WorldWideScience

Sample records for design basis earthquake

  1. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  2. Determination of Design Basis Earthquake ground motion

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1997-01-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  3. The earthquake problem in engineering design: generating earthquake design basis information

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1987-01-01

    Designing earthquake resistant structures requires certain design inputs specific to the seismotectonic status of the region, in which a critical facility is to be located. Generating these inputs requires collection of earthquake related information using present day techniques in seismology and geology, and processing the collected information to integrate it to arrive at a consolidated picture of the seismotectonics of the region. The earthquake problem in engineering design has been outlined in the context of a seismic design of nuclear power plants vis a vis current state of the art techniques. The extent to which the accepted procedures of assessing seismic risk in the region and generating the design inputs have been adherred to determine to a great extent the safety of the structures against future earthquakes. The document is a step towards developing an aproach for generating these inputs, which form the earthquake design basis. (author)

  4. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  5. Data base pertinent to earthquake design basis

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1988-01-01

    Mitigation of earthquake risk from impending strong earthquakes is possible provided the hazard can be assessed, and translated into appropriate design inputs. This requires defining the seismic risk problem, isolating the risk factors and quantifying risk in terms of physical parameters, which are suitable for application in design. Like all other geological phenomena, past earthquakes hold the key to the understanding of future ones. Quantificatio n of seismic risk at a site calls for investigating the earthquake aspects of the site region and building a data base. The scope of such investigations is il lustrated in Figure 1 and 2. A more detailed definition of the earthquake problem in engineering design is given elsewhere (Sharma, 1987). The present document discusses the earthquake data base, which is required to support a seismic risk evaluation programme in the context of the existing state of the art. (author). 8 tables, 10 figs., 54 refs

  6. Ground motion following selection of SRS design basis earthquake and associated deterministic approach

    International Nuclear Information System (INIS)

    1991-03-01

    This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section's Seismic Qualification Program for reactor restart

  7. Facts learnt from the Hanshin-Awaji disaster and consideration on design basis earthquake

    International Nuclear Information System (INIS)

    Shibata, Heki

    1997-01-01

    This paper will deal with how to establish the concept of the design basis earthquake for critical industrial facilities such as nuclear power plants in consideration of disasters induced by the 1995 Hyogoken-Nanbu Earthquake (Southern Hyogo-prefecture Earthquake-1995), so-called Kobe earthquake. The author once discussed various DBEs at 7 WCEE. At that time, the author assumed that the strongest effective PGA would be 0.7 G, and compared to the values of accelerations to a structure obtained by various codes in Japan and other countries. The maximum PGA observed by an instrument at the Southern Hyogo-pref. Earthquake-1995 exceeded the previous assumption of the author, even though the evaluation results of the previous paper had been pessimistic. According to the experience of Kobe event, the author will point out the necessity of the third earthquake S s adding to S 1 and S 2 , previous DBEs. (author)

  8. Facts learnt from the Hanshin-Awaji disaster and consideration on design basis earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Heki [Yokohama National Univ. (Japan). Faculty of Engineering

    1997-03-01

    This paper will deal with how to establish the concept of the design basis earthquake for critical industrial facilities such as nuclear power plants in consideration of disasters induced by the 1995 Hyogoken-Nanbu Earthquake (Southern Hyogo-prefecture Earthquake-1995), so-called Kobe earthquake. The author once discussed various DBEs at 7 WCEE. At that time, the author assumed that the strongest effective PGA would be 0.7 G, and compared to the values of accelerations to a structure obtained by various codes in Japan and other countries. The maximum PGA observed by an instrument at the Southern Hyogo-pref. Earthquake-1995 exceeded the previous assumption of the author, even though the evaluation results of the previous paper had been pessimistic. According to the experience of Kobe event, the author will point out the necessity of the third earthquake S{sub s} adding to S{sub 1} and S{sub 2}, previous DBEs. (author)

  9. Design basis earthquakes for critical industrial facilities and their characteristics, and the Southern Hyogo prefecture earthquake, 17 January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Heki

    1998-12-01

    This paper deals with how to establish the concept of the design basis earthquake (DBE) for critical industrial facilities such as nuclear power plants in consideration of disasters such as the Southern Hyogo prefecture earthquake, the so-called Kobe earthquake in 1995. The author once discussed various DBEs at the 7th World Conference on Earthquake Engineering. At that time, the author assumed that the strongest effective PGA would be 0.7 G, and compared the values of accelerations of a structure obtained by various codes in Japan and other countries. The maximum PGA observed by an instrument at the Southern Hyogo prefecture earthquake in 1995 exceeded the previous assumption of the author, even though the results of the previous paper had been pessimistic. According to the experience of the Kobe event, the author will point out the necessity of the third earthquake S{sub s} adding to S{sub 1} and S{sub 2} of previous DBEs.

  10. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    Science.gov (United States)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  11. On elastic limit margins for earthquake design

    International Nuclear Information System (INIS)

    Buchhardt, F.; Matthees, W.; Magiera, G.

    1987-01-01

    In the Federal Republic of Germany KTA rule 2201 being the basis for the design of nuclear power plants against seismic events is now under discussion for revisions. One of the main demands to modify KTA rule 2201 consists in cancelling the existing design philosophy, i.e. design against an operating basis earthquake (AEB) as well as against a safe shutdown earthquake (SEB). When using the present rule the 'lower' earthquake (AEB) can become design-predominant, since for AEB and SEB different types of load cases are to be superimposed with different safety factors. The scope of this study is to quantify by parametric analyses so-called 'elastic bearing capacity limit margins' for seismic events; hereby different seismic input criteria - conventional as well as recently proposed are taken into account to investigate the influence of eventual modifications in seismic design philosophy. This way a relation between AEB and SEB has to be defined so that SEB is just still predominant for the design while AEB still will yield to elastic behaviour. The study covers all German site conditions

  12. Evaluation of earthquake vibration on aseismic design of nuclear power plant judging from recent earthquakes

    International Nuclear Information System (INIS)

    Dan, Kazuo

    2006-01-01

    The Regulatory Guide for Aseismic Design of Nuclear Reactor Facilities was revised on 19 th September, 2006. Six factors for evaluation of earthquake vibration are considered on the basis of the recent earthquakes. They are 1) evaluation of earthquake vibration by method using fault model, 2) investigation and approval of active fault, 3) direct hit earthquake, 4) assumption of the short active fault as the hypocentral fault, 5) locality of the earthquake and the earthquake vibration and 6) remaining risk. A guiding principle of revision required new evaluation method of earthquake vibration using fault model, and evaluation of probability of earthquake vibration. The remaining risk means the facilities and people get into danger when stronger earthquake than the design occurred, accordingly, the scattering has to be considered at evaluation of earthquake vibration. The earthquake belt of Hyogo-Nanbu earthquake and strong vibration pulse in 1995, relation between length of surface earthquake fault and hypocentral fault, and distribution of seismic intensity of off Kushiro in 1993 are shown. (S.Y.)

  13. Design basis ground motion (Ss) required on new regulatory guide

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro

    2013-01-01

    New regulatory guide is enforced on July 8. Here, it is introduced how the design basis ground motion (Ss) for seismic design of nuclear power reactor facilities was revised on the new guide. Ss is formulated as two types of earthquake ground motions, earthquake ground motions with site specific earthquake source and with no such specific source locations. The latter is going to be revised based on the recent observed near source ground motions. (author)

  14. Development of Probabilistic Design Basis Earthquake (DBE) Parameters for Moderate and High Hazard Facilities at INEEL

    International Nuclear Information System (INIS)

    Payne, S. M.; Gorman, V. W.; Jensen, S. A.; Nitzel, M. E.; Russell, M. J.; Smith, R. P.

    2000-01-01

    Design Basis Earthquake (DBE) horizontal and vertical response spectra are developed for moderate and high hazard facilities or Performance Categories (PC) 3 and 4, respectively, at the Idaho National Engineering and Environmental Laboratory (INEEL). The probabilistic DBE response spectra will replace the deterministic DBE response spectra currently in the U.S. Department of Energy Idaho Operations Office (DOE-ID) Architectural Engineering Standards that govern seismic design criteria for several facility areas at the INEEL. Probabilistic DBE response spectra are recommended to DOE Naval Reactors for use at the Naval Reactor Facility at INEEL. The site-specific Uniform Hazard Spectra (UHS) developed by URS Greiner Woodward Clyde Federal Services are used as the basis for developing the DBE response spectra. In 1999, the UHS for all INEEL facility areas were recomputed using more appropriate attenuation relationships for the Basin and Range province. The revised UHS have lower ground motions than those produced in the 1996 INEEL site-wide probabilistic ground motion study. The DBE response spectra were developed by incorporating smoothed broadened regions of the peak accelerations, velocities, and displacements defined by the site-specific UHS. Portions of the DBE response spectra were adjusted to ensure conservatism for the structural design process

  15. On fundamental concept of anti-earthquake design of equipment and pipings

    International Nuclear Information System (INIS)

    Shibata, H.; Kato, M.

    1979-01-01

    This paper deals with a new concept of anti-earthquake design of equipment and pipings in nuclear power plants. Usual anti-earthquake design of such items starts from the design basis ground motions, via floor responses and ends at the stress analysis of each structural element. However, the same type of equipment are used for plants under various site conditions. The ordinarily used method obliges the repetition of such design procedure on each plant. This new design method has been developed to avoid such time-consuming repetitions. (orig.)

  16. Japan Catastrophic Earthquake and Tsunami in Fukushima Daiichi NPP; Is it Beyond Design Basis Accident or a Design Deficiency and Operator Unawareness?

    International Nuclear Information System (INIS)

    Gaafar, M.A.; Refeat, R.M.; EL-Kady, A.A.

    2012-01-01

    On March 11, 2011 a catastrophic earthquake and tsunami struck the north east coast of Japan. This catastrophe damaged fully or partially the six units of the Fukushima Daiichi Nuclear Power Plant.Questions were raised following the aftermath, whether it is beyond design basis accident caused by severe natural event or a failure by the Japanese authorities to plan to deal with such accident. There are many indications that the Utility of Fukushima Daiichi NPP, Tokyo Electric Power Company (TEPCO), did not pay enough attention to numerous facts about the incompatibility of the site and several design defects in the plant units. In fact there are three other NPP sites nearby Fukushima Daiichi Plant (about 30 to 60 Km far from Fukushima Daiichi NPP), with different site characteristics, which survived the same catastrophic earthquake and tsunami, but they were automatically turned into a safe shutdown state. These plants sites are Fukushima Daini Plant (4 units), Onagawa Plant (3 units) and Tokai Daini (II) Plant (one unit). In this paper, the aftermath Fukushima Daiichi plant integrity is pointed out. Some facts about the site and design concerns which could have implications on the accident are discussed. The response of Japan Authority is outlined and some remarks about their actions are underlined. The impacts of this disaster on the Nuclear Power Program worldwide are also discussed.

  17. PRELIMINARY SELECTION OF MGR DESIGN BASIS EVENTS

    International Nuclear Information System (INIS)

    Kappes, J.A.

    1999-01-01

    The purpose of this analysis is to identify the preliminary design basis events (DBEs) for consideration in the design of the Monitored Geologic Repository (MGR). For external events and natural phenomena (e.g., earthquake), the objective is to identify those initiating events that the MGR will be designed to withstand. Design criteria will ensure that radiological release scenarios resulting from these initiating events are beyond design basis (i.e., have a scenario frequency less than once per million years). For internal (i.e., human-induced and random equipment failures) events, the objective is to identify credible event sequences that result in bounding radiological releases. These sequences will be used to establish the design basis criteria for MGR structures, systems, and components (SSCs) design basis criteria in order to prevent or mitigate radiological releases. The safety strategy presented in this analysis for preventing or mitigating DBEs is based on the preclosure safety strategy outlined in ''Strategy to Mitigate Preclosure Offsite Exposure'' (CRWMS M andO 1998f). DBE analysis is necessary to provide feedback and requirements to the design process, and also to demonstrate compliance with proposed 10 CFR 63 (Dyer 1999b) requirements. DBE analysis is also required to identify and classify the SSCs that are important to safety (ITS)

  18. Earthquake resistant design of structures

    International Nuclear Information System (INIS)

    Choi, Chang Geun; Kim, Gyu Seok; Lee, Dong Geun

    1990-02-01

    This book tells of occurrence of earthquake and damage analysis of earthquake, equivalent static analysis method, application of equivalent static analysis method, dynamic analysis method like time history analysis by mode superposition method and direct integration method, design spectrum analysis considering an earthquake-resistant design in Korea. Such as analysis model and vibration mode, calculation of base shear, calculation of story seismic load and combine of analysis results.

  19. Designing an Earthquake-Resistant Building

    Science.gov (United States)

    English, Lyn D.; King, Donna T.

    2016-01-01

    How do cross-bracing, geometry, and base isolation help buildings withstand earthquakes? These important structural design features involve fundamental geometry that elementary school students can readily model and understand. The problem activity, Designing an Earthquake-Resistant Building, was undertaken by several classes of sixth- grade…

  20. Latur earthquake and its impact on the aseismic design of structures in India

    Energy Technology Data Exchange (ETDEWEB)

    Basu, P C [Atomic Energy Regulatory Board (India)

    1995-07-01

    The Latur earthquake occurred on September 30, 1995. The epicentre was located near the Killari village of Latur District which is situated in the stable continental region of Southern Peninsular India. The earthquake caused a wide range of damage though its magnitude (MS) was 6.4. Intensive damage survey was carried out and a number of geophysical and seismological studies had been undertaken. It has been concluded from the results, available so far from these studies, that the hypocentre of the earthquake was on the lineament dipping NW-SE. The rock matrix in the hypocentral region was weakened due to the presence of fluid and rupture of this weak region caused the event. The ground motion produced by the earthquake was of complex nature comprising of horizontal and vertical component. The ground acceleration in the epicentral region was estimated as 0.2 g. Latur earthquake raised several issues with respect to aseismic design of structures in India which need further deliberation. These issues are related to seismic zoning of India, determination of design basis ground motion, design/detailing of structures, etc. (author)

  1. Latur earthquake and its impact on the aseismic design of structures in India

    International Nuclear Information System (INIS)

    Basu, P.C.

    1995-01-01

    The Latur earthquake occurred on September 30, 1995. The epicentre was located near the Killari village of Latur District which is situated in the stable continental region of Southern Peninsular India. The earthquake caused a wide range of damage though its magnitude (MS) was 6.4. Intensive damage survey was carried out and a number of geophysical and seismological studies had been undertaken. It has been concluded from the results, available so far from these studies, that the hypocentre of the earthquake was on the lineament dipping NW-SE. The rock matrix in the hypocentral region was weakened due to the presence of fluid and rupture of this weak region caused the event. The ground motion produced by the earthquake was of complex nature comprising of horizontal and vertical component. The ground acceleration in the epicentral region was estimated as 0.2 g. Latur earthquake raised several issues with respect to aseismic design of structures in India which need further deliberation. These issues are related to seismic zoning of India, determination of design basis ground motion, design/detailing of structures, etc. (author)

  2. A study on generation of simulated earthquake ground motion for seismic design of nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Matsumoto, Takuji; Kitada, Yoshio; Osaki, Yorihiko; Kanda, Jun; Masao, Toru.

    1985-01-01

    The aseismatic design of nuclear power generation facilities carried out in Japan at present must conform to the ''Guideline for aseismatic design examination regarding power reactor facilities'' decided by the Atomic Energy Commission in 1978. In this guideline, the earthquake motion used for the analysis of dynamic earthquake response is to be given in the form of the magnitude determined on the basis of the investigation of historical earthquakes and active faults around construction sites and the response spectra corresponding to the distance from epicenters. Accordingly when the analysis of dynamic earthquake response is actually carried out, the simulated earthquake motion made in conformity with these set up response spectra is used as the input earthquake motion for the design. For the purpose of establishing the techniques making simulated earthquake motion which is more appropriate and rational from engineering viewpoint, the research was carried out, and the results are summarized in this paper. The techniques for making simulated earthquake motion, the response of buildings and the response spectra of floors are described. (Kako, I.)

  3. Earthquake design for controlled structures

    Directory of Open Access Journals (Sweden)

    Nikos G. Pnevmatikos

    2017-04-01

    Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.

  4. Consideration for standard earthquake vibration (1). The Niigataken Chuetsu-oki Earthquake in 2007

    International Nuclear Information System (INIS)

    Ishibashi, Katsuhiko

    2007-01-01

    Outline of new guideline of quakeproof design standard of nuclear power plant and the standard earthquake vibration are explained. The improvement points of new guideline are discussed on the basis of Kashiwazaki-Kariwa Nuclear Power Plant incidents. The fundamental limits of new guideline are pointed. Placement of the quakeproof design standard of nuclear power plant, JEAG4601 of Japan Electric Association, new guideline, standard earthquake vibration of new guideline, the Niigataken Chuetsu-oki Earthquake in 2007 and damage of Kashiwazaki-Kariwa Nuclear Power Plant are discussed. The safety criteria of safety review system, organization, standard and guideline should be improved on the basis of this earthquake and nuclear plant accident. The general knowledge, 'a nuclear power plant is not constructed in the area expected large earthquake', has to be realized. Preconditions of all nuclear power plants should not cause damage to anything. (S.Y.)

  5. Earthquake free design of pipe lines

    International Nuclear Information System (INIS)

    Kurihara, Chizuko; Sakurai, Akio

    1974-01-01

    Long structures such as cooling sea water pipe lines of nuclear power plants have a wide range of extent along the ground surface, and are incurred by not only the inertia forces but also forces due to ground deformations or the seismic wave propagation during earthquakes. Since previous reports indicated the earthquake free design of underground pipe lines, it is discussed in this report on behaviors of pipe lines on the ground during earthquakes and is proposed the aseismic design of pipe lines considering the effects of both inertia forces and ground deformations. (author)

  6. Current plans to characterize the design basis ground motion at the Yucca Mountain, Nevada Site

    International Nuclear Information System (INIS)

    Simecka, W.B.; Grant, T.A.; Voegele, M.D.; Cline, K.M.

    1992-01-01

    A site at Yucca Mountain Nevada is currently being studied to assess its suitability as a potential host site for the nation's first commercial high level waste repository. The DOE has proposed a new methodology for determining design-basis ground motions that uses both deterministic and probabilistic methods. The role of the deterministic approach is primary. It provides the level of detail needed by design engineers in the characterization of ground motions. The probabilistic approach provides a logical structured procedure for integrating the range of possible earthquakes that contribute to the ground motion hazard at the site. In addition, probabilistic methods will be used as needed to provide input for the assessment of long-term repository performance. This paper discusses the local tectonic environment, potential seismic sources and their associated displacements and ground motions. It also discusses the approach to assessing the design basis earthquake for the surface and underground facilities, as well as selected examples of the use of this type of information in design activities

  7. Actions at Kashiwazaki Kariwa Nuclear Power Station after the Niigataken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Orita, Shuichi

    2009-01-01

    'The Niigataken Chuetsu-oki Earthquake in 2007' occurred on July 16, 2007, and seismic motions beyond those of the design basis earthquake were recorded at Kashiwazaki Kariwa nuclear power station located near the epicenter. After the earthquake, inspections and seismic response analyses have been being performed to grasp seismic induced impacts on structures, systems and components (SSCs). In addition, re-definition of design basis earthquake, upgrading, management against disasters have been also being conducted. (author)

  8. The guideline and practical procedures for earthquake-resistant design of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Watabe, M.

    1985-01-01

    The Guideline for the aseismic design of nuclear reactor facilities, revised in 1981, is introduced. The basic philosophy entails structural integrity against a major earthquake, rigid structure for less deformation and foundation on rock. The classification of facilities is then explained. Some practical examples are tabulated. In the light of the above classifications, evaluation procedures for aseismic design are defined. Design basis earthquake ground motions, S1 and S2, are defined. S1 is the maximum possible earthquake ground motion, while S2 is the maximum credible one. The relation between active faults and S1, S2 motions is explained, seismic forces induced by S1 and S2 are expressed in terms of response spectra. Static seismic coefficient procedures are also applied to evaluate seismic forces, as a minimum guide-line based on dynamic analysis. Combinations of seismic forces and allowable limits are then explained. In the second part of the paper, seismic analysis for reactor buildings as a part of design practice is outlined. There are three major key points in practical aseismic design. The first one is input design earthquake motions, in which soil/foundation interaction problems are also included. In practice, ground motions at the free field rock surface have to be convoluted or deconvoluted to obtain base rock motions, which are applied to estimate input design earthquake motions by way of finite element analysis or a lumped mass lattice model. Also introduced is dynamic modelling of the reactor building with its non-linear behaviour represented by plastic deformation of reinforced concrete members as well as by uplift characteristics of foundations. Then an evaluation of aseismic safety is introduced. (author)

  9. Design basis II: Design for events

    International Nuclear Information System (INIS)

    Frisch, W.

    1982-01-01

    In a lecture of this title, it could be expected that all events which are a basis for system and component design are described. According to the title of the Course 'Instrumentation and Control of Nuclear Power Plants' emphasis is put on events originating within the plant (no consideration of external events such as air plane crash or earth-quake). The lecture is divided into the two parts 'Transients' and 'Loss of coolant accidents (LOCAs)'. Due to the complex interaction between systems and components during transients, the first part is the main part of the lecture, while the second part (LOCAs) is only a very brief description of emergency core cooling system functions and the typical course of a large and small LOCA event. The first part on anticipated transients with intact primary coolant system boundary (non-LOCA-transients) covers several aspects of the analysis, such as classification, brief system description, transient description, analysis of anticipated transients without scram (ATWS) and analytical methods. Due to the time restriction necessary within the course, only a small section of the entire area can be presented in this paper. (orig.)

  10. Basic earthquake engineering from seismology to analysis and design

    CERN Document Server

    Sucuoğlu, Halûk

    2014-01-01

    This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building struc­tures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calcu...

  11. Original earthquake design basis in light of recent seismic hazard studies

    International Nuclear Information System (INIS)

    Petrovski, D.

    1993-01-01

    For the purpose of conceiving the framework within which efforts have been made in the eastern countries to construct earthquake resistant nuclear power plants, a review of the development and application of the seismic zoning map of USSR is given. The normative values of seismic intensity and acceleration are discussed from the aspect of recent probabilistic seismic hazard studies. To that effect, presented briefly in this paper is the methodology of probabilistic seismic hazard analysis. (author)

  12. Learning Earthquake Design and Construction–Why are Open ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 10. Learning Earthquake Design and Construction – Why are Open-Ground Storey Buildings Vulnerable in Earthquakes? C V R Murty. Classroom Volume 10 Issue 10 October 2005 pp 84-87 ...

  13. Standard concerning the design of nuclear power stations in earthquake-prone districts

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Anbriashivili, Y.K.; Suvilova, A.V.

    1980-01-01

    The measures of security assurance against the effect of radioactive contamination has become more and more complex due to the construction of nuclear power stations of diverse types. The aseismatic measures for the nuclear power stations built in the districts where earthquakes of different intensity occur are important problems. All main machinery and equipments and emergency systems in power stations must be protected from earthquakes, and this makes the solution of problems difficult. At present in USSR, the provisional standard concerning the design of atomic energy facilities built in earthquake-prone districts is completed. The basic philosophy of the standard is to decide the general requirements as the conditions for the design of nuclear power stations built in earthquake-prone districts. The lowest earthquake activity in the construction districts is considered as magnitude 4, and in the districts where earthquake activity is magnitude 9 or more, the construction of nuclear power stations is prohibited. Two levels of earthquake action are specified for the design: design earthquake and the largest design earthquake. The construction sites of nuclear power stations must be 15 to 150 km distant from the potential sources of earthquakes. Nuclear power stations are regarded as the aseismatically guaranteed type when the safety of reactors is secured under the application of the standard. The buildings and installations are classified into three classes regarding the aseismatic properties. (Kako, I.)

  14. Single-earthquake design for piping systems in advanced light water reactors

    International Nuclear Information System (INIS)

    Terao, D.

    1993-01-01

    Appendix A to Part 100 of Title 10 of the Code of Federal Regulations (10 CFR Part 100) requires, in part, that all structures, systems, and components of the nuclear power plant necessary for continued operation without undue risk to the health and safety of the public shall be designed to remain functional and within applicable stress and deformation limits when subject to an operating basis earthquake (OBE). The US Nuclear Regulatory Commission (NRC) is proposing changes to Appendix A to Part 100 to redefine the OBE at a level such that its purpose can be satisfied without the need to perform explicit response analyses. Consequently, only the safe-shutdown earthquake (SSE) would be required for the seismic design of safety-related structures, systems and components. The purpose of this paper is to discuss the proposed changes to existing seismic design criteria that the NRC staff has found acceptable for implementing the proposed rule change in the design of safety-related piping systems in the advanced light water reactor (ALWR) lead plant. These criteria apply only to the ALWR lead plant design and are not intended to replace the seismic design criteria approved by the Commission in the licensing bases of currently operating facilities. Although the guidelines described herein have been proposed for use as a pilot program for implementing the proposed rule change specifically for the ALWR lead plant, the NRC staff expects that these guidelines will also be applied to other ALWRs

  15. Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-11-01

    This report develops and applies a method for estimating strong earthquake ground motion. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Specifically considered are ground motions resulting from earthquakes with magnitudes from 5 to 8, fault distances from 0 to 500 km, and frequencies from 1 to 35 Hz. The two main objectives were: (1) to develop generic relations for estimating ground motion appropriate for site screening; and (2) to develop a guideline for conducting a thorough site investigation needed to define the seismic design basis. For the first objective, an engineering model was developed to predict the expected ground motion on rock sites, with an additional set of amplification factors to account for the response of the soil column over rock at soil sites. The results incorporate best estimates of ground motion as well as the randomness and uncertainty associated with those estimates. For the second objective, guidelines were developed for gathering geotechnical information at a site and using this information in calculating site response. As a part of this development, an extensive set of geotechnical and seismic investigations was conducted at three reference sites. Together, the engineering model and guidelines provide the means to select and assess the seismic suitability of a site

  16. Seismic-resistant design of nuclear power stations in Japan, earthquake country. Lessons learned from Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Irikura, Kojiro

    2008-01-01

    The new assessment (back-check) of earthquake-proof safety was being conducted at Kashiwazaki-Kariwa Nuclear Power Plants, Tokyo Electric Co. in response to a request based on the guideline for reactor evaluation for seismic-resistant design code, revised in 2006, when the 2007 Chuetsu-oki Earthquake occurred and brought about an unexpectedly huge tremor in this area, although the magnitude of the earthquake was only 6.8 but the intensity of earthquake motion exceeded 2.5-fold more than supposed. This paper introduces how and why the guideline for seismic-resistant design of nuclear facilities was revised in 2006, the outline of the Chuetsu-oki Earthquake, and preliminary findings and lessons learned from the Earthquake. The paper specifically discusses on (1) how we may specify in advance geologic active faults as has been overlooked this time, (2) how we can make adequate models for seismic origin from which we can extract its characteristics, and (3) how the estimation of strong ground motion simulation may be possible for ground vibration level of a possibly overlooked fault. (S. Ohno)

  17. On a method of evaluation of failure rate of equipment and pipings under excess-earthquake loadings

    International Nuclear Information System (INIS)

    Shibata, H.; Okamura, H.

    1979-01-01

    This paper deals with a method of evaluation of the failure rate of equipment and pipings in nuclear power plants under an earthquake which is exceeding the design basis earthquake. If we put the ratio of the maximum ground acceleration of an earthquake to that of the design basis earthquake as n, then the failure rate or the probability of failure is the function of n as p(n). The purpose of this study is establishing the procedure of evaluation of the relation n vs. p(n). (orig.)

  18. Learning Earthquake Design and Construction 20. How do Beam ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Learning Earthquake Design and Construction – How do Beam–Column Joints in RC Buildings Resist Earthquakes? C V R Murty. Classroom Volume 10 Issue 6 June 2005 pp 82-85 ...

  19. Urban design for post-earthquake reconstruction: A case study of Wenchuan County, China

    NARCIS (Netherlands)

    Liu, L.X.; Lin, Y.L.; Wang, S.F.

    2014-01-01

    Urban design for post-earthquake reconstruction emphasizes strategies, safety, memorials and institutional arrangements. It is closely related to earthquake recovery plans. This article reviews general studies on urban design for post-earthquake reconstruction, before focussing on the case of

  20. Approach to developing a ground-motion design basis for facilities important to safety at Yucca Mountain

    International Nuclear Information System (INIS)

    King, J.L.

    1990-01-01

    This paper discusses a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a guasi-deterministic construct called the 10,000-year cumulative-slip earthquake that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations engineering analyses to ensure safe performance are included

  1. Anti-earthquake design guideline and safety of nuclear power plants

    International Nuclear Information System (INIS)

    Shibata, Heki

    2004-01-01

    This paper deals with the evaluation of regulatory codes for anti-earthquake design of industrial facilities including a nuclear power plant. There are several ways to describe the anti-earthquake design, in general, and the case for a nuclear power plant is one of the extreme. The comparison of various codes was made briefly also. (author)

  2. Earthquake Early Warning: User Education and Designing Effective Messages

    Science.gov (United States)

    Burkett, E. R.; Sellnow, D. D.; Jones, L.; Sellnow, T. L.

    2014-12-01

    The U.S. Geological Survey (USGS) and partners are transitioning from test-user trials of a demonstration earthquake early warning system (ShakeAlert) to deciding and preparing how to implement the release of earthquake early warning information, alert messages, and products to the public and other stakeholders. An earthquake early warning system uses seismic station networks to rapidly gather information about an occurring earthquake and send notifications to user devices ahead of the arrival of potentially damaging ground shaking at their locations. Earthquake early warning alerts can thereby allow time for actions to protect lives and property before arrival of damaging shaking, if users are properly educated on how to use and react to such notifications. A collaboration team of risk communications researchers and earth scientists is researching the effectiveness of a chosen subset of potential earthquake early warning interface designs and messages, which could be displayed on a device such as a smartphone. Preliminary results indicate, for instance, that users prefer alerts that include 1) a map to relate their location to the earthquake and 2) instructions for what to do in response to the expected level of shaking. A number of important factors must be considered to design a message that will promote appropriate self-protective behavior. While users prefer to see a map, how much information can be processed in limited time? Are graphical representations of wavefronts helpful or confusing? The most important factor to promote a helpful response is the predicted earthquake intensity, or how strong the expected shaking will be at the user's location. Unlike Japanese users of early warning, few Californians are familiar with the earthquake intensity scale, so we are exploring how differentiating instructions between intensity levels (e.g., "Be aware" for lower shaking levels and "Drop, cover, hold on" at high levels) can be paired with self-directed supplemental

  3. On anti-earthquake design procedure of equipment and pipings in near future

    International Nuclear Information System (INIS)

    Shibata, H.

    1981-01-01

    The requirement of anti-earthquake design of nuclear power plants is getting severe year by year. The author will try to discuss how to control its severity and how to find a proper design procedure for licensing of new plants under such severe requirements. On the other hand we suffered from the enormous volumes of documents. To decrease such volumes, the format of documents should be standardized as well as the design procedure standardization. Starting from this point, we need the research and development on the following subjects: i) Standardization of design procedure. ii) Standardization of document. iii) Establishment of standard review procedure using computer. iv) Standardization of earthquake-resistant designed equipment. v) Standardization of anti-earthquake design procedure of piping systems. vi) Introducing margin evaluation procedure to design procedure. vii) Introducing proving test procedure of active component to design procedure. viii) Establishment of evaluation of human reliability in design, fabrication, inspection procedures. ix) Establishment of the proper relation of seismic trigger level and post-earthquake design procedures. (orig./HP)

  4. Evaluation of earthquake resistance design for underground structures of nuclear power plant, (1)

    International Nuclear Information System (INIS)

    Tohma, Junichi; Kokusho, Kenji; Iwatate, Takahiro; Ohtomo, Keizo

    1986-01-01

    As to earthquake resistant design of underground civil engineering structures related with emergency cooling water system of nuclear power plant, it is required these structures must maintain the function of great important their own facilities during earthquakes, especially for design earthquake motion. In this study, shaft pipline, pit and duct for cooling sea water facilities were chosen as typical underground structures, and the authors deal with the seismic design method for calculation of the principal sectional force in these structures generated by design earthquake motion. Especially, comparative investigations concerned with response displacement method versus dynamic analysis methods (lumped mass analysis and finite element analysis) are discussed. (author)

  5. A procedure for the determination of scenario earthquakes for seismic design based on probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Hirose, Jiro; Muramatsu, Ken

    2002-03-01

    This report presents a study on the procedures for the determination of scenario earthquakes for seismic design of nuclear power plants (NPPs) based on probabilistic seismic hazard analysis (PSHA). In the recent years, the use of PSHA, which is a part of seismic probabilistic safety assessment (PSA), to determine the design basis earthquake motions for NPPs has been proposed. The identified earthquakes are called probability-based scenario earthquakes (PBSEs). The concept of PBSEs originates both from the study of US NRC and from Ishikawa and Kameda. The assessment of PBSEs is composed of seismic hazard analysis and identification of dominant earthquakes. The objectives of this study are to formulate the concept of PBSEs and to examine the procedures for determining the PBSEs for a domestic NPP site. This report consists of three parts, namely, procedures to compile analytical conditions for PBSEs, an assessment to identify PBSEs for a model site using the Ishikawa's concept and the examination of uncertainties involved in analytical conditions. The results obtained from the examination of PBSEs using Ishikawa's concept are as follows. (a) Since PBSEs are expressed by hazard-consistent magnitude and distance in terms of a prescribed reference probability, it is easy to obtain a concrete image of earthquakes that determine the ground response spectrum to be considered in the design of NPPs. (b) Source contribution factors provide the information on the importance of the earthquake source regions and/or active faults, and allows the selection of a couple of PBSEs based on their importance to the site. (c) Since analytical conditions involve uncertainty, sensitivity analyses on uncertainties that would affect seismic hazard curves and identification of PBSEs were performed on various aspects and provided useful insights for assessment of PBSEs. A result from this sensitivity analysis was that, although the difference in selection of attenuation equations led to a

  6. BWR NSSS design basis documentation

    International Nuclear Information System (INIS)

    Vij, R.S.; Bates, R.E.

    2004-01-01

    In 1985 an incident at Toledo Edison's Davis Besse plant caused the U.S. Nuclear Regulatory Commission (NRC) to re-evaluate the technical information that the utilities had readily available to support the design of their plants. The Design Basis programs, currently on going in most U.S. utilities, have been the nuclear industry's response to the needs identified by this re-evaluation. In order to understand the Design Basis programs which have been implemented by the U.S. nuclear utilities, it is necessary to understand the problem as it was perceived by the nuclear industry (the utilities, the original NSSS designers and the regulators) after the Davis-Besse incident, the subsequent programs undertaken by the industry under the leadership of INPO and NUMARC, the NRC's actions, and the overall evolution of the industry's vision in relation to this problem. This paper presents the history of the design basis efforts from the first recognition of the problem by the NRC after the Davis-Besse incident, describes the actions taken by the NRC, INPO, NUMARC, the U.S. utilities and the NSSS designers, and brings the problem statement up-to-date in relation to the vision presently held by the U.S. nuclear industry. It then presents a technical discussion to develop a detailed definition of design basis information to support the problem statement. The information originally supplied by the NSSS designers during the plant design and construction is discussed as well as its relationship to the previously defined design basis information. This section of the paper concludes by defining the additional information needed by nuclear utilities to satisfy the requirements developed from the problem statement. Having developed a definition of the additional information (i.e., information not originally supplied during design and construction) required to solve the design basis problem as it is presently perceived by the U.S. nuclear industry, the paper then discusses design basis

  7. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  8. Understanding and capturing NSSS design basis

    International Nuclear Information System (INIS)

    Palo, W.J.; Miller, B.

    1993-01-01

    Changes to, and technical evaluations of nuclear generating station designs are often warranted. Comprehensive documentation and understanding of the NSSS Design Basis are essential to support these activities. Effective configuration management tools are also needed to maintain the plant within design basis limits. Efficient design basis reconstitution can be realized via: In-depth understanding of the design process; Utilization of effective data collection methodology; State of the art data basing tools. A database can be created to generate a Design Basis Manual (DBM). This database can communicate electronically with other plant databases. A living document vice a static snapshot of the plant design is the goal. A design basis database can serve as the cornerstone for a global electronic information control system

  9. A STUDY ON THE EARTHQUAKE RESPONSE AND EARTHQUAKE RESISTANT DESIGN METHOD OF AN OPEN TYPE WHARF WITH PNEUMATIC CAISSONS

    Science.gov (United States)

    Oishi, Masahiko; Nagao, Takashi; Shigeki, Kouji; Ouchi, Masatoshi; Sato, Yuske; Kinomiya, Osamu

    Seismic response of an open type wharf with pneumatic caisson was clarified using a dynamic finite element method. As a result, rocking behavior of caisson foundations were observed and applicability of a frame model analysis to the earthquake resistant design of a wharf was suggested. Authors proposed the framework of earthquake resistant design method of the wharf including the evaluation method of response acceleration of the wharf.

  10. Advancing Integrated STEM Learning through Engineering Design: Sixth-Grade Students' Design and Construction of Earthquake Resistant Buildings

    Science.gov (United States)

    English, Lyn D.; King, Donna; Smeed, Joanna

    2017-01-01

    As part of a 3-year longitudinal study, 136 sixth-grade students completed an engineering-based problem on earthquakes involving integrated STEM learning. Students employed engineering design processes and STEM disciplinary knowledge to plan, sketch, then construct a building designed to withstand earthquake damage, taking into account a number of…

  11. Response of base-isolated nuclear structures to extreme earthquake shaking

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manish, E-mail: mkumar2@buffalo.edu; Whittaker, Andrew S.; Constantinou, Michael C.

    2015-12-15

    Highlights: • Response-history analysis of nuclear structures base-isolated using lead–rubber bearings is performed. • Advanced numerical model of lead–rubber bearing is used to capture behavior under extreme earthquake shaking. • Results of response-history analysis obtained using simplified and advanced model of lead–rubber bearings are compared. • Heating of the lead core and variation in buckling load and axial stiffness affect the response. - Abstract: Seismic isolation using low damping rubber and lead–rubber bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. The mechanical properties of these bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead–rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the lateral displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) are investigated using an advanced numerical model of a lead–rubber bearing that has been verified and validated, and implemented in OpenSees. A macro-model is used for response-history analysis of base-isolated NPPs. Ground motions are selected and scaled to be consistent with response spectra for design basis and beyond design basis earthquake shaking at the site of the Diablo Canyon Nuclear Generating Station. Ten isolation systems of two periods and five characteristic strengths are analyzed. The responses obtained using simplified and advanced isolator models are compared. Strength degradation due to heating of lead cores and changes in buckling load most significantly affect the response of the base-isolated NPP.

  12. Response of base-isolated nuclear structures to extreme earthquake shaking

    International Nuclear Information System (INIS)

    Kumar, Manish; Whittaker, Andrew S.; Constantinou, Michael C.

    2015-01-01

    Highlights: • Response-history analysis of nuclear structures base-isolated using lead–rubber bearings is performed. • Advanced numerical model of lead–rubber bearing is used to capture behavior under extreme earthquake shaking. • Results of response-history analysis obtained using simplified and advanced model of lead–rubber bearings are compared. • Heating of the lead core and variation in buckling load and axial stiffness affect the response. - Abstract: Seismic isolation using low damping rubber and lead–rubber bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. The mechanical properties of these bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead–rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the lateral displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) are investigated using an advanced numerical model of a lead–rubber bearing that has been verified and validated, and implemented in OpenSees. A macro-model is used for response-history analysis of base-isolated NPPs. Ground motions are selected and scaled to be consistent with response spectra for design basis and beyond design basis earthquake shaking at the site of the Diablo Canyon Nuclear Generating Station. Ten isolation systems of two periods and five characteristic strengths are analyzed. The responses obtained using simplified and advanced isolator models are compared. Strength degradation due to heating of lead cores and changes in buckling load most significantly affect the response of the base-isolated NPP.

  13. Design basis 2

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.; Soerensen, P. [Risoe National Lab., Roskilde (Denmark)

    1996-09-01

    Design Basis Program 2 (DBP2) is comprehensive fully coupled code which has the capability to operate in the time domain as well as in the frequency domain. The code was developed during the period 1991-93 and succeed Design Basis 1, which is a one-blade model presuming stiff tower, transmission system and hub. The package is designed for use on a personal computer and offers a user-friendly environment based on menu-driven editing and control facilities, and with graphics used extensively for the data presentation. Moreover in-data as well as results are dumped on files in Ascii-format. The input data is organized in a in-data base with a structure that easily allows for arbitrary combinations of defined structural components and load cases. (au)

  14. Earthquake resistant design of nuclear facilities with limited radioactive inventory

    International Nuclear Information System (INIS)

    1985-10-01

    This document comprises the essential elements of an earthquake resistant design code for nuclear facilities with limited radioactive inventory. The purpose of the document is the enhancement of seismic safety for such facilities without the necessity to resort to complicated and sophisticated methodologies which are often associated with and borrowed from nuclear power plant analysis and design. The first two sections are concerned with the type of facility for which the document is applicable and the radiological consideration for accident conditions. The principles of facility classification and item categorization as a function of the potential radiological consequences of failure are given in section 3. The design basis ground motion is evaluated in sections 4-6 using a simplified but conservative approach which also includes considerations for the underlying soil characteristics. Sections 7 and 8 specify the principles of seismic design of building structures and equipment using two methods, called the equivalent static and simplified dynamic approach. Considerations for the detailing of equipment and piping and those other than for lateral load calculations, such as sloshing effects, are given in the subsequent sections. Several appendices are given for illustration of the principles presented in the text. Finally, a design tree diagram is included to facilitate the user's task of making the appropriate selections. (author)

  15. An approach to estimating radiological risk of offsite release from a design basis earthquake for the Process Experimental Pilot Plant (PREPP)

    International Nuclear Information System (INIS)

    Lucero, V.; Meale, B.M.; Reny, D.A.; Brown, A.N.

    1990-09-01

    In compliance with Department of Energy (DOE) Order 6430.1A, a seismic analysis was performed on DOE's Process Experimental Pilot Plant (PREPP), a facility for processing low-level and transuranic (TRU) waste. Because no hazard curves were available for the Idaho National Engineering Laboratory (INEL), DOE guidelines were used to estimate the frequency for the specified design-basis earthquake (DBE). A dynamic structural analysis of the building was performed, using the DBE parameters, followed by a probabilistic risk assessment (PRA). For the PRA, a functional organization of the facility equipment was effected so that top events for a representative event tree model could be determined. Building response spectra (calculated from the structural analysis), in conjunction with generic fragility data, were used to generate fragility curves for the PREPP equipment. Using these curves, failure probabilities for each top event were calculated. These probabilities were integrated into the event tree model, and accident sequences and respective probabilities were calculated through quantification. By combining the sequences failure probabilities with a transport analysis of the estimated airborne source term from a DBE, onsite and offsite consequences were calculated. The results of the comprehensive analysis substantiated the ability of the PREPP facility to withstand a DBE with negligible consequence (i.e., estimated release was within personnel and environmental dose guidelines). 57 refs., 19 figs., 20 tabs

  16. An approach to estimating radiological risk of offsite release from a design basis earthquake for the Process Experimental Pilot Plant (PREPP)

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, V.; Meale, B.M.; Reny, D.A.; Brown, A.N.

    1990-09-01

    In compliance with Department of Energy (DOE) Order 6430.1A, a seismic analysis was performed on DOE's Process Experimental Pilot Plant (PREPP), a facility for processing low-level and transuranic (TRU) waste. Because no hazard curves were available for the Idaho National Engineering Laboratory (INEL), DOE guidelines were used to estimate the frequency for the specified design-basis earthquake (DBE). A dynamic structural analysis of the building was performed, using the DBE parameters, followed by a probabilistic risk assessment (PRA). For the PRA, a functional organization of the facility equipment was effected so that top events for a representative event tree model could be determined. Building response spectra (calculated from the structural analysis), in conjunction with generic fragility data, were used to generate fragility curves for the PREPP equipment. Using these curves, failure probabilities for each top event were calculated. These probabilities were integrated into the event tree model, and accident sequences and respective probabilities were calculated through quantification. By combining the sequences failure probabilities with a transport analysis of the estimated airborne source term from a DBE, onsite and offsite consequences were calculated. The results of the comprehensive analysis substantiated the ability of the PREPP facility to withstand a DBE with negligible consequence (i.e., estimated release was within personnel and environmental dose guidelines). 57 refs., 19 figs., 20 tabs.

  17. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico

    Directory of Open Access Journals (Sweden)

    Carrillo Julián

    2014-01-01

    Full Text Available The development of new codes for earthquake-resistant structures has made possible to guarantee a better performance of buildings, when they are subjected to seismic actions. Therefore, it is convenient that current codes for design of building become conceptually transparent when defining the strength modification factors and assessing maximum lateral displacements, so that the design process can be clearly understood by structural engineers. The aim of this study is to analyze the transparency of earthquake-resistant design approach for buildings in Mexico by means of a critical review of the factors for strength modification and displacement amplification. The approach of building design codes in US is also analyzed. It is concluded that earthquake-resistant design in Mexico have evolved in refinement and complexity. It is also demonstrated that the procedure prescribed by such design codes allows the assessment of the design strengths and displacements in a more rational way, in accordance not only with the present stage of knowledge but also with the contemporary tendencies in building codes. In contrast, the procedures used in US codes may not provide a clear view for seismic response assessment of buildings.

  18. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    Science.gov (United States)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  19. Artificial earthquake generation for nuclear power plant design

    International Nuclear Information System (INIS)

    King, A.C.Y.; Chen, C.

    1977-01-01

    The time history method has been one of the analytical tools applied in the seismic resistant design of nuclear power plants. The time histories used are required to be consistent with the specified design Spectra. Since the spectra of recorded strong motion earthquake or conventionally generated artificial time history have local peaks and valleys, iteration procedures must be applied to generate the artificial time history with desired spectra. The paper describes a detailed method for generating a time history which is consistent with a specified design spectra. There are several advantages of this method described herein. First of all, frequency content of the time history is well under control. Secondly, if one wishes to generate the three components of an earthquake at one site, the inherent nature of this method will make the correlations among these three components to simulate closely the actual recorded time histories. Thirdly, a single time history can be generated to match a spectra for different damping values. (auth.)

  20. Error evaluation of inelastic response spectrum method for earthquake design

    International Nuclear Information System (INIS)

    Paz, M.; Wong, J.

    1981-01-01

    Two-story, four-story and ten-story shear building-type frames subjected to earthquake excitaion, were analyzed at several levels of their yield resistance. These frames were subjected at their base to the motion recorded for north-south component of the 1940 El Centro earthquake, and to an artificial earthquake which would produce the response spectral charts recommended for design. The frames were first subjected to 25% or 50% of the intensity level of these earthquakes. The resulting maximum relative displacement for each story of the frames was assumed to be yield resistance for the subsequent analyses at 100% of intensity for the excitation. The frames analyzed were uniform along their height with the stiffness adjusted as to result in 0.20 seconds of the fundamental period for the two-story frame, 0.40 seconds for the four-story frame and 1.0 seconds for the ten-story frame. Results of the study provided the following conclusions: (1) The percentage error in floor displacement for linear behavior was less than 10%; (2) The percentage error in floor displacement for inelastic behavior (elastoplastic) could be as high as 100%; (3) In most of the cases analyzed, the error increased with damping in the system; (4) As a general rule, the error increased as the modal yield resistance decreased; (5) The error was lower for the structures subjected to the 1940 E1 Centro earthquake than for the same structures subjected to an artificial earthquake which was generated from the response spectra for design. (orig./HP)

  1. Generation of artificial earthquake time histories for seismic design at Hanford, Washington

    International Nuclear Information System (INIS)

    Salmon, M.W.; Kuilanoff, G.

    1991-01-01

    The purpose of the development of artificial time-histories is to provide the designer with ground motion estimates which will meet the requirements of the design guidelines at the Hanford site. In particular, the artificial time histories presented in this paper were prepared to assist designers of the Hanford Waste Vitrification Plant (HWVP) with time histories that envelop the requirements for both a large magnitude earthquake (MI > 6.0) and a small magnitude, near-field earthquake (MI < 5. 0). A background of the requirements for both the large magnitude and small magnitude events is presented in this paper. The work done in generating time histories which produce response spectra matching those of the design seismic events is also presented. Finally, some preliminary results from studies performed using the small-magnitude near-filed earthquake time-history are presented

  2. Prediction of strong earthquake motions on rock surface using evolutionary process models

    International Nuclear Information System (INIS)

    Kameda, H.; Sugito, M.

    1984-01-01

    Stochastic process models are developed for prediction of strong earthquake motions for engineering design purposes. Earthquake motions with nonstationary frequency content are modeled by using the concept of evolutionary processes. Discussion is focused on the earthquake motions on bed rocks which are important for construction of nuclear power plants in seismic regions. On this basis, two earthquake motion prediction models are developed, one (EMP-IB Model) for prediction with given magnitude and epicentral distance, and the other (EMP-IIB Model) to account for the successive fault ruptures and the site location relative to the fault of great earthquakes. (Author) [pt

  3. Characterisation of Liquefaction Effects for Beyond-Design Basis Safety Assessment of Nuclear Power Plants

    Science.gov (United States)

    Bán, Zoltán; Győri, Erzsébet; János Katona, Tamás; Tóth, László

    2015-04-01

    Preparedness of nuclear power plants to beyond design base external effects became high importance after 11th of March 2011 Great Tohoku Earthquakes. In case of some nuclear power plants constructed at the soft soil sites, liquefaction should be considered as a beyond design basis hazard. The consequences of liquefaction have to be analysed with the aim of definition of post-event plant condition, identification of plant vulnerabilities and planning the necessary measures for accident management. In the paper, the methodology of the analysis of liquefaction effects for nuclear power plants is outlined. The case of Nuclear Power Plant at Paks, Hungary is used as an example for demonstration of practical importance of the presented results and considerations. Contrary to the design, conservatism of the methodology for the evaluation of beyond design basis liquefaction effects for an operating plant has to be limited to a reasonable level. Consequently, applicability of all existing methods has to be considered for the best estimation. The adequacy and conclusiveness of the results is mainly limited by the epistemic uncertainty of the methods used for liquefaction hazard definition and definition of engineering parameters characterizing the consequences of liquefaction. The methods have to comply with controversial requirements. They have to be consistent and widely accepted and used in the practice. They have to be based on the comprehensive database. They have to provide basis for the evaluation of dominating engineering parameters that control the post-liquefaction response of the plant structures. Experience of Kashiwazaki-Kariwa plant hit by Niigata-ken Chuetsu-oki earthquake of 16 July 2007 and analysis of site conditions and plant layout at Paks plant have shown that the differential settlement is found to be the dominating effect in case considered. They have to be based on the probabilistic seismic hazard assessment and allow the integration into logic

  4. Resilience of nuclear power plants to withstand large earthquakes: an overview

    International Nuclear Information System (INIS)

    Usmani, A.; Saudy, A.

    2013-01-01

    This paper provides an overview of the experience gained from seismic assessments, component testing, insights from probabilistic seismic hazard analysis (PSHA), seismic PRAs and performance of structures, systems and components (SSCs) in actual earthquakes many of which have been very large and exceeded the plant design basis. The recent Fukushima earthquake has focused attention of the nuclear industry to assess and make provisions to cope with the beyond design basis events that lead to station blackout, flooding and loss of heat sinks. Based on the review of available information, the paper discusses assessments and strategies being followed by various countries. Recommendations are made to focus attention to the most vulnerable SSCs in a nuclear power plant. (author)

  5. Resilience of nuclear power plants to withstand large earthquakes: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Usmani, A.; Saudy, A., E-mail: Aman.Usmani@amec.com [AMEC NSS, Power and Process Americas, Toronto, Ontario (Canada)

    2013-07-01

    This paper provides an overview of the experience gained from seismic assessments, component testing, insights from probabilistic seismic hazard analysis (PSHA), seismic PRAs and performance of structures, systems and components (SSCs) in actual earthquakes many of which have been very large and exceeded the plant design basis. The recent Fukushima earthquake has focused attention of the nuclear industry to assess and make provisions to cope with the beyond design basis events that lead to station blackout, flooding and loss of heat sinks. Based on the review of available information, the paper discusses assessments and strategies being followed by various countries. Recommendations are made to focus attention to the most vulnerable SSCs in a nuclear power plant. (author)

  6. Advanced methods on the evaluation of design earthquake motions for important power constructions

    International Nuclear Information System (INIS)

    Higashi, Sadanori; Shiba, Yoshiaki; Sato, Hiroaki; Sato, Yusuke; Nakajima, Masato; Sakai, Michiya; Sato, Kiyotaka

    2009-01-01

    In this report, we compiled advanced methods on the evaluation of design earthquake motions for important power constructions such as nuclear power, thermal power, and hydroelectric power facilities. For the nuclear and hydroelectric power facilities, we developed an inversion method of broad-band (0.1-5Hz) source process and obtained valid results from applying the method to the 2007 Niigata-ken Chuetsu-oki earthquake (M6.8). We have also improved our modeling techniques of thick sedimentary layered structure such as the S-wave velocity modeling by using microtremor array measurement and the frequency dependent damping factor with a lower limit. For seismic isolation design for nuclear power facilities, we proposed a design pseudo-velocity response spectrum. For the thermal power facilities, we performed three-dimensional numerical simulation of Kanto Basin for a prediction relation of long-period ground motion. We also proposed the introduction of probabilistic approach into the deterministic evaluation flow of design earthquake motions and evaluated the effect of a great earthquake with a short return period on the seismic hazard in Miyagi Prefecture, Japan. (author)

  7. Ground motion for the design basis earthquake at the Savannah River Site, South Carolina based on a deterministic approach

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Silva, W.J.; Stephenson, D.E.

    1991-01-01

    Ground motion assessments are presented for evaluation of the seismic safety of K-Reactor at the Savannah River Site. Two earthquake sources were identified as the most significant to seismic hazard at the site, a M 7.5 earthquake occurring at Charleston, South Carolina, and a M 5 event occurring in the site vicinity. These events control the low frequency and high frequency portions of the spectrum, respectively. Three major issues were identified in the assessment of ground motions for the Savannah River site; specification of the appropriate stress drop for the Charleston source earthquake, specification of the appropriate levels of soil damping at large depths for site response analyses, and the appropriateness of western US recordings for specification of ground motions in the eastern US

  8. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz

  9. Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management

    International Nuclear Information System (INIS)

    G. L. Sharp; R. T. McCracken

    2004-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzed in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety

  10. Phase characteristics of earthquake accelerogram and its application

    International Nuclear Information System (INIS)

    Ohsaki, Y.; Iwasaki, R.; Ohkawa, I.; Masao, T.

    1979-01-01

    As the input earthquake motion for seismic design of nuclear power plant structures and equipments, an artificial time history compatible with smoothed design response spectrum is frequently used. This paper deals with a wave generation technique based on phase characteristics in earthquake accelerograms as an alternate of envelope time function. The concept of 'phase differences' distribution' is defined to represent phase characteristics of earthquake motion. The procedure proposed in this paper consists of following steps; (1) Specify a design response spectrum and derive a corresponding initial modal amplitude. (2) Determine a phase differences' distribution corresponding to an envelope function, the shape of which is dependent on magnitude and epicentral distance of an earthquake. (3) Derive the phase angles at all modal frequencies from the phase differences' distribution. (4) Generate a time history by inverse Fourier transeform on the basis of the amplitudes and the phase angles thus determined. (5) Calculate the response spectrum. (6) Compare the specified and calculated response spectra, and correct the amplitude at each frequency so that the response spectrum will be consistent with the specified. (7) Repeat the steps 4 through 6, until the specified and calculated response spectra become consistent with sufficient accuracy. (orig.)

  11. State of the art of earthquake engineering in nuclear power plant design

    International Nuclear Information System (INIS)

    Schildknecht, P.O.

    1976-12-01

    A brief outline of definitions based on the USNRC, Seismic and Geologic Siting Criteria for Nuclear Power Plants, and on the plate tectonics and earthquake terminology is given. An introduction into plate tectonics and the associated earthquake phenomena is then presented. Ground motion characteristics are described in connection with the selection of design earthquakes. Mathematical methods of dynamic structural analyses are discussed for linear and nonlinear systems. Response analysis techniques for nuclear power plants are explained considering soil-structure interaction effects. (Auth.)

  12. Use of earthquake experience data

    International Nuclear Information System (INIS)

    Eder, S.J.; Eli, M.W.

    1991-01-01

    At many of the older existing US Department of Energy (DOE) facilities, the need has arisen for evaluation guidelines for natural phenomena hazard assessment. The effect of a design basis earthquake at most of these facilities is one of the main concerns. Earthquake experience data can provide a basis for the needed seismic evaluation guidelines, resulting in an efficient screening evaluation methodology for several of the items that are in the scope of the DOE facility reviews. The experience-based screening evaluation methodology, when properly established and implemented by trained engineers, has proven to result in sufficient safety margins and focuses on real concerns via facility walkdowns, usually at costs much less than the alternative options of analysis and testing. This paper summarizes a program that is being put into place to establish uniform seismic evaluation guidelines and criteria for evaluation of existing DOE facilities. The intent of the program is to maximize use of past experience, in conjunction with a walkdown screening evaluation process

  13. Principles for selecting earthquake motions in engineering design of large dams

    Science.gov (United States)

    Krinitzsky, E.L.; Marcuson, William F.

    1983-01-01

    This report gives a synopsis of the various tools and techniques used in selecting earthquake ground motion parameters for large dams. It presents 18 charts giving newly developed relations for acceleration, velocity, and duration versus site earthquake intensity for near- and far-field hard and soft sites and earthquakes having magnitudes above and below 7. The material for this report is based on procedures developed at the Waterways Experiment Station. Although these procedures are suggested primarily for large dams, they may also be applicable for other facilities. Because no standard procedure exists for selecting earthquake motions in engineering design of large dams, a number of precautions are presented to guide users. The selection of earthquake motions is dependent on which one of two types of engineering analyses are performed. A pseudostatic analysis uses a coefficient usually obtained from an appropriate contour map; whereas, a dynamic analysis uses either accelerograms assigned to a site or specified respunse spectra. Each type of analysis requires significantly different input motions. All selections of design motions must allow for the lack of representative strong motion records, especially near-field motions from earthquakes of magnitude 7 and greater, as well as an enormous spread in the available data. Limited data must be projected and its spread bracketed in order to fill in the gaps and to assure that there will be no surprises. Because each site may have differing special characteristics in its geology, seismic history, attenuation, recurrence, interpreted maximum events, etc., as integrated approach gives best results. Each part of the site investigation requires a number of decisions. In some cases, the decision to use a 'least ork' approach may be suitable, simply assuming the worst of several possibilities and testing for it. Because there are no standard procedures to follow, multiple approaches are useful. For example, peak motions at

  14. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz. This document, Volume IV, provides Appendix 8.B, Laboratory Investigations of Dynamic Properties of Reference Sites

  15. Simplified design and evaluation of liquid storage tanks relative to earthquake loading

    Energy Technology Data Exchange (ETDEWEB)

    Poole, A.B.

    1994-06-01

    A summary of earthquake-induced damage in liquid storage tanks is provided. The general analysis steps for dynamic response of fluid-filled tanks subject to horizontal ground excitation are discussed. This work will provide major attention to the understanding of observed tank-failure modes. These modes are quite diverse in nature, but many of the commonly appearing patterns are believed to be shell buckling. A generalized and simple-to-apply shell loading will be developed using Fluegge shell theory. The input to this simplified analysis will be horizontal ground acceleration and tank shell form parameters. A dimensionless parameter will be developed and used in predictions of buckling resulting from earthquake-imposed loads. This prediction method will be applied to various tank designs that have failed during major earthquakes and during shaker table tests. Tanks that have not failed will also be reviewed. A simplified approach will be discussed for early design and evaluation of tank shell parameters and materials to provide a high confidence of low probability of failure during earthquakes.

  16. External Events Excluding Earthquakes in the Design of Nuclear Power Plants. Safety Guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide provides recommendations and guidance on design for the protection of nuclear power plants from the effects of external events (excluding earthquakes), i.e. events that originate either off the site or within the boundaries of the site but from sources that are not directly involved in the operational states of the nuclear power plant units. In addition, it provides recommendations on engineering related matters in order to comply with the safety objectives and requirements established in the IAEA Safety Requirements publication, Safety of Nuclear Power Plants: Design. It is also applicable to the design and safety assessment of items important to the safety of land based stationary nuclear power plants with water cooled reactors. Contents: 1. Introduction; 2. Application of safety criteria to the design; 3. Design basis for external events; 4. Aircraft crash; 5. External fire; 6. Explosions; 7. Asphyxiant and toxic gases; 8. Corrosive and radioactive gases and liquids; 9. Electromagnetic interference; 10. Floods; 11. Extreme winds; 12. Extreme meteorological conditions; 13. Biological phenomena; 14. Volcanism; 15. Collisions of floating bodies with water intakes and UHS components; Annex I: Aircraft crashes; Annex II: Detonation and deflagration; Annex III: Toxicity limits.

  17. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical ampersand Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties

  18. NRC Seismic Design Margins Program Plan

    International Nuclear Information System (INIS)

    Cummings, G.E.; Johnson, J.J.; Budnitz, R.J.

    1985-08-01

    Recent studies estimate that seismically induced core melt comes mainly from earthquakes in the peak ground acceleration range from 2 to 4 times the safe shutdown earthquake (SSE) acceleration used in plant design. However, from the licensing perspective of the US Nuclear Regulatory Commission, there is a continuing need for consideration of the inherent quantitative seismic margins because of, among other things, the changing perceptions of the seismic hazard. This paper discusses a Seismic Design Margins Program Plan, developed under the auspices of the US NRC, that provides the technical basis for assessing the significance of design margins in terms of overall plant safety. The Plan will also identify potential weaknesses that might have to be addressed, and will recommend technical methods for assessing margins at existing plants. For the purposes of this program, a general definition of seismic design margin is expressed in terms of how much larger that the design basis earthquake an earthquake must be to compromise plant safety. In this context, margin needs to be determined at the plant, system/function, structure, and component levels. 14 refs., 1 fig

  19. Learning Earthquake Design and Construction – 23. Why are ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Learning Earthquake Design and Construction – 23. Why are Buildings with Shear Walls Preferred in Seismic Regions? C V R Murty. Classroom Volume 10 Issue 11 November 2005 pp 85-88 ...

  20. Our response to the earthquake at Onagawa Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirakawa, Tomoshi

    2008-01-01

    When the Miyagi Offshore earthquake occurred on August 16, 2005, all three units at the Onagawa NPS were shut down automatically according to the Strong Seismic Acceleration' signal. Our inspection after the earthquake confirmed there was no damage to the equipment of the nuclear power plants, but the analysis of the response spectrum observed at the bedrock showed the earthquake had exceeded the 'design-basis earthquake', at certain periods, so that we implemented a review of the seismic safety of plant facilities. In the review, the ground motion of Miyagi Offshore Earthquake which are predicted to occur in the near future were reexamined based on the observation data, and then 'The Ground Motion for Safety Check' surpassing the supposed ground motion of the largest earthquake was established. The seismic safety of plant facilities, important for safety, was assured. At present, No.1 to No.3 units at Onagawa NPS have returned to normal operation. (author)

  1. System Design and the Safety Basis

    International Nuclear Information System (INIS)

    Ellingson, Darrel

    2008-01-01

    The objective of this paper is to present the Bechtel Jacobs Company, LLC (BJC) Lessons Learned for system design as it relates to safety basis documentation. BJC has had to reconcile incomplete or outdated system description information with current facility safety basis for a number of situations in recent months. This paper has relevance in multiple topical areas including documented safety analysis, decontamination and decommissioning (D and D), safety basis (SB) implementation, safety and design integration, potential inadequacy of the safety analysis (PISA), technical safety requirements (TSR), and unreviewed safety questions. BJC learned that nuclear safety compliance relies on adequate and well documented system design information. A number of PIS As and TSR violations occurred due to inadequate or erroneous system design information. As a corrective action, BJC assessed the occurrences caused by systems design-safety basis interface problems. Safety systems reviewed included the Molten Salt Reactor Experiment (MSRE) Fluorination System, K-1065 fire alarm system, and the K-25 Radiation Criticality Accident Alarm System. The conclusion was that an inadequate knowledge of system design could result in continuous non-compliance issues relating to nuclear safety. This was especially true with older facilities that lacked current as-built drawings coupled with the loss of 'historical knowledge' as personnel retired or moved on in their careers. Walkdown of systems and the updating of drawings are imperative for nuclear safety compliance. System design integration with safety basis has relevance in the Department of Energy (DOE) complex. This paper presents the BJC Lessons Learned in this area. It will be of benefit to DOE contractors that manage and operate an aging population of nuclear facilities

  2. On ethics and the earthquake resistant interior design of buildings.

    Science.gov (United States)

    Hurol, Yonca

    2014-03-01

    The most common tectonic quality of modern structures, such as frame systems, is their flexibility; they are open for change. Although this characteristic is a big advantage in comparison to the inflexible masonry structures of the past, it might also create some serious problems, such as e.g. the lack of safety in the event of an earthquake, if the flexibility is not used consciously by architects and interior designers. This article attempts to define and establish some rules for the interior design of buildings with reinforced concrete frame systems. The rules for making subtractions from these structures and extending them by making additions to them are contained within this article. The main objective of this article is to derive some ethical values from these rules. Thus, the conclusion of the article focuses on the derivation of some ethical values for achieving earthquake resistant interior design of buildings with reinforced concrete frame systems.

  3. Earthquake accelerations estimation for construction calculating with different responsibility degrees

    International Nuclear Information System (INIS)

    Dolgaya, A.A.; Uzdin, A.M.; Indeykin, A.V.

    1993-01-01

    The investigation object is the design amplitude of accelerograms, which are used in the evaluation of seismic stability of responsible structures, first and foremost, NPS. The amplitude level is established depending on the degree of responsibility of the structure and on the prevailing period of earthquake action on the construction site. The investigation procedure is based on statistical analysis of 310 earthquakes. At the first stage of statistical data-processing we established the correlation dependence of both the mathematical expectation and root-mean-square deviation of peak acceleration of the earthquake on its prevailing period. At the second stage the most suitable law of acceleration distribution about the mean was chosen. To determine of this distribution parameters, we specified the maximum conceivable acceleration, the excess of which is not allowed. Other parameters of distribution are determined according to statistical data. At the third stage the dependencies of design amplitude on the prevailing period of seismic effect for different structures and equipment were established. The obtained data made it possible to recommend to fix the level of safe-shutdown (SSB) and operating basis earthquakes (OBE) for objects of various responsibility categories when designing NPS. (author)

  4. Disaggregated seismic hazard and the elastic input energy spectrum: An approach to design earthquake selection

    Science.gov (United States)

    Chapman, Martin Colby

    1998-12-01

    The design earthquake selection problem is fundamentally probabilistic. Disaggregation of a probabilistic model of the seismic hazard offers a rational and objective approach that can identify the most likely earthquake scenario(s) contributing to hazard. An ensemble of time series can be selected on the basis of the modal earthquakes derived from the disaggregation. This gives a useful time-domain realization of the seismic hazard, to the extent that a single motion parameter captures the important time-domain characteristics. A possible limitation to this approach arises because most currently available motion prediction models for peak ground motion or oscillator response are essentially independent of duration, and modal events derived using the peak motions for the analysis may not represent the optimal characterization of the hazard. The elastic input energy spectrum is an alternative to the elastic response spectrum for these types of analyses. The input energy combines the elements of amplitude and duration into a single parameter description of the ground motion that can be readily incorporated into standard probabilistic seismic hazard analysis methodology. This use of the elastic input energy spectrum is examined. Regression analysis is performed using strong motion data from Western North America and consistent data processing procedures for both the absolute input energy equivalent velocity, (Vsbea), and the elastic pseudo-relative velocity response (PSV) in the frequency range 0.5 to 10 Hz. The results show that the two parameters can be successfully fit with identical functional forms. The dependence of Vsbea and PSV upon (NEHRP) site classification is virtually identical. The variance of Vsbea is uniformly less than that of PSV, indicating that Vsbea can be predicted with slightly less uncertainty as a function of magnitude, distance and site classification. The effects of site class are important at frequencies less than a few Hertz. The regression

  5. Report on the seismic safety examination of nuclear facilities based on the 1995 Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    2001-01-01

    Just after the Hyogoken-Nanbu Earthquake occurred, Nuclear Safety Commission of Japan established a committee to examine the validity or related guidelines on the seismic design to be used for the safety examination. After the 8 months study, the committee confirmed that the validity of guidelines regulating the seismic design of nuclear facilities is not impaired even though on the basis of the Hyogoken-Nanbu earthquake. This report is the outline of the Committee's study results. (author)

  6. From Avezzano (1915) to L’Aquila (2009) earthquake: evolution of design criteria

    International Nuclear Information System (INIS)

    Clemente, Paolo; Bongiovanni, Giovanni; Buffarini, Giacomo; Saitta Fernando

    2015-01-01

    The paper analyzes the evolution of the anti-seismic design criteria presenting and discussing the changes in the seismic code in Italy. A brief presentation of the main earthquakes that hit the peninsula in the 20. century is given, and the subsequent evolution of the code. The first law, which gave rules for buildings, was issued by Ferdinand IV de Bourbon, king of the Two Scillies, in the 1784, after the seismic event in the Calabria and Sicily regions in 1783, Macro-seismic Intensity XI. Already other significant earthquakes were remembered at that date, especially the one of 1693 in Val di Noto, Sicily, with a 7,4 estimated magnitude. According to the above mentioned law, rules for minimal dimensions of structural elements, masonry walls and foundations, were given, as well as specific prescriptions on the connection between walls and roof. Interesting regulations for reconstruction were also given by pope Pio IX after the earthquake of 1859 in Norcia. The first severe earthquakes after the creation of the Italian Kingdom were the Messina and Reggio Calabria earthquake with magnitude 7.1 (1908), and the Marsica earthquake (1915) with magnitude 7.0. In the 'Regio Decreto' n. 193 of April 18. 1909, a list of municipality classified as seismic ones was proposed. This list was progressively updated but only after earthquakes. Seismic forces in structural design were introduced by the D.L. n. 1526 of November 5. 1916, after the Marsica earthquake, with an almost constant distribution of the acceleration along the building height, not accounting for the actual dynamic behavior of the structures. Only after the n. 64/1974 law and the subsequent seismic code (DM of March 3rd 1975), modal and spectrum analyses appeared. Seismic check could be carried out by means of the static analysis, with horizontal acceleration linearly increasing along the height simulating the first mode of a cantilever beam, or by the dynamic analysis, with modal contributions combined

  7. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  8. Analyses of computer programs for the probabilistic estimation of design earthquake and seismological characteristics of the Korean Peninsula

    International Nuclear Information System (INIS)

    Lee, Gi Hwa

    1997-11-01

    The purpose of the present study is to develop predictive equations from simulated motions which are adequate for the Korean Peninsula and analyze and utilize the computer programs for the probabilistic estimation of design earthquakes. In part I of the report, computer programs for the probabilistic estimation of design earthquake are analyzed and applied to the seismic hazard characterizations in the Korean Peninsula. In part II of the report, available instrumental earthquake records are analyzed to estimate earthquake source characteristics and medium properties, which are incorporated into simulation process. And earthquake records are simulated by using the estimated parameters. Finally, predictive equations constructed from the simulation are given in terms of magnitude and hypocentral distances

  9. DOE (Department of Energy) natural phenomena guidelines earthquake design and evaluation

    International Nuclear Information System (INIS)

    Short, S.A.; Murray, R.C.; Kennedy, R.P.

    1989-01-01

    Design and evaluation guidelines for DOE (Department of Energy) facilities subjected to earthquake, wind/tornado, and flood have been developed. This paper describes the philosophy and procedures fr the design or evaluation of facilities for earthquake ground shaking. The guidelines are intended to meet probabilistic-based performance goals expressed in terms of annual probability of exceedance of some level of structural damage. Meeting performance goals can be accomplished by specifying hazard probabilities of exceedance along with seismic behavior evaluation procedures in which the level of conservatism introduced is controlled such that desired performance can be achieved. Limited inelastic behavior is permitted by permitting demand determined from elastic response spectrum analyses to exceed capacity by an allowable inelastic demand-capacity ratio specified in the guidelines for different materials and construction

  10. Exploratory Shaft Facility design basis study report

    International Nuclear Information System (INIS)

    Langstaff, A.L.

    1987-01-01

    The Design Basis Study is a scoping/sizing study that evaluated the items concerning the Exploratory Shaft Facility Design including design basis values for water and methane inflow; flexibility of the design to support potential changes in program direction; cost and schedule impacts that could result if the design were changed to comply with gassy mine regulations; and cost, schedule, advantages and disadvantages of a larger second shaft. Recommendations are proposed concerning water and methane inflow values, facility layout, second shaft size, ventilation, and gassy mine requirements. 75 refs., 3 figs., 7 tabs

  11. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  12. Design earthquakes for ITER in Europe at Cadarache

    International Nuclear Information System (INIS)

    Girard, Jean-Philippe; Gruenthal, Gottfried; Nicolas, Marc

    2005-01-01

    The European site proposed for ITER is situated in the south of France, 40 km north-east of Aix-en-Provence, in a low to moderate seismic area according to the Global Seismic Hazard Map (GSHAP Group 1999). The tokamak building would be implemented on good bedrock made of limestone with a shear wave velocity of over 1300 m/s. Input requirements and assumptions for ITER consider that an infrequent, severe earthquake (called SL-2), although unlikely to occur during the lifetime of the facility, is assessed to demonstrate adequate protection of the public. This earthquake is assumed to have a return period of 10,000 years. An investment protection level or inspection level (where all structures, systems and components are safe) with a peak ground acceleration (pga) at 0.5 m/s 2 is also considered. As a basis, orders of magnitude of consequences, if no countermeasures were taken, are given. Four aspects are discussed: regulation, implementation of this regulation for the proposed site (site geology, tectonic and seismotectonic), a probabilistic seismic hazard assessment of the site and finally, the fulfilment of the requirements and assumptions, according to IAEA guides. As a conclusion of the studies, the main characteristics of the Cadarache European site are discussed. Preliminary studies have shown that the European site proposal will ensure a low level of project risk with respect to the seismic hazard

  13. IAEA safety guides in the light of recent developments in earthquake engineering

    International Nuclear Information System (INIS)

    Gurpinar, A.

    1988-11-01

    The IAEA safety guides 50-SG-S1 and 50-SG-S2 emphasize on the determination of the design basis earthquake ground motion and earthquake resistant design considerations for nuclear power plants, respectively. Since the elaboration of these safety guides years have elapsed and a review of some of these concepts is necessary, taking into account the information collected and the technical developments. In this article, topics within the scope of these safety guides are discussed. In particular, the results of some recent research which may have a bearing on the nuclear industry are highlighted. Conclusions and recommendations are presented. 6 fig., 19 refs. (F.M.)

  14. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  15. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    Science.gov (United States)

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  16. SAFETY BASIS DESIGN DEVELOPMENT CHALLENGES IMECE2007-42747

    Energy Technology Data Exchange (ETDEWEB)

    RYAN GW

    2007-09-24

    'Designing in Safety' is a desired part of the development of any new potentially hazardous system, process, or facility. It is a required part of nuclear safety activities as specified in the U.S. Department of Energy (DOE) Order 420.B, Facility Safety. This order addresses the design of nuclear related facilities developed under federal regulation IOCFR830, Nuclear Safety Management. IOCFR830 requires that safety basis documentation be provided to identify how nuclear safety is being adequately addressed as a condition for system operation (e.g., the safety basis). To support the development of the safety basis, a safety analysis is performed. Although the concept of developing a design that addresses 'Safety is simple, the execution can be complex and challenging. This paper addresses those complexities and challenges for the design activity of a system to treat sludge, a corrosion product of spent nuclear fuel, at DOE's Hanford Site in Washington State. The system being developed is referred to as the Sludge Treatment Project (STP). This paper describes the portion of the safety analysis that addresses the selection of design basis events using the experience gained from the STP and the development of design requirements for safety features associated with those events. Specifically, the paper describes the safety design process and the application of the process for two types of potential design basis accidents associated with the operation of the system, (1) flashing spray leaks and (2) splash and splatter leaks. Also presented are the technical challenges that are being addressed to develop effective safety features to deal with these design basis accidents.

  17. SAFETY BASIS DESIGN DEVELOPMENT CHALLENGES IMECE2007-42747

    International Nuclear Information System (INIS)

    RYAN GW

    2007-01-01

    'Designing in Safety' is a desired part of the development of any new potentially hazardous system, process, or facility. It is a required part of nuclear safety activities as specified in the U.S. Department of Energy (DOE) Order 420.B, Facility Safety. This order addresses the design of nuclear related facilities developed under federal regulation IOCFR830, Nuclear Safety Management. IOCFR830 requires that safety basis documentation be provided to identify how nuclear safety is being adequately addressed as a condition for system operation (e.g., the safety basis). To support the development of the safety basis, a safety analysis is performed. Although the concept of developing a design that addresses 'Safety is simple, the execution can be complex and challenging. This paper addresses those complexities and challenges for the design activity of a system to treat sludge, a corrosion product of spent nuclear fuel, at DOE's Hanford Site in Washington State. The system being developed is referred to as the Sludge Treatment Project (STP). This paper describes the portion of the safety analysis that addresses the selection of design basis events using the experience gained from the STP and the development of design requirements for safety features associated with those events. Specifically, the paper describes the safety design process and the application of the process for two types of potential design basis accidents associated with the operation of the system, (1) flashing spray leaks and (2) splash and splatter leaks. Also presented are the technical challenges that are being addressed to develop effective safety features to deal with these design basis accidents

  18. System requirements and design description for the document basis database interface (DocBasis)

    International Nuclear Information System (INIS)

    Lehman, W.J.

    1997-01-01

    This document describes system requirements and the design description for the Document Basis Database Interface (DocBasis). The DocBasis application is used to manage procedures used within the tank farms. The application maintains information in a small database to track the document basis for a procedure, as well as the current version/modification level and the basis for the procedure. The basis for each procedure is substantiated by Administrative, Technical, Procedural, and Regulatory requirements. The DocBasis user interface was developed by Science Applications International Corporation (SAIC)

  19. Minimization of Basis Risk in Parametric Earthquake Cat Bonds

    Science.gov (United States)

    Franco, G.

    2009-12-01

    second disfavors the investor who loses part of the investment without a reasonable cause. A streamlined and fairly automated methodology has been developed to design parametric triggers that minimize the basis risk while still maintaining their level of relative simplicity. Basis risk is minimized in both, first and second generation, parametric cat bonds through an optimization procedure that aims to find the most appropriate magnitude thresholds, geographic zones, and weight index values. Sensitivity analyses to different design assumptions show that first generation cat bonds are typically affected by a large negative basis risk, namely the risk that the bond will not trigger for events within the risk level transferred, unless a sufficiently small geographic resolution is selected to define the trigger zones. Second generation cat bonds in contrast display a bias towards negative or positive basis risk depending on the degree of the polynomial used as well as on other design parameters. Two examples are presented, the construction of a first generation parametric trigger mechanism for Costa Rica and the design of a second generation parametric index for Japan.

  20. Historic Eastern Canadian earthquakes

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchinson, R.J.

    1981-01-01

    Nuclear power plants licensed in Canada have been designed to resist earthquakes: not all plants, however, have been explicitly designed to the same level of earthquake induced forces. Understanding the nature of strong ground motion near the source of the earthquake is still very tentative. This paper reviews historical and scientific accounts of the three strongest earthquakes - St. Lawrence (1925), Temiskaming (1935), Cornwall (1944) - that have occurred in Canada in 'modern' times, field studies of near-field strong ground motion records and their resultant damage or non-damage to industrial facilities, and numerical modelling of earthquake sources and resultant wave propagation to produce accelerograms consistent with the above historical record and field studies. It is concluded that for future construction of NPP's near-field strong motion must be explicitly considered in design

  1. The design procedures on brick building against surface ground deformations due to mining and earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, J.; Yang, S. (China University of Mining and Technology (China))

    1992-05-01

    By analysing the effects of ground motion and deformation on surface buildings, and drawing on the experience of damages caused by the Tangshan and Chenhai earthquakes, the authors discuss the design of brick and concrete buildings which are protected against the damaging effects of both earthquakes and mining activities. 5 figs.

  2. From Tornadoes to Earthquakes: Forecast Verification for Binary Events Applied to the 1999 Chi-Chi, Taiwan,Earthquake

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen

    2006-01-01

    Full Text Available Forecast verification procedures for statistical events with binary outcomes typically rely on the use of contingency tables and Relative Operating Characteristic (ROC diagrams. Originally developed for the statistical evaluation of tornado forecasts on a county-by-county basis, these methods can be adapted to the evaluation of competing earthquake forecasts. Here we apply these methods retrospectively to two forecasts for the M 7.3 1999 Chi-Chi, Taiwan, earthquake. We show that a previously proposed forecast method that is based on evaluating changes in seismic intensity on a regional basis is superior to a forecast based only on the magnitude of seismic intensity in the same region. Our results confirm earlier suggestions that the earthquake preparation process for events such as the Chi-Chi earthquake involves anomalous activation or quiescence, and that signatures of these processes can be detected in seismicity data using appropriate methods.

  3. Countermeasures to earthquakes in nuclear plants

    International Nuclear Information System (INIS)

    Sato, Kazuhide

    1979-01-01

    The contribution of atomic energy to mankind is unmeasured, but the danger of radioactivity is a special thing. Therefore in the design of nuclear power plants, the safety has been regarded as important, and in Japan where earthquakes occur frequently, the countermeasures to earthquakes have been incorporated in the examination of safety naturally. The radioactive substances handled in nuclear power stations and spent fuel reprocessing plants are briefly explained. The occurrence of earthquakes cannot be predicted effectively, and the disaster due to earthquakes is apt to be remarkably large. In nuclear plants, the prevention of damage in the facilities and the maintenance of the functions are required at the time of earthquakes. Regarding the location of nuclear plants, the history of earthquakes, the possible magnitude of earthquakes, the properties of ground and the position of nuclear plants should be examined. After the place of installation has been decided, the earthquake used for design is selected, evaluating live faults and determining the standard earthquakes. As the fundamentals of aseismatic design, the classification according to importance, the earthquakes for design corresponding to the classes of importance, the combination of loads and allowable stress are explained. (Kako, I.)

  4. A risk-informed framework for establishing a beyond design basis safety basis for external hazards

    Energy Technology Data Exchange (ETDEWEB)

    Amico, P. [Hughes Associates, Inc, Baltimore, MD (United States); Anoba, R. [Hughes Associates, Inc, Raleigh, NC (United States); Najafi, B. [Hughes Associates, Inc., Los Gatos, CA (United States)

    2014-07-01

    The events at Fukushima Daiichi taught us that meeting a deterministic design basis requirement for external hazards does not assure that the risk is low. As observed at the plant, the two primary reasons for this are failure cliffs above the design basis event and that combined hazard effects are not considered in design. Because the possible combinations of design basis exceedences and external hazard combinations are very large and complex, an approach focusing only on the most important ones is needed. For this reason, a risk informed approach is the most effective approach, which is discussed in this paper. (author)

  5. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  6. Seismic Margin of 500MWe PFBR Beyond Safe Shutdown Earthquake

    International Nuclear Information System (INIS)

    Sajish, S.D.; Chellapandi, P.; Chetal, S.C.

    2012-01-01

    Summary: • Seismic design aspects of safety related systems and components of PFBR is discussed with a focus on reactor assembly components. • PFBR is situated in a low seismic area with a peak ground acceleration value of 0.156 g. • The design basis ground motion parameters for the seismic design are evaluated by deterministic method and confirmed by probabilistic seismic hazard analysis. • Review of the seismic design of various safety related systems and components indicate that margin is available to meet any demand due to an earthquake beyond SSE. • Reactor assembly vessels are the most critical components w.r.t seismic loading. • Minimum safety margin is 1.41 for plastic deformation and 1.46 against buckling. • From the preliminary investigation we come to the conclusion that PFBR can withstand an earthquake up to 0.22 g without violating any safety limits. • Additional margin can be estimated by detailed fragility analysis and seismic margin assessment methods

  7. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  8. Design basis programs and improvements in plant operation

    International Nuclear Information System (INIS)

    Metcalf, M.F.

    1991-01-01

    Public Service Electric and Gas (PSE and G) Company operates three commercial nuclear power plants in southern New Jersey. The three plants are of different designs and vintages (two pressurized water reactors licensed in 1976 and 1980 and one boiling water reactor licensed in 1986). As the industry recognized the need to develop design basis programs, PSE and G also realized the need after a voluntary 52-day shutdown of one unit because of electrical design basis problems. In its drive to be a premier electric utility, PSE and G has been aggressively active in developing design basis documents (DBDs) with supporting projects and refined uses to obtain the expected value and see the return on investment. Progress on Salem is nearly 75% complete, while Hope Creek is 20% complete. To data, PSE and G has experienced success in the use of DBDs in areas such as development of plant modifications, development of the reliability-centered maintenance program, procedure upgrades, improved document retrieval, resolution of regulatory issues, and training. The paper examines the design basis development process, supporting projects, and expected improvements in plant operations as a result of these efforts

  9. Instruction system upon occurrence of earthquakes

    International Nuclear Information System (INIS)

    Inagaki, Masakatsu; Morikawa, Matsuo; Suzuki, Satoshi; Fukushi, Naomi.

    1987-01-01

    Purpose: To enable rapid re-starting of a nuclear reactor after earthquakes by informing various properties of encountered earthquake to operators and properly displaying the state of damages in comparison with designed standard values of facilities. Constitution: Even in a case where the maximum accelerations due to the movements of earthquakes encountered exceed designed standard values, it may be considered such a case that equipments still remain intact depending on the wave components of the seismic movements and the vibration properties inherent to the equipments. Taking notice of the fact, the instruction device comprises a system that indicates the relationship between the seismic waveforms of earthquakes being encountered and the scram setting values, a system for indicating the comparison between the floor response spectrum of the seismic waveforms of the encountered earthquakes and the designed floor response spectrum used for the design of the equipments and a system for indicating those equipments requiring inspection after the earthquakes. Accordingly, it is possible to improve the operationability upon scram of a nuclear power plant undergoing earthquakes and improve the power saving and safety by clearly defining the inspection portion after the earthquakes. (Kawakami, Y.)

  10. Solar Power Tower Design Basis Document, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  11. Construction and design defects in the residential buildings and observed earthquake damage types in Turkey

    Science.gov (United States)

    Cogurcu, M. T.

    2015-04-01

    Turkey is situated in a very active earthquake region. In the last century, several earthquakes resulted in thousands of deaths and enormous economic losses. In 1999, the Kocaeli earthquake had an approximate death toll of more than 20 000, and in 2011 the Van earthquake killed 604 people. In general, Turkish residential buildings have reinforced concrete structural systems. These reinforced concrete structures have several deficiencies, such as low concrete quality, non-seismic steel detailing and inappropriate structural systems including several architectural irregularities. In this study, the general characteristics of Turkish building stock and the deficiencies observed in structural systems are explained, and illustrative figures are given with reference to the Turkish Earthquake Code 2007. The poor concrete quality, lack of lateral or transverse reinforcement in beam-column joints and column confinement zones, high stirrup spacings, under-reinforced columns and over-reinforced beams are the primary causes of failures. Other deficiencies include weak-column-stronger-beam formations, insufficient seismic joint separations, soft-story or weak-story irregularities and short columns. Similar construction and design mistakes are also observed in other countries situated on active earthquake belts. Existing buildings still have these undesirable characteristics, and so to prepare for future earthquakes they must be rehabilitated.

  12. The investigation of the impacts of major disasters, on the basis of the Van earthquake (October 23, 2011, Turkey), on the profile of the injuries due to occupational accidents.

    Science.gov (United States)

    Hekimoglu, Yavuz; Dursun, Recep; Karadas, Sevdegul; Asirdizer, Mahmut

    2015-10-01

    The purpose of this study is to identify the impacts of major disasters, on the basis of the Van earthquake (October 23, 2011, Turkey), on the profile of the injuries due to occupational accidents. In this study, we evaluated 245 patients of occupational accidents who were admitted to emergency services of Van city hospitals in the 1-year periods including pre-earthquake and post-earthquake. We determined that there was a 63.4% (P accidents in the post-earthquake period compared to the pre-earthquake period. Also, injuries due to occupational accidents increased 211% (P accidents. In this study, the impact of disasters such as earthquakes on the accidents at work was evaluated as we have not seen in literature. This study emphasizes that governments should make regulations and process relating to the post-disaster business before the emergence of disaster by taking into account factors that may increase their work-related accidents. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  13. Lower bound earthquake magnitude for probabilistic seismic hazard evaluation

    International Nuclear Information System (INIS)

    McCann, M.W. Jr.; Reed, J.W.

    1990-01-01

    This paper presents the results of a study that develops an engineering and seismological basis for selecting a lower-bound magnitude (LBM) for use in seismic hazard assessment. As part of a seismic hazard analysis the range of earthquake magnitudes that are included in the assessment of the probability of exceedance of ground motion must be defined. The upper-bound magnitude is established by earth science experts based on their interpretation of the maximum size of earthquakes that can be generated by a seismic source. The lower-bound or smallest earthquake that is considered in the analysis must also be specified. The LBM limits the earthquakes that are considered in assessing the probability that specified ground motion levels are exceeded. In the past there has not been a direct consideration of the appropriate LBM value that should be used in a seismic hazard assessment. This study specifically looks at the selection of a LBM for use in seismic hazard analyses that are input to the evaluation/design of nuclear power plants (NPPs). Topics addressed in the evaluation of a LBM are earthquake experience data at heavy industrial facilities, engineering characteristics of ground motions associated with small-magnitude earthquakes, probabilistic seismic risk assessments (seismic PRAs), and seismic margin evaluations. The results of this study and the recommendations concerning a LBM for use in seismic hazard assessments are discussed. (orig.)

  14. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    Science.gov (United States)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  15. Prevent recurrence of nuclear disaster (3). Agenda on nuclear safety from earthquake engineering

    International Nuclear Information System (INIS)

    Kameda, Hiroyuki; Takada, Tsuyoshi; Ebisawa, Katsumi; Nakamura, Susumu

    2012-01-01

    Based on results of activities of committee on seismic safety of nuclear power plants (NPPs) of Japan Association for Earthquake Engineering, which started activities after Chuetsu-oki earthquake and then experienced Great East Japan Earthquake, (under close collaboration with the committee of Atomic Energy Society of Japan started activities simultaneously), and taking account of further development of concept, agenda on nuclear safety were proposed from earthquake engineering. In order to prevent recurrence of nuclear disaster, individual technical issues of earthquake engineering and comprehensive issues of integration technology, multidisciplinary collaboration and establishment of technology governance based on them were of prime importance. This article described important problems to be solved; (1) technical issues and mission of seismic safety of NPPs, (2) decision making based on risk assessment - basis of technical governance, (3) framework of risk, design and regulation - framework of required technology governance, (4) technical issues of earthquake engineering for nuclear safety, (5) role of earthquake engineering in nuclear power risk communication and (6) importance of multidisciplinary collaboration. Responsibility of engineering would be attributed to establishment of technology governance, cultivation of individual technology and integration technology, and social communications. (T. Tanaka)

  16. Basis for NGNP Reactor Design Down-Selection

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2010-08-01

    The purpose of this paper is to identify the extent of technology development, design and licensing maturity anticipated to be required to credibly identify differences that could make a technical choice practical between the prismatic and pebble bed reactor designs. This paper does not address a business decision based on the economics, business model and resulting business case since these will vary based on the reactor application. The selection of the type of reactor, the module ratings, the number of modules, the configuration of the balance of plant and other design selections will be made on the basis of optimizing the Business Case for the application. These are not decisions that can be made on a generic basis.

  17. Historical earthquake research in Austria

    Science.gov (United States)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  18. Y-12 site-specific earthquake response analysis and soil liquefaction assessment

    International Nuclear Information System (INIS)

    Ahmed, S.B.; Hunt, R.J.; Manrod, W.E. III.

    1995-01-01

    A site-specific earthquake response analysis and soil liquefaction assessment were performed for the Oak Ridge Y-12 Plant. The main purpose of these studies was to use the results of the analyses for evaluating the safety of the performance category -1, -2, and -3 facilities against the natural phenomena seismic hazards. Earthquake response was determined for seven (7), one dimensional soil columns (Fig. 12) using two horizontal components of the PC-3 design basis 2000-year seismic event. The computer program SHAKE 91 (Ref. 7) was used to calculate the absolute response accelerations on top of ground (soil/weathered shale) and rock outcrop. The SHAKE program has been validated for horizontal response calculations at periods less than 2.0 second at several sites and consequently is widely accepted in the geotechnical earthquake engineering area for site response analysis

  19. Systems required during and after an earthquake. Summary report. WWER-1000 nuclear power plants

    International Nuclear Information System (INIS)

    Monette, P.

    1995-01-01

    The scope of this document is to list the mechanical, instrumentation and electrical components required during and after earthquake, in order to achieve and maintain safe shutdown conditions of a WWER-1000 type nuclear power plant. The main objective pursued in establishing the systems and equipment list is to provide guidance for the design and implementation of the backfits which are necessary to increase seismic resistance of the components required after earthquake. The presented list is established on generic basis, i.e. it is applicable to any specific WWER-1000

  20. Design basis document open-item resolution and reportability

    International Nuclear Information System (INIS)

    Gambhir, S.K.; Livingston, B.R.; Purcell, J.J.; Erickson, E.A.

    1989-01-01

    In the process of reconstituting the design bases for older nuclear power plants, information or references may not be available to fully define the design requirements or to document and verify the adequacy of the design. Also, information that is in conflict with other data is identified. The missing and conflicting information must be reconstituted in order to adequately document the design bases of the plant. For these operating facilities, the identification, tracking, and resolution of missing or conflicting information is very important when the reporting requirements stipulated by 10CFR21, 10CFR50.72, and 10CFR50.73 are considered. Additionally, controlled documentation (calculations, drawings, etc.) used to develop the design basis documents may contain conflicting data. In some cases, conflicts between the as-built design and licensing or design basis requirements established in specific commitments to the U.S. Nuclear Regulatory Commission may be identified. Furthermore, concerns regarding the adequacy of safety-related systems or components to perform their required function may be identified that would warrant prompt action by the licensee. The approach discussed in this paper was used by Omaha Public Power District for the ongoing design basis reconstitution effort at the Fort Calhoun nuclear plant

  1. Building configuration and seismic design: The architecture of earthquake resistance

    Science.gov (United States)

    Arnold, C.; Reitherman, R.; Whitaker, D.

    1981-05-01

    The architecture of a building in relation to its ability to withstand earthquakes was determined. Aspects of round motion which are significant to building behavior are discussed. Results of a survey of configuration decisions that affect the performance of buildings with a focus on the architectural aspects of configuration design are provided. Configuration derivation, building type as it relates to seismic design, and seismic design, and seismic issues in the design process are examined. Case studies of the Veterans' Administration Hospital in Loma Linda, California, and the Imperial Hotel in Tokyo, Japan, are presented. The seismic design process is described paying special attention to the configuration issues. The need is stressed for guidelines, codes, and regulations to ensure design solutions that respect and balance the full range of architectural, engineering, and material influences on seismic hazards.

  2. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  3. Seismic resistance of equipment and building service systems: review of earthquake damage design requirements, and research applications in the USA

    International Nuclear Information System (INIS)

    Skjei, R.E.; Chakravartula, B.C.; Yanev, P.I.

    1979-01-01

    The history of earthquake damage and the resulting code design requirements for earthquake hazard mitigation for equipment in the USA is reviewed. Earthquake damage to essential service systems is summarized; observations for the 1964 Alaska and the 1971 San Fernando, California, earthquakes are stressed, and information from other events is included. USA building codes that reflect lessons learned from these earthquakes are discussed; brief summaries of widely used codes are presented. In conclusion there is a discussion of the desirability of adapting advanced technological concepts from the nuclear industry to equipment in conventional structures. (author)

  4. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    Science.gov (United States)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  5. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  6. On the basic research of design analysis and testing based on the failure rate for pipings and equipment under earthquake conditions

    International Nuclear Information System (INIS)

    Shibata, H.

    1980-01-01

    This paper deals with the evaluation method of the failure rate of pipings and equipment of nuclear power plants under destructive earthquakes and a new design concept in this stand point of view. These researches are supported by various studies related to this subject, which have been done by the author since 1966. In this paper, the history of the development, the summaries of these studies and their significances to the practice will be described briefly. The surveys on damages of industrial facilities caused by recent destructive earthquakes are the basical study for this subject. And the continuous response observation of model structures of a plant complex to natural earthquakes is another important basic study to know the stochastic nature and significance of response analysis for the anti-earthquake design of nuclear power plants. By having the exact knowledges on these subjects, the author has been developing the evaluation procedure of the failure rate of pipings and equipment under destructive earthquake conditions, a new design method 'counter-input design' and others. Now his effort is going towards establishing their practical procedure after finishing the basic researches. (orig.)

  7. Design spectrums based on earthquakes recorded at tarbela

    International Nuclear Information System (INIS)

    Rizwan, M.; Ilyas, M.; Masood, A.

    2008-01-01

    First Seismological Network in Pakistan was setup in early 1969 at Tarbela, which is the location of largest water reservoir of the country. The network consisted of Analog Accelerograms and Seismographs. Since the installation many seismic events of different magnitudes occurred and were recorded by the installed instruments. The analog form of recorded time histories has been digitized and data of twelve earthquakes, irrespective of the type of soil, has been used to derive elastic design spectrums for Tarbela, Pakistan. The PGA scaling factors, based on the risk analysis studies carried out for the region, for each component are also given. The design spectrums suggested will be very useful for carrying out new construction in the region and its surroundings. The digitized data of time histories will be useful for seismic response analysis of structures and seismic risk analysis of the region. (author)

  8. The research committee of Chuetsu-oki earthquake influences to Kashiwazaki-Kariwa Nuclear Power Station. Importance classification

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Kobayashi, Masahide

    2009-01-01

    Conventionally, the design of a nuclear reactor has been performed from a viewpoint of a safety function and the importance on earthquake-proof on the basis of not giving off the mainly included radioactivity outside. In this Niigataken-Chuetsuoki earthquake, there is almost no damage to the system, components and structure on safe also in the earthquake beyond assumption, and the validity of the design was checked. But, the situation peculiar to a big earthquake was also generated. The emergency plan room which should serve as a connection center with the exterior was not able to open a door and use at the beginning. Fire-extinguishing system piping fractured and self-defense fire fighting was not made. And so on. Discussion from the following three viewpoints was performed. (1) The importance from a viewpoint which should maintain a function also with the disaster in case of an earthquake like an emergency plan room etc. (2) In the earthquake, since the safe system and un-safe system was influenced, the importance from a viewpoint which may have influence safely inquired when the un-safe system broke down. (2) Although it was not directly related safely, discussion from a viewpoint which influences fear of insecurity, such as taking out smoke, for example, was performed. (author)

  9. Earthquake and welded structures 5: Earthquake damages and anti-earthquake measures of oil storage tanks; 5 kikenbutsu chozo tank no jishin higai to taishin taisaku

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, K. [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-09-05

    The result of field investigation carried out on the state of damages of 236 hazardous material storage tanks out of 687 caused by the Hyogoken Nambu Earthquake in 1995 is introduced together with the cases of damage and the description of the countermeasures. The events of inclination and settlement of tank bodies were confirmed in 44% among those investigated in particular with tanks having a capacity of less than 1000kl and as for the basement and ground settlement, the fact that sand spouted as a result of their fluidization was witnessed as much as 81% among those investigated and the area surrounding tanks was roughly agreed with the area where ground crack appeared. A great number of other damages such as cracking of preventive seals against rain water, breakdown of oil defense banks and so forth were also confirmed. In the latter half of the report, aseismatic standards of old and new regulations as well as on the new criterion concerning the outdoor storage tank body, its basement and ground are tabulated and 4 items of anti-earthquake measures such as the final structural check up with regard to an earthquake exceeding the designed permissible stress, consolidation of tank body structure on the basis of the revised seismic coefficient method, assurance of the steadfast basement, prevention of the elevated platform from falling down and strengthening of water-proof seals and oil defense banks are enumerated in accordance with the report of investigation and examination on the resistibility of hazardous material storage equipment against the earthquake. 3 refs., 5 figs., 3 tabs.

  10. Tohoku's earthquake of Friday March 11, 2011 (5:46 UT), magnitude 9.0, off Honshu island (Japan)

    International Nuclear Information System (INIS)

    2011-01-01

    On Friday March 11, 2011, at 5:46 UT (2:46 PM local time), a magnitude 9.0 earthquake took place at 80 km east of Honshu island (Japan). The earthquake generated a tsunami which led to the loss of the cooling systems of the Fukushima Dai-ichi and Fukushima Daini power plants. This paper describes the seismo-tectonic and historical seismic context of the Japan archipelago and the first analyses of the Tohoku earthquake impact: magnitudes of first shock and of aftershocks, impact on nuclear facilities (maximum acceleration values detected with respect to design basis values, subsidence of coastal areas and submersion of power plant platforms). (J.S.)

  11. Integral Monitored Retrievable Storage (MRS) Facility conceptual basis for design

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of the Conceptual Basis for Design is to provide a control document that establishes the basis for executing the conceptual design of the Integral Monitored Retrievable Storage (MRS) Facility. This conceptual design shall provide the basis for preparation of a proposal to Congress by the Department of Energy (DOE) for construction of one or more MRS Facilities for storage of spent nuclear fuel, high-level radioactive waste, and transuranic (TRU) waste. 4 figs., 25 tabs

  12. Establishing 'design basis threat' in Norway

    International Nuclear Information System (INIS)

    Maerli, M.B.; Naadland, E.; Reistad, O.

    2002-01-01

    Full text: INFCIRC 225 (Rev. 4) assumes that a state's physical protection system should be based on the state's evaluation of the threat, and that this should be reflected in the relevant legislation. Other factors should also be considered, including the state's emergency response capabilities and the existing and relevant measures of the state's system of accounting for and control of nuclear material. A design basis threat developed from an evaluation by the state of the threat of unauthorized removal of nuclear material and of sabotage of nuclear material and nuclear facilities is an essential element of a state's system of physical protection. The state should continuously review the threat, and evaluate the implications of any changes in that threat for the required levels and the methods of physical protection. As part of a national design basis threat assessment, this paper evaluates the risk of nuclear or radiological terrorism and sabotage in Norway. Possible scenarios are presented and plausible consequences are discussed with a view to characterize the risks. The need for more stringent regulatory requirements will be discussed, together with the (positive) impact of improved systems and procedures of physical protection on nuclear emergency planning. Special emphasis is placed on discussing the design basis threat for different scenarios in order to systemize regulatory efforts to update the current legislation, requirement for operators' contingency planning, response efforts and the need for emergency exercises. (author)

  13. Earthquake response spectra for seismic design of nuclear power plants in the UK

    International Nuclear Information System (INIS)

    Bommer, Julian J.; Papaspiliou, Myrto; Price, Warren

    2011-01-01

    Highlights: → Seismic design of UK nuclear power plants usually based on PML response spectra. → We review derivation of PML spectra in terms of earthquake data used and procedure. → The data include errors and represent a small fraction of what is now available. → Seismic design loads in current practice are derived as mean uniform hazard spectra. → The need to capture epistemic uncertainty makes use of single equation indefensible. - Abstract: Earthquake actions for the seismic design of nuclear power plants in the United Kingdom are generally based on spectral shapes anchored to peak ground acceleration (PGA) values obtained from a single predictive equation. Both the spectra and the PGA prediction equation were derived in the 1980s. The technical bases for these formulations of seismic loading are now very dated if compared with the state-of-the-art in this field. Alternative spectral shapes are explored and the options, and the associated benefits and challenges, for generating uniform hazard response spectra instead of fixed shapes anchored to PGA are discussed.

  14. Nuclear power plant design resistance to earthquakes. Pt. 3

    International Nuclear Information System (INIS)

    1990-01-01

    The rule specifies the standards to be met by the architectural design for building structures in order to ensure that they will not collapse during an earthquake. Building structures including the sub-structures covered by the rule are understood as buildings and building sections made of steel-reinforced concrete, prestressed concrete, steel and masoury (brickwork). They include i.a. crane tracks and gantries. For reactor safety containment buildings constructed of steel, steel-reinforced concrete or prestressed concrete, this rule applies for the calculation of section size. (orig./HP) [de

  15. Simulant Basis for the Standard High Solids Vessel Design

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Reid A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suffield, Sarah R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Daniel, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-30

    The Waste Treatment and Immobilization Plant (WTP) is working to develop a Standard High Solids Vessel Design (SHSVD) process vessel. To support testing of this new design, WTP engineering staff requested that a Newtonian simulant and a non-Newtonian simulant be developed that would represent the Most Adverse Design Conditions (in development) with respect to mixing performance as specified by WTP. The majority of the simulant requirements are specified in 24590-PTF-RPT-PE-16-001, Rev. 0. The first step in this process is to develop the basis for these simulants. This document describes the basis for the properties of these two simulant types. The simulant recipes that meet this basis will be provided in a subsequent document.

  16. Seismic design standardization of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.

    2011-01-01

    Full text: Structures, Systems and Components (SSCs) of Nuclear Facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Man made accidents such as aircraft impact, explosions etc., some times may be considered as design basis event and some times taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event. It is generally felt design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to be adopted for seismic design standardization of nuclear facilities

  17. Selection of design basis event for modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Nakagawa, Shigeaki; Ohashi, Hirofumi

    2016-06-01

    Japan Atomic Energy Agency (JAEA) has been investigating safety requirements and basic approach of safety guidelines for modular High Temperature Gas-cooled Reactor (HTGR) aiming to increase internarial contribution for nuclear safety by developing an international HTGR safety standard under International Atomic Energy Agency. In this study, we investigate a deterministic approach to select design basis events utilizing information obtained from probabilistic approach. In addition, selections of design basis events are conducted for commercial HTGR designed by JAEA. As a result, an approach for selecting design basis event considering multiple failures of safety systems is established which has not been considered as design basis in the safety guideline for existing nuclear facility. Furthermore, selection of design basis events for commercial HTGR has completed. This report provides an approach and procedure for selecting design basis events of modular HTGR as well as selected events for the commercial HTGR, GTHTR300. (author)

  18. Effects of the northern Ohio earthquake on the Perry nuclear power plant

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1987-01-01

    On January 31, 1986 at 11:47 A.M. EST, a brief strong motion duration and shallow (10 km focal depth) earthquake with a 5.0 Richter magnitude occurred. Its epicenter was located near Leroy, Ohio which is south of Lake Erie, at a distance of approximately ten (10) miles from the Perry Nuclear Power Plant site at Perry, Ohio. The potential safety significance of the Leroy 1986 earthquake is that it produced a recorded component of earthquake motion zero period acceleration approximately equal to the 0.15g zero period ground acceleration defined as the Safe Shutdown Earthquake for the site. The Leroy 1986 earthquake is the first recorded instance in the U.S. of a nuclear power plant being subjected to some level of OBE exceedance. In general, the short duration and high frequency non-damaging character of the Leroy 1986 earthquake cannot be equated directly on the basis of peak ground acceleration alone with the longer duration, lower frequency content of earthquakes which are expected to do structural damage. However, all the available evidence suggests that the Leroy 1986 is not atypical of what might be expected earthquake activity in the area of the eastern U.S. with 1-10 year return periods. On this basis, it is essential that new methods be developed which properly characterized the damage potential of these types of earthquakes and not simply process the raw data associated with recorded peak acceleration as the basis of nuclear plant shutdown and potentially lengthly examination

  19. Earthquake risk assessment of building structures

    International Nuclear Information System (INIS)

    Ellingwood, Bruce R.

    2001-01-01

    During the past two decades, probabilistic risk analysis tools have been applied to assess the performance of new and existing building structural systems. Structural design and evaluation of buildings and other facilities with regard to their ability to withstand the effects of earthquakes requires special considerations that are not normally a part of such evaluations for other occupancy, service and environmental loads. This paper reviews some of these special considerations, specifically as they pertain to probability-based codified design and reliability-based condition assessment of existing buildings. Difficulties experienced in implementing probability-based limit states design criteria for earthquake are summarized. Comparisons of predicted and observed building damage highlight the limitations of using current deterministic approaches for post-earthquake building condition assessment. The importance of inherent randomness and modeling uncertainty in forecasting building performance is examined through a building fragility assessment of a steel frame with welded connections that was damaged during the Northridge Earthquake of 1994. The prospects for future improvements in earthquake-resistant design procedures based on a more rational probability-based treatment of uncertainty are examined

  20. Guidelines for earthquake ground motion definition for the Eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors

  1. 33 CFR 222.4 - Reporting earthquake effects.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reporting earthquake effects. 222..., DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.4 Reporting earthquake effects. (a) Purpose. This... significant earthquakes. It primarily concerns damage surveys following the occurrences of earthquakes. (b...

  2. Seismic hazard maps for earthquake-resistant construction designs

    International Nuclear Information System (INIS)

    Ohkawa, Izuru

    2004-01-01

    Based on the idea that seismic phenomena in Japan varying in different localities are to be reflected in designing specific nuclear facilities in specific site, the present research program started to make seismic hazard maps representing geographical distribution of seismic load factors. First, recent research data on historical earthquakes and materials on active faults in Japan have been documented. Differences in character due to different localities are expressed by dynamic load in consideration of specific building properties. Next, hazard evaluation corresponding to seismic-resistance factor is given as response index (spectrum) of an adequately selected building, for example a nuclear power station, with the help of investigation results of statistical analysis. (S. Ohno)

  3. Sensing the earthquake

    Science.gov (United States)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  4. Design basis tropical cyclone for nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The general characteristics of tropical cyclones are discussed in this Safety Guide, with particular emphasis on their pressure and wind structures in the light of available data. General methods are given for the evaluation of the relevant parameters of a Probable Maximum Tropical Cyclone (PMTC), which can be used as the Design Basis Tropical Cyclone (DBTC); these parameters then serve as inputs for the derivation of a design basis surge and a design basis wind. A possible method is also given for the evaluation of the PMTC pressure and wind field based on an approach valid primarily for a particular region. This method depends on the results of a theoretical study on the tropical cyclone structure and makes use of a large amount of data, including aircraft reconnaissance observations for 170 most intense tropical cyclones near the coast of Japan, Taiwan and the Philippines for the period 1960-1974, as well as detailed analyses of all the extreme storms along the Gulf of Mexico and the east coast of the USA during 1900-1978, for the determination of the necessary parameters

  5. Assessment of WWER fuel condition in design basis accident

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.; Sokolov, N.; Andreeva-Andrievskaya, L.; Vlasov, Yu.; Nechaeva, O.; Salatov, A.

    1994-01-01

    The fuel behaviour in design basis accidents is assessed by means of the verified code RAPTA-5. The code uses a set of high temperature physico-chemical properties of the fuel components as determined for commercially produced materials, fuel rod simulators and fuel rod bundles. The WWER fuel criteria available in Russia for design basis accidents do not generally differ from the similar criteria adopted for PWR's. 12 figs., 11 refs

  6. Overview of the relations earthquake source parameters and the specification of strong ground motion for design purposes

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-08-01

    One of the most important steps in the seismic design process is the specification of the appropriate ground motion to be input into the design analysis. From the point-of-view of engineering design analysis, the important parameters are peak ground acceleration, spectral shape and peak spectral levels. In a few cases, ground displacement is a useful parameter. The earthquake is usually specified by giving its magnitude and either the epicentral distance or the distance of the closest point on the causitive fault to the site. Typically, the appropriate ground motion parameters are obtained using the specified magnitude and distance in equations obtained from regression analysis among the appropriate variables. Two major difficulties with such an approach are: magnitude is not the best parameter to use to define the strength of an earthquake, and little near-field data is available to establish the appropriate form for the attenuation of the ground motion with distance, source size and strength. These difficulties are important for designing a critical facility; i.e., one for which a very low risk of exceeding the design ground motion is required. Examples of such structures are nuclear power plants, schools and hospitals. for such facilities, a better understanding of the relation between the ground motion and the important earthquake source parameters could be very useful for several reasons

  7. Building with Earthquakes in Mind

    Science.gov (United States)

    Mangieri, Nicholas

    2016-04-01

    Earthquakes are some of the most elusive and destructive disasters humans interact with on this planet. Engineering structures to withstand earthquake shaking is critical to ensure minimal loss of life and property. However, the majority of buildings today in non-traditional earthquake prone areas are not built to withstand this devastating force. Understanding basic earthquake engineering principles and the effect of limited resources helps students grasp the challenge that lies ahead. The solution can be found in retrofitting existing buildings with proper reinforcements and designs to deal with this deadly disaster. The students were challenged in this project to construct a basic structure, using limited resources, that could withstand a simulated tremor through the use of an earthquake shake table. Groups of students had to work together to creatively manage their resources and ideas to design the most feasible and realistic type of building. This activity provided a wealth of opportunities for the students to learn more about a type of disaster they do not experience in this part of the country. Due to the fact that most buildings in New York City were not designed to withstand earthquake shaking, the students were able to gain an appreciation for how difficult it would be to prepare every structure in the city for this type of event.

  8. Philosophy for seismic design of nuclear power plants

    International Nuclear Information System (INIS)

    Teramae, Tetsuo

    1981-01-01

    In Japan, earthquakes occur frequently, therefore the basic philosophy in the aseismatic design of nuclear facilities is to design so as not to cause the accident which gives to the public in the surroundings and the employes radiation injuries in the case of large earthquakes. The ''Guideline for the aseismatic design techniques for nuclear power stations'' was drawn up in 1970 as the result of studies by related government offices and organizations. The guideline for determining the earthquakes used for design was published later, and the allowable stress for equipments and pipings has been adopted in accordance with ASME Code, Section 3. The buildings and structures, equipments and pipings in nuclear facilities are classified into three classes according to their importance in aseismatic design. The power of design earthquakes is determined corresponding to the degree of importance. The determination of the standard earthquake waves is explained. The proprieth of aseismatic design is evaluated on the basis of the basic concept of the combination of loads and the allowable limit. The static analysis in accordance with the Building Standards Act is applied to the B and C classes, while the dynamic analysis is required for the A class. The aseismatic analysis of buildings and structures, equipments and pipings is outlined. Many problems to be solved still remain though the concept of aseismatic design has been clarified. (Kako, I.)

  9. 46 CFR 177.310 - Satisfactory service as a design basis.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Satisfactory service as a design basis. 177.310 Section... (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.310 Satisfactory service as a design basis. When scantlings for the hull, deckhouse, and frames of the vessel differ from those...

  10. A fast combinatorial enhancement technique for earthquake damage identification based on remote sensing image

    Science.gov (United States)

    Dou, Aixia; Wang, Xiaoqing; Ding, Xiang; Du, Zecheng

    2010-11-01

    On the basis of the study on the enhancement methods of remote sensing images obtained after several earthquakes, the paper designed a new and optimized image enhancement model which was implemented by combining different single methods. The patterns of elementary model units and combined types of model were defined. Based on the enhancement model database, the algorithm of combinatorial model was brought out via C++ programming. The combined model was tested by processing the aerial remote sensing images obtained after 1976 Tangshan earthquake. It was proved that the definition and implementation of combined enhancement model can efficiently improve the ability and flexibility of image enhancement algorithm.

  11. Preliminary Evaluation Methodology of ECCS Performance for Design Basis LOCA Redefinition

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Ahn, Seung Hoon; Seul, Kwang Won

    2010-01-01

    To improve their existing regulations, the USNRC has made efforts to develop the risk-informed and performance-based regulation (RIPBR) approaches. As a part of these efforts, the rule revision of 10CFR50.46 (ECCS Acceptance Criteria) is underway, considering some options for 4 categories of spectrum of break sizes, ECCS functional reliability, ECCS evaluation model, and ECCS acceptance criteria. Since the potential for safety benefits and unnecessary burden reduction from design basis LOCA redefinition is high relative to other options, the USNRC is proceeding with the rulemaking for design basis LOCA redefinition. An instantaneous break with a flow rate equivalent to a double ended guillotine break (DEGB) of the largest primary piping system in the plant is widely recognized as an extremely unlikely event, while redefinition of design basis LOCA can affect the existing regulatory practices and approaches. In this study, the status of the design basis LOCA redefinition and OECD/NEA SMAP (Safety Margin Action Plan) methodology are introduced. Preliminary evaluation methodology of ECCS performance for LOCA is developed and discussed for design basis LOCA redefinition

  12. Assessment of WWER fuel condition in design basis accident

    Energy Technology Data Exchange (ETDEWEB)

    Bibilashvili, Yu; Sokolov, N; Andreeva-Andrievskaya, L; Vlasov, Yu; Nechaeva, O; Salatov, A [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation)

    1994-12-31

    The fuel behaviour in design basis accidents is assessed by means of the verified code RAPTA-5. The code uses a set of high temperature physico-chemical properties of the fuel components as determined for commercially produced materials, fuel rod simulators and fuel rod bundles. The WWER fuel criteria available in Russia for design basis accidents do not generally differ from the similar criteria adopted for PWR`s. 12 figs., 11 refs.

  13. The EPR-a comprehensive design concept against external events

    International Nuclear Information System (INIS)

    Stoll, U.; Waas, U.

    2006-01-01

    The main objective of design provisions against external hazards is to ensure that the safety functions required to bring the plant to safe shutdown are not inadmissibly affected by any external hazards that might be postulated for the intended site of the plant. In the design of the European Pressurized Water Reactor (EPR) particular attention was paid to external hazards such as earthquake, airplane crash, and explosion pressure wave. The standard EPR covers a large range of possible site conditions, the design earthquake enveloping safe shutdown earthquakes (SSE) to be expected for potential sites. The loads for the design basis airplane crash and - if required - for the design extension airplane crash as well as for external Explosion Pressure Wave are defined depending on site specific requirements. Protection against other external load cases such as extreme winds and external flooding is also included in the standard design

  14. Technical basis for the ITER-FEAT outline design

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This ITER EDA Documentation Series issue summarizes the results of the ITER Engineering Design Activities on the technical basis for the ITER-FEAT outline design. This issue also comprises some physical analysis activities as well as structure and goals of the Physics Expert Group activities.

  15. Technical basis for the ITER-FEAT outline design

    International Nuclear Information System (INIS)

    2000-01-01

    This ITER EDA Documentation Series issue summarizes the results of the ITER Engineering Design Activities on the technical basis for the ITER-FEAT outline design. This issue also comprises some physical analysis activities as well as structure and goals of the Physics Expert Group activities

  16. 10 CFR 72.94 - Design basis external man-induced events.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design basis external man-induced events. 72.94 Section 72... WASTE Siting Evaluation Factors § 72.94 Design basis external man-induced events. (a) The region must be examined for both past and present man-made facilities and activities that might endanger the proposed...

  17. Magnitudes and frequencies of earthquakes in relation to seismic risk

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1989-01-01

    Estimating the frequencies of occurrence of earthquakes of different magnitudes on a regional basis is an important task in estimating seismic risk at a construction site. Analysis of global earthquake data provides an insight into the magnitudes frequency relationship in a statistical manner. It turns out that, whereas a linear relationship between the logarithm of earthquake occurrence rates and the corresponding earthquake magnitudes fits well in the magnitude range between 5 and 7, a second degree polynomial in M, the earthquake magnitude provides a better description of the frequencies of earthquakes in a much wider range of magnitudes. It may be possible to adopt magnitude frequency relation for regions, for which adequate earthquake data are not available, to carry out seismic risk calculations. (author). 32 refs., 8 tabs., 7 figs

  18. Development of the Global Earthquake Model’s neotectonic fault database

    Science.gov (United States)

    Christophersen, Annemarie; Litchfield, Nicola; Berryman, Kelvin; Thomas, Richard; Basili, Roberto; Wallace, Laura; Ries, William; Hayes, Gavin P.; Haller, Kathleen M.; Yoshioka, Toshikazu; Koehler, Richard D.; Clark, Dan; Wolfson-Schwehr, Monica; Boettcher, Margaret S.; Villamor, Pilar; Horspool, Nick; Ornthammarath, Teraphan; Zuñiga, Ramon; Langridge, Robert M.; Stirling, Mark W.; Goded, Tatiana; Costa, Carlos; Yeats, Robert

    2015-01-01

    The Global Earthquake Model (GEM) aims to develop uniform, openly available, standards, datasets and tools for worldwide seismic risk assessment through global collaboration, transparent communication and adapting state-of-the-art science. GEM Faulted Earth (GFE) is one of GEM’s global hazard module projects. This paper describes GFE’s development of a modern neotectonic fault database and a unique graphical interface for the compilation of new fault data. A key design principle is that of an electronic field notebook for capturing observations a geologist would make about a fault. The database is designed to accommodate abundant as well as sparse fault observations. It features two layers, one for capturing neotectonic faults and fold observations, and the other to calculate potential earthquake fault sources from the observations. In order to test the flexibility of the database structure and to start a global compilation, five preexisting databases have been uploaded to the first layer and two to the second. In addition, the GFE project has characterised the world’s approximately 55,000 km of subduction interfaces in a globally consistent manner as a basis for generating earthquake event sets for inclusion in earthquake hazard and risk modelling. Following the subduction interface fault schema and including the trace attributes of the GFE database schema, the 2500-km-long frontal thrust fault system of the Himalaya has also been characterised. We propose the database structure to be used widely, so that neotectonic fault data can make a more complete and beneficial contribution to seismic hazard and risk characterisation globally.

  19. Guidelines for earthquake ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab

  20. The power of simplification: Operator interface with the AP1000R during design-basis and beyond design-basis events

    International Nuclear Information System (INIS)

    Williams, M. G.; Mouser, M. R.; Simon, J. B.

    2012-01-01

    The AP1000 R plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and cost. The passive safety features are designed to function without safety-grade support systems such as component cooling water, service water, compressed air or HVAC. The AP1000 passive safety features achieve and maintain safe shutdown in case of a design-basis accident for 72 hours without need for operator action, meeting the expectations provided in the European Utility Requirements and the Utility Requirement Document for passive plants. Limited operator actions may be required to maintain safe conditions in the spent fuel pool (SFP) via passive means. This safety approach therefore minimizes the reliance on operator action for accident mitigation, and this paper examines the operator interaction with the Human-System Interface (HSI) as the severity of an accident increases from an anticipated transient to a design basis accident and finally, to a beyond-design-basis event. The AP1000 Control Room design provides an extremely effective environment for addressing the first 72 hours of design-basis events and transients, providing ease of information dissemination and minimal reliance upon operator actions. Symptom-based procedures including Emergency Operating Procedures (EOPs), Abnormal Operating Procedures (AOPs) and Alarm Response Procedures (ARPs) are used to mitigate design basis transients and accidents. Use of the Computerized Procedure System (CPS) aids the operators during mitigation of the event. The CPS provides cues and direction to the operators as the event progresses. If the event becomes progressively worse or lasts longer than 72 hours, and depending upon the nature of failures that may have occurred, minimal operator actions may be required outside of the control room in areas that have been designed to be accessible using components that have been designed

  1. Outline of the report on the seismic safety examination of nuclear facilities based on the 1995 Hyogoken-Nanbu earthquake (tentative translation) - September 1995

    International Nuclear Information System (INIS)

    2003-01-01

    From the standpoint of thoroughly confirming the seismic safety of nuclear facilities, Nuclear Safety Commission established an Examination Committee on the Seismic Safety of Nuclear Power Reactor Facilities (hereinafter called Seismic Safety Examination Committee) based on the 1995 Hyogoken-Nanbu Earthquake on January 19, 1995, two days after the occurrence of the earthquake, in order to examine the validity of related guidelines on the seismic design to be used for the safety examination. This report outlines the results of the examinations by the Seismic Safety Examination Committee: basic principle of examinations at the seismic safety examination committee, overview on the related guidelines of the seismic design, information and knowledge obtained on the 1995 Hyogoken-Nanbu earthquake, examination of validity of the guidelines based on various information of the Hyogoken-Nanbu earthquake. The Seismic Design Examination Committee surveyed the related guidelines on seismic design, selected the items to be examined, and examined on those items based on the knowledge obtained from the Hyogoken-Nanbu Earthquake. As a result, the Committee confirmed that the validity of the guidelines regulating the seismic design of nuclear facilities is not impaired even though on the basis of the Hyogoken-Nanbu Earthquake. However, the people related to the nuclear facilities may not be content with the above result, but continuously put efforts in doing the following matters to improve furthermore the reliability of seismic design of nuclear facilities by always reflecting the latest knowledge on the seismic design. 1) - The people related to nuclear facilities must seriously accept the fact that valuable knowledge could be obtained from the Hyogoken-Nanbu Earthquake, try to study and analyze the obtained data, and reflect the results of investigations, studies, and examinations conducted appropriately to the seismic design of nuclear facilities referring to the investigations

  2. Intermediate-term earthquake prediction and seismic zoning in Northern Italy

    International Nuclear Information System (INIS)

    Panza, G.F.; Orozova Stanishkova, I.; Costa, G.; Vaccari, F.

    1993-12-01

    The algorithm CN for intermediate earthquake prediction has been applied to an area in Northern Italy, which has been chosen according to a recently proposed seismotectonic model. Earthquakes with magnitude ≥ 5.4 occur in the area with a relevant frequency and their occurrence is predicted by algorithm CN. Therefore a seismic hazard analysis has been performed using a deterministic procedure, based on the computation of complete synthetic seismograms. The results are summarized in a map giving the distribution of peak ground acceleration, but the complete time series are available, which can be used by civil engineers in the design of new seismo-resistant constructions and in the retrofitting of the existing ones. This risk reduction action should be intensified in connection with warnings issued on the basis of the forward predictions made by CN. (author). Refs, 7 figs, 1 tab

  3. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    Science.gov (United States)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  4. Calculation of stricken to mortality and incidence cancers due to beyond design basis accidents of the Esfahan Fuel Production Factory

    International Nuclear Information System (INIS)

    Heydari Azar, A.; Shahshahani, M.; Roshanzamir, M.; Sabouhi, R.

    2008-01-01

    In this investigation the amount of absorbed doses by the different pathways of Cloud shine, Ground shine, deposition of radioactive materials on skin and cloths, ingestion, inhalation and the consequences of radioactive material releases due to Beyond Design Basis Accidents such as fire, sintering furnace explosion, criticality and earthquake in Esfahan Fuel Production factory by the residents are evaluated. The calculations related to atomic cloud distribution, estimation of delivered dose and decay chains are performed by PCCOSYMA dose. These computations are based on radioactive source terms, distribution height of radioactive materials. actions for reducing the absorbed dose, human body physiological characteristics, metrological condition and population distribution. Finally, the number of peoples who are stricken to mortality and morbidity cancers and risk values are calculated for 1 year and 50 years

  5. Children's emotional experience two years after an earthquake: An exploration of knowledge of earthquakes and associated emotions.

    Science.gov (United States)

    Raccanello, Daniela; Burro, Roberto; Hall, Rob

    2017-01-01

    We explored whether and how the exposure to a natural disaster such as the 2012 Emilia Romagna earthquake affected the development of children's emotional competence in terms of understanding, regulating, and expressing emotions, after two years, when compared with a control group not exposed to the earthquake. We also examined the role of class level and gender. The sample included two groups of children (n = 127) attending primary school: The experimental group (n = 65) experienced the 2012 Emilia Romagna earthquake, while the control group (n = 62) did not. The data collection took place two years after the earthquake, when children were seven or ten-year-olds. Beyond assessing the children's understanding of emotions and regulating abilities with standardized instruments, we employed semi-structured interviews to explore their knowledge of earthquakes and associated emotions, and a structured task on the intensity of some target emotions. We applied Generalized Linear Mixed Models. Exposure to the earthquake did not influence the understanding and regulation of emotions. The understanding of emotions varied according to class level and gender. Knowledge of earthquakes, emotional language, and emotions associated with earthquakes were, respectively, more complex, frequent, and intense for children who had experienced the earthquake, and at increasing ages. Our data extend the generalizability of theoretical models on children's psychological functioning following disasters, such as the dose-response model and the organizational-developmental model for child resilience, and provide further knowledge on children's emotional resources related to natural disasters, as a basis for planning educational prevention programs.

  6. Earthquake Damping Device for Steel Frame

    Science.gov (United States)

    Zamri Ramli, Mohd; Delfy, Dezoura; Adnan, Azlan; Torman, Zaida

    2018-04-01

    Structures such as buildings, bridges and towers are prone to collapse when natural phenomena like earthquake occurred. Therefore, many design codes are reviewed and new technologies are introduced to resist earthquake energy especially on building to avoid collapse. The tuned mass damper is one of the earthquake reduction products introduced on structures to minimise the earthquake effect. This study aims to analyse the effectiveness of tuned mass damper by experimental works and finite element modelling. The comparisons are made between these two models under harmonic excitation. Based on the result, it is proven that installing tuned mass damper will reduce the dynamic response of the frame but only in several input frequencies. At the highest input frequency applied, the tuned mass damper failed to reduce the responses. In conclusion, in order to use a proper design of damper, detailed analysis must be carried out to have sufficient design based on the location of the structures with specific ground accelerations.

  7. Crisis management of tohoku; Japan earthquake and tsunami, 11 march 2011.

    Science.gov (United States)

    Zaré, M; Afrouz, S Ghaychi

    2012-01-01

    The huge earthquake in 11 March 2012 which followed by a destructive tsunami in Japan was largest recorded earthquake in the history. Japan is pioneer in disaster management, especially earthquakes. How this developed country faced this disaster, which had significant worldwide effects? The humanitarian behavior of the Japanese people amazingly wondered the word's media, meanwhile the management of government and authorities showed some deficiencies. The impact of the disaster is followed up after the event and the different impacts are tried to be analyzed in different sectors. The situation one year after Japan 2011 earthquake and Tsunami is overviewed. The reason of Japanese plans failure was the scale of tsunami, having higher waves than what was assumed, especially in the design of the Nuclear Power Plant. Japanese authorities considered economic benefits more than safety and moral factors exacerbate the situation. Major lessons to be learnt are 1) the effectiveness of disaster management should be restudied in all hazardous countries; 2) the importance of the high-Tech early-warning systems in reducing risk; 3) Reconsidering of extreme values expected/possible hazard and risk levels is necessary; 4) Morality and might be taken as an important factor in disaster management; 5) Sustainable development should be taken as the basis for reconstruction after disaster.

  8. Sounding the Alert: Designing an Effective Voice for Earthquake Early Warning

    Science.gov (United States)

    Burkett, E. R.; Given, D. D.

    2015-12-01

    The USGS is working with partners to develop the ShakeAlert Earthquake Early Warning (EEW) system (http://pubs.usgs.gov/fs/2014/3083/) to protect life and property along the U.S. West Coast, where the highest national seismic hazard is concentrated. EEW sends an alert that shaking from an earthquake is on its way (in seconds to tens of seconds) to allow recipients or automated systems to take appropriate actions at their location to protect themselves and/or sensitive equipment. ShakeAlert is transitioning toward a production prototype phase in which test users might begin testing applications of the technology. While a subset of uses will be automated (e.g., opening fire house doors), other applications will alert individuals by radio or cellphone notifications and require behavioral decisions to protect themselves (e.g., "Drop, Cover, Hold On"). The project needs to select and move forward with a consistent alert sound to be widely and quickly recognized as an earthquake alert. In this study we combine EEW science and capabilities with an understanding of human behavior from the social and psychological sciences to provide insight toward the design of effective sounds to help best motivate proper action by alert recipients. We present a review of existing research and literature, compiled as considerations and recommendations for alert sound characteristics optimized for EEW. We do not yet address wording of an audible message about the earthquake (e.g., intensity and timing until arrival of shaking or possible actions), although it will be a future component to accompany the sound. We consider pitch(es), loudness, rhythm, tempo, duration, and harmony. Important behavioral responses to sound to take into account include that people respond to discordant sounds with anxiety, can be calmed by harmony and softness, and are innately alerted by loud and abrupt sounds, although levels high enough to be auditory stressors can negatively impact human judgment.

  9. Position paper: Seismic design criteria

    International Nuclear Information System (INIS)

    Farnworth, S.K.

    1995-01-01

    The purpose of this paper is to document the seismic design criteria to be used on the Title 11 design of the underground double-shell waste storage tanks and appurtenant facilities of the Multi-Function Waste Tank Facility (MWTF) project, and to provide the history and methodologies for determining the recommended Design Basis Earthquake (DBE) Peak Ground Acceleration (PGA) anchors for site-specific seismic response spectra curves. Response spectra curves for use in design are provided in Appendix A

  10. Information management needs for Fort Calhoun's design basis reconstitution project

    International Nuclear Information System (INIS)

    Beach, D.R.; Erickson, E.A.; Gambhir, S.K.; Parsons, R.D.

    1989-01-01

    While the need for information management is not new to the nuclear industry or Omaha Public Power District (OPPD), the interrelationship among design information, multiple systems, and design basis issues has necessitated the management of this information in new ways. The project team involved in the reconstitution of the design basis for OPPD's Fort Calhoun nuclear station has experienced the need for the developed effective methods for managing the vast amount of interrelated information associated with this effort. This management of information has been necessary to ensure that design basis documents (DBDs) adequately reflect the interrelated nature of component, system, and plant design; are complete and accurate; and are produced and maintained in a cost-effective manner. Fort Calhoun's aggressive design basis reconstitution project began in early 1987. The present scope of the project includes the production of 52 system and plant level DBDs; currently the project is ∼50% complete with DBDs in various stages of completion, from pilot DBDs through DBDs with approved formats, which have been issued for use. The experience in producing these documents has lead to a growing understanding of the special need for information management in each stage of the project. The development of the information tracking and management processes for the various stages of DBD development has proven to be cost-effective and gives a level of assurance that information has been included in the DBDs consistently and accurately

  11. Large Earthquakes at the Ibero-Maghrebian Region: Basis for an EEWS

    Science.gov (United States)

    Buforn, Elisa; Udías, Agustín; Pro, Carmen

    2015-09-01

    Large earthquakes (Mw > 6, Imax > VIII) occur at the Ibero-Maghrebian region, extending from a point (12ºW) southwest of Cape St. Vincent to Tunisia, with different characteristics depending on their location, which cause considerable damage and casualties. Seismic activity at this region is associated with the boundary between the lithospheric plates of Eurasia and Africa, which extends from the Azores Islands to Tunisia. The boundary at Cape St. Vincent, which has a clear oceanic nature in the westernmost part, experiences a transition from an oceanic to a continental boundary, with the interaction of the southern border of the Iberian Peninsula, the northern border of Africa, and the Alboran basin between them, corresponding to a wide area of deformation. Further to the east, the plate boundary recovers its oceanic nature following the northern coast of Algeria and Tunisia. The region has been divided into four zones with different seismic characteristics. From west to east, large earthquake occurrence, focal depth, total seismic moment tensor, and average seismic slip velocities for each zone along the region show the differences in seismic release of deformation. This must be taken into account in developing an EEWS for the region.

  12. Measures for groundwater security during and after the Hanshin-Awaji earthquake (1995) and the Great East Japan earthquake (2011), Japan

    Science.gov (United States)

    Tanaka, Tadashi

    2016-03-01

    Many big earthquakes have occurred in the tectonic regions of the world, especially in Japan. Earthquakes often cause damage to crucial life services such as water, gas and electricity supply systems and even the sewage system in urban and rural areas. The most severe problem for people affected by earthquakes is access to water for their drinking/cooking and toilet flushing. Securing safe water for daily life in an earthquake emergency requires the establishment of countermeasures, especially in a mega city like Tokyo. This paper described some examples of groundwater use in earthquake emergencies, with reference to reports, books and newspapers published in Japan. The consensus is that groundwater, as a source of water, plays a major role in earthquake emergencies, especially where the accessibility of wells coincides with the emergency need. It is also important to introduce a registration system for citizen-owned and company wells that can form the basis of a cooperative during a disaster; such a registration system was implemented by many Japanese local governments after the Hanshin-Awaji Earthquake in 1995 and the Great East Japan Earthquake in 2011, and is one of the most effective countermeasures for groundwater use in an earthquake emergency. Emphasis is also placed the importance of establishing of a continuous monitoring system of groundwater conditions for both quantity and quality during non-emergency periods.

  13. EARTHQUAKE RESEARCH PROBLEMS OF NUCLEAR POWER GENERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Housner, G. W.; Hudson, D. E.

    1963-10-15

    Earthquake problems associated with the construction of nuclear power generators require a more extensive and a more precise knowledge of earthquake characteristics and the dynamic behavior of structures than was considered necessary for ordinary buildings. Economic considerations indicate the desirability of additional research on the problems of earthquakes and nuclear reactors. The nature of these earthquake-resistant design problems is discussed and programs of research are recommended. (auth)

  14. Overview of Mobile Equipment Used in Case of Beyond Design Basis Accident at NPP Krsko

    International Nuclear Information System (INIS)

    Lukacevic, H.; Kopinc, D.; Ivanjko, M.

    2016-01-01

    Terrorist attack in USA in the September 11, 2001 and accident at the Fukushima - Daiichi Nuclear Power Station in the March 11, 2011 highlight the importance of mitigating strategies in responding to Beyond Design Basis Accident (BDBA), while ensuring cooling of reactor core, containment and spent fuel pool. Nuclear Power Plant Krsko (NEK) has acquired additional mobile equipment and made necessary modifications on existing systems for the connection of this equipment (fast couplers). Usage of mobile equipment is not only limited to design basis accident (DBA), but, also to prevent and mitigate the consequences in case of BDBA, when other plant systems are not available. NEK also decided to take steps for upgrade of safety measures and prepared Safety Upgrade Program (SUP), which is consistent with the nuclear industry response to the Fukushima accident and is implementing main projects and modifications related to SUP. NEK mobile equipment is not required to operate under normal reactor plant operation except for periodic surveillance testing and is incorporated into the normal training process. Equipment is dislocated from the reactor building and most of the equipment is located in the new building, able to withstand extreme natural events, including earthquakes and tornadoes. The usage of all mobile equipment is prescribed as an additional option in NEK operating procedures in following cases and enables following options: filling various tanks, filling the steam generators, filling the containment, additional compressed air source, spent fuel pool refilling and spraying, alternative power supply. This document provides an overview of NEK mobile equipment, which consists of various mobile fire protection pumps, air compressors, protective equipment, fire trucks, diesel generators. Sufficient fuel supply for the equipment is provided on site for a minimum three days of operation. (author).

  15. Multiparameter monitoring of short-term earthquake precursors and its physical basis. Implementation in the Kamchatka region

    Directory of Open Access Journals (Sweden)

    Pulinets Sergey

    2016-01-01

    Full Text Available We apply experimental approach of the multiparameter monitoring of short-term earthquake precursors which reliability was confirmed by the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC model created recently [1]. A key element of the model is the process of Ion induced Nucleation (IIN and formation of cluster ions occurring as a result of the ionization of near surface air layer by radon emanating from the Earth's crust within the earthquake preparation zone. This process is similar to the formation of droplet’s embryos for cloud formation under action of galactic cosmic rays. The consequence of this process is the generation of a number of precursors that can be divided into two groups: a thermal and meteorological, and b electromagnetic and ionospheric. We demonstrate elements of prospective monitoring of some strong earthquakes in Kamchatka region and statistical results for the Chemical potential correction parameter for more than 10 years of observations for earthquakes with M≥6. As some experimental attempt, the data of Kamchatka volcanoes monitoring will be demonstrated.

  16. Earthquake-induced response and potential for gas mobilization in Hanford waste tanks

    International Nuclear Information System (INIS)

    Reid, H.C.; Deibler, J.E.

    1997-09-01

    Seismic events postulated to occur at Hanford are predicted to cause yielding of the various waste materials in double- and single-shell tanks such that some or most of the waste is driven to completely plastic behavior. The seismic analyses documented in this report evaluated waste response to a 1,000-year design basis earthquake (DBE) event. The three-dimensional finite element computational structural analysis models were used with an assumed nonlinear elastic-plastic material definition

  17. Defense-in-depth approach against a beyond design basis event

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, H., E-mail: Hoa.hoang@ge.com [GE Hitachi Nuclear Energy, 1989 Little Orchard St., 95125 San Jose, California (United States)

    2013-10-15

    The US industry, with the approval of the Nuclear Regulatory Commission, is promoting an approach to add diverse and flexible mitigation strategies, or Flex, that will increase the defense-in-depth capability for the nuclear power plants in the event of beyond design basis event, such as at the Fukushima Dai-ichi station. The objective of Flex is to establish and indefinite coping capability to prevent damage to the fuel in the core and spent fuel pool, and to maintain the containment function by utilizing installed equipment, on-site portable equipment and pre-staged off-site resources. This capability will address both an extended loss of all Ac power and a loss of ultimate heat sink which could arise following a design basis event with additional failures, and conditions from a beyond design basis event. (author)

  18. Defense-in-depth approach against a beyond design basis event

    International Nuclear Information System (INIS)

    Hoang, H.

    2013-10-01

    The US industry, with the approval of the Nuclear Regulatory Commission, is promoting an approach to add diverse and flexible mitigation strategies, or Flex, that will increase the defense-in-depth capability for the nuclear power plants in the event of beyond design basis event, such as at the Fukushima Dai-ichi station. The objective of Flex is to establish and indefinite coping capability to prevent damage to the fuel in the core and spent fuel pool, and to maintain the containment function by utilizing installed equipment, on-site portable equipment and pre-staged off-site resources. This capability will address both an extended loss of all Ac power and a loss of ultimate heat sink which could arise following a design basis event with additional failures, and conditions from a beyond design basis event. (author)

  19. The power of simplification: Operator interface with the AP1000{sup R} during design-basis and beyond design-basis events

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. G.; Mouser, M. R.; Simon, J. B. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and cost. The passive safety features are designed to function without safety-grade support systems such as component cooling water, service water, compressed air or HVAC. The AP1000 passive safety features achieve and maintain safe shutdown in case of a design-basis accident for 72 hours without need for operator action, meeting the expectations provided in the European Utility Requirements and the Utility Requirement Document for passive plants. Limited operator actions may be required to maintain safe conditions in the spent fuel pool (SFP) via passive means. This safety approach therefore minimizes the reliance on operator action for accident mitigation, and this paper examines the operator interaction with the Human-System Interface (HSI) as the severity of an accident increases from an anticipated transient to a design basis accident and finally, to a beyond-design-basis event. The AP1000 Control Room design provides an extremely effective environment for addressing the first 72 hours of design-basis events and transients, providing ease of information dissemination and minimal reliance upon operator actions. Symptom-based procedures including Emergency Operating Procedures (EOPs), Abnormal Operating Procedures (AOPs) and Alarm Response Procedures (ARPs) are used to mitigate design basis transients and accidents. Use of the Computerized Procedure System (CPS) aids the operators during mitigation of the event. The CPS provides cues and direction to the operators as the event progresses. If the event becomes progressively worse or lasts longer than 72 hours, and depending upon the nature of failures that may have occurred, minimal operator actions may be required outside of the control room in areas that have been designed to be accessible using components that have been

  20. Emergency procedures beyond design basis ''Feed and Bleed''

    International Nuclear Information System (INIS)

    Dominguez Bautista, M.T.; Campuzano Pena, F.

    1994-01-01

    The incorporation of Beyond-Design-Basis Emergency Procedures, also called the Emergency Manual or Severe Accident Manual, has been an important step forward in nuclear power plant safety. These procedures cover situations in which the deterministic criteria used in plant design have been contravened. In such situations new accident scenarios, unforeseen system actions or a combination of both, need to be considered. Establishing these procedures is actually the last in a sequence of activities the sequence includes definition of scenarios, study of their phenomena, analysis of optional system actions, verification of their effectiveness and finally, implementation of the procedure. The systematization of these new strategies is supported by the results of the probabilistic analyses which serve in this case to pinpoint the objectives of these strategies. This paper describes the application of this methodology in the definition of a procedure for heat sink recovery on the secondary side (feed and bleed) if this has been totally or partially lost in a beyond-design-basis event. (Author)

  1. Towards the Future "Earthquake" School in the Cloud: Near-real Time Earthquake Games Competition in Taiwan

    Science.gov (United States)

    Chen, K. H.; Liang, W. T.; Wu, Y. F.; Yen, E.

    2014-12-01

    To prevent the future threats of natural disaster, it is important to understand how the disaster happened, why lives were lost, and what lessons have been learned. By that, the attitude of society toward natural disaster can be transformed from training to learning. The citizen-seismologists-in-Taiwan project is designed to elevate the quality of earthquake science education by means of incorporating earthquake/tsunami stories and near-real time earthquake games competition into the traditional curricula in schools. Through pilot of courses and professional development workshops, we have worked closely with teachers from elementary, junior high, and senior high schools, to design workable teaching plans through a practical operation of seismic monitoring at home or school. We will introduce how the 9-years-old do P- and S-wave picking and measure seismic intensity through interactive learning platform, how do scientists and school teachers work together, and how do we create an environment to facilitate continuous learning (i.e., near-real time earthquake games competition), to make earthquake science fun.

  2. Design-Load Basis for LANL Structures, Systems, and Components

    Energy Technology Data Exchange (ETDEWEB)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loads not related to natural phenomena hazards, and (3) the design loads on structures during construction.

  3. Guidelines for nuclear plant response to an earthquake

    International Nuclear Information System (INIS)

    1989-12-01

    Guidelines have been developed to assist nuclear plant personnel in the preparation of earthquake response procedures for nuclear power plants. The objectives of the earthquake response procedures are to determine (1) the immediate effects of an earthquake on the physical condition of the nuclear power plant, (2) if shutdown of the plant is appropriate based on the observed damage to the plant or because the OBE has been exceeded, and (3) the readiness of the plant to resume operation following shutdown due to an earthquake. Readiness of a nuclear power plant to restart is determined on the basis of visual inspections of nuclear plant equipment and structures, and the successful completion of surveillance tests which demonstrate that the limiting conditions for operation as defined in the plant Technical Specifications are met. The guidelines are based on information obtained from a review of earthquake response procedures from numerous US and foreign nuclear power plants, interviews with nuclear plant operations personnel, and a review of reports of damage to industrial equipment and structures in actual earthquakes. 7 refs., 4 figs., 4 tabs

  4. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  5. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    Science.gov (United States)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  6. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  7. Configuration management after design basis reconstitution

    International Nuclear Information System (INIS)

    Purcell, J.J.; Livingston, B.R.

    1991-01-01

    Over the last few years, Fort Calhoun station (FCS) has implemented a number of programs to enhance plant operability and readiness. The design basis document (DBD) reconstitution project was the cornerstone of this effort. Vendor manual upgrade, operating procedures upgrade, plant equipment data-base verification, equipment labeling, and warehousing improvements were also implemented as part of this improvement program. With the completion of these programs, plant documentation was current to the baselines established by each program, and a configuration management program (CMP) was established to maintain this level of accuracy throughout the remaining life of FCS. Change control throughout the organization has been reviewed and upgraded to ensure that all changes are evaluated for impact to the design bases

  8. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.

    Science.gov (United States)

    Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-03-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.

  9. Building and design defects observed in the residential sector and the types of damage observed in recent earthquakes in Turkey

    Science.gov (United States)

    Tolga Çöğürcü, M.

    2015-01-01

    Turkey is situated in a very active earthquake region. In the last century, several earthquakes resulted in thousands of deaths and enormous economic losses. In 1999, the Marmara earthquake had an approximate death toll of more than 20 000, and in 2011, the Van earthquake killed 604 people. In general, Turkish residential buildings have reinforced concrete structural systems. These reinforced concrete structures have several deficiencies, such as low concrete quality, non-seismic steel detailing, and inappropriate structural systems including several architectural irregularities. In this study, the general characteristics of Turkish building stock and the deficiencies observed in structural systems are explained, and illustrative figures are given with reference to Turkish Earthquake Code 2007 (TEC, 2007). The poor concrete quality, lack of lateral or transverse reinforcement in beam-column joints and column confinement zones, high stirrup spacings, under-reinforced columns and over-reinforced beams are the primary causes of failures. Other deficiencies include weak column-stronger beam formations, insufficient seismic joint separations, soft story or weak story irregularities and short columns. Similar construction and design mistakes are also observed in other countries situated on active earthquake belts. Existing buildings still have these undesirable characteristics, so to prepare for future earthquakes, they must be rehabilitated.

  10. Design and implementation of a voluntary collective earthquake insurance policy to cover low-income homeowners in a developing country

    OpenAIRE

    Marulanda, M.; Cardona, O.; Mora, Miguel; Barbat, Alex

    2018-01-01

    Understanding and evaluating disaster risk due to natural hazard events such as earthquakes creates powerful incentives for countries to develop planning options and tools to reduce potential damages. The use of models for earthquake risk evaluation allows obtaining outputs such as the loss exceedance curve, the expected annual loss and the probable maximum loss, which are probabilistic metrics useful for risk analyses, for designing strategies for risk reduction and mitigation, for emergency...

  11. Tidal controls on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, S.; Yabe, S.; Tanaka, Y.

    2016-12-01

    The possibility that tidal stresses can trigger earthquakes is a long-standing issue in seismology. Except in some special cases, a causal relationship between seismicity and the phase of tidal stress has been rejected on the basis of studies using many small events. However, recently discovered deep tectonic tremors are highly sensitive to tidal stress levels, with the relationship being governed by a nonlinear law according to which the tremor rate increases exponentially with increasing stress; thus, slow deformation (and the probability of earthquakes) may be enhanced during periods of large tidal stress. Here, we show the influence of tidal stress on seismicity by calculating histories of tidal shear stress during the 2-week period before earthquakes. Very large earthquakes tend to occur near the time of maximum tidal stress, but this tendency is not obvious for small earthquakes. Rather, we found that tidal stress controls the earthquake size-frequency statistics; i.e., the fraction of large events increases (i.e. the b-value of the Gutenberg-Richter relation decreases) as the tidal shear stress increases. This correlation is apparent in data from the global catalog and in relatively homogeneous regional catalogues of earthquakes in Japan. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. Our findings indicate that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. This finding has clear implications for probabilistic earthquake forecasting.

  12. Application of Hilbert-Huang Transform in Generating Spectrum-Compatible Earthquake Time Histories

    OpenAIRE

    Ni, Shun-Hao; Xie, Wei-Chau; Pandey, Mahesh

    2011-01-01

    Spectrum-compatible earthquake time histories have been widely used for seismic analysis and design. In this paper, a data processing method, Hilbert-Huang transform, is applied to generate earthquake time histories compatible with the target seismic design spectra based on multiple actual earthquake records. Each actual earthquake record is decomposed into several components of time-dependent amplitude and frequency by Hilbert-Huang transform. The spectrum-compatible earthquake time history ...

  13. Earthquake Warning Performance in Vallejo for the South Napa Earthquake

    Science.gov (United States)

    Wurman, G.; Price, M.

    2014-12-01

    In 2002 and 2003, Seismic Warning Systems, Inc. installed first-generation QuakeGuardTM earthquake warning devices at all eight fire stations in Vallejo, CA. These devices are designed to detect the P-wave of an earthquake and initiate predetermined protective actions if the impending shaking is estimated at approximately Modifed Mercalli Intensity V or greater. At the Vallejo fire stations the devices were set up to sound an audio alert over the public address system and to command the equipment bay doors to open. In August 2014, after more than 11 years of operating in the fire stations with no false alarms, the five units that were still in use triggered correctly on the MW 6.0 South Napa earthquake, less than 16 km away. The audio alert sounded in all five stations, providing fire fighters with 1.5 to 2.5 seconds of warning before the arrival of the S-wave, and the equipment bay doors opened in three of the stations. In one station the doors were disconnected from the QuakeGuard device, and another station lost power before the doors opened completely. These problems highlight just a small portion of the complexity associated with realizing actionable earthquake warnings. The issues experienced in this earthquake have already been addressed in subsequent QuakeGuard product generations, with downstream connection monitoring and backup power for critical systems. The fact that the fire fighters in Vallejo were afforded even two seconds of warning at these epicentral distances results from the design of the QuakeGuard devices, which focuses on rapid false positive rejection and ground motion estimates. We discuss the performance of the ground motion estimation algorithms, with an emphasis on the accuracy and timeliness of the estimates at close epicentral distances.

  14. Technical Details on Beyond Design Basis Event Pilot Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-01-01

    The primary focus of the BDBE pilot project was the review of BDBE analysis and mitigation features at four DOE nuclear facilities representing a range of DOE sites, nuclear facility types/activities, and responsible program offices. The pilots looked at (1) how beyond design basis accidents were evaluated and documented in the facility Documented Safety Analysis, (2) potential BDBE vulnerabilities and margins to failure of facility safety features as obtained from general area and specific system walkdowns and design documents reviews, and (3) preparations made in facility and site emergency management programs to respond to severe accidents. It also evaluated whether draft BDBE guidance on safety analysis and emergency management could be used to improve the analysis of and preparations for mitigating severe and beyond design basis accidents. The details of these activities are organized in this report as described below.

  15. Modified two-layer social force model for emergency earthquake evacuation

    Science.gov (United States)

    Zhang, Hao; Liu, Hong; Qin, Xin; Liu, Baoxi

    2018-02-01

    Studies of crowd behavior with related research on computer simulation provide an effective basis for architectural design and effective crowd management. Based on low-density group organization patterns, a modified two-layer social force model is proposed in this paper to simulate and reproduce a group gathering process. First, this paper studies evacuation videos from the Luan'xian earthquake in 2012, and extends the study of group organization patterns to a higher density. Furthermore, taking full advantage of the strength in crowd gathering simulations, a new method on grouping and guidance is proposed while using crowd dynamics. Second, a real-life grouping situation in earthquake evacuation is simulated and reproduced. Comparing with the fundamental social force model and existing guided crowd model, the modified model reduces congestion time and truly reflects group behaviors. Furthermore, the experiment result also shows that a stable group pattern and a suitable leader could decrease collision and allow a safer evacuation process.

  16. Report on planning of input earthquake vibration for design of vibration controlling structure, in the Tokai Works, Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    Uryu, Mitsuru; Shinohara, Takaharu; Terada, Shuji; Yamazaki, Toshihiko; Nakayama, Kazuhiko; Kondo, Toshinari; Hosoya, Hisashi

    1997-05-01

    When adopting a vibration controlling structure for a nuclear facility building, it is necessary to evaluate a little longer frequency vibration properly. Although various evaluation methods are proposed, there is no finished method. And, to the earthquake itself to investigate, some factors such as effect of surface wave, distant great earthquake, and so on must be considered, and further various evaluations and investigations are required. Here is reported on an evaluation method of the input earthquake vibration for vibration controlling design establishing on adoption of the vibration controlling structure using a vibration control device comprising of laminated rubber and lead damper for the buildings of reprocessing facility in Tokai Works. The input earthquake vibration for vibration controlling design shown in this report is to be adopted for a vibration controlling facility buildings in the Tokai Works. (G.K.)

  17. Indoor radon and earthquake

    International Nuclear Information System (INIS)

    Saghatelyan, E.; Petrosyan, L.; Aghbalyan, Yu.; Baburyan, M.; Araratyan, L.

    2004-01-01

    For the first time on the basis of the Spitak earthquake of December 1988 (Armenia, December 1988) experience it is found out that the earthquake causes intensive and prolonged radon splashes which, rapidly dispersing in the open space of close-to-earth atmosphere, are contrastingly displayed in covered premises (dwellings, schools, kindergartens) even if they are at considerable distance from the earthquake epicenter, and this multiplies the radiation influence on the population. The interval of splashes includes the period from the first fore-shock to the last after-shock, i.e. several months. The area affected by radiation is larger vs. Armenia's territory. The scale of this impact on population is 12 times higher than the number of people injured in Spitak, Leninakan and other settlements (toll of injured - 25 000 people, radiation-induced diseases in people - over 300 000). The influence of radiation directly correlates with the earthquake force. Such a conclusion is underpinned by indoor radon monitoring data for Yerevan since 1987 (120 km from epicenter) 5450 measurements and multivariate analysis with identification of cause-and-effect linkages between geo dynamics of indoor radon under stable and conditions of Earth crust, behavior of radon in different geological mediums during earthquakes, levels of room radon concentrations and effective equivalent dose of radiation impact of radiation dose on health and statistical data on public health provided by the Ministry of Health. The following hitherto unexplained facts can be considered as consequences of prolonged radiation influence on human organism: long-lasting state of apathy and indifference typical of the population of Armenia during the period of more than a year after the earthquake, prevalence of malignant cancer forms in disaster zones, dominating lung cancer and so on. All urban territories of seismically active regions are exposed to the threat of natural earthquake-provoked radiation influence

  18. Modified-Fibonacci-Dual-Lucas method for earthquake prediction

    Science.gov (United States)

    Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.

    2015-06-01

    The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with the earthquake date and in this case the FDL method coincides with the MFDL. Based on the MDFL method we present the prediction method capable of predicting global events or localized earthquakes and we will discuss the accuracy of the method in as far as the prediction and location parts of the method. We show example calendar style predictions for global events as well as for the Greek region using

  19. Passive containment system in high earthquake motion

    International Nuclear Information System (INIS)

    Kleimola, F.W.; Falls, O.B. Jr.

    1977-01-01

    High earthquake motion necessitates major design modifications in the complex of plant structures, systems and components in a nuclear power plant. Distinctive features imposed by seismic category, safety class and quality classification requirements for the high seismic ground acceleration loadings significantly reflect in plant costs. The design features in the Passive Containment System (PCS) responding to high earthquake ground motion are described

  20. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  1. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  2. Guidance on the Implementation of Modifications to Mitigate Beyond Design Basis Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Dermarkar, F.; Marczak, J.; O’Neill, M., E-mail: fred.dermarkar@opg.com [Ontario Power Generation, Pickering, Ontario (Canada)

    2014-10-15

    Following the events at Fukushima, Canadian Nuclear Power Plants (NPP) procured equipment and initiated modifications to improve response capability for Beyond Design Basis Accidents (BDBA). These changes were not typical of other design modifications to the nuclear power plants and reinforced the need for additional guidance for modifications to address BDBA. This paper describes the guidance that was developed to guide the design, procurement, installation, operation, and maintenance of equipment and modifications to mitigate BDBAs. The guidance developed prescribes a graded approach based on a categorization of the nature of the modification. Four categories of modifications are introduced, with the distinction being the degree of interface with existing design basis systems, structures and components (SSCs). This has resulted in a cost-effective means of implementing additional capability to mitigate BDBA conditions, and yet ensure the design basis capability of SSCs is maintained. (author)

  3. Earthquake engineering development before and after the March 4, 1977, Vrancea, Romania earthquake

    International Nuclear Information System (INIS)

    Georgescu, E.-S.

    2002-01-01

    At 25 years since the of the Vrancea earthquake of March, 4th 1977, we can analyze in an open and critical way its impact on the evolution of earthquake engineering codes and protection policies in Romania. The earthquake (M G-R = 7.2; M w = 7.5), produced 1,570 casualties and more than 11,300 injured persons (90% of the victims in Bucharest), seismic losses were estimated at more then USD 2 billions. The 1977 earthquake represented a significant episode of XXth century in seismic zones of Romania and neighboring countries. The INCERC seismic record of March 4, 1977 put, for the first time, in evidence the spectral content of long period seismic motions of Vrancea earthquakes, the duration, the number of cycles and values of actual accelerations, with important effects of overloading upon flexible structures. The seismic coefficients k s , the spectral curve (the dynamic coefficient β r ) and the seismic zonation map, the requirements in the antiseismic design norms were drastically, changed while the microzonation maps of the time ceased to be used, and the specific Vrancea earthquake recurrence was reconsidered based on hazard studies Thus, the paper emphasises: - the existing engineering knowledge, earthquake code and zoning maps requirements until 1977 as well as seismology and structural lessons since 1977; - recent aspects of implementing of the Earthquake Code P.100/1992 and harmonization with Eurocodes, in conjunction with the specific of urban and rural seismic risk and enforcing policies on strengthening of existing buildings; - a strategic view of disaster prevention, using earthquake scenarios and loss assessments, insurance, earthquake education and training; - the need of a closer transfer of knowledge between seismologists, engineers and officials in charge with disaster prevention public policies. (author)

  4. Investigating landslides caused by earthquakes - A historical review

    Science.gov (United States)

    Keefer, D.K.

    2002-01-01

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides. This paper traces the historical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquake are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession of post-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing "retrospective" analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, synthesis of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  5. Preliminary quantitative assessment of earthquake casualties and damages

    DEFF Research Database (Denmark)

    Badal, J.; Vázquez-Prada, M.; González, Á.

    2005-01-01

    Prognostic estimations of the expected number of killed or injured people and about the approximate cost associated with the damages caused by earthquakes are made following a suitable methodology of wide-ranging application. For the preliminary assessment of human life losses due to the occurrence...... of a relatively strong earthquake we use a quantitative model consisting of a correlation between the number of casualties and the earthquake magnitude as a function of population density. The macroseismic intensity field is determined in accordance with an updated anelastic attenuation law, and the number...... the local social wealth as a function of the gross domestic product of the country. This last step is performed on the basis of the relationship of the macroseismic intensity to the earthquake economic loss in percentage of the wealth. Such an approach to the human casualty and damage levels is carried out...

  6. Upwind design basis (WP4 : Offshore foundations and support structures)

    NARCIS (Netherlands)

    Fischer, T.; De Vries, W.E.; Schmidt, B.

    2010-01-01

    The presented design basis gives a summarized overview of relevant design properties for a later offshore wind turbine design procedures within work package 4. The described offshore site is located in the Dutch North Sea and has a water depth of 21m. Therefore it will be chosen as shallow site

  7. Artificial earthquake record generation using cascade neural network

    Directory of Open Access Journals (Sweden)

    Bani-Hani Khaldoon A.

    2017-01-01

    Full Text Available This paper presents the results of using artificial neural networks (ANN in an inverse mapping problem for earthquake accelerograms generation. This study comprises of two parts: 1-D site response analysis; performed for Dubai Emirate at UAE, where eight earthquakes records are selected and spectral matching are performed to match Dubai response spectrum using SeismoMatch software. Site classification of Dubai soil is being considered for two classes C and D based on shear wave velocity of soil profiles. Amplifications factors are estimated to quantify Dubai soil effect. Dubai’s design response spectra are developed for site classes C & D according to International Buildings Code (IBC -2012. In the second part, ANN is employed to solve inverse mapping problem to generate time history earthquake record. Thirty earthquakes records and their design response spectrum with 5% damping are used to train two cascade forward backward neural networks (ANN1, ANN2. ANN1 is trained to map the design response spectrum to time history and ANN2 is trained to map time history records to the design response spectrum. Generalized time history earthquake records are generated using ANN1 for Dubai’s site classes C and D, and ANN2 is used to evaluate the performance of ANN1.

  8. Earthquake risk assessment of Alexandria, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Gaber, Hanan; Ibrahim, Hamza

    2015-01-01

    Throughout historical and recent times, Alexandria has suffered great damage due to earthquakes from both near- and far-field sources. Sometimes, the sources of such damages are not well known. During the twentieth century, the city was shaken by several earthquakes generated from inland dislocations (e.g., 29 Apr. 1974, 12 Oct. 1992, and 28 Dec. 1999) and the African continental margin (e.g., 12 Sept. 1955 and 28 May 1998). Therefore, this study estimates the earthquake ground shaking and the consequent impacts in Alexandria on the basis of two earthquake scenarios. The simulation results show that Alexandria affected by both earthquakes scenarios relatively in the same manner despite the number of casualties during the first scenario (inland dislocation) is twice larger than the second one (African continental margin). An expected percentage of 2.27 from Alexandria's total constructions (12.9 millions, 2006 Census) will be affected, 0.19 % injuries and 0.01 % deaths of the total population (4.1 millions, 2006 Census) estimated by running the first scenario. The earthquake risk profile reveals that three districts (Al-Montazah, Al-Amriya, and Shark) lie in high seismic risks, two districts (Gharb and Wasat) are in moderate, and two districts (Al-Gomrok and Burg El-Arab) are in low seismic risk level. Moreover, the building damage estimations reflect that Al-Montazah is the highest vulnerable district whereas 73 % of expected damages were reported there. The undertaken analysis shows that the Alexandria urban area faces high risk. Informal areas and deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated earthquake risks (buildings damages) are concentrated at the most densely populated (Al-Montazah, Al-Amriya, and Shark) districts. Moreover, about 75 % of casualties are in the same districts.

  9. Prototype Hanford Surface Barrier: Design basis document

    International Nuclear Information System (INIS)

    Myers, D.R.; Duranceau, D.A.

    1994-11-01

    The Hanford Site Surface Barrier Development Program (BDP) was organized in 1985 to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site and other arid sites. This document provides the basis of the prototype barrier. Engineers and scientists have momentarily frozen evolving barrier designs and incorporated the latest findings from BDP tasks. The design and construction of the prototype barrier has required that all of the various components of the barrier be brought together into an integrated system. This integration is particularly important because some of the components of the protective barreir have been developed independently of other barreir components. This document serves as the baseline by which future modifications or other barrier designs can be compared. Also, this document contains the minutes of meeting convened during the definitive design process in which critical decisions affecting the prototype barrier's design were made and the construction drawings

  10. The arrangement of the seismic design method of the underground facility

    International Nuclear Information System (INIS)

    Tanai, Kenji; Horita, Masakuni; Dewa, Katsuyuki; Gouke, Mitsuo

    2002-03-01

    Earthquake resistance for the underground structure is higher than the ground structure. Therefore, the case of examining the earthquake resistance of underground structure was little. However, it carries out the research on the aseismic designing method of underground structure, since the tunnel was struck by Hyogo-ken Nanbu Earthquake, and it has obtained a much knowledge. However, an object of the most study was behavior at earthquake of the comparatively shallow underground structure in the alluvial plain board, and it not carry out the examination on behavior at earthquake of underground structure in the deep rock mass. In the meantime, underground disposal facility of the high level radioactive waste constructs in the deep underground, and it carries out the operation in these tunnels. In addition, it has made almost the general process of including from the construction start to the backfilling to be about 60 years (Japan Nuclear Fuel Cycle Development Institute, 1999). During these periods, it is necessary to also consider the earthquake resistance as underground structure from the viewpoint of the safety of facilities. Then, it extracted future problem as one of the improvement of the basis information for the decision of the safety standard and guideline of the country on earthquake-resistant design of the underground disposal facility, while it carried out investigation and arrangement of earthquake-resistant design cases, guidelines and analysis method on existing underground structure, etc. And, the research items for the earthquake resistance assessment of underground structure as case study of the underground research laboratory. (author)

  11. Real Time Earthquake Information System in Japan

    Science.gov (United States)

    Doi, K.; Kato, T.

    2003-12-01

    monitors earthquake data and analyzes earthquake activities and tsunami occurrence round-the-clock on a real-time basis. In addition to the above, JMA has been developing a system of Nowcast Earthquake Information which can provide its users with occurrence of an earthquake prior to arrival of strong ground motion for a decade. Earthquake Research Institute, the University of Tokyo, is preparing a demonstrative experiment in collaboration with JMA, for a better utilization of Nowcast Earthquake Information to apply actual measures to reduce earthquake disasters caused by strong ground motion.

  12. Design Load Basis for Offshore Wind turbines

    DEFF Research Database (Denmark)

    Natarajan, Anand; Hansen, Morten Hartvig; Wang, Shaofeng

    2016-01-01

    DTU Wind Energy is not designing and manufacturing wind turbines and does therefore not need a Design Load Basis (DLB) that is accepted by a certification body. However, to assess the load consequences of innovative features and devices added to existing offshore turbine concepts or new offshore...... turbine concept developed in our research, it is useful to have a full DLB that follows the current design standard and is representative of a general DLB used by the industry. It will set a standard for the offshore wind turbine design load evaluations performed at DTU Wind Energy, which is aligned...... with the challenges faced by the industry and therefore ensures that our research continues to have a strong foundation in this interaction. Furthermore, the use of a full DLB that follows the current standard can improve and increase the feedback from the research at DTU Wind Energy to the international...

  13. Exploratory Shaft Seismic Design Basis Working Group report

    International Nuclear Information System (INIS)

    Subramanian, C.V.; King, J.L.; Perkins, D.M.; Mudd, R.W.; Richardson, A.M.; Calovini, J.C.; Van Eeckhout, E.; Emerson, D.O.

    1990-08-01

    This report was prepared for the Yucca Mountain Project (YMP), which is managed by the US Department of Energy. The participants in the YMP are investigating the suitability of a site at Yucca Mountain, Nevada, for construction of a repository for high-level radioactive waste. An exploratory shaft facility (ESF) will be constructed to permit site characterization. The major components of the ESF are two shafts that will be used to provide access to the underground test areas for men, utilities, and ventilation. If a repository is constructed at the site, the exploratory shafts will be converted for use as intake ventilation shafts. In the context of both underground nuclear explosions (conducted at the nearby Nevada Test Site) and earthquakes, the report contains discussions of faulting potential at the site, control motions at depth, material properties of the different rock layers relevant to seismic design, the strain tensor for each of the waveforms along the shaft liners, and the method for combining the different strain components along the shaft liners. The report also describes analytic methods, assumptions used to ensure conservatism, and uncertainties in the data. The analyses show that none of the shafts' structures, systems, or components are important to public radiological safety; therefore, the shafts need only be designed to ensure worker safety, and the report recommends seismic design parameters appropriate for this purpose. 31 refs., 5 figs., 6 tabs

  14. Development of Mitigation Strategy for Beyond Design Basis External Events for NRC Design Certification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hak; Lee, Jae Jong; Kim, Myung Ki [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, how to develop FLEX strategy for beyond-design-basis external events for U. S. NRC design certification is examined. The development method of FLEX strategy for U. S. NRC design certification is examined. The applicants should make unit-specific FLEX strategy and establish the minimum coping capabilities consistent with unit-specific evaluation of the potential impacts and responses to BDBEEs. NEI 12-06 outlines the process to define and deploy the diverse and flexible mitigation strategies(FLEX strategy) that will increase defense-in-depth for beyond-design-basis scenarios to address the extended loss of alternating current (ac) power (ELAP) and loss of normal access to the ultimate heat sink (LUHS) occurring simultaneously at all units on a site. The order (EA-12-049) is issued to all reactor licensees, including holders of active, Construction Permit (CP) holders, and Combined License (COL) holders. Applicants for the new reactor design certification should prepare and submit FLEX strategy for NRC staff's review. Site-specific data related with the new reactor can't be determined during the new reactor design certification applications so that the unit-specific FLEX strategy should be developed.

  15. Development of Mitigation Strategy for Beyond Design Basis External Events for NRC Design Certification

    International Nuclear Information System (INIS)

    Kim, Dong Hak; Lee, Jae Jong; Kim, Myung Ki

    2013-01-01

    In this study, how to develop FLEX strategy for beyond-design-basis external events for U. S. NRC design certification is examined. The development method of FLEX strategy for U. S. NRC design certification is examined. The applicants should make unit-specific FLEX strategy and establish the minimum coping capabilities consistent with unit-specific evaluation of the potential impacts and responses to BDBEEs. NEI 12-06 outlines the process to define and deploy the diverse and flexible mitigation strategies(FLEX strategy) that will increase defense-in-depth for beyond-design-basis scenarios to address the extended loss of alternating current (ac) power (ELAP) and loss of normal access to the ultimate heat sink (LUHS) occurring simultaneously at all units on a site. The order (EA-12-049) is issued to all reactor licensees, including holders of active, Construction Permit (CP) holders, and Combined License (COL) holders. Applicants for the new reactor design certification should prepare and submit FLEX strategy for NRC staff's review. Site-specific data related with the new reactor can't be determined during the new reactor design certification applications so that the unit-specific FLEX strategy should be developed

  16. Investigating Landslides Caused by Earthquakes A Historical Review

    Science.gov (United States)

    Keefer, David K.

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated withearthquake-induced landslides. This paper traces thehistorical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquakes are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession ofpost-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing ``retrospective'' analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, syntheses of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  17. Technical basis for the ITER-FEAT outline design. Progress in resolving open design issues from the outline design report

    International Nuclear Information System (INIS)

    2000-01-01

    In this publication the technical basis for the ITER-FEAT outline design is presented. It comprises the Plant Design Specifications, the Safety Principles and Environmental Criteria, the Site Requirements and Site Design Assumptions. The outline of the key features of the ITER-FEAT design includes main physical parameters and assessment, design overview and preliminary safety assessment, cost and schedule

  18. Guidance on the implementation of modifications to mitigate beyond design basis accidents

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.; Marczak, J.; O' Neill, M. [Ontario Power Generation, Pickering, ON (Canada)

    2014-07-01

    Following the events at Fukushima, Canadian Nuclear Power Plants (NPP) procured equipment and initiated modifications to improve response capability for Beyond Design Basis Accidents (BDBA). These changes were not typical of other design modifications to the nuclear power plants and reinforced the need for additional guidance for modifications to address BDBA. This paper describes the guidance that was developed to guide the design, procurement, installation, operation, and maintenance of equipment and modifications to mitigate BDBAs. The guidance developed prescribes a graded approach based on a categorization of the nature of the modification. Four categories of modifications are introduced, with the distinction being the degree of interface with existing design basis systems, structures and components (SSCs). This has resulted in a cost-effective means of implementing additional capability to mitigate BDBA conditions, and yet ensure the design basis capability of SSCs is maintained. Operating experience with use of the guidance is also discussed. (author)

  19. Guidance on the implementation of modifications to mitigate beyond design basis accidents

    International Nuclear Information System (INIS)

    Harris, S.; Marczak, J.; O'Neill, M.

    2014-01-01

    Following the events at Fukushima, Canadian Nuclear Power Plants (NPP) procured equipment and initiated modifications to improve response capability for Beyond Design Basis Accidents (BDBA). These changes were not typical of other design modifications to the nuclear power plants and reinforced the need for additional guidance for modifications to address BDBA. This paper describes the guidance that was developed to guide the design, procurement, installation, operation, and maintenance of equipment and modifications to mitigate BDBAs. The guidance developed prescribes a graded approach based on a categorization of the nature of the modification. Four categories of modifications are introduced, with the distinction being the degree of interface with existing design basis systems, structures and components (SSCs). This has resulted in a cost-effective means of implementing additional capability to mitigate BDBA conditions, and yet ensure the design basis capability of SSCs is maintained. Operating experience with use of the guidance is also discussed. (author)

  20. Soil structure interactions of eastern U.S. type earthquakes

    International Nuclear Information System (INIS)

    Chang Chen; Serhan, S.

    1991-01-01

    Two types of earthquakes have occurred in the eastern US in the past. One of them was the infrequent major events such as the 1811-1812 New Madrid Earthquakes, or the 1886 Charleston Earthquake. The other type was the frequent shallow earthquakes with high frequency, short duration and high accelerations. Two eastern US nuclear power plants, V.C Summer and Perry, went through extensive licensing effort to obtain fuel load licenses after this type of earthquake was recorded on sites and exceeded the design bases beyond 10 hertz region. This paper discusses the soil-structure interactions of the latter type of earthquakes

  1. A suite of exercises for verifying dynamic earthquake rupture codes

    Science.gov (United States)

    Harris, Ruth A.; Barall, Michael; Aagaard, Brad T.; Ma, Shuo; Roten, Daniel; Olsen, Kim B.; Duan, Benchun; Liu, Dunyu; Luo, Bin; Bai, Kangchen; Ampuero, Jean-Paul; Kaneko, Yoshihiro; Gabriel, Alice-Agnes; Duru, Kenneth; Ulrich, Thomas; Wollherr, Stephanie; Shi, Zheqiang; Dunham, Eric; Bydlon, Sam; Zhang, Zhenguo; Chen, Xiaofei; Somala, Surendra N.; Pelties, Christian; Tago, Josue; Cruz-Atienza, Victor Manuel; Kozdon, Jeremy; Daub, Eric; Aslam, Khurram; Kase, Yuko; Withers, Kyle; Dalguer, Luis

    2018-01-01

    We describe a set of benchmark exercises that are designed to test if computer codes that simulate dynamic earthquake rupture are working as intended. These types of computer codes are often used to understand how earthquakes operate, and they produce simulation results that include earthquake size, amounts of fault slip, and the patterns of ground shaking and crustal deformation. The benchmark exercises examine a range of features that scientists incorporate in their dynamic earthquake rupture simulations. These include implementations of simple or complex fault geometry, off‐fault rock response to an earthquake, stress conditions, and a variety of formulations for fault friction. Many of the benchmarks were designed to investigate scientific problems at the forefronts of earthquake physics and strong ground motions research. The exercises are freely available on our website for use by the scientific community.

  2. High frequency, high amplitude and low energy earthquake study of nuclear power plants

    International Nuclear Information System (INIS)

    Bernero, R.M.; Lee, A.J.H.; Sobel, P.A.

    1988-01-01

    Nuclear power plants are designed for a seismic input spectrum based on U.S. acceleration time histories. However, data recorded near several earthquakes, mostly in the Eastern U.S., are richer in high frequency energy. This paper focuses on the evaluation of one of these events, i.e., the 1986 Ohio earthquake approximately 10 miles from the Perry nuclear power plant. The Perry Seismic Category I structures were reanalyzed using the in-structure recorded earthquake motions. The calculated in-structure response spectra and recorded response spectra have the same general trends, which shows the buildings are capable of responding to high frequency earthquake motion. Dynamic stresses calculated using the Ohio earthquake recorded motions are substantially lower than the design stresses. The seismic qualification of a wide sample of equipment was reassessed using the Ohio earthquake recorded motions and the margins were found to be larger than one. The 1986 Ohio earthquake was also shown to possess much lower energy content and ductility demand than the design spectra. For the Perry case, the seismic design was shown to have adequate safety margins to accommodate the 1986 Ohio earthquake, even though the design spectra were exceeded at about 20 Hz. The NRC is evaluating the need to generically modify design spectra in light of the recent high frequency recordings. (orig.)

  3. Differences in safety margins between nuclear and conventional design standards with regards to seismic hazard definition and design criteria

    International Nuclear Information System (INIS)

    Elgohary, M.; Saudy, A.; Orbovic, N.; Dejan, D.

    2006-01-01

    With the surging interest in new build nuclear all over the world and a permanent interest in earthquake resistance of nuclear plants, there is a need to quantify the safety margins in nuclear buildings design in comparison to conventional buildings in order to increase the public confidence in the safety of nuclear power plants. Nuclear (CAN3-N289 series) and conventional (NBCC 2005) seismic standards have different approaches regarding the design of civil structures. The origin of the differences lays in the safety philosophy behind the seismic nuclear and conventional standards. Conventional seismic codes contain the minimal requirement destined primarily to safeguard against major structural failure and loss of life. It doesn't limit damage to a certain acceptable degree or maintain function. Nuclear seismic code requires that structures, systems and components important to safety, withstand the effects of earthquakes. The requirement states that for equipment important to safety, both integrity and functionality should be ascertained. The seismic hazard is generally defined on the basis of the annual probability of exceedence (return period). There is a major difference on the return period and the confidence level for design earthquakes between the conventional and the nuclear seismic standards. The seismic design criteria of conventional structures are based on the use of Force Modification Factors to take into account the energy dissipation by incursion in non-elastic domain and the reserve of strength. The use of such factors to lower intentionally the seismic input is consistent with the safety philosophy of the conventional seismic standard which is the 'non collapse' rather than the integrity and/or the operability of the structures or components. Nuclear seismic standard requires that the structure remain in the elastic domain; energy dissipation by incursion in non-elastic domain is not allowed for design basis earthquake conditions. This is

  4. Reliability-based design code calibration for concrete containment structures

    International Nuclear Information System (INIS)

    Han, B.K.; Cho, H.N.; Chang, S.P.

    1991-01-01

    In this study, a load combination criteria for design and a probability-based reliability analysis were proposed on the basis of a FEM-based random vibration analysis. The limit state model defined for the study is a serviceability limit state of the crack failure that causes the emission of radioactive materials, and the results are compared with the case of strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporating the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the references were adapted to the situation of Korea, and especially in case of earthquake, the design earthquake was assessed based on the available data for the probabilistic description of earthquake ground acceleration in the Korea peninsula. The SAP V-2 is used for a three-dimensional finite element analysis of concrete containment structure, and the reliability analysis is carried out by modifying HRAS reliability analysis program for this study. (orig./GL)

  5. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  6. Low cost earthquake resistant ferrocement small house

    International Nuclear Information System (INIS)

    Saleem, M.A.; Ashraf, M.; Ashraf, M.

    2008-01-01

    The greatest humanitarian challenge faced even today after one year of Kashmir Hazara earthquake is that of providing shelter. Currently on the globe one in seven people live in a slum or refugee camp. The earthquake of October 2005 resulted in a great loss of life and property. This research work is mainly focused on developing a design of small size, low cost and earthquake resistant house. Ferrocement panels are recommended as the main structural elements with lightweight truss roofing system. Earthquake resistance is ensured by analyzing the structure on ETABS for a seismic activity of zone 4. The behavior of structure is found satisfactory under the earthquake loading. An estimate of cost is also presented which shows that it is an economical solution. (author)

  7. Proposal on data collection for an international earthquake experience data

    International Nuclear Information System (INIS)

    Masopust, R.

    2001-01-01

    Earthquake experience data was recognized as an efficient basis for verification of seismic adequacy of equipment installed on NPPs. This paper is meant to initiate a database setup in order to use the seismic experience to establish the generic seismic resistance of NPPs equipment applicable namely to the Middle and East European countries. Such earthquake experience database should be then compared to the already existing and well-known SQUG-GIP database. To set up such an operational earthquake database will require an important amount of effort. It must be understood that this goal can be achieved only based on a long term permanent activities and coordinated cooperation of various institutions. (author)

  8. Large LOCA-earthquake combination probability assessment - Load combination program. Project 1 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S; Streit, R D; Chou, C K

    1980-01-01

    This report summarizes work performed for the U.S. Nuclear Regulatory Commission (NRC) by the Load Combination Program at the Lawrence Livermore National Laboratory to establish a technical basis for the NRC to use in reassessing its requirement that earthquake and large loss-of-coolant accident (LOCA) loads be combined in the design of nuclear power plants. A systematic probabilistic approach is used to treat the random nature of earthquake and transient loading to estimate the probability of large LOCAs that are directly and indirectly induced by earthquakes. A large LOCA is defined in this report as a double-ended guillotine break of the primary reactor coolant loop piping (the hot leg, cold leg, and crossover) of a pressurized water reactor (PWR). Unit 1 of the Zion Nuclear Power Plant, a four-loop PWR-1, is used for this study. To estimate the probability of a large LOCA directly induced by earthquakes, only fatigue crack growth resulting from the combined effects of thermal, pressure, seismic, and other cyclic loads is considered. Fatigue crack growth is simulated with a deterministic fracture mechanics model that incorporates stochastic inputs of initial crack size distribution, material properties, stress histories, and leak detection probability. Results of the simulation indicate that the probability of a double-ended guillotine break, either with or without an earthquake, is very small (on the order of 10{sup -12}). The probability of a leak was found to be several orders of magnitude greater than that of a complete pipe rupture. A limited investigation involving engineering judgment of a double-ended guillotine break indirectly induced by an earthquake is also reported. (author)

  9. Large LOCA-earthquake combination probability assessment - Load combination program. Project 1 summary report

    International Nuclear Information System (INIS)

    Lu, S.; Streit, R.D.; Chou, C.K.

    1980-01-01

    This report summarizes work performed for the U.S. Nuclear Regulatory Commission (NRC) by the Load Combination Program at the Lawrence Livermore National Laboratory to establish a technical basis for the NRC to use in reassessing its requirement that earthquake and large loss-of-coolant accident (LOCA) loads be combined in the design of nuclear power plants. A systematic probabilistic approach is used to treat the random nature of earthquake and transient loading to estimate the probability of large LOCAs that are directly and indirectly induced by earthquakes. A large LOCA is defined in this report as a double-ended guillotine break of the primary reactor coolant loop piping (the hot leg, cold leg, and crossover) of a pressurized water reactor (PWR). Unit 1 of the Zion Nuclear Power Plant, a four-loop PWR-1, is used for this study. To estimate the probability of a large LOCA directly induced by earthquakes, only fatigue crack growth resulting from the combined effects of thermal, pressure, seismic, and other cyclic loads is considered. Fatigue crack growth is simulated with a deterministic fracture mechanics model that incorporates stochastic inputs of initial crack size distribution, material properties, stress histories, and leak detection probability. Results of the simulation indicate that the probability of a double-ended guillotine break, either with or without an earthquake, is very small (on the order of 10 -12 ). The probability of a leak was found to be several orders of magnitude greater than that of a complete pipe rupture. A limited investigation involving engineering judgment of a double-ended guillotine break indirectly induced by an earthquake is also reported. (author)

  10. Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

    KAUST Repository

    Wu, Xingfu

    2011-01-01

    Earthquakes are one of the most destructive natural hazards on our planet Earth. Hugh earthquakes striking offshore may cause devastating tsunamis, as evidenced by the 11 March 2011 Japan (moment magnitude Mw9.0) and the 26 December 2004 Sumatra (Mw9.1) earthquakes. Earthquake prediction (in terms of the precise time, place, and magnitude of a coming earthquake) is arguably unfeasible in the foreseeable future. To mitigate seismic hazards from future earthquakes in earthquake-prone areas, such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular, ground motion simulations for past and future (possible) significant earthquakes have been performed to understand factors that affect ground shaking in populated areas, and to provide ground shaking characteristics and synthetic seismograms for emergency preparation and design of earthquake-resistant structures. These simulation results can guide the development of more rational seismic provisions for leading to safer, more efficient, and economical50pt]Please provide V. Taylor author e-mail ID. structures in earthquake-prone regions.

  11. Analysis of the Earthquake Impact towards water-based fire extinguishing system

    Science.gov (United States)

    Lee, J.; Hur, M.; Lee, K.

    2015-09-01

    Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.

  12. Damages of industrial equipments in the 1995 Hyougoken-Nanbu Earthquake

    International Nuclear Information System (INIS)

    Iwatsubo, Takuzo

    1997-01-01

    Hanshin-Awaji area has a population of approximately 3 million and many industries, including heavy industry, harbor facilities and international trading companies. The 1995 Hyougoken-Nanbu Earthquake occurred just in this area which is 25kmx2km oblong containing Kobe city. About 5,500 people were killed and 250,000 people lost their houses. Japan society of mechanical engineers organized the investigative committee of earthquake disaster of industrial equipments after the earthquake in order to investigate the disaster damages of industrial equipments and to give data for a design manual for mechanical equipments against earthquake excitation. This is an investigation report of the disaster damages of industrial machine equipments. Damages to machine equipment of industries in the high intensity region of the earthquake are illustrated. The mechanisms of the damages and measures against earthquake and safety of nuclear power plant design are discussed. Then it is known that the design of nuclear power plant is different from the general industrial facilities and the damage which was suffered in the general industrial facilities does not occur in the nuclear power plant. (J.P.N.)

  13. Damages of industrial equipments in the 1995 Hyougoken-Nanbu Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Iwatsubo, Takuzo [Kobe Univ. (Japan). Faculty of Engineering

    1997-03-01

    Hanshin-Awaji area has a population of approximately 3 million and many industries, including heavy industry, harbor facilities and international trading companies. The 1995 Hyougoken-Nanbu Earthquake occurred just in this area which is 25kmx2km oblong containing Kobe city. About 5,500 people were killed and 250,000 people lost their houses. Japan society of mechanical engineers organized the investigative committee of earthquake disaster of industrial equipments after the earthquake in order to investigate the disaster damages of industrial equipments and to give data for a design manual for mechanical equipments against earthquake excitation. This is an investigation report of the disaster damages of industrial machine equipments. Damages to machine equipment of industries in the high intensity region of the earthquake are illustrated. The mechanisms of the damages and measures against earthquake and safety of nuclear power plant design are discussed. Then it is known that the design of nuclear power plant is different from the general industrial facilities and the damage which was suffered in the general industrial facilities does not occur in the nuclear power plant. (J.P.N.)

  14. [Medium- and long-term health effects of the L'Aquila earthquake (Central Italy, 2009) and of other earthquakes in high-income Countries: a systematic review].

    Science.gov (United States)

    Ripoll Gallardo, Alba; Alesina, Marta; Pacelli, Barbara; Serrone, Dario; Iacutone, Giovanni; Faggiano, Fabrizio; Della Corte, Francesco; Allara, Elias

    2016-01-01

    to compare the methodological characteristics of the studies investigating the middle- and long-term health effects of the L'Aquila earthquake with the features of studies conducted after other earthquakes occurred in highincome Countries. a systematic comparison between the studies which evaluated the health effects of the L'Aquila earthquake (Central Italy, 6th April 2009) and those conducted after other earthquakes occurred in comparable settings. Medline, Scopus, and 6 sources of grey literature were systematically searched. Inclusion criteria comprised measurement of health outcomes at least one month after the earthquake, investigation of earthquakes occurred in high-income Countries, and presence of at least one temporal or geographical control group. out of 2,976 titles, 13 studies regarding the L'Aquila earthquake and 51 studies concerning other earthquakes were included. The L'Aquila and the Kobe/Hanshin- Awaji (Japan, 17th January 1995) earthquakes were the most investigated. Studies on the L'Aquila earthquake had a median sample size of 1,240 subjects, a median duration of 24 months, and used most frequently a cross sectional design (7/13). Studies on other earthquakes had a median sample size of 320 subjects, a median duration of 15 months, and used most frequently a time series design (19/51). the L'Aquila studies often focussed on mental health, while the earthquake effects on mortality, cardiovascular outcomes, and health systems were less frequently evaluated. A more intensive use of routine data could benefit future epidemiological surveillance in the aftermath of earthquakes.

  15. The 2016 Kumamoto Earthquakes: Cascading Geological Hazards and Compounding Risks

    Directory of Open Access Journals (Sweden)

    Katsuichiro Goda

    2016-08-01

    Full Text Available A sequence of two strike-slip earthquakes occurred on 14 and 16 April 2016 in the intraplate region of Kyushu Island, Japan, apart from subduction zones, and caused significant damage and disruption to the Kumamoto region. The analyses of regional seismic catalog and available strong motion recordings reveal striking characteristics of the events, such as migrating seismicity, earthquake surface rupture, and major foreshock-mainshock earthquake sequences. To gain valuable lessons from the events, a UK Earthquake Engineering Field Investigation Team (EEFIT was dispatched to Kumamoto, and earthquake damage surveys were conducted to relate observed earthquake characteristics to building and infrastructure damage caused by the earthquakes. The lessons learnt from the reconnaissance mission have important implications on current seismic design practice regarding the required seismic resistance of structures under multiple shocks and the seismic design of infrastructure subject to large ground deformation. The observations also highlight the consequences of cascading geological hazards on community resilience. To share the gathered damage data widely, geo-tagged photos are organized using Google Earth and the kmz file is made publicly available.

  16. Canister storage building design basis accident analysis documentation

    International Nuclear Information System (INIS)

    KOPELIC, S.D.

    1999-01-01

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  17. New characteristics of intensity assessment of Sichuan Lushan "4.20" M s7.0 earthquake

    Science.gov (United States)

    Sun, Baitao; Yan, Peilei; Chen, Xiangzhao

    2014-08-01

    The post-earthquake rapid accurate assessment of macro influence of seismic ground motion is of significance for earthquake emergency relief, post-earthquake reconstruction and scientific research. The seismic intensity distribution map released by the Lushan earthquake field team of the China Earthquake Administration (CEA) five days after the strong earthquake ( M7.0) occurred in Lushan County of Sichuan Ya'an City at 8:02 on April 20, 2013 provides a scientific basis for emergency relief, economic loss assessment and post-earthquake reconstruction. In this paper, the means for blind estimation of macroscopic intensity, field estimation of macro intensity, and review of intensity, as well as corresponding problems are discussed in detail, and the intensity distribution characteristics of the Lushan "4.20" M7.0 earthquake and its influential factors are analyzed, providing a reference for future seismic intensity assessments.

  18. Reliable selection of earthquake ground motions for performance-based design

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Sextos, A.G.

    2016-01-01

    A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Prequalified code-compatible suites of seismic motions are provided through a multi-criterion approach to satisfy prescribed reduced variability...... of the method, by being subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv-sc) and the conventional index (δconv), already used by most existing code-based earthquake records selection and scaling procedures. The findings reveal the superiority...

  19. ASSESSMENT OF THE RELEVANCE OF DISPLACEMENT BASED DESIGN METHODS/CRITERIA TO NUCLEAR PLANT STRUCTURES

    International Nuclear Information System (INIS)

    HOFMAYER, C.; MILLER, C.; WANG, Y.; COSTELLO, J.

    2001-01-01

    Revisions to the USNRC Regulatory Guides and Standard Review Plan Sections devoted to earthquake engineering practice are currently in process. The intent is to reflect changes in engineering practice that have evolved in the twenty years that have passed since those criteria were originally published. Additionally, field observations of the effects of the Northridge (1994) and Kobe (1995) earthquakes have inspired some reassessment in the technical community about certain aspects of design practice. In particular, questions have arisen about the effectiveness of basing earthquake resistant designs on resistance to seismic forces and, then evaluating tolerability of the expected displacements. Therefore, a research effort was undertaken to examine the implications for NRC's seismic practice of the move, in the earthquake engineering community, toward using expected displacement rather than force (or stress) as the basis for assessing design adequacy. The results of the NRC sponsored research on this subject are reported in this paper. A slow trend toward the utilization of displacement based methods for design was noted. However, there is a more rapid trend toward the use of displacement based methods for seismic evaluation of existing facilities. A document known as FEMA 273, has been developed and is being used as the basis for the design of modifications to enhance the seismic capability of existing non-nuclear facilities. The research concluded that displacement based methods, such as given in FEMA 273, may be useful for seismic margin studies of existing nuclear power stations. They are unlikely to be useful for the basic design of new stations since nuclear power stations are designed to remain elastic during a seismic event. They could, however, be useful for estimating the margins associated with that design

  20. NGA-West 2 GMPE average site coefficients for use in earthquake-resistant design

    Science.gov (United States)

    Borcherdt, Roger D.

    2015-01-01

    Site coefficients corresponding to those in tables 11.4–1 and 11.4–2 of Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers (Standard ASCE/SEI 7-10) are derived from four of the Next Generation Attenuation West2 (NGA-W2) Ground-Motion Prediction Equations (GMPEs). The resulting coefficients are compared with those derived by other researchers and those derived from the NGA-West1 database. The derivation of the NGA-W2 average site coefficients provides a simple procedure to update site coefficients with each update in the Maximum Considered Earthquake Response MCER maps. The simple procedure yields average site coefficients consistent with those derived for site-specific design purposes. The NGA-W2 GMPEs provide simple scale factors to reduce conservatism in current simplified design procedures.

  1. Accident beyond the design basis management with the coolant loss at the NPP with WWER

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Klyuchnikov, A.A.; Kolykhanov, V.N.

    2010-01-01

    The analysis of status and experience of development on modelling and accident beyond the design basis management, including the severe accidents, at the nuclear power plants is carried out. The methodical providing of manuals on the accident beyond the design basis management with the coolant loss on the basis of simulated critical system configurations providing the necessary safety function performance on reactor unit is proposed. The project of symptom-oriented manuals on accident beyond the design basis management with the coolant loss on the serial power unit with WWER-1000 on the basis of developed methodical providing and well known results of deepened safety analysis is presented.

  2. Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America

    International Nuclear Information System (INIS)

    Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.

    2011-01-01

    The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.

  3. Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.

    2011-11-01

    The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.

  4. Earthquake response observation of isolated buildings

    International Nuclear Information System (INIS)

    Harada, O.; Kawai, N.; Ishii, T.; Sawada, Y.; Shiojiri, H.; Mazda, T.

    1989-01-01

    Base isolation system is expected to be a technology for a rational design of FBR plant. In order to apply this system to important structures, accumulation of verification data is necessary. From this point of view, the vibration test and the earthquake response observation of the actual isolated building using laminated rubber bearings and elasto-plastic steel dampers were conducted for the purpose of investigating its dynamic behavior and of proving the reliability of the base isolation system. Since September in 1986, more than thirty earthquakes have been observed. This paper presents the results of the earthquake response observation

  5. Earthquake Hazard Analysis Methods: A Review

    Science.gov (United States)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  6. Enhanced Earthquake-Resistance on the High Level Radioactive Waste Canister

    International Nuclear Information System (INIS)

    Choi, Youngchul; Yoon, Chanhoon; Lee, Jeaowan; Kim, Jinsup; Choi, Heuijoo

    2014-01-01

    In this paper, the earthquake-resistance type buffer was developed with the method protecting safely about the earthquake. The main parameter having an effect on the earthquake-resistant performance was analyzed and the earthquake-proof type buffer material was designed. The shear analysis model was developed and the performance of the earthquake-resistance buffer material was evaluated. The dynamic behavior of the radioactive waste disposal canister was analyzed in case the earthquake was generated. In the case, the disposal canister gets the serious damage. In this paper, the earthquake-resistance buffer material was developed in order to prevent this damage. By putting the buffer in which the density is small between the canister and buffer, the earthquake-resistant performance was improved about 80%

  7. Earthquake precursory events around epicenters and local active faults; the cases of two inland earthquakes in Iran

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S.; Haydari Azad, F.

    2012-12-01

    The possibility of earthquake prediction in the frame of several days to few minutes before its occurrence has stirred interest among researchers, recently. Scientists believe that the new theories and explanations of the mechanism of this natural phenomenon are trustable and can be the basis of future prediction efforts. During the last thirty years experimental researches resulted in some pre-earthquake events which are now recognized as confirmed warning signs (precursors) of past known earthquakes. With the advances in in-situ measurement devices and data analysis capabilities and the emergence of satellite-based data collectors, monitoring the earth's surface is now a regular work. Data providers are supplying researchers from all over the world with high quality and validated imagery and non-imagery data. Surface Latent Heat Flux (SLHF) or the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere has been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. On the other hand, the leak of Radon gas occurred as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT) prior to main event. Although co-analysis of direct and indirect observation for precursory events is considered as a promising method for future successful earthquake prediction, without proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will not be able to identify anomalies due to seismic activity in the earth's crust. Active faulting is a key factor in identification of the

  8. Extending the ISC-GEM Global Earthquake Instrumental Catalogue

    Science.gov (United States)

    Di Giacomo, Domenico; Engdhal, Bob; Storchak, Dmitry; Villaseñor, Antonio; Harris, James

    2015-04-01

    After a 27-month project funded by the GEM Foundation (www.globalquakemodel.org), in January 2013 we released the ISC-GEM Global Instrumental Earthquake Catalogue (1900 2009) (www.isc.ac.uk/iscgem/index.php) as a special product to use for seismic hazard studies. The new catalogue was necessary as improved seismic hazard studies necessitate that earthquake catalogues are homogeneous (to the largest extent possible) over time in their fundamental parameters, such as location and magnitude. Due to time and resource limitation, the ISC-GEM catalogue (1900-2009) included earthquakes selected according to the following time-variable cut-off magnitudes: Ms=7.5 for earthquakes occurring before 1918; Ms=6.25 between 1918 and 1963; and Ms=5.5 from 1964 onwards. Because of the importance of having a reliable seismic input for seismic hazard studies, funding from GEM and two commercial companies in the US and UK allowed us to start working on the extension of the ISC-GEM catalogue both for earthquakes that occurred beyond 2009 and for earthquakes listed in the International Seismological Summary (ISS) which fell below the cut-off magnitude of 6.25. This extension is part of a four-year program that aims at including in the ISC-GEM catalogue large global earthquakes that occurred before the beginning of the ISC Bulletin in 1964. In this contribution we present the updated ISC GEM catalogue, which will include over 1000 more earthquakes that occurred in 2010 2011 and several hundreds more between 1950 and 1959. The catalogue extension between 1935 and 1949 is currently underway. The extension of the ISC-GEM catalogue will also be helpful for regional cross border seismic hazard studies as the ISC-GEM catalogue should be used as basis for cross-checking the consistency in location and magnitude of those earthquakes listed both in the ISC GEM global catalogue and regional catalogues.

  9. Aseismic blocks and destructive earthquakes in the Aegean

    Science.gov (United States)

    Stiros, Stathis

    2017-04-01

    Aseismic areas are not identified only in vast, geologically stable regions, but also within regions of active, intense, distributed deformation such as the Aegean. In the latter, "aseismic blocks" about 200m wide were recognized in the 1990's on the basis of the absence of instrumentally-derived earthquake foci, in contrast to surrounding areas. This pattern was supported by the available historical seismicity data, as well as by geologic evidence. Interestingly, GPS evidence indicates that such blocks are among the areas characterized by small deformation rates relatively to surrounding areas of higher deformation. Still, the largest and most destructive earthquake of the 1990's, the 1995 M6.6 earthquake occurred at the center of one of these "aseismic" zones at the northern part of Greece, found unprotected against seismic hazard. This case was indeed a repeat of the case of the tsunami-associated 1956 Amorgos Island M7.4 earthquake, the largest 20th century event in the Aegean back-arc region: the 1956 earthquake occurred at the center of a geologically distinct region (Cyclades Massif in Central Aegean), till then assumed aseismic. Interestingly, after 1956, the overall idea of aseismic regions remained valid, though a "promontory" of earthquake prone-areas intruding into the aseismic central Aegean was assumed. Exploitation of the archaeological excavation evidence and careful, combined analysis of historical and archaeological data and other palaeoseismic, mostly coastal data, indicated that destructive and major earthquakes have left their traces in previously assumed aseismic blocks. In the latter earthquakes typically occur with relatively low recurrence intervals, >200-300 years, much smaller than in adjacent active areas. Interestingly, areas assumed a-seismic in antiquity are among the most active in the last centuries, while areas hit by major earthquakes in the past are usually classified as areas of low seismic risk in official maps. Some reasons

  10. Four Examples of Short-Term and Imminent Prediction of Earthquakes

    Science.gov (United States)

    zeng, zuoxun; Liu, Genshen; Wu, Dabin; Sibgatulin, Victor

    2014-05-01

    We show here 4 examples of short-term and imminent prediction of earthquakes in China last year. They are Nima Earthquake(Ms5.2), Minxian Earthquake(Ms6.6), Nantou Earthquake (Ms6.7) and Dujiangyan Earthquake (Ms4.1) Imminent Prediction of Nima Earthquake(Ms5.2) Based on the comprehensive analysis of the prediction of Victor Sibgatulin using natural electromagnetic pulse anomalies and the prediction of Song Song and Song Kefu using observation of a precursory halo, and an observation for the locations of a degasification of the earth in the Naqu, Tibet by Zeng Zuoxun himself, the first author made a prediction for an earthquake around Ms 6 in 10 days in the area of the degasification point (31.5N, 89.0 E) at 0:54 of May 8th, 2013. He supplied another degasification point (31N, 86E) for the epicenter prediction at 8:34 of the same day. At 18:54:30 of May 15th, 2013, an earthquake of Ms5.2 occurred in the Nima County, Naqu, China. Imminent Prediction of Minxian Earthquake (Ms6.6) At 7:45 of July 22nd, 2013, an earthquake occurred at the border between Minxian and Zhangxian of Dingxi City (34.5N, 104.2E), Gansu province with magnitude of Ms6.6. We review the imminent prediction process and basis for the earthquake using the fingerprint method. 9 channels or 15 channels anomalous components - time curves can be outputted from the SW monitor for earthquake precursors. These components include geomagnetism, geoelectricity, crust stresses, resonance, crust inclination. When we compress the time axis, the outputted curves become different geometric images. The precursor images are different for earthquake in different regions. The alike or similar images correspond to earthquakes in a certain region. According to the 7-year observation of the precursor images and their corresponding earthquake, we usually get the fingerprint 6 days before the corresponding earthquakes. The magnitude prediction needs the comparison between the amplitudes of the fingerpringts from the same

  11. Earthquakes and Tectonics Expert Judgment Elicitation Project

    International Nuclear Information System (INIS)

    Coppersmith, K.J.; Perman, R.C.; Youngs, R.R.

    1993-02-01

    This report summarizes the results of the Earthquakes and Tectonics Expert Judgement Excitation Project sponsored by the Electric Power Research Institute (EPRI). The objectives of this study were two-fold: (1) to demonstrate methods for the excitation of expert judgement, and (2) to quantify the uncertainties associated with earthquake and tectonics issues for use in the EPRI-HLW performance assessment. Specifically, the technical issue considered is the probability of differential fault displacement through the proposed repository at Yucca Mountain, Nevada. For this study, a strategy for quantifying uncertainties was developed that relies on the judgements of multiple experts. A panel of seven geologists and seismologists was assembled to quantify the uncertainties associated with earthquake and tectonics issues for the performance assessment model. A series of technical workshops focusing on these issues were conducted. Finally, each expert was individually interviewed in order to elicit his judgement regarding the technical issues and to provide the technical basis for his assessment. This report summarizes the methodologies used to elicit the judgements of the earthquakes and tectonics experts (termed ''specialists''), and summarizes the technical assessments made by the expert panel

  12. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions

  13. Simulation analysis of earthquake response of nuclear power plant to the 2003 Miyagi-Oki earthquake

    International Nuclear Information System (INIS)

    Yoshihiro Ogata; Kiyoshi Hirotani; Masayuki Higuchi; Shingo Nakayama

    2005-01-01

    On May 26, 2003 an earthquake of magnitude scale 7.1 (Japan Meteorological Agency) occurred just offshore of Miyagi Prefecture. This was the largest earthquake ever experienced by the nuclear power plant of Tohoku Electric Power Co. in Onagawa (hereafter the Onagawa Nuclear Power Plant) during the 19 years since it had started operations in 1984. In this report, we review the vibration characteristics of the reactor building of the Onagawa Nuclear Power Plant Unit 1 based on acceleration records observed at the building, and give an account of a simulation analysis of the earthquake response carried out to ascertain the appropriateness of design procedure and a seismic safety of the building. (authors)

  14. Canister storage building design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    KOPELIC, S.D.

    1999-02-25

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  15. Spatial distribution of earthquake hypocenters in the Crimea—Black Sea region

    Science.gov (United States)

    Burmin, V. Yu; Shumlianska, L. O.

    2018-03-01

    Some aspects of the seismicity the Crime—Black Sea region are considered on the basis of the catalogued data on earthquakes that have occurred between 1970 and 2012. The complete list of the Crimean earthquakes for this period contains about 2140 events with magnitude ranging from -1.5 to 5.5. Bulletins contain information about compressional and shear waves arrival times regarding nearly 2000 earthquakes. A new approach to the definition of the coordinates of all of the events was applied to re-establish the hypocenters of the catalogued earthquakes. The obtained results indicate that the bulk of the earthquakes' foci in the region are located in the crust. However, some 2.5% of the foci are located at the depths ranging from 50 to 250 km. The new distribution of foci of earthquakes shows the concentration of foci in the form of two inclined branches, the center of which is located under the Yalto-Alushta seismic focal zone. The whole distribution of foci in depth corresponds to the relief of the lithosphere.

  16. The Road to Total Earthquake Safety

    Science.gov (United States)

    Frohlich, Cliff

    Cinna Lomnitz is possibly the most distinguished earthquake seismologist in all of Central and South America. Among many other credentials, Lomnitz has personally experienced the shaking and devastation that accompanied no fewer than five major earthquakes—Chile, 1939; Kern County, California, 1952; Chile, 1960; Caracas,Venezuela, 1967; and Mexico City, 1985. Thus he clearly has much to teach someone like myself, who has never even actually felt a real earthquake.What is this slim book? The Road to Total Earthquake Safety summarizes Lomnitz's May 1999 presentation at the Seventh Mallet-Milne Lecture, sponsored by the Society for Earthquake and Civil Engineering Dynamics. His arguments are motivated by the damage that occurred in three earthquakes—Mexico City, 1985; Loma Prieta, California, 1989; and Kobe, Japan, 1995. All three quakes occurred in regions where earthquakes are common. Yet in all three some of the worst damage occurred in structures located a significant distance from the epicenter and engineered specifically to resist earthquakes. Some of the damage also indicated that the structures failed because they had experienced considerable rotational or twisting motion. Clearly, Lomnitz argues, there must be fundamental flaws in the usually accepted models explaining how earthquakes generate strong motions, and how we should design resistant structures.

  17. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    Science.gov (United States)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  18. Views on seismic design standardization of structures, systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.

    2011-01-01

    Structures, Systems and Components (SSCs) of nuclear facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Manmade accidents such as aircraft impact, explosions etc., sometimes may be considered as design basis event and sometimes taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event which has certain annual frequency specified in design codes. For example nuclear power plants are designed for a seismic event has 10000 year return period. It is generally felt that design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to

  19. Determination of a Basis for Design of a Yam (Dioscorea Spp ...

    African Journals Online (AJOL)

    Manual separation is both tedious and expensive, so the work reported here was done to determine a suitable basis for the design of a mechanical minisett sorter. Results from this study showed that the minisetts cut from the regions of the parent tuber can be separated on the basis of characteristic dimensions of arc length ...

  20. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  1. The EM Earthquake Precursor

    Science.gov (United States)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  2. Construction and design defects in the residential buildings and observed earthquake damage types in Turkey

    OpenAIRE

    M. T. Cogurcu

    2015-01-01

    Turkey is situated in a very active earthquake region. In the last century, several earthquakes resulted in thousands of deaths and enormous economic losses. In 1999, the Kocaeli earthquake had an approximate death toll of more than 20 000, and in 2011 the Van earthquake killed 604 people. In general, Turkish residential buildings have reinforced concrete structural systems. These reinforced concrete structures have several deficiencies, such as low concrete quality, non-sei...

  3. An Improved Setpoint Determination Methodology for the Plant Protection System Considering Beyond Design Basis Events

    International Nuclear Information System (INIS)

    Lee, C.J.; Baik, K.I.; Baek, S.M.; Park, K.-M.; Lee, S.J.

    2013-06-01

    According to the nuclear regulations and industry standards, the trip setpoint and allowable value for the plant protection system have been determined by considering design basis events. In order to improve the safety of a nuclear power plant, an attempt has been made to develop an improved setpoint determination methodology for the plant protection system trip parameter considering not only a design basis event but also a beyond design basis event. The results of a quantitative evaluation performed for the Advanced Power Reactor 1400 nuclear power plant in Korea are presented herein. The results confirmed that the proposed methodology is able to improve the nuclear power plant's safety by determining more reasonable setpoints that can cover beyond design basis events. (authors)

  4. Assessment Of Source Term And Radiological Consequences For Design Basis Accident And Beyond Design Basis Accident Of The Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong; Tran Tri Vien

    2011-01-01

    The paper presents results of the assessment of source terms and radiological consequences for the Design Basis Accident (DBA) and Beyond Design Basis Accident (BDBA) of the Dalat Nuclear Research Reactor. The dropping of one fuel assembly during fuel handling operation leading to the failure of fuel cladding and the release of fission products into the environment was selected as a DBA for the analysis. For the BDBA, the introduction of a step positive reactivity due to the falling of a heavy block from the rotating bridge crane in the reactor hall onto a part of the platform where are disposed the control rod drives is postulated. The result of the radiological consequence analyses shows that doses to members of the public are below annual dose limit for both DBA and BDBA events. However, doses from exposure to operating staff and experimenters working inside the reactor hall are predicted to be very high in case of BDBA and therefore the protective actions should be taken when the accident occurs. (author)

  5. Hydrodynamic models of the possibility of flooding Zaporizhya NPP site beyond the extreme earthquakes and hurricanes

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Gablaya, T.V.; Vashchenko, V.N.; Gerasimenko, T.V.; Kozlov, I.L.

    2014-01-01

    We propose a hydrodynamic model of possible flooding of the industrial site at Zaporozh'e NPP design basis earthquakes and hurricane. In contrast to the quasi-stationary approach of stress tests in the proposed model takes into account the dynamic nature of the processes of flooding, as well as a direct impact of external influences on extreme Kakhovske reservoir. As a result of hydrodynamic modeling, the possible conditions and criteria for the flooding of the industrial site at Zaporozhe extreme external influences

  6. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  7. Earthquake engineering and structural dynamics studies at Bhabha Atomic Research Centre

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Dubey, P.N.; Vaity, K.N.; Kukreja, Mukhesh; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.

    2007-01-01

    Earthquake Engineering and structural Dynamics has gained the attention of many researchers throughout the world and extensive research work is performed. Linear behaviour of structures, systems and components (SSCs) subjected to earthquake/dynamic loading is clearly understood. However, nonlinear behaviour of SSCs subjected to earthquake/dynamic loading need to be understood clearly and design methods need to be validated experimentally. In view of this, three major areas in earthquake engineering and structural dynamics identified for research includes: design and development of passive devices to control the seismic/dynamic response of SSCs, nonlinear behaviour of piping systems subjected to earthquake loading and nonlinear behavior of RCC structures under seismic excitation or dynamic loading. BARC has performed extensive work and also being continued in the above-identified areas. The work performed is helping for clearer understanding of nonlinear behavior of SSCs as well as in developing new schemes, methodologies and devices to control the earthquake response of SSCs. (author)

  8. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  9. Learning Earthquake Design and Construction–23. Why are ...

    Indian Academy of Sciences (India)

    RC shafts around the elevator core of buildings also act as shear walls, and should be taken advantage of to resist earthquake forces. Reinforcement Bars in RC Walls: Steel reinforcing bars are to be provided in walls in regularly spaced vertical and. ______ .AAAAA~ ______ __. RESONANCE I November 2005 v V V V V v ...

  10. Engineering Seismic Base Layer for Defining Design Earthquake Motion

    International Nuclear Information System (INIS)

    Yoshida, Nozomu

    2008-01-01

    Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term ''base''. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface

  11. Development of uniform hazard response spectra for rock sites considering line and point sources of earthquakes

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Kushwaha, H.S.

    2001-12-01

    Traditionally, the seismic design basis ground motion has been specified by normalised response spectral shapes and peak ground acceleration (PGA). The mean recurrence interval (MRI) used to computed for PGA only. It is shown that the MRI associated with such response spectra are not the same at all frequencies. The present work develops uniform hazard response spectra i.e. spectra having the same MRI at all frequencies for line and point sources of earthquakes by using a large number of strong motion accelerograms recorded on rock sites. Sensitivity of the number of the results to the changes in various parameters has also been presented. This work is an extension of an earlier work for aerial sources of earthquakes. These results will help to determine the seismic hazard at a given site and the associated uncertainities. (author)

  12. Why Earthquake Effects are to be Reduced Conventional seismic ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Learning Earthquake Design and Construction – 24. How to Reduce Earthquake Effects on Buildings? C V R Murty. Classroom Volume 10 Issue 11 November 2005 pp 89-92 ...

  13. DEPENDENCE OF DISTRIBUTION FUNCTION OF COMMERCIAL DAMAGES DUE TO POSSIBLE EARTHQUAKES ON THE CLASS OF SEISMIC RESISTANCE OF A BUILDING

    OpenAIRE

    Hanzada R. Zajnulabidova; Alexander M. Uzdin; Tatiana M. Chirkst

    2017-01-01

    Abstract. Objectives To determine the damage probability of earthquakes of different intensities on the example of a real projected railway station building having a framework design scheme based on the density function of damage distribution. Methods Uncertainty, always existing in nature, invalidates a deterministic approach to the assessment of territorial seismic hazards and, consequently, seismic risk. In this case, seismic risk assessment can be carried out on a probabilistic basis. Thu...

  14. Exploring Earthquakes in Real-Time

    Science.gov (United States)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  15. Hydrothermal response to a volcano-tectonic earthquake swarm, Lassen, California

    Science.gov (United States)

    Ingebritsen, Steven E.; Shelly, David R.; Hsieh, Paul A.; Clor, Laura; P.H. Seward,; Evans, William C.

    2015-01-01

    The increasing capability of seismic, geodetic, and hydrothermal observation networks allows recognition of volcanic unrest that could previously have gone undetected, creating an imperative to diagnose and interpret unrest episodes. A November 2014 earthquake swarm near Lassen Volcanic National Park, California, which included the largest earthquake in the area in more than 60 years, was accompanied by a rarely observed outburst of hydrothermal fluids. Although the earthquake swarm likely reflects upward migration of endogenous H2O-CO2 fluids in the source region, there is no evidence that such fluids emerged at the surface. Instead, shaking from the modest sized (moment magnitude 3.85) but proximal earthquake caused near-vent permeability increases that triggered increased outflow of hydrothermal fluids already present and equilibrated in a local hydrothermal aquifer. Long-term, multiparametric monitoring at Lassen and other well-instrumented volcanoes enhances interpretation of unrest and can provide a basis for detailed physical modeling.

  16. Rapid earthquake hazard and loss assessment for Euro-Mediterranean region

    Science.gov (United States)

    Erdik, Mustafa; Sesetyan, Karin; Demircioglu, Mine; Hancilar, Ufuk; Zulfikar, Can; Cakti, Eser; Kamer, Yaver; Yenidogan, Cem; Tuzun, Cuneyt; Cagnan, Zehra; Harmandar, Ebru

    2010-10-01

    The almost-real time estimation of ground shaking and losses after a major earthquake in the Euro-Mediterranean region was performed in the framework of the Joint Research Activity 3 (JRA-3) component of the EU FP6 Project entitled "Network of Research Infra-structures for European Seismology, NERIES". This project consists of finding the most likely location of the earthquake source by estimating the fault rupture parameters on the basis of rapid inversion of data from on-line regional broadband stations. It also includes an estimation of the spatial distribution of selected site-specific ground motion parameters at engineering bedrock through region-specific ground motion prediction equations (GMPEs) or physical simulation of ground motion. By using the Earthquake Loss Estimation Routine (ELER) software, the multi-level methodology developed for real time estimation of losses is capable of incorporating regional variability and sources of uncertainty stemming from GMPEs, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships.

  17. Tokai earthquakes and Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Komura, Hiroo

    1981-01-01

    Kanto district and Shizuoka Prefecture are designated as ''Observation strengthening districts'', where the possibility of earthquake occurrence is high. Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., is at the center of this district. Nuclear power stations are vulnerable to earthquakes, and if damages are caused by earthquakes in nuclear power plants, the most dreadful accidents may occur. The Chubu Electric Power Co. underestimates the possibility and scale of earthquakes and the estimate of damages, and has kept on talking that the rock bed of the power station site is strong, and there is not the fear of accidents. However the actual situation is totally different from this. The description about earthquakes and the rock bed in the application of the installation of No.3 plant was totally rewritten after two years safety examination, and the Ministry of International Trade and Industry approved the application in less than two weeks thereafter. The rock bed is geologically evaluated in this paper, and many doubtful points in the application are pointed out. In addition, there are eight active faults near the power station site. The aseismatic design of the Hamaoka Nuclear Power Station assumes the acceleration up to 400 gal, but it may not be enough. The Hamaoka Nuclear Power Station is intentionally neglected in the estimate of damages in Shizuoka Prefecture. (Kako, I.)

  18. The search for Infrared radiation prior to major earthquakes

    Science.gov (United States)

    Ouzounov, D.; Taylor, P.; Pulinets, S.

    2004-12-01

    This work describes our search for a relationship between tectonic stresses and electro-chemical and thermodynamic processes in the Earth and increases in mid-IR flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. Recent analysis of continuous ongoing long- wavelength Earth radiation (OLR) indicates significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and gas composition prior to the earthquake. The OLR anomaly covers large areas surrounding the main epicenter. We have use the NOAA IR data to differentiate between the global and seasonal variability and these transient local anomalies. Indeed, on the basis of a temporal and spatial distribution analysis, an anomaly pattern is found to occur several days prior some major earthquakes. The significance of these observations was explored using data sets of some recent worldwide events.

  19. Earthquake behavior of steel cushion-implemented reinforced concrete frames

    Science.gov (United States)

    Özkaynak, Hasan

    2018-04-01

    The earthquake performance of vulnerable structures can be increased by the implementation of supplementary energy-dissipative metallic elements. The main aim of this paper is to describe the earthquake behavior of steel cushion-implemented reinforced concrete frames (SCI-RCFR) in terms of displacement demands and energy components. Several quasi-static experiments were performed on steel cushions (SC) installed in reinforced concrete (RC) frames. The test results served as the basis of the analytical models of SCs and a bare reinforced concrete frame (B-RCFR). These models were integrated in order to obtain the resulting analytical model of the SCI-RCFR. Nonlinear-time history analyses (NTHA) were performed on the SCI-RCFR under the effects of the selected earthquake data set. According to the NTHA, SC application is an effective technique for increasing the seismic performance of RC structures. The main portion of the earthquake input energy was dissipated through SCs. SCs succeeded in decreasing the plastic energy demand on structural elements by almost 50% at distinct drift levels.

  20. Electrostatically actuated resonant switches for earthquake detection

    KAUST Repository

    Ramini, Abdallah H.

    2013-04-01

    The modeling and design of electrostatically actuated resonant switches (EARS) for earthquake and seismic applications are presented. The basic concepts are based on operating an electrically actuated resonator close to instability bands of frequency, where it is forced to collapse (pull-in) if operated within these bands. By careful tuning, the resonator can be made to enter the instability zone upon the detection of the earthquake signal, thereby pulling-in as a switch. Such a switching action can be functionalized for useful functionalities, such as shutting off gas pipelines in the case of earthquakes, or can be used to activate a network of sensors for seismic activity recording in health monitoring applications. By placing a resonator on a printed circuit board (PCB) of a natural frequency close to that of the earthquake\\'s frequency, we show significant improvement on the detection limit of the EARS lowering it considerably to less than 60% of the EARS by itself without the PCB. © 2013 IEEE.

  1. Cold Vacuum Drying Facility Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    PIEPHO, M.G.

    1999-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR

  2. The effect of earthquake on architecture geometry with non-parallel system irregularity configuration

    Science.gov (United States)

    Teddy, Livian; Hardiman, Gagoek; Nuroji; Tudjono, Sri

    2017-12-01

    Indonesia is an area prone to earthquake that may cause casualties and damage to buildings. The fatalities or the injured are not largely caused by the earthquake, but by building collapse. The collapse of the building is resulted from the building behaviour against the earthquake, and it depends on many factors, such as architectural design, geometry configuration of structural elements in horizontal and vertical plans, earthquake zone, geographical location (distance to earthquake center), soil type, material quality, and construction quality. One of the geometry configurations that may lead to the collapse of the building is irregular configuration of non-parallel system. In accordance with FEMA-451B, irregular configuration in non-parallel system is defined to have existed if the vertical lateral force-retaining elements are neither parallel nor symmetric with main orthogonal axes of the earthquake-retaining axis system. Such configuration may lead to torque, diagonal translation and local damage to buildings. It does not mean that non-parallel irregular configuration should not be formed on architectural design; however the designer must know the consequence of earthquake behaviour against buildings with irregular configuration of non-parallel system. The present research has the objective to identify earthquake behaviour in architectural geometry with irregular configuration of non-parallel system. The present research was quantitative with simulation experimental method. It consisted of 5 models, where architectural data and model structure data were inputted and analyzed using the software SAP2000 in order to find out its performance, and ETAB2015 to determine the eccentricity occurred. The output of the software analysis was tabulated, graphed, compared and analyzed with relevant theories. For areas of strong earthquake zones, avoid designing buildings which wholly form irregular configuration of non-parallel system. If it is inevitable to design a

  3. Cold Vacuum Drying facility design basis accident analysis documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.

    2000-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls

  4. Cold Vacuum Drying facility design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    2000-08-08

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls.

  5. Void redistribution in sand under post-earthquake loading

    International Nuclear Information System (INIS)

    Boulanger, R.W.; Truman, S.P.

    1996-01-01

    A mechanism for void redistribution in an infinite slope under post-earthquake loading conditions is described by consideration of the in situ loading paths that can occur under post-earthquake conditions and the results of triaxial tests designed to represent specific in situ post-earthquake loading paths. The mechanism is illustrated by application to an example problem. Void redistribution is shown to be a phenomena that may be more pronounced at the field scale than at the laboratory scale. (author). 12 refs., 4 figs

  6. Does Modern Ideology of Earthquake Engineering Ensure the Declared Levels of Damage of Structures at Earthquakes?

    International Nuclear Information System (INIS)

    Gabrichidze, G.

    2011-01-01

    The basic position of the modern ideology of earthquake engineering is based on the idea that a structure should be designed so that it suffers almost no damage at an earthquake, the occurrence of which is most probable in the given area during the lifetime of the structure. This statement is essentially based on the so-called Performance Based Design, the ideology of the 21 s t century. In the article at tenton is focused on the fact that the modern ideology of earthquake engineering assigns structures to a dangerous zone in which their behavior is defined by processes of damage and destruction of materials, which is a nonequilibrium process and demands application of special refined methods of research. In such conditions use of ratios that correspond to static conditions of loading to describe the process of damage of materials appears to be unfounded. The article raises the question of the necessity of working out a new mathematical model of behavior of materials and structures at rapid intensive impact. (authors)

  7. Beyond-design-basis accident management in the RF regulation documents

    International Nuclear Information System (INIS)

    Bukrinskij, A.M.

    2010-01-01

    The article observes the issues of the management of beyond-design-basis accidents (BDBA) in the existing regulations in Russia. The ideology of the approach to the definition of the BDBA list to formulate the management guidelines has been proposed [ru

  8. Deterministic Earthquake Hazard Assessment by Public Agencies in California

    Science.gov (United States)

    Mualchin, L.

    2005-12-01

    Even in its short recorded history, California has experienced a number of damaging earthquakes that have resulted in new codes and other legislation for public safety. In particular, the 1971 San Fernando earthquake produced some of the most lasting results such as the Hospital Safety Act, the Strong Motion Instrumentation Program, the Alquist-Priolo Special Studies Zone Act, and the California Department of Transportation (Caltrans') fault-based deterministic seismic hazard (DSH) map. The latter product provides values for earthquake ground motions based on Maximum Credible Earthquakes (MCEs), defined as the largest earthquakes that can reasonably be expected on faults in the current tectonic regime. For surface fault rupture displacement hazards, detailed study of the same faults apply. Originally, hospital, dam, and other critical facilities used seismic design criteria based on deterministic seismic hazard analyses (DSHA). However, probabilistic methods grew and took hold by introducing earthquake design criteria based on time factors and quantifying "uncertainties", by procedures such as logic trees. These probabilistic seismic hazard analyses (PSHA) ignored the DSH approach. Some agencies were influenced to adopt only the PSHA method. However, deficiencies in the PSHA method are becoming recognized, and the use of the method is now becoming a focus of strong debate. Caltrans is in the process of producing the fourth edition of its DSH map. The reason for preferring the DSH method is that Caltrans believes it is more realistic than the probabilistic method for assessing earthquake hazards that may affect critical facilities, and is the best available method for insuring public safety. Its time-invariant values help to produce robust design criteria that are soundly based on physical evidence. And it is the method for which there is the least opportunity for unwelcome surprises.

  9. Seismic response analysis of Wolsung NPP structure and equipment subjected to scenario earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2005-03-15

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. However, it does not reflect the characteristic of seismological and geological of Korea. In this study, the seismic response analysis of Wolsung NPP structure and equipment were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean NPP site and a typical near-fault earthquake recorded at thirty sites, were used as input motions. The acceleration, displacement and shear force responses of Wolsung containment structure due to the design earthquake were larger than those due to the other input earthquakes. But, considering displacement response increases abruptly as Wolsung NPP structure does nonlinear behavior, the reassessment of the seismic safety margin based on the displacement is necessary if the structure does nonlinear behavior; although it has adequate the seismic safety margin within elastic limit. Among the main safety-related devices, electrical cabinet and pump showed the large responses on the scenario earthquake which has the high frequency characteristic. This has great effects of the seismic capacity of the main devices installed inside of the building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipments.

  10. Seismic response analysis of Wolsung NPP structure and equipment subjected to scenario earthquakes

    International Nuclear Information System (INIS)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2005-03-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. However, it does not reflect the characteristic of seismological and geological of Korea. In this study, the seismic response analysis of Wolsung NPP structure and equipment were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean NPP site and a typical near-fault earthquake recorded at thirty sites, were used as input motions. The acceleration, displacement and shear force responses of Wolsung containment structure due to the design earthquake were larger than those due to the other input earthquakes. But, considering displacement response increases abruptly as Wolsung NPP structure does nonlinear behavior, the reassessment of the seismic safety margin based on the displacement is necessary if the structure does nonlinear behavior; although it has adequate the seismic safety margin within elastic limit. Among the main safety-related devices, electrical cabinet and pump showed the large responses on the scenario earthquake which has the high frequency characteristic. This has great effects of the seismic capacity of the main devices installed inside of the building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipments

  11. Shaking Table Tests on the Seismic Behavior of Steel Frame Structures Subjected to Various Earthquake Ground Motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Kim, Min Kyu; Choun, Young Sun; Seo, Jeong Moon

    2004-05-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. Recent large earthquakes occurred in near-fault zone have done significant damage and loss of life to earthquake area. A survey on some of the Quaternary fault segments near the Korean nuclear power plants is ongoing. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. In this study, the shaking table tests of three steel frame structures were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean nuclear power plant site and a typical near-fault earthquake recorded at Chi-Chi earthquake, were used as input motions. The acceleration and displacement responses of the structure due to the design earthquake were larger than those due to the other input earthquakes. It seems that the design earthquake for the Korean nuclear power plants is conservative, and that the near-fault earthquake and scenario earthquake are not so damageable for the nuclear power plant structures, because the fundamental frequencies of the nuclear power plant structures are generally greater than 5 Hz. The high frequency ground motions that appeared in the scenario earthquake can be more damageable for the equipment installed on the high floors in a building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipment

  12. The MCE (Maximum Credible Earthquake) - an approach to reduction of seismic risk

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchison, R.J.

    1979-01-01

    It is the responsibility of the Regulatory Body (in Canada, the AECB) to ensure that radiological risks resulting from the effects of earthquakes on nuclear facilities, do not exceed acceptable levels. In simplified numerical terms this means that the frequency of an unacceptable radiation dose must be kept below 10 -6 per annum. Unfortunately, seismic events fall into the class of external events which are not well defined at these low frequency levels. Thus, design earthquakes have been chosen, at the 10 -3 - 10 -4 frequency level, a level commensurate with the limits of statistical data. There exists, therefore, a need to define an additional level of earthquake. A seismic design explicitly and implicitly recognizes three levels of earthquake loading; one comfortably below yield, one at or about yield, and one at ultimate. The ultimate level earthquake, contrary to the first two, has been implicitly addressed by conscientious designers by choosing systems, materials and details compatible with postulated dynamic forces. It is the purpose of this paper to discuss the regulatory specifications required to quantify this third level, or Maximum Credible Earthquake (MCE). (orig.)

  13. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.; PIEPHO, M.G.

    2000-01-01

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  14. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.

    1999-01-01

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  15. [Basis for designing a medical course curriculum].

    Science.gov (United States)

    Villarreal, R; Bojalil, L F; Mercer, H

    1977-01-01

    This article sets forth the reasons for the structure given to the Division of Biology and Health on the Xochimilco campus of Metropolitan Autonomous University in Mexico: to adjust the university to the process of social change going forward in the country and gear the university to the problems of the present by avoiding the rigidity of its structure. The basic aspects of curriculum design are cited against a background of an historical analysis of the socioeconomic structure of education and health. The principles underlying the curriculum and the course work are then described on the basis of that analysis.

  16. Analysis and design of Fuel Cycle Plant for natural phenomena hazards

    International Nuclear Information System (INIS)

    Horsager, B.K.

    1985-01-01

    A description of the Design Basis and the analysis and design methods used for natural phenomena at the Fuel Cycle Plant at Hanford, Washington is presented. A physical description of the main process facility and the auxiliary emergency and support facilities is given. The mission of the facility is presented and a brief description of the processes which will take place within the facility is given. The Design Criteria and design bases for natural phenomena including tornados, earthquakes and volcanic eruptions are described

  17. Catalog of Hawaiian earthquakes, 1823-1959

    Science.gov (United States)

    Klein, Fred W.; Wright, Thomas L.

    2000-01-01

    This catalog of more than 17,000 Hawaiian earthquakes (of magnitude greater than or equal to 5), principally located on the Island of Hawaii, from 1823 through the third quarter of 1959 is designed to expand our ability to evaluate seismic hazard in Hawaii, as well as our knowledge of Hawaiian seismic rhythms as they relate to eruption cycles at Kilauea and Mauna Loa volcanoes and to subcrustal earthquake patterns related to the tectonic evolution of the Hawaiian chain.

  18. Seismic design criteria for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Morrone, A.; Bitner, J.L.; Sigal, G.B.

    1975-01-01

    The general criteria for seismic resistant design for structures, systems and components of the Clinch River Breeder Reactor Plant (CRBRP) are presented and discussed. Site dependency of the maximum ground accelerations for the Operating Basis Earthquake and the Safe Shutdown Earthquake is described from the viewpoint of historical records and geological and seismological studies for the CRBRP site. The respective ground response spectra are derived by normalization of the latest AEC Regulatory standard shapes to these maximum ground accelerations. Modeling and analytical techniques and requirements are given. In addition, loading conditions and categories, loading combinations, earthquake direction effects and allowable damping values are defined. A discussion of the testing criteria which considers both single and multiple frequency test motions, and basic test procedures for single frequency sine beat testing is presented. (U.S.)

  19. Analysis of the Source and Ground Motions from the 2017 M8.2 Tehuantepec and M7.1 Puebla Earthquakes

    Science.gov (United States)

    Melgar, D.; Sahakian, V. J.; Perez-Campos, X.; Quintanar, L.; Ramirez-Guzman, L.; Spica, Z.; Espindola, V. H.; Ruiz-Angulo, A.; Cabral-Cano, E.; Baltay, A.; Geng, J.

    2017-12-01

    The September 2017 Tehuantepec and Puebla earthquakes were intra-slab earthquakes that together caused significant damage in broad regions of Mexico, including the states of Oaxaca, Chiapas, Morelos, Puebla, Mexico, and Mexico City. Ground motions in Mexico City have approximately the same angle of incidence from both earthquakes and potentially sample similar paths close to the city. We examine site effects and source terms by analysis of residuals between Ground-Motion Prediction Equations (GMPEs) and observed ground motions for both of these events at stations from the Servicio Sismólogico Nacional, Instituto de Ingeniería, and the Instituto de Geofísica Red del Valle de Mexico networks. GMPEs are a basis for seismic design, but also provide median ground motion values to act as a basis for comparison of individual earthquakes and site responses. First, we invert for finite-fault slip inversions for Tehuantepec with high-rate GPS, static GPS, tide gauge and DART buoy data, and for Puebla with high-rate GPS and strong motion data. Using the distance from the stations with ground motion observations to the derived slip models, we use the GMPEs of Garcia et al. (2005), Zhao et al. (2006), and Abrahamson, Silva and Kamai (2014), to compute predicted values of peak ground acceleration and velocity (PGA and PGV) and response spectral accelerations (SA). Residuals between observed and predicted ground motion parameters are then computed for each recording, and are decomposed into event and site components using a mixed effects regression. We analyze these residuals as an adjustment away from median ground motions in the region to glean information about the earthquake source properties, as well as local site response in and outside of the Mexico City basin. The event and site terms are then compared with available values of stress drop for the two earthquakes, and Vs30 values for the sites, respectively. This analysis is useful in determining which GMPE is most

  20. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  1. Reduced design load basis for ultimate blade loads estimation in multidisciplinary design optimization frameworks

    DEFF Research Database (Denmark)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.

    2016-01-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost...... function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed...... for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar...

  2. Earthquake safety program at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Freeland, G.E.

    1985-01-01

    Within three minutes on the morning of January 24, 1980, an earthquake and three aftershocks, with Richter magnitudes of 5.8, 5.1, 4.0, and 4.2, respectively, struck the Livermore Valley. Two days later, a Richter magnitude 5.4 earthquake occurred, which had its epicenter about 4 miles northwest of the Lawrence Livermore National Laboratory (LLNL). Although no one at the Lab was seriously injured, these earthquakes caused considerable damage and disruption. Masonry and concrete structures cracked and broke, trailers shifted and fell off their pedestals, office ceilings and overhead lighting fell, and bookcases overturned. The Laboratory was suddenly immersed in a site-wide program of repairing earthquake-damaged facilities, and protecting our many employees and the surrounding community from future earthquakes. Over the past five years, LLNL has spent approximately $10 million on its earthquake restoration effort for repairs and upgrades. The discussion in this paper centers upon the earthquake damage that occurred, the clean-up and restoration efforts, the seismic review of LLNL facilities, our site-specific seismic design criteria, computer-floor upgrades, ceiling-system upgrades, unique building seismic upgrades, geologic and seismologic studies, and seismic instrumentation. 10 references

  3. Irregular recurrence of large earthquakes along the san andreas fault: evidence from trees.

    Science.gov (United States)

    Jacoby, G C; Sheppard, P R; Sieh, K E

    1988-07-08

    Old trees growing along the San Andreas fault near Wrightwood, California, record in their annual ring-width patterns the effects of a major earthquake in the fall or winter of 1812 to 1813. Paleoseismic data and historical information indicate that this event was the "San Juan Capistrano" earthquake of 8 December 1812, with a magnitude of 7.5. The discovery that at least 12 kilometers of the Mojave segment of the San Andreas fault ruptured in 1812, only 44 years before the great January 1857 rupture, demonstrates that intervals between large earthquakes on this part of the fault are highly variable. This variability increases the uncertainty of forecasting destructive earthquakes on the basis of past behavior and accentuates the need for a more fundamental knowledge of San Andreas fault dynamics.

  4. Design basis for resistance to shock and vibration

    International Nuclear Information System (INIS)

    Glass, R.E.; Gwinn, K.W.

    1989-01-01

    Sandia National Laboratories, in conjunction with its participation in the American National Standards Institute (ANSI) writing groups, has undertaken to provide an experimental and analytical basis for the design of components of radioactive materials packages to resist normal transport shock and vibration loads. Previous efforts have resulted in an overly conservative shock spectra description of the loads in the tie-downs and cask attachment points anticipated during normal shipment. The present effort is aimed at predicting the actual loads so that the design basis can be accurately determined. This goal is being accomplished with road simulator and over-the-road tests and the development of an analytical model. This model is used to parametrically evaluate and envelop the transportation systems' responses. The parameters to be varied include damping, stiffness, geometry, and cargo mass. The over-the-road tests provide operational data that are used to validate the selection of environments for the road simulator tests. The road simulator tests provide verification for the model. This verification is accomplished since the road simulator tests provide not only the system response which can be measured in over-the-road tests but also the system input. Finally, when the model has been verified, it can be used to vary parameters to envelop a wide range of normal transport conditions

  5. Design basis for resistance to shock and vibration

    International Nuclear Information System (INIS)

    Glass, R.E.; Gwinn, K.W.

    1989-01-01

    Sandia National Laboratories, in conjunction with its participation in the American National Standards Institute (ANSI) writing groups, has undertaken to provide an experimental and analytical basis for the design of components of radioactive materials packages to resist normal transport shock and vibration loads. Previous efforts have resulted in an overly conservative shock spectra description of the loads in the tie-downs and cask attachment points anticipated during normal shipment. The present effort is aimed at predicting the actual loads so that the design basis can be accurately determined. This goal is being accomplished with road simulator and over-the-road tests and the development of an analytical model. This model is used to parametrically evaluate and envelop the transportation systems responses. The parameters to be varied include damping, stiffness, geometry, and cargo mass. The over-the-road tests provide operational data that are used to validate the selection of environments for the road simulator tests. The road simulator tests provide verification for the model. This verification is accomplished since the road simulator tests provide not only the system response which can be measured in over-the-road tests but also the system input. Finally, when the model has been verified, it can be used to vary parameters to envelope a wide range of normal transport conditions

  6. Global volcanic earthquake swarm database and preliminary analysis of volcanic earthquake swarm duration

    Directory of Open Access Journals (Sweden)

    S. R. McNutt

    1996-06-01

    Full Text Available Global data from 1979 to 1989 pertaining to volcanic earthquake swarms have been compiled into a custom-designed relational database. The database is composed of three sections: 1 a section containing general information on volcanoes, 2 a section containing earthquake swarm data (such as dates of swarm occurrence and durations, and 3 a section containing eruption information. The most abundant and reliable parameter, duration of volcanic earthquake swarms, was chosen for preliminary analysis. The distribution of all swarm durations was found to have a geometric mean of 5.5 days. Precursory swarms were then separated from those not associated with eruptions. The geometric mean precursory swarm duration was 8 days whereas the geometric mean duration of swarms not associated with eruptive activity was 3.5 days. Two groups of precursory swarms are apparent when duration is compared with the eruption repose time. Swarms with durations shorter than 4 months showed no clear relationship with the eruption repose time. However, the second group, lasting longer than 4 months, showed a significant positive correlation with the log10 of the eruption repose period. The two groups suggest that different suites of physical processes are involved in the generation of volcanic earthquake swarms.

  7. Observation of earthquake in the neighborhood of a large underground cavity. The Izu-Hanto-Toho-Oki earthquake, June 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Komada, H; Hayashi, M [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Civil Engineering Lab.

    1980-12-01

    Studies on the earthquake resistance design of underground site for such large important structures as nuclear power plants, high-level radioactive waste repositories, LNG tanks, petroleum tanks, big power transmission installations and compressed air energy storage installations have been examined at our research institute. The observations of earthquake have been examined at Shiroyama underground hydroelectric power station since July 1976 as one of the demonstration of the earthquake resistance, and the first report was already published. After the time accelerometers and dynamic strain meters were additionally installed. Good acceleration waves and dynamic strain waves of the Izu-Hanto-Toho-Oki Earthquake, June 29, 1980 were observed at Shiroyama site, at which the hypocentral distance is 77 km and the intensity scale is about 4. In this report, the characteristic of the oscillation wave in the neighborhood of underground cavity and the relationships among accelerations, velocities, deformations and dynamic strains are studied in detail on the above earthquake data.

  8. Modern earthquake engineering offshore and land-based structures

    CERN Document Server

    Jia, Junbo

    2017-01-01

    This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.

  9. Earthquake Culture: A Significant Element in Earthquake Disaster Risk Assessment and Earthquake Disaster Risk Management

    OpenAIRE

    Ibrion, Mihaela

    2018-01-01

    This book chapter brings to attention the dramatic impact of large earthquake disasters on local communities and society and highlights the necessity of building and enhancing the earthquake culture. Iran was considered as a research case study and fifteen large earthquake disasters in Iran were investigated and analyzed over more than a century-time period. It was found that the earthquake culture in Iran was and is still conditioned by many factors or parameters which are not integrated and...

  10. Pump Damage in the Hanshin Earthquake

    Directory of Open Access Journals (Sweden)

    Toshiyuki Osada

    2000-01-01

    Full Text Available There was a severe earthquake in the southern area ofHyogo prefecture in Japan on January 17, 1995. In this paper the damage to pump facilities caused by the earthquake, based on field investigation results in the Hanshin (Osaka–Kobe area is reported. In particular a lot of damage was reported in the pumping facilities for sewage or drainage of storm sewage. This paper also presents recommendations for aseismic design of pump facilities based on the results of the survey.

  11. Making the Handoff from Earthquake Hazard Assessments to Effective Mitigation Measures (Invited)

    Science.gov (United States)

    Applegate, D.

    2010-12-01

    This year has witnessed a barrage of large earthquakes worldwide with the resulting damages ranging from inconsequential to truly catastrophic. We cannot predict when earthquakes will strike, but we can build communities that are resilient to strong shaking as well as to secondary hazards such as landslides and liquefaction. The contrasting impacts of the magnitude-7 earthquake that struck Haiti in January and the magnitude-8.8 event that struck Chile in April underscore the difference that mitigation and preparedness can make. In both cases, millions of people were exposed to severe shaking, but deaths in Chile were measured in the hundreds rather than the hundreds of thousands that perished in Haiti. Numerous factors contributed to these disparate outcomes, but the most significant is the presence of strong building codes in Chile and their total absence in Haiti. The financial cost of the Chilean earthquake still represents an unacceptably high percentage of that nation’s gross domestic product, a reminder that life safety is the paramount, but not the only, goal of disaster risk reduction measures. For building codes to be effective, both in terms of lives saved and economic cost, they need to reflect the hazard as accurately as possible. As one of four federal agencies that make up the congressionally mandated National Earthquake Hazards Reduction Program (NEHRP), the U.S. Geological Survey (USGS) develops national seismic hazard maps that form the basis for seismic provisions in model building codes through the Federal Emergency Management Agency and private-sector practitioners. This cooperation is central to NEHRP, which both fosters earthquake research and establishes pathways to translate research results into implementation measures. That translation depends on the ability of hazard-focused scientists to interact and develop mutual trust with risk-focused engineers and planners. Strengthening that interaction is an opportunity for the next generation

  12. Armenian earthquake WWER-440 NNPs and Turkish early warning system

    International Nuclear Information System (INIS)

    Bektur, Y.

    1991-01-01

    On December 7, 1988 a severe earthquake occurred at Spitak, approximately 90-100 km far from the Armenian Nuclear Power Plant in Yerivan. Another one named Vrancea earthquake which occurred on 4 March, 1977. During this earthquake, the Kozloduj NPP (Bulgaria) was strongly damaged. Until this event, seismic loadings had received scant attention in the siting of WWER's. However after the Kozlodui damage Soviet designers changed their opinion. In this study, the seismicity of the Black Sea region and eastern Europe, seismic requirements for WWER's and the changes in plants for which to resistant against to the earthquake are given. During the earthquake radiation levels obtained by Turkish early warning system is also given

  13. Containment design, performance criteria and research needs for advanced reactor designs

    International Nuclear Information System (INIS)

    Bagdi, G.; Ali, S.; Costello, J

    2004-01-01

    This paper points out some important shifts in the basic expectations in the performance requirements for containment structures and discusses the areas where the containment structure design requirements and acceptance criteria can be integrated with ultimate test based insights. Although there has not been any new reactor construction in the United States for over thirty years, several designs of evolutionary and advanced reactors have already been certified. Performance requirements for containment structures under design basis and severe accident conditions and explicit consideration of seismic margins have been used in the design certification process. In the United States, the containment structure design code is the American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NE-Class MC for the steel containment and Section III, Division 2 for reinforced and prestressed concrete reactor vessels and containments. This containment design code was based on the early concept of applying design basis internal pressure and associated load combinations that included the operating basis and safe shutdown earthquake ground motion. These early design criteria served the nuclear industry and the regulatory authorities in maintaining public health and safety. However, these early design criteria do not incorporate the performance criteria related to containment function in an integrated fashion. Research in large scale model testing of containment structures to failure from over pressurization and shake table testing using simulated ground motion, have produced insights related to failure modes and material behavior at failure. The results of this research provide the opportunity to integrate these observations into design and acceptance criteria. This integration process would identify 'gaps' in the present knowledge and future research needs. This knowledge base is important for gleaning risk-informed insights into

  14. Earthquakes clustering based on the magnitude and the depths in Molluca Province

    International Nuclear Information System (INIS)

    Wattimanela, H. J.; Pasaribu, U. S.; Indratno, S. W.; Puspito, A. N. T.

    2015-01-01

    In this paper, we present a model to classify the earthquakes occurred in Molluca Province. We use K-Means clustering method to classify the earthquake based on the magnitude and the depth of the earthquake. The result can be used for disaster mitigation and for designing evacuation route in Molluca Province

  15. Earthquakes clustering based on the magnitude and the depths in Molluca Province

    Energy Technology Data Exchange (ETDEWEB)

    Wattimanela, H. J., E-mail: hwattimaela@yahoo.com [Pattimura University, Ambon (Indonesia); Institute of Technology Bandung, Bandung (Indonesia); Pasaribu, U. S.; Indratno, S. W.; Puspito, A. N. T. [Institute of Technology Bandung, Bandung (Indonesia)

    2015-12-22

    In this paper, we present a model to classify the earthquakes occurred in Molluca Province. We use K-Means clustering method to classify the earthquake based on the magnitude and the depth of the earthquake. The result can be used for disaster mitigation and for designing evacuation route in Molluca Province.

  16. iROCS: Integrated accident management framework for coping with beyond-design-basis external events

    International Nuclear Information System (INIS)

    Kim, Jaewhan; Park, Soo-Yong; Ahn, Kwang-Il; Yang, Joon-Eon

    2016-01-01

    Highlights: • An integrated mitigating strategy to cope with extreme external events, iROCS, is proposed. • The strategy aims to preserve the integrity of the reactor vessel as well as core cooling. • A case study for an extreme damage state is performed to assess the effectiveness and feasibility of candidate mitigation strategies under an extreme event. - Abstract: The Fukushima Daiichi accident induced by the Great East Japan earthquake and tsunami on March 11, 2011, poses a new challenge to the nuclear society, especially from an accident management viewpoint. This paper presents a new accident management framework called an integrated, RObust Coping Strategy (iROCS) to cope with beyond-design-basis external events (BDBEEs). The iROCS approach is characterized by classification of various plant damage conditions (PDCs) that might be impacted by BDBEEs and corresponding integrated coping strategies for each of PDCs, aiming to maintain and restore core cooling (i.e., to prevent core damage) and to maintain the integrity of the reactor pressure vessel if it is judged that core damage may not be preventable in view of plant conditions. From a case study for an extreme damage condition, it showed that candidate accident management strategies should be evaluated from the viewpoint of effectiveness and feasibility against accident scenarios and extreme damage conditions of the site, especially when employing mobile or portable equipment under BDBEEs within the limited time available to achieve desired goals such as prevention of core damage as well as a reactor vessel failure.

  17. Seismogeodesy for rapid earthquake and tsunami characterization

    Science.gov (United States)

    Bock, Y.

    2016-12-01

    dozens of seismogeodetic stations available through the Pacific Northwest Seismic Network (University of Washington), the Plate Boundary Observatory (UNAVCO) and the Pacific Northwest Geodetic Array (Central Washington University) as the basis for local tsunami warnings for a large subduction zone earthquake in Cascadia.

  18. Quantitative Earthquake Prediction on Global and Regional Scales

    International Nuclear Information System (INIS)

    Kossobokov, Vladimir G.

    2006-01-01

    The Earth is a hierarchy of volumes of different size. Driven by planetary convection these volumes are involved into joint and relative movement. The movement is controlled by a wide variety of processes on and around the fractal mesh of boundary zones, and does produce earthquakes. This hierarchy of movable volumes composes a large non-linear dynamical system. Prediction of such a system in a sense of extrapolation of trajectory into the future is futile. However, upon coarse-graining the integral empirical regularities emerge opening possibilities of prediction in a sense of the commonly accepted consensus definition worked out in 1976 by the US National Research Council. Implications of the understanding hierarchical nature of lithosphere and its dynamics based on systematic monitoring and evidence of its unified space-energy similarity at different scales help avoiding basic errors in earthquake prediction claims. They suggest rules and recipes of adequate earthquake prediction classification, comparison and optimization. The approach has already led to the design of reproducible intermediate-term middle-range earthquake prediction technique. Its real-time testing aimed at prediction of the largest earthquakes worldwide has proved beyond any reasonable doubt the effectiveness of practical earthquake forecasting. In the first approximation, the accuracy is about 1-5 years and 5-10 times the anticipated source dimension. Further analysis allows reducing spatial uncertainty down to 1-3 source dimensions, although at a cost of additional failures-to-predict. Despite of limited accuracy a considerable damage could be prevented by timely knowledgeable use of the existing predictions and earthquake prediction strategies. The December 26, 2004 Indian Ocean Disaster seems to be the first indication that the methodology, designed for prediction of M8.0+ earthquakes can be rescaled for prediction of both smaller magnitude earthquakes (e.g., down to M5.5+ in Italy) and

  19. Quantitative Earthquake Prediction on Global and Regional Scales

    Science.gov (United States)

    Kossobokov, Vladimir G.

    2006-03-01

    The Earth is a hierarchy of volumes of different size. Driven by planetary convection these volumes are involved into joint and relative movement. The movement is controlled by a wide variety of processes on and around the fractal mesh of boundary zones, and does produce earthquakes. This hierarchy of movable volumes composes a large non-linear dynamical system. Prediction of such a system in a sense of extrapolation of trajectory into the future is futile. However, upon coarse-graining the integral empirical regularities emerge opening possibilities of prediction in a sense of the commonly accepted consensus definition worked out in 1976 by the US National Research Council. Implications of the understanding hierarchical nature of lithosphere and its dynamics based on systematic monitoring and evidence of its unified space-energy similarity at different scales help avoiding basic errors in earthquake prediction claims. They suggest rules and recipes of adequate earthquake prediction classification, comparison and optimization. The approach has already led to the design of reproducible intermediate-term middle-range earthquake prediction technique. Its real-time testing aimed at prediction of the largest earthquakes worldwide has proved beyond any reasonable doubt the effectiveness of practical earthquake forecasting. In the first approximation, the accuracy is about 1-5 years and 5-10 times the anticipated source dimension. Further analysis allows reducing spatial uncertainty down to 1-3 source dimensions, although at a cost of additional failures-to-predict. Despite of limited accuracy a considerable damage could be prevented by timely knowledgeable use of the existing predictions and earthquake prediction strategies. The December 26, 2004 Indian Ocean Disaster seems to be the first indication that the methodology, designed for prediction of M8.0+ earthquakes can be rescaled for prediction of both smaller magnitude earthquakes (e.g., down to M5.5+ in Italy) and

  20. Earthquake Resilient Bridge Columns Utilizing Damage Resistant Hybrid Fiber Reinforced Concrete

    OpenAIRE

    Trono, William Dean

    2014-01-01

    Modern reinforced concrete bridges are designed to avoid collapse and to prevent loss of life during earthquakes. To meet these objectives, bridge columns are typically detailed to form ductile plastic hinges when large displacements occur. California seismic design criteria acknowledges that damage such as concrete cover spalling and reinforcing bar yielding may occur in columns during a design-level earthquake. The seismic resilience of bridge columns can be improved through the use of a da...

  1. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    Science.gov (United States)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground

  2. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  3. Probabilistic model to forecast earthquakes in the Zemmouri (Algeria) seismoactive area on the basis of moment magnitude scale distribution functions

    Science.gov (United States)

    Baddari, Kamel; Makdeche, Said; Bellalem, Fouzi

    2013-02-01

    Based on the moment magnitude scale, a probabilistic model was developed to predict the occurrences of strong earthquakes in the seismoactive area of Zemmouri, Algeria. Firstly, the distributions of earthquake magnitudes M i were described using the distribution function F 0(m), which adjusts the magnitudes considered as independent random variables. Secondly, the obtained result, i.e., the distribution function F 0(m) of the variables M i was used to deduce the distribution functions G(x) and H(y) of the variables Y i = Log M 0,i and Z i = M 0,i , where (Y i)i and (Z i)i are independent. Thirdly, some forecast for moments of the future earthquakes in the studied area is given.

  4. On results of aseismatic safety examination for atomic energy facilities based on Southern Hyogo Prefecture Earthquake in 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The Nuclear Safety Commission received the report on the results of examination from the ad hoc examination committee. There was no particular effect to atomic energy facilities in the Southern Hyogo Prefecture Earthquake, however, from the viewpoint of perfecting the safety confirmation for atomic energy facilities, the Nuclear Safety Commission set up the aseismatic safety examination committee to investigate the validity of the guidelines related to aseismatic design used for safety examination. The basic plan of the investigation, the outline of the guidelines related to aseismatic design, the state of Southern Hyogo Prefecture Earthquake and the obtained knowledge and the investigation of the validity of the guidelines related to aseismatic design based on the state of Southern Hyogo Prefecture Earthquake are reported. The extraction of the items to be investigated, the evaluation of earthquakes and earthquake motion, vertical earthquake force and active faults, and the way of thinking on right under type earthquakes in the guideline for aseismatic design examination are reported. It was confirmed that the validity of guidelines is not impaired by the earthquake. (K.I.)

  5. Prediction of site specific ground motion for large earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1990-01-01

    In this paper, we apply the semi-empirical synthesis method by IRIKURA (1983, 1986) to the estimation of site specific ground motion using accelerograms observed at Kumatori in Osaka prefecture. Target earthquakes used here are a comparatively distant earthquake (Δ=95 km, M=5.6) caused by the YAMASAKI fault and a near earthquake (Δ=27 km, M=5.6). The results obtained are as follows. 1) The accelerograms from the distant earthquake (M=5.6) are synthesized using the aftershock records (M=4.3) for 1983 YAMASAKI fault earthquake whose source parameters have been obtained by other authors from the hypocentral distribution of the aftershocks. The resultant synthetic motions show a good agreement with the observed ones. 2) The synthesis for a near earthquake (M=5.6, we call this target earthquake) are made using a small earthquake which occurred in the neighborhood of the target earthquake. Here, we apply two methods for giving the parameters for synthesis. One method is to use the parameters of YAMASAKI fault earthquake which has the same magnitude as the target earthquake, and the other is to use the parameters obtained from several existing empirical formulas. The resultant synthetic motion with the former parameters shows a good agreement with the observed one, but that with the latter does not. 3) We estimate the source parameters from the source spectra of several earthquakes which have been observed in this site. Consequently we find that the small earthquakes (M<4) as Green's functions should be carefully used because the stress drops are not constant. 4) We propose that we should designate not only the magnitudes but also seismic moments of the target earthquake and the small earthquake. (J.P.N.)

  6. Ground motion characteristics of 2007 Niigata-ken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou; Nishimura, Isao; Mizutani, Hiroyuki; Tokumitsu, Ryoichi; Mashimo, Mitsugu; Tanaka, Shinya

    2010-01-01

    Strong motion records of 2007 Niigata-ken Chuetsu-oki earthquake were examined in order to evaluate ground motion characteristics of the earthquake. Ground motions observed at Kashiwazaki Kariwa Nuclear Power Plant site were significantly larger than the response spectra evaluated on the basis of Noda et al. (2002), and the level of the ground motion observed at Arahama area (unit 1-4 side) was approximately twice as large as that at Ominato area (unit 5-7 side). Observation records of the offshore events other than the earthquake were also larger than the response spectra based on Noda et al. (2002), whereas records of the inland events were smaller than those. In addition, these characteristics were also observed in the vicinity of the site through the analysis of the ground motion records obtained by KiK-net. (author)

  7. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    1999-09-09

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  8. The evolution of hillslope strength following large earthquakes

    Science.gov (United States)

    Brain, Matthew; Rosser, Nick; Tunstall, Neil

    2017-04-01

    Earthquake-induced landslides play an important role in the evolution of mountain landscapes. Earthquake ground shaking triggers near-instantaneous landsliding, but has also been shown to weaken hillslopes, preconditioning them for failure during subsequent seismicity and/or precipitation events. The temporal evolution of hillslope strength during and following primary seismicity, and if and how this ultimately results in failure, is poorly constrained due to the rarity of high-magnitude earthquakes and limited availability of suitable field datasets. We present results obtained from novel geotechnical laboratory tests to better constrain the mechanisms that control strength evolution in Earth materials of differing rheology. We consider how the strength of hillslope materials responds to ground-shaking events of different magnitude and if and how this persists to influence landslide activity during interseismic periods. We demonstrate the role of stress path and stress history, strain rate and foreshock and aftershock sequences in controlling the evolution of hillslope strength and stability. Critically, we show how hillslopes can be strengthened rather than weakened in some settings, challenging conventional assumptions. On the basis of our laboratory data, we consider the implications for earthquake-induced geomorphic perturbations in mountain landscapes over multiple timescales and in different seismogenic settings.

  9. Analytical investigations of the earthquake resistance of the support base of an oil-gas platform

    Energy Technology Data Exchange (ETDEWEB)

    Glagovskii, V. B.; Kassirova, N. A.; Turchina, O. A.; Finagenov, O. M.; Tsirukhin, N. A. [JSC ' VNIIG im. B. E. Vedeneeva' (Russian Federation)

    2012-01-15

    In designing stationary oil-gas recovery platforms on the continental shelf, the need arises to compute the estimated strength of their support base during seismic events. This paper is devoted to this estimation. The paper examines a structure consisting of the superstructure of an oil-gas platform and its gravity-type base. It is possible to install earthquake-insulating supports between them. Calculations performed for the design earthquake indicated that the design of the gravity base can resist a seismic effect without special additional measures. During the maximum design earthquake, moreover, significant stresses may develop in the zone of base where the columns are connected to the upper slab of the caisson. In that case, the earthquake insulation considered for the top of the platform becomes critical.

  10. Analytical investigations of the earthquake resistance of the support base of an oil-gas platform

    International Nuclear Information System (INIS)

    Glagovskii, V. B.; Kassirova, N. A.; Turchina, O. A.; Finagenov, O. M.; Tsirukhin, N. A.

    2012-01-01

    In designing stationary oil-gas recovery platforms on the continental shelf, the need arises to compute the estimated strength of their support base during seismic events. This paper is devoted to this estimation. The paper examines a structure consisting of the superstructure of an oil-gas platform and its gravity-type base. It is possible to install earthquake-insulating supports between them. Calculations performed for the design earthquake indicated that the design of the gravity base can resist a seismic effect without special additional measures. During the maximum design earthquake, moreover, significant stresses may develop in the zone of base where the columns are connected to the upper slab of the caisson. In that case, the earthquake insulation considered for the top of the platform becomes critical.

  11. Spent Nuclear Fuel (SNF) Project Design Basis Capacity Study

    International Nuclear Information System (INIS)

    CLEVELAND, K.J.

    2000-01-01

    This study of the design basis capacity of process systems was prepared by Fluor Federal Services for the Spent Nuclear Fuel Project. The evaluation uses a summary level model of major process sub-systems to determine the impact of sub-system interactions on the overall time to complete fuel removal operations. The process system model configuration and time cycle estimates developed in the original version of this report have been updated as operating scenario assumptions evolve. The initial document released in Fiscal Year (FY) 1996 varied the number of parallel systems and transport systems over a wide range, estimating a conservative design basis for completing fuel processing in a two year time period. Configurations modeling planned operations were updated in FY 1998 and FY 1999. The FY 1998 Base Case continued to indicate that fuel removal activities at the basins could be completed in slightly over 2 years. Evaluations completed in FY 1999 were based on schedule modifications that delayed the start of KE Basin fuel removal, with respect to the start of KW Basin fuel removal activities, by 12 months. This delay resulted in extending the time to complete all fuel removal activities by 12 months. However, the results indicated that the number of Cold Vacuum Drying (CVD) stations could be reduced from four to three without impacting the projected time to complete fuel removal activities. This update of the design basis capacity evaluation, performed for FY 2000, evaluates a fuel removal scenario that delays the start of KE Basin activities such that staffing peaks are minimized. The number of CVD stations included in all cases for the FY 2000 evaluation is reduced from three to two, since the scenario schedule results in minimal time periods of simultaneous fuel removal from both basins. The FY 2000 evaluation also considers removal of Shippingport fuel from T Plant storage and transfer to the Canister Storage Building for storage

  12. A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION –A FEASIBILITY CASE STUDY IN JAPAN-

    Directory of Open Access Journals (Sweden)

    TETSUO KUBO

    2014-10-01

    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  13. Earthquake response analysis of a base isolated building

    International Nuclear Information System (INIS)

    Mazda, T.; Shiojiri, H.; Sawada, Y.; Harada, O.; Kawai, N.; Ontsuka, S.

    1989-01-01

    Recently, the seismic isolation has become one of the popular methods in the design of important structures or equipments against the earthquakes. However, it is desired to accumulate the demonstration data on reliability of seismically isolated structures and to establish the analysis methods of those structures. Based on the above recognition, the vibration tests of a base isolated building were carried out in Tsukuba Science City. After that, many earthquake records have been obtained at the building. In order to examine the validity of numerical models, earthquake response analyses have been executed by using both lumped mass model, and finite element model

  14. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  15. Collaboratory for the Study of Earthquake Predictability

    Science.gov (United States)

    Schorlemmer, D.; Jordan, T. H.; Zechar, J. D.; Gerstenberger, M. C.; Wiemer, S.; Maechling, P. J.

    2006-12-01

    Earthquake prediction is one of the most difficult problems in physical science and, owing to its societal implications, one of the most controversial. The study of earthquake predictability has been impeded by the lack of an adequate experimental infrastructure---the capability to conduct scientific prediction experiments under rigorous, controlled conditions and evaluate them using accepted criteria specified in advance. To remedy this deficiency, the Southern California Earthquake Center (SCEC) is working with its international partners, which include the European Union (through the Swiss Seismological Service) and New Zealand (through GNS Science), to develop a virtual, distributed laboratory with a cyberinfrastructure adequate to support a global program of research on earthquake predictability. This Collaboratory for the Study of Earthquake Predictability (CSEP) will extend the testing activities of SCEC's Working Group on Regional Earthquake Likelihood Models, from which we will present first results. CSEP will support rigorous procedures for registering prediction experiments on regional and global scales, community-endorsed standards for assessing probability-based and alarm-based predictions, access to authorized data sets and monitoring products from designated natural laboratories, and software to allow researchers to participate in prediction experiments. CSEP will encourage research on earthquake predictability by supporting an environment for scientific prediction experiments that allows the predictive skill of proposed algorithms to be rigorously compared with standardized reference methods and data sets. It will thereby reduce the controversies surrounding earthquake prediction, and it will allow the results of prediction experiments to be communicated to the scientific community, governmental agencies, and the general public in an appropriate research context.

  16. Design Basis Provisions for New and Existing Nuclear Power Plants and Nuclear Fuel Cycle Facilities in India

    International Nuclear Information System (INIS)

    Soni, R.S.

    2013-01-01

    India has 3-Stage Nuclear Power Program. • Various facilities under design, construction or operation. • Design Basis Knowledge Management (DBKM) is an important and challenging task. • Design Basis Knowledge contributes towards: - Safe operation of running plants; - Design and construction of new facilities; - Addresses issues related to future decommissioning activities

  17. The Physics of Earthquakes: In the Quest for a Unified Theory (or Model) That Quantitatively Describes the Entire Process of an Earthquake Rupture, From its Nucleation to the Dynamic Regime and to its Arrest

    Science.gov (United States)

    Ohnaka, M.

    2004-12-01

    For the past four decades, great progress has been made in understanding earthquake source processes. In particular, recent progress in the field of the physics of earthquakes has contributed substantially to unraveling the earthquake generation process in quantitative terms. Yet, a fundamental problem remains unresolved in this field. The constitutive law that governs the behavior of earthquake ruptures is the basis of earthquake physics, and the governing law plays a fundamental role in accounting for the entire process of an earthquake rupture, from its nucleation to the dynamic propagation to its arrest, quantitatively in a unified and consistent manner. Therefore, without establishing the rational constitutive law, the physics of earthquakes cannot be a quantitative science in a true sense, and hence it is urgent to establish the rational constitutive law. However, it has been controversial over the past two decades, and it is still controversial, what the constitutive law for earthquake ruptures ought to be, and how it should be formulated. To resolve the controversy is a necessary step towards a more complete, unified theory of earthquake physics, and now the time is ripe to do so. Because of its fundamental importance, we have to discuss thoroughly and rigorously what the constitutive law ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid evidence. There are prerequisites for the constitutive formulation. The brittle, seismogenic layer and individual faults therein are characterized by inhomogeneity, and fault inhomogeneity has profound implications for earthquake ruptures. In addition, rupture phenomena including earthquakes are inherently scale dependent; indeed, some of the physical quantities inherent in rupture exhibit scale dependence. To treat scale-dependent physical quantities inherent in the rupture over a broad scale range quantitatively in a unified and consistent manner, it is critical to

  18. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 1, Main report

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Since 1982, there has been a major effort expended to evaluate the susceptibility of nuclear Power plant equipment to failure and significant damage during seismic events. This was done by making use of data on the performance of electrical and mechanical equipment in conventional power plants and other similar industrial facilities during strong motion earthquakes. This report is intended as an extension of the seismic experience data collection effort and a compilation of experience data specific to power plant piping and supports designed and constructed US power piping code requirements which have experienced strong motion earthquakes. Eight damaging (Richter Magnitude 7.7 to 5.5) California earthquakes and their effects on 8 power generating facilities in use natural gas and California were reviewed. All of these facilities were visited and evaluated. Seven fossel-fueled (dual use natural gas and oil) and one nuclear fueled plants consisting of a total of 36 individual boiler or reactor units were investigated. Peak horizontal ground accelerations that either had been recorded on site at these facilities or were considered applicable to these power plants on the basis of nearby recordings ranged between 0.20g and 0.5lg with strong motion durations which varied from 3.5 to 15 seconds. Most US nuclear power plants are designed for a safe shutdown earthquake peak ground acceleration equal to 0.20g or less with strong motion durations which vary from 10 to 15 seconds

  19. Earthquake-relief APWR (Advanced Pressurized Water Reactor) plants

    International Nuclear Information System (INIS)

    Yoshinaga, Hidekazu; Oshibe, Toshihiro; Yamaura, Yoshihisa; Kokubo, Eiji

    1999-01-01

    The anti-seismic design conditions for nuclear power stations are extremely severe in Japan. Therefore, various measures, including the increase in building wall thickness and in the number of equipment supports, need to be implemented to satisfy the necessary anti-seismic design. This is one of the causes of the increase in the construction cost of power stations. Meanwhile, a seismic isolation system, which mitigates an input earthquake motion, has been attracting attention in the general construction industry since the Great Hansin Earthquake in 1995. An increasing number of buildings employing such a system have been constructed. The system is being more popular and socially accepted. At the same time, the anti-seismic nuclear power stations have already been operated in France and South Africa. Various reviews and researches are promoted in Japan to adopt the seismic isolation system in nuclear power stations. The building and equipment designs when the seismic isolation system is applied to APWR are reviewed based on the experience in Japan and overseas. Specifically, reviews were conducted on the following items and their technical and economical feasibility has been well confirmed: Earthquake-relief equipment properties. Building design. Equipment design. The reliability and economy on the building and equipment designs shall further be enhanced in order to maximize the advantages of seismic isolation system in the future. (author)

  20. NPP Design Basis Handover and Knowledge Preservation from Subcontractors, Vendors and EPC

    International Nuclear Information System (INIS)

    Freeland, Kent

    2013-01-01

    Using PLM-based Workflow for Configuration Management (CM) in the Nuclear Power Industry Advantages – some work to do! • NPP’s must adapt to using PLM-based solutions to support CM and to synchronize design changes to asset or product changes, and reduce “slipstreaming”. In the NPP world, this often appears as events that circumvent CM – for example, non-approved parts substitutions and “temporary” plant modifications that are never removed. • PLM serves as the method for unifying the application of requirements to design changes, processes and workflow. In NPP’s, requirements are generally considered only relevant to designs – not process and workflow. • PLM supports Configuration Management and Design Basis in Regulator Action Tracking for NPP’s, and application of PLM-based CM to regulator action and compliance systems. This is a poorly-understood application of CM in NPP’s, yet these elements control large parts of the NPP design basis. • Suppliers, EPC’s and Technology Vendors must also understand the role of CM, SE and PLM in construction of new standards-driven NPP designs (like EPR and Westinghouse AP-1000 NPP designs), as well as understanding the role and handling of Knowledge Systems

  1. Acceptable risk as a basis for design

    International Nuclear Information System (INIS)

    Vrijling, J.K.; Hengel, W. van; Houben, R.J.

    1998-01-01

    Historically, human civilisations have striven to protect themselves against natural and man-made hazards. The degree of protection is a matter of political choice. Today this choice should be expressed in terms of risk and acceptable probability of failure to form the basis of the probabilistic design of the protection. It is additionally argued that the choice for a certain technology and the connected risk is made in a cost-benefit framework. The benefits and the costs including risk are weighed in the decision process. A set of rules for the evaluation of risk is proposed and tested in cases. The set of rules leads to technical advice in a question that has to be decided politically

  2. Latitude-Time Total Electron Content Anomalies as Precursors to Japan's Large Earthquakes Associated with Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Jyh-Woei Lin

    2011-01-01

    Full Text Available The goal of this study is to determine whether principal component analysis (PCA can be used to process latitude-time ionospheric TEC data on a monthly basis to identify earthquake associated TEC anomalies. PCA is applied to latitude-time (mean-of-a-month ionospheric total electron content (TEC records collected from the Japan GEONET network to detect TEC anomalies associated with 18 earthquakes in Japan (M≥6.0 from 2000 to 2005. According to the results, PCA was able to discriminate clear TEC anomalies in the months when all 18 earthquakes occurred. After reviewing months when no M≥6.0 earthquakes occurred but geomagnetic storm activity was present, it is possible that the maximal principal eigenvalues PCA returned for these 18 earthquakes indicate earthquake associated TEC anomalies. Previously PCA has been used to discriminate earthquake-associated TEC anomalies recognized by other researchers, who found that statistical association between large earthquakes and TEC anomalies could be established in the 5 days before earthquake nucleation; however, since PCA uses the characteristics of principal eigenvalues to determine earthquake related TEC anomalies, it is possible to show that such anomalies existed earlier than this 5-day statistical window.

  3. Communicating Earthquake Preparedness: The Influence of Induced Mood, Perceived Risk, and Gain or Loss Frames on Homeowners' Attitudes Toward General Precautionary Measures for Earthquakes.

    Science.gov (United States)

    Marti, Michèle; Stauffacher, Michael; Matthes, Jörg; Wiemer, Stefan

    2018-04-01

    Despite global efforts to reduce seismic risk, actual preparedness levels remain universally low. Although earthquake-resistant building design is the most efficient way to decrease potential losses, its application is not a legal requirement across all earthquake-prone countries and even if, often not strictly enforced. Risk communication encouraging homeowners to take precautionary measures is therefore an important means to enhance a country's earthquake resilience. Our study illustrates that specific interactions of mood, perceived risk, and frame type significantly affect homeowners' attitudes toward general precautionary measures for earthquakes. The interdependencies of the variables mood, risk information, and frame type were tested in an experimental 2 × 2 × 2 design (N = 156). Only in combination and not on their own, these variables effectively influence attitudes toward general precautionary measures for earthquakes. The control variables gender, "trait anxiety" index, and alteration of perceived risk adjust the effect. Overall, the group with the strongest attitudes toward general precautionary actions for earthquakes are homeowners with induced negative mood who process high-risk information and gain-framed messages. However, the conditions comprising induced negative mood, low-risk information and loss-frame and induced positive mood, low-risk information and gain-framed messages both also significantly influence homeowners' attitudes toward general precautionary measures for earthquakes. These results mostly confirm previous findings in the field of health communication. For practitioners, our study emphasizes that carefully compiled communication measures are a powerful means to encourage precautionary attitudes among homeowners, especially for those with an elevated perceived risk. © 2017 Society for Risk Analysis.

  4. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  5. Investigation of the relationship between earthquakes and indoor radon concentrations at a building in Gyeongju, Korea

    Directory of Open Access Journals (Sweden)

    Jae Wook Kim

    2018-04-01

    Full Text Available This article measured and analyzed the indoor radon concentrations at one university building in Gyeongju, Republic of Korea, to investigate if there is any relationship between earthquakes and indoor radon concentration. Since 12 September 2016, when two 5.1 and 5.8 magnitude earthquakes occurred, hundreds of aftershocks affected Gyeongju until January 2017. The measurements were made at the ground floor of the Energy Engineering Hall of Dongguk University in Gyeongju over a period between February 2016 and January 2017. The measurements were made with an RAD7 detector on the basis of the US Environmental Protection Agency measurement protocol. Each measurement was continuously made every 30 minutes over the measurement period every month. Among earthquakes with 2.0 or greater magnitude, the earthquakes whose occurrence timings fell into the measurement periods were screened for further analysis. We observed similar spike-like patterns between the indoor radon concentration distributions and earthquakes: a sudden increase in the peak indoor radon concentration 1–4 days before an earthquake, gradual decrease before the earthquake, and sudden drop on the day of the earthquake if the interval between successive earthquakes was moderately longer, for example, 3 days in this article. Keywords: Earthquakes, Gyeongju, Indoor Radon Concentration, RAD7, Radon Anomaly

  6. Earthquake insurance pricing: a risk-based approach.

    Science.gov (United States)

    Lin, Jeng-Hsiang

    2018-04-01

    Flat earthquake premiums are 'uniformly' set for a variety of buildings in many countries, neglecting the fact that the risk of damage to buildings by earthquakes is based on a wide range of factors. How these factors influence the insurance premiums is worth being studied further. Proposed herein is a risk-based approach to estimate the earthquake insurance rates of buildings. Examples of application of the approach to buildings located in Taipei city of Taiwan were examined. Then, the earthquake insurance rates for the buildings investigated were calculated and tabulated. To fulfil insurance rating, the buildings were classified into 15 model building types according to their construction materials and building height. Seismic design levels were also considered in insurance rating in response to the effect of seismic zone and construction years of buildings. This paper may be of interest to insurers, actuaries, and private and public sectors of insurance. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  7. Neoliberalism and criticisms of earthquake insurance arrangements in New Zealand.

    Science.gov (United States)

    Hay, I

    1996-03-01

    Global collapse of the Fordist-Keynesian regime of accumulation and an attendant philosophical shift in New Zealand politics to neoliberalism have prompted criticisms of, and changes to, the Earthquake and War Damage Commission. Earthquake insurance arrangements made 50 years ago in an era of collectivist, welfarist political action are now set in an environment in which emphasis is given to competitive relations and individualism. Six specific criticisms of the Commission are identified, each of which is founded in the rhetoric and ideology of a neoliberal political project which has underpinned radical social and economic changes in New Zealand since the early 1980s. On the basis of those criticisms, and in terms of the Earthquake Commission Act 1993, the Commission has been restructured. The new Commission is withdrawing from its primary position as the nation's non-residential property hazards insurer and is restricting its coverage of residential properties.

  8. Design Basis Threat (DBT) Approach for the First NPP Security System in Indonesia

    International Nuclear Information System (INIS)

    Ign Djoko Irianto

    2004-01-01

    Design Basis Threat (DBT) is one of the main factors to be taken into account in the design of physical protection system of nuclear facility. In accordance with IAEA's recommendations outlined in INFCIRC/225/Rev.4 (Corrected), DBT is defined as: attributes and characteristics of potential insider and/or external adversaries, who might attempt unauthorized removal of nuclear material or sabotage against the nuclear facilities. There are three types of adversary that must be considered in DBT, such as adversary who comes from the outside (external adversary), adversary who comes from the inside (internal adversary), and adversary who comes from outside and colludes with insiders. Current situation in Indonesia, where many bomb attacks occurred, requires serious attention on DBT in the physical protection design of NPP which is to be built in Indonesia. This paper is intended to describe the methodology on how to create and implement a Design Basis Threat in the design process of NPP physical protection in Indonesia. (author)

  9. Public perceptions and acceptance of induced earthquakes related to energy development

    International Nuclear Information System (INIS)

    McComas, Katherine A.; Lu, Hang; Keranen, Katie M.; Furtney, Maria A.; Song, Hwansuck

    2016-01-01

    Growing awareness of the potential for some energy-related activities to induce earthquakes has created a need to understand how the public evaluates the risks of induced earthquakes versus the benefits of energy development. To address this need, this study presents a web survey that used a between-subjects factorial experimental design to explore the views of 325 U.S. adults, who were asked about their experiences with earthquakes; risk perceptions related to different causes of earthquakes (e.g., natural versus induced); and acceptability of earthquakes depending on the benefits, beneficiaries, and decision making process. The results found that participants had more negative feelings toward induced versus naturally occurring earthquakes. Although they judged no earthquake as “acceptable,” participants rated induced earthquakes significantly less acceptable than naturally occurring ones. Attributing the benefits to the provision of renewable energy or climate change mitigation did not increase induced earthquake acceptability, and no particular beneficiary made earthquakes more acceptable, although private companies as beneficiaries made earthquakes less acceptable. Finally, induced earthquake acceptability was significantly higher when people believed that people like them had a voice in the decision to implement the technology that caused the earthquake, underscoring the importance of public engagement in the development of energy technologies. - Highlights: • Human induced earthquakes were perceived as more negative than natural earthquakes. • Attributing benefits to renewable energy did not increase earthquake acceptability. • Acceptability was highest after a procedurally fair decision making process. • Acceptability was lowest following an expert-driven decision.

  10. Earthquake likelihood model testing

    Science.gov (United States)

    Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A.

    2007-01-01

    wide range of possible testing procedures exist. Jolliffe and Stephenson (2003) present different forecast verifications from atmospheric science, among them likelihood testing of probability forecasts and testing the occurrence of binary events. Testing binary events requires that for each forecasted event, the spatial, temporal and magnitude limits be given. Although major earthquakes can be considered binary events, the models within the RELM project express their forecasts on a spatial grid and in 0.1 magnitude units; thus the results are a distribution of rates over space and magnitude. These forecasts can be tested with likelihood tests.In general, likelihood tests assume a valid null hypothesis against which a given hypothesis is tested. The outcome is either a rejection of the null hypothesis in favor of the test hypothesis or a nonrejection, meaning the test hypothesis cannot outperform the null hypothesis at a given significance level. Within RELM, there is no accepted null hypothesis and thus the likelihood test needs to be expanded to allow comparable testing of equipollent hypotheses.To test models against one another, we require that forecasts are expressed in a standard format: the average rate of earthquake occurrence within pre-specified limits of hypocentral latitude, longitude, depth, magnitude, time period, and focal mechanisms. Focal mechanisms should either be described as the inclination of P-axis, declination of P-axis, and inclination of the T-axis, or as strike, dip, and rake angles. Schorlemmer and Gerstenberger (2007, this issue) designed classes of these parameters such that similar models will be tested against each other. These classes make the forecasts comparable between models. Additionally, we are limited to testing only what is precisely defined and consistently reported in earthquake catalogs. Therefore it is currently not possible to test such information as fault rupture length or area, asperity location, etc. Also, to account

  11. Development of methodology for the analysis of fuel behavior in light water reactor in design basis accidents

    International Nuclear Information System (INIS)

    Salatov, A. A.; Goncharov, A. A.; Eremenko, A. S.; Kuznetsov, V. I.; Bolnov, V. A.; Gusev, A. S.; Dolgov, A. B.; Ugryumov, A. V.

    2013-01-01

    The report attempts to analyze the current experience of the safety fuel for light-water reactors (LWRs) under design-basis accident conditions in terms of its compliance with international requirements for licensing nuclear power plants. The components of fuel behavior analysis methodology in design basis accidents in LWRs were considered, such as classification of design basis accidents, phenomenology of fuel behavior in design basis accidents, system of fuel safety criteria and their experimental support, applicability of used computer codes and input data for computational analysis of the fuel behavior in accidents, way of accounting for the uncertainty of calculation models and the input data. A brief history of the development of probabilistic safety analysis methodology for nuclear power plants abroad is considered. The examples of a conservative approach to safety analysis of VVER fuel and probabilistic approach to safety analysis of fuel TVS-K are performed. Actual problems in development of the methodology of analyzing the behavior of VVER fuel at the design basis accident conditions consist, according to the authors opinion, in following: 1) Development of a common methodology for analyzing the behavior of VVER fuel in the design basis accidents, implementing a realistic approach to the analysis of uncertainty - in the future it is necessary for the licensing of operating VVER fuel abroad; 2) Experimental and analytical support to the methodology: experimental studies to identify and study the characteristics of the key uncertainties of computational models of fuel and the cladding, development of computational models of key events in codes, validation code on the basis of integral experiments

  12. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  13. OMG Earthquake! Can Twitter improve earthquake response?

    Science.gov (United States)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  14. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    International Nuclear Information System (INIS)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-01-01

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered

  15. Earthquake Early Warning Systems

    OpenAIRE

    Pei-Yang Lin

    2011-01-01

    Because of Taiwan’s unique geographical environment, earthquake disasters occur frequently in Taiwan. The Central Weather Bureau collated earthquake data from between 1901 and 2006 (Central Weather Bureau, 2007) and found that 97 earthquakes had occurred, of which, 52 resulted in casualties. The 921 Chichi Earthquake had the most profound impact. Because earthquakes have instant destructive power and current scientific technologies cannot provide precise early warnings in advance, earthquake ...

  16. Spectral characteristics of the P codas of eurasian earthquakes and explosions

    International Nuclear Information System (INIS)

    Evernden, J.F.

    1977-01-01

    Spectral analysis of ''infinite velocity sum'' subarray beams at LASA for the P codas of 36 explosions and 23 earthquakes indicates the presence of 6 to 9 Hz energy well above noise level for large explosions and earthquakes. A discriminant (D), based on use of the full spectral bandwidth from 0.4 to 9 Hz, successfully discriminates all Eurasian explosions and shallow-focus earthquakes. The basic character and contrast in spectral composition of the source spectra of earthquakes and explosions is discussed. It is pointed out that the discriminant (D), when use is made of signals recorded in the range 60 0 to 90 0 , is as or more successful in discriminating events of near m/sub b/ 4.0 as those at and above m/sub b/ 6.0, and the basis for this success is clarified. It is suggested that proper use of P coda spectral discriminants appears capable of achieving identification essentially at the detection threshold of a network, while circumventing such problems as refined depths of focus, mixed events, etc

  17. U.S. Geological Survey (USGS) Earthquake Web Applications

    Science.gov (United States)

    Fee, J.; Martinez, E.

    2015-12-01

    USGS Earthquake web applications provide access to earthquake information from USGS and other Advanced National Seismic System (ANSS) contributors. One of the primary goals of these applications is to provide a consistent experience for accessing both near-real time information as soon as it is available and historic information after it is thoroughly reviewed. Millions of people use these applications every month including people who feel an earthquake, emergency responders looking for the latest information about a recent event, and scientists researching historic earthquakes and their effects. Information from multiple catalogs and contributors is combined by the ANSS Comprehensive Catalog into one composite catalog, identifying the most preferred information from any source for each event. A web service and near-real time feeds provide access to all contributed data, and are used by a number of users and software packages. The Latest Earthquakes application displays summaries of many events, either near-real time feeds or custom searches, and the Event Page application shows detailed information for each event. Because all data is accessed through the web service, it can also be downloaded by users. The applications are maintained as open source projects on github, and use mobile-first and responsive-web-design approaches to work well on both mobile devices and desktop computers. http://earthquake.usgs.gov/earthquakes/map/

  18. INTEGRATED FRAMEWORK FOR ENHANCING EARTHQUAKE RISK MITIGATION DECISIONS

    Directory of Open Access Journals (Sweden)

    Temitope Egbelakin

    2015-12-01

    Full Text Available The increasing scale of losses from earthquake disasters has reinforced the need for property owners to become proactive in seismic risk reduction programs. However, despite advancement in seismic design methods and legislative frameworks, building owners are found unwilling or lack motivation to adopt adequate mitigation measures that will reduce their vulnerability to earthquake disasters. Various theories and empirical findings have been used to explain the adoption of protective behaviours including seismic mitigation decisions, but their application has been inadequate to enhance building owners’ protective decisions. A holistic framework that incorporates the motivational orientations of decision-making, coupled with the social, cultural, economic, regulatory, institutional and political realms of earthquake risk mitigation to enhance building owners’ decisions to voluntarily implement adequate mitigation measures, is proposed. This framework attempts to address any multi-disciplinary barriers that exist in earthquake disaster management, by ensuring that stakeholders involved in seismic mitigation decisions work together to foster seismic rehabilitation of EPBs, as well as illuminate strategies that will initiate, promote and sustain the adoption of long-term earthquake mitigation. .

  19. Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.

    Directory of Open Access Journals (Sweden)

    Xiaonan Wu

    Full Text Available When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.

  20. Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.

    Science.gov (United States)

    Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao

    2015-01-01

    When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.

  1. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  2. Anomalous variation in GPS based TEC measurements prior to the 30 September 2009 Sumatra Earthquake

    Science.gov (United States)

    Karia, Sheetal; Pathak, Kamlesh

    This paper investigates the features of pre-earthquake ionospheric anomalies in the total elec-tron content (TEC) data obtained on the basis of regular GPS observations from the GPS receiver at SVNIT Surat (21.16 N, 72.78 E Geog) located at the northern crest of equatorial anomaly region. The data has been analysed for 5 different earthquakes that occurred during 2009 in India and its neighbouring regions. Our observation shows that for the cases of the earthquake, in which the preparation area lies between the crests of the equatorial anomaly close to the geomagnetic equator the enhancement in TEC was followed by a depletion in TEC on the day of earthquake, which may be connected to the equatorial anomaly shape distortions. For the analysis of the ionospheric effects of one of such case-the 30 September 2009 Sumatra earthquake, Global Ionospheric Maps of TEC were used. The possible influence of the earth-quake preparation processes on the main low-latitude ionosphere peculiarity—the equatorial anomaly—is discussed.

  3. Probability based load factors for design of concrete containment structures

    International Nuclear Information System (INIS)

    Hwang, H.; Kagami, S.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1985-01-01

    This paper describes a procedure for developing probability-based load combinations for the design of concrete containments. The proposed criteria are in a load and resistance factor design (LRFD) format. The load factors and resistance factors are derived for use in limit states design and are based on a target limit state probability. In this paper, the load factors for accident pressure and safe shutdown earthquake are derived for three target limit state probabilities. Other load factors are recommended on the basis of prior experience with probability-based design criteria for ordinary building construction. 6 refs

  4. Using remote sensing to predict earthquake impacts

    Science.gov (United States)

    Fylaktos, Asimakis; Yfantidou, Anastasia

    2017-09-01

    Natural hazards like earthquakes can result to enormous property damage, and human casualties in mountainous areas. Italy has always been exposed to numerous earthquakes, mostly concentrated in central and southern regions. Last year, two seismic events near Norcia (central Italy) have occurred, which led to substantial loss of life and extensive damage to properties, infrastructure and cultural heritage. This research utilizes remote sensing products and GIS software, to provide a database of information. We used both SAR images of Sentinel 1A and optical imagery of Landsat 8 to examine the differences of topography with the aid of the multi temporal monitoring technique. This technique suits for the observation of any surface deformation. This database is a cluster of information regarding the consequences of the earthquakes in groups, such as property and infrastructure damage, regional rifts, cultivation loss, landslides and surface deformations amongst others, all mapped on GIS software. Relevant organizations can implement these data in order to calculate the financial impact of these types of earthquakes. In the future, we can enrich this database including more regions and enhance the variety of its applications. For instance, we could predict the future impacts of any type of earthquake in several areas, and design a preliminarily model of emergency for immediate evacuation and quick recovery response. It is important to know how the surface moves, in particular geographical regions like Italy, Cyprus and Greece, where earthquakes are so frequent. We are not able to predict earthquakes, but using data from this research, we may assess the damage that could be caused in the future.

  5. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  6. Earthquake history of the Republic of Ragusa (today Dubrovnik, Croatia) (Invited)

    Science.gov (United States)

    Albini, P.; Rovida, A.; Locati, M.

    2009-12-01

    Among the towns constellating the Dalmatian coast, Ragusa (today Dubrovnik, Croatia), stands out, both because of its location in the middle of the Eastern Adriatic coast and its long-lasting, independent history of a Modern Age town and its small coastal territory. An important intelligence crossroads, squeezed as it was in between powerful and influential neighbours, such as the Ottoman Empire and the Republic of Venice, in its history (1358-1808) the Republic of Ragusa did experience heavily damaging earthquakes. We narrate the story of these earthquakes, which were recorded in the historical documentation of the Republic (today stored at the State Archives of Dubrovnik - Drzavni arhiv u Dubrovniku) as well as in documents from officers of other Mediterranean countries and letters of individuals. Of special note is the 6 April 1667 earthquake, which inflicted a permanent scar on the Republic. The earthquake's direct effects and their consequences caused a serious financial crisis, so critical that it took over 50 years for Ragusa to recover. This large earthquake is reappraised on the basis of newly investigated sources, and effects of the damage within the city walls are detailed. A seismic history of Ragusa is finally proposed, supported by full-text coeval records.

  7. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    Science.gov (United States)

    Serata, S.

    2006-12-01

    basis to disclose an acting earthquake shear stress S at top of the tectonic plate is established at the depth of 600-800m (Window). This concept is supported by outcome of the Japanese government stress measurement made at the epicenter of the Kobe earthquake of 1995, where S is found to be less than 5 MPa. At the same time S at the earthquake active Ashio mining district was found to be 36 MPa (90 percent of maximum S) at Window. These findings led to formulation of a quantitative method proposed to monitor earthquake triggering potential in and around any growing earthquake stress nucleus along shallow active faults. For future earthquake time prediction, the Stressmeter can be applied first to survey general distribution of earthquake shear stress S along major active faults. A site with its shear stress greater than 30 MPa may be identified as a site of growing stress nucleus. A Stressmeter must be permanently buried at the site to monitor future stress growth toward a possible triggering by mathematical analysis of the stress excursion dynamics. This is made possible by the automatic stress measurement capability of the Stressmeter at a frequency up to 100 times per day. The significance of this approach is a possibility to save lives by time-prediction of a forthcoming major earthquake with accuracy in hours and minutes.

  8. Observations on some current issues pertaining to nuclear power plant seismic design

    International Nuclear Information System (INIS)

    Hall, W.J.

    1982-01-01

    In this paper the author addresses some of those areas in which it is believed major research and development should be undertaken in the years immediately ahead if significant advances in earthquake engineering especially applicable to nuclear power plant design are to be achieved. From the standpoint of excitation (loading) the paper dwells extensively on concepts of so-called effective acceleration, with some comments also given on response spectra and modifications thereto. In the areas of resistance of structures attention is devoted to the topics of damping, ductility (energy absorption), and associated margins of strength to resist overloading. The need for developing comprehensive field measurement programs of ground and structural response throughout the world is cited. Future progress in earthquake engineering hinges in large part on developing a confirmatory basis for the technology, partly through continuing developments of analysis techniques and corresponding laboratory testing, but most importantly field observations in actual earthquakes which can be interpreted rationally to lend verification and support to the theoretical and design bases. Finally, the important topic of equipment seismic resistance is singled out for attention. (orig.)

  9. Identified EM Earthquake Precursors

    Science.gov (United States)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  10. Measures taken in the member countries of the European Communities for anti-seismic design compared to actual US practice

    International Nuclear Information System (INIS)

    Vinck, W.; Maurer, H.A.

    1977-01-01

    Most countries of the European Communities base their anti-seismic design parameters on specific US earthquake characteristics. There are, however, important discrepancies in the basic data reported on the two continents as well as in their design application. This was one of the topics under discussion within an European working group on methodologies, criteria and standards in nuclear safety. Unlike US practice, in some European countries the maximum earthquake that can be envisaged (corresponding to the Safe Shutdown Earthquake-SEE-in US practice) is defined by adding a margin of safety to the maximum probable earthquake (corresponding to the Operating Basis Earthquake-OBE-in US for which statistical data exist). - Differences exist also in the design parameters to be taken into account in the different European countries especially in the evaluation of the maximum acceleration and on the relationship of the acceleration vs. earthquake intensity. For design purposes, in US as well as in European countries, the assumption is made that seismic waves basically approximate a sustained simple harmonic motion. Under this assumption the Neumann correlation which gives the relationship between the modified Mercalli intensity, the wave period and the ground acceleration is applied. While in the US a whole spectrum of wave periods (from 0.33 to 6.0 sec) -in function of the type of foundation (soil, bed-rock) and the distance of the epicenter- are considered, the European countries base their investigations on shorter wave periods (approximately 0.3 sec). - Mention is made of the existing differences in the relationship of horizontal to vertical acceleration levels. These differences in the evaluation of the earthquake characteristics influence the design to protect the power plants against seismic effects especially as far as stress and strain limits for structures and components within the elastic range and in the excess of yield are concerned

  11. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    Science.gov (United States)

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  12. An earthquake scenario for the microzonation of Sofia and the vulnerability of structures designed according to the Eurocodes

    International Nuclear Information System (INIS)

    Paskaleva, I.; Dimova, S.; Panza, G.F.; Vaccari, F.

    2005-09-01

    The study of site effects and the microzonation of a part of the metropolitan Sofia, based on the modelling of seismic ground motion along three cross sections are performed. Realistic synthetic strong motion waveforms are computed for scenario earthquakes (M=7) applying a hybrid modelling method, based on the modal summation technique and finite differences scheme. The synthesized ground motion time histories are source and site specific. The site amplification is determined in terms of response spectra ratio (RSR). A suite of time histories and quantities of earthquake engineering interest are provided. The results of this study constitute a database that describes the ground shaking of the urban area. A case study of experiment-based assessment of vulnerability of a cast-in-situ single storey, industrial, reinforced concrete frame, designed according to Eurocodes 2 and 8 is presented. The main characteristics of damage index and story drift are discussed for the purposes of microzonation. (author)

  13. Earthquake forecasting and warning

    Energy Technology Data Exchange (ETDEWEB)

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  14. Safety (management and technology). Reality of anti-earthquake measures in chemical plants; Anzen (manejimento to tekunoroji). Kagaku kojo no jishin taisaku no jissai

    Energy Technology Data Exchange (ETDEWEB)

    Wataya, I. [Asahi Chemical Industry Co. Ltd., Osaka (Japan)

    1994-08-05

    In Japan where there have been occurring many earthquakes, anti-earthquake measures is one of important things that corporations should take as risk management. In particular, in the chemical industry where a large amount of combustible materials, toxic materials and high-pressure gases are used which has high potential hazard, it is its social responsibility to prevent leakage, fires and explosions of those materials due to earthquakes, and to take in advance measures for minimizing damages if they happen. This paper introduces, as actual anti-earthquake measures, mainly the anti-earthquake measures for facilities and equipment and the plans of prevention of disasters by earthquake of the Kawasaki Plant of Asahi Kasei Co., Ltd. The points in anti-earthquake design are to determine design idea and anti-earthquake design standards based on the investigations into the locational conditions of plants, the evaluation of plant safety and estimation of damage at the time of earthquake; and to adopt a fail safe mechanism for operating a plant on the safe side in the event of earthquake in its design. 2 refs., 1 fig.

  15. Overview of power plant and industrial facility performance in earthquakes in 1985 through 1987

    International Nuclear Information System (INIS)

    Horstman, N.G.; Yanev, P.I.; McCormick, D.L.

    1987-01-01

    This paper briefly documents the performance of power and industrial facilities during five destructive earthquakes in 1985 and 1986. These earthquakes represent varying levels of intensity, duration, frequency content, epicentral distance and construction practice. All of the earthquakes reinforce the findings of earlier earthquake investigations. Damage to equipment in power and industrial facilities is rare, as long as the equipment is adequately anchored. The ceramic components of switchyard equipment and the actuation of electro-mechanical relays remain concerns in the design of facilities which must remain operational during and following strong motion earthquakes. (orig.)

  16. Explanation of earthquake response spectra

    OpenAIRE

    Douglas, John

    2017-01-01

    This is a set of five slides explaining how earthquake response spectra are derived from strong-motion records and simple models of structures and their purpose within seismic design and assessment. It dates from about 2002 and I have used it in various introductory lectures on engineering seismology.

  17. Preliminary findings and lessons learned from the 16 July 2007 earthquake at Kashiwazaki-Kariwa NPP - 'The Niigataken Chuetsu-Oki earthquake', Kashiwazaki-Kariwa NPP and Tokyo, Japan, 6-10 August 2007. Mission report. V. 2

    International Nuclear Information System (INIS)

    2007-01-01

    Upon request from the Government of Japan an IAEA expert mission was conducted at the Kashiwazaki-Kariwa NPP following a strong earthquake that affected the plant on 16 July 2007. Thus, the mission complemented the ongoing safety evaluations of the incident as they are currently being performed by Japan's Nuclear and Industrial Safety Agency, Japan's Nuclear Safety Commission and the plant operator, the Tokyo Electric Power Company. The scope of the mission was limited to three subject areas: Area 1: Seismic design basis - design basis ground motions Preliminary investigations of the actual earthquake and its ground motions and comparison with the design basis ground motions for the plant seismic design. Area 2: Plant behaviour - structures, systems and components Observation of the damage that occurred as a consequence of the earthquake of 16 July 2007 to the seven units at Kashiwazaki-Kariwa nuclear power plant site on the basis of the information gathered and made available by TEPCO and by performing limited but representative plant walkdowns. Area 3: Operational safety management Preliminary investigations of the operational safety management response and releases of radioactive material during and after the earthquake, on the basis of the examination of documents and of discussions with TEPCO. The mission report is composed of two volumes, Volume I and Volume II. This Volume II contains all supporting documentation and information collected during the mission and provided by the counterpart to the IAEA Expert Team. It is arranged in a way that it will be relatively easy for the reader to find the necessary information. There is a significant amount of information contained in Volume II that has come from different sources and that has been gathered for different purposes. The information has been compiled under headings that indicate its origin and purpose as well as their relationship to the observations and topics discussed in Volume I. First, a few

  18. Tohoku's earthquake of Friday March 11, 2011 (5:46 UT), magnitude 9.0, off Honshu island (Japan); Seisme de Tohoku au large de l'Ile d'Honshu (Japon) du vendredi 11 mars 2011 (5h46 TU) Magnitude = 9,0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    On Friday March 11, 2011, at 5:46 UT (2:46 PM local time), a magnitude 9.0 earthquake took place at 80 km east of Honshu island (Japan). The earthquake generated a tsunami which led to the loss of the cooling systems of the Fukushima Dai-ichi and Fukushima Daini power plants. This paper describes the seismo-tectonic and historical seismic context of the Japan archipelago and the first analyses of the Tohoku earthquake impact: magnitudes of first shock and of aftershocks, impact on nuclear facilities (maximum acceleration values detected with respect to design basis values, subsidence of coastal areas and submersion of power plant platforms). (J.S.)

  19. The "Tsunami Earthquake" of 13 April 1923 in Northern Kamchatka: Seismological and Hydrodynamic Investigations

    Science.gov (United States)

    Salaree, Amir; Okal, Emile A.

    2018-04-01

    We present a seismological and hydrodynamic investigation of the earthquake of 13 April 1923 at Ust'-Kamchatsk, Northern Kamchatka, which generated a more powerful and damaging tsunami than the larger event of 03 February 1923, thus qualifying as a so-called "tsunami earthquake". On the basis of modern relocations, we suggest that it took place outside the fault area of the mainshock, across the oblique Pacific-North America plate boundary, a model confirmed by a limited dataset of mantle waves, which also confirms the slow nature of the source, characteristic of tsunami earthquakes. However, numerical simulations for a number of legitimate seismic models fail to reproduce the sharply peaked distribution of tsunami wave amplitudes reported in the literature. By contrast, we can reproduce the distribution of reported wave amplitudes using an underwater landslide as a source of the tsunami, itself triggered by the earthquake inside the Kamchatskiy Bight.

  20. Earthquake: Game-based learning for 21st century STEM education

    Science.gov (United States)

    Perkins, Abigail Christine

    To play is to learn. A lack of empirical research within game-based learning literature, however, has hindered educational stakeholders to make informed decisions about game-based learning for 21st century STEM education. In this study, I modified a research and development (R&D) process to create a collaborative-competitive educational board game illuminating elements of earthquake engineering. I oriented instruction- and game-design principles around 21st century science education to adapt the R&D process to develop the educational game, Earthquake. As part of the R&D, I evaluated Earthquake for empirical evidence to support the claim that game-play results in student gains in critical thinking, scientific argumentation, metacognitive abilities, and earthquake engineering content knowledge. I developed Earthquake with the aid of eight focus groups with varying levels of expertise in science education research, teaching, administration, and game-design. After developing a functional prototype, I pilot-tested Earthquake with teacher-participants (n=14) who engaged in semi-structured interviews after their game-play. I analyzed teacher interviews with constant comparison methodology. I used teachers' comments and feedback from content knowledge experts to integrate game modifications, implementing results to improve Earthquake. I added player roles, simplified phrasing on cards, and produced an introductory video. I then administered the modified Earthquake game to two groups of high school student-participants (n = 6), who played twice. To seek evidence documenting support for my knowledge claim, I analyzed videotapes of students' game-play using a game-based learning checklist. My assessment of learning gains revealed increases in all categories of students' performance: critical thinking, metacognition, scientific argumentation, and earthquake engineering content knowledge acquisition. Players in both student-groups improved mostly in critical thinking, having

  1. Quantitative prediction of strong motion for a potential earthquake fault

    Directory of Open Access Journals (Sweden)

    Shamita Das

    2010-02-01

    Full Text Available This paper describes a new method for calculating strong motion records for a given seismic region on the basis of the laws of physics using information on the tectonics and physical properties of the earthquake fault. Our method is based on a earthquake model, called a «barrier model», which is characterized by five source parameters: fault length, width, maximum slip, rupture velocity, and barrier interval. The first three parameters may be constrained from plate tectonics, and the fourth parameter is roughly a constant. The most important parameter controlling the earthquake strong motion is the last parameter, «barrier interval». There are three methods to estimate the barrier interval for a given seismic region: 1 surface measurement of slip across fault breaks, 2 model fitting with observed near and far-field seismograms, and 3 scaling law data for small earthquakes in the region. The barrier intervals were estimated for a dozen earthquakes and four seismic regions by the above three methods. Our preliminary results for California suggest that the barrier interval may be determined if the maximum slip is given. The relation between the barrier interval and maximum slip varies from one seismic region to another. For example, the interval appears to be unusually long for Kilauea, Hawaii, which may explain why only scattered evidence of strong ground shaking was observed in the epicentral area of the Island of Hawaii earthquake of November 29, 1975. The stress drop associated with an individual fault segment estimated from the barrier interval and maximum slip lies between 100 and 1000 bars. These values are about one order of magnitude greater than those estimated earlier by the use of crack models without barriers. Thus, the barrier model can resolve, at least partially, the well known discrepancy between the stress-drops measured in the laboratory and those estimated for earthquakes.

  2. The EPR-a comprehensive design concept against external events

    International Nuclear Information System (INIS)

    Waas, U.; Stoll, U.

    2005-01-01

    The main objective of design provisions against external hazards is to ensure that the safety functions required to bring the plant to safe shutdown are not inadmissible affected. In the design of the EPR particular attention was paid to the following external hazards: Earthquake, Airplane crash, Explosion pressure wave. The design concept for these events is discussed below. The standard EPR covers a large range of possible site conditions, the design earthquake enveloping safe shutdown earthquakes (SSE) to be expected for potential sites. The Basic Design was developed for the seismic loads given in the European Utility Requirements with a horizontal free field Peak Ground Acceleration (PGA) for all site conditions of 0.25 g. The seismic protection is based on a deterministic design approach, with the intention of ensuring the safety functions in case of SSE. The loads for the design basis airplane crash and - if required - for the design extension airplane crash are defined depending on site specific requirements. For the design basis airplane crash as defined in Finland the safety goals are fulfilled for postulated single failure and preventive maintenance as well as for specific unlikely scenarios with local impacts where one redundant train is assumed to be lost. For the design extension airplane crash no single failure and preventive maintenance are assumed. Reactor building (RB), fuel building (FB), safeguard building (SB) 2 and 3 are protected by design against airplane crash. The common base mat of the RB, FB and SBs ensures global stability. To avoid penetration the wall thickness of the outer building structures of RB, FB and SB2/3 is set at 1.80 m (result of an optimization process). To rule out major induced vibrations due to airplane crash the inner building structures are decoupled from the outer walls. The SB 1 and SB4, the main steam and feedwater valve compartments, the diesel buildings and the service water pump buildings are protected against

  3. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  4. Generation of artificial earthquakes for dynamic analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Tsushima, Y.; Hiromatsu, T.; Abe, Y.; Tamaki, T.

    1979-01-01

    A procedure for generating artificial earthquakes for the purpose of the dynamic analysis of the nuclear power plant has been studied and relevant computer codes developed. This paper describes brieafly the generation procedure employed in the computer codes and also deals with the results of two artificial earthquakes generated as an example for input motions for the aseismic design of a BWR-type reactor building. Using one of the generated artificial earthquakes and two actually recorded earthquakes, non-linear responses of the reactor building were computed and the results were compared with each other. From this comparison, it has been concluded that the computer codes are practically usable and the generated artificial earthquakes are useful and powerful as input motions for dynamic analysis of a nuclear power plant. (author)

  5. Results of the investigation on validity of Japanese seismic design guidelines of nuclear facilities, based on the 1995 Hyogoken-Nanbu Earthquake

    International Nuclear Information System (INIS)

    Watabe, Makoto

    1997-01-01

    This paper describes the reviewed results and main discussions on some items thought to be problems in the 'Examination Guide for Aseismatic Design of the Nuclear Power Reactor Facilities' of Japan, based on knowledge from the 1995 Hyogoken-Nanbu Earthquake, and the conclusion that validity of the Guideline was confirmed. (J.P.N.)

  6. Results of the investigation on validity of Japanese seismic design guidelines of nuclear facilities, based on the 1995 Hyogoken-Nanbu Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Makoto [Keio Univ., Fujisawa, Kanagawa (Japan). Fac. of Environment and Information Engineering

    1997-03-01

    This paper describes the reviewed results and main discussions on some items thought to be problems in the `Examination Guide for Aseismatic Design of the Nuclear Power Reactor Facilities` of Japan, based on knowledge from the 1995 Hyogoken-Nanbu Earthquake, and the conclusion that validity of the Guideline was confirmed. (J.P.N.)

  7. Guide to post-earthquake investigation of lifelines

    International Nuclear Information System (INIS)

    Schiff, A.J.

    1991-01-01

    This book contains proceedings of the Guide to Post-Earthquake Investigation of Life Lines. Topics covered include: the type of facilities and equipment that were damaged and a count of each type, information needed to advance the state-of-the-art of seismic design of facilities and equipment, failure modes and factors contributing to them, the impacts of failures on system operations and the resources and time required to restore facilities, information on the response of the overall system, facilities and equipment to past earthquakes should be known

  8. Rocking motion of structures under earthquakes. Overturning of 2-DOF system

    International Nuclear Information System (INIS)

    Kobayashi, Koichi; Watanabe, Tetsuya; Tanaka, Kihachiro; Tomoda, Akinori

    2011-01-01

    In recent years, huge earthquakes happen, for example, The South Hyogo prefecture Earthquake in 1995, The Mid Niigata Prefecture Earthquake in 2004, The Iwate-Miyagi Nairiku Earthquake in 2008. In The Niigataken Chuetsu-oki Earthquake in 2007, hundreds of drums fell down and water spilled out. A lot of studies about rocking behavior of rigid body had been performed from 1960's. However, these studies were only for a specific condition of the structure size or input vibration characteristics. Therefore, generalizes fall condition for earthquake is required. This paper deals with the analytical and the experimental study of the rocking vibration of 1-DOF rocking system, 2-DOF vibration-rocking system and 2-DOF rocking system under earthquakes. In this study, the equation of motion for each rocking systems are developed. The numerical model of 2-DOF rocking system is evaluated by free rocking experiment. In this paper, 'Overturning Map' which can distinguish whether structures falls or not is proposed. The overturning map of each rocking systems excited by the artificial earthquake wave calculated from the design spectrum is shown. As the result, overturning condition of structures is clarified. (author)

  9. Refer to AP1000 for discussing the betterment of seismic design of internal nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbang; Zhang Renyan

    2014-01-01

    As a reference technique of AP1000, This paper discussed the betterment of seismic design of nuclear power plant in three ways. (1) Establish design criteria and guidelines for protection from seismic interaction; (2) Nuclear power plant seismic design of eliminating or weaken operation-basis earthquake; (3) Develop the seismic margin analysis (SMA) of the nuclear power plant. These three aspect are frontier technology in internal seismic design of internal nuclear power plant, and also these three technology are related intimately. (authors)

  10. A new way of telling earthquake stories: MOBEE - the MOBile Earthquake Exhibition

    Science.gov (United States)

    Tataru, Dragos; Toma-Danila, Dragos; Nastase, Eduard

    2016-04-01

    In the last decades, the demand and acknowledged importance of science outreach, in general and geophysics in particular, has grown, as demonstrated by many international and national projects and other activities performed by research institutes. The National Institute for Earth Physics (NIEP) from Romania is the leading national institution on earthquake monitoring and research, having at the same time a declared focus on informing and educating a wide audience about geosciences and especially seismology. This is more than welcome, since Romania is a very active country from a seismological point of view, but not too reactive when it comes to diminishing the possible effect of a major earthquake. Over the last few decades, the country has experienced several major earthquakes which have claimed thousands of lives and millions in property damage (1940; 1977; 1986 and 1990 Vrancea earthquakes). In this context, during a partnership started in 2014 together with the National Art University and Siveco IT company, a group of researchers from NIEP initiated the MOBile Earthquake Exhibition (MOBEE) project. The main goal was to design a portable museum to bring on the road educational activities focused on seismology, seismic hazard and Earth science. The exhibition is mainly focused on school students of all ages as it explains the main topics of geophysics through a unique combination of posters, digital animations and apps, large markets and exciting hand-on experiments, 3D printed models and posters. This project is singular in Romania and aims to transmit properly reviewed actual information, regarding the definition of earthquakes, the way natural hazards can affect people, buildings and the environment and the measures to be taken for prevent an aftermath. Many of the presented concepts can be used by teachers as a complementary way of demonstrating physics facts and concepts and explaining processes that shape the dynamic Earth features. It also involves

  11. Analysis of regulatory requirement for beyond design basis events of SMART

    International Nuclear Information System (INIS)

    Kim, W. S.; Seol, K. W.

    2000-01-01

    To enhance the safety of SMART reactor, safety and regulatory requirements associated with beyond design basis events (beyond BDE), which were developed and applied to advanced light water reactor designs, were analyzed along with a design status of passive reactor. And, based on these requirements, their applicability on the SMART design was evaluated. In the design aspect, severe accident prevention and mitigation features, containment performance, and accident management were analyzed. The evaluation results show that the requirement related to beyond DBE such as ATWS, loss of residual heat removal during shutdown operation, station blackout, fire, inter-system LOCA, and well-known events from severe accident phenomena is applicable to the SMART design. However, comprehensive approach against beyond DBE is not yet provided in the SMART design, and then it is required to designate and analyze the beyond DBE-related features. This study is expected to contribute to efforts to improve plant safety and to establish regulatory requirements for safety review

  12. Safety Aspects of Sustainable Storage Dams and Earthquake Safety of Existing Dams

    Directory of Open Access Journals (Sweden)

    Martin Wieland

    2016-09-01

    Full Text Available The basic element in any sustainable dam project is safety, which includes the following safety elements: ① structural safety, ② dam safety monitoring, ③ operational safety and maintenance, and ④ emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. However, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be carried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that dam safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.

  13. Design basis event consequence analyses for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Orvis, D.D.; Haas, M.N.; Martin, J.H.

    1997-01-01

    Design basis event (DBE) definition and analysis is an ongoing and integrated activity among the design and analysis groups of the Yucca Mountain Project (YMP). DBE's are those that potentially lead to breach of the waste package and waste form (e.g., spent fuel rods) with consequent release of radionuclides to the environment. A Preliminary Hazards Analysis (PHA) provided a systematic screening of external and internal events that were candidate DBE's that will be subjected to analyses for radiological consequences. As preparation, pilot consequence analyses for the repository subsurface and surface facilities have been performed to define the methodology, data requirements, and applicable regulatory limits

  14. Archaeological data as a basis for repository marker design

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1982-10-01

    This report concerns the development of a marking system for a nuclear waste repository which is very likely to survive for 10,000 years. In order to provide a background on the subject, and for the preliminary design presented in this report, a discussion is presented about the issues involved in human interference with the repository system and the communication of information. A separate chapter summarizes six ancient man-made monuments including: materials, effects of associated textual information on our understanding of the monument, and other features of the ancient monument relevant to marking a repository site. The information presented in the two chapters is used to provide the basis and rationale for a preliminary marker system design presented in a final chapter. 86 refs., 22 figs., 1 tab

  15. Archaeological data as a basis for repository marker design

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, M.F.

    1982-10-01

    This report concerns the development of a marking system for a nuclear waste repository which is very likely to survive for 10,000 years. In order to provide a background on the subject, and for the preliminary design presented in this report, a discussion is presented about the issues involved in human interference with the repository system and the communication of information. A separate chapter summarizes six ancient man-made monuments including: materials, effects of associated textual information on our understanding of the monument, and other features of the ancient monument relevant to marking a repository site. The information presented in the two chapters is used to provide the basis and rationale for a preliminary marker system design presented in a final chapter. 86 refs., 22 figs., 1 tab.

  16. Earthquake response analyses of soil-structure system considering kinematic interaction

    International Nuclear Information System (INIS)

    Murakami, H.; Yokono, K.; Miura, S.; Ishii, K.

    1985-01-01

    Improvement of soil-structure interaction analysis has been one of major concerns in earthquake engineering field, especially in nuclear industries, to evaluate the safety of structure accurately under earthquake events. This research aims to develop a rational analytical tool which considers effect of the 'kinematic interaction' satisfactory with a proposed simple low-pass filter. In this paper, first the effect of the kinematic interaction is investigated based on earthquake response analysis of a reactor building using the practical design models: the spring-mass-dashpot system and the 'lattice model', in which a building and soil medium are modeled by a system of lumped masses. Next, the filter is developed based on parametrical studies with various sizes of depth and width of foundations embedded in two-layers soil, which represents more general soil condition in practical designs compared with a homogeneous soil medium. (orig.)

  17. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  18. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  19. Environmentally Friendly Solution to Ground Hazards in Design of Bridges in Earthquake Prone Areas Using Timber Piles

    Science.gov (United States)

    Sadeghi, H.

    2015-12-01

    Bridges are major elements of infrastructure in all societies. Their safety and continued serviceability guaranties the transportation and emergency access in urban and rural areas. However, these important structures are subject to earthquake induced damages in structure and foundations. The basic approach to the proper support of foundations are a) distribution of imposed loads to foundation in a way they can resist those loads without excessive settlement and failure; b) modification of foundation ground with various available methods; and c) combination of "a" and "b". The engineers has to face the task of designing the foundations meeting all safely and serviceability criteria but sometimes when there are numerous environmental and financial constrains, the use of some traditional methods become inevitable. This paper explains the application of timber piles to improve ground resistance to liquefaction and to secure the abutments of short to medium length bridges in an earthquake/liquefaction prone area in Bohol Island, Philippines. The limitations of using the common ground improvement methods (i.e., injection, dynamic compaction) because of either environmental or financial concerns along with the abundance of timber in the area made the engineers to use a network of timber piles behind the backwalls of the bridge abutments. The suggested timber pile network is simulated by numerical methods and its safety is examined. The results show that the compaction caused by driving of the piles and bearing capacity provided by timbers reduce the settlement and lateral movements due to service and earthquake induced loads.

  20. Design and application of the emergency response mobile phone-based information system for infectious disease reporting in the Wenchuan earthquake zone.

    Science.gov (United States)

    Ma, Jiaqi; Zhou, Maigeng; Li, Yanfei; Guo, Yan; Su, Xuemei; Qi, Xiaopeng; Ge, Hui

    2009-05-01

    To describe the design and application of an emergency response mobile phone-based information system for infectious disease reporting. Software engineering and business modeling were used to design and develop the emergency response mobile phone-based information system for infectious disease reporting. Seven days after the initiation of the reporting system, the reporting rate in the earthquake zone reached the level of the same period in 2007, using the mobile phone-based information system. Surveillance of the weekly report on morbidity in the earthquake zone after the initiation of the mobile phone reporting system showed the same trend as the previous three years. The emergency response mobile phone-based information system for infectious disease reporting was an effective solution to transmit urgently needed reports and manage communicable disease surveillance information. This assured the consistency of disease surveillance and facilitated sensitive, accurate, and timely disease surveillance. It is an important backup for the internet-based direct reporting system for communicable disease. © 2009 Blackwell Publishing Asia Pty Ltd and Chinese Cochrane Center, West China Hospital of Sichuan University.

  1. A scoping evaluation of severe accidents at Surry and Grand Gulf Nuclear Power Plants resulting from earthquakes during shutdown conditions

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Davis, P.R.

    1991-01-01

    This report explores the likelihood of seismic-initiated core damage accidents during refueling shutdown conditions at two nuclear power plants, Surry Unit I and Grand Gulf Unit 1. The effort is scoping in character, and has been performed primarily to establish if a potential problem exists sufficient to justify a more rigorous and more quantitative evaluation. A summary is presented of the important conclusions that have been reached. The most important conclusion is that the core-damage frequencies for earthquake-initiated accidents during shutdown at both Surry Unit I and Grand Gulf Unit I are found to be low in absolute terms. The reasons for this are that in their ability to respond to earthquakes during shutdowns, the plants both have large seismic capacities, well above their design-basis levels; and also that both sites enjoy among the lowest seismic hazards of any LWR sites in the US

  2. Earthquakes, September-October 1986

    Science.gov (United States)

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  3. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  4. "Earthquake!"--A Cooperative Learning Experience.

    Science.gov (United States)

    Hodder, A. Peter W.

    2001-01-01

    Presents an exercise designed as a team building experience for managers that can be used to demonstrate to science students the potential benefit of group decision-making. Involves the ranking of options for surviving a large earthquake. Yields quantitative measures of individual student knowledge and how well the groups function. (Author/YDS)

  5. NDARC-NASA Design and Analysis of Rotorcraft Theoretical Basis and Architecture

    Science.gov (United States)

    Johnson, Wayne

    2010-01-01

    The theoretical basis and architecture of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are described. The principal tasks of NDARC are to design (or size) a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated. The aircraft attributes are obtained from the sum of the component attributes. NDARC provides a capability to model general rotorcraft configurations, and estimate the performance and attributes of advanced rotor concepts. The software has been implemented with low-fidelity models, typical of the conceptual design environment. Incorporation of higher-fidelity models will be possible, as the architecture of the code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis and optimization.

  6. Earthquake behavior at deep underground observed by three-dimensional array

    International Nuclear Information System (INIS)

    Komada, Hiroya; Sawada, Yoshihiro; Aoyama, Shigeo.

    1989-01-01

    The earthquake observation has been carried out using an eight point three-dimensional array between on-ground and the depth of about 400 m at Hosokura Mine in Miyagi prefecture, for the purpose of obtaining the basic datum on the characteristics of the seismic waves for the earthquake resistance design of the deep underground disposal facility of high level waste. The following results ware obtained. (1) The maximum accelerations at the underground are damped to about 60 % of those at on-ground horizontal and to about 70 % vertical. (2) Although the frequency characteristics of the seismic waves varies for each earthquake, the transfer characteristics of seismic waves from deep underground to on-ground is the same for each earthquake. (3) The horizontal dirrections of seismic wave incidence are similar to the directions from epicenters of each earthquake. The vertical directions of seismic wave incidence are in the range of about 3deg to 35deg from vertical line. (author)

  7. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    Science.gov (United States)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  8. Seismicity and earthquake risk in western Sicily

    Directory of Open Access Journals (Sweden)

    P. COSENTINO

    1978-06-01

    Full Text Available The seismicity and the earthquake risk in Western Sicily are here
    evaluated on the basis of the experimental data referring to the historical
    and instrumentally recorded earthquakes in this area (from 1248
    up to 1968, which have been thoroughly collected, analyzed, tested and
    normalized in order to assure the quasi-stationarity of the series of
    events.
    The approximated magnitude values — obtained by means of a compared
    analysis of the magnitude and epicentral intensity values of the
    latest events — have allowed to study the parameters of the frequency-
    magnitude relation with both the classical exponential model and
    the truncated exponential one previously proposed by the author.
    So, the basic parameters, including the maximum possible regional
    magnitude, have been estimated by means of different procedures, and
    their behaviours have been studied as functions of the threshold magnitude.

  9. Elastic energy release in great earthquakes and eruptions

    Directory of Open Access Journals (Sweden)

    Agust eGudmundsson

    2014-05-01

    Full Text Available The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released (transformed elastic energy. No similar measures exist for the sizes of volcanic eruptions, making it difficult to compare the energies released in earthquakes and eruptions. Here I provide a new measure of the elastic energy (the potential mechanical energy associated with magma chamber rupture and contraction (shrinkage during an eruption. For earthquakes and eruptions, elastic energy derives from two sources: (1 the strain energy stored in the volcano/fault zone before rupture, and (2 the external applied load (force, pressure, stress, displacement on the volcano/fault zone. From thermodynamic considerations it follows that the elastic energy released or transformed (dU during an eruption is directly proportional to the excess pressure (pe in the magma chamber at the time of rupture multiplied by the volume decrease (-dVc of the chamber, so that . This formula can be used as a basis for a new eruption magnitude scale, based on elastic energy released, which can be related to the moment-magnitude scale for earthquakes. For very large eruptions (>100 km3, the volume of the feeder-dike is negligible, so that the decrease in chamber volume during an eruption corresponds roughly to the associated volume of erupted materials , so that the elastic energy is . Using a typical excess pressures of 5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La Garita Caldera eruption (27-28 million years ago and largest single (effusive Colombia River basalt lava flows (15-16 million years ago, both of which have estimated volumes of about 5000 km3, released elastic energy of the order of 10EJ. For comparison, the seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake, is estimated at 100 ZJ and the associated elastic energy release at 10EJ.

  10. Study on effective prestressing effects on concrete containment under the design-basis pressure condition

    International Nuclear Information System (INIS)

    Sun Feng; Pan Rong; Wang Lu; Mao Huan; Yang Yu

    2013-01-01

    Prestressing technology is widely used in nuclear power plant containment building, and the durability of containment structure is affected directly by the distribution and loss of prestressing value under design-basis pressure. Containment structure and the distribution of prestressing system are introduced briefly. Furthermore, the calculating process of horizontal prestressing bunch loss near the equipment hatch hole is put forward in details, and the containment structure prestressing loss when 5-year pressure test is obtained. Based above analysis, the finite element model of the prestressed concrete containment structure is built by using ANSYS code, the prestressing effect on concrete containment is analysed. The results show that most of the design pressure is bore by the prestressing system under the design-basis pressure, so the containment structure is safe. These conclusions are consistent with prestressing containment system design concepts, which can provide reference to the engineering staff. (authors)

  11. Modeling of earthquake ground motion in the frequency domain

    Science.gov (United States)

    Thrainsson, Hjortur

    In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation

  12. Fractal analysis of the ULF geomagnetic data obtained at Izu Peninsula, Japan in relation to the nearby earthquake swarm of June–August 2000

    Directory of Open Access Journals (Sweden)

    K. Gotoh

    2003-01-01

    Full Text Available In our recent papers we applied fractal methods to extract the earthquake precursory signatures from scaling characteristics of the ULF geomagnetic data, obtained in a seismic active region of Guam Island during the large earthquake of 8 August 1993. We found specific dynamics of their fractal characteristics (spectral exponents and fractal dimensions before the earthquake: appearance of the flicker-noise signatures and increase of the time series fractal dimension. Here we analyze ULF geomagnetic data obtained in a seismic active region of Izu Peninsula, Japan during a swarm of the strong nearby earthquakes of June–August 2000 and compare the results obtained in both regions. We apply the same methodology of data processing using the FFT procedure, Higuchi method and Burlaga-Klein approach to calculate the spectral exponents and fractal dimensions of the ULF time series. We found the common features and specific peculiarities in the behavior of fractal characteristics of the ULF time series before Izu and Guam earthquakes. As a common feature, we obtained the same increase of the ULF time series fractal dimension before the earthquakes, and as specific peculiarity – this increase appears to be sharp for Izu earthquake in comparison with gradual increase of the ULF time series fractal dimension for Guam earthquake. The results obtained in both regions are discussed on the basis of the SOC (self-organized criticality concept taking into account the differences in the depths of the earthquake focuses. On the basis of the peculiarities revealed, we advance methodology for extraction of the earthquake precursory signatures. As an adjacent step, we suggest the combined analysis of the ULF time series in the parametric space polarization ratio – fractal dimension. We reason also upon the advantage of the multifractal approach with respect to the mono-fractal analysis for study of the earthquake preparation dynamics.

  13. Seismic safety reexaminations to NPPs in Taiwan. Lessons learned from 20061226 Taiwan Hengchun and 20070716 Japan Niigata-Chuetsu oki earthquakes

    International Nuclear Information System (INIS)

    Chow Ting; Wu Yuanchieh; Gau Yunchau

    2008-01-01

    On December 26 2006, a strong earthquake with a local magnitude M L of 7.0 hit the most southern part of Taiwan, Hengchun village, where the Maanshan Nuclear Power Station is located. This is a historic high earthquake ever been experienced to Taiwan's existing nuclear power units, and it raised high public concerns about the seismic safety of the nuclear power plants operation. More recently on July 16 2007, in Japan, where the earthquake focal mechanisms are very similar to those in Taiwan, all 7 nuclear power units in Kashiwazaki-Kariwa site were struck by a more devastating earthquake and as the result, the design earthquakes for all the nuclear units have been exceeded. Therefore, the assurance of good seismic design and the appropriateness of associated post-earthquake actions to the nuclear power units in Taiwan become very urgent topics. Based on the experiences learned from the above mentioned two earthquakes, this paper will focus on the seismic safety reexamination of Taiwan's existing nuclear power plants of the following aspects: (1) current US orientated seismic designs/regulations from earthquake probabilistic risk point of view, (2) earthquake shut-down criterion, especially the CAV parameter and its threshold value, and (3) current post earthquake actions. (author)

  14. Transient and accident analyses topical design basis documents

    International Nuclear Information System (INIS)

    Chi, Larry; Eckert, Eugene; Grim, Brit

    2004-01-01

    The designers and operators of nuclear power plants have extensively documented system functions, licensing performance, and operating procedures for all conditions. This paper presents a complementary, systematic approach for the documentation of all requirements that are based on the analysis of operational transients, abnormal transients, accidents, and other events which are included in the design and licensing basis for the plant. Up to now, application of the approach has focused on required mitigation actions (automatic or manual). All mitigation actions are directly identified with all applicable reactor events, as well as the plant-unique systems that work together to perform each function. The approach is also applicable to all operational functions. The approach makes extensive use of data base methods, thereby providing effective ways to interrogate the information for the varied users of this information. Examples of use include: evaluations of system design changes and equipment modifications, safety evaluations of any plant change (e.g., USNRC 10CFR50.59 review), plant operations (e.g., manual actions during unplanned events), system interactions, classification of safety-related equipment, environmental qualification of equipment, and mitigation requirements for different reactor operating states. This approach has been applied in customized ways to several boiling water reactor (BWR) units, based on the desires and needs of the specific utility. (author)

  15. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  16. The Global Earthquake Model and Disaster Risk Reduction

    Science.gov (United States)

    Smolka, A. J.

    2015-12-01

    Advanced, reliable and transparent tools and data to assess earthquake risk are inaccessible to most, especially in less developed regions of the world while few, if any, globally accepted standards currently allow a meaningful comparison of risk between places. The Global Earthquake Model (GEM) is a collaborative effort that aims to provide models, datasets and state-of-the-art tools for transparent assessment of earthquake hazard and risk. As part of this goal, GEM and its global network of collaborators have developed the OpenQuake engine (an open-source software for hazard and risk calculations), the OpenQuake platform (a web-based portal making GEM's resources and datasets freely available to all potential users), and a suite of tools to support modelers and other experts in the development of hazard, exposure and vulnerability models. These resources are being used extensively across the world in hazard and risk assessment, from individual practitioners to local and national institutions, and in regional projects to inform disaster risk reduction. Practical examples for how GEM is bridging the gap between science and disaster risk reduction are: - Several countries including Switzerland, Turkey, Italy, Ecuador, Papua-New Guinea and Taiwan (with more to follow) are computing national seismic hazard using the OpenQuake-engine. In some cases these results are used for the definition of actions in building codes. - Technical support, tools and data for the development of hazard, exposure, vulnerability and risk models for regional projects in South America and Sub-Saharan Africa. - Going beyond physical risk, GEM's scorecard approach evaluates local resilience by bringing together neighborhood/community leaders and the risk reduction community as a basis for designing risk reduction programs at various levels of geography. Actual case studies are Lalitpur in the Kathmandu Valley in Nepal and Quito/Ecuador. In agreement with GEM's collaborative approach, all

  17. Earthquake early warning system using real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R.R. Jr.; Dowla, F.U.

    1996-02-01

    An earthquake warning system has been developed to provide a time series profile from which vital parameters such as the time until strong shaking begins, the intensity of the shaking, and the duration of the shaking, can be derived. Interaction of different types of ground motion and changes in the elastic properties of geological media throughout the propagation path result in a highly nonlinear function. We use neural networks to model these nonlinearities and develop learning techniques for the analysis of temporal precursors occurring in the emerging earthquake seismic signal. The warning system is designed to analyze the first-arrival from the three components of an earthquake signal and instantaneously provide a profile of impending ground motion, in as little as 0.3 sec after first ground motion is felt at the sensors. For each new data sample, at a rate of 25 samples per second, the complete profile of the earthquake is updated. The profile consists of a magnitude-related estimate as well as an estimate of the envelope of the complete earthquake signal. The envelope provides estimates of damage parameters, such as time until peak ground acceleration (PGA) and duration. The neural network based system is trained using seismogram data from more than 400 earthquakes recorded in southern California. The system has been implemented in hardware using silicon accelerometers and a standard microprocessor. The proposed warning units can be used for site-specific applications, distributed networks, or to enhance existing distributed networks. By producing accurate, and informative warnings, the system has the potential to significantly minimize the hazards of catastrophic ground motion. Detailed system design and performance issues, including error measurement in a simple warning scenario are discussed in detail.

  18. USGS Tweet Earthquake Dispatch (@USGSted): Using Twitter for Earthquake Detection and Characterization

    Science.gov (United States)

    Liu, S. B.; Bouchard, B.; Bowden, D. C.; Guy, M.; Earle, P.

    2012-12-01

    The U.S. Geological Survey (USGS) is investigating how online social networking services like Twitter—a microblogging service for sending and reading public text-based messages of up to 140 characters—can augment USGS earthquake response products and the delivery of hazard information. The USGS Tweet Earthquake Dispatch (TED) system is using Twitter not only to broadcast seismically-verified earthquake alerts via the @USGSted and @USGSbigquakes Twitter accounts, but also to rapidly detect widely felt seismic events through a real-time detection system. The detector algorithm scans for significant increases in tweets containing the word "earthquake" or its equivalent in other languages and sends internal alerts with the detection time, tweet text, and the location of the city where most of the tweets originated. It has been running in real-time for 7 months and finds, on average, two or three felt events per day with a false detection rate of less than 10%. The detections have reasonable coverage of populated areas globally. The number of detections is small compared to the number of earthquakes detected seismically, and only a rough location and qualitative assessment of shaking can be determined based on Tweet data alone. However, the Twitter detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The main benefit of the tweet-based detections is speed, with most detections occurring between 19 seconds and 2 minutes from the origin time. This is considerably faster than seismic detections in poorly instrumented regions of the world. Going beyond the initial detection, the USGS is developing data mining techniques to continuously archive and analyze relevant tweets for additional details about the detected events. The information generated about an event is displayed on a web-based map designed using HTML5 for the mobile environment, which can be valuable when the user is not able to access a

  19. Earthquakes, November-December 1977

    Science.gov (United States)

    Person, W.J.

    1978-01-01

    Two major earthquakes occurred in the last 2 months of the year. A magnitude 7.0 earthquake struck San Juan Province, Argentina, on November 23, causing fatalities and damage. The second major earthquake was a magnitude 7.0 in the Bonin Islands region, an unpopulated area. On December 19, Iran experienced a destructive earthquake, which killed over 500.

  20. Follow-up IAEA mission in relation to the findings and lessons learned from the 16 July 2007 earthquake at Kashiwazaki-Kariwa NPP - 'The Niigataken Chuetsu-oki earthquake', Tokyo and Kashiwazaki-Kariwa NPP, Japan, 28 January - 1 February 2008. Mission report. V. 1

    International Nuclear Information System (INIS)

    2008-01-01

    On 16 July 2007, a strong earthquake, the Niigataken Chuetsu-oki earthquake, with a moment magnitude of 6.6 (M JMA =6.8 according to the Japanese Meteorological Agency), occurred at 10:13 h local time with its hypocentre below the seabed of the Jo-chuetsu area in Niigata prefecture (37 deg. 33' N, 138 deg. 37'E) in Japan, affecting the Kashiwazaki-Kariwa Nuclear Power Plant (NPP) located approximately 16 km south of its epicentre. Kashiwazaki-Kariwa NPP is the biggest nuclear power plant site in the world. It is located in the Niigata prefecture, in the northwest coast of Japan, and it is operated by Tokyo Electric Power Company (TEPCO). The site has seven units with a total of 7965 MW net installed capacity. Five reactors are of BWR type and two reactors are of ABWR type. The five BWR units entered commercial operation between 1985 and 1994 and the two ABWRs in 1996 and 1997, respectively. Following this event, the Government of Japan through the Nuclear and Industrial Safety Agency (NISA) requested the IAEA to carry out a fact finding mission with the main purpose of identifying the preliminary findings and lessons learned from this event in order to share them with the international nuclear community. This first mission took place from 6 - 10 August 2007 and the mission report of the August 2007 mission is available on the IAEA web page http://www.iaea.org. The purpose of the second IAEA mission was to conduct - six months after the event - a follow-up of the preliminary findings of the August 2007 mission on the basis of the results available in January 2008 of the related studies and investigations performed. In accordance with the terms of reference for the follow-up mission and the availability of results from the performed studies and investigations, the scope of the follow-up mission focussed on three subject areas: (1) seismic design basis - design basis ground motions, including the evaluation of the seismic hazard ; (2) plant behaviour - integrity

  1. Protecting your family from earthquakes: The seven steps to earthquake safety

    Science.gov (United States)

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  2. Advances in the physics basis for the European DEMO design

    Science.gov (United States)

    Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.

    2015-06-01

    In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.

  3. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    Science.gov (United States)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  4. Improving the Earthquake Resilience of Buildings The worst case approach

    CERN Document Server

    Takewaki, Izuru; Fujita, Kohei

    2013-01-01

    Engineers are always interested in the worst-case scenario. One of the most important and challenging missions of structural engineers may be to narrow the range of unexpected incidents in building structural design. Redundancy, robustness and resilience play an important role in such circumstances. Improving the Earthquake Resilience of Buildings: The worst case approach discusses the importance of worst-scenario approach for improved earthquake resilience of buildings and nuclear reactor facilities. Improving the Earthquake Resilience of Buildings: The worst case approach consists of two parts. The first part deals with the characterization and modeling of worst or critical ground motions on inelastic structures and the related worst-case scenario in the structural design of ordinary simple building structures. The second part of the book focuses on investigating the worst-case scenario for passively controlled and base-isolated buildings. This allows for detailed consideration of a range of topics includin...

  5. Post-Earthquake Traffic Capacity of Modern Bridges in California

    Science.gov (United States)

    2010-03-01

    Evaluation of the capacity of a bridge to carry self-weight and traffic loads after an earthquake is essential for a : safe and timely re-opening of the bridge. In California, modern highway bridges designed using the Caltrans : Seismic Design Criter...

  6. Defeating Earthquakes

    Science.gov (United States)

    Stein, R. S.

    2012-12-01

    The 2004 M=9.2 Sumatra earthquake claimed what seemed an unfathomable 228,000 lives, although because of its size, we could at least assure ourselves that it was an extremely rare event. But in the short space of 8 years, the Sumatra quake no longer looks like an anomaly, and it is no longer even the worst disaster of the Century: 80,000 deaths in the 2005 M=7.6 Pakistan quake; 88,000 deaths in the 2008 M=7.9 Wenchuan, China quake; 316,000 deaths in the M=7.0 Haiti, quake. In each case, poor design and construction were unable to withstand the ferocity of the shaken earth. And this was compounded by inadequate rescue, medical care, and shelter. How could the toll continue to mount despite the advances in our understanding of quake risk? The world's population is flowing into megacities, and many of these migration magnets lie astride the plate boundaries. Caught between these opposing demographic and seismic forces are 50 cities of at least 3 million people threatened by large earthquakes, the targets of chance. What we know for certain is that no one will take protective measures unless they are convinced they are at risk. Furnishing that knowledge is the animating principle of the Global Earthquake Model, launched in 2009. At the very least, everyone should be able to learn what his or her risk is. At the very least, our community owes the world an estimate of that risk. So, first and foremost, GEM seeks to raise quake risk awareness. We have no illusions that maps or models raise awareness; instead, earthquakes do. But when a quake strikes, people need a credible place to go to answer the question, how vulnerable am I, and what can I do about it? The Global Earthquake Model is being built with GEM's new open source engine, OpenQuake. GEM is also assembling the global data sets without which we will never improve our understanding of where, how large, and how frequently earthquakes will strike, what impacts they will have, and how those impacts can be lessened by

  7. Evidence for strong Holocene earthquake(s) in the Wabash Valley seismic zone

    International Nuclear Information System (INIS)

    Obermeier, S.

    1991-01-01

    Many small and slightly damaging earthquakes have taken place in the region of the lower Wabash River Valley of Indiana and Illinois during the 200 years of historic record. Seismologists have long suspected the Wabash Valley seismic zone to be capable of producing earthquakes much stronger than the largest of record (m b 5.8). The seismic zone contains the poorly defined Wabash Valley fault zone and also appears to contain other vaguely defined faults at depths from which the strongest earthquakes presently originate. Faults near the surface are generally covered with thick alluvium in lowlands and a veneer of loess in uplands, which make direct observations of faults difficult. Partly because of this difficulty, a search for paleoliquefaction features was begun in 1990. Conclusions of the study are as follows: (1) an earthquake much stronger than any historic earthquake struck the lower Wabash Valley between 1,500 and 7,500 years ago; (2) the epicentral region of the prehistoric strong earthquake was the Wabash Valley seismic zone; (3) apparent sites have been located where 1811-12 earthquake accelerations can be bracketed

  8. The RCC-MR design code for LMFBR components. A useful basis for fusion reactor design tools development

    International Nuclear Information System (INIS)

    Acker, D.; Chevereau, G.

    1986-01-01

    LMFBR and fusion reactors exhibit common features with regard to structural materials, temperature service level, loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain. (author)

  9. Development of Canadian seismic design approach and overview of seismic standards

    Energy Technology Data Exchange (ETDEWEB)

    Usmani, A. [Amec Foster Wheeler, Toronto, ON (Canada); Aziz, T. [TSAziz Consulting Inc., Mississauga, ON (Canada)

    2015-07-01

    Historically the Canadian seismic design approaches have evolved for CANDU® nuclear power plants to ensure that they are designed to withstand a design basis earthquake (DBE) and have margins to meet the safety requirements of beyond DBE (BDBE). While the Canadian approach differs from others, it is comparable and in some cases more conservative. The seismic requirements are captured in five CSA nuclear standards which are kept up to date and incorporate lessons learnt from recent seismic events. This paper describes the evolution of Canadian approach, comparison with others and provides an overview and salient features of CSA seismic standards. (author)

  10. Creating a Global Building Inventory for Earthquake Loss Assessment and Risk Management

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2008-01-01

    contribution of building stock, its relative vulnerability, and distribution are vital components for determining the extent of casualties during an earthquake. It is evident from large deadly historical earthquakes that the distribution of vulnerable structures and their occupancy level during an earthquake control the severity of human losses. For example, though the number of strong earthquakes in California is comparable to that of Iran, the total earthquake-related casualties in California during the last 100 years are dramatically lower than the casualties from several individual Iranian earthquakes. The relatively low casualties count in California is attributed mainly to the fact that more than 90 percent of the building stock in California is made of wood and is designed to withstand moderate to large earthquakes (Kircher, Seligson and others, 2006). In contrast, the 80 percent adobe and or non-engineered masonry building stock with poor lateral load resisting systems in Iran succumbs even for moderate levels of ground shaking. Consequently, the heavy death toll for the 2003 Bam, Iran earthquake, which claimed 31,828 lives (Ghafory-Ashtiany and Mousavi, 2005), is directly attributable to such poorly resistant construction, and future events will produce comparable losses unless practices change. Similarly, multistory, precast-concrete framed buildings caused heavy casualties in the 1988 Spitak, Armenia earthquake (Bertero, 1989); weaker masonry and reinforced-concrete framed construction designed for gravity loads with soft first stories dominated losses in the Bhuj, India earthquake of 2001 (Madabhushi and Haigh, 2005); and adobe and weak masonry dwellings in Peru controlled the death toll in the Peru earthquake of 2007 (Taucer, J. and others, 2007). Spence (2007) after conducting a brief survey of most lethal earthquakes since 1960 found that building collapses remains a major cause of earthquake mortality and unreinforced masonry buildings are one of the mos

  11. Overview of Historical Earthquake Document Database in Japan and Future Development

    Science.gov (United States)

    Nishiyama, A.; Satake, K.

    2014-12-01

    In Japan, damage and disasters from historical large earthquakes have been documented and preserved. Compilation of historical earthquake documents started in the early 20th century and 33 volumes of historical document source books (about 27,000 pages) have been published. However, these source books are not effectively utilized for researchers due to a contamination of low-reliability historical records and a difficulty for keyword searching by characters and dates. To overcome these problems and to promote historical earthquake studies in Japan, construction of text database started in the 21 century. As for historical earthquakes from the beginning of the 7th century to the early 17th century, "Online Database of Historical Documents in Japanese Earthquakes and Eruptions in the Ancient and Medieval Ages" (Ishibashi, 2009) has been already constructed. They investigated the source books or original texts of historical literature, emended the descriptions, and assigned the reliability of each historical document on the basis of written age. Another database compiled the historical documents for seven damaging earthquakes occurred along the Sea of Japan coast in Honshu, central Japan in the Edo period (from the beginning of the 17th century to the middle of the 19th century) and constructed text database and seismic intensity data base. These are now publicized on the web (written only in Japanese). However, only about 9 % of the earthquake source books have been digitized so far. Therefore, we plan to digitize all of the remaining historical documents by the research-program which started in 2014. The specification of the data base will be similar for previous ones. We also plan to combine this database with liquefaction traces database, which will be constructed by other research program, by adding the location information described in historical documents. Constructed database would be utilized to estimate the distributions of seismic intensities and tsunami

  12. Disturbances in VHF/UHF telemetry links as a possible effect of the 2003 Hokkaido Tokachi-oki earthquake

    Directory of Open Access Journals (Sweden)

    H. Nagamoto

    2008-08-01

    Full Text Available The data on radio telemetry links (for water information at VHF/UHF in Hokkaido are used to investigate the rate of disturbances on radio links (or connection failure and its association with a huge earthquake, Tokachi-oki earthquake on 26 September 2003. Especially, the telemetry links at the Tokachi region closest to the earthquake epicenter, showed a significant increase in disturbances on radio links two weeks to a few days before the earthquake on the basis of analysis during a long interval from 1 June 2002 to 3 November 2007 (over 5 years. We suggest that these severe disturbances in VHF/UHF telemetry links are attributed to the generation of seismogenic VHF/UHF radio noises (emissions. Based on this idea, we have estimated that the intensity of these seismogenic emissions is on the order of 10–19 dB μV/m. Finally, the present result was compared with other physical parameters already obtained for this earthquake.

  13. Modified mercalli intensities for nine earthquakes in central and western Washington between 1989 and 1999

    Science.gov (United States)

    Brocher, Thomas M.; Dewey, James W.; Cassidy, John F.

    2017-08-15

    We determine Modified Mercalli (Seismic) Intensities (MMI) for nine onshore earthquakes of magnitude 4.5 and larger that occurred in central and western Washington between 1989 and 1999, on the basis of effects reported in postal questionnaires, the press, and professional collaborators. The earthquakes studied include four earthquakes of M5 and larger: the M5.0 Deming earthquake of April 13, 1990, the M5.0 Point Robinson earthquake of January 29, 1995, the M5.4 Duvall earthquake of May 3, 1996, and the M5.8 Satsop earthquake of July 3, 1999. The MMI are assigned using data and procedures that evolved at the U.S. Geological Survey (USGS) and its Department of Commerce predecessors and that were used to assign MMI to felt earthquakes occurring in the United States between 1931 and 1986. We refer to the MMI assigned in this report as traditional MMI, because they are based on responses to postal questionnaires and on newspaper reports, and to distinguish them from MMI calculated from data contributed by the public by way of the internet. Maximum traditional MMI documented for the M5 and larger earthquakes are VII for the 1990 Deming earthquake, V for the 1995 Point Robinson earthquake, VI for the 1996 Duvall earthquake, and VII for the 1999 Satsop earthquake; the five other earthquakes were variously assigned maximum intensities of IV, V, or VI. Starting in 1995, the Pacific Northwest Seismic Network (PNSN) published MMI maps for four of the studied earthquakes, based on macroseismic observations submitted by the public by way of the internet. With the availability now of the traditional USGS MMI interpreted for all the sites from which USGS postal questionnaires were returned, the four Washington earthquakes join a rather small group of earthquakes for which both traditional USGS MMI and some type of internet-based MMI have been assigned. The values and distributions of the traditional MMI are broadly similar to the internet-based PNSN intensities; we discuss some

  14. The relationship between earthquake exposure and posttraumatic stress disorder in 2013 Lushan earthquake

    Science.gov (United States)

    Wang, Yan; Lu, Yi

    2018-01-01

    The objective of this study is to explore the relationship between earthquake exposure and the incidence of PTSD. A stratification random sample survey was conducted to collect data in the Longmenshan thrust fault after Lushan earthquake three years. We used the Children's Revised Impact of Event Scale (CRIES-13) and the Earthquake Experience Scale. Subjects in this study included 3944 school student survivors in local eleven schools. The prevalence of probable PTSD is relatively higher, when the people was trapped in the earthquake, was injured in the earthquake or have relatives who died in the earthquake. It concluded that researchers need to pay more attention to the children and adolescents. The government should pay more attention to these people and provide more economic support.

  15. Performance-based plastic design of earthquake resistant reinforced concrete moment frames

    Science.gov (United States)

    Liao, Wen-Cheng

    Performance-Based Plastic Design (PBPD) method has been recently developed to achieve enhanced performance of earthquake resistant structures. The design concept uses pre-selected target drift and yield mechanism as performance criteria. The design base shear for selected hazard level is determined by equating the work needed to push the structure monotonically up to the target drift to the corresponding energy demand of an equivalent SDOF oscillator. This study presents development of the PBPD approach as applied to reinforced concrete special moment frame (RC SMF) structures. RC structures present special challenge because of their complex and degrading ("pinched") hysteretic behavior. In order to account for the degrading hysteretic behavior the 1-EMA 440 C2 factor approach was used in the process of determining the design base shear. Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. The PBPD frames showed much improved response meeting all desired performance objectives, including the intended yield mechanisms and the target drifts. On the contrary, the baseline frames experienced large story drifts due to flexural yielding of the columns. The work-energy equation to determine design base shear can also be used to estimate seismic demands, called the energy spectrum method. In this approach the skeleton force-displacement (capacity) curve of the structure is converted into energy-displacement plot (Ec) which is superimposed over the corresponding energy demand plot ( Ed) for the specified hazard level to determine the expected peak displacement demands. In summary, this study shows that the PBPD approach can be successfully applied to RC moment frame structures as well, and that the responses of the example moment frames were much improved over those

  16. Crowdsourced earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  17. Visible Earthquakes: a web-based tool for visualizing and modeling InSAR earthquake data

    Science.gov (United States)

    Funning, G. J.; Cockett, R.

    2012-12-01

    InSAR (Interferometric Synthetic Aperture Radar) is a technique for measuring the deformation of the ground using satellite radar data. One of the principal applications of this method is in the study of earthquakes; in the past 20 years over 70 earthquakes have been studied in this way, and forthcoming satellite missions promise to enable the routine and timely study of events in the future. Despite the utility of the technique and its widespread adoption by the research community, InSAR does not feature in the teaching curricula of most university geoscience departments. This is, we believe, due to a lack of accessibility to software and data. Existing tools for the visualization and modeling of interferograms are often research-oriented, command line-based and/or prohibitively expensive. Here we present a new web-based interactive tool for comparing real InSAR data with simple elastic models. The overall design of this tool was focused on ease of access and use. This tool should allow interested nonspecialists to gain a feel for the use of such data and greatly facilitate integration of InSAR into upper division geoscience courses, giving students practice in comparing actual data to modeled results. The tool, provisionally named 'Visible Earthquakes', uses web-based technologies to instantly render the displacement field that would be observable using InSAR for a given fault location, geometry, orientation, and slip. The user can adjust these 'source parameters' using a simple, clickable interface, and see how these affect the resulting model interferogram. By visually matching the model interferogram to a real earthquake interferogram (processed separately and included in the web tool) a user can produce their own estimates of the earthquake's source parameters. Once satisfied with the fit of their models, users can submit their results and see how they compare with the distribution of all other contributed earthquake models, as well as the mean and median

  18. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  19. Grid fault and design-basis for wind turbines - Final report

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Markou, Helen

    , have been performed and compared for two cases, i.e. one when the turbine is immediately disconnected from the grid when a grid fault occurs and one when the turbine is equipped with a fault ride-through controller and therefore it is able to remain connected to the grid during the grid fault......This is the final report of a Danish research project “Grid fault and design-basis for wind turbines”. The objective of this project has been to assess and analyze the consequences of the new grid connection requirements for the fatigue and ultimate structural loads of wind turbines....... The fulfillment of the grid connection requirements poses challenges for the design of both the electrical system and the mechanical structure of wind turbines. The development of wind turbine models and novel control strategies to fulfill the TSO’s requirements are of vital importance in this design. Dynamic...

  20. Implications of next generation attenuation ground motion prediction equations for site coefficients used in earthquake resistant design

    Science.gov (United States)

    Borcherdt, Roger D.

    2014-01-01

    Proposals are developed to update Tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7-10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight-line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30-m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic-uncertainty limits implied by the NGA estimates with the exceptions being the mid-period site coefficient, Fv, for site class D and the short-period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value  of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. 

  1. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    Science.gov (United States)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  2. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    Science.gov (United States)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  3. US earthquake observatories: recommendations for a new national network

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report is the first attempt by the seismological community to rationalize and optimize the distribution of earthquake observatories across the United States. The main aim is to increase significantly our knowledge of earthquakes and the earth's dynamics by providing access to scientifically more valuable data. Other objectives are to provide a more efficient and cost-effective system of recording and distributing earthquake data and to make as uniform as possible the recording of earthquakes in all states. The central recommendation of the Panel is that the guiding concept be established of a rationalized and integrated seismograph system consisting of regional seismograph networks run for crucial regional research and monitoring purposes in tandem with a carefully designed, but sparser, nationwide network of technologically advanced observatories. Such a national system must be thought of not only in terms of instrumentation but equally in terms of data storage, computer processing, and record availability.

  4. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience.

    Science.gov (United States)

    Kung, Yi-Wen; Chen, Sue-Huei

    2012-09-01

    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  5. Recent Mega-Thrust Tsunamigenic Earthquakes and PTHA

    Science.gov (United States)

    Lorito, S.

    2013-05-01

    The occurrence of several mega-thrust tsunamigenic earthquakes in the last decade, including but not limited to the 2004 Sumatra-Andaman, the 2010 Maule, and 2011 Tohoku earthquakes, has been a dramatic reminder of the limitations in our capability of assessing earthquake and tsunami hazard and risk. However, the increasingly high-quality geophysical observational networks allowed the retrieval of most accurate than ever models of the rupture process of mega-thrust earthquakes, thus paving the way for future improved hazard assessments. Probabilistic Tsunami Hazard Analysis (PTHA) methodology, in particular, is less mature than its seismic counterpart, PSHA. Worldwide recent research efforts of the tsunami science community allowed to start filling this gap, and to define some best practices that are being progressively employed in PTHA for different regions and coasts at threat. In the first part of my talk, I will briefly review some rupture models of recent mega-thrust earthquakes, and highlight some of their surprising features that likely result in bigger error bars associated to PTHA results. More specifically, recent events of unexpected size at a given location, and with unexpected rupture process features, posed first-order open questions which prevent the definition of an heterogeneous rupture probability along a subduction zone, despite of several recent promising results on the subduction zone seismic cycle. In the second part of the talk, I will dig a bit more into a specific ongoing effort for improving PTHA methods, in particular as regards epistemic and aleatory uncertainties determination, and the computational PTHA feasibility when considering the full assumed source variability. Only logic trees are usually explicated in PTHA studies, accounting for different possible assumptions on the source zone properties and behavior. The selection of the earthquakes to be actually modelled is then in general made on a qualitative basis or remains implicit

  6. Designing Raster Cells as the Basis for Developing Personal Graphic Language

    Directory of Open Access Journals (Sweden)

    Jana Z. Vujić

    2011-05-01

    Full Text Available Continuous work in creating new designer solutions points towards the need to create personal routines as personalcommunication in the relation comprising design, algorithms, and original computer graphics. This paper showsprocedures for developing a control language for creating graphic designs with individual raster elements (screeningelement obtaint by halftoning. Personal commands should set routines in a language understood by the printer andthe designer. The PostScript basis is used because we mix vector and pixel graphics in the same program stream, aswell as different colour systems, and our own raster forms. The printing raster is set with the target of special designmulti-use, and this includes the field of security graphics and art computer reproduction. Each raster form assumesmodifications, creating their raster family. The raster cell content is transformed with PostScript, allowing the settingof basic values, angle and liniature for each pixel separately. Raster cells are mixed in multi-colour graphics to thelevel of individual designs with variable values of parameters determining them.

  7. Building and design defects observed in the residential sector and the types of damage observed in recent earthquakes in Turkey

    OpenAIRE

    M. Tolga Çöğürcü

    2015-01-01

    Turkey is situated in a very active earthquake region. In the last century, several earthquakes resulted in thousands of deaths and enormous economic losses. In 1999, the Marmara earthquake had an approximate death toll of more than 20 000, and in 2011, the Van earthquake killed 604 people. In general, Turkish residential buildings have reinforced concrete structural systems. These reinforced concrete structures have several deficiencies, such as low concret...

  8. Integrated study of geophysical and biological anomalies before earthquakes (seismic and non-seismic), in Austria and Indonesia

    Science.gov (United States)

    Straka, Wolfgang; Assef, Rizkita; Faber, Robert; Ferasyi, Reza

    2015-04-01

    Earthquakes are commonly seen as unpredictable. Even when scientists believe an earthquake is likely, it is still hard to understand the indications observed, as well as their theoretical and practical implications. There is some controversy surrounding the concept of using animals as a precursor of earthquakes. Nonetheless, several institutes at University of Natural Resources and Life Sciences, and Vienna University of Technology, both Vienna, Austria, and Syiah Kuala University, Banda Aceh, as well as Terramath Indonesia, Buleleng, both Indonesia, cooperate in a long-term project, funded by Red Bull Media House, Salzburg, Austria, which aims at getting some decisive step forward from anecdotal to scientific evidence of those interdependencies, and show their possible use in forecasting seismic hazard on a short-term basis. Though no conclusive research has yet been published, an idea in this study is that even if animals do not respond to specific geophysical precursors and with enough notice to enable earthquake forecasting on that basis, they may at least enhance, in conjunction with other indications, the degree of certainty we can get of a prediction of an impending earthquake. In Indonesia, indeed, before the great earthquakes of 2004 and 2005, ominous geophysical as well as biological phenomena occurred (but were realized as precursors only in retrospect). Numerous comparable stories can be told from other times and regions. Nearly 2000 perceptible earthquakes (> M3.5) occur each year in Indonesia. Also, in 2007, the government has launched a program, focused on West Sumatra, for investigating earthquake precursors. Therefore, Indonesia is an excellent target area for a study concerning possible interconnections between geophysical and biological earthquake precursors. Geophysical and atmospheric measurements and behavioral observation of several animal species (elephant, domestic cattle, water buffalo, chicken, rat, catfish) are conducted in three areas

  9. On the reliability of the geomagnetic quake as a short time earthquake's precursor for the Sofia region

    Directory of Open Access Journals (Sweden)

    S. Cht. Mavrodiev

    2004-01-01

    Full Text Available The local 'when' for earthquake prediction is based on the connection between geomagnetic 'quakes' and the next incoming minimum or maximum of tidal gravitational potential. The probability time window for the predicted earthquake is for the tidal minimum approximately ±1 day and for the maximum ±2 days. The preliminary statistic estimation on the basis of distribution of the time difference between occurred and predicted earthquakes for the period 2002-2003 for the Sofia region is given. The possibility for creating a local 'when, where' earthquake research and prediction NETWORK is based on the accurate monitoring of the electromagnetic field with special space and time scales under, on and over the Earth's surface. The periodically upgraded information from seismic hazard maps and other standard geodetic information, as well as other precursory information, is essential.

  10. Toward a comprehensive areal model of earthquake-induced landslides

    Science.gov (United States)

    Miles, S.B.; Keefer, D.K.

    2009-01-01

    This paper provides a review of regional-scale modeling of earthquake-induced landslide hazard with respect to the needs for disaster risk reduction and sustainable development. Based on this review, it sets out important research themes and suggests computing with words (CW), a methodology that includes fuzzy logic systems, as a fruitful modeling methodology for addressing many of these research themes. A range of research, reviewed here, has been conducted applying CW to various aspects of earthquake-induced landslide hazard zonation, but none facilitate comprehensive modeling of all types of earthquake-induced landslides. A new comprehensive areal model of earthquake-induced landslides (CAMEL) is introduced here that was developed using fuzzy logic systems. CAMEL provides an integrated framework for modeling all types of earthquake-induced landslides using geographic information systems. CAMEL is designed to facilitate quantitative and qualitative representation of terrain conditions and knowledge about these conditions on the likely areal concentration of each landslide type. CAMEL is highly modifiable and adaptable; new knowledge can be easily added, while existing knowledge can be changed to better match local knowledge and conditions. As such, CAMEL should not be viewed as a complete alternative to other earthquake-induced landslide models. CAMEL provides an open framework for incorporating other models, such as Newmark's displacement method, together with previously incompatible empirical and local knowledge. ?? 2009 ASCE.

  11. An overview of the National Earthquake Information Center acquisition software system, Edge/Continuous Waveform Buffer

    Science.gov (United States)

    Patton, John M.; Ketchum, David C.; Guy, Michelle R.

    2015-11-02

    This document provides an overview of the capabilities, design, and use cases of the data acquisition and archiving subsystem at the U.S. Geological Survey National Earthquake Information Center. The Edge and Continuous Waveform Buffer software supports the National Earthquake Information Center’s worldwide earthquake monitoring mission in direct station data acquisition, data import, short- and long-term data archiving, data distribution, query services, and playback, among other capabilities. The software design and architecture can be configured to support acquisition and (or) archiving use cases. The software continues to be developed in order to expand the acquisition, storage, and distribution capabilities.

  12. Initiatives to Reduce Earthquake Risk of Developing Countries

    Science.gov (United States)

    Tucker, B. E.

    2008-12-01

    The seventeen-year-and-counting history of the Palo Alto-based nonprofit organization GeoHazards International (GHI) is the story of many initiatives within a larger initiative to increase the societal impact of geophysics and civil engineering. GHI's mission is to reduce death and suffering due to earthquakes and other natural hazards in the world's most vulnerable communities through preparedness, mitigation and advocacy. GHI works by raising awareness in these communities about their risk and about affordable methods to manage it, identifying and strengthening institutions in these communities to manage their risk, and advocating improvement in natural disaster management. Some of GHI's successful initiatives include: (1) creating an earthquake scenario for Quito, Ecuador that describes in lay terms the consequences for that city of a probable earthquake; (2) improving the curricula of Pakistani university courses about seismic retrofitting; (3) training employees of the Public Works Department of Delhi, India on assessing the seismic vulnerability of critical facilities such as a school, a hospital, a police headquarters, and city hall; (4) assessing the vulnerability of the Library of Tibetan Works and Archives in Dharamsala, India; (5) developing a seismic hazard reduction plan for a nonprofit organization in Kathmandu, Nepal that works to manage Nepal's seismic risk; and (6) assisting in the formulation of a resolution by the Council of the Organization for Economic Cooperation and Development (OECD) to promote school earthquake safety among OECD member countries. GHI's most important resource, in addition to its staff and Board of Trustees, is its members and volunteer advisors, who include some of the world's leading earth scientists, earthquake engineers, urban planners and architects, from the academic, public, private and nonprofit sectors. GHI is planning several exciting initiatives in the near future. One would oversee the design and construction of

  13. Physics-Based Hazard Assessment for Critical Structures Near Large Earthquake Sources

    Science.gov (United States)

    Hutchings, L.; Mert, A.; Fahjan, Y.; Novikova, T.; Golara, A.; Miah, M.; Fergany, E.; Foxall, W.

    2017-09-01

    We argue that for critical structures near large earthquake sources: (1) the ergodic assumption, recent history, and simplified descriptions of the hazard are not appropriate to rely on for earthquake ground motion prediction and can lead to a mis-estimation of the hazard and risk to structures; (2) a physics-based approach can address these issues; (3) a physics-based source model must be provided to generate realistic phasing effects from finite rupture and model near-source ground motion correctly; (4) wave propagations and site response should be site specific; (5) a much wider search of possible sources of ground motion can be achieved computationally with a physics-based approach; (6) unless one utilizes a physics-based approach, the hazard and risk to structures has unknown uncertainties; (7) uncertainties can be reduced with a physics-based approach, but not with an ergodic approach; (8) computational power and computer codes have advanced to the point that risk to structures can be calculated directly from source and site-specific ground motions. Spanning the variability of potential ground motion in a predictive situation is especially difficult for near-source areas, but that is the distance at which the hazard is the greatest. The basis of a "physical-based" approach is ground-motion syntheses derived from physics and an understanding of the earthquake process. This is an overview paper and results from previous studies are used to make the case for these conclusions. Our premise is that 50 years of strong motion records is insufficient to capture all possible ranges of site and propagation path conditions, rupture processes, and spatial geometric relationships between source and site. Predicting future earthquake scenarios is necessary; models that have little or no physical basis but have been tested and adjusted to fit available observations can only "predict" what happened in the past, which should be considered description as opposed to prediction

  14. Frustration and disorder in granular media and tectonic blocks: implications for earthquake complexity

    Directory of Open Access Journals (Sweden)

    A. Sornette

    1994-01-01

    Full Text Available We present exploratory analogies and speculations on the mechanisms underlying the organization of faulting and earthquake in the earth crust. The mechanical properties of the brittle lithosphere at scales of the order or larger than a few kilometers are proposed to be analogous to those of non-cohesive granular media, since both systems present stress amplitudes controlled by gravity, and shear band (faulting localization is determined by a type of friction Mohr-Coulomb rupture criterion. here, we explore the implications of this correspondence with respect to the origin of tectonic and earthquake complexity, on the basis of the existing experimental data on granular media available in the mechanical literature. An important observation is that motions and deformations of non-cohesive granular media are characterized by important fluctuations both in time (sudden breaks, avalanches, which are analogous to earthquakes and space (strain localizations, yield surfaces forming sometimes complex patterns. This is in apparent contradiction with the conventional wisdom in mechanics, based on the standard tendency to homogenize, which has led to dismiss fluctuations as experimental noise. On the basis of a second analogy with spinglasses and neural networks, based on the existence of block and grain packing disorder and block rotation "frustration", we suggest that these fluctuations observed both at large scales and at the block scale constitute an intrinsic signature of the mechanics of granular media. The space-time complexity observed in faulting and earthquake phenomenology is thus proposed to result form the special properties of the mechanics of granular media, dominated by the "frustration" of the kinematic deformations of its constitutive blocks.

  15. DOE natural phenomenal hazards design and evaluation criteria

    International Nuclear Information System (INIS)

    Murray, R.C.; Nelson, T.A.; Short, S.A.; Kennedy, R.P.; Chander, H.; Hill, J.R.; Kimball, J.K.

    1994-10-01

    It is the policy of the Department of Energy (DOE) to design, construct, and operate DOE facilities so that workers, the general public, and the environment are protected from the impacts of natural phenomena hazards (NPH). Furthermore, DOE has established explicit goals of acceptable risk for NPH performance. As a result, natural phenomena hazard (earthquake, extreme wind, and flood) design and evaluation criteria for DOE facilities have been developed based on target probabilistic performance goals. These criteria include selection of design/evaluation NPH input from probabilistic hazard curves combined with commonly practiced deterministic response evaluation methods and acceptance criteria with controlled levels of conservatism. For earthquake considerations, conservatism is intentionally introduced in specification of material strengths and capacities, in the allowance of limited inelastic behavior, and by a seismic scale factor. Criteria have been developed following a graded approach for several performance goals ranging from that appropriate for normal-use facilities to that appropriate for facilities involving hazardous or critical operations. Performance goals are comprised of qualitative expressions of acceptable behavior and of target quantitative probabilities that acceptable limits of behavior are maintained. The criteria are simple procedures but have a rigorous basis. This paper addresses DOE seismic design and evaluation criteria

  16. The Wenchuan, China M8.0 Earthquake: A Lesson and Implication for Seismic Hazard Mitigation

    Science.gov (United States)

    Wang, Z.

    2008-12-01

    The Wenchuan, China M8.0 earthquake caused great damage and huge casualty. 69,197 people were killed, 374,176 people were injured, and 18,341 people are still missing. The estimated direct economic loss is about 126 billion U.S. dollar. The Wenchuan earthquake again demonstrated that earthquake does not kill people, but the built environments and induced hazards, landslides in particular, do. Therefore, it is critical to strengthen the built environments, such buildings and bridges, and to mitigate the induced hazards in order to avoid such disaster. As a part of the so-called North-South Seismic Zone in China, the Wenchuan earthquake occurred along the Longmen Shan thrust belt which forms a boundary between the Qinghai-Tibet Plateau and the Sichuan basin, and there is a long history (~4,000 years) of seismicity in the area. The historical records show that the area experienced high intensity (i.e., greater than IX) in the past several thousand years. In other words, the area is well-known to have high seismic hazard because of its tectonic setting and seismicity. However, only intensity VII (0.1 to 0.15g PGA) has been considered for seismic design for the built environments in the area. This was one of the main reasons that so many building collapses, particularly the school buildings, during the Wenchuan earthquake. It is clear that the seismic design (i.e., the design ground motion or intensity) is not adequate in the Wenchuan earthquake stricken area. A lesson can be learned from the Wenchuan earthquake on the seismic hazard and risk assessment. A lesson can also be learned from this earthquake on seismic hazard mitigation and/or seismic risk reduction.

  17. Support motions for mechanical components during earthquakes

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1979-01-01

    The functioning of mechanical and other equipment during and after earthquakes may not only be necessary to avoid catastrophic consequences, such as in nuclear facilities, but also to guarantee the adequate functioning of emergency facilities (hospitals and fire stations, for example) that are necessary to cope with the aftermath of an earthquake. The state-of-the-art methods used for prescribing support motions to equipment in structures is reviewed from the elementary to the more complex. Also reviewed are the justifications for the uncoupling of the equipment from the structure for purposes of analysis, and the impacts that uncertainties in the total process may have on equipment design. (author)

  18. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    Science.gov (United States)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  19. Evaluating earthquake hazards in the Los Angeles region; an earth-science perspective

    Science.gov (United States)

    Ziony, Joseph I.

    1985-01-01

    Potentially destructive earthquakes are inevitable in the Los Angeles region of California, but hazards prediction can provide a basis for reducing damage and loss. This volume identifies the principal geologically controlled earthquake hazards of the region (surface faulting, strong shaking, ground failure, and tsunamis), summarizes methods for characterizing their extent and severity, and suggests opportunities for their reduction. Two systems of active faults generate earthquakes in the Los Angeles region: northwest-trending, chiefly horizontal-slip faults, such as the San Andreas, and west-trending, chiefly vertical-slip faults, such as those of the Transverse Ranges. Faults in these two systems have produced more than 40 damaging earthquakes since 1800. Ninety-five faults have slipped in late Quaternary time (approximately the past 750,000 yr) and are judged capable of generating future moderate to large earthquakes and displacing the ground surface. Average rates of late Quaternary slip or separation along these faults provide an index of their relative activity. The San Andreas and San Jacinto faults have slip rates measured in tens of millimeters per year, but most other faults have rates of about 1 mm/yr or less. Intermediate rates of as much as 6 mm/yr characterize a belt of Transverse Ranges faults that extends from near Santa Barbara to near San Bernardino. The dimensions of late Quaternary faults provide a basis for estimating the maximum sizes of likely future earthquakes in the Los Angeles region: moment magnitude .(M) 8 for the San Andreas, M 7 for the other northwest-trending elements of that fault system, and M 7.5 for the Transverse Ranges faults. Geologic and seismologic evidence along these faults, however, suggests that, for planning and designing noncritical facilities, appropriate sizes would be M 8 for the San Andreas, M 7 for the San Jacinto, M 6.5 for other northwest-trending faults, and M 6.5 to 7 for the Transverse Ranges faults. The

  20. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  1. Some conditions affecting the definition of design basis accidents relating to sodium/water reactions

    International Nuclear Information System (INIS)

    Bolt, P.R.

    1984-01-01

    The possible damaging effects of large sodium/water reactions on the steam generator, IHX and secondary circuit are considered. The conditions to be considered in defining the design basis accidents for these components are discussed, together with some of the assumptions that may be associated with design assessments of the scale of the accidents. (author)

  2. Forecasting of future earthquakes in the northeast region of India considering energy released concept

    Science.gov (United States)

    Zarola, Amit; Sil, Arjun

    2018-04-01

    This study presents the forecasting of time and magnitude size of the next earthquake in the northeast India, using four probability distribution models (Gamma, Lognormal, Weibull and Log-logistic) considering updated earthquake catalog of magnitude Mw ≥ 6.0 that occurred from year 1737-2015 in the study area. On the basis of past seismicity of the region, two types of conditional probabilities have been estimated using their best fit model and respective model parameters. The first conditional probability is the probability of seismic energy (e × 1020 ergs), which is expected to release in the future earthquake, exceeding a certain level of seismic energy (E × 1020 ergs). And the second conditional probability is the probability of seismic energy (a × 1020 ergs/year), which is expected to release per year, exceeding a certain level of seismic energy per year (A × 1020 ergs/year). The logarithm likelihood functions (ln L) were also estimated for all four probability distribution models. A higher value of ln L suggests a better model and a lower value shows a worse model. The time of the future earthquake is forecasted by dividing the total seismic energy expected to release in the future earthquake with the total seismic energy expected to release per year. The epicentre of recently occurred 4 January 2016 Manipur earthquake (M 6.7), 13 April 2016 Myanmar earthquake (M 6.9) and the 24 August 2016 Myanmar earthquake (M 6.8) are located in zone Z.12, zone Z.16 and zone Z.15, respectively and that are the identified seismic source zones in the study area which show that the proposed techniques and models yield good forecasting accuracy.

  3. Retrospective evaluation of the five-year and ten-year CSEP-Italy earthquake forecasts

    Directory of Open Access Journals (Sweden)

    Stefan Wiemer

    2010-11-01

    Full Text Available On August 1, 2009, the global Collaboratory for the Study of Earthquake Predictability (CSEP launched a prospective and comparative earthquake predictability experiment in Italy. The goal of this CSEP-Italy experiment is to test earthquake occurrence hypotheses that have been formalized as probabilistic earthquake forecasts over temporal scales that range from days to years. In the first round of forecast submissions, members of the CSEP-Italy Working Group presented 18 five-year and ten-year earthquake forecasts to the European CSEP Testing Center at ETH Zurich. We have considered here the twelve time-independent earthquake forecasts among this set, and evaluated them with respect to past seismicity data from two Italian earthquake catalogs. We present the results of the tests that measure the consistencies of the forecasts according to past observations. As well as being an evaluation of the time-independent forecasts submitted, this exercise provides insight into a number of important issues in predictability experiments with regard to the specification of the forecasts, the performance of the tests, and the trade-off between robustness of results and experiment duration. We conclude with suggestions for the design of future earthquake predictability experiments.

  4. Statistical distributions of earthquakes and related non-linear features in seismic waves

    International Nuclear Information System (INIS)

    Apostol, B.-F.

    2006-01-01

    A few basic facts in the science of the earthquakes are briefly reviewed. An accumulation, or growth, model is put forward for the focal mechanisms and the critical focal zone of the earthquakes, which relates the earthquake average recurrence time to the released seismic energy. The temporal statistical distribution for average recurrence time is introduced for earthquakes, and, on this basis, the Omori-type distribution in energy is derived, as well as the distribution in magnitude, by making use of the semi-empirical Gutenberg-Richter law relating seismic energy to earthquake magnitude. On geometric grounds, the accumulation model suggests the value r = 1/3 for the Omori parameter in the power-law of energy distribution, which leads to β = 1,17 for the coefficient in the Gutenberg-Richter recurrence law, in fair agreement with the statistical analysis of the empirical data. Making use of this value, the empirical Bath's law is discussed for the average magnitude of the aftershocks (which is 1.2 less than the magnitude of the main seismic shock), by assuming that the aftershocks are relaxation events of the seismic zone. The time distribution of the earthquakes with a fixed average recurrence time is also derived, the earthquake occurrence prediction is discussed by means of the average recurrence time and the seismicity rate, and application of this discussion to the seismic region Vrancea, Romania, is outlined. Finally, a special effect of non-linear behaviour of the seismic waves is discussed, by describing an exact solution derived recently for the elastic waves equation with cubic anharmonicities, its relevance, and its connection to the approximate quasi-plane waves picture. The properties of the seismic activity accompanying a main seismic shock, both like foreshocks and aftershocks, are relegated to forthcoming publications. (author)

  5. Preliminary Results on Earthquake Recurrence Intervals, Rupture Segmentation, and Potential Earthquake Moment Magnitudes along the Tahoe-Sierra Frontal Fault Zone, Lake Tahoe, California

    Science.gov (United States)

    Howle, J.; Bawden, G. W.; Schweickert, R. A.; Hunter, L. E.; Rose, R.

    2012-12-01

    frequency. Utilizing regressions of earthquake moment-magnitude (MW) and surface-rupture length from well-characterized historic normal faults by Wells and Coppersmith (1994), coseismic rupture of the range-front sections of the Echo Peak and Mt. Tallac segments would potentially generate an earthquake with Mw ranging from 6.5±0.25 and 6.7±0.25. If the entire mapped length of the Rubicon Peak segment were to rupture, Mw could range from 6.6±0.25 to 6.9±0.25. In a worst-case scenario, where the entire length of the Rubicon Peak fault ruptures coseismically with the Mt. Tallac fault, the potential Mw could range from 6.8±0.25 to 7.0±0.25. Fault scarps along the Mt. Tallac and Rubicon Peak segments differ in morphology, indicating that the Rubicon Peak segment probably did not rupture coseismically during the last ground-rupturing earthquake along the Mt. Tallac segment. On the basis of this qualitative comparison, the estimated timing of the most recent earthquake along the Mt. Tallac segment (4.3±0.7 ka), and the maximum estimate of earthquake recurrence intervals for the Rubicon Peak segment (2.8±1.0x103 years), we believe that the Rubicon Peak segment of the TSFFZ is overdue for a ground-rupturing earthquake

  6. Archiving, sharing, processing and publishing historical earthquakes data: the IT point of view

    Science.gov (United States)

    Locati, Mario; Rovida, Andrea; Albini, Paola

    2014-05-01

    Digital tools devised for seismological data are mostly designed for handling instrumentally recorded data. Researchers working on historical seismology are forced to perform their daily job using a general purpose tool and/or coding their own to address their specific tasks. The lack of out-of-the-box tools expressly conceived to deal with historical data leads to a huge amount of time lost in performing tedious task to search for the data and, to manually reformat it in order to jump from one tool to the other, sometimes causing a loss of the original data. This reality is common to all activities related to the study of earthquakes of the past centuries, from the interpretations of past historical sources, to the compilation of earthquake catalogues. A platform able to preserve the historical earthquake data, trace back their source, and able to fulfil many common tasks was very much needed. In the framework of two European projects (NERIES and SHARE) and one global project (Global Earthquake History, GEM), two new data portals were designed and implemented. The European portal "Archive of Historical Earthquakes Data" (AHEAD) and the worldwide "Global Historical Earthquake Archive" (GHEA), are aimed at addressing at least some of the above mentioned issues. The availability of these new portals and their well-defined standards makes it easier than before the development of side tools for archiving, publishing and processing the available historical earthquake data. The AHEAD and GHEA portals, their underlying technologies and the developed side tools are presented.

  7. The music of earthquakes and Earthquake Quartet #1

    Science.gov (United States)

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  8. Reactor safety under design basis flood condition for inland sites

    International Nuclear Information System (INIS)

    Hajela, S.; Bajaj, S.S.; Samota, A.; Verma, U.S.P.; Warudkar, A.S.

    2002-01-01

    Full text: In June 1994, there was an incident of flooding at Kakrapar Atomic Power Station (KAPS) due to combination of heavy rains and mechanical failure in the operation of gates at the adjoining weir. An indepth review of the incident was carried out and a number of flood protection measures were recommended and were implemented at site. As part of this review, a safety analysis was also done to demonstrate reactor safety with a series of failures considered in the flood protection features. For each inland NPP site, as part of design, different flood scenarios are analysed to arrive at design basis flood (DBF) level. This level is estimated based on worst combination of heavy local precipitation, flooding in river, failure of upstream/downstream water control structures

  9. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  10. Probabilistic evaluation of near-field ground motions due to buried-rupture earthquakes caused by undefined faults

    International Nuclear Information System (INIS)

    Shohei Motohashi; Katsumi Ebisawa; Masaharu Sakagmi; Kazuo Dan; Yasuhiro Ohtsuka; Takao Kagawa

    2005-01-01

    The Nuclear Safety Commission of Japan has been reviewing the current Guideline for Earthquake Resistant Design of Nuclear Power Plants since July 2001. According to recent earthquake research, one of the main issues in the review is the design earthquake motion due to close-by earthquakes caused by undefined faults. This paper proposes a probabilistic method for covering variations of earthquake magnitude and location of undefined faults by strong motion simulation technique based on fault models for scenario earthquakes, and describes probabilistic response spectra due to close-by scenario earthquakes caused by undefined faults. Horizontal uniform hazard spectra evaluated by a hybrid technique are compared with those evaluated by an empirical approach. The response spectra with a damping factor of 5% at 0.02 s simulated by the hybrid technique are about 160, 340, 570, and 800 cm/s/s for annual exceedance probabilities of 10 -3 , 10 -4 , 10 -5 , and 10 -6 , respectively, which are in good agreement with the response spectra evaluated by the empirical approach. It is also recognized that the response spectrum proposed by Kato et al. (2004) as the upper level of the strong motion records of buried-rupture earthquakes corresponded to the uniform hazard spectra between 10 -5 and 10 -4 in the period range shorter than 0.4 s. (authors)

  11. Geophysical Anomalies and Earthquake Prediction

    Science.gov (United States)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  12. Structural performance of the DOE's Idaho National Engineering Laboratory during the 1983 Borah Peak Earthquake

    International Nuclear Information System (INIS)

    Guenzler, R.C.; Gorman, V.W.

    1985-01-01

    The 1983 Borah Peak Earthquake (7.3 Richter magnitude) was the largest earthquake ever experienced by the DOE's Idaho National Engineering Laboratory (INEL). Reactor and plant facilities are generally located about 90 to 110 km (60 miles) from the epicenter. Several reactors were operating normally at the time of the earthquake. Based on detailed inspections, comparisons of measured accelerations with design levels, and instrumental seismograph information, it was concluded that the 1983 Borah Peak Earthquake created no safety problems for INEL reactors or other facilities. 10 references, 16 figures, 2 tables

  13. Long-term predictability of regions and dates of strong earthquakes

    Science.gov (United States)

    Kubyshen, Alexander; Doda, Leonid; Shopin, Sergey

    2016-04-01

    Results on the long-term predictability of strong earthquakes are discussed. It is shown that dates of earthquakes with M>5.5 could be determined in advance of several months before the event. The magnitude and the region of approaching earthquake could be specified in the time-frame of a month before the event. Determination of number of M6+ earthquakes, which are expected to occur during the analyzed year, is performed using the special sequence diagram of seismic activity for the century time frame. Date analysis could be performed with advance of 15-20 years. Data is verified by a monthly sequence diagram of seismic activity. The number of strong earthquakes expected to occur in the analyzed month is determined by several methods having a different prediction horizon. Determination of days of potential earthquakes with M5.5+ is performed using astronomical data. Earthquakes occur on days of oppositions of Solar System planets (arranged in a single line). At that, the strongest earthquakes occur under the location of vector "Sun-Solar System barycenter" in the ecliptic plane. Details of this astronomical multivariate indicator still require further research, but it's practical significant is confirmed by practice. Another one empirical indicator of approaching earthquake M6+ is a synchronous variation of meteorological parameters: abrupt decreasing of minimal daily temperature, increasing of relative humidity, abrupt change of atmospheric pressure (RAMES method). Time difference of predicted and actual date is no more than one day. This indicator is registered 104 days before the earthquake, so it was called as Harmonic 104 or H-104. This fact looks paradoxical, but the works of A. Sytinskiy and V. Bokov on the correlation of global atmospheric circulation and seismic events give a physical basis for this empirical fact. Also, 104 days is a quarter of a Chandler period so this fact gives insight on the correlation between the anomalies of Earth orientation

  14. Interior design conceptual basis

    CERN Document Server

    Sully, Anthony

    2015-01-01

    Maximizing reader insights into interior design as a conceptual way of thinking, which is about ideas and how they are formulated. The major themes of this book are the seven concepts of planning, circulation, 3D, construction, materials, colour and lighting, which covers the entire spectrum of a designer’s activity. Analysing design concepts from the view of the range of possibilities that the designer can examine and eventually decide by choice and conclusive belief the appropriate course of action to take in forming that particular concept, the formation and implementation of these concepts is taken in this book to aid the designer in his/her professional task of completing a design proposal to the client. The purpose of this book is to prepare designers to focus on each concept independently as much as possible, whilst acknowledging relative connections without unwarranted influences unfairly dictating a conceptual bias, and is about that part of the design process called conceptual analysis. It is assu...

  15. RAPID EXTRACTION OF LANDSLIDE AND SPATIAL DISTRIBUTION ANALYSIS AFTER JIUZHAIGOU Ms7.0 EARTHQUAKE BASED ON UAV IMAGES

    OpenAIRE

    Q. S. Jiao; Y. Luo; W. H. Shen; Q. Li; X. Wang

    2018-01-01

    Jiuzhaigou earthquake led to the collapse of the mountains and formed lots of landslides in Jiuzhaigou scenic spot and surrounding roads which caused road blockage and serious ecological damage. Due to the urgency of the rescue, the authors carried unmanned aerial vehicle (UAV) and entered the disaster area as early as August 9 to obtain the aerial images near the epicenter. On the basis of summarizing the earthquake landslides characteristics in aerial images, by using the object-oriented an...

  16. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  17. Predictability of Landslide Timing From Quasi-Periodic Precursory Earthquakes

    Science.gov (United States)

    Bell, Andrew F.

    2018-02-01

    Accelerating rates of geophysical signals are observed before a range of material failure phenomena. They provide insights into the physical processes controlling failure and the basis for failure forecasts. However, examples of accelerating seismicity before landslides are rare, and their behavior and forecasting potential are largely unknown. Here I use a Bayesian methodology to apply a novel gamma point process model to investigate a sequence of quasiperiodic repeating earthquakes preceding a large landslide at Nuugaatsiaq in Greenland in June 2017. The evolution in earthquake rate is best explained by an inverse power law increase with time toward failure, as predicted by material failure theory. However, the commonly accepted power law exponent value of 1.0 is inconsistent with the data. Instead, the mean posterior value of 0.71 indicates a particularly rapid acceleration toward failure and suggests that only relatively short warning times may be possible for similar landslides in future.

  18. Earthquakes, May-June 1991

    Science.gov (United States)

    Person, W.J.

    1992-01-01

    One major earthquake occurred during this reporting period. This was a magntidue 7.1 in Indonesia (Minahassa Peninsula) on June 20. Earthquake-related deaths were reported in the Western Caucasus (Georgia, USSR) on May 3 and June 15. One earthquake-related death was also reported El Salvador on June 21. 

  19. Modeling, Forecasting and Mitigating Extreme Earthquakes

    Science.gov (United States)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  20. Scientists Engage South Carolina Community in Earthquake Education and Preparedness

    Science.gov (United States)

    Hall, C.; Beutel, E.; Jaume', S.; Levine, N.; Doyle, B.

    2008-12-01

    Scientists at the College of Charleston are working with the state of South Carolina's Emergency Management Division to increase awareness and understanding of earthquake hazards throughout South Carolina. As part of this mission, the SCEEP (South Carolina Earthquake Education and Preparedness) program was formed at the College of Charleston to promote earthquake research, outreach, and education in the state of South Carolina. Working with local, regional, state and federal offices, SCEEP has developed education programs for everyone from professional hazard management teams to formal and informal educators. SCEEP also works with the media to ensure accurate reporting of earthquake and other hazard information and to increase the public's understanding of earthquake science and earthquake seismology. As part of this program, we have developed a series of activities that can be checked out by educators for use in their classrooms and in informal education venues. These activities are designed to provide educators with the information and tools they lack to adequately, informatively, and enjoyably teach about earthquake and earth science. The toolkits contain seven activities meeting a variety of National Education Standards, not only in Science, but also in Geography, Math, Social Studies, Arts Education, History and Language Arts - providing a truly multidisciplinary toolkit for educators. The activities provide information on earthquake myths, seismic waves, elastic rebound, vectors, liquefaction, location of an epicenter, and then finally South Carolina earthquakes. The activities are engaging and inquiry based, implementing proven effective strategies for peaking learners' interest in scientific phenomena. All materials are provided within the toolkit and so it is truly check and go. While the SCEEP team has provided instructions and grade level suggestions for implementing the activity in an educational setting, the educator has full reign on what to showcase

  1. Designing and Implementing a Retrospective Earthquake Detection Framework at the U.S. Geological Survey National Earthquake Information Center

    Science.gov (United States)

    Patton, J.; Yeck, W.; Benz, H.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.

  2. Earthquake Catalogue of the Caucasus

    Science.gov (United States)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  3. Unites States position paper on sodium fires. Design basis and testing

    International Nuclear Information System (INIS)

    Lancet, R.T.; Johnson, R.P.; Matlin, E.; Vaughan, E.U.; Fields, D.E.; Glueckler, E.; McCormack, J.D.; Miller, C.W.; Pedersen, D.R.

    1989-01-01

    This paper focuses on designs, analyses, and tests performed since the last Sodium Fires Meeting of the IAEA International Working Group on Fast Reactors in May 1982. Since the U.S. Liquid Metal Reactor (LMR) program is focused on the two advanced LMRs, SAFR and PRISM, the paper relates this work to these designs. First, the design philosophy and approach taken by these advanced pool reactors are described. This includes methods of leak detection, the design basis leaks, and passive accommodation of sodium fires. Then the small- and large-scale sodium fire tests performed in support of the Clinch River Breeder Reactor Plant (CRBRP) program, including post-accident cleanup, are presented and related to the advanced LMR designs. Next, the assessment and behavior of the aerosols generated are discussed including generation rate, behavior within structures, release and dispersal, and deposition on safety-grade equipment. Finally, the impact of these aerosols on the performance of safety-grade decay heat removal heat exchange surfaces is discussed including some test results as well as planned tests. (author)

  4. Mortality in the l'aquila (central Italy) earthquake of 6 april 2009.

    Science.gov (United States)

    Alexander, David; Magni, Michele

    2013-01-07

    This paper presents the results of an analysis of data on mortality in the magnitude 6.3 earthquake that struck the central Italian city and province of L'Aquila during the night of 6 April 2009. The aim is to create a profile of the deaths in terms of age, gender, location, behaviour during the tremors, and other aspects. This could help predict the pattern of casualties and priorities for protection in future earthquakes. To establish a basis for analysis, the literature on seismic mortality is surveyed. The conclusions of previous studies are synthesised regarding patterns of mortality, entrapment, survival times, self-protective behaviour, gender and age. These factors are investigated for the data set covering the 308 fatalities in the L'Aquila earthquake, with help from interview data on behavioural factors obtained from 250 survivors. In this data set, there is a strong bias towards victimisation of young people, the elderly and women. Part of this can be explained by geographical factors regarding building performance: the rest of the explanation refers to the vulnerability of the elderly and the relationship between perception and action among female victims, who tend to be more fatalistic than men and thus did not abandon their homes between a major foreshock and the main shock of the earthquake, three hours later. In terms of casualties, earthquakes commonly discriminate against the elderly and women. Age and gender biases need further investigation and should be taken into account in seismic mitigation initiatives.

  5. Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis?

    Science.gov (United States)

    Hanks, Thomas C.; Beroza, Gregory C.; Toda, Shinji

    2012-01-01

    In a recent Opinion piece in these pages, Stein et al. (2011) offer a remarkable indictment of the methods, models, and results of probabilistic seismic hazard analysis (PSHA). The principal object of their concern is the PSHA map for Japan released by the Japan Headquarters for Earthquake Research Promotion (HERP), which is reproduced by Stein et al. (2011) as their Figure 1 and also here as our Figure 1. It shows the probability of exceedance (also referred to as the “hazard”) of the Japan Meteorological Agency (JMA) intensity 6–lower (JMA 6–) in Japan for the 30-year period beginning in January 2010. JMA 6– is an earthquake-damage intensity measure that is associated with fairly strong ground motion that can be damaging to well-built structures and is potentially destructive to poor construction (HERP, 2005, appendix 5). Reiterating Geller (2011, p. 408), Stein et al. (2011, p. 623) have this to say about Figure 1: The regions assessed as most dangerous are the zones of three hypothetical “scenario earthquakes” (Tokai, Tonankai, and Nankai; see map). However, since 1979, earthquakes that caused 10 or more fatalities in Japan actually occurred in places assigned a relatively low probability. This discrepancy—the latest in a string of negative results for the characteristic model and its cousin the seismic-gap model—strongly suggest that the hazard map and the methods used to produce it are flawed and should be discarded. Given the central role that PSHA now plays in seismic risk analysis, performance-based engineering, and design-basis ground motions, discarding PSHA would have important consequences. We are not persuaded by the arguments of Geller (2011) and Stein et al. (2011) for doing so because important misunderstandings about PSHA seem to have conditioned them. In the quotation above, for example, they have confused important differences between earthquake-occurrence observations and ground-motion hazard calculations.

  6. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    Science.gov (United States)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  7. Extreme value distribution of earthquake magnitude

    Science.gov (United States)

    Zi, Jun Gan; Tung, C. C.

    1983-07-01

    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  8. Response spectra by blind faults for design purpose of stiff structures on rock site

    International Nuclear Information System (INIS)

    Hiroyuki Mizutani; Kenichi Kato; Masayuki Takemura; Kazuhiko Yashiro; Kazuo Dan

    2005-01-01

    The goal of this paper is to propose the response spectra by blind faults for seismic design of nuclear power facilities. It is impossible to evaluate earthquake ground motions from blind faults, because the size and the location of blind fault cannot be identified even if the detailed geological surveys are conducted. From the viewpoint of seismic design, it is crucial to investigate the upper level of earthquake ground motions due to blind faults. In this paper, 41 earthquakes that occurred in the upper crust in Japan and California are selected and classified into the active and the blind fault types. On the basis of near-source strong motion records observed on rock sites, upper level of response spectra by blind faults is examined. The estimated upper level is as follows: the peak ground acceleration is 450 cm/s 2 , the flat level of the acceleration response spectra is 1200 cm/s 2 , and the flat level of the velocity response spectra is 100 cm/s on rock sites with shear wave velocity Vs of about 700 m/s. The upper level can envelop the observed response spectra in near-source region on rock sites. (authors)

  9. Response spectra for differential motion of structures supports during earthquakes in Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed I.S. Elmasry

    2012-12-01

    Full Text Available Differential motions of ground supports of stiff structures with large plan dimensions and separate foundations under earthquakes were studied by researchers during the last few decades. Such a type of structural response was previously underestimated. The importance of studying such a response comes up from the fact that usually the structures affected are of strategic importance such as bridges. During their expected life, structures may experience vibrations excited by ground waves of short wavelengths during near-source earthquakes, or during amplified earthquake signals, during explosions, or during vibrations induced from nearby strong vibration sources. This is the case when the differential motion of supports becomes considerable. This paper aims to review the effects of seismic signal variations along the structures dimensions with emphasis on Egypt as a case study. The paper shows some patterns of the damage imposed by such differential motion. A replication of the differential motion in the longitudinal direction is applied on a frame bridge model. The resulting straining actions show the necessity for considering the differential motion of supports in the design of special structures in Egypt. Finally, response spectra for the differential motion of supports, based on the available data from previous earthquakes in Egypt, is derived and proposed for designers to include in the design procedure when accounting for such type of structural response, and especially in long-span bridges.

  10. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  11. Environmental conditions using thermal-hydraulics computer code GOTHIC for beyond design basis external events

    International Nuclear Information System (INIS)

    Pleskunas, R.J.

    2015-01-01

    In response to the Fukushima Dai-ichi beyond design basis accident in March 2011, the Nuclear Regulatory Commission (NRC) issued Order EA-12-049, 'Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies Beyond-Design-Basis-External-Events'. To outline the process to be used by individual licensees to define and implement site-specific diverse and flexible mitigation strategies (FLEX) that reduce the risks associated with beyond design basis conditions, Nuclear Energy Institute document NEI 12-06, 'Diverse and Flexible Coping Strategies (FLEX) Implementation Guide', was issued. A beyond design basis external event (BDBEE) is postulated to cause an Extended Loss of AC Power (ELAP), which will result in a loss of ventilation which has the potential to impact room habitability and equipment operability. During the ELAP, portable FLEX equipment will be used to achieve and maintain safe shutdown, and only a minimal set of instruments and controls will be available. Given these circumstances, analysis is required to determine the environmental conditions in several vital areas of the Nuclear Power Plant. The BDBEE mitigating strategies require certain room environments to be maintained such that they can support the occupancy of personnel and the functionality of equipment located therein, which is required to support the strategies associated with compliance to NRC Order EA-12-049. Three thermal-hydraulic analyses of vital areas during an extended loss of AC power using the GOTHIC computer code will be presented: 1) Safety-related pump and instrument room transient analysis; 2) Control Room transient analysis; and 3) Auxiliary/Control Building transient analysis. GOTHIC (Generation of Thermal-Hydraulic Information for Containment) is a general purpose thermal-hydraulics software package for the analysis of nuclear power plant containments, confinement buildings, and system components. It is a volume/path/heat sink

  12. Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  13. Excel, Earthquakes, and Moneyball: exploring Cascadia earthquake probabilities using spreadsheets and baseball analogies

    Science.gov (United States)

    Campbell, M. R.; Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.

    2017-12-01

    Much recent media attention focuses on Cascadia's earthquake hazard. A widely cited magazine article starts "An earthquake will destroy a sizable portion of the coastal Northwest. The question is when." Stories include statements like "a massive earthquake is overdue", "in the next 50 years, there is a 1-in-10 chance a "really big one" will erupt," or "the odds of the big Cascadia earthquake happening in the next fifty years are roughly one in three." These lead students to ask where the quoted probabilities come from and what they mean. These probability estimates involve two primary choices: what data are used to describe when past earthquakes happened and what models are used to forecast when future earthquakes will happen. The data come from a 10,000-year record of large paleoearthquakes compiled from subsidence data on land and turbidites, offshore deposits recording submarine slope failure. Earthquakes seem to have happened in clusters of four or five events, separated by gaps. Earthquakes within a cluster occur more frequently and regularly than in the full record. Hence the next earthquake is more likely if we assume that we are in the recent cluster that started about 1700 years ago, than if we assume the cluster is over. Students can explore how changing assumptions drastically changes probability estimates using easy-to-write and display spreadsheets, like those shown below. Insight can also come from baseball analogies. The cluster issue is like deciding whether to assume that a hitter's performance in the next game is better described by his lifetime record, or by the past few games, since he may be hitting unusually well or in a slump. The other big choice is whether to assume that the probability of an earthquake is constant with time, or is small immediately after one occurs and then grows with time. This is like whether to assume that a player's performance is the same from year to year, or changes over their career. Thus saying "the chance of

  14. Elements of earthquake engineering and structural dynamics. 2. ed.

    International Nuclear Information System (INIS)

    Filiatrault, A.

    2002-01-01

    This book is written for practising engineers, senior undergraduate and junior structural-engineering students, and university educators. Its main goal is to provide basic knowledge to structural engineers who have no previous knowledge about earthquake engineering and structural dynamics. Earthquake engineering is a multidisciplinary science. This book is not limited to structural analysis and design. The basics of other relevant topics (such as geology, seismology, and geotechnical engineering) are also covered to ensure that structural engineers can interact efficiently with other specialists during a construction project in a seismic zone

  15. Temporal properties of seismicity and largest earthquakes in SE Carpathians

    Directory of Open Access Journals (Sweden)

    S. Byrdina

    2006-01-01

    Full Text Available In order to estimate the hazard rate distribution of the largest seismic events in Vrancea, South-Eastern Carpathians, we study temporal properties of historical and instrumental catalogues of seismicity. First, on the basis of Generalized Extreme Value theory we estimate the average return period of the largest events. Then, following Bak et al. (2002 and Corral (2005a, we study scaling properties of recurrence times between earthquakes in appropriate spatial volumes. We come to the conclusion that the seismicity is temporally clustered, and that the distribution of recurrence times is significantly different from a Poisson process even for times largely exceeding corresponding periods of foreshock and aftershock activity. Modeling the recurrence times by a gamma distributed variable, we finally estimate hazard rates with respect to the time elapsed from the last large earthquake.

  16. Do Earthquakes Shake Stock Markets?

    Science.gov (United States)

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  17. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  18. Sedimentary Signatures of Submarine Earthquakes: Deciphering the Extent of Sediment Remobilization from the 2011 Tohoku Earthquake and Tsunami and 2010 Haiti Earthquake

    Science.gov (United States)

    McHugh, C. M.; Seeber, L.; Moernaut, J.; Strasser, M.; Kanamatsu, T.; Ikehara, K.; Bopp, R.; Mustaque, S.; Usami, K.; Schwestermann, T.; Kioka, A.; Moore, L. M.

    2017-12-01

    The 2004 Sumatra-Andaman Mw9.3 and the 2011 Tohoku (Japan) Mw9.0 earthquakes and tsunamis were huge geological events with major societal consequences. Both were along subduction boundaries and ruptured portions of these boundaries that had been deemed incapable of such events. Submarine strike-slip earthquakes, such as the 2010 Mw7.0 in Haiti, are smaller but may be closer to population centers and can be similarly catastrophic. Both classes of earthquakes remobilize sediment and leave distinct signatures in the geologic record by a wide range of processes that depends on both environment and earthquake characteristics. Understanding them has the potential of greatly expanding the record of past earthquakes, which is critical for geohazard analysis. Recent events offer precious ground truth about the earthquakes and short-lived radioisotopes offer invaluable tools to identify sediments they remobilized. In the 2011 Mw9 Japan earthquake they document the spatial extent of remobilized sediment from water depths of 626m in the forearc slope to trench depths of 8000m. Subbottom profiles, multibeam bathymetry and 40 piston cores collected by the R/V Natsushima and R/V Sonne expeditions to the Japan Trench document multiple turbidites and high-density flows. Core tops enriched in xs210Pb,137Cs and 134Cs reveal sediment deposited by the 2011 Tohoku earthquake and tsunami. The thickest deposits (2m) were documented on a mid-slope terrace and trench (4000-8000m). Sediment was deposited on some terraces (600-3000m), but shed from the steep forearc slope (3000-4000m). The 2010 Haiti mainshock ruptured along the southern flank of Canal du Sud and triggered multiple nearshore sediment failures, generated turbidity currents and stirred fine sediment into suspension throughout this basin. A tsunami was modeled to stem from both sediment failures and tectonics. Remobilized sediment was tracked with short-lived radioisotopes from the nearshore, slope, in fault basins including the

  19. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    Directory of Open Access Journals (Sweden)

    W. F. Peng

    2012-03-01

    Full Text Available The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC from the global ionosphere map (GIM. We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0–2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time. Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  20. RICHTER: A Smartphone Application for Rapid Collection of Geo-Tagged Pictures of Earthquake Damage

    Science.gov (United States)

    Skinnemoen, H.; Bossu, R.; Furuheim, K.; Bjorgo, E.

    2010-12-01

    RICHTER (Rapid geo-Images for Collaborative Help Targeting Earthquake Response) is a smartphone version of a professional application developed to provide high quality geo-tagged image communication over challenging network links, such as satellites and poor mobile links. Developed for Android mobile phones, it allows eyewitnesses to share their pictures of earthquake damage easily and without cost with the Euro-Mediterranean Seismological Centre (EMSC). The goal is to engage citizens in the collection of the most up-to-date visual information on local damage for improved rapid impact assessment. RICHTER integrates the innovative and award winning ASIGN protocol initially developed for satellite communication between cameras / computers / satcom terminals and servers at HQ. ASIGN is a robust and optimal image and video communication management solution for bandwidth-limited communication networks which was developed for use particularly in emergency and disaster situations. Contrary to a simple Multimedia Messaging System (MMS), RICHTER allows access to high definition images with embedded location information. Location is automatically assigned from either the internal GPS, derived from the mobile network (triangulation) or the current Wi-Fi domain, in that order, as this corresponds to the expected positioning accuracy. Pictures are compressed to 20-30KB of data typically for fast transfer and to avoid network overload. Full size images can be requested by the EMSC either fully automatically, or on a case-by-case basis, depending on the user preferences. ASIGN was initially developed in coordination with INMARSAT and the European Space Agency. It was used by the Rapid Mapping Unit of the United Nations notably for the damage assessment of the January 12, 2010 Haiti earthquake where more than 700 photos were collected. RICHTER will be freely distributed on the EMSC website to eyewitnesses in the event of significantly damaging earthquakes. The EMSC is the second