspension (containing 1.5E8 CFU/ml ETEC F4ac) at day 0, 1 and 2 of the study. Performance, diarrhoea incidence and bacterial shedding were followed for 21days. In the first week after challenge a difference in average daily gain was observed between resistant and susceptible piglets in both studies. For the complete study period no significant differences were observed. Diarrhoea incidence was significantly higher in susceptible pigs compared to the resistant pigs in the first week after challenge. Bacterial shedding was much higher in the susceptible pigs and ETEC excretion lasted longer. ETEC was hardly detected in the faecal material of the resistant pigs. In conclusion, susceptible pigs showed higher diarrhoea incidence and higher numbers of faecal ETEC shedding in the first week after challenge compared to resistant pigs. The DNA marker based test can be used to select pigs that are susceptible for ETEC for inclusion in ETEC infection model, resulting in less animals needed to perform infection studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Co-trimoxazole alone for prevention of bacterial infection in patients with acute leukaemia.

    Science.gov (United States)

    Starke, I D; Donnelly, P; Catovsky, D; Darrell, J; Johnson, S A; Goldman, J M; Galton, D A

    1982-01-02

    43 patients undergoing treatment for acute leukaemia were randomised to receive either co-trimoxazole alone or co-trimoxazole with framycetin and colistin as antibacterial prophylaxis during periods of neutropenia. There were no significant differences between the two treatment groups in the time before the onset of the first fever, the number of episodes of fever or of septicaemia per patient, the number of neutropenic days during which patients remained afebrile or did not require systemic antibiotics, or the number of resistant organisms acquired. Co-trimoxazole alone is cheaper and easier to take than co-trimoxazole with framycetin and colistin, and it is therefore preferable to the three-drug combination for the prophylaxis of bacterial infection.

  17. Bacterial isolates from burn wound infections and their antibiograms: A eight-year study

    Directory of Open Access Journals (Sweden)

    Mehta Manjula

    2007-01-01

    Full Text Available Background: Infection is an important cause of mortality in burns. Rapidly emerging nosocomial pathogens and the problem of multi-drug resistance necessitates periodic review of isolation patterns and antibiogram in the burn ward. Aim: Keeping this in mind, the present retrospective study from wounds of patients admitted to burns unit was undertaken to determine the bacteriological profile and the resistance pattern from the burn ward over a period of three years (June 2002 to May 2005 and was compared with the results obtained during the previous five years (June 1997-May 2002, to ascertain any change in the bacteriological profile and antimicrobial resistance pattern. Materials and Methods: Bacterial isolates from 268 wound swabs taken from burn patients were identified by conventional biochemical methods and antimicrobial susceptibility was performed. Statistical comparison of bacterial isolates and their resistance pattern with previous five years data was done using c2 test. Results and Conclusions: During the period from 2002 to 2005 Pseudomonas species was the commonest pathogen isolated (51.5% followed by Acinetobacter species (14.28%, Staph. aureus (11.15%, Klebsiella species (9.23% and Proteus species (2.3%. When compared with the results of the previous five years i.e., 1997 to 2002, Pseudomonas species was still the commonest pathogen in the burns unit. However, the isolation of this organism and other gram-negative organisms had decreased in comparison to previous years. Newer drugs were found to be effective.

  18. Piperine suppresses pyroptosis and interleukin-1β release upon ATP triggering and bacterial infection

    Directory of Open Access Journals (Sweden)

    Yi-Dan Liang

    2016-10-01

    Full Text Available Piperine is a phytochemical present in black pepper (Piper nigrum Linn and other related herbs, possessing a wide array of pharmacological activities including anti-inflammatory effects. Previously, we demonstrated that piperine has therapeutic effects on bacterial sepsis in mice, but the underlying mechanism has not been fully elucidated. In this study, we aimed to investigate the influences of piperine on pyroptosis in murine macrophages. The results showed that piperine dose-dependently inhibited ATP-induced pyroptosis, thereby suppressing interleukin-1β (IL-1β or high mobility group box-1 protein (HMGB1 release in LPS-primed bone marrow-derived macrophages (BMDMs and J774A.1 cells. Accompanying this, ATP-induced AMP-activated protein kinase (AMPK activation was greatly suppressed by piperine, whereas AMPK agonist metformin counteracted piperine’s inhibitory effects on pyroptosis. Moreover, piperine administration greatly reduced both peritoneal and serum IL-1β levels in the mouse model intraperitoneally infected with Escherichia coli, suggestive of suppressing systemic inflammation and pyroptosis. Our data indicated that piperine could protect macrophages from pyroptosis and reduced IL-1β and HMGB1 release by suppressing ATP-induced AMPK activation, suggesting that piperine may become a potential therapeutic agent against bacterial sepsis.

  19. Potential role of tedizolid phosphate in the treatment of acute bacterial skin infections

    Directory of Open Access Journals (Sweden)

    Urbina O

    2013-04-01

    Full Text Available Olatz Urbina,1 Olivia Ferrández,1 Mercè Espona,1 Esther Salas,1 Irene Ferrández,2 Santiago Grau1 1Services of Hospital Pharmacy, Hospital Universitari del Mar, Universitat Autònoma de Barcelona, 2Ciència i Tecnologia dels Aliments, Pharmacy Department, Universitat de Barcelona, Barcelona, Spain Abstract: Tedizolid phosphate (TR-701, a prodrug of tedizolid (TR-700, is a next-generation oxazolidinone that has shown favorable results in the treatment of acute bacterial skin and skin-structure infections in its first Phase III clinical trial. Tedizolid has high bioavailability, penetration, and tissue distribution when administered orally or intravenously. The activity of tedizolid was greater than linezolid against strains of Staphylococcus spp., Streptococcus spp., and Enterococcus spp. in vitro studies, including strains resistant to linezolid and those not susceptible to vancomycin or daptomycin. Its pharmacokinetic characteristics allow for a once-daily administration that leads to a more predictable efficacy and safety profile than those of linezolid. No hematological adverse effects have been reported associated with tedizolid when used at the therapeutic dose of 200 mg in Phase I, II, or III clinical trials of up to 3 weeks of tedizolid administration. Given that the clinical and microbiological efficacy are similar for the 200, 300, and 400 mg doses, the lowest effective dose of 200 mg once daily for 6 days was selected for Phase III studies in acute bacterial skin and skin-structure infections, providing a safe dosing regimen with low potential for development of myelosuppression. Unlike linezolid, tedizolid does not inhibit monoamine oxidase in vivo, therefore interactions with adrenergic, dopaminergic, and serotonergic drugs are not to be expected. In conclusion, tedizolid is a novel antibiotic with potent activity against Gram-positive microorganisms responsible for skin and soft tissue infections, including strains resistant to

  20. Assessment of Sepsis-3 criteria and quick SOFA in patients with cirrhosis and bacterial infections.

    Science.gov (United States)

    Piano, Salvatore; Bartoletti, Michele; Tonon, Marta; Baldassarre, Maurizio; Chies, Giada; Romano, Antonietta; Viale, Pierluigi; Vettore, Elia; Domenicali, Marco; Stanco, Marialuisa; Pilutti, Chiara; Frigo, Anna Chiara; Brocca, Alessandra; Bernardi, Mauro; Caraceni, Paolo; Angeli, Paolo

    2017-08-31

    Patients with cirrhosis have a high risk of sepsis, which confers a poor prognosis. The systemic inflammatory response syndrome (SIRS) criteria have several limitations in cirrhosis. Recently, new criteria for sepsis (Sepsis-3) have been suggested in the general population (increase of Sequential Organ Failure Assessment (SOFA) ≥2 points from baseline). Outside the intensive care unit (ICU), the quick SOFA (qSOFA (at least two among alteration in mental status, systolic blood pressure ≤100 mm Hg or respiratory rate ≥22/min)) was suggested to screen for sepsis. These criteria have never been evaluated in patients with cirrhosis. The aim of the study was to assess the ability of Sepsis-3 criteria in predicting in-hospital mortality in patients with cirrhosis and bacterial/fungal infections. 259 consecutive patients with cirrhosis and bacterial/fungal infections were prospectively included. Demographic, laboratory and microbiological data were collected at diagnosis of infection. Baseline SOFA was assessed using preadmission data. Patients were followed up until death, liver transplantation or discharge. Findings were externally validated (197 patients). Sepsis-3 and qSOFA had significantly greater discrimination for in-hospital mortality (area under the receiver operating characteristic (AUROC)=0.784 and 0.732, respectively) than SIRS (AUROC=0.606) (p<0.01 for both). Similar results were observed in the validation cohort. Sepsis-3 (subdistribution HR (sHR)=5.47; p=0.006), qSOFA (sHR=1.99; p=0.020), Chronic Liver Failure Consortium Acute Decompensation score (sHR=1.05; p=0.001) and C reactive protein (sHR=1.01;p=0.034) were found to be independent predictors of in-hospital mortality. Patients with Sepsis-3 had higher incidence of acute-on-chronic liver failure, septic shock and transfer to ICU than those without Sepsis-3. Sepsis-3 criteria are more accurate than SIRS criteria in predicting the severity of infections in patients with cirrhosis. qSOFA is a

  1. LYSOSOMAL AND ULTRASTRUCTURAL CHANGES IN HUMAN "TOXIC" NEUTROPHILS DURING BACTERIAL INFECTION

    Science.gov (United States)

    McCall, Charles E.; Katayama, Isao; Cotran, Ramzi S.; Finland, Maxwell

    1969-01-01

    "Toxic" neutrophils from humans with severe bacterial infections, identified by the presence of Döhle bodies, "toxic" granules, and vacuoles were shown to differ from normal neutrophils both in ultrastructure and in lysosome activity. Döhle bodies were identified as lamellar aggregates of rough endoplasmic reticulum. Toxic granules corresponded to the azurophilic granules usually identified by Romanowsky stains only in neutrophil precursors. By electron microscopy such granules were large, electron-dense, and peroxidase positive; they could usually be distinguished from the smaller, less dense, "specific" granules also present in control neutrophils, but in the latter they became visible by light microscopy only after prolonged staining or following fixation with glutaraldehyde. These observations suggest that toxic granules represent an abnormal staining reaction of the large dense granules in the toxic cells, and not phagocytized material, newly formed abnormal granules or autophagic bodies. Alkaline phosphatase activity was significantly greater in toxic neutrophils than in normal ones; 80% of the activity of both was located in the lysosome fraction. Beta glucuronidase was normal. Total acid phosphatase was normal, but the percentage located in the nonlysosome fraction of toxic neutrophils was increased, suggesting that lysosomes were "labilized." Formation of neutral red vacuoles in supravitally stained preparations, an index of lysosome activity, occurred more rapidly in toxic neutrophils. This reaction paralleled degranulation and the formation of clear vacuoles in unstained wet mounts and could be blocked by colchicine, a lysosome stabilizer, or enhanced by procedures which activate lysosomes. "Autophagic" vacuoles were observed by electron microscopy in some toxic neutrophils. These observations are discussed in relation to the concept that the "toxic" neutrophils in severe bacterial infection reflect cellular immaturity and/or stimulation or

  2. The Nuclear Receptor LXR Limits Bacterial Infection of Host Macrophages through a Mechanism that Impacts Cellular NAD Metabolism

    Directory of Open Access Journals (Sweden)

    Jonathan Matalonga

    2017-01-01

    Full Text Available Macrophages exert potent effector functions against invading microorganisms but constitute, paradoxically, a preferential niche for many bacterial strains to replicate. Using a model of infection by Salmonella Typhimurium, we have identified a molecular mechanism regulated by the nuclear receptor LXR that limits infection of host macrophages through transcriptional activation of the multifunctional enzyme CD38. LXR agonists reduced the intracellular levels of NAD+ in a CD38-dependent manner, counteracting pathogen-induced changes in macrophage morphology and the distribution of the F-actin cytoskeleton and reducing the capability of non-opsonized Salmonella to infect macrophages. Remarkably, pharmacological treatment with an LXR agonist ameliorated clinical signs associated with Salmonella in